ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.168 by root, Sat Dec 8 14:12:07 2007 UTC vs.
Revision 1.332 by root, Tue Mar 9 08:58:17 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
61# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
62# else 93# else
63# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
79# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
80# endif 111# endif
81# endif 112# endif
82 113
83# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
85# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
86# else 117# else
87# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
88# endif 119# endif
89# endif 120# endif
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
111#include <fcntl.h> 159#include <fcntl.h>
112#include <stddef.h> 160#include <stddef.h>
113 161
114#include <stdio.h> 162#include <stdio.h>
115 163
116#include <assert.h> 164#include <assert.h>
117#include <errno.h> 165#include <errno.h>
118#include <sys/types.h> 166#include <sys/types.h>
119#include <time.h> 167#include <time.h>
168#include <limits.h>
120 169
121#include <signal.h> 170#include <signal.h>
122 171
123#ifdef EV_H 172#ifdef EV_H
124# include EV_H 173# include EV_H
129#ifndef _WIN32 178#ifndef _WIN32
130# include <sys/time.h> 179# include <sys/time.h>
131# include <sys/wait.h> 180# include <sys/wait.h>
132# include <unistd.h> 181# include <unistd.h>
133#else 182#else
183# include <io.h>
134# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 185# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
138# endif 188# endif
189# undef EV_AVOID_STDIO
190#endif
191
192/* this block tries to deduce configuration from header-defined symbols and defaults */
193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line */
218# define EV_NSIG 65
219#endif
220
221#ifndef EV_USE_CLOCK_SYSCALL
222# if __linux && __GLIBC__ >= 2
223# define EV_USE_CLOCK_SYSCALL 1
224# else
225# define EV_USE_CLOCK_SYSCALL 0
139#endif 226# endif
140 227#endif
141/**/
142 228
143#ifndef EV_USE_MONOTONIC 229#ifndef EV_USE_MONOTONIC
230# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
231# define EV_USE_MONOTONIC 1
232# else
144# define EV_USE_MONOTONIC 0 233# define EV_USE_MONOTONIC 0
234# endif
145#endif 235#endif
146 236
147#ifndef EV_USE_REALTIME 237#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 238# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
239#endif
240
241#ifndef EV_USE_NANOSLEEP
242# if _POSIX_C_SOURCE >= 199309L
243# define EV_USE_NANOSLEEP 1
244# else
245# define EV_USE_NANOSLEEP 0
246# endif
149#endif 247#endif
150 248
151#ifndef EV_USE_SELECT 249#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 250# define EV_USE_SELECT 1
153#endif 251#endif
159# define EV_USE_POLL 1 257# define EV_USE_POLL 1
160# endif 258# endif
161#endif 259#endif
162 260
163#ifndef EV_USE_EPOLL 261#ifndef EV_USE_EPOLL
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
263# define EV_USE_EPOLL 1
264# else
164# define EV_USE_EPOLL 0 265# define EV_USE_EPOLL 0
266# endif
165#endif 267#endif
166 268
167#ifndef EV_USE_KQUEUE 269#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 270# define EV_USE_KQUEUE 0
169#endif 271#endif
171#ifndef EV_USE_PORT 273#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 274# define EV_USE_PORT 0
173#endif 275#endif
174 276
175#ifndef EV_USE_INOTIFY 277#ifndef EV_USE_INOTIFY
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_INOTIFY 1
280# else
176# define EV_USE_INOTIFY 0 281# define EV_USE_INOTIFY 0
282# endif
177#endif 283#endif
178 284
179#ifndef EV_PID_HASHSIZE 285#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 286# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 287# define EV_PID_HASHSIZE 1
190# else 296# else
191# define EV_INOTIFY_HASHSIZE 16 297# define EV_INOTIFY_HASHSIZE 16
192# endif 298# endif
193#endif 299#endif
194 300
195/**/ 301#ifndef EV_USE_EVENTFD
302# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
303# define EV_USE_EVENTFD 1
304# else
305# define EV_USE_EVENTFD 0
306# endif
307#endif
308
309#ifndef EV_USE_SIGNALFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_SIGNALFD 1
312# else
313# define EV_USE_SIGNALFD 0
314# endif
315#endif
316
317#if 0 /* debugging */
318# define EV_VERIFY 3
319# define EV_USE_4HEAP 1
320# define EV_HEAP_CACHE_AT 1
321#endif
322
323#ifndef EV_VERIFY
324# define EV_VERIFY !EV_MINIMAL
325#endif
326
327#ifndef EV_USE_4HEAP
328# define EV_USE_4HEAP !EV_MINIMAL
329#endif
330
331#ifndef EV_HEAP_CACHE_AT
332# define EV_HEAP_CACHE_AT !EV_MINIMAL
333#endif
334
335/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
336/* which makes programs even slower. might work on other unices, too. */
337#if EV_USE_CLOCK_SYSCALL
338# include <syscall.h>
339# ifdef SYS_clock_gettime
340# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
341# undef EV_USE_MONOTONIC
342# define EV_USE_MONOTONIC 1
343# else
344# undef EV_USE_CLOCK_SYSCALL
345# define EV_USE_CLOCK_SYSCALL 0
346# endif
347#endif
348
349/* this block fixes any misconfiguration where we know we run into trouble otherwise */
350
351#ifdef _AIX
352/* AIX has a completely broken poll.h header */
353# undef EV_USE_POLL
354# define EV_USE_POLL 0
355#endif
196 356
197#ifndef CLOCK_MONOTONIC 357#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 358# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 359# define EV_USE_MONOTONIC 0
200#endif 360#endif
202#ifndef CLOCK_REALTIME 362#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 363# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 364# define EV_USE_REALTIME 0
205#endif 365#endif
206 366
367#if !EV_STAT_ENABLE
368# undef EV_USE_INOTIFY
369# define EV_USE_INOTIFY 0
370#endif
371
372#if !EV_USE_NANOSLEEP
373# ifndef _WIN32
374# include <sys/select.h>
375# endif
376#endif
377
378#if EV_USE_INOTIFY
379# include <sys/utsname.h>
380# include <sys/statfs.h>
381# include <sys/inotify.h>
382/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
383# ifndef IN_DONT_FOLLOW
384# undef EV_USE_INOTIFY
385# define EV_USE_INOTIFY 0
386# endif
387#endif
388
207#if EV_SELECT_IS_WINSOCKET 389#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 390# include <winsock.h>
209#endif 391#endif
210 392
211#if !EV_STAT_ENABLE 393#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 394/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
395# include <stdint.h>
396# ifndef EFD_NONBLOCK
397# define EFD_NONBLOCK O_NONBLOCK
213#endif 398# endif
214 399# ifndef EFD_CLOEXEC
215#if EV_USE_INOTIFY 400# ifdef O_CLOEXEC
216# include <sys/inotify.h> 401# define EFD_CLOEXEC O_CLOEXEC
402# else
403# define EFD_CLOEXEC 02000000
404# endif
217#endif 405# endif
406# ifdef __cplusplus
407extern "C" {
408# endif
409int (eventfd) (unsigned int initval, int flags);
410# ifdef __cplusplus
411}
412# endif
413#endif
414
415#if EV_USE_SIGNALFD
416/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
417# include <stdint.h>
418# ifndef SFD_NONBLOCK
419# define SFD_NONBLOCK O_NONBLOCK
420# endif
421# ifndef SFD_CLOEXEC
422# ifdef O_CLOEXEC
423# define SFD_CLOEXEC O_CLOEXEC
424# else
425# define SFD_CLOEXEC 02000000
426# endif
427# endif
428# ifdef __cplusplus
429extern "C" {
430# endif
431int signalfd (int fd, const sigset_t *mask, int flags);
432
433struct signalfd_siginfo
434{
435 uint32_t ssi_signo;
436 char pad[128 - sizeof (uint32_t)];
437};
438# ifdef __cplusplus
439}
440# endif
441#endif
442
218 443
219/**/ 444/**/
445
446#if EV_VERIFY >= 3
447# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
448#else
449# define EV_FREQUENT_CHECK do { } while (0)
450#endif
451
452/*
453 * This is used to avoid floating point rounding problems.
454 * It is added to ev_rt_now when scheduling periodics
455 * to ensure progress, time-wise, even when rounding
456 * errors are against us.
457 * This value is good at least till the year 4000.
458 * Better solutions welcome.
459 */
460#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 461
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 462#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 463#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 464
225#if __GNUC__ >= 3 465#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 466# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 467# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 468#else
236# define expect(expr,value) (expr) 469# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 470# define noinline
471# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
472# define inline
473# endif
240#endif 474#endif
241 475
242#define expect_false(expr) expect ((expr) != 0, 0) 476#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 477#define expect_true(expr) expect ((expr) != 0, 1)
478#define inline_size static inline
244 479
480#if EV_MINIMAL
481# define inline_speed static noinline
482#else
483# define inline_speed static inline
484#endif
485
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 486#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
487
488#if EV_MINPRI == EV_MAXPRI
489# define ABSPRI(w) (((W)w), 0)
490#else
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 491# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
492#endif
247 493
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 494#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 495#define EMPTY2(a,b) /* used to suppress some warnings */
250 496
251typedef ev_watcher *W; 497typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 498typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 499typedef ev_watcher_time *WT;
254 500
501#define ev_active(w) ((W)(w))->active
502#define ev_at(w) ((WT)(w))->at
503
504#if EV_USE_REALTIME
505/* sig_atomic_t is used to avoid per-thread variables or locking but still */
506/* giving it a reasonably high chance of working on typical architetcures */
507static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
508#endif
509
510#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 511static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
512#endif
513
514#ifndef EV_FD_TO_WIN32_HANDLE
515# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
516#endif
517#ifndef EV_WIN32_HANDLE_TO_FD
518# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
519#endif
520#ifndef EV_WIN32_CLOSE_FD
521# define EV_WIN32_CLOSE_FD(fd) close (fd)
522#endif
256 523
257#ifdef _WIN32 524#ifdef _WIN32
258# include "ev_win32.c" 525# include "ev_win32.c"
259#endif 526#endif
260 527
261/*****************************************************************************/ 528/*****************************************************************************/
262 529
530#if EV_AVOID_STDIO
531static void noinline
532ev_printerr (const char *msg)
533{
534 write (STDERR_FILENO, msg, strlen (msg));
535}
536#endif
537
263static void (*syserr_cb)(const char *msg); 538static void (*syserr_cb)(const char *msg);
264 539
265void 540void
266ev_set_syserr_cb (void (*cb)(const char *msg)) 541ev_set_syserr_cb (void (*cb)(const char *msg))
267{ 542{
268 syserr_cb = cb; 543 syserr_cb = cb;
269} 544}
270 545
271static void noinline 546static void noinline
272syserr (const char *msg) 547ev_syserr (const char *msg)
273{ 548{
274 if (!msg) 549 if (!msg)
275 msg = "(libev) system error"; 550 msg = "(libev) system error";
276 551
277 if (syserr_cb) 552 if (syserr_cb)
278 syserr_cb (msg); 553 syserr_cb (msg);
279 else 554 else
280 { 555 {
556#if EV_AVOID_STDIO
557 const char *err = strerror (errno);
558
559 ev_printerr (msg);
560 ev_printerr (": ");
561 ev_printerr (err);
562 ev_printerr ("\n");
563#else
281 perror (msg); 564 perror (msg);
565#endif
282 abort (); 566 abort ();
283 } 567 }
284} 568}
285 569
570static void *
571ev_realloc_emul (void *ptr, long size)
572{
573 /* some systems, notably openbsd and darwin, fail to properly
574 * implement realloc (x, 0) (as required by both ansi c-98 and
575 * the single unix specification, so work around them here.
576 */
577 if (size)
578 return realloc (ptr, size);
579
580 free (ptr);
581 return 0;
582}
583
286static void *(*alloc)(void *ptr, long size); 584static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 585
288void 586void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 587ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 588{
291 alloc = cb; 589 alloc = cb;
292} 590}
293 591
294inline_speed void * 592inline_speed void *
295ev_realloc (void *ptr, long size) 593ev_realloc (void *ptr, long size)
296{ 594{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 595 ptr = alloc (ptr, size);
298 596
299 if (!ptr && size) 597 if (!ptr && size)
300 { 598 {
599#if EV_AVOID_STDIO
600 ev_printerr ("libev: memory allocation failed, aborting.\n");
601#else
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 602 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
603#endif
302 abort (); 604 abort ();
303 } 605 }
304 606
305 return ptr; 607 return ptr;
306} 608}
308#define ev_malloc(size) ev_realloc (0, (size)) 610#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 611#define ev_free(ptr) ev_realloc ((ptr), 0)
310 612
311/*****************************************************************************/ 613/*****************************************************************************/
312 614
615/* set in reify when reification needed */
616#define EV_ANFD_REIFY 1
617
618/* file descriptor info structure */
313typedef struct 619typedef struct
314{ 620{
315 WL head; 621 WL head;
316 unsigned char events; 622 unsigned char events; /* the events watched for */
623 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
624 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 625 unsigned char unused;
626#if EV_USE_EPOLL
627 unsigned int egen; /* generation counter to counter epoll bugs */
628#endif
318#if EV_SELECT_IS_WINSOCKET 629#if EV_SELECT_IS_WINSOCKET
319 SOCKET handle; 630 SOCKET handle;
320#endif 631#endif
321} ANFD; 632} ANFD;
322 633
634/* stores the pending event set for a given watcher */
323typedef struct 635typedef struct
324{ 636{
325 W w; 637 W w;
326 int events; 638 int events; /* the pending event set for the given watcher */
327} ANPENDING; 639} ANPENDING;
328 640
329#if EV_USE_INOTIFY 641#if EV_USE_INOTIFY
642/* hash table entry per inotify-id */
330typedef struct 643typedef struct
331{ 644{
332 WL head; 645 WL head;
333} ANFS; 646} ANFS;
647#endif
648
649/* Heap Entry */
650#if EV_HEAP_CACHE_AT
651 /* a heap element */
652 typedef struct {
653 ev_tstamp at;
654 WT w;
655 } ANHE;
656
657 #define ANHE_w(he) (he).w /* access watcher, read-write */
658 #define ANHE_at(he) (he).at /* access cached at, read-only */
659 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
660#else
661 /* a heap element */
662 typedef WT ANHE;
663
664 #define ANHE_w(he) (he)
665 #define ANHE_at(he) (he)->at
666 #define ANHE_at_cache(he)
334#endif 667#endif
335 668
336#if EV_MULTIPLICITY 669#if EV_MULTIPLICITY
337 670
338 struct ev_loop 671 struct ev_loop
357 690
358 static int ev_default_loop_ptr; 691 static int ev_default_loop_ptr;
359 692
360#endif 693#endif
361 694
695#if EV_MINIMAL < 2
696# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
697# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
698# define EV_INVOKE_PENDING invoke_cb (EV_A)
699#else
700# define EV_RELEASE_CB (void)0
701# define EV_ACQUIRE_CB (void)0
702# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
703#endif
704
705#define EVUNLOOP_RECURSE 0x80
706
362/*****************************************************************************/ 707/*****************************************************************************/
363 708
709#ifndef EV_HAVE_EV_TIME
364ev_tstamp 710ev_tstamp
365ev_time (void) 711ev_time (void)
366{ 712{
367#if EV_USE_REALTIME 713#if EV_USE_REALTIME
714 if (expect_true (have_realtime))
715 {
368 struct timespec ts; 716 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 717 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 718 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 719 }
720#endif
721
372 struct timeval tv; 722 struct timeval tv;
373 gettimeofday (&tv, 0); 723 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 724 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 725}
726#endif
377 727
378ev_tstamp inline_size 728inline_size ev_tstamp
379get_clock (void) 729get_clock (void)
380{ 730{
381#if EV_USE_MONOTONIC 731#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 732 if (expect_true (have_monotonic))
383 { 733 {
396{ 746{
397 return ev_rt_now; 747 return ev_rt_now;
398} 748}
399#endif 749#endif
400 750
401int inline_size 751void
752ev_sleep (ev_tstamp delay)
753{
754 if (delay > 0.)
755 {
756#if EV_USE_NANOSLEEP
757 struct timespec ts;
758
759 ts.tv_sec = (time_t)delay;
760 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
761
762 nanosleep (&ts, 0);
763#elif defined(_WIN32)
764 Sleep ((unsigned long)(delay * 1e3));
765#else
766 struct timeval tv;
767
768 tv.tv_sec = (time_t)delay;
769 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
770
771 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
772 /* something not guaranteed by newer posix versions, but guaranteed */
773 /* by older ones */
774 select (0, 0, 0, 0, &tv);
775#endif
776 }
777}
778
779/*****************************************************************************/
780
781#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
782
783/* find a suitable new size for the given array, */
784/* hopefully by rounding to a ncie-to-malloc size */
785inline_size int
402array_nextsize (int elem, int cur, int cnt) 786array_nextsize (int elem, int cur, int cnt)
403{ 787{
404 int ncur = cur + 1; 788 int ncur = cur + 1;
405 789
406 do 790 do
407 ncur <<= 1; 791 ncur <<= 1;
408 while (cnt > ncur); 792 while (cnt > ncur);
409 793
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 794 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 795 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 796 {
413 ncur *= elem; 797 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 798 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 799 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 800 ncur /= elem;
417 } 801 }
418 802
419 return ncur; 803 return ncur;
420} 804}
421 805
422inline_speed void * 806static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 807array_realloc (int elem, void *base, int *cur, int cnt)
424{ 808{
425 *cur = array_nextsize (elem, *cur, cnt); 809 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 810 return ev_realloc (base, elem * *cur);
427} 811}
812
813#define array_init_zero(base,count) \
814 memset ((void *)(base), 0, sizeof (*(base)) * (count))
428 815
429#define array_needsize(type,base,cur,cnt,init) \ 816#define array_needsize(type,base,cur,cnt,init) \
430 if (expect_false ((cnt) > (cur))) \ 817 if (expect_false ((cnt) > (cur))) \
431 { \ 818 { \
432 int ocur_ = (cur); \ 819 int ocur_ = (cur); \
444 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 831 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
445 } 832 }
446#endif 833#endif
447 834
448#define array_free(stem, idx) \ 835#define array_free(stem, idx) \
449 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 836 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
450 837
451/*****************************************************************************/ 838/*****************************************************************************/
839
840/* dummy callback for pending events */
841static void noinline
842pendingcb (EV_P_ ev_prepare *w, int revents)
843{
844}
452 845
453void noinline 846void noinline
454ev_feed_event (EV_P_ void *w, int revents) 847ev_feed_event (EV_P_ void *w, int revents)
455{ 848{
456 W w_ = (W)w; 849 W w_ = (W)w;
850 int pri = ABSPRI (w_);
457 851
458 if (expect_false (w_->pending)) 852 if (expect_false (w_->pending))
853 pendings [pri][w_->pending - 1].events |= revents;
854 else
459 { 855 {
856 w_->pending = ++pendingcnt [pri];
857 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
858 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 859 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 860 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 861}
469 862
470void inline_size 863inline_speed void
864feed_reverse (EV_P_ W w)
865{
866 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
867 rfeeds [rfeedcnt++] = w;
868}
869
870inline_size void
871feed_reverse_done (EV_P_ int revents)
872{
873 do
874 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
875 while (rfeedcnt);
876}
877
878inline_speed void
471queue_events (EV_P_ W *events, int eventcnt, int type) 879queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 880{
473 int i; 881 int i;
474 882
475 for (i = 0; i < eventcnt; ++i) 883 for (i = 0; i < eventcnt; ++i)
476 ev_feed_event (EV_A_ events [i], type); 884 ev_feed_event (EV_A_ events [i], type);
477} 885}
478 886
479/*****************************************************************************/ 887/*****************************************************************************/
480 888
481void inline_size 889inline_speed void
482anfds_init (ANFD *base, int count)
483{
484 while (count--)
485 {
486 base->head = 0;
487 base->events = EV_NONE;
488 base->reify = 0;
489
490 ++base;
491 }
492}
493
494void inline_speed
495fd_event (EV_P_ int fd, int revents) 890fd_event_nc (EV_P_ int fd, int revents)
496{ 891{
497 ANFD *anfd = anfds + fd; 892 ANFD *anfd = anfds + fd;
498 ev_io *w; 893 ev_io *w;
499 894
500 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 895 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
504 if (ev) 899 if (ev)
505 ev_feed_event (EV_A_ (W)w, ev); 900 ev_feed_event (EV_A_ (W)w, ev);
506 } 901 }
507} 902}
508 903
904/* do not submit kernel events for fds that have reify set */
905/* because that means they changed while we were polling for new events */
906inline_speed void
907fd_event (EV_P_ int fd, int revents)
908{
909 ANFD *anfd = anfds + fd;
910
911 if (expect_true (!anfd->reify))
912 fd_event_nc (EV_A_ fd, revents);
913}
914
509void 915void
510ev_feed_fd_event (EV_P_ int fd, int revents) 916ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 917{
512 if (fd >= 0 && fd < anfdmax) 918 if (fd >= 0 && fd < anfdmax)
513 fd_event (EV_A_ fd, revents); 919 fd_event_nc (EV_A_ fd, revents);
514} 920}
515 921
516void inline_size 922/* make sure the external fd watch events are in-sync */
923/* with the kernel/libev internal state */
924inline_size void
517fd_reify (EV_P) 925fd_reify (EV_P)
518{ 926{
519 int i; 927 int i;
520 928
521 for (i = 0; i < fdchangecnt; ++i) 929 for (i = 0; i < fdchangecnt; ++i)
522 { 930 {
523 int fd = fdchanges [i]; 931 int fd = fdchanges [i];
524 ANFD *anfd = anfds + fd; 932 ANFD *anfd = anfds + fd;
525 ev_io *w; 933 ev_io *w;
526 934
527 int events = 0; 935 unsigned char events = 0;
528 936
529 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 937 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
530 events |= w->events; 938 events |= (unsigned char)w->events;
531 939
532#if EV_SELECT_IS_WINSOCKET 940#if EV_SELECT_IS_WINSOCKET
533 if (events) 941 if (events)
534 { 942 {
535 unsigned long argp; 943 unsigned long arg;
536 anfd->handle = _get_osfhandle (fd); 944 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
537 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 945 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
538 } 946 }
539#endif 947#endif
540 948
949 {
950 unsigned char o_events = anfd->events;
951 unsigned char o_reify = anfd->reify;
952
541 anfd->reify = 0; 953 anfd->reify = 0;
542
543 backend_modify (EV_A_ fd, anfd->events, events);
544 anfd->events = events; 954 anfd->events = events;
955
956 if (o_events != events || o_reify & EV__IOFDSET)
957 backend_modify (EV_A_ fd, o_events, events);
958 }
545 } 959 }
546 960
547 fdchangecnt = 0; 961 fdchangecnt = 0;
548} 962}
549 963
550void inline_size 964/* something about the given fd changed */
965inline_size void
551fd_change (EV_P_ int fd) 966fd_change (EV_P_ int fd, int flags)
552{ 967{
553 if (expect_false (anfds [fd].reify)) 968 unsigned char reify = anfds [fd].reify;
554 return;
555
556 anfds [fd].reify = 1; 969 anfds [fd].reify |= flags;
557 970
971 if (expect_true (!reify))
972 {
558 ++fdchangecnt; 973 ++fdchangecnt;
559 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 974 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
560 fdchanges [fdchangecnt - 1] = fd; 975 fdchanges [fdchangecnt - 1] = fd;
976 }
561} 977}
562 978
563void inline_speed 979/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
980inline_speed void
564fd_kill (EV_P_ int fd) 981fd_kill (EV_P_ int fd)
565{ 982{
566 ev_io *w; 983 ev_io *w;
567 984
568 while ((w = (ev_io *)anfds [fd].head)) 985 while ((w = (ev_io *)anfds [fd].head))
570 ev_io_stop (EV_A_ w); 987 ev_io_stop (EV_A_ w);
571 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 988 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
572 } 989 }
573} 990}
574 991
575int inline_size 992/* check whether the given fd is atcually valid, for error recovery */
993inline_size int
576fd_valid (int fd) 994fd_valid (int fd)
577{ 995{
578#ifdef _WIN32 996#ifdef _WIN32
579 return _get_osfhandle (fd) != -1; 997 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
580#else 998#else
581 return fcntl (fd, F_GETFD) != -1; 999 return fcntl (fd, F_GETFD) != -1;
582#endif 1000#endif
583} 1001}
584 1002
588{ 1006{
589 int fd; 1007 int fd;
590 1008
591 for (fd = 0; fd < anfdmax; ++fd) 1009 for (fd = 0; fd < anfdmax; ++fd)
592 if (anfds [fd].events) 1010 if (anfds [fd].events)
593 if (!fd_valid (fd) == -1 && errno == EBADF) 1011 if (!fd_valid (fd) && errno == EBADF)
594 fd_kill (EV_A_ fd); 1012 fd_kill (EV_A_ fd);
595} 1013}
596 1014
597/* called on ENOMEM in select/poll to kill some fds and retry */ 1015/* called on ENOMEM in select/poll to kill some fds and retry */
598static void noinline 1016static void noinline
602 1020
603 for (fd = anfdmax; fd--; ) 1021 for (fd = anfdmax; fd--; )
604 if (anfds [fd].events) 1022 if (anfds [fd].events)
605 { 1023 {
606 fd_kill (EV_A_ fd); 1024 fd_kill (EV_A_ fd);
607 return; 1025 break;
608 } 1026 }
609} 1027}
610 1028
611/* usually called after fork if backend needs to re-arm all fds from scratch */ 1029/* usually called after fork if backend needs to re-arm all fds from scratch */
612static void noinline 1030static void noinline
616 1034
617 for (fd = 0; fd < anfdmax; ++fd) 1035 for (fd = 0; fd < anfdmax; ++fd)
618 if (anfds [fd].events) 1036 if (anfds [fd].events)
619 { 1037 {
620 anfds [fd].events = 0; 1038 anfds [fd].events = 0;
621 fd_change (EV_A_ fd); 1039 anfds [fd].emask = 0;
1040 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
622 } 1041 }
623} 1042}
624 1043
625/*****************************************************************************/ 1044/*****************************************************************************/
626 1045
627void inline_speed 1046/*
628upheap (WT *heap, int k) 1047 * the heap functions want a real array index. array index 0 uis guaranteed to not
629{ 1048 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
630 WT w = heap [k]; 1049 * the branching factor of the d-tree.
1050 */
631 1051
632 while (k && heap [k >> 1]->at > w->at) 1052/*
633 { 1053 * at the moment we allow libev the luxury of two heaps,
634 heap [k] = heap [k >> 1]; 1054 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
635 ((W)heap [k])->active = k + 1; 1055 * which is more cache-efficient.
636 k >>= 1; 1056 * the difference is about 5% with 50000+ watchers.
637 } 1057 */
1058#if EV_USE_4HEAP
638 1059
639 heap [k] = w; 1060#define DHEAP 4
640 ((W)heap [k])->active = k + 1; 1061#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1062#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1063#define UPHEAP_DONE(p,k) ((p) == (k))
641 1064
642} 1065/* away from the root */
643 1066inline_speed void
644void inline_speed
645downheap (WT *heap, int N, int k) 1067downheap (ANHE *heap, int N, int k)
646{ 1068{
647 WT w = heap [k]; 1069 ANHE he = heap [k];
1070 ANHE *E = heap + N + HEAP0;
648 1071
649 while (k < (N >> 1)) 1072 for (;;)
650 { 1073 {
651 int j = k << 1; 1074 ev_tstamp minat;
1075 ANHE *minpos;
1076 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
652 1077
653 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1078 /* find minimum child */
1079 if (expect_true (pos + DHEAP - 1 < E))
654 ++j; 1080 {
655 1081 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
656 if (w->at <= heap [j]->at) 1082 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1083 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1084 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1085 }
1086 else if (pos < E)
1087 {
1088 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1089 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1090 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1091 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1092 }
1093 else
657 break; 1094 break;
658 1095
1096 if (ANHE_at (he) <= minat)
1097 break;
1098
1099 heap [k] = *minpos;
1100 ev_active (ANHE_w (*minpos)) = k;
1101
1102 k = minpos - heap;
1103 }
1104
1105 heap [k] = he;
1106 ev_active (ANHE_w (he)) = k;
1107}
1108
1109#else /* 4HEAP */
1110
1111#define HEAP0 1
1112#define HPARENT(k) ((k) >> 1)
1113#define UPHEAP_DONE(p,k) (!(p))
1114
1115/* away from the root */
1116inline_speed void
1117downheap (ANHE *heap, int N, int k)
1118{
1119 ANHE he = heap [k];
1120
1121 for (;;)
1122 {
1123 int c = k << 1;
1124
1125 if (c >= N + HEAP0)
1126 break;
1127
1128 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1129 ? 1 : 0;
1130
1131 if (ANHE_at (he) <= ANHE_at (heap [c]))
1132 break;
1133
659 heap [k] = heap [j]; 1134 heap [k] = heap [c];
660 ((W)heap [k])->active = k + 1; 1135 ev_active (ANHE_w (heap [k])) = k;
1136
661 k = j; 1137 k = c;
662 } 1138 }
663 1139
664 heap [k] = w; 1140 heap [k] = he;
665 ((W)heap [k])->active = k + 1; 1141 ev_active (ANHE_w (he)) = k;
666} 1142}
1143#endif
667 1144
668void inline_size 1145/* towards the root */
1146inline_speed void
1147upheap (ANHE *heap, int k)
1148{
1149 ANHE he = heap [k];
1150
1151 for (;;)
1152 {
1153 int p = HPARENT (k);
1154
1155 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1156 break;
1157
1158 heap [k] = heap [p];
1159 ev_active (ANHE_w (heap [k])) = k;
1160 k = p;
1161 }
1162
1163 heap [k] = he;
1164 ev_active (ANHE_w (he)) = k;
1165}
1166
1167/* move an element suitably so it is in a correct place */
1168inline_size void
669adjustheap (WT *heap, int N, int k) 1169adjustheap (ANHE *heap, int N, int k)
670{ 1170{
1171 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
671 upheap (heap, k); 1172 upheap (heap, k);
1173 else
672 downheap (heap, N, k); 1174 downheap (heap, N, k);
1175}
1176
1177/* rebuild the heap: this function is used only once and executed rarely */
1178inline_size void
1179reheap (ANHE *heap, int N)
1180{
1181 int i;
1182
1183 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1184 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1185 for (i = 0; i < N; ++i)
1186 upheap (heap, i + HEAP0);
673} 1187}
674 1188
675/*****************************************************************************/ 1189/*****************************************************************************/
676 1190
1191/* associate signal watchers to a signal signal */
677typedef struct 1192typedef struct
678{ 1193{
1194 EV_ATOMIC_T pending;
1195#if EV_MULTIPLICITY
1196 EV_P;
1197#endif
679 WL head; 1198 WL head;
680 sig_atomic_t volatile gotsig;
681} ANSIG; 1199} ANSIG;
682 1200
683static ANSIG *signals; 1201static ANSIG signals [EV_NSIG - 1];
684static int signalmax;
685 1202
686static int sigpipe [2]; 1203/*****************************************************************************/
687static sig_atomic_t volatile gotsig;
688static ev_io sigev;
689 1204
690void inline_size 1205/* used to prepare libev internal fd's */
691signals_init (ANSIG *base, int count) 1206/* this is not fork-safe */
692{ 1207inline_speed void
693 while (count--)
694 {
695 base->head = 0;
696 base->gotsig = 0;
697
698 ++base;
699 }
700}
701
702static void
703sighandler (int signum)
704{
705#if _WIN32
706 signal (signum, sighandler);
707#endif
708
709 signals [signum - 1].gotsig = 1;
710
711 if (!gotsig)
712 {
713 int old_errno = errno;
714 gotsig = 1;
715 write (sigpipe [1], &signum, 1);
716 errno = old_errno;
717 }
718}
719
720void noinline
721ev_feed_signal_event (EV_P_ int signum)
722{
723 WL w;
724
725#if EV_MULTIPLICITY
726 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
727#endif
728
729 --signum;
730
731 if (signum < 0 || signum >= signalmax)
732 return;
733
734 signals [signum].gotsig = 0;
735
736 for (w = signals [signum].head; w; w = w->next)
737 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
738}
739
740static void
741sigcb (EV_P_ ev_io *iow, int revents)
742{
743 int signum;
744
745 read (sigpipe [0], &revents, 1);
746 gotsig = 0;
747
748 for (signum = signalmax; signum--; )
749 if (signals [signum].gotsig)
750 ev_feed_signal_event (EV_A_ signum + 1);
751}
752
753void inline_size
754fd_intern (int fd) 1208fd_intern (int fd)
755{ 1209{
756#ifdef _WIN32 1210#ifdef _WIN32
757 int arg = 1; 1211 unsigned long arg = 1;
758 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1212 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
759#else 1213#else
760 fcntl (fd, F_SETFD, FD_CLOEXEC); 1214 fcntl (fd, F_SETFD, FD_CLOEXEC);
761 fcntl (fd, F_SETFL, O_NONBLOCK); 1215 fcntl (fd, F_SETFL, O_NONBLOCK);
762#endif 1216#endif
763} 1217}
764 1218
765static void noinline 1219static void noinline
766siginit (EV_P) 1220evpipe_init (EV_P)
767{ 1221{
1222 if (!ev_is_active (&pipe_w))
1223 {
1224#if EV_USE_EVENTFD
1225 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1226 if (evfd < 0 && errno == EINVAL)
1227 evfd = eventfd (0, 0);
1228
1229 if (evfd >= 0)
1230 {
1231 evpipe [0] = -1;
1232 fd_intern (evfd); /* doing it twice doesn't hurt */
1233 ev_io_set (&pipe_w, evfd, EV_READ);
1234 }
1235 else
1236#endif
1237 {
1238 while (pipe (evpipe))
1239 ev_syserr ("(libev) error creating signal/async pipe");
1240
768 fd_intern (sigpipe [0]); 1241 fd_intern (evpipe [0]);
769 fd_intern (sigpipe [1]); 1242 fd_intern (evpipe [1]);
1243 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1244 }
770 1245
771 ev_io_set (&sigev, sigpipe [0], EV_READ);
772 ev_io_start (EV_A_ &sigev); 1246 ev_io_start (EV_A_ &pipe_w);
773 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1247 ev_unref (EV_A); /* watcher should not keep loop alive */
1248 }
1249}
1250
1251inline_size void
1252evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1253{
1254 if (!*flag)
1255 {
1256 int old_errno = errno; /* save errno because write might clobber it */
1257
1258 *flag = 1;
1259
1260#if EV_USE_EVENTFD
1261 if (evfd >= 0)
1262 {
1263 uint64_t counter = 1;
1264 write (evfd, &counter, sizeof (uint64_t));
1265 }
1266 else
1267#endif
1268 write (evpipe [1], &old_errno, 1);
1269
1270 errno = old_errno;
1271 }
1272}
1273
1274/* called whenever the libev signal pipe */
1275/* got some events (signal, async) */
1276static void
1277pipecb (EV_P_ ev_io *iow, int revents)
1278{
1279 int i;
1280
1281#if EV_USE_EVENTFD
1282 if (evfd >= 0)
1283 {
1284 uint64_t counter;
1285 read (evfd, &counter, sizeof (uint64_t));
1286 }
1287 else
1288#endif
1289 {
1290 char dummy;
1291 read (evpipe [0], &dummy, 1);
1292 }
1293
1294 if (sig_pending)
1295 {
1296 sig_pending = 0;
1297
1298 for (i = EV_NSIG - 1; i--; )
1299 if (expect_false (signals [i].pending))
1300 ev_feed_signal_event (EV_A_ i + 1);
1301 }
1302
1303#if EV_ASYNC_ENABLE
1304 if (async_pending)
1305 {
1306 async_pending = 0;
1307
1308 for (i = asynccnt; i--; )
1309 if (asyncs [i]->sent)
1310 {
1311 asyncs [i]->sent = 0;
1312 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1313 }
1314 }
1315#endif
774} 1316}
775 1317
776/*****************************************************************************/ 1318/*****************************************************************************/
777 1319
1320static void
1321ev_sighandler (int signum)
1322{
1323#if EV_MULTIPLICITY
1324 EV_P = signals [signum - 1].loop;
1325#endif
1326
1327#ifdef _WIN32
1328 signal (signum, ev_sighandler);
1329#endif
1330
1331 signals [signum - 1].pending = 1;
1332 evpipe_write (EV_A_ &sig_pending);
1333}
1334
1335void noinline
1336ev_feed_signal_event (EV_P_ int signum)
1337{
1338 WL w;
1339
1340 if (expect_false (signum <= 0 || signum > EV_NSIG))
1341 return;
1342
1343 --signum;
1344
1345#if EV_MULTIPLICITY
1346 /* it is permissible to try to feed a signal to the wrong loop */
1347 /* or, likely more useful, feeding a signal nobody is waiting for */
1348
1349 if (expect_false (signals [signum].loop != EV_A))
1350 return;
1351#endif
1352
1353 signals [signum].pending = 0;
1354
1355 for (w = signals [signum].head; w; w = w->next)
1356 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1357}
1358
1359#if EV_USE_SIGNALFD
1360static void
1361sigfdcb (EV_P_ ev_io *iow, int revents)
1362{
1363 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1364
1365 for (;;)
1366 {
1367 ssize_t res = read (sigfd, si, sizeof (si));
1368
1369 /* not ISO-C, as res might be -1, but works with SuS */
1370 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1371 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1372
1373 if (res < (ssize_t)sizeof (si))
1374 break;
1375 }
1376}
1377#endif
1378
1379/*****************************************************************************/
1380
778static ev_child *childs [EV_PID_HASHSIZE]; 1381static WL childs [EV_PID_HASHSIZE];
779 1382
780#ifndef _WIN32 1383#ifndef _WIN32
781 1384
782static ev_signal childev; 1385static ev_signal childev;
783 1386
784void inline_speed 1387#ifndef WIFCONTINUED
1388# define WIFCONTINUED(status) 0
1389#endif
1390
1391/* handle a single child status event */
1392inline_speed void
785child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1393child_reap (EV_P_ int chain, int pid, int status)
786{ 1394{
787 ev_child *w; 1395 ev_child *w;
1396 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
788 1397
789 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1398 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1399 {
790 if (w->pid == pid || !w->pid) 1400 if ((w->pid == pid || !w->pid)
1401 && (!traced || (w->flags & 1)))
791 { 1402 {
792 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1403 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
793 w->rpid = pid; 1404 w->rpid = pid;
794 w->rstatus = status; 1405 w->rstatus = status;
795 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1406 ev_feed_event (EV_A_ (W)w, EV_CHILD);
796 } 1407 }
1408 }
797} 1409}
798 1410
799#ifndef WCONTINUED 1411#ifndef WCONTINUED
800# define WCONTINUED 0 1412# define WCONTINUED 0
801#endif 1413#endif
802 1414
1415/* called on sigchld etc., calls waitpid */
803static void 1416static void
804childcb (EV_P_ ev_signal *sw, int revents) 1417childcb (EV_P_ ev_signal *sw, int revents)
805{ 1418{
806 int pid, status; 1419 int pid, status;
807 1420
810 if (!WCONTINUED 1423 if (!WCONTINUED
811 || errno != EINVAL 1424 || errno != EINVAL
812 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1425 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
813 return; 1426 return;
814 1427
815 /* make sure we are called again until all childs have been reaped */ 1428 /* make sure we are called again until all children have been reaped */
816 /* we need to do it this way so that the callback gets called before we continue */ 1429 /* we need to do it this way so that the callback gets called before we continue */
817 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1430 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
818 1431
819 child_reap (EV_A_ sw, pid, pid, status); 1432 child_reap (EV_A_ pid, pid, status);
820 if (EV_PID_HASHSIZE > 1) 1433 if (EV_PID_HASHSIZE > 1)
821 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1434 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
822} 1435}
823 1436
824#endif 1437#endif
825 1438
826/*****************************************************************************/ 1439/*****************************************************************************/
888 /* kqueue is borked on everything but netbsd apparently */ 1501 /* kqueue is borked on everything but netbsd apparently */
889 /* it usually doesn't work correctly on anything but sockets and pipes */ 1502 /* it usually doesn't work correctly on anything but sockets and pipes */
890 flags &= ~EVBACKEND_KQUEUE; 1503 flags &= ~EVBACKEND_KQUEUE;
891#endif 1504#endif
892#ifdef __APPLE__ 1505#ifdef __APPLE__
893 // flags &= ~EVBACKEND_KQUEUE; for documentation 1506 /* only select works correctly on that "unix-certified" platform */
894 flags &= ~EVBACKEND_POLL; 1507 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1508 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
895#endif 1509#endif
896 1510
897 return flags; 1511 return flags;
898} 1512}
899 1513
900unsigned int 1514unsigned int
901ev_embeddable_backends (void) 1515ev_embeddable_backends (void)
902{ 1516{
903 return EVBACKEND_EPOLL 1517 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
904 | EVBACKEND_KQUEUE 1518
905 | EVBACKEND_PORT; 1519 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1520 /* please fix it and tell me how to detect the fix */
1521 flags &= ~EVBACKEND_EPOLL;
1522
1523 return flags;
906} 1524}
907 1525
908unsigned int 1526unsigned int
909ev_backend (EV_P) 1527ev_backend (EV_P)
910{ 1528{
911 return backend; 1529 return backend;
912} 1530}
913 1531
1532#if EV_MINIMAL < 2
914unsigned int 1533unsigned int
915ev_loop_count (EV_P) 1534ev_loop_count (EV_P)
916{ 1535{
917 return loop_count; 1536 return loop_count;
918} 1537}
919 1538
1539unsigned int
1540ev_loop_depth (EV_P)
1541{
1542 return loop_depth;
1543}
1544
1545void
1546ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1547{
1548 io_blocktime = interval;
1549}
1550
1551void
1552ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1553{
1554 timeout_blocktime = interval;
1555}
1556
1557void
1558ev_set_userdata (EV_P_ void *data)
1559{
1560 userdata = data;
1561}
1562
1563void *
1564ev_userdata (EV_P)
1565{
1566 return userdata;
1567}
1568
1569void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1570{
1571 invoke_cb = invoke_pending_cb;
1572}
1573
1574void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1575{
1576 release_cb = release;
1577 acquire_cb = acquire;
1578}
1579#endif
1580
1581/* initialise a loop structure, must be zero-initialised */
920static void noinline 1582static void noinline
921loop_init (EV_P_ unsigned int flags) 1583loop_init (EV_P_ unsigned int flags)
922{ 1584{
923 if (!backend) 1585 if (!backend)
924 { 1586 {
1587#if EV_USE_REALTIME
1588 if (!have_realtime)
1589 {
1590 struct timespec ts;
1591
1592 if (!clock_gettime (CLOCK_REALTIME, &ts))
1593 have_realtime = 1;
1594 }
1595#endif
1596
925#if EV_USE_MONOTONIC 1597#if EV_USE_MONOTONIC
1598 if (!have_monotonic)
926 { 1599 {
927 struct timespec ts; 1600 struct timespec ts;
1601
928 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1602 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
929 have_monotonic = 1; 1603 have_monotonic = 1;
930 } 1604 }
931#endif 1605#endif
932
933 ev_rt_now = ev_time ();
934 mn_now = get_clock ();
935 now_floor = mn_now;
936 rtmn_diff = ev_rt_now - mn_now;
937 1606
938 /* pid check not overridable via env */ 1607 /* pid check not overridable via env */
939#ifndef _WIN32 1608#ifndef _WIN32
940 if (flags & EVFLAG_FORKCHECK) 1609 if (flags & EVFLAG_FORKCHECK)
941 curpid = getpid (); 1610 curpid = getpid ();
944 if (!(flags & EVFLAG_NOENV) 1613 if (!(flags & EVFLAG_NOENV)
945 && !enable_secure () 1614 && !enable_secure ()
946 && getenv ("LIBEV_FLAGS")) 1615 && getenv ("LIBEV_FLAGS"))
947 flags = atoi (getenv ("LIBEV_FLAGS")); 1616 flags = atoi (getenv ("LIBEV_FLAGS"));
948 1617
1618 ev_rt_now = ev_time ();
1619 mn_now = get_clock ();
1620 now_floor = mn_now;
1621 rtmn_diff = ev_rt_now - mn_now;
1622#if EV_MINIMAL < 2
1623 invoke_cb = ev_invoke_pending;
1624#endif
1625
1626 io_blocktime = 0.;
1627 timeout_blocktime = 0.;
1628 backend = 0;
1629 backend_fd = -1;
1630 sig_pending = 0;
1631#if EV_ASYNC_ENABLE
1632 async_pending = 0;
1633#endif
1634#if EV_USE_INOTIFY
1635 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1636#endif
1637#if EV_USE_SIGNALFD
1638 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1639#endif
1640
949 if (!(flags & 0x0000ffffUL)) 1641 if (!(flags & 0x0000ffffU))
950 flags |= ev_recommended_backends (); 1642 flags |= ev_recommended_backends ();
951
952 backend = 0;
953 backend_fd = -1;
954#if EV_USE_INOTIFY
955 fs_fd = -2;
956#endif
957 1643
958#if EV_USE_PORT 1644#if EV_USE_PORT
959 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1645 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
960#endif 1646#endif
961#if EV_USE_KQUEUE 1647#if EV_USE_KQUEUE
969#endif 1655#endif
970#if EV_USE_SELECT 1656#if EV_USE_SELECT
971 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1657 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
972#endif 1658#endif
973 1659
1660 ev_prepare_init (&pending_w, pendingcb);
1661
974 ev_init (&sigev, sigcb); 1662 ev_init (&pipe_w, pipecb);
975 ev_set_priority (&sigev, EV_MAXPRI); 1663 ev_set_priority (&pipe_w, EV_MAXPRI);
976 } 1664 }
977} 1665}
978 1666
1667/* free up a loop structure */
979static void noinline 1668static void noinline
980loop_destroy (EV_P) 1669loop_destroy (EV_P)
981{ 1670{
982 int i; 1671 int i;
1672
1673 if (ev_is_active (&pipe_w))
1674 {
1675 /*ev_ref (EV_A);*/
1676 /*ev_io_stop (EV_A_ &pipe_w);*/
1677
1678#if EV_USE_EVENTFD
1679 if (evfd >= 0)
1680 close (evfd);
1681#endif
1682
1683 if (evpipe [0] >= 0)
1684 {
1685 EV_WIN32_CLOSE_FD (evpipe [0]);
1686 EV_WIN32_CLOSE_FD (evpipe [1]);
1687 }
1688 }
1689
1690#if EV_USE_SIGNALFD
1691 if (ev_is_active (&sigfd_w))
1692 close (sigfd);
1693#endif
983 1694
984#if EV_USE_INOTIFY 1695#if EV_USE_INOTIFY
985 if (fs_fd >= 0) 1696 if (fs_fd >= 0)
986 close (fs_fd); 1697 close (fs_fd);
987#endif 1698#endif
1011#if EV_IDLE_ENABLE 1722#if EV_IDLE_ENABLE
1012 array_free (idle, [i]); 1723 array_free (idle, [i]);
1013#endif 1724#endif
1014 } 1725 }
1015 1726
1727 ev_free (anfds); anfds = 0; anfdmax = 0;
1728
1016 /* have to use the microsoft-never-gets-it-right macro */ 1729 /* have to use the microsoft-never-gets-it-right macro */
1730 array_free (rfeed, EMPTY);
1017 array_free (fdchange, EMPTY); 1731 array_free (fdchange, EMPTY);
1018 array_free (timer, EMPTY); 1732 array_free (timer, EMPTY);
1019#if EV_PERIODIC_ENABLE 1733#if EV_PERIODIC_ENABLE
1020 array_free (periodic, EMPTY); 1734 array_free (periodic, EMPTY);
1021#endif 1735#endif
1736#if EV_FORK_ENABLE
1737 array_free (fork, EMPTY);
1738#endif
1022 array_free (prepare, EMPTY); 1739 array_free (prepare, EMPTY);
1023 array_free (check, EMPTY); 1740 array_free (check, EMPTY);
1741#if EV_ASYNC_ENABLE
1742 array_free (async, EMPTY);
1743#endif
1024 1744
1025 backend = 0; 1745 backend = 0;
1026} 1746}
1027 1747
1748#if EV_USE_INOTIFY
1028void inline_size infy_fork (EV_P); 1749inline_size void infy_fork (EV_P);
1750#endif
1029 1751
1030void inline_size 1752inline_size void
1031loop_fork (EV_P) 1753loop_fork (EV_P)
1032{ 1754{
1033#if EV_USE_PORT 1755#if EV_USE_PORT
1034 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1756 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1035#endif 1757#endif
1041#endif 1763#endif
1042#if EV_USE_INOTIFY 1764#if EV_USE_INOTIFY
1043 infy_fork (EV_A); 1765 infy_fork (EV_A);
1044#endif 1766#endif
1045 1767
1046 if (ev_is_active (&sigev)) 1768 if (ev_is_active (&pipe_w))
1047 { 1769 {
1048 /* default loop */ 1770 /* this "locks" the handlers against writing to the pipe */
1771 /* while we modify the fd vars */
1772 sig_pending = 1;
1773#if EV_ASYNC_ENABLE
1774 async_pending = 1;
1775#endif
1049 1776
1050 ev_ref (EV_A); 1777 ev_ref (EV_A);
1051 ev_io_stop (EV_A_ &sigev); 1778 ev_io_stop (EV_A_ &pipe_w);
1052 close (sigpipe [0]);
1053 close (sigpipe [1]);
1054 1779
1055 while (pipe (sigpipe)) 1780#if EV_USE_EVENTFD
1056 syserr ("(libev) error creating pipe"); 1781 if (evfd >= 0)
1782 close (evfd);
1783#endif
1057 1784
1785 if (evpipe [0] >= 0)
1786 {
1787 EV_WIN32_CLOSE_FD (evpipe [0]);
1788 EV_WIN32_CLOSE_FD (evpipe [1]);
1789 }
1790
1058 siginit (EV_A); 1791 evpipe_init (EV_A);
1792 /* now iterate over everything, in case we missed something */
1793 pipecb (EV_A_ &pipe_w, EV_READ);
1059 } 1794 }
1060 1795
1061 postfork = 0; 1796 postfork = 0;
1062} 1797}
1063 1798
1064#if EV_MULTIPLICITY 1799#if EV_MULTIPLICITY
1800
1065struct ev_loop * 1801struct ev_loop *
1066ev_loop_new (unsigned int flags) 1802ev_loop_new (unsigned int flags)
1067{ 1803{
1068 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1804 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1069 1805
1070 memset (loop, 0, sizeof (struct ev_loop)); 1806 memset (EV_A, 0, sizeof (struct ev_loop));
1071
1072 loop_init (EV_A_ flags); 1807 loop_init (EV_A_ flags);
1073 1808
1074 if (ev_backend (EV_A)) 1809 if (ev_backend (EV_A))
1075 return loop; 1810 return EV_A;
1076 1811
1077 return 0; 1812 return 0;
1078} 1813}
1079 1814
1080void 1815void
1085} 1820}
1086 1821
1087void 1822void
1088ev_loop_fork (EV_P) 1823ev_loop_fork (EV_P)
1089{ 1824{
1090 postfork = 1; 1825 postfork = 1; /* must be in line with ev_default_fork */
1091} 1826}
1827#endif /* multiplicity */
1092 1828
1829#if EV_VERIFY
1830static void noinline
1831verify_watcher (EV_P_ W w)
1832{
1833 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1834
1835 if (w->pending)
1836 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1837}
1838
1839static void noinline
1840verify_heap (EV_P_ ANHE *heap, int N)
1841{
1842 int i;
1843
1844 for (i = HEAP0; i < N + HEAP0; ++i)
1845 {
1846 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1847 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1848 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1849
1850 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1851 }
1852}
1853
1854static void noinline
1855array_verify (EV_P_ W *ws, int cnt)
1856{
1857 while (cnt--)
1858 {
1859 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1860 verify_watcher (EV_A_ ws [cnt]);
1861 }
1862}
1863#endif
1864
1865#if EV_MINIMAL < 2
1866void
1867ev_loop_verify (EV_P)
1868{
1869#if EV_VERIFY
1870 int i;
1871 WL w;
1872
1873 assert (activecnt >= -1);
1874
1875 assert (fdchangemax >= fdchangecnt);
1876 for (i = 0; i < fdchangecnt; ++i)
1877 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1878
1879 assert (anfdmax >= 0);
1880 for (i = 0; i < anfdmax; ++i)
1881 for (w = anfds [i].head; w; w = w->next)
1882 {
1883 verify_watcher (EV_A_ (W)w);
1884 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1885 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1886 }
1887
1888 assert (timermax >= timercnt);
1889 verify_heap (EV_A_ timers, timercnt);
1890
1891#if EV_PERIODIC_ENABLE
1892 assert (periodicmax >= periodiccnt);
1893 verify_heap (EV_A_ periodics, periodiccnt);
1894#endif
1895
1896 for (i = NUMPRI; i--; )
1897 {
1898 assert (pendingmax [i] >= pendingcnt [i]);
1899#if EV_IDLE_ENABLE
1900 assert (idleall >= 0);
1901 assert (idlemax [i] >= idlecnt [i]);
1902 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1903#endif
1904 }
1905
1906#if EV_FORK_ENABLE
1907 assert (forkmax >= forkcnt);
1908 array_verify (EV_A_ (W *)forks, forkcnt);
1909#endif
1910
1911#if EV_ASYNC_ENABLE
1912 assert (asyncmax >= asynccnt);
1913 array_verify (EV_A_ (W *)asyncs, asynccnt);
1914#endif
1915
1916 assert (preparemax >= preparecnt);
1917 array_verify (EV_A_ (W *)prepares, preparecnt);
1918
1919 assert (checkmax >= checkcnt);
1920 array_verify (EV_A_ (W *)checks, checkcnt);
1921
1922# if 0
1923 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1924 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1925# endif
1926#endif
1927}
1093#endif 1928#endif
1094 1929
1095#if EV_MULTIPLICITY 1930#if EV_MULTIPLICITY
1096struct ev_loop * 1931struct ev_loop *
1097ev_default_loop_init (unsigned int flags) 1932ev_default_loop_init (unsigned int flags)
1098#else 1933#else
1099int 1934int
1100ev_default_loop (unsigned int flags) 1935ev_default_loop (unsigned int flags)
1101#endif 1936#endif
1102{ 1937{
1103 if (sigpipe [0] == sigpipe [1])
1104 if (pipe (sigpipe))
1105 return 0;
1106
1107 if (!ev_default_loop_ptr) 1938 if (!ev_default_loop_ptr)
1108 { 1939 {
1109#if EV_MULTIPLICITY 1940#if EV_MULTIPLICITY
1110 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1941 EV_P = ev_default_loop_ptr = &default_loop_struct;
1111#else 1942#else
1112 ev_default_loop_ptr = 1; 1943 ev_default_loop_ptr = 1;
1113#endif 1944#endif
1114 1945
1115 loop_init (EV_A_ flags); 1946 loop_init (EV_A_ flags);
1116 1947
1117 if (ev_backend (EV_A)) 1948 if (ev_backend (EV_A))
1118 { 1949 {
1119 siginit (EV_A);
1120
1121#ifndef _WIN32 1950#ifndef _WIN32
1122 ev_signal_init (&childev, childcb, SIGCHLD); 1951 ev_signal_init (&childev, childcb, SIGCHLD);
1123 ev_set_priority (&childev, EV_MAXPRI); 1952 ev_set_priority (&childev, EV_MAXPRI);
1124 ev_signal_start (EV_A_ &childev); 1953 ev_signal_start (EV_A_ &childev);
1125 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1954 ev_unref (EV_A); /* child watcher should not keep loop alive */
1134 1963
1135void 1964void
1136ev_default_destroy (void) 1965ev_default_destroy (void)
1137{ 1966{
1138#if EV_MULTIPLICITY 1967#if EV_MULTIPLICITY
1139 struct ev_loop *loop = ev_default_loop_ptr; 1968 EV_P = ev_default_loop_ptr;
1140#endif 1969#endif
1970
1971 ev_default_loop_ptr = 0;
1141 1972
1142#ifndef _WIN32 1973#ifndef _WIN32
1143 ev_ref (EV_A); /* child watcher */ 1974 ev_ref (EV_A); /* child watcher */
1144 ev_signal_stop (EV_A_ &childev); 1975 ev_signal_stop (EV_A_ &childev);
1145#endif 1976#endif
1146 1977
1147 ev_ref (EV_A); /* signal watcher */
1148 ev_io_stop (EV_A_ &sigev);
1149
1150 close (sigpipe [0]); sigpipe [0] = 0;
1151 close (sigpipe [1]); sigpipe [1] = 0;
1152
1153 loop_destroy (EV_A); 1978 loop_destroy (EV_A);
1154} 1979}
1155 1980
1156void 1981void
1157ev_default_fork (void) 1982ev_default_fork (void)
1158{ 1983{
1159#if EV_MULTIPLICITY 1984#if EV_MULTIPLICITY
1160 struct ev_loop *loop = ev_default_loop_ptr; 1985 EV_P = ev_default_loop_ptr;
1161#endif 1986#endif
1162 1987
1163 if (backend) 1988 postfork = 1; /* must be in line with ev_loop_fork */
1164 postfork = 1;
1165} 1989}
1166 1990
1167/*****************************************************************************/ 1991/*****************************************************************************/
1168 1992
1169void 1993void
1170ev_invoke (EV_P_ void *w, int revents) 1994ev_invoke (EV_P_ void *w, int revents)
1171{ 1995{
1172 EV_CB_INVOKE ((W)w, revents); 1996 EV_CB_INVOKE ((W)w, revents);
1173} 1997}
1174 1998
1175void inline_speed 1999unsigned int
1176call_pending (EV_P) 2000ev_pending_count (EV_P)
2001{
2002 int pri;
2003 unsigned int count = 0;
2004
2005 for (pri = NUMPRI; pri--; )
2006 count += pendingcnt [pri];
2007
2008 return count;
2009}
2010
2011void noinline
2012ev_invoke_pending (EV_P)
1177{ 2013{
1178 int pri; 2014 int pri;
1179 2015
1180 for (pri = NUMPRI; pri--; ) 2016 for (pri = NUMPRI; pri--; )
1181 while (pendingcnt [pri]) 2017 while (pendingcnt [pri])
1182 { 2018 {
1183 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2019 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1184 2020
1185 if (expect_true (p->w))
1186 {
1187 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2021 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2022 /* ^ this is no longer true, as pending_w could be here */
1188 2023
1189 p->w->pending = 0; 2024 p->w->pending = 0;
1190 EV_CB_INVOKE (p->w, p->events); 2025 EV_CB_INVOKE (p->w, p->events);
1191 } 2026 EV_FREQUENT_CHECK;
1192 } 2027 }
1193} 2028}
1194 2029
1195void inline_size
1196timers_reify (EV_P)
1197{
1198 while (timercnt && ((WT)timers [0])->at <= mn_now)
1199 {
1200 ev_timer *w = timers [0];
1201
1202 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1203
1204 /* first reschedule or stop timer */
1205 if (w->repeat)
1206 {
1207 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1208
1209 ((WT)w)->at += w->repeat;
1210 if (((WT)w)->at < mn_now)
1211 ((WT)w)->at = mn_now;
1212
1213 downheap ((WT *)timers, timercnt, 0);
1214 }
1215 else
1216 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1217
1218 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1219 }
1220}
1221
1222#if EV_PERIODIC_ENABLE
1223void inline_size
1224periodics_reify (EV_P)
1225{
1226 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1227 {
1228 ev_periodic *w = periodics [0];
1229
1230 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1231
1232 /* first reschedule or stop timer */
1233 if (w->reschedule_cb)
1234 {
1235 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1236 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1237 downheap ((WT *)periodics, periodiccnt, 0);
1238 }
1239 else if (w->interval)
1240 {
1241 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1242 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1243 downheap ((WT *)periodics, periodiccnt, 0);
1244 }
1245 else
1246 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1247
1248 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1249 }
1250}
1251
1252static void noinline
1253periodics_reschedule (EV_P)
1254{
1255 int i;
1256
1257 /* adjust periodics after time jump */
1258 for (i = 0; i < periodiccnt; ++i)
1259 {
1260 ev_periodic *w = periodics [i];
1261
1262 if (w->reschedule_cb)
1263 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1264 else if (w->interval)
1265 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1266 }
1267
1268 /* now rebuild the heap */
1269 for (i = periodiccnt >> 1; i--; )
1270 downheap ((WT *)periodics, periodiccnt, i);
1271}
1272#endif
1273
1274#if EV_IDLE_ENABLE 2030#if EV_IDLE_ENABLE
1275void inline_size 2031/* make idle watchers pending. this handles the "call-idle */
2032/* only when higher priorities are idle" logic */
2033inline_size void
1276idle_reify (EV_P) 2034idle_reify (EV_P)
1277{ 2035{
1278 if (expect_false (idleall)) 2036 if (expect_false (idleall))
1279 { 2037 {
1280 int pri; 2038 int pri;
1292 } 2050 }
1293 } 2051 }
1294} 2052}
1295#endif 2053#endif
1296 2054
1297int inline_size 2055/* make timers pending */
1298time_update_monotonic (EV_P) 2056inline_size void
2057timers_reify (EV_P)
1299{ 2058{
2059 EV_FREQUENT_CHECK;
2060
2061 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2062 {
2063 do
2064 {
2065 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2066
2067 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2068
2069 /* first reschedule or stop timer */
2070 if (w->repeat)
2071 {
2072 ev_at (w) += w->repeat;
2073 if (ev_at (w) < mn_now)
2074 ev_at (w) = mn_now;
2075
2076 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2077
2078 ANHE_at_cache (timers [HEAP0]);
2079 downheap (timers, timercnt, HEAP0);
2080 }
2081 else
2082 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2083
2084 EV_FREQUENT_CHECK;
2085 feed_reverse (EV_A_ (W)w);
2086 }
2087 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2088
2089 feed_reverse_done (EV_A_ EV_TIMEOUT);
2090 }
2091}
2092
2093#if EV_PERIODIC_ENABLE
2094/* make periodics pending */
2095inline_size void
2096periodics_reify (EV_P)
2097{
2098 EV_FREQUENT_CHECK;
2099
2100 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2101 {
2102 int feed_count = 0;
2103
2104 do
2105 {
2106 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2107
2108 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2109
2110 /* first reschedule or stop timer */
2111 if (w->reschedule_cb)
2112 {
2113 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2114
2115 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2116
2117 ANHE_at_cache (periodics [HEAP0]);
2118 downheap (periodics, periodiccnt, HEAP0);
2119 }
2120 else if (w->interval)
2121 {
2122 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2123 /* if next trigger time is not sufficiently in the future, put it there */
2124 /* this might happen because of floating point inexactness */
2125 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2126 {
2127 ev_at (w) += w->interval;
2128
2129 /* if interval is unreasonably low we might still have a time in the past */
2130 /* so correct this. this will make the periodic very inexact, but the user */
2131 /* has effectively asked to get triggered more often than possible */
2132 if (ev_at (w) < ev_rt_now)
2133 ev_at (w) = ev_rt_now;
2134 }
2135
2136 ANHE_at_cache (periodics [HEAP0]);
2137 downheap (periodics, periodiccnt, HEAP0);
2138 }
2139 else
2140 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2141
2142 EV_FREQUENT_CHECK;
2143 feed_reverse (EV_A_ (W)w);
2144 }
2145 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2146
2147 feed_reverse_done (EV_A_ EV_PERIODIC);
2148 }
2149}
2150
2151/* simply recalculate all periodics */
2152/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2153static void noinline
2154periodics_reschedule (EV_P)
2155{
2156 int i;
2157
2158 /* adjust periodics after time jump */
2159 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2160 {
2161 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2162
2163 if (w->reschedule_cb)
2164 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2165 else if (w->interval)
2166 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2167
2168 ANHE_at_cache (periodics [i]);
2169 }
2170
2171 reheap (periodics, periodiccnt);
2172}
2173#endif
2174
2175/* adjust all timers by a given offset */
2176static void noinline
2177timers_reschedule (EV_P_ ev_tstamp adjust)
2178{
2179 int i;
2180
2181 for (i = 0; i < timercnt; ++i)
2182 {
2183 ANHE *he = timers + i + HEAP0;
2184 ANHE_w (*he)->at += adjust;
2185 ANHE_at_cache (*he);
2186 }
2187}
2188
2189/* fetch new monotonic and realtime times from the kernel */
2190/* also detect if there was a timejump, and act accordingly */
2191inline_speed void
2192time_update (EV_P_ ev_tstamp max_block)
2193{
2194#if EV_USE_MONOTONIC
2195 if (expect_true (have_monotonic))
2196 {
2197 int i;
2198 ev_tstamp odiff = rtmn_diff;
2199
1300 mn_now = get_clock (); 2200 mn_now = get_clock ();
1301 2201
2202 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2203 /* interpolate in the meantime */
1302 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2204 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1303 { 2205 {
1304 ev_rt_now = rtmn_diff + mn_now; 2206 ev_rt_now = rtmn_diff + mn_now;
1305 return 0; 2207 return;
1306 } 2208 }
1307 else 2209
1308 {
1309 now_floor = mn_now; 2210 now_floor = mn_now;
1310 ev_rt_now = ev_time (); 2211 ev_rt_now = ev_time ();
1311 return 1;
1312 }
1313}
1314 2212
1315void inline_size 2213 /* loop a few times, before making important decisions.
1316time_update (EV_P) 2214 * on the choice of "4": one iteration isn't enough,
1317{ 2215 * in case we get preempted during the calls to
1318 int i; 2216 * ev_time and get_clock. a second call is almost guaranteed
1319 2217 * to succeed in that case, though. and looping a few more times
1320#if EV_USE_MONOTONIC 2218 * doesn't hurt either as we only do this on time-jumps or
1321 if (expect_true (have_monotonic)) 2219 * in the unlikely event of having been preempted here.
1322 { 2220 */
1323 if (time_update_monotonic (EV_A)) 2221 for (i = 4; --i; )
1324 { 2222 {
1325 ev_tstamp odiff = rtmn_diff;
1326
1327 /* loop a few times, before making important decisions.
1328 * on the choice of "4": one iteration isn't enough,
1329 * in case we get preempted during the calls to
1330 * ev_time and get_clock. a second call is almost guaranteed
1331 * to succeed in that case, though. and looping a few more times
1332 * doesn't hurt either as we only do this on time-jumps or
1333 * in the unlikely event of having been preempted here.
1334 */
1335 for (i = 4; --i; )
1336 {
1337 rtmn_diff = ev_rt_now - mn_now; 2223 rtmn_diff = ev_rt_now - mn_now;
1338 2224
1339 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2225 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1340 return; /* all is well */ 2226 return; /* all is well */
1341 2227
1342 ev_rt_now = ev_time (); 2228 ev_rt_now = ev_time ();
1343 mn_now = get_clock (); 2229 mn_now = get_clock ();
1344 now_floor = mn_now; 2230 now_floor = mn_now;
1345 } 2231 }
1346 2232
2233 /* no timer adjustment, as the monotonic clock doesn't jump */
2234 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1347# if EV_PERIODIC_ENABLE 2235# if EV_PERIODIC_ENABLE
1348 periodics_reschedule (EV_A); 2236 periodics_reschedule (EV_A);
1349# endif 2237# endif
1350 /* no timer adjustment, as the monotonic clock doesn't jump */
1351 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1352 }
1353 } 2238 }
1354 else 2239 else
1355#endif 2240#endif
1356 { 2241 {
1357 ev_rt_now = ev_time (); 2242 ev_rt_now = ev_time ();
1358 2243
1359 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2244 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1360 { 2245 {
2246 /* adjust timers. this is easy, as the offset is the same for all of them */
2247 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1361#if EV_PERIODIC_ENABLE 2248#if EV_PERIODIC_ENABLE
1362 periodics_reschedule (EV_A); 2249 periodics_reschedule (EV_A);
1363#endif 2250#endif
1364
1365 /* adjust timers. this is easy, as the offset is the same for all of them */
1366 for (i = 0; i < timercnt; ++i)
1367 ((WT)timers [i])->at += ev_rt_now - mn_now;
1368 } 2251 }
1369 2252
1370 mn_now = ev_rt_now; 2253 mn_now = ev_rt_now;
1371 } 2254 }
1372} 2255}
1373 2256
1374void 2257void
1375ev_ref (EV_P)
1376{
1377 ++activecnt;
1378}
1379
1380void
1381ev_unref (EV_P)
1382{
1383 --activecnt;
1384}
1385
1386static int loop_done;
1387
1388void
1389ev_loop (EV_P_ int flags) 2258ev_loop (EV_P_ int flags)
1390{ 2259{
1391 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2260#if EV_MINIMAL < 2
1392 ? EVUNLOOP_ONE 2261 ++loop_depth;
1393 : EVUNLOOP_CANCEL; 2262#endif
1394 2263
2264 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2265
2266 loop_done = EVUNLOOP_CANCEL;
2267
1395 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2268 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1396 2269
1397 do 2270 do
1398 { 2271 {
2272#if EV_VERIFY >= 2
2273 ev_loop_verify (EV_A);
2274#endif
2275
1399#ifndef _WIN32 2276#ifndef _WIN32
1400 if (expect_false (curpid)) /* penalise the forking check even more */ 2277 if (expect_false (curpid)) /* penalise the forking check even more */
1401 if (expect_false (getpid () != curpid)) 2278 if (expect_false (getpid () != curpid))
1402 { 2279 {
1403 curpid = getpid (); 2280 curpid = getpid ();
1409 /* we might have forked, so queue fork handlers */ 2286 /* we might have forked, so queue fork handlers */
1410 if (expect_false (postfork)) 2287 if (expect_false (postfork))
1411 if (forkcnt) 2288 if (forkcnt)
1412 { 2289 {
1413 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2290 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1414 call_pending (EV_A); 2291 EV_INVOKE_PENDING;
1415 } 2292 }
1416#endif 2293#endif
1417 2294
1418 /* queue check watchers (and execute them) */ 2295 /* queue prepare watchers (and execute them) */
1419 if (expect_false (preparecnt)) 2296 if (expect_false (preparecnt))
1420 { 2297 {
1421 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2298 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1422 call_pending (EV_A); 2299 EV_INVOKE_PENDING;
1423 } 2300 }
1424 2301
1425 if (expect_false (!activecnt)) 2302 if (expect_false (loop_done))
1426 break; 2303 break;
1427 2304
1428 /* we might have forked, so reify kernel state if necessary */ 2305 /* we might have forked, so reify kernel state if necessary */
1429 if (expect_false (postfork)) 2306 if (expect_false (postfork))
1430 loop_fork (EV_A); 2307 loop_fork (EV_A);
1432 /* update fd-related kernel structures */ 2309 /* update fd-related kernel structures */
1433 fd_reify (EV_A); 2310 fd_reify (EV_A);
1434 2311
1435 /* calculate blocking time */ 2312 /* calculate blocking time */
1436 { 2313 {
1437 ev_tstamp block; 2314 ev_tstamp waittime = 0.;
2315 ev_tstamp sleeptime = 0.;
1438 2316
1439 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2317 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1440 block = 0.; /* do not block at all */
1441 else
1442 { 2318 {
2319 /* remember old timestamp for io_blocktime calculation */
2320 ev_tstamp prev_mn_now = mn_now;
2321
1443 /* update time to cancel out callback processing overhead */ 2322 /* update time to cancel out callback processing overhead */
1444#if EV_USE_MONOTONIC
1445 if (expect_true (have_monotonic))
1446 time_update_monotonic (EV_A); 2323 time_update (EV_A_ 1e100);
1447 else
1448#endif
1449 {
1450 ev_rt_now = ev_time ();
1451 mn_now = ev_rt_now;
1452 }
1453 2324
1454 block = MAX_BLOCKTIME; 2325 waittime = MAX_BLOCKTIME;
1455 2326
1456 if (timercnt) 2327 if (timercnt)
1457 { 2328 {
1458 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2329 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1459 if (block > to) block = to; 2330 if (waittime > to) waittime = to;
1460 } 2331 }
1461 2332
1462#if EV_PERIODIC_ENABLE 2333#if EV_PERIODIC_ENABLE
1463 if (periodiccnt) 2334 if (periodiccnt)
1464 { 2335 {
1465 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2336 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1466 if (block > to) block = to; 2337 if (waittime > to) waittime = to;
1467 } 2338 }
1468#endif 2339#endif
1469 2340
2341 /* don't let timeouts decrease the waittime below timeout_blocktime */
2342 if (expect_false (waittime < timeout_blocktime))
2343 waittime = timeout_blocktime;
2344
2345 /* extra check because io_blocktime is commonly 0 */
1470 if (expect_false (block < 0.)) block = 0.; 2346 if (expect_false (io_blocktime))
2347 {
2348 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2349
2350 if (sleeptime > waittime - backend_fudge)
2351 sleeptime = waittime - backend_fudge;
2352
2353 if (expect_true (sleeptime > 0.))
2354 {
2355 ev_sleep (sleeptime);
2356 waittime -= sleeptime;
2357 }
2358 }
1471 } 2359 }
1472 2360
2361#if EV_MINIMAL < 2
1473 ++loop_count; 2362 ++loop_count;
2363#endif
2364 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1474 backend_poll (EV_A_ block); 2365 backend_poll (EV_A_ waittime);
2366 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2367
2368 /* update ev_rt_now, do magic */
2369 time_update (EV_A_ waittime + sleeptime);
1475 } 2370 }
1476
1477 /* update ev_rt_now, do magic */
1478 time_update (EV_A);
1479 2371
1480 /* queue pending timers and reschedule them */ 2372 /* queue pending timers and reschedule them */
1481 timers_reify (EV_A); /* relative timers called last */ 2373 timers_reify (EV_A); /* relative timers called last */
1482#if EV_PERIODIC_ENABLE 2374#if EV_PERIODIC_ENABLE
1483 periodics_reify (EV_A); /* absolute timers called first */ 2375 periodics_reify (EV_A); /* absolute timers called first */
1490 2382
1491 /* queue check watchers, to be executed first */ 2383 /* queue check watchers, to be executed first */
1492 if (expect_false (checkcnt)) 2384 if (expect_false (checkcnt))
1493 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2385 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1494 2386
1495 call_pending (EV_A); 2387 EV_INVOKE_PENDING;
1496
1497 } 2388 }
1498 while (expect_true (activecnt && !loop_done)); 2389 while (expect_true (
2390 activecnt
2391 && !loop_done
2392 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2393 ));
1499 2394
1500 if (loop_done == EVUNLOOP_ONE) 2395 if (loop_done == EVUNLOOP_ONE)
1501 loop_done = EVUNLOOP_CANCEL; 2396 loop_done = EVUNLOOP_CANCEL;
2397
2398#if EV_MINIMAL < 2
2399 --loop_depth;
2400#endif
1502} 2401}
1503 2402
1504void 2403void
1505ev_unloop (EV_P_ int how) 2404ev_unloop (EV_P_ int how)
1506{ 2405{
1507 loop_done = how; 2406 loop_done = how;
1508} 2407}
1509 2408
2409void
2410ev_ref (EV_P)
2411{
2412 ++activecnt;
2413}
2414
2415void
2416ev_unref (EV_P)
2417{
2418 --activecnt;
2419}
2420
2421void
2422ev_now_update (EV_P)
2423{
2424 time_update (EV_A_ 1e100);
2425}
2426
2427void
2428ev_suspend (EV_P)
2429{
2430 ev_now_update (EV_A);
2431}
2432
2433void
2434ev_resume (EV_P)
2435{
2436 ev_tstamp mn_prev = mn_now;
2437
2438 ev_now_update (EV_A);
2439 timers_reschedule (EV_A_ mn_now - mn_prev);
2440#if EV_PERIODIC_ENABLE
2441 /* TODO: really do this? */
2442 periodics_reschedule (EV_A);
2443#endif
2444}
2445
1510/*****************************************************************************/ 2446/*****************************************************************************/
2447/* singly-linked list management, used when the expected list length is short */
1511 2448
1512void inline_size 2449inline_size void
1513wlist_add (WL *head, WL elem) 2450wlist_add (WL *head, WL elem)
1514{ 2451{
1515 elem->next = *head; 2452 elem->next = *head;
1516 *head = elem; 2453 *head = elem;
1517} 2454}
1518 2455
1519void inline_size 2456inline_size void
1520wlist_del (WL *head, WL elem) 2457wlist_del (WL *head, WL elem)
1521{ 2458{
1522 while (*head) 2459 while (*head)
1523 { 2460 {
1524 if (*head == elem) 2461 if (expect_true (*head == elem))
1525 { 2462 {
1526 *head = elem->next; 2463 *head = elem->next;
1527 return; 2464 break;
1528 } 2465 }
1529 2466
1530 head = &(*head)->next; 2467 head = &(*head)->next;
1531 } 2468 }
1532} 2469}
1533 2470
1534void inline_speed 2471/* internal, faster, version of ev_clear_pending */
2472inline_speed void
1535clear_pending (EV_P_ W w) 2473clear_pending (EV_P_ W w)
1536{ 2474{
1537 if (w->pending) 2475 if (w->pending)
1538 { 2476 {
1539 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2477 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1540 w->pending = 0; 2478 w->pending = 0;
1541 } 2479 }
1542} 2480}
1543 2481
1544int 2482int
1545ev_clear_pending (EV_P_ void *w) 2483ev_clear_pending (EV_P_ void *w)
1546{ 2484{
1547 W w_ = (W)w; 2485 W w_ = (W)w;
1548 int pending = w_->pending; 2486 int pending = w_->pending;
1549 2487
1550 if (!pending) 2488 if (expect_true (pending))
2489 {
2490 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2491 p->w = (W)&pending_w;
2492 w_->pending = 0;
2493 return p->events;
2494 }
2495 else
1551 return 0; 2496 return 0;
1552
1553 w_->pending = 0;
1554 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1555 p->w = 0;
1556
1557 return p->events;
1558} 2497}
1559 2498
1560void inline_size 2499inline_size void
1561pri_adjust (EV_P_ W w) 2500pri_adjust (EV_P_ W w)
1562{ 2501{
1563 int pri = w->priority; 2502 int pri = ev_priority (w);
1564 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2503 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1565 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2504 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1566 w->priority = pri; 2505 ev_set_priority (w, pri);
1567} 2506}
1568 2507
1569void inline_speed 2508inline_speed void
1570ev_start (EV_P_ W w, int active) 2509ev_start (EV_P_ W w, int active)
1571{ 2510{
1572 pri_adjust (EV_A_ w); 2511 pri_adjust (EV_A_ w);
1573 w->active = active; 2512 w->active = active;
1574 ev_ref (EV_A); 2513 ev_ref (EV_A);
1575} 2514}
1576 2515
1577void inline_size 2516inline_size void
1578ev_stop (EV_P_ W w) 2517ev_stop (EV_P_ W w)
1579{ 2518{
1580 ev_unref (EV_A); 2519 ev_unref (EV_A);
1581 w->active = 0; 2520 w->active = 0;
1582} 2521}
1583 2522
1584/*****************************************************************************/ 2523/*****************************************************************************/
1585 2524
1586void 2525void noinline
1587ev_io_start (EV_P_ ev_io *w) 2526ev_io_start (EV_P_ ev_io *w)
1588{ 2527{
1589 int fd = w->fd; 2528 int fd = w->fd;
1590 2529
1591 if (expect_false (ev_is_active (w))) 2530 if (expect_false (ev_is_active (w)))
1592 return; 2531 return;
1593 2532
1594 assert (("ev_io_start called with negative fd", fd >= 0)); 2533 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2534 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2535
2536 EV_FREQUENT_CHECK;
1595 2537
1596 ev_start (EV_A_ (W)w, 1); 2538 ev_start (EV_A_ (W)w, 1);
1597 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2539 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1598 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2540 wlist_add (&anfds[fd].head, (WL)w);
1599 2541
1600 fd_change (EV_A_ fd); 2542 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1601} 2543 w->events &= ~EV__IOFDSET;
1602 2544
1603void 2545 EV_FREQUENT_CHECK;
2546}
2547
2548void noinline
1604ev_io_stop (EV_P_ ev_io *w) 2549ev_io_stop (EV_P_ ev_io *w)
1605{ 2550{
1606 clear_pending (EV_A_ (W)w); 2551 clear_pending (EV_A_ (W)w);
1607 if (expect_false (!ev_is_active (w))) 2552 if (expect_false (!ev_is_active (w)))
1608 return; 2553 return;
1609 2554
1610 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2555 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1611 2556
2557 EV_FREQUENT_CHECK;
2558
1612 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2559 wlist_del (&anfds[w->fd].head, (WL)w);
1613 ev_stop (EV_A_ (W)w); 2560 ev_stop (EV_A_ (W)w);
1614 2561
1615 fd_change (EV_A_ w->fd); 2562 fd_change (EV_A_ w->fd, 1);
1616}
1617 2563
1618void 2564 EV_FREQUENT_CHECK;
2565}
2566
2567void noinline
1619ev_timer_start (EV_P_ ev_timer *w) 2568ev_timer_start (EV_P_ ev_timer *w)
1620{ 2569{
1621 if (expect_false (ev_is_active (w))) 2570 if (expect_false (ev_is_active (w)))
1622 return; 2571 return;
1623 2572
1624 ((WT)w)->at += mn_now; 2573 ev_at (w) += mn_now;
1625 2574
1626 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2575 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1627 2576
2577 EV_FREQUENT_CHECK;
2578
2579 ++timercnt;
1628 ev_start (EV_A_ (W)w, ++timercnt); 2580 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1629 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2581 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1630 timers [timercnt - 1] = w; 2582 ANHE_w (timers [ev_active (w)]) = (WT)w;
1631 upheap ((WT *)timers, timercnt - 1); 2583 ANHE_at_cache (timers [ev_active (w)]);
2584 upheap (timers, ev_active (w));
1632 2585
2586 EV_FREQUENT_CHECK;
2587
1633 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2588 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1634} 2589}
1635 2590
1636void 2591void noinline
1637ev_timer_stop (EV_P_ ev_timer *w) 2592ev_timer_stop (EV_P_ ev_timer *w)
1638{ 2593{
1639 clear_pending (EV_A_ (W)w); 2594 clear_pending (EV_A_ (W)w);
1640 if (expect_false (!ev_is_active (w))) 2595 if (expect_false (!ev_is_active (w)))
1641 return; 2596 return;
1642 2597
1643 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2598 EV_FREQUENT_CHECK;
1644 2599
1645 { 2600 {
1646 int active = ((W)w)->active; 2601 int active = ev_active (w);
1647 2602
2603 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2604
2605 --timercnt;
2606
1648 if (expect_true (--active < --timercnt)) 2607 if (expect_true (active < timercnt + HEAP0))
1649 { 2608 {
1650 timers [active] = timers [timercnt]; 2609 timers [active] = timers [timercnt + HEAP0];
1651 adjustheap ((WT *)timers, timercnt, active); 2610 adjustheap (timers, timercnt, active);
1652 } 2611 }
1653 } 2612 }
1654 2613
1655 ((WT)w)->at -= mn_now; 2614 ev_at (w) -= mn_now;
1656 2615
1657 ev_stop (EV_A_ (W)w); 2616 ev_stop (EV_A_ (W)w);
1658}
1659 2617
1660void 2618 EV_FREQUENT_CHECK;
2619}
2620
2621void noinline
1661ev_timer_again (EV_P_ ev_timer *w) 2622ev_timer_again (EV_P_ ev_timer *w)
1662{ 2623{
2624 EV_FREQUENT_CHECK;
2625
1663 if (ev_is_active (w)) 2626 if (ev_is_active (w))
1664 { 2627 {
1665 if (w->repeat) 2628 if (w->repeat)
1666 { 2629 {
1667 ((WT)w)->at = mn_now + w->repeat; 2630 ev_at (w) = mn_now + w->repeat;
2631 ANHE_at_cache (timers [ev_active (w)]);
1668 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2632 adjustheap (timers, timercnt, ev_active (w));
1669 } 2633 }
1670 else 2634 else
1671 ev_timer_stop (EV_A_ w); 2635 ev_timer_stop (EV_A_ w);
1672 } 2636 }
1673 else if (w->repeat) 2637 else if (w->repeat)
1674 { 2638 {
1675 w->at = w->repeat; 2639 ev_at (w) = w->repeat;
1676 ev_timer_start (EV_A_ w); 2640 ev_timer_start (EV_A_ w);
1677 } 2641 }
2642
2643 EV_FREQUENT_CHECK;
2644}
2645
2646ev_tstamp
2647ev_timer_remaining (EV_P_ ev_timer *w)
2648{
2649 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1678} 2650}
1679 2651
1680#if EV_PERIODIC_ENABLE 2652#if EV_PERIODIC_ENABLE
1681void 2653void noinline
1682ev_periodic_start (EV_P_ ev_periodic *w) 2654ev_periodic_start (EV_P_ ev_periodic *w)
1683{ 2655{
1684 if (expect_false (ev_is_active (w))) 2656 if (expect_false (ev_is_active (w)))
1685 return; 2657 return;
1686 2658
1687 if (w->reschedule_cb) 2659 if (w->reschedule_cb)
1688 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2660 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval) 2661 else if (w->interval)
1690 { 2662 {
1691 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2663 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1692 /* this formula differs from the one in periodic_reify because we do not always round up */ 2664 /* this formula differs from the one in periodic_reify because we do not always round up */
1693 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2665 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1694 } 2666 }
2667 else
2668 ev_at (w) = w->offset;
1695 2669
2670 EV_FREQUENT_CHECK;
2671
2672 ++periodiccnt;
1696 ev_start (EV_A_ (W)w, ++periodiccnt); 2673 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1697 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2674 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1698 periodics [periodiccnt - 1] = w; 2675 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1699 upheap ((WT *)periodics, periodiccnt - 1); 2676 ANHE_at_cache (periodics [ev_active (w)]);
2677 upheap (periodics, ev_active (w));
1700 2678
2679 EV_FREQUENT_CHECK;
2680
1701 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2681 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1702} 2682}
1703 2683
1704void 2684void noinline
1705ev_periodic_stop (EV_P_ ev_periodic *w) 2685ev_periodic_stop (EV_P_ ev_periodic *w)
1706{ 2686{
1707 clear_pending (EV_A_ (W)w); 2687 clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 2688 if (expect_false (!ev_is_active (w)))
1709 return; 2689 return;
1710 2690
1711 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2691 EV_FREQUENT_CHECK;
1712 2692
1713 { 2693 {
1714 int active = ((W)w)->active; 2694 int active = ev_active (w);
1715 2695
2696 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2697
2698 --periodiccnt;
2699
1716 if (expect_true (--active < --periodiccnt)) 2700 if (expect_true (active < periodiccnt + HEAP0))
1717 { 2701 {
1718 periodics [active] = periodics [periodiccnt]; 2702 periodics [active] = periodics [periodiccnt + HEAP0];
1719 adjustheap ((WT *)periodics, periodiccnt, active); 2703 adjustheap (periodics, periodiccnt, active);
1720 } 2704 }
1721 } 2705 }
1722 2706
1723 ev_stop (EV_A_ (W)w); 2707 ev_stop (EV_A_ (W)w);
1724}
1725 2708
1726void 2709 EV_FREQUENT_CHECK;
2710}
2711
2712void noinline
1727ev_periodic_again (EV_P_ ev_periodic *w) 2713ev_periodic_again (EV_P_ ev_periodic *w)
1728{ 2714{
1729 /* TODO: use adjustheap and recalculation */ 2715 /* TODO: use adjustheap and recalculation */
1730 ev_periodic_stop (EV_A_ w); 2716 ev_periodic_stop (EV_A_ w);
1731 ev_periodic_start (EV_A_ w); 2717 ev_periodic_start (EV_A_ w);
1734 2720
1735#ifndef SA_RESTART 2721#ifndef SA_RESTART
1736# define SA_RESTART 0 2722# define SA_RESTART 0
1737#endif 2723#endif
1738 2724
1739void 2725void noinline
1740ev_signal_start (EV_P_ ev_signal *w) 2726ev_signal_start (EV_P_ ev_signal *w)
1741{ 2727{
1742#if EV_MULTIPLICITY
1743 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1744#endif
1745 if (expect_false (ev_is_active (w))) 2728 if (expect_false (ev_is_active (w)))
1746 return; 2729 return;
1747 2730
1748 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2731 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2732
2733#if EV_MULTIPLICITY
2734 assert (("libev: a signal must not be attached to two different loops",
2735 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2736
2737 signals [w->signum - 1].loop = EV_A;
2738#endif
2739
2740 EV_FREQUENT_CHECK;
2741
2742#if EV_USE_SIGNALFD
2743 if (sigfd == -2)
2744 {
2745 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2746 if (sigfd < 0 && errno == EINVAL)
2747 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2748
2749 if (sigfd >= 0)
2750 {
2751 fd_intern (sigfd); /* doing it twice will not hurt */
2752
2753 sigemptyset (&sigfd_set);
2754
2755 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2756 ev_set_priority (&sigfd_w, EV_MAXPRI);
2757 ev_io_start (EV_A_ &sigfd_w);
2758 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2759 }
2760 }
2761
2762 if (sigfd >= 0)
2763 {
2764 /* TODO: check .head */
2765 sigaddset (&sigfd_set, w->signum);
2766 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2767
2768 signalfd (sigfd, &sigfd_set, 0);
2769 }
2770#endif
1749 2771
1750 ev_start (EV_A_ (W)w, 1); 2772 ev_start (EV_A_ (W)w, 1);
1751 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1752 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2773 wlist_add (&signals [w->signum - 1].head, (WL)w);
1753 2774
1754 if (!((WL)w)->next) 2775 if (!((WL)w)->next)
2776# if EV_USE_SIGNALFD
2777 if (sigfd < 0) /*TODO*/
2778# endif
1755 { 2779 {
1756#if _WIN32 2780# ifdef _WIN32
2781 evpipe_init (EV_A);
2782
1757 signal (w->signum, sighandler); 2783 signal (w->signum, ev_sighandler);
1758#else 2784# else
1759 struct sigaction sa; 2785 struct sigaction sa;
2786
2787 evpipe_init (EV_A);
2788
1760 sa.sa_handler = sighandler; 2789 sa.sa_handler = ev_sighandler;
1761 sigfillset (&sa.sa_mask); 2790 sigfillset (&sa.sa_mask);
1762 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2791 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1763 sigaction (w->signum, &sa, 0); 2792 sigaction (w->signum, &sa, 0);
2793
2794 sigemptyset (&sa.sa_mask);
2795 sigaddset (&sa.sa_mask, w->signum);
2796 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1764#endif 2797#endif
1765 } 2798 }
1766}
1767 2799
1768void 2800 EV_FREQUENT_CHECK;
2801}
2802
2803void noinline
1769ev_signal_stop (EV_P_ ev_signal *w) 2804ev_signal_stop (EV_P_ ev_signal *w)
1770{ 2805{
1771 clear_pending (EV_A_ (W)w); 2806 clear_pending (EV_A_ (W)w);
1772 if (expect_false (!ev_is_active (w))) 2807 if (expect_false (!ev_is_active (w)))
1773 return; 2808 return;
1774 2809
2810 EV_FREQUENT_CHECK;
2811
1775 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2812 wlist_del (&signals [w->signum - 1].head, (WL)w);
1776 ev_stop (EV_A_ (W)w); 2813 ev_stop (EV_A_ (W)w);
1777 2814
1778 if (!signals [w->signum - 1].head) 2815 if (!signals [w->signum - 1].head)
2816 {
2817#if EV_MULTIPLICITY
2818 signals [w->signum - 1].loop = 0; /* unattach from signal */
2819#endif
2820#if EV_USE_SIGNALFD
2821 if (sigfd >= 0)
2822 {
2823 sigset_t ss;
2824
2825 sigemptyset (&ss);
2826 sigaddset (&ss, w->signum);
2827 sigdelset (&sigfd_set, w->signum);
2828
2829 signalfd (sigfd, &sigfd_set, 0);
2830 sigprocmask (SIG_UNBLOCK, &ss, 0);
2831 }
2832 else
2833#endif
1779 signal (w->signum, SIG_DFL); 2834 signal (w->signum, SIG_DFL);
2835 }
2836
2837 EV_FREQUENT_CHECK;
1780} 2838}
1781 2839
1782void 2840void
1783ev_child_start (EV_P_ ev_child *w) 2841ev_child_start (EV_P_ ev_child *w)
1784{ 2842{
1785#if EV_MULTIPLICITY 2843#if EV_MULTIPLICITY
1786 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2844 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1787#endif 2845#endif
1788 if (expect_false (ev_is_active (w))) 2846 if (expect_false (ev_is_active (w)))
1789 return; 2847 return;
1790 2848
2849 EV_FREQUENT_CHECK;
2850
1791 ev_start (EV_A_ (W)w, 1); 2851 ev_start (EV_A_ (W)w, 1);
1792 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2852 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2853
2854 EV_FREQUENT_CHECK;
1793} 2855}
1794 2856
1795void 2857void
1796ev_child_stop (EV_P_ ev_child *w) 2858ev_child_stop (EV_P_ ev_child *w)
1797{ 2859{
1798 clear_pending (EV_A_ (W)w); 2860 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 2861 if (expect_false (!ev_is_active (w)))
1800 return; 2862 return;
1801 2863
2864 EV_FREQUENT_CHECK;
2865
1802 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2866 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1803 ev_stop (EV_A_ (W)w); 2867 ev_stop (EV_A_ (W)w);
2868
2869 EV_FREQUENT_CHECK;
1804} 2870}
1805 2871
1806#if EV_STAT_ENABLE 2872#if EV_STAT_ENABLE
1807 2873
1808# ifdef _WIN32 2874# ifdef _WIN32
1809# undef lstat 2875# undef lstat
1810# define lstat(a,b) _stati64 (a,b) 2876# define lstat(a,b) _stati64 (a,b)
1811# endif 2877# endif
1812 2878
1813#define DEF_STAT_INTERVAL 5.0074891 2879#define DEF_STAT_INTERVAL 5.0074891
2880#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1814#define MIN_STAT_INTERVAL 0.1074891 2881#define MIN_STAT_INTERVAL 0.1074891
1815 2882
1816static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2883static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1817 2884
1818#if EV_USE_INOTIFY 2885#if EV_USE_INOTIFY
1819# define EV_INOTIFY_BUFSIZE 8192 2886
2887/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2888# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1820 2889
1821static void noinline 2890static void noinline
1822infy_add (EV_P_ ev_stat *w) 2891infy_add (EV_P_ ev_stat *w)
1823{ 2892{
1824 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2893 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1825 2894
1826 if (w->wd < 0) 2895 if (w->wd >= 0)
2896 {
2897 struct statfs sfs;
2898
2899 /* now local changes will be tracked by inotify, but remote changes won't */
2900 /* unless the filesystem is known to be local, we therefore still poll */
2901 /* also do poll on <2.6.25, but with normal frequency */
2902
2903 if (!fs_2625)
2904 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2905 else if (!statfs (w->path, &sfs)
2906 && (sfs.f_type == 0x1373 /* devfs */
2907 || sfs.f_type == 0xEF53 /* ext2/3 */
2908 || sfs.f_type == 0x3153464a /* jfs */
2909 || sfs.f_type == 0x52654973 /* reiser3 */
2910 || sfs.f_type == 0x01021994 /* tempfs */
2911 || sfs.f_type == 0x58465342 /* xfs */))
2912 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2913 else
2914 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1827 { 2915 }
1828 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2916 else
2917 {
2918 /* can't use inotify, continue to stat */
2919 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1829 2920
1830 /* monitor some parent directory for speedup hints */ 2921 /* if path is not there, monitor some parent directory for speedup hints */
2922 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2923 /* but an efficiency issue only */
1831 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2924 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1832 { 2925 {
1833 char path [4096]; 2926 char path [4096];
1834 strcpy (path, w->path); 2927 strcpy (path, w->path);
1835 2928
1838 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2931 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1839 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2932 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1840 2933
1841 char *pend = strrchr (path, '/'); 2934 char *pend = strrchr (path, '/');
1842 2935
1843 if (!pend) 2936 if (!pend || pend == path)
1844 break; /* whoops, no '/', complain to your admin */ 2937 break;
1845 2938
1846 *pend = 0; 2939 *pend = 0;
1847 w->wd = inotify_add_watch (fs_fd, path, mask); 2940 w->wd = inotify_add_watch (fs_fd, path, mask);
1848 } 2941 }
1849 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2942 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1850 } 2943 }
1851 } 2944 }
1852 else
1853 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1854 2945
1855 if (w->wd >= 0) 2946 if (w->wd >= 0)
1856 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2947 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2948
2949 /* now re-arm timer, if required */
2950 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2951 ev_timer_again (EV_A_ &w->timer);
2952 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1857} 2953}
1858 2954
1859static void noinline 2955static void noinline
1860infy_del (EV_P_ ev_stat *w) 2956infy_del (EV_P_ ev_stat *w)
1861{ 2957{
1875 2971
1876static void noinline 2972static void noinline
1877infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2973infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1878{ 2974{
1879 if (slot < 0) 2975 if (slot < 0)
1880 /* overflow, need to check for all hahs slots */ 2976 /* overflow, need to check for all hash slots */
1881 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2977 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1882 infy_wd (EV_A_ slot, wd, ev); 2978 infy_wd (EV_A_ slot, wd, ev);
1883 else 2979 else
1884 { 2980 {
1885 WL w_; 2981 WL w_;
1891 2987
1892 if (w->wd == wd || wd == -1) 2988 if (w->wd == wd || wd == -1)
1893 { 2989 {
1894 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2990 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1895 { 2991 {
2992 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1896 w->wd = -1; 2993 w->wd = -1;
1897 infy_add (EV_A_ w); /* re-add, no matter what */ 2994 infy_add (EV_A_ w); /* re-add, no matter what */
1898 } 2995 }
1899 2996
1900 stat_timer_cb (EV_A_ &w->timer, 0); 2997 stat_timer_cb (EV_A_ &w->timer, 0);
1905 3002
1906static void 3003static void
1907infy_cb (EV_P_ ev_io *w, int revents) 3004infy_cb (EV_P_ ev_io *w, int revents)
1908{ 3005{
1909 char buf [EV_INOTIFY_BUFSIZE]; 3006 char buf [EV_INOTIFY_BUFSIZE];
1910 struct inotify_event *ev = (struct inotify_event *)buf;
1911 int ofs; 3007 int ofs;
1912 int len = read (fs_fd, buf, sizeof (buf)); 3008 int len = read (fs_fd, buf, sizeof (buf));
1913 3009
1914 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3010 for (ofs = 0; ofs < len; )
3011 {
3012 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1915 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3013 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3014 ofs += sizeof (struct inotify_event) + ev->len;
3015 }
1916} 3016}
1917 3017
1918void inline_size 3018inline_size unsigned int
3019ev_linux_version (void)
3020{
3021 struct utsname buf;
3022 unsigned int v;
3023 int i;
3024 char *p = buf.release;
3025
3026 if (uname (&buf))
3027 return 0;
3028
3029 for (i = 3+1; --i; )
3030 {
3031 unsigned int c = 0;
3032
3033 for (;;)
3034 {
3035 if (*p >= '0' && *p <= '9')
3036 c = c * 10 + *p++ - '0';
3037 else
3038 {
3039 p += *p == '.';
3040 break;
3041 }
3042 }
3043
3044 v = (v << 8) | c;
3045 }
3046
3047 return v;
3048}
3049
3050inline_size void
3051ev_check_2625 (EV_P)
3052{
3053 /* kernels < 2.6.25 are borked
3054 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3055 */
3056 if (ev_linux_version () < 0x020619)
3057 return;
3058
3059 fs_2625 = 1;
3060}
3061
3062inline_size int
3063infy_newfd (void)
3064{
3065#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3066 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3067 if (fd >= 0)
3068 return fd;
3069#endif
3070 return inotify_init ();
3071}
3072
3073inline_size void
1919infy_init (EV_P) 3074infy_init (EV_P)
1920{ 3075{
1921 if (fs_fd != -2) 3076 if (fs_fd != -2)
1922 return; 3077 return;
1923 3078
3079 fs_fd = -1;
3080
3081 ev_check_2625 (EV_A);
3082
1924 fs_fd = inotify_init (); 3083 fs_fd = infy_newfd ();
1925 3084
1926 if (fs_fd >= 0) 3085 if (fs_fd >= 0)
1927 { 3086 {
3087 fd_intern (fs_fd);
1928 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3088 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1929 ev_set_priority (&fs_w, EV_MAXPRI); 3089 ev_set_priority (&fs_w, EV_MAXPRI);
1930 ev_io_start (EV_A_ &fs_w); 3090 ev_io_start (EV_A_ &fs_w);
3091 ev_unref (EV_A);
1931 } 3092 }
1932} 3093}
1933 3094
1934void inline_size 3095inline_size void
1935infy_fork (EV_P) 3096infy_fork (EV_P)
1936{ 3097{
1937 int slot; 3098 int slot;
1938 3099
1939 if (fs_fd < 0) 3100 if (fs_fd < 0)
1940 return; 3101 return;
1941 3102
3103 ev_ref (EV_A);
3104 ev_io_stop (EV_A_ &fs_w);
1942 close (fs_fd); 3105 close (fs_fd);
1943 fs_fd = inotify_init (); 3106 fs_fd = infy_newfd ();
3107
3108 if (fs_fd >= 0)
3109 {
3110 fd_intern (fs_fd);
3111 ev_io_set (&fs_w, fs_fd, EV_READ);
3112 ev_io_start (EV_A_ &fs_w);
3113 ev_unref (EV_A);
3114 }
1944 3115
1945 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3116 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1946 { 3117 {
1947 WL w_ = fs_hash [slot].head; 3118 WL w_ = fs_hash [slot].head;
1948 fs_hash [slot].head = 0; 3119 fs_hash [slot].head = 0;
1955 w->wd = -1; 3126 w->wd = -1;
1956 3127
1957 if (fs_fd >= 0) 3128 if (fs_fd >= 0)
1958 infy_add (EV_A_ w); /* re-add, no matter what */ 3129 infy_add (EV_A_ w); /* re-add, no matter what */
1959 else 3130 else
3131 {
3132 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3133 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1960 ev_timer_start (EV_A_ &w->timer); 3134 ev_timer_again (EV_A_ &w->timer);
3135 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3136 }
1961 } 3137 }
1962
1963 } 3138 }
1964} 3139}
1965 3140
3141#endif
3142
3143#ifdef _WIN32
3144# define EV_LSTAT(p,b) _stati64 (p, b)
3145#else
3146# define EV_LSTAT(p,b) lstat (p, b)
1966#endif 3147#endif
1967 3148
1968void 3149void
1969ev_stat_stat (EV_P_ ev_stat *w) 3150ev_stat_stat (EV_P_ ev_stat *w)
1970{ 3151{
1977static void noinline 3158static void noinline
1978stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3159stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1979{ 3160{
1980 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3161 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1981 3162
1982 /* we copy this here each the time so that */ 3163 ev_statdata prev = w->attr;
1983 /* prev has the old value when the callback gets invoked */
1984 w->prev = w->attr;
1985 ev_stat_stat (EV_A_ w); 3164 ev_stat_stat (EV_A_ w);
1986 3165
1987 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3166 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1988 if ( 3167 if (
1989 w->prev.st_dev != w->attr.st_dev 3168 prev.st_dev != w->attr.st_dev
1990 || w->prev.st_ino != w->attr.st_ino 3169 || prev.st_ino != w->attr.st_ino
1991 || w->prev.st_mode != w->attr.st_mode 3170 || prev.st_mode != w->attr.st_mode
1992 || w->prev.st_nlink != w->attr.st_nlink 3171 || prev.st_nlink != w->attr.st_nlink
1993 || w->prev.st_uid != w->attr.st_uid 3172 || prev.st_uid != w->attr.st_uid
1994 || w->prev.st_gid != w->attr.st_gid 3173 || prev.st_gid != w->attr.st_gid
1995 || w->prev.st_rdev != w->attr.st_rdev 3174 || prev.st_rdev != w->attr.st_rdev
1996 || w->prev.st_size != w->attr.st_size 3175 || prev.st_size != w->attr.st_size
1997 || w->prev.st_atime != w->attr.st_atime 3176 || prev.st_atime != w->attr.st_atime
1998 || w->prev.st_mtime != w->attr.st_mtime 3177 || prev.st_mtime != w->attr.st_mtime
1999 || w->prev.st_ctime != w->attr.st_ctime 3178 || prev.st_ctime != w->attr.st_ctime
2000 ) { 3179 ) {
3180 /* we only update w->prev on actual differences */
3181 /* in case we test more often than invoke the callback, */
3182 /* to ensure that prev is always different to attr */
3183 w->prev = prev;
3184
2001 #if EV_USE_INOTIFY 3185 #if EV_USE_INOTIFY
3186 if (fs_fd >= 0)
3187 {
2002 infy_del (EV_A_ w); 3188 infy_del (EV_A_ w);
2003 infy_add (EV_A_ w); 3189 infy_add (EV_A_ w);
2004 ev_stat_stat (EV_A_ w); /* avoid race... */ 3190 ev_stat_stat (EV_A_ w); /* avoid race... */
3191 }
2005 #endif 3192 #endif
2006 3193
2007 ev_feed_event (EV_A_ w, EV_STAT); 3194 ev_feed_event (EV_A_ w, EV_STAT);
2008 } 3195 }
2009} 3196}
2012ev_stat_start (EV_P_ ev_stat *w) 3199ev_stat_start (EV_P_ ev_stat *w)
2013{ 3200{
2014 if (expect_false (ev_is_active (w))) 3201 if (expect_false (ev_is_active (w)))
2015 return; 3202 return;
2016 3203
2017 /* since we use memcmp, we need to clear any padding data etc. */
2018 memset (&w->prev, 0, sizeof (ev_statdata));
2019 memset (&w->attr, 0, sizeof (ev_statdata));
2020
2021 ev_stat_stat (EV_A_ w); 3204 ev_stat_stat (EV_A_ w);
2022 3205
3206 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2023 if (w->interval < MIN_STAT_INTERVAL) 3207 w->interval = MIN_STAT_INTERVAL;
2024 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2025 3208
2026 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3209 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2027 ev_set_priority (&w->timer, ev_priority (w)); 3210 ev_set_priority (&w->timer, ev_priority (w));
2028 3211
2029#if EV_USE_INOTIFY 3212#if EV_USE_INOTIFY
2030 infy_init (EV_A); 3213 infy_init (EV_A);
2031 3214
2032 if (fs_fd >= 0) 3215 if (fs_fd >= 0)
2033 infy_add (EV_A_ w); 3216 infy_add (EV_A_ w);
2034 else 3217 else
2035#endif 3218#endif
3219 {
2036 ev_timer_start (EV_A_ &w->timer); 3220 ev_timer_again (EV_A_ &w->timer);
3221 ev_unref (EV_A);
3222 }
2037 3223
2038 ev_start (EV_A_ (W)w, 1); 3224 ev_start (EV_A_ (W)w, 1);
3225
3226 EV_FREQUENT_CHECK;
2039} 3227}
2040 3228
2041void 3229void
2042ev_stat_stop (EV_P_ ev_stat *w) 3230ev_stat_stop (EV_P_ ev_stat *w)
2043{ 3231{
2044 clear_pending (EV_A_ (W)w); 3232 clear_pending (EV_A_ (W)w);
2045 if (expect_false (!ev_is_active (w))) 3233 if (expect_false (!ev_is_active (w)))
2046 return; 3234 return;
2047 3235
3236 EV_FREQUENT_CHECK;
3237
2048#if EV_USE_INOTIFY 3238#if EV_USE_INOTIFY
2049 infy_del (EV_A_ w); 3239 infy_del (EV_A_ w);
2050#endif 3240#endif
3241
3242 if (ev_is_active (&w->timer))
3243 {
3244 ev_ref (EV_A);
2051 ev_timer_stop (EV_A_ &w->timer); 3245 ev_timer_stop (EV_A_ &w->timer);
3246 }
2052 3247
2053 ev_stop (EV_A_ (W)w); 3248 ev_stop (EV_A_ (W)w);
3249
3250 EV_FREQUENT_CHECK;
2054} 3251}
2055#endif 3252#endif
2056 3253
2057#if EV_IDLE_ENABLE 3254#if EV_IDLE_ENABLE
2058void 3255void
2060{ 3257{
2061 if (expect_false (ev_is_active (w))) 3258 if (expect_false (ev_is_active (w)))
2062 return; 3259 return;
2063 3260
2064 pri_adjust (EV_A_ (W)w); 3261 pri_adjust (EV_A_ (W)w);
3262
3263 EV_FREQUENT_CHECK;
2065 3264
2066 { 3265 {
2067 int active = ++idlecnt [ABSPRI (w)]; 3266 int active = ++idlecnt [ABSPRI (w)];
2068 3267
2069 ++idleall; 3268 ++idleall;
2070 ev_start (EV_A_ (W)w, active); 3269 ev_start (EV_A_ (W)w, active);
2071 3270
2072 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3271 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2073 idles [ABSPRI (w)][active - 1] = w; 3272 idles [ABSPRI (w)][active - 1] = w;
2074 } 3273 }
3274
3275 EV_FREQUENT_CHECK;
2075} 3276}
2076 3277
2077void 3278void
2078ev_idle_stop (EV_P_ ev_idle *w) 3279ev_idle_stop (EV_P_ ev_idle *w)
2079{ 3280{
2080 clear_pending (EV_A_ (W)w); 3281 clear_pending (EV_A_ (W)w);
2081 if (expect_false (!ev_is_active (w))) 3282 if (expect_false (!ev_is_active (w)))
2082 return; 3283 return;
2083 3284
3285 EV_FREQUENT_CHECK;
3286
2084 { 3287 {
2085 int active = ((W)w)->active; 3288 int active = ev_active (w);
2086 3289
2087 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3290 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2088 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3291 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2089 3292
2090 ev_stop (EV_A_ (W)w); 3293 ev_stop (EV_A_ (W)w);
2091 --idleall; 3294 --idleall;
2092 } 3295 }
3296
3297 EV_FREQUENT_CHECK;
2093} 3298}
2094#endif 3299#endif
2095 3300
2096void 3301void
2097ev_prepare_start (EV_P_ ev_prepare *w) 3302ev_prepare_start (EV_P_ ev_prepare *w)
2098{ 3303{
2099 if (expect_false (ev_is_active (w))) 3304 if (expect_false (ev_is_active (w)))
2100 return; 3305 return;
3306
3307 EV_FREQUENT_CHECK;
2101 3308
2102 ev_start (EV_A_ (W)w, ++preparecnt); 3309 ev_start (EV_A_ (W)w, ++preparecnt);
2103 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3310 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2104 prepares [preparecnt - 1] = w; 3311 prepares [preparecnt - 1] = w;
3312
3313 EV_FREQUENT_CHECK;
2105} 3314}
2106 3315
2107void 3316void
2108ev_prepare_stop (EV_P_ ev_prepare *w) 3317ev_prepare_stop (EV_P_ ev_prepare *w)
2109{ 3318{
2110 clear_pending (EV_A_ (W)w); 3319 clear_pending (EV_A_ (W)w);
2111 if (expect_false (!ev_is_active (w))) 3320 if (expect_false (!ev_is_active (w)))
2112 return; 3321 return;
2113 3322
3323 EV_FREQUENT_CHECK;
3324
2114 { 3325 {
2115 int active = ((W)w)->active; 3326 int active = ev_active (w);
3327
2116 prepares [active - 1] = prepares [--preparecnt]; 3328 prepares [active - 1] = prepares [--preparecnt];
2117 ((W)prepares [active - 1])->active = active; 3329 ev_active (prepares [active - 1]) = active;
2118 } 3330 }
2119 3331
2120 ev_stop (EV_A_ (W)w); 3332 ev_stop (EV_A_ (W)w);
3333
3334 EV_FREQUENT_CHECK;
2121} 3335}
2122 3336
2123void 3337void
2124ev_check_start (EV_P_ ev_check *w) 3338ev_check_start (EV_P_ ev_check *w)
2125{ 3339{
2126 if (expect_false (ev_is_active (w))) 3340 if (expect_false (ev_is_active (w)))
2127 return; 3341 return;
3342
3343 EV_FREQUENT_CHECK;
2128 3344
2129 ev_start (EV_A_ (W)w, ++checkcnt); 3345 ev_start (EV_A_ (W)w, ++checkcnt);
2130 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3346 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2131 checks [checkcnt - 1] = w; 3347 checks [checkcnt - 1] = w;
3348
3349 EV_FREQUENT_CHECK;
2132} 3350}
2133 3351
2134void 3352void
2135ev_check_stop (EV_P_ ev_check *w) 3353ev_check_stop (EV_P_ ev_check *w)
2136{ 3354{
2137 clear_pending (EV_A_ (W)w); 3355 clear_pending (EV_A_ (W)w);
2138 if (expect_false (!ev_is_active (w))) 3356 if (expect_false (!ev_is_active (w)))
2139 return; 3357 return;
2140 3358
3359 EV_FREQUENT_CHECK;
3360
2141 { 3361 {
2142 int active = ((W)w)->active; 3362 int active = ev_active (w);
3363
2143 checks [active - 1] = checks [--checkcnt]; 3364 checks [active - 1] = checks [--checkcnt];
2144 ((W)checks [active - 1])->active = active; 3365 ev_active (checks [active - 1]) = active;
2145 } 3366 }
2146 3367
2147 ev_stop (EV_A_ (W)w); 3368 ev_stop (EV_A_ (W)w);
3369
3370 EV_FREQUENT_CHECK;
2148} 3371}
2149 3372
2150#if EV_EMBED_ENABLE 3373#if EV_EMBED_ENABLE
2151void noinline 3374void noinline
2152ev_embed_sweep (EV_P_ ev_embed *w) 3375ev_embed_sweep (EV_P_ ev_embed *w)
2153{ 3376{
2154 ev_loop (w->loop, EVLOOP_NONBLOCK); 3377 ev_loop (w->other, EVLOOP_NONBLOCK);
2155} 3378}
2156 3379
2157static void 3380static void
2158embed_cb (EV_P_ ev_io *io, int revents) 3381embed_io_cb (EV_P_ ev_io *io, int revents)
2159{ 3382{
2160 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3383 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2161 3384
2162 if (ev_cb (w)) 3385 if (ev_cb (w))
2163 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3386 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2164 else 3387 else
2165 ev_embed_sweep (loop, w); 3388 ev_loop (w->other, EVLOOP_NONBLOCK);
2166} 3389}
3390
3391static void
3392embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3393{
3394 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3395
3396 {
3397 EV_P = w->other;
3398
3399 while (fdchangecnt)
3400 {
3401 fd_reify (EV_A);
3402 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3403 }
3404 }
3405}
3406
3407static void
3408embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3409{
3410 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3411
3412 ev_embed_stop (EV_A_ w);
3413
3414 {
3415 EV_P = w->other;
3416
3417 ev_loop_fork (EV_A);
3418 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3419 }
3420
3421 ev_embed_start (EV_A_ w);
3422}
3423
3424#if 0
3425static void
3426embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3427{
3428 ev_idle_stop (EV_A_ idle);
3429}
3430#endif
2167 3431
2168void 3432void
2169ev_embed_start (EV_P_ ev_embed *w) 3433ev_embed_start (EV_P_ ev_embed *w)
2170{ 3434{
2171 if (expect_false (ev_is_active (w))) 3435 if (expect_false (ev_is_active (w)))
2172 return; 3436 return;
2173 3437
2174 { 3438 {
2175 struct ev_loop *loop = w->loop; 3439 EV_P = w->other;
2176 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3440 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2177 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3441 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2178 } 3442 }
3443
3444 EV_FREQUENT_CHECK;
2179 3445
2180 ev_set_priority (&w->io, ev_priority (w)); 3446 ev_set_priority (&w->io, ev_priority (w));
2181 ev_io_start (EV_A_ &w->io); 3447 ev_io_start (EV_A_ &w->io);
2182 3448
3449 ev_prepare_init (&w->prepare, embed_prepare_cb);
3450 ev_set_priority (&w->prepare, EV_MINPRI);
3451 ev_prepare_start (EV_A_ &w->prepare);
3452
3453 ev_fork_init (&w->fork, embed_fork_cb);
3454 ev_fork_start (EV_A_ &w->fork);
3455
3456 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3457
2183 ev_start (EV_A_ (W)w, 1); 3458 ev_start (EV_A_ (W)w, 1);
3459
3460 EV_FREQUENT_CHECK;
2184} 3461}
2185 3462
2186void 3463void
2187ev_embed_stop (EV_P_ ev_embed *w) 3464ev_embed_stop (EV_P_ ev_embed *w)
2188{ 3465{
2189 clear_pending (EV_A_ (W)w); 3466 clear_pending (EV_A_ (W)w);
2190 if (expect_false (!ev_is_active (w))) 3467 if (expect_false (!ev_is_active (w)))
2191 return; 3468 return;
2192 3469
3470 EV_FREQUENT_CHECK;
3471
2193 ev_io_stop (EV_A_ &w->io); 3472 ev_io_stop (EV_A_ &w->io);
3473 ev_prepare_stop (EV_A_ &w->prepare);
3474 ev_fork_stop (EV_A_ &w->fork);
2194 3475
2195 ev_stop (EV_A_ (W)w); 3476 ev_stop (EV_A_ (W)w);
3477
3478 EV_FREQUENT_CHECK;
2196} 3479}
2197#endif 3480#endif
2198 3481
2199#if EV_FORK_ENABLE 3482#if EV_FORK_ENABLE
2200void 3483void
2201ev_fork_start (EV_P_ ev_fork *w) 3484ev_fork_start (EV_P_ ev_fork *w)
2202{ 3485{
2203 if (expect_false (ev_is_active (w))) 3486 if (expect_false (ev_is_active (w)))
2204 return; 3487 return;
3488
3489 EV_FREQUENT_CHECK;
2205 3490
2206 ev_start (EV_A_ (W)w, ++forkcnt); 3491 ev_start (EV_A_ (W)w, ++forkcnt);
2207 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3492 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2208 forks [forkcnt - 1] = w; 3493 forks [forkcnt - 1] = w;
3494
3495 EV_FREQUENT_CHECK;
2209} 3496}
2210 3497
2211void 3498void
2212ev_fork_stop (EV_P_ ev_fork *w) 3499ev_fork_stop (EV_P_ ev_fork *w)
2213{ 3500{
2214 clear_pending (EV_A_ (W)w); 3501 clear_pending (EV_A_ (W)w);
2215 if (expect_false (!ev_is_active (w))) 3502 if (expect_false (!ev_is_active (w)))
2216 return; 3503 return;
2217 3504
3505 EV_FREQUENT_CHECK;
3506
2218 { 3507 {
2219 int active = ((W)w)->active; 3508 int active = ev_active (w);
3509
2220 forks [active - 1] = forks [--forkcnt]; 3510 forks [active - 1] = forks [--forkcnt];
2221 ((W)forks [active - 1])->active = active; 3511 ev_active (forks [active - 1]) = active;
2222 } 3512 }
2223 3513
2224 ev_stop (EV_A_ (W)w); 3514 ev_stop (EV_A_ (W)w);
3515
3516 EV_FREQUENT_CHECK;
3517}
3518#endif
3519
3520#if EV_ASYNC_ENABLE
3521void
3522ev_async_start (EV_P_ ev_async *w)
3523{
3524 if (expect_false (ev_is_active (w)))
3525 return;
3526
3527 evpipe_init (EV_A);
3528
3529 EV_FREQUENT_CHECK;
3530
3531 ev_start (EV_A_ (W)w, ++asynccnt);
3532 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3533 asyncs [asynccnt - 1] = w;
3534
3535 EV_FREQUENT_CHECK;
3536}
3537
3538void
3539ev_async_stop (EV_P_ ev_async *w)
3540{
3541 clear_pending (EV_A_ (W)w);
3542 if (expect_false (!ev_is_active (w)))
3543 return;
3544
3545 EV_FREQUENT_CHECK;
3546
3547 {
3548 int active = ev_active (w);
3549
3550 asyncs [active - 1] = asyncs [--asynccnt];
3551 ev_active (asyncs [active - 1]) = active;
3552 }
3553
3554 ev_stop (EV_A_ (W)w);
3555
3556 EV_FREQUENT_CHECK;
3557}
3558
3559void
3560ev_async_send (EV_P_ ev_async *w)
3561{
3562 w->sent = 1;
3563 evpipe_write (EV_A_ &async_pending);
2225} 3564}
2226#endif 3565#endif
2227 3566
2228/*****************************************************************************/ 3567/*****************************************************************************/
2229 3568
2239once_cb (EV_P_ struct ev_once *once, int revents) 3578once_cb (EV_P_ struct ev_once *once, int revents)
2240{ 3579{
2241 void (*cb)(int revents, void *arg) = once->cb; 3580 void (*cb)(int revents, void *arg) = once->cb;
2242 void *arg = once->arg; 3581 void *arg = once->arg;
2243 3582
2244 ev_io_stop (EV_A_ &once->io); 3583 ev_io_stop (EV_A_ &once->io);
2245 ev_timer_stop (EV_A_ &once->to); 3584 ev_timer_stop (EV_A_ &once->to);
2246 ev_free (once); 3585 ev_free (once);
2247 3586
2248 cb (revents, arg); 3587 cb (revents, arg);
2249} 3588}
2250 3589
2251static void 3590static void
2252once_cb_io (EV_P_ ev_io *w, int revents) 3591once_cb_io (EV_P_ ev_io *w, int revents)
2253{ 3592{
2254 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3593 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3594
3595 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2255} 3596}
2256 3597
2257static void 3598static void
2258once_cb_to (EV_P_ ev_timer *w, int revents) 3599once_cb_to (EV_P_ ev_timer *w, int revents)
2259{ 3600{
2260 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3601 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3602
3603 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2261} 3604}
2262 3605
2263void 3606void
2264ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3607ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2265{ 3608{
2287 ev_timer_set (&once->to, timeout, 0.); 3630 ev_timer_set (&once->to, timeout, 0.);
2288 ev_timer_start (EV_A_ &once->to); 3631 ev_timer_start (EV_A_ &once->to);
2289 } 3632 }
2290} 3633}
2291 3634
3635/*****************************************************************************/
3636
3637#if EV_WALK_ENABLE
3638void
3639ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3640{
3641 int i, j;
3642 ev_watcher_list *wl, *wn;
3643
3644 if (types & (EV_IO | EV_EMBED))
3645 for (i = 0; i < anfdmax; ++i)
3646 for (wl = anfds [i].head; wl; )
3647 {
3648 wn = wl->next;
3649
3650#if EV_EMBED_ENABLE
3651 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3652 {
3653 if (types & EV_EMBED)
3654 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3655 }
3656 else
3657#endif
3658#if EV_USE_INOTIFY
3659 if (ev_cb ((ev_io *)wl) == infy_cb)
3660 ;
3661 else
3662#endif
3663 if ((ev_io *)wl != &pipe_w)
3664 if (types & EV_IO)
3665 cb (EV_A_ EV_IO, wl);
3666
3667 wl = wn;
3668 }
3669
3670 if (types & (EV_TIMER | EV_STAT))
3671 for (i = timercnt + HEAP0; i-- > HEAP0; )
3672#if EV_STAT_ENABLE
3673 /*TODO: timer is not always active*/
3674 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3675 {
3676 if (types & EV_STAT)
3677 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3678 }
3679 else
3680#endif
3681 if (types & EV_TIMER)
3682 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3683
3684#if EV_PERIODIC_ENABLE
3685 if (types & EV_PERIODIC)
3686 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3687 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3688#endif
3689
3690#if EV_IDLE_ENABLE
3691 if (types & EV_IDLE)
3692 for (j = NUMPRI; i--; )
3693 for (i = idlecnt [j]; i--; )
3694 cb (EV_A_ EV_IDLE, idles [j][i]);
3695#endif
3696
3697#if EV_FORK_ENABLE
3698 if (types & EV_FORK)
3699 for (i = forkcnt; i--; )
3700 if (ev_cb (forks [i]) != embed_fork_cb)
3701 cb (EV_A_ EV_FORK, forks [i]);
3702#endif
3703
3704#if EV_ASYNC_ENABLE
3705 if (types & EV_ASYNC)
3706 for (i = asynccnt; i--; )
3707 cb (EV_A_ EV_ASYNC, asyncs [i]);
3708#endif
3709
3710 if (types & EV_PREPARE)
3711 for (i = preparecnt; i--; )
3712#if EV_EMBED_ENABLE
3713 if (ev_cb (prepares [i]) != embed_prepare_cb)
3714#endif
3715 cb (EV_A_ EV_PREPARE, prepares [i]);
3716
3717 if (types & EV_CHECK)
3718 for (i = checkcnt; i--; )
3719 cb (EV_A_ EV_CHECK, checks [i]);
3720
3721 if (types & EV_SIGNAL)
3722 for (i = 0; i < EV_NSIG - 1; ++i)
3723 for (wl = signals [i].head; wl; )
3724 {
3725 wn = wl->next;
3726 cb (EV_A_ EV_SIGNAL, wl);
3727 wl = wn;
3728 }
3729
3730 if (types & EV_CHILD)
3731 for (i = EV_PID_HASHSIZE; i--; )
3732 for (wl = childs [i]; wl; )
3733 {
3734 wn = wl->next;
3735 cb (EV_A_ EV_CHILD, wl);
3736 wl = wn;
3737 }
3738/* EV_STAT 0x00001000 /* stat data changed */
3739/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3740}
3741#endif
3742
3743#if EV_MULTIPLICITY
3744 #include "ev_wrap.h"
3745#endif
3746
2292#ifdef __cplusplus 3747#ifdef __cplusplus
2293} 3748}
2294#endif 3749#endif
2295 3750

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines