ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.168 by root, Sat Dec 8 14:12:07 2007 UTC vs.
Revision 1.397 by root, Wed Aug 24 16:13:41 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
89# endif 127# endif
90 128
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
94# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
97# endif 136# endif
98 137
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
105# endif 145# endif
106 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
107#endif 154# endif
108 155
109#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
110#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
111#include <fcntl.h> 169#include <fcntl.h>
112#include <stddef.h> 170#include <stddef.h>
113 171
114#include <stdio.h> 172#include <stdio.h>
115 173
116#include <assert.h> 174#include <assert.h>
117#include <errno.h> 175#include <errno.h>
118#include <sys/types.h> 176#include <sys/types.h>
119#include <time.h> 177#include <time.h>
178#include <limits.h>
120 179
121#include <signal.h> 180#include <signal.h>
122 181
123#ifdef EV_H 182#ifdef EV_H
124# include EV_H 183# include EV_H
125#else 184#else
126# include "ev.h" 185# include "ev.h"
127#endif 186#endif
187
188EV_CPP(extern "C" {)
128 189
129#ifndef _WIN32 190#ifndef _WIN32
130# include <sys/time.h> 191# include <sys/time.h>
131# include <sys/wait.h> 192# include <sys/wait.h>
132# include <unistd.h> 193# include <unistd.h>
133#else 194#else
195# include <io.h>
134# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 197# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
138# endif 200# endif
201# undef EV_AVOID_STDIO
202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
211
212/* this block tries to deduce configuration from header-defined symbols and defaults */
213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
139#endif 251# endif
140 252#endif
141/**/
142 253
143#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
144# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
259# endif
145#endif 260#endif
146 261
147#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
264#endif
265
266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
270# define EV_USE_NANOSLEEP 0
271# endif
149#endif 272#endif
150 273
151#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 276#endif
154 277
155#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
156# ifdef _WIN32 279# ifdef _WIN32
157# define EV_USE_POLL 0 280# define EV_USE_POLL 0
158# else 281# else
159# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 283# endif
161#endif 284#endif
162 285
163#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
289# else
164# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
291# endif
165#endif 292#endif
166 293
167#ifndef EV_USE_KQUEUE 294#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 295# define EV_USE_KQUEUE 0
169#endif 296#endif
171#ifndef EV_USE_PORT 298#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 299# define EV_USE_PORT 0
173#endif 300#endif
174 301
175#ifndef EV_USE_INOTIFY 302#ifndef EV_USE_INOTIFY
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_INOTIFY EV_FEATURE_OS
305# else
176# define EV_USE_INOTIFY 0 306# define EV_USE_INOTIFY 0
307# endif
177#endif 308#endif
178 309
179#ifndef EV_PID_HASHSIZE 310#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 312#endif
313
314#ifndef EV_INOTIFY_HASHSIZE
315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
316#endif
317
318#ifndef EV_USE_EVENTFD
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
320# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 321# else
183# define EV_PID_HASHSIZE 16 322# define EV_USE_EVENTFD 0
184# endif 323# endif
185#endif 324#endif
186 325
187#ifndef EV_INOTIFY_HASHSIZE 326#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 328# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 329# else
191# define EV_INOTIFY_HASHSIZE 16 330# define EV_USE_SIGNALFD 0
192# endif 331# endif
193#endif 332#endif
194 333
195/**/ 334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
370# undef EV_USE_POLL
371# define EV_USE_POLL 0
372#endif
196 373
197#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
200#endif 377#endif
202#ifndef CLOCK_REALTIME 379#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 380# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 381# define EV_USE_REALTIME 0
205#endif 382#endif
206 383
384#if !EV_STAT_ENABLE
385# undef EV_USE_INOTIFY
386# define EV_USE_INOTIFY 0
387#endif
388
389#if !EV_USE_NANOSLEEP
390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
392# include <sys/select.h>
393# endif
394#endif
395
396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
404#endif
405
207#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 407# include <winsock.h>
209#endif 408#endif
210 409
211#if !EV_STAT_ENABLE 410#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
412# include <stdint.h>
413# ifndef EFD_NONBLOCK
414# define EFD_NONBLOCK O_NONBLOCK
213#endif 415# endif
416# ifndef EFD_CLOEXEC
417# ifdef O_CLOEXEC
418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
214 425
215#if EV_USE_INOTIFY 426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
216# include <sys/inotify.h> 428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
217#endif 446#endif
218 447
219/**/ 448/**/
449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
456/*
457 * This is used to work around floating point rounding problems.
458 * This value is good at least till the year 4000.
459 */
460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
220 462
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 465
466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
468
469/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
470/* ECB.H BEGIN */
471/*
472 * libecb - http://software.schmorp.de/pkg/libecb
473 *
474 * Copyright (©) 2009-2011 Marc Alexander Lehmann <libecb@schmorp.de>
475 * Copyright (©) 2011 Emanuele Giaquinta
476 * All rights reserved.
477 *
478 * Redistribution and use in source and binary forms, with or without modifica-
479 * tion, are permitted provided that the following conditions are met:
480 *
481 * 1. Redistributions of source code must retain the above copyright notice,
482 * this list of conditions and the following disclaimer.
483 *
484 * 2. Redistributions in binary form must reproduce the above copyright
485 * notice, this list of conditions and the following disclaimer in the
486 * documentation and/or other materials provided with the distribution.
487 *
488 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
489 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
490 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
491 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
492 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
493 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
494 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
495 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
496 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
497 * OF THE POSSIBILITY OF SUCH DAMAGE.
498 */
499
500#ifndef ECB_H
501#define ECB_H
502
503#ifdef _WIN32
504 typedef signed char int8_t;
505 typedef unsigned char uint8_t;
506 typedef signed short int16_t;
507 typedef unsigned short uint16_t;
508 typedef signed int int32_t;
509 typedef unsigned int uint32_t;
225#if __GNUC__ >= 3 510 #if __GNUC__
226# define expect(expr,value) __builtin_expect ((expr),(value)) 511 typedef signed long long int64_t;
227# define inline_size static inline /* inline for codesize */ 512 typedef unsigned long long uint64_t;
228# if EV_MINIMAL 513 #else /* _MSC_VER || __BORLANDC__ */
229# define noinline __attribute__ ((noinline)) 514 typedef signed __int64 int64_t;
230# define inline_speed static noinline 515 typedef unsigned __int64 uint64_t;
231# else
232# define noinline
233# define inline_speed static inline
234# endif 516 #endif
235#else 517#else
518 #include <inttypes.h>
519#endif
520
521/* many compilers define _GNUC_ to some versions but then only implement
522 * what their idiot authors think are the "more important" extensions,
523 * causing enormous grief in return for some better fake benchmark numbers.
524 * or so.
525 * we try to detect these and simply assume they are not gcc - if they have
526 * an issue with that they should have done it right in the first place.
527 */
528#ifndef ECB_GCC_VERSION
529 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
530 #define ECB_GCC_VERSION(major,minor) 0
531 #else
532 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
533 #endif
534#endif
535
536/*****************************************************************************/
537
538/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
539/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
540
541#if ECB_NO_THREADS || ECB_NO_SMP
542 #define ECB_MEMORY_FENCE do { } while (0)
543#endif
544
545#ifndef ECB_MEMORY_FENCE
546 #if ECB_GCC_VERSION(2,5)
547 #if __i386__
548 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
549 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
550 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
551 #elif __amd64
552 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
553 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
554 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
555 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
556 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
557 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
558 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
559 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
560 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
561 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
562 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
563 #endif
564 #endif
565#endif
566
567#ifndef ECB_MEMORY_FENCE
568 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER)
569 #define ECB_MEMORY_FENCE __sync_synchronize ()
570 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
571 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
572 #elif _MSC_VER >= 1400 /* VC++ 2005 */
573 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
574 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
575 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
576 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
577 #elif defined(_WIN32)
578 #include <WinNT.h>
579 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
580 #endif
581#endif
582
583#ifndef ECB_MEMORY_FENCE
584 #if !ECB_AVOID_PTHREADS
585 /*
586 * if you get undefined symbol references to pthread_mutex_lock,
587 * or failure to find pthread.h, then you should implement
588 * the ECB_MEMORY_FENCE operations for your cpu/compiler
589 * OR provide pthread.h and link against the posix thread library
590 * of your system.
591 */
592 #include <pthread.h>
593 #define ECB_NEEDS_PTHREADS 1
594 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
595
596 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
597 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
598 #endif
599#endif
600
601#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
602 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
603#endif
604
605#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
606 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
607#endif
608
609/*****************************************************************************/
610
611#define ECB_C99 (__STDC_VERSION__ >= 199901L)
612
613#if __cplusplus
614 #define ecb_inline static inline
615#elif ECB_GCC_VERSION(2,5)
616 #define ecb_inline static __inline__
617#elif ECB_C99
618 #define ecb_inline static inline
619#else
620 #define ecb_inline static
621#endif
622
623#if ECB_GCC_VERSION(3,3)
624 #define ecb_restrict __restrict__
625#elif ECB_C99
626 #define ecb_restrict restrict
627#else
628 #define ecb_restrict
629#endif
630
631typedef int ecb_bool;
632
633#define ECB_CONCAT_(a, b) a ## b
634#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
635#define ECB_STRINGIFY_(a) # a
636#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
637
638#define ecb_function_ ecb_inline
639
640#if ECB_GCC_VERSION(3,1)
641 #define ecb_attribute(attrlist) __attribute__(attrlist)
642 #define ecb_is_constant(expr) __builtin_constant_p (expr)
643 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
644 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
645#else
646 #define ecb_attribute(attrlist)
647 #define ecb_is_constant(expr) 0
236# define expect(expr,value) (expr) 648 #define ecb_expect(expr,value) (expr)
237# define inline_speed static 649 #define ecb_prefetch(addr,rw,locality)
238# define inline_size static
239# define noinline
240#endif 650#endif
241 651
652/* no emulation for ecb_decltype */
653#if ECB_GCC_VERSION(4,5)
654 #define ecb_decltype(x) __decltype(x)
655#elif ECB_GCC_VERSION(3,0)
656 #define ecb_decltype(x) __typeof(x)
657#endif
658
659#define ecb_noinline ecb_attribute ((__noinline__))
660#define ecb_noreturn ecb_attribute ((__noreturn__))
661#define ecb_unused ecb_attribute ((__unused__))
662#define ecb_const ecb_attribute ((__const__))
663#define ecb_pure ecb_attribute ((__pure__))
664
665#if ECB_GCC_VERSION(4,3)
666 #define ecb_artificial ecb_attribute ((__artificial__))
667 #define ecb_hot ecb_attribute ((__hot__))
668 #define ecb_cold ecb_attribute ((__cold__))
669#else
670 #define ecb_artificial
671 #define ecb_hot
672 #define ecb_cold
673#endif
674
675/* put around conditional expressions if you are very sure that the */
676/* expression is mostly true or mostly false. note that these return */
677/* booleans, not the expression. */
242#define expect_false(expr) expect ((expr) != 0, 0) 678#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 679#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
680/* for compatibility to the rest of the world */
681#define ecb_likely(expr) ecb_expect_true (expr)
682#define ecb_unlikely(expr) ecb_expect_false (expr)
244 683
684/* count trailing zero bits and count # of one bits */
685#if ECB_GCC_VERSION(3,4)
686 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
687 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
688 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
689 #define ecb_ctz32(x) __builtin_ctz (x)
690 #define ecb_ctz64(x) __builtin_ctzll (x)
691 #define ecb_popcount32(x) __builtin_popcount (x)
692 /* no popcountll */
693#else
694 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
695 ecb_function_ int
696 ecb_ctz32 (uint32_t x)
697 {
698 int r = 0;
699
700 x &= ~x + 1; /* this isolates the lowest bit */
701
702#if ECB_branchless_on_i386
703 r += !!(x & 0xaaaaaaaa) << 0;
704 r += !!(x & 0xcccccccc) << 1;
705 r += !!(x & 0xf0f0f0f0) << 2;
706 r += !!(x & 0xff00ff00) << 3;
707 r += !!(x & 0xffff0000) << 4;
708#else
709 if (x & 0xaaaaaaaa) r += 1;
710 if (x & 0xcccccccc) r += 2;
711 if (x & 0xf0f0f0f0) r += 4;
712 if (x & 0xff00ff00) r += 8;
713 if (x & 0xffff0000) r += 16;
714#endif
715
716 return r;
717 }
718
719 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
720 ecb_function_ int
721 ecb_ctz64 (uint64_t x)
722 {
723 int shift = x & 0xffffffffU ? 0 : 32;
724 return ecb_ctz32 (x >> shift) + shift;
725 }
726
727 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
728 ecb_function_ int
729 ecb_popcount32 (uint32_t x)
730 {
731 x -= (x >> 1) & 0x55555555;
732 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
733 x = ((x >> 4) + x) & 0x0f0f0f0f;
734 x *= 0x01010101;
735
736 return x >> 24;
737 }
738
739 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
740 ecb_function_ int ecb_ld32 (uint32_t x)
741 {
742 int r = 0;
743
744 if (x >> 16) { x >>= 16; r += 16; }
745 if (x >> 8) { x >>= 8; r += 8; }
746 if (x >> 4) { x >>= 4; r += 4; }
747 if (x >> 2) { x >>= 2; r += 2; }
748 if (x >> 1) { r += 1; }
749
750 return r;
751 }
752
753 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
754 ecb_function_ int ecb_ld64 (uint64_t x)
755 {
756 int r = 0;
757
758 if (x >> 32) { x >>= 32; r += 32; }
759
760 return r + ecb_ld32 (x);
761 }
762#endif
763
764/* popcount64 is only available on 64 bit cpus as gcc builtin */
765/* so for this version we are lazy */
766ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
767ecb_function_ int
768ecb_popcount64 (uint64_t x)
769{
770 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
771}
772
773ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
774ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
775ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
776ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
777ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
778ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
779ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
780ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
781
782ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
783ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
784ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
785ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
786ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
787ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
788ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
789ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
790
791#if ECB_GCC_VERSION(4,3)
792 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
793 #define ecb_bswap32(x) __builtin_bswap32 (x)
794 #define ecb_bswap64(x) __builtin_bswap64 (x)
795#else
796 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
797 ecb_function_ uint16_t
798 ecb_bswap16 (uint16_t x)
799 {
800 return ecb_rotl16 (x, 8);
801 }
802
803 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
804 ecb_function_ uint32_t
805 ecb_bswap32 (uint32_t x)
806 {
807 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
808 }
809
810 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
811 ecb_function_ uint64_t
812 ecb_bswap64 (uint64_t x)
813 {
814 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
815 }
816#endif
817
818#if ECB_GCC_VERSION(4,5)
819 #define ecb_unreachable() __builtin_unreachable ()
820#else
821 /* this seems to work fine, but gcc always emits a warning for it :/ */
822 ecb_function_ void ecb_unreachable (void) ecb_noreturn;
823 ecb_function_ void ecb_unreachable (void) { }
824#endif
825
826/* try to tell the compiler that some condition is definitely true */
827#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
828
829ecb_function_ unsigned char ecb_byteorder_helper (void) ecb_const;
830ecb_function_ unsigned char
831ecb_byteorder_helper (void)
832{
833 const uint32_t u = 0x11223344;
834 return *(unsigned char *)&u;
835}
836
837ecb_function_ ecb_bool ecb_big_endian (void) ecb_const;
838ecb_function_ ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
839ecb_function_ ecb_bool ecb_little_endian (void) ecb_const;
840ecb_function_ ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
841
842#if ECB_GCC_VERSION(3,0) || ECB_C99
843 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
844#else
845 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
846#endif
847
848#if ecb_cplusplus_does_not_suck
849 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
850 template<typename T, int N>
851 static inline int ecb_array_length (const T (&arr)[N])
852 {
853 return N;
854 }
855#else
856 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
857#endif
858
859#endif
860
861/* ECB.H END */
862
863#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
864/* if your architecture doesn't need memory fences, e.g. because it is
865 * single-cpu/core, or if you use libev in a project that doesn't use libev
866 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
867 * libev, in which casess the memory fences become nops.
868 * alternatively, you can remove this #error and link against libpthread,
869 * which will then provide the memory fences.
870 */
871# error "memory fences not defined for your architecture, please report"
872#endif
873
874#ifndef ECB_MEMORY_FENCE
875# define ECB_MEMORY_FENCE do { } while (0)
876# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
877# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
878#endif
879
880#define expect_false(cond) ecb_expect_false (cond)
881#define expect_true(cond) ecb_expect_true (cond)
882#define noinline ecb_noinline
883
884#define inline_size ecb_inline
885
886#if EV_FEATURE_CODE
887# define inline_speed ecb_inline
888#else
889# define inline_speed static noinline
890#endif
891
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 892#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
893
894#if EV_MINPRI == EV_MAXPRI
895# define ABSPRI(w) (((W)w), 0)
896#else
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 897# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
898#endif
247 899
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 900#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 901#define EMPTY2(a,b) /* used to suppress some warnings */
250 902
251typedef ev_watcher *W; 903typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 904typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 905typedef ev_watcher_time *WT;
254 906
907#define ev_active(w) ((W)(w))->active
908#define ev_at(w) ((WT)(w))->at
909
910#if EV_USE_REALTIME
911/* sig_atomic_t is used to avoid per-thread variables or locking but still */
912/* giving it a reasonably high chance of working on typical architectures */
913static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
914#endif
915
916#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 917static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
918#endif
919
920#ifndef EV_FD_TO_WIN32_HANDLE
921# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
922#endif
923#ifndef EV_WIN32_HANDLE_TO_FD
924# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
925#endif
926#ifndef EV_WIN32_CLOSE_FD
927# define EV_WIN32_CLOSE_FD(fd) close (fd)
928#endif
256 929
257#ifdef _WIN32 930#ifdef _WIN32
258# include "ev_win32.c" 931# include "ev_win32.c"
259#endif 932#endif
260 933
261/*****************************************************************************/ 934/*****************************************************************************/
262 935
936/* define a suitable floor function (only used by periodics atm) */
937
938#if EV_USE_FLOOR
939# include <math.h>
940# define ev_floor(v) floor (v)
941#else
942
943#include <float.h>
944
945/* a floor() replacement function, should be independent of ev_tstamp type */
946static ev_tstamp noinline
947ev_floor (ev_tstamp v)
948{
949 /* the choice of shift factor is not terribly important */
950#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
951 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
952#else
953 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
954#endif
955
956 /* argument too large for an unsigned long? */
957 if (expect_false (v >= shift))
958 {
959 ev_tstamp f;
960
961 if (v == v - 1.)
962 return v; /* very large number */
963
964 f = shift * ev_floor (v * (1. / shift));
965 return f + ev_floor (v - f);
966 }
967
968 /* special treatment for negative args? */
969 if (expect_false (v < 0.))
970 {
971 ev_tstamp f = -ev_floor (-v);
972
973 return f - (f == v ? 0 : 1);
974 }
975
976 /* fits into an unsigned long */
977 return (unsigned long)v;
978}
979
980#endif
981
982/*****************************************************************************/
983
984#ifdef __linux
985# include <sys/utsname.h>
986#endif
987
988static unsigned int noinline ecb_cold
989ev_linux_version (void)
990{
991#ifdef __linux
992 unsigned int v = 0;
993 struct utsname buf;
994 int i;
995 char *p = buf.release;
996
997 if (uname (&buf))
998 return 0;
999
1000 for (i = 3+1; --i; )
1001 {
1002 unsigned int c = 0;
1003
1004 for (;;)
1005 {
1006 if (*p >= '0' && *p <= '9')
1007 c = c * 10 + *p++ - '0';
1008 else
1009 {
1010 p += *p == '.';
1011 break;
1012 }
1013 }
1014
1015 v = (v << 8) | c;
1016 }
1017
1018 return v;
1019#else
1020 return 0;
1021#endif
1022}
1023
1024/*****************************************************************************/
1025
1026#if EV_AVOID_STDIO
1027static void noinline ecb_cold
1028ev_printerr (const char *msg)
1029{
1030 write (STDERR_FILENO, msg, strlen (msg));
1031}
1032#endif
1033
263static void (*syserr_cb)(const char *msg); 1034static void (*syserr_cb)(const char *msg);
264 1035
265void 1036void ecb_cold
266ev_set_syserr_cb (void (*cb)(const char *msg)) 1037ev_set_syserr_cb (void (*cb)(const char *msg))
267{ 1038{
268 syserr_cb = cb; 1039 syserr_cb = cb;
269} 1040}
270 1041
271static void noinline 1042static void noinline ecb_cold
272syserr (const char *msg) 1043ev_syserr (const char *msg)
273{ 1044{
274 if (!msg) 1045 if (!msg)
275 msg = "(libev) system error"; 1046 msg = "(libev) system error";
276 1047
277 if (syserr_cb) 1048 if (syserr_cb)
278 syserr_cb (msg); 1049 syserr_cb (msg);
279 else 1050 else
280 { 1051 {
1052#if EV_AVOID_STDIO
1053 ev_printerr (msg);
1054 ev_printerr (": ");
1055 ev_printerr (strerror (errno));
1056 ev_printerr ("\n");
1057#else
281 perror (msg); 1058 perror (msg);
1059#endif
282 abort (); 1060 abort ();
283 } 1061 }
284} 1062}
285 1063
1064static void *
1065ev_realloc_emul (void *ptr, long size)
1066{
1067#if __GLIBC__
1068 return realloc (ptr, size);
1069#else
1070 /* some systems, notably openbsd and darwin, fail to properly
1071 * implement realloc (x, 0) (as required by both ansi c-89 and
1072 * the single unix specification, so work around them here.
1073 */
1074
1075 if (size)
1076 return realloc (ptr, size);
1077
1078 free (ptr);
1079 return 0;
1080#endif
1081}
1082
286static void *(*alloc)(void *ptr, long size); 1083static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 1084
288void 1085void ecb_cold
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 1086ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 1087{
291 alloc = cb; 1088 alloc = cb;
292} 1089}
293 1090
294inline_speed void * 1091inline_speed void *
295ev_realloc (void *ptr, long size) 1092ev_realloc (void *ptr, long size)
296{ 1093{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1094 ptr = alloc (ptr, size);
298 1095
299 if (!ptr && size) 1096 if (!ptr && size)
300 { 1097 {
1098#if EV_AVOID_STDIO
1099 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1100#else
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1101 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1102#endif
302 abort (); 1103 abort ();
303 } 1104 }
304 1105
305 return ptr; 1106 return ptr;
306} 1107}
308#define ev_malloc(size) ev_realloc (0, (size)) 1109#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 1110#define ev_free(ptr) ev_realloc ((ptr), 0)
310 1111
311/*****************************************************************************/ 1112/*****************************************************************************/
312 1113
1114/* set in reify when reification needed */
1115#define EV_ANFD_REIFY 1
1116
1117/* file descriptor info structure */
313typedef struct 1118typedef struct
314{ 1119{
315 WL head; 1120 WL head;
316 unsigned char events; 1121 unsigned char events; /* the events watched for */
1122 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1123 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 1124 unsigned char unused;
1125#if EV_USE_EPOLL
1126 unsigned int egen; /* generation counter to counter epoll bugs */
1127#endif
318#if EV_SELECT_IS_WINSOCKET 1128#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
319 SOCKET handle; 1129 SOCKET handle;
320#endif 1130#endif
1131#if EV_USE_IOCP
1132 OVERLAPPED or, ow;
1133#endif
321} ANFD; 1134} ANFD;
322 1135
1136/* stores the pending event set for a given watcher */
323typedef struct 1137typedef struct
324{ 1138{
325 W w; 1139 W w;
326 int events; 1140 int events; /* the pending event set for the given watcher */
327} ANPENDING; 1141} ANPENDING;
328 1142
329#if EV_USE_INOTIFY 1143#if EV_USE_INOTIFY
1144/* hash table entry per inotify-id */
330typedef struct 1145typedef struct
331{ 1146{
332 WL head; 1147 WL head;
333} ANFS; 1148} ANFS;
1149#endif
1150
1151/* Heap Entry */
1152#if EV_HEAP_CACHE_AT
1153 /* a heap element */
1154 typedef struct {
1155 ev_tstamp at;
1156 WT w;
1157 } ANHE;
1158
1159 #define ANHE_w(he) (he).w /* access watcher, read-write */
1160 #define ANHE_at(he) (he).at /* access cached at, read-only */
1161 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1162#else
1163 /* a heap element */
1164 typedef WT ANHE;
1165
1166 #define ANHE_w(he) (he)
1167 #define ANHE_at(he) (he)->at
1168 #define ANHE_at_cache(he)
334#endif 1169#endif
335 1170
336#if EV_MULTIPLICITY 1171#if EV_MULTIPLICITY
337 1172
338 struct ev_loop 1173 struct ev_loop
357 1192
358 static int ev_default_loop_ptr; 1193 static int ev_default_loop_ptr;
359 1194
360#endif 1195#endif
361 1196
1197#if EV_FEATURE_API
1198# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1199# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1200# define EV_INVOKE_PENDING invoke_cb (EV_A)
1201#else
1202# define EV_RELEASE_CB (void)0
1203# define EV_ACQUIRE_CB (void)0
1204# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1205#endif
1206
1207#define EVBREAK_RECURSE 0x80
1208
362/*****************************************************************************/ 1209/*****************************************************************************/
363 1210
1211#ifndef EV_HAVE_EV_TIME
364ev_tstamp 1212ev_tstamp
365ev_time (void) 1213ev_time (void)
366{ 1214{
367#if EV_USE_REALTIME 1215#if EV_USE_REALTIME
1216 if (expect_true (have_realtime))
1217 {
368 struct timespec ts; 1218 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 1219 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 1220 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 1221 }
1222#endif
1223
372 struct timeval tv; 1224 struct timeval tv;
373 gettimeofday (&tv, 0); 1225 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 1226 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 1227}
1228#endif
377 1229
378ev_tstamp inline_size 1230inline_size ev_tstamp
379get_clock (void) 1231get_clock (void)
380{ 1232{
381#if EV_USE_MONOTONIC 1233#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 1234 if (expect_true (have_monotonic))
383 { 1235 {
396{ 1248{
397 return ev_rt_now; 1249 return ev_rt_now;
398} 1250}
399#endif 1251#endif
400 1252
401int inline_size 1253void
1254ev_sleep (ev_tstamp delay)
1255{
1256 if (delay > 0.)
1257 {
1258#if EV_USE_NANOSLEEP
1259 struct timespec ts;
1260
1261 EV_TS_SET (ts, delay);
1262 nanosleep (&ts, 0);
1263#elif defined(_WIN32)
1264 Sleep ((unsigned long)(delay * 1e3));
1265#else
1266 struct timeval tv;
1267
1268 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1269 /* something not guaranteed by newer posix versions, but guaranteed */
1270 /* by older ones */
1271 EV_TV_SET (tv, delay);
1272 select (0, 0, 0, 0, &tv);
1273#endif
1274 }
1275}
1276
1277/*****************************************************************************/
1278
1279#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1280
1281/* find a suitable new size for the given array, */
1282/* hopefully by rounding to a nice-to-malloc size */
1283inline_size int
402array_nextsize (int elem, int cur, int cnt) 1284array_nextsize (int elem, int cur, int cnt)
403{ 1285{
404 int ncur = cur + 1; 1286 int ncur = cur + 1;
405 1287
406 do 1288 do
407 ncur <<= 1; 1289 ncur <<= 1;
408 while (cnt > ncur); 1290 while (cnt > ncur);
409 1291
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1292 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
411 if (elem * ncur > 4096) 1293 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 1294 {
413 ncur *= elem; 1295 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1296 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 1297 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 1298 ncur /= elem;
417 } 1299 }
418 1300
419 return ncur; 1301 return ncur;
420} 1302}
421 1303
422inline_speed void * 1304static void * noinline ecb_cold
423array_realloc (int elem, void *base, int *cur, int cnt) 1305array_realloc (int elem, void *base, int *cur, int cnt)
424{ 1306{
425 *cur = array_nextsize (elem, *cur, cnt); 1307 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 1308 return ev_realloc (base, elem * *cur);
427} 1309}
1310
1311#define array_init_zero(base,count) \
1312 memset ((void *)(base), 0, sizeof (*(base)) * (count))
428 1313
429#define array_needsize(type,base,cur,cnt,init) \ 1314#define array_needsize(type,base,cur,cnt,init) \
430 if (expect_false ((cnt) > (cur))) \ 1315 if (expect_false ((cnt) > (cur))) \
431 { \ 1316 { \
432 int ocur_ = (cur); \ 1317 int ecb_unused ocur_ = (cur); \
433 (base) = (type *)array_realloc \ 1318 (base) = (type *)array_realloc \
434 (sizeof (type), (base), &(cur), (cnt)); \ 1319 (sizeof (type), (base), &(cur), (cnt)); \
435 init ((base) + (ocur_), (cur) - ocur_); \ 1320 init ((base) + (ocur_), (cur) - ocur_); \
436 } 1321 }
437 1322
444 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1329 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
445 } 1330 }
446#endif 1331#endif
447 1332
448#define array_free(stem, idx) \ 1333#define array_free(stem, idx) \
449 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1334 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
450 1335
451/*****************************************************************************/ 1336/*****************************************************************************/
1337
1338/* dummy callback for pending events */
1339static void noinline
1340pendingcb (EV_P_ ev_prepare *w, int revents)
1341{
1342}
452 1343
453void noinline 1344void noinline
454ev_feed_event (EV_P_ void *w, int revents) 1345ev_feed_event (EV_P_ void *w, int revents)
455{ 1346{
456 W w_ = (W)w; 1347 W w_ = (W)w;
1348 int pri = ABSPRI (w_);
457 1349
458 if (expect_false (w_->pending)) 1350 if (expect_false (w_->pending))
1351 pendings [pri][w_->pending - 1].events |= revents;
1352 else
459 { 1353 {
1354 w_->pending = ++pendingcnt [pri];
1355 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1356 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1357 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 1358 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 1359}
469 1360
470void inline_size 1361inline_speed void
1362feed_reverse (EV_P_ W w)
1363{
1364 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1365 rfeeds [rfeedcnt++] = w;
1366}
1367
1368inline_size void
1369feed_reverse_done (EV_P_ int revents)
1370{
1371 do
1372 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1373 while (rfeedcnt);
1374}
1375
1376inline_speed void
471queue_events (EV_P_ W *events, int eventcnt, int type) 1377queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 1378{
473 int i; 1379 int i;
474 1380
475 for (i = 0; i < eventcnt; ++i) 1381 for (i = 0; i < eventcnt; ++i)
476 ev_feed_event (EV_A_ events [i], type); 1382 ev_feed_event (EV_A_ events [i], type);
477} 1383}
478 1384
479/*****************************************************************************/ 1385/*****************************************************************************/
480 1386
481void inline_size 1387inline_speed void
482anfds_init (ANFD *base, int count)
483{
484 while (count--)
485 {
486 base->head = 0;
487 base->events = EV_NONE;
488 base->reify = 0;
489
490 ++base;
491 }
492}
493
494void inline_speed
495fd_event (EV_P_ int fd, int revents) 1388fd_event_nocheck (EV_P_ int fd, int revents)
496{ 1389{
497 ANFD *anfd = anfds + fd; 1390 ANFD *anfd = anfds + fd;
498 ev_io *w; 1391 ev_io *w;
499 1392
500 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1393 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
504 if (ev) 1397 if (ev)
505 ev_feed_event (EV_A_ (W)w, ev); 1398 ev_feed_event (EV_A_ (W)w, ev);
506 } 1399 }
507} 1400}
508 1401
1402/* do not submit kernel events for fds that have reify set */
1403/* because that means they changed while we were polling for new events */
1404inline_speed void
1405fd_event (EV_P_ int fd, int revents)
1406{
1407 ANFD *anfd = anfds + fd;
1408
1409 if (expect_true (!anfd->reify))
1410 fd_event_nocheck (EV_A_ fd, revents);
1411}
1412
509void 1413void
510ev_feed_fd_event (EV_P_ int fd, int revents) 1414ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 1415{
512 if (fd >= 0 && fd < anfdmax) 1416 if (fd >= 0 && fd < anfdmax)
513 fd_event (EV_A_ fd, revents); 1417 fd_event_nocheck (EV_A_ fd, revents);
514} 1418}
515 1419
516void inline_size 1420/* make sure the external fd watch events are in-sync */
1421/* with the kernel/libev internal state */
1422inline_size void
517fd_reify (EV_P) 1423fd_reify (EV_P)
518{ 1424{
519 int i; 1425 int i;
1426
1427#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1428 for (i = 0; i < fdchangecnt; ++i)
1429 {
1430 int fd = fdchanges [i];
1431 ANFD *anfd = anfds + fd;
1432
1433 if (anfd->reify & EV__IOFDSET && anfd->head)
1434 {
1435 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1436
1437 if (handle != anfd->handle)
1438 {
1439 unsigned long arg;
1440
1441 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1442
1443 /* handle changed, but fd didn't - we need to do it in two steps */
1444 backend_modify (EV_A_ fd, anfd->events, 0);
1445 anfd->events = 0;
1446 anfd->handle = handle;
1447 }
1448 }
1449 }
1450#endif
520 1451
521 for (i = 0; i < fdchangecnt; ++i) 1452 for (i = 0; i < fdchangecnt; ++i)
522 { 1453 {
523 int fd = fdchanges [i]; 1454 int fd = fdchanges [i];
524 ANFD *anfd = anfds + fd; 1455 ANFD *anfd = anfds + fd;
525 ev_io *w; 1456 ev_io *w;
526 1457
527 int events = 0; 1458 unsigned char o_events = anfd->events;
1459 unsigned char o_reify = anfd->reify;
528 1460
529 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1461 anfd->reify = 0;
530 events |= w->events;
531 1462
532#if EV_SELECT_IS_WINSOCKET 1463 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
533 if (events)
534 { 1464 {
535 unsigned long argp; 1465 anfd->events = 0;
536 anfd->handle = _get_osfhandle (fd); 1466
537 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1467 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1468 anfd->events |= (unsigned char)w->events;
1469
1470 if (o_events != anfd->events)
1471 o_reify = EV__IOFDSET; /* actually |= */
538 } 1472 }
539#endif
540 1473
541 anfd->reify = 0; 1474 if (o_reify & EV__IOFDSET)
542
543 backend_modify (EV_A_ fd, anfd->events, events); 1475 backend_modify (EV_A_ fd, o_events, anfd->events);
544 anfd->events = events;
545 } 1476 }
546 1477
547 fdchangecnt = 0; 1478 fdchangecnt = 0;
548} 1479}
549 1480
550void inline_size 1481/* something about the given fd changed */
1482inline_size void
551fd_change (EV_P_ int fd) 1483fd_change (EV_P_ int fd, int flags)
552{ 1484{
553 if (expect_false (anfds [fd].reify)) 1485 unsigned char reify = anfds [fd].reify;
554 return;
555
556 anfds [fd].reify = 1; 1486 anfds [fd].reify |= flags;
557 1487
1488 if (expect_true (!reify))
1489 {
558 ++fdchangecnt; 1490 ++fdchangecnt;
559 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1491 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
560 fdchanges [fdchangecnt - 1] = fd; 1492 fdchanges [fdchangecnt - 1] = fd;
1493 }
561} 1494}
562 1495
563void inline_speed 1496/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1497inline_speed void ecb_cold
564fd_kill (EV_P_ int fd) 1498fd_kill (EV_P_ int fd)
565{ 1499{
566 ev_io *w; 1500 ev_io *w;
567 1501
568 while ((w = (ev_io *)anfds [fd].head)) 1502 while ((w = (ev_io *)anfds [fd].head))
570 ev_io_stop (EV_A_ w); 1504 ev_io_stop (EV_A_ w);
571 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1505 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
572 } 1506 }
573} 1507}
574 1508
575int inline_size 1509/* check whether the given fd is actually valid, for error recovery */
1510inline_size int ecb_cold
576fd_valid (int fd) 1511fd_valid (int fd)
577{ 1512{
578#ifdef _WIN32 1513#ifdef _WIN32
579 return _get_osfhandle (fd) != -1; 1514 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
580#else 1515#else
581 return fcntl (fd, F_GETFD) != -1; 1516 return fcntl (fd, F_GETFD) != -1;
582#endif 1517#endif
583} 1518}
584 1519
585/* called on EBADF to verify fds */ 1520/* called on EBADF to verify fds */
586static void noinline 1521static void noinline ecb_cold
587fd_ebadf (EV_P) 1522fd_ebadf (EV_P)
588{ 1523{
589 int fd; 1524 int fd;
590 1525
591 for (fd = 0; fd < anfdmax; ++fd) 1526 for (fd = 0; fd < anfdmax; ++fd)
592 if (anfds [fd].events) 1527 if (anfds [fd].events)
593 if (!fd_valid (fd) == -1 && errno == EBADF) 1528 if (!fd_valid (fd) && errno == EBADF)
594 fd_kill (EV_A_ fd); 1529 fd_kill (EV_A_ fd);
595} 1530}
596 1531
597/* called on ENOMEM in select/poll to kill some fds and retry */ 1532/* called on ENOMEM in select/poll to kill some fds and retry */
598static void noinline 1533static void noinline ecb_cold
599fd_enomem (EV_P) 1534fd_enomem (EV_P)
600{ 1535{
601 int fd; 1536 int fd;
602 1537
603 for (fd = anfdmax; fd--; ) 1538 for (fd = anfdmax; fd--; )
604 if (anfds [fd].events) 1539 if (anfds [fd].events)
605 { 1540 {
606 fd_kill (EV_A_ fd); 1541 fd_kill (EV_A_ fd);
607 return; 1542 break;
608 } 1543 }
609} 1544}
610 1545
611/* usually called after fork if backend needs to re-arm all fds from scratch */ 1546/* usually called after fork if backend needs to re-arm all fds from scratch */
612static void noinline 1547static void noinline
616 1551
617 for (fd = 0; fd < anfdmax; ++fd) 1552 for (fd = 0; fd < anfdmax; ++fd)
618 if (anfds [fd].events) 1553 if (anfds [fd].events)
619 { 1554 {
620 anfds [fd].events = 0; 1555 anfds [fd].events = 0;
621 fd_change (EV_A_ fd); 1556 anfds [fd].emask = 0;
1557 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
622 } 1558 }
623} 1559}
624 1560
625/*****************************************************************************/ 1561/* used to prepare libev internal fd's */
626 1562/* this is not fork-safe */
627void inline_speed 1563inline_speed void
628upheap (WT *heap, int k)
629{
630 WT w = heap [k];
631
632 while (k && heap [k >> 1]->at > w->at)
633 {
634 heap [k] = heap [k >> 1];
635 ((W)heap [k])->active = k + 1;
636 k >>= 1;
637 }
638
639 heap [k] = w;
640 ((W)heap [k])->active = k + 1;
641
642}
643
644void inline_speed
645downheap (WT *heap, int N, int k)
646{
647 WT w = heap [k];
648
649 while (k < (N >> 1))
650 {
651 int j = k << 1;
652
653 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
654 ++j;
655
656 if (w->at <= heap [j]->at)
657 break;
658
659 heap [k] = heap [j];
660 ((W)heap [k])->active = k + 1;
661 k = j;
662 }
663
664 heap [k] = w;
665 ((W)heap [k])->active = k + 1;
666}
667
668void inline_size
669adjustheap (WT *heap, int N, int k)
670{
671 upheap (heap, k);
672 downheap (heap, N, k);
673}
674
675/*****************************************************************************/
676
677typedef struct
678{
679 WL head;
680 sig_atomic_t volatile gotsig;
681} ANSIG;
682
683static ANSIG *signals;
684static int signalmax;
685
686static int sigpipe [2];
687static sig_atomic_t volatile gotsig;
688static ev_io sigev;
689
690void inline_size
691signals_init (ANSIG *base, int count)
692{
693 while (count--)
694 {
695 base->head = 0;
696 base->gotsig = 0;
697
698 ++base;
699 }
700}
701
702static void
703sighandler (int signum)
704{
705#if _WIN32
706 signal (signum, sighandler);
707#endif
708
709 signals [signum - 1].gotsig = 1;
710
711 if (!gotsig)
712 {
713 int old_errno = errno;
714 gotsig = 1;
715 write (sigpipe [1], &signum, 1);
716 errno = old_errno;
717 }
718}
719
720void noinline
721ev_feed_signal_event (EV_P_ int signum)
722{
723 WL w;
724
725#if EV_MULTIPLICITY
726 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
727#endif
728
729 --signum;
730
731 if (signum < 0 || signum >= signalmax)
732 return;
733
734 signals [signum].gotsig = 0;
735
736 for (w = signals [signum].head; w; w = w->next)
737 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
738}
739
740static void
741sigcb (EV_P_ ev_io *iow, int revents)
742{
743 int signum;
744
745 read (sigpipe [0], &revents, 1);
746 gotsig = 0;
747
748 for (signum = signalmax; signum--; )
749 if (signals [signum].gotsig)
750 ev_feed_signal_event (EV_A_ signum + 1);
751}
752
753void inline_size
754fd_intern (int fd) 1564fd_intern (int fd)
755{ 1565{
756#ifdef _WIN32 1566#ifdef _WIN32
757 int arg = 1; 1567 unsigned long arg = 1;
758 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1568 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
759#else 1569#else
760 fcntl (fd, F_SETFD, FD_CLOEXEC); 1570 fcntl (fd, F_SETFD, FD_CLOEXEC);
761 fcntl (fd, F_SETFL, O_NONBLOCK); 1571 fcntl (fd, F_SETFL, O_NONBLOCK);
762#endif 1572#endif
763} 1573}
764 1574
765static void noinline
766siginit (EV_P)
767{
768 fd_intern (sigpipe [0]);
769 fd_intern (sigpipe [1]);
770
771 ev_io_set (&sigev, sigpipe [0], EV_READ);
772 ev_io_start (EV_A_ &sigev);
773 ev_unref (EV_A); /* child watcher should not keep loop alive */
774}
775
776/*****************************************************************************/ 1575/*****************************************************************************/
777 1576
778static ev_child *childs [EV_PID_HASHSIZE]; 1577/*
1578 * the heap functions want a real array index. array index 0 is guaranteed to not
1579 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1580 * the branching factor of the d-tree.
1581 */
779 1582
1583/*
1584 * at the moment we allow libev the luxury of two heaps,
1585 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1586 * which is more cache-efficient.
1587 * the difference is about 5% with 50000+ watchers.
1588 */
1589#if EV_USE_4HEAP
1590
1591#define DHEAP 4
1592#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1593#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1594#define UPHEAP_DONE(p,k) ((p) == (k))
1595
1596/* away from the root */
1597inline_speed void
1598downheap (ANHE *heap, int N, int k)
1599{
1600 ANHE he = heap [k];
1601 ANHE *E = heap + N + HEAP0;
1602
1603 for (;;)
1604 {
1605 ev_tstamp minat;
1606 ANHE *minpos;
1607 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1608
1609 /* find minimum child */
1610 if (expect_true (pos + DHEAP - 1 < E))
1611 {
1612 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1613 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1614 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1615 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1616 }
1617 else if (pos < E)
1618 {
1619 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1620 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1621 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1622 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1623 }
1624 else
1625 break;
1626
1627 if (ANHE_at (he) <= minat)
1628 break;
1629
1630 heap [k] = *minpos;
1631 ev_active (ANHE_w (*minpos)) = k;
1632
1633 k = minpos - heap;
1634 }
1635
1636 heap [k] = he;
1637 ev_active (ANHE_w (he)) = k;
1638}
1639
1640#else /* 4HEAP */
1641
1642#define HEAP0 1
1643#define HPARENT(k) ((k) >> 1)
1644#define UPHEAP_DONE(p,k) (!(p))
1645
1646/* away from the root */
1647inline_speed void
1648downheap (ANHE *heap, int N, int k)
1649{
1650 ANHE he = heap [k];
1651
1652 for (;;)
1653 {
1654 int c = k << 1;
1655
1656 if (c >= N + HEAP0)
1657 break;
1658
1659 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1660 ? 1 : 0;
1661
1662 if (ANHE_at (he) <= ANHE_at (heap [c]))
1663 break;
1664
1665 heap [k] = heap [c];
1666 ev_active (ANHE_w (heap [k])) = k;
1667
1668 k = c;
1669 }
1670
1671 heap [k] = he;
1672 ev_active (ANHE_w (he)) = k;
1673}
1674#endif
1675
1676/* towards the root */
1677inline_speed void
1678upheap (ANHE *heap, int k)
1679{
1680 ANHE he = heap [k];
1681
1682 for (;;)
1683 {
1684 int p = HPARENT (k);
1685
1686 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1687 break;
1688
1689 heap [k] = heap [p];
1690 ev_active (ANHE_w (heap [k])) = k;
1691 k = p;
1692 }
1693
1694 heap [k] = he;
1695 ev_active (ANHE_w (he)) = k;
1696}
1697
1698/* move an element suitably so it is in a correct place */
1699inline_size void
1700adjustheap (ANHE *heap, int N, int k)
1701{
1702 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1703 upheap (heap, k);
1704 else
1705 downheap (heap, N, k);
1706}
1707
1708/* rebuild the heap: this function is used only once and executed rarely */
1709inline_size void
1710reheap (ANHE *heap, int N)
1711{
1712 int i;
1713
1714 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1715 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1716 for (i = 0; i < N; ++i)
1717 upheap (heap, i + HEAP0);
1718}
1719
1720/*****************************************************************************/
1721
1722/* associate signal watchers to a signal signal */
1723typedef struct
1724{
1725 EV_ATOMIC_T pending;
1726#if EV_MULTIPLICITY
1727 EV_P;
1728#endif
1729 WL head;
1730} ANSIG;
1731
1732static ANSIG signals [EV_NSIG - 1];
1733
1734/*****************************************************************************/
1735
1736#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1737
1738static void noinline ecb_cold
1739evpipe_init (EV_P)
1740{
1741 if (!ev_is_active (&pipe_w))
1742 {
1743# if EV_USE_EVENTFD
1744 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1745 if (evfd < 0 && errno == EINVAL)
1746 evfd = eventfd (0, 0);
1747
1748 if (evfd >= 0)
1749 {
1750 evpipe [0] = -1;
1751 fd_intern (evfd); /* doing it twice doesn't hurt */
1752 ev_io_set (&pipe_w, evfd, EV_READ);
1753 }
1754 else
1755# endif
1756 {
1757 while (pipe (evpipe))
1758 ev_syserr ("(libev) error creating signal/async pipe");
1759
1760 fd_intern (evpipe [0]);
1761 fd_intern (evpipe [1]);
1762 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1763 }
1764
1765 ev_io_start (EV_A_ &pipe_w);
1766 ev_unref (EV_A); /* watcher should not keep loop alive */
1767 }
1768}
1769
1770inline_speed void
1771evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1772{
1773 if (expect_true (*flag))
1774 return;
1775
1776 *flag = 1;
1777
1778 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1779
1780 pipe_write_skipped = 1;
1781
1782 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1783
1784 if (pipe_write_wanted)
1785 {
1786 int old_errno;
1787
1788 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1789
1790 old_errno = errno; /* save errno because write will clobber it */
1791
1792#if EV_USE_EVENTFD
1793 if (evfd >= 0)
1794 {
1795 uint64_t counter = 1;
1796 write (evfd, &counter, sizeof (uint64_t));
1797 }
1798 else
1799#endif
1800 {
1801 /* win32 people keep sending patches that change this write() to send() */
1802 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1803 /* so when you think this write should be a send instead, please find out */
1804 /* where your send() is from - it's definitely not the microsoft send, and */
1805 /* tell me. thank you. */
1806 write (evpipe [1], &(evpipe [1]), 1);
1807 }
1808
1809 errno = old_errno;
1810 }
1811}
1812
1813/* called whenever the libev signal pipe */
1814/* got some events (signal, async) */
1815static void
1816pipecb (EV_P_ ev_io *iow, int revents)
1817{
1818 int i;
1819
1820 if (revents & EV_READ)
1821 {
1822#if EV_USE_EVENTFD
1823 if (evfd >= 0)
1824 {
1825 uint64_t counter;
1826 read (evfd, &counter, sizeof (uint64_t));
1827 }
1828 else
1829#endif
1830 {
1831 char dummy;
1832 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1833 read (evpipe [0], &dummy, 1);
1834 }
1835 }
1836
1837 pipe_write_skipped = 0;
1838
1839#if EV_SIGNAL_ENABLE
1840 if (sig_pending)
1841 {
1842 sig_pending = 0;
1843
1844 for (i = EV_NSIG - 1; i--; )
1845 if (expect_false (signals [i].pending))
1846 ev_feed_signal_event (EV_A_ i + 1);
1847 }
1848#endif
1849
1850#if EV_ASYNC_ENABLE
1851 if (async_pending)
1852 {
1853 async_pending = 0;
1854
1855 for (i = asynccnt; i--; )
1856 if (asyncs [i]->sent)
1857 {
1858 asyncs [i]->sent = 0;
1859 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1860 }
1861 }
1862#endif
1863}
1864
1865/*****************************************************************************/
1866
1867void
1868ev_feed_signal (int signum)
1869{
1870#if EV_MULTIPLICITY
1871 EV_P = signals [signum - 1].loop;
1872
1873 if (!EV_A)
1874 return;
1875#endif
1876
1877 if (!ev_active (&pipe_w))
1878 return;
1879
1880 signals [signum - 1].pending = 1;
1881 evpipe_write (EV_A_ &sig_pending);
1882}
1883
1884static void
1885ev_sighandler (int signum)
1886{
780#ifndef _WIN32 1887#ifdef _WIN32
1888 signal (signum, ev_sighandler);
1889#endif
1890
1891 ev_feed_signal (signum);
1892}
1893
1894void noinline
1895ev_feed_signal_event (EV_P_ int signum)
1896{
1897 WL w;
1898
1899 if (expect_false (signum <= 0 || signum > EV_NSIG))
1900 return;
1901
1902 --signum;
1903
1904#if EV_MULTIPLICITY
1905 /* it is permissible to try to feed a signal to the wrong loop */
1906 /* or, likely more useful, feeding a signal nobody is waiting for */
1907
1908 if (expect_false (signals [signum].loop != EV_A))
1909 return;
1910#endif
1911
1912 signals [signum].pending = 0;
1913
1914 for (w = signals [signum].head; w; w = w->next)
1915 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1916}
1917
1918#if EV_USE_SIGNALFD
1919static void
1920sigfdcb (EV_P_ ev_io *iow, int revents)
1921{
1922 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1923
1924 for (;;)
1925 {
1926 ssize_t res = read (sigfd, si, sizeof (si));
1927
1928 /* not ISO-C, as res might be -1, but works with SuS */
1929 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1930 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1931
1932 if (res < (ssize_t)sizeof (si))
1933 break;
1934 }
1935}
1936#endif
1937
1938#endif
1939
1940/*****************************************************************************/
1941
1942#if EV_CHILD_ENABLE
1943static WL childs [EV_PID_HASHSIZE];
781 1944
782static ev_signal childev; 1945static ev_signal childev;
783 1946
784void inline_speed 1947#ifndef WIFCONTINUED
1948# define WIFCONTINUED(status) 0
1949#endif
1950
1951/* handle a single child status event */
1952inline_speed void
785child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1953child_reap (EV_P_ int chain, int pid, int status)
786{ 1954{
787 ev_child *w; 1955 ev_child *w;
1956 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
788 1957
789 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1958 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1959 {
790 if (w->pid == pid || !w->pid) 1960 if ((w->pid == pid || !w->pid)
1961 && (!traced || (w->flags & 1)))
791 { 1962 {
792 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1963 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
793 w->rpid = pid; 1964 w->rpid = pid;
794 w->rstatus = status; 1965 w->rstatus = status;
795 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1966 ev_feed_event (EV_A_ (W)w, EV_CHILD);
796 } 1967 }
1968 }
797} 1969}
798 1970
799#ifndef WCONTINUED 1971#ifndef WCONTINUED
800# define WCONTINUED 0 1972# define WCONTINUED 0
801#endif 1973#endif
802 1974
1975/* called on sigchld etc., calls waitpid */
803static void 1976static void
804childcb (EV_P_ ev_signal *sw, int revents) 1977childcb (EV_P_ ev_signal *sw, int revents)
805{ 1978{
806 int pid, status; 1979 int pid, status;
807 1980
810 if (!WCONTINUED 1983 if (!WCONTINUED
811 || errno != EINVAL 1984 || errno != EINVAL
812 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1985 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
813 return; 1986 return;
814 1987
815 /* make sure we are called again until all childs have been reaped */ 1988 /* make sure we are called again until all children have been reaped */
816 /* we need to do it this way so that the callback gets called before we continue */ 1989 /* we need to do it this way so that the callback gets called before we continue */
817 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1990 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
818 1991
819 child_reap (EV_A_ sw, pid, pid, status); 1992 child_reap (EV_A_ pid, pid, status);
820 if (EV_PID_HASHSIZE > 1) 1993 if ((EV_PID_HASHSIZE) > 1)
821 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1994 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
822} 1995}
823 1996
824#endif 1997#endif
825 1998
826/*****************************************************************************/ 1999/*****************************************************************************/
827 2000
2001#if EV_USE_IOCP
2002# include "ev_iocp.c"
2003#endif
828#if EV_USE_PORT 2004#if EV_USE_PORT
829# include "ev_port.c" 2005# include "ev_port.c"
830#endif 2006#endif
831#if EV_USE_KQUEUE 2007#if EV_USE_KQUEUE
832# include "ev_kqueue.c" 2008# include "ev_kqueue.c"
839#endif 2015#endif
840#if EV_USE_SELECT 2016#if EV_USE_SELECT
841# include "ev_select.c" 2017# include "ev_select.c"
842#endif 2018#endif
843 2019
844int 2020int ecb_cold
845ev_version_major (void) 2021ev_version_major (void)
846{ 2022{
847 return EV_VERSION_MAJOR; 2023 return EV_VERSION_MAJOR;
848} 2024}
849 2025
850int 2026int ecb_cold
851ev_version_minor (void) 2027ev_version_minor (void)
852{ 2028{
853 return EV_VERSION_MINOR; 2029 return EV_VERSION_MINOR;
854} 2030}
855 2031
856/* return true if we are running with elevated privileges and should ignore env variables */ 2032/* return true if we are running with elevated privileges and should ignore env variables */
857int inline_size 2033int inline_size ecb_cold
858enable_secure (void) 2034enable_secure (void)
859{ 2035{
860#ifdef _WIN32 2036#ifdef _WIN32
861 return 0; 2037 return 0;
862#else 2038#else
863 return getuid () != geteuid () 2039 return getuid () != geteuid ()
864 || getgid () != getegid (); 2040 || getgid () != getegid ();
865#endif 2041#endif
866} 2042}
867 2043
868unsigned int 2044unsigned int ecb_cold
869ev_supported_backends (void) 2045ev_supported_backends (void)
870{ 2046{
871 unsigned int flags = 0; 2047 unsigned int flags = 0;
872 2048
873 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2049 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
877 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2053 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
878 2054
879 return flags; 2055 return flags;
880} 2056}
881 2057
882unsigned int 2058unsigned int ecb_cold
883ev_recommended_backends (void) 2059ev_recommended_backends (void)
884{ 2060{
885 unsigned int flags = ev_supported_backends (); 2061 unsigned int flags = ev_supported_backends ();
886 2062
887#ifndef __NetBSD__ 2063#ifndef __NetBSD__
888 /* kqueue is borked on everything but netbsd apparently */ 2064 /* kqueue is borked on everything but netbsd apparently */
889 /* it usually doesn't work correctly on anything but sockets and pipes */ 2065 /* it usually doesn't work correctly on anything but sockets and pipes */
890 flags &= ~EVBACKEND_KQUEUE; 2066 flags &= ~EVBACKEND_KQUEUE;
891#endif 2067#endif
892#ifdef __APPLE__ 2068#ifdef __APPLE__
893 // flags &= ~EVBACKEND_KQUEUE; for documentation 2069 /* only select works correctly on that "unix-certified" platform */
894 flags &= ~EVBACKEND_POLL; 2070 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2071 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2072#endif
2073#ifdef __FreeBSD__
2074 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
895#endif 2075#endif
896 2076
897 return flags; 2077 return flags;
898} 2078}
899 2079
900unsigned int 2080unsigned int ecb_cold
901ev_embeddable_backends (void) 2081ev_embeddable_backends (void)
902{ 2082{
903 return EVBACKEND_EPOLL 2083 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
904 | EVBACKEND_KQUEUE 2084
905 | EVBACKEND_PORT; 2085 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2086 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2087 flags &= ~EVBACKEND_EPOLL;
2088
2089 return flags;
906} 2090}
907 2091
908unsigned int 2092unsigned int
909ev_backend (EV_P) 2093ev_backend (EV_P)
910{ 2094{
911 return backend; 2095 return backend;
912} 2096}
913 2097
2098#if EV_FEATURE_API
914unsigned int 2099unsigned int
915ev_loop_count (EV_P) 2100ev_iteration (EV_P)
916{ 2101{
917 return loop_count; 2102 return loop_count;
918} 2103}
919 2104
2105unsigned int
2106ev_depth (EV_P)
2107{
2108 return loop_depth;
2109}
2110
2111void
2112ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
2113{
2114 io_blocktime = interval;
2115}
2116
2117void
2118ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
2119{
2120 timeout_blocktime = interval;
2121}
2122
2123void
2124ev_set_userdata (EV_P_ void *data)
2125{
2126 userdata = data;
2127}
2128
2129void *
2130ev_userdata (EV_P)
2131{
2132 return userdata;
2133}
2134
2135void
2136ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2137{
2138 invoke_cb = invoke_pending_cb;
2139}
2140
2141void
2142ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2143{
2144 release_cb = release;
2145 acquire_cb = acquire;
2146}
2147#endif
2148
2149/* initialise a loop structure, must be zero-initialised */
920static void noinline 2150static void noinline ecb_cold
921loop_init (EV_P_ unsigned int flags) 2151loop_init (EV_P_ unsigned int flags)
922{ 2152{
923 if (!backend) 2153 if (!backend)
924 { 2154 {
2155 origflags = flags;
2156
2157#if EV_USE_REALTIME
2158 if (!have_realtime)
2159 {
2160 struct timespec ts;
2161
2162 if (!clock_gettime (CLOCK_REALTIME, &ts))
2163 have_realtime = 1;
2164 }
2165#endif
2166
925#if EV_USE_MONOTONIC 2167#if EV_USE_MONOTONIC
2168 if (!have_monotonic)
926 { 2169 {
927 struct timespec ts; 2170 struct timespec ts;
2171
928 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2172 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
929 have_monotonic = 1; 2173 have_monotonic = 1;
930 } 2174 }
931#endif 2175#endif
932
933 ev_rt_now = ev_time ();
934 mn_now = get_clock ();
935 now_floor = mn_now;
936 rtmn_diff = ev_rt_now - mn_now;
937 2176
938 /* pid check not overridable via env */ 2177 /* pid check not overridable via env */
939#ifndef _WIN32 2178#ifndef _WIN32
940 if (flags & EVFLAG_FORKCHECK) 2179 if (flags & EVFLAG_FORKCHECK)
941 curpid = getpid (); 2180 curpid = getpid ();
944 if (!(flags & EVFLAG_NOENV) 2183 if (!(flags & EVFLAG_NOENV)
945 && !enable_secure () 2184 && !enable_secure ()
946 && getenv ("LIBEV_FLAGS")) 2185 && getenv ("LIBEV_FLAGS"))
947 flags = atoi (getenv ("LIBEV_FLAGS")); 2186 flags = atoi (getenv ("LIBEV_FLAGS"));
948 2187
949 if (!(flags & 0x0000ffffUL)) 2188 ev_rt_now = ev_time ();
2189 mn_now = get_clock ();
2190 now_floor = mn_now;
2191 rtmn_diff = ev_rt_now - mn_now;
2192#if EV_FEATURE_API
2193 invoke_cb = ev_invoke_pending;
2194#endif
2195
2196 io_blocktime = 0.;
2197 timeout_blocktime = 0.;
2198 backend = 0;
2199 backend_fd = -1;
2200 sig_pending = 0;
2201#if EV_ASYNC_ENABLE
2202 async_pending = 0;
2203#endif
2204 pipe_write_skipped = 0;
2205 pipe_write_wanted = 0;
2206#if EV_USE_INOTIFY
2207 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2208#endif
2209#if EV_USE_SIGNALFD
2210 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2211#endif
2212
2213 if (!(flags & EVBACKEND_MASK))
950 flags |= ev_recommended_backends (); 2214 flags |= ev_recommended_backends ();
951 2215
952 backend = 0;
953 backend_fd = -1;
954#if EV_USE_INOTIFY 2216#if EV_USE_IOCP
955 fs_fd = -2; 2217 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
956#endif 2218#endif
957
958#if EV_USE_PORT 2219#if EV_USE_PORT
959 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2220 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
960#endif 2221#endif
961#if EV_USE_KQUEUE 2222#if EV_USE_KQUEUE
962 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2223 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
969#endif 2230#endif
970#if EV_USE_SELECT 2231#if EV_USE_SELECT
971 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2232 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
972#endif 2233#endif
973 2234
2235 ev_prepare_init (&pending_w, pendingcb);
2236
2237#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
974 ev_init (&sigev, sigcb); 2238 ev_init (&pipe_w, pipecb);
975 ev_set_priority (&sigev, EV_MAXPRI); 2239 ev_set_priority (&pipe_w, EV_MAXPRI);
2240#endif
976 } 2241 }
977} 2242}
978 2243
979static void noinline 2244/* free up a loop structure */
2245void ecb_cold
980loop_destroy (EV_P) 2246ev_loop_destroy (EV_P)
981{ 2247{
982 int i; 2248 int i;
2249
2250#if EV_MULTIPLICITY
2251 /* mimic free (0) */
2252 if (!EV_A)
2253 return;
2254#endif
2255
2256#if EV_CLEANUP_ENABLE
2257 /* queue cleanup watchers (and execute them) */
2258 if (expect_false (cleanupcnt))
2259 {
2260 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2261 EV_INVOKE_PENDING;
2262 }
2263#endif
2264
2265#if EV_CHILD_ENABLE
2266 if (ev_is_active (&childev))
2267 {
2268 ev_ref (EV_A); /* child watcher */
2269 ev_signal_stop (EV_A_ &childev);
2270 }
2271#endif
2272
2273 if (ev_is_active (&pipe_w))
2274 {
2275 /*ev_ref (EV_A);*/
2276 /*ev_io_stop (EV_A_ &pipe_w);*/
2277
2278#if EV_USE_EVENTFD
2279 if (evfd >= 0)
2280 close (evfd);
2281#endif
2282
2283 if (evpipe [0] >= 0)
2284 {
2285 EV_WIN32_CLOSE_FD (evpipe [0]);
2286 EV_WIN32_CLOSE_FD (evpipe [1]);
2287 }
2288 }
2289
2290#if EV_USE_SIGNALFD
2291 if (ev_is_active (&sigfd_w))
2292 close (sigfd);
2293#endif
983 2294
984#if EV_USE_INOTIFY 2295#if EV_USE_INOTIFY
985 if (fs_fd >= 0) 2296 if (fs_fd >= 0)
986 close (fs_fd); 2297 close (fs_fd);
987#endif 2298#endif
988 2299
989 if (backend_fd >= 0) 2300 if (backend_fd >= 0)
990 close (backend_fd); 2301 close (backend_fd);
991 2302
2303#if EV_USE_IOCP
2304 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2305#endif
992#if EV_USE_PORT 2306#if EV_USE_PORT
993 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2307 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
994#endif 2308#endif
995#if EV_USE_KQUEUE 2309#if EV_USE_KQUEUE
996 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2310 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1011#if EV_IDLE_ENABLE 2325#if EV_IDLE_ENABLE
1012 array_free (idle, [i]); 2326 array_free (idle, [i]);
1013#endif 2327#endif
1014 } 2328 }
1015 2329
2330 ev_free (anfds); anfds = 0; anfdmax = 0;
2331
1016 /* have to use the microsoft-never-gets-it-right macro */ 2332 /* have to use the microsoft-never-gets-it-right macro */
2333 array_free (rfeed, EMPTY);
1017 array_free (fdchange, EMPTY); 2334 array_free (fdchange, EMPTY);
1018 array_free (timer, EMPTY); 2335 array_free (timer, EMPTY);
1019#if EV_PERIODIC_ENABLE 2336#if EV_PERIODIC_ENABLE
1020 array_free (periodic, EMPTY); 2337 array_free (periodic, EMPTY);
1021#endif 2338#endif
2339#if EV_FORK_ENABLE
2340 array_free (fork, EMPTY);
2341#endif
2342#if EV_CLEANUP_ENABLE
2343 array_free (cleanup, EMPTY);
2344#endif
1022 array_free (prepare, EMPTY); 2345 array_free (prepare, EMPTY);
1023 array_free (check, EMPTY); 2346 array_free (check, EMPTY);
2347#if EV_ASYNC_ENABLE
2348 array_free (async, EMPTY);
2349#endif
1024 2350
1025 backend = 0; 2351 backend = 0;
1026}
1027 2352
2353#if EV_MULTIPLICITY
2354 if (ev_is_default_loop (EV_A))
2355#endif
2356 ev_default_loop_ptr = 0;
2357#if EV_MULTIPLICITY
2358 else
2359 ev_free (EV_A);
2360#endif
2361}
2362
2363#if EV_USE_INOTIFY
1028void inline_size infy_fork (EV_P); 2364inline_size void infy_fork (EV_P);
2365#endif
1029 2366
1030void inline_size 2367inline_size void
1031loop_fork (EV_P) 2368loop_fork (EV_P)
1032{ 2369{
1033#if EV_USE_PORT 2370#if EV_USE_PORT
1034 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2371 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1035#endif 2372#endif
1041#endif 2378#endif
1042#if EV_USE_INOTIFY 2379#if EV_USE_INOTIFY
1043 infy_fork (EV_A); 2380 infy_fork (EV_A);
1044#endif 2381#endif
1045 2382
1046 if (ev_is_active (&sigev)) 2383 if (ev_is_active (&pipe_w))
1047 { 2384 {
1048 /* default loop */ 2385 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1049 2386
1050 ev_ref (EV_A); 2387 ev_ref (EV_A);
1051 ev_io_stop (EV_A_ &sigev); 2388 ev_io_stop (EV_A_ &pipe_w);
1052 close (sigpipe [0]);
1053 close (sigpipe [1]);
1054 2389
1055 while (pipe (sigpipe)) 2390#if EV_USE_EVENTFD
1056 syserr ("(libev) error creating pipe"); 2391 if (evfd >= 0)
2392 close (evfd);
2393#endif
1057 2394
2395 if (evpipe [0] >= 0)
2396 {
2397 EV_WIN32_CLOSE_FD (evpipe [0]);
2398 EV_WIN32_CLOSE_FD (evpipe [1]);
2399 }
2400
2401#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1058 siginit (EV_A); 2402 evpipe_init (EV_A);
2403 /* now iterate over everything, in case we missed something */
2404 pipecb (EV_A_ &pipe_w, EV_READ);
2405#endif
1059 } 2406 }
1060 2407
1061 postfork = 0; 2408 postfork = 0;
1062} 2409}
1063 2410
1064#if EV_MULTIPLICITY 2411#if EV_MULTIPLICITY
2412
1065struct ev_loop * 2413struct ev_loop * ecb_cold
1066ev_loop_new (unsigned int flags) 2414ev_loop_new (unsigned int flags)
1067{ 2415{
1068 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2416 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1069 2417
1070 memset (loop, 0, sizeof (struct ev_loop)); 2418 memset (EV_A, 0, sizeof (struct ev_loop));
1071
1072 loop_init (EV_A_ flags); 2419 loop_init (EV_A_ flags);
1073 2420
1074 if (ev_backend (EV_A)) 2421 if (ev_backend (EV_A))
1075 return loop; 2422 return EV_A;
1076 2423
2424 ev_free (EV_A);
1077 return 0; 2425 return 0;
1078} 2426}
1079 2427
1080void 2428#endif /* multiplicity */
1081ev_loop_destroy (EV_P)
1082{
1083 loop_destroy (EV_A);
1084 ev_free (loop);
1085}
1086 2429
1087void 2430#if EV_VERIFY
1088ev_loop_fork (EV_P) 2431static void noinline ecb_cold
2432verify_watcher (EV_P_ W w)
1089{ 2433{
1090 postfork = 1; 2434 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1091}
1092 2435
2436 if (w->pending)
2437 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2438}
2439
2440static void noinline ecb_cold
2441verify_heap (EV_P_ ANHE *heap, int N)
2442{
2443 int i;
2444
2445 for (i = HEAP0; i < N + HEAP0; ++i)
2446 {
2447 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2448 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2449 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2450
2451 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2452 }
2453}
2454
2455static void noinline ecb_cold
2456array_verify (EV_P_ W *ws, int cnt)
2457{
2458 while (cnt--)
2459 {
2460 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2461 verify_watcher (EV_A_ ws [cnt]);
2462 }
2463}
2464#endif
2465
2466#if EV_FEATURE_API
2467void ecb_cold
2468ev_verify (EV_P)
2469{
2470#if EV_VERIFY
2471 int i;
2472 WL w;
2473
2474 assert (activecnt >= -1);
2475
2476 assert (fdchangemax >= fdchangecnt);
2477 for (i = 0; i < fdchangecnt; ++i)
2478 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2479
2480 assert (anfdmax >= 0);
2481 for (i = 0; i < anfdmax; ++i)
2482 for (w = anfds [i].head; w; w = w->next)
2483 {
2484 verify_watcher (EV_A_ (W)w);
2485 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2486 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2487 }
2488
2489 assert (timermax >= timercnt);
2490 verify_heap (EV_A_ timers, timercnt);
2491
2492#if EV_PERIODIC_ENABLE
2493 assert (periodicmax >= periodiccnt);
2494 verify_heap (EV_A_ periodics, periodiccnt);
2495#endif
2496
2497 for (i = NUMPRI; i--; )
2498 {
2499 assert (pendingmax [i] >= pendingcnt [i]);
2500#if EV_IDLE_ENABLE
2501 assert (idleall >= 0);
2502 assert (idlemax [i] >= idlecnt [i]);
2503 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2504#endif
2505 }
2506
2507#if EV_FORK_ENABLE
2508 assert (forkmax >= forkcnt);
2509 array_verify (EV_A_ (W *)forks, forkcnt);
2510#endif
2511
2512#if EV_CLEANUP_ENABLE
2513 assert (cleanupmax >= cleanupcnt);
2514 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2515#endif
2516
2517#if EV_ASYNC_ENABLE
2518 assert (asyncmax >= asynccnt);
2519 array_verify (EV_A_ (W *)asyncs, asynccnt);
2520#endif
2521
2522#if EV_PREPARE_ENABLE
2523 assert (preparemax >= preparecnt);
2524 array_verify (EV_A_ (W *)prepares, preparecnt);
2525#endif
2526
2527#if EV_CHECK_ENABLE
2528 assert (checkmax >= checkcnt);
2529 array_verify (EV_A_ (W *)checks, checkcnt);
2530#endif
2531
2532# if 0
2533#if EV_CHILD_ENABLE
2534 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2535 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2536#endif
2537# endif
2538#endif
2539}
1093#endif 2540#endif
1094 2541
1095#if EV_MULTIPLICITY 2542#if EV_MULTIPLICITY
1096struct ev_loop * 2543struct ev_loop * ecb_cold
1097ev_default_loop_init (unsigned int flags)
1098#else 2544#else
1099int 2545int
2546#endif
1100ev_default_loop (unsigned int flags) 2547ev_default_loop (unsigned int flags)
1101#endif
1102{ 2548{
1103 if (sigpipe [0] == sigpipe [1])
1104 if (pipe (sigpipe))
1105 return 0;
1106
1107 if (!ev_default_loop_ptr) 2549 if (!ev_default_loop_ptr)
1108 { 2550 {
1109#if EV_MULTIPLICITY 2551#if EV_MULTIPLICITY
1110 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2552 EV_P = ev_default_loop_ptr = &default_loop_struct;
1111#else 2553#else
1112 ev_default_loop_ptr = 1; 2554 ev_default_loop_ptr = 1;
1113#endif 2555#endif
1114 2556
1115 loop_init (EV_A_ flags); 2557 loop_init (EV_A_ flags);
1116 2558
1117 if (ev_backend (EV_A)) 2559 if (ev_backend (EV_A))
1118 { 2560 {
1119 siginit (EV_A); 2561#if EV_CHILD_ENABLE
1120
1121#ifndef _WIN32
1122 ev_signal_init (&childev, childcb, SIGCHLD); 2562 ev_signal_init (&childev, childcb, SIGCHLD);
1123 ev_set_priority (&childev, EV_MAXPRI); 2563 ev_set_priority (&childev, EV_MAXPRI);
1124 ev_signal_start (EV_A_ &childev); 2564 ev_signal_start (EV_A_ &childev);
1125 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2565 ev_unref (EV_A); /* child watcher should not keep loop alive */
1126#endif 2566#endif
1131 2571
1132 return ev_default_loop_ptr; 2572 return ev_default_loop_ptr;
1133} 2573}
1134 2574
1135void 2575void
1136ev_default_destroy (void) 2576ev_loop_fork (EV_P)
1137{ 2577{
1138#if EV_MULTIPLICITY 2578 postfork = 1; /* must be in line with ev_default_fork */
1139 struct ev_loop *loop = ev_default_loop_ptr;
1140#endif
1141
1142#ifndef _WIN32
1143 ev_ref (EV_A); /* child watcher */
1144 ev_signal_stop (EV_A_ &childev);
1145#endif
1146
1147 ev_ref (EV_A); /* signal watcher */
1148 ev_io_stop (EV_A_ &sigev);
1149
1150 close (sigpipe [0]); sigpipe [0] = 0;
1151 close (sigpipe [1]); sigpipe [1] = 0;
1152
1153 loop_destroy (EV_A);
1154}
1155
1156void
1157ev_default_fork (void)
1158{
1159#if EV_MULTIPLICITY
1160 struct ev_loop *loop = ev_default_loop_ptr;
1161#endif
1162
1163 if (backend)
1164 postfork = 1;
1165} 2579}
1166 2580
1167/*****************************************************************************/ 2581/*****************************************************************************/
1168 2582
1169void 2583void
1170ev_invoke (EV_P_ void *w, int revents) 2584ev_invoke (EV_P_ void *w, int revents)
1171{ 2585{
1172 EV_CB_INVOKE ((W)w, revents); 2586 EV_CB_INVOKE ((W)w, revents);
1173} 2587}
1174 2588
1175void inline_speed 2589unsigned int
1176call_pending (EV_P) 2590ev_pending_count (EV_P)
2591{
2592 int pri;
2593 unsigned int count = 0;
2594
2595 for (pri = NUMPRI; pri--; )
2596 count += pendingcnt [pri];
2597
2598 return count;
2599}
2600
2601void noinline
2602ev_invoke_pending (EV_P)
1177{ 2603{
1178 int pri; 2604 int pri;
1179 2605
1180 for (pri = NUMPRI; pri--; ) 2606 for (pri = NUMPRI; pri--; )
1181 while (pendingcnt [pri]) 2607 while (pendingcnt [pri])
1182 { 2608 {
1183 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2609 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1184 2610
1185 if (expect_true (p->w))
1186 {
1187 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1188
1189 p->w->pending = 0; 2611 p->w->pending = 0;
1190 EV_CB_INVOKE (p->w, p->events); 2612 EV_CB_INVOKE (p->w, p->events);
1191 } 2613 EV_FREQUENT_CHECK;
1192 } 2614 }
1193} 2615}
1194 2616
1195void inline_size
1196timers_reify (EV_P)
1197{
1198 while (timercnt && ((WT)timers [0])->at <= mn_now)
1199 {
1200 ev_timer *w = timers [0];
1201
1202 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1203
1204 /* first reschedule or stop timer */
1205 if (w->repeat)
1206 {
1207 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1208
1209 ((WT)w)->at += w->repeat;
1210 if (((WT)w)->at < mn_now)
1211 ((WT)w)->at = mn_now;
1212
1213 downheap ((WT *)timers, timercnt, 0);
1214 }
1215 else
1216 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1217
1218 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1219 }
1220}
1221
1222#if EV_PERIODIC_ENABLE
1223void inline_size
1224periodics_reify (EV_P)
1225{
1226 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1227 {
1228 ev_periodic *w = periodics [0];
1229
1230 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1231
1232 /* first reschedule or stop timer */
1233 if (w->reschedule_cb)
1234 {
1235 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1236 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1237 downheap ((WT *)periodics, periodiccnt, 0);
1238 }
1239 else if (w->interval)
1240 {
1241 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1242 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1243 downheap ((WT *)periodics, periodiccnt, 0);
1244 }
1245 else
1246 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1247
1248 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1249 }
1250}
1251
1252static void noinline
1253periodics_reschedule (EV_P)
1254{
1255 int i;
1256
1257 /* adjust periodics after time jump */
1258 for (i = 0; i < periodiccnt; ++i)
1259 {
1260 ev_periodic *w = periodics [i];
1261
1262 if (w->reschedule_cb)
1263 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1264 else if (w->interval)
1265 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1266 }
1267
1268 /* now rebuild the heap */
1269 for (i = periodiccnt >> 1; i--; )
1270 downheap ((WT *)periodics, periodiccnt, i);
1271}
1272#endif
1273
1274#if EV_IDLE_ENABLE 2617#if EV_IDLE_ENABLE
1275void inline_size 2618/* make idle watchers pending. this handles the "call-idle */
2619/* only when higher priorities are idle" logic */
2620inline_size void
1276idle_reify (EV_P) 2621idle_reify (EV_P)
1277{ 2622{
1278 if (expect_false (idleall)) 2623 if (expect_false (idleall))
1279 { 2624 {
1280 int pri; 2625 int pri;
1292 } 2637 }
1293 } 2638 }
1294} 2639}
1295#endif 2640#endif
1296 2641
1297int inline_size 2642/* make timers pending */
1298time_update_monotonic (EV_P) 2643inline_size void
2644timers_reify (EV_P)
1299{ 2645{
2646 EV_FREQUENT_CHECK;
2647
2648 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2649 {
2650 do
2651 {
2652 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2653
2654 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2655
2656 /* first reschedule or stop timer */
2657 if (w->repeat)
2658 {
2659 ev_at (w) += w->repeat;
2660 if (ev_at (w) < mn_now)
2661 ev_at (w) = mn_now;
2662
2663 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2664
2665 ANHE_at_cache (timers [HEAP0]);
2666 downheap (timers, timercnt, HEAP0);
2667 }
2668 else
2669 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2670
2671 EV_FREQUENT_CHECK;
2672 feed_reverse (EV_A_ (W)w);
2673 }
2674 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2675
2676 feed_reverse_done (EV_A_ EV_TIMER);
2677 }
2678}
2679
2680#if EV_PERIODIC_ENABLE
2681
2682static void noinline
2683periodic_recalc (EV_P_ ev_periodic *w)
2684{
2685 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2686 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2687
2688 /* the above almost always errs on the low side */
2689 while (at <= ev_rt_now)
2690 {
2691 ev_tstamp nat = at + w->interval;
2692
2693 /* when resolution fails us, we use ev_rt_now */
2694 if (expect_false (nat == at))
2695 {
2696 at = ev_rt_now;
2697 break;
2698 }
2699
2700 at = nat;
2701 }
2702
2703 ev_at (w) = at;
2704}
2705
2706/* make periodics pending */
2707inline_size void
2708periodics_reify (EV_P)
2709{
2710 EV_FREQUENT_CHECK;
2711
2712 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2713 {
2714 int feed_count = 0;
2715
2716 do
2717 {
2718 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2719
2720 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2721
2722 /* first reschedule or stop timer */
2723 if (w->reschedule_cb)
2724 {
2725 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2726
2727 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2728
2729 ANHE_at_cache (periodics [HEAP0]);
2730 downheap (periodics, periodiccnt, HEAP0);
2731 }
2732 else if (w->interval)
2733 {
2734 periodic_recalc (EV_A_ w);
2735 ANHE_at_cache (periodics [HEAP0]);
2736 downheap (periodics, periodiccnt, HEAP0);
2737 }
2738 else
2739 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2740
2741 EV_FREQUENT_CHECK;
2742 feed_reverse (EV_A_ (W)w);
2743 }
2744 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2745
2746 feed_reverse_done (EV_A_ EV_PERIODIC);
2747 }
2748}
2749
2750/* simply recalculate all periodics */
2751/* TODO: maybe ensure that at least one event happens when jumping forward? */
2752static void noinline ecb_cold
2753periodics_reschedule (EV_P)
2754{
2755 int i;
2756
2757 /* adjust periodics after time jump */
2758 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2759 {
2760 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2761
2762 if (w->reschedule_cb)
2763 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2764 else if (w->interval)
2765 periodic_recalc (EV_A_ w);
2766
2767 ANHE_at_cache (periodics [i]);
2768 }
2769
2770 reheap (periodics, periodiccnt);
2771}
2772#endif
2773
2774/* adjust all timers by a given offset */
2775static void noinline ecb_cold
2776timers_reschedule (EV_P_ ev_tstamp adjust)
2777{
2778 int i;
2779
2780 for (i = 0; i < timercnt; ++i)
2781 {
2782 ANHE *he = timers + i + HEAP0;
2783 ANHE_w (*he)->at += adjust;
2784 ANHE_at_cache (*he);
2785 }
2786}
2787
2788/* fetch new monotonic and realtime times from the kernel */
2789/* also detect if there was a timejump, and act accordingly */
2790inline_speed void
2791time_update (EV_P_ ev_tstamp max_block)
2792{
2793#if EV_USE_MONOTONIC
2794 if (expect_true (have_monotonic))
2795 {
2796 int i;
2797 ev_tstamp odiff = rtmn_diff;
2798
1300 mn_now = get_clock (); 2799 mn_now = get_clock ();
1301 2800
2801 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2802 /* interpolate in the meantime */
1302 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2803 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1303 { 2804 {
1304 ev_rt_now = rtmn_diff + mn_now; 2805 ev_rt_now = rtmn_diff + mn_now;
1305 return 0; 2806 return;
1306 } 2807 }
1307 else 2808
1308 {
1309 now_floor = mn_now; 2809 now_floor = mn_now;
1310 ev_rt_now = ev_time (); 2810 ev_rt_now = ev_time ();
1311 return 1;
1312 }
1313}
1314 2811
1315void inline_size 2812 /* loop a few times, before making important decisions.
1316time_update (EV_P) 2813 * on the choice of "4": one iteration isn't enough,
1317{ 2814 * in case we get preempted during the calls to
1318 int i; 2815 * ev_time and get_clock. a second call is almost guaranteed
1319 2816 * to succeed in that case, though. and looping a few more times
1320#if EV_USE_MONOTONIC 2817 * doesn't hurt either as we only do this on time-jumps or
1321 if (expect_true (have_monotonic)) 2818 * in the unlikely event of having been preempted here.
1322 { 2819 */
1323 if (time_update_monotonic (EV_A)) 2820 for (i = 4; --i; )
1324 { 2821 {
1325 ev_tstamp odiff = rtmn_diff; 2822 ev_tstamp diff;
1326
1327 /* loop a few times, before making important decisions.
1328 * on the choice of "4": one iteration isn't enough,
1329 * in case we get preempted during the calls to
1330 * ev_time and get_clock. a second call is almost guaranteed
1331 * to succeed in that case, though. and looping a few more times
1332 * doesn't hurt either as we only do this on time-jumps or
1333 * in the unlikely event of having been preempted here.
1334 */
1335 for (i = 4; --i; )
1336 {
1337 rtmn_diff = ev_rt_now - mn_now; 2823 rtmn_diff = ev_rt_now - mn_now;
1338 2824
1339 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2825 diff = odiff - rtmn_diff;
2826
2827 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1340 return; /* all is well */ 2828 return; /* all is well */
1341 2829
1342 ev_rt_now = ev_time (); 2830 ev_rt_now = ev_time ();
1343 mn_now = get_clock (); 2831 mn_now = get_clock ();
1344 now_floor = mn_now; 2832 now_floor = mn_now;
1345 } 2833 }
1346 2834
2835 /* no timer adjustment, as the monotonic clock doesn't jump */
2836 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1347# if EV_PERIODIC_ENABLE 2837# if EV_PERIODIC_ENABLE
1348 periodics_reschedule (EV_A); 2838 periodics_reschedule (EV_A);
1349# endif 2839# endif
1350 /* no timer adjustment, as the monotonic clock doesn't jump */
1351 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1352 }
1353 } 2840 }
1354 else 2841 else
1355#endif 2842#endif
1356 { 2843 {
1357 ev_rt_now = ev_time (); 2844 ev_rt_now = ev_time ();
1358 2845
1359 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2846 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1360 { 2847 {
2848 /* adjust timers. this is easy, as the offset is the same for all of them */
2849 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1361#if EV_PERIODIC_ENABLE 2850#if EV_PERIODIC_ENABLE
1362 periodics_reschedule (EV_A); 2851 periodics_reschedule (EV_A);
1363#endif 2852#endif
1364
1365 /* adjust timers. this is easy, as the offset is the same for all of them */
1366 for (i = 0; i < timercnt; ++i)
1367 ((WT)timers [i])->at += ev_rt_now - mn_now;
1368 } 2853 }
1369 2854
1370 mn_now = ev_rt_now; 2855 mn_now = ev_rt_now;
1371 } 2856 }
1372} 2857}
1373 2858
1374void 2859void
1375ev_ref (EV_P)
1376{
1377 ++activecnt;
1378}
1379
1380void
1381ev_unref (EV_P)
1382{
1383 --activecnt;
1384}
1385
1386static int loop_done;
1387
1388void
1389ev_loop (EV_P_ int flags) 2860ev_run (EV_P_ int flags)
1390{ 2861{
1391 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2862#if EV_FEATURE_API
1392 ? EVUNLOOP_ONE 2863 ++loop_depth;
1393 : EVUNLOOP_CANCEL; 2864#endif
1394 2865
2866 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2867
2868 loop_done = EVBREAK_CANCEL;
2869
1395 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2870 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1396 2871
1397 do 2872 do
1398 { 2873 {
2874#if EV_VERIFY >= 2
2875 ev_verify (EV_A);
2876#endif
2877
1399#ifndef _WIN32 2878#ifndef _WIN32
1400 if (expect_false (curpid)) /* penalise the forking check even more */ 2879 if (expect_false (curpid)) /* penalise the forking check even more */
1401 if (expect_false (getpid () != curpid)) 2880 if (expect_false (getpid () != curpid))
1402 { 2881 {
1403 curpid = getpid (); 2882 curpid = getpid ();
1409 /* we might have forked, so queue fork handlers */ 2888 /* we might have forked, so queue fork handlers */
1410 if (expect_false (postfork)) 2889 if (expect_false (postfork))
1411 if (forkcnt) 2890 if (forkcnt)
1412 { 2891 {
1413 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2892 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1414 call_pending (EV_A); 2893 EV_INVOKE_PENDING;
1415 } 2894 }
1416#endif 2895#endif
1417 2896
2897#if EV_PREPARE_ENABLE
1418 /* queue check watchers (and execute them) */ 2898 /* queue prepare watchers (and execute them) */
1419 if (expect_false (preparecnt)) 2899 if (expect_false (preparecnt))
1420 { 2900 {
1421 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2901 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1422 call_pending (EV_A); 2902 EV_INVOKE_PENDING;
1423 } 2903 }
2904#endif
1424 2905
1425 if (expect_false (!activecnt)) 2906 if (expect_false (loop_done))
1426 break; 2907 break;
1427 2908
1428 /* we might have forked, so reify kernel state if necessary */ 2909 /* we might have forked, so reify kernel state if necessary */
1429 if (expect_false (postfork)) 2910 if (expect_false (postfork))
1430 loop_fork (EV_A); 2911 loop_fork (EV_A);
1432 /* update fd-related kernel structures */ 2913 /* update fd-related kernel structures */
1433 fd_reify (EV_A); 2914 fd_reify (EV_A);
1434 2915
1435 /* calculate blocking time */ 2916 /* calculate blocking time */
1436 { 2917 {
1437 ev_tstamp block; 2918 ev_tstamp waittime = 0.;
2919 ev_tstamp sleeptime = 0.;
1438 2920
1439 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2921 /* remember old timestamp for io_blocktime calculation */
1440 block = 0.; /* do not block at all */ 2922 ev_tstamp prev_mn_now = mn_now;
1441 else 2923
2924 /* update time to cancel out callback processing overhead */
2925 time_update (EV_A_ 1e100);
2926
2927 /* from now on, we want a pipe-wake-up */
2928 pipe_write_wanted = 1;
2929
2930 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2931
2932 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1442 { 2933 {
1443 /* update time to cancel out callback processing overhead */
1444#if EV_USE_MONOTONIC
1445 if (expect_true (have_monotonic))
1446 time_update_monotonic (EV_A);
1447 else
1448#endif
1449 {
1450 ev_rt_now = ev_time ();
1451 mn_now = ev_rt_now;
1452 }
1453
1454 block = MAX_BLOCKTIME; 2934 waittime = MAX_BLOCKTIME;
1455 2935
1456 if (timercnt) 2936 if (timercnt)
1457 { 2937 {
1458 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2938 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1459 if (block > to) block = to; 2939 if (waittime > to) waittime = to;
1460 } 2940 }
1461 2941
1462#if EV_PERIODIC_ENABLE 2942#if EV_PERIODIC_ENABLE
1463 if (periodiccnt) 2943 if (periodiccnt)
1464 { 2944 {
1465 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2945 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1466 if (block > to) block = to; 2946 if (waittime > to) waittime = to;
1467 } 2947 }
1468#endif 2948#endif
1469 2949
2950 /* don't let timeouts decrease the waittime below timeout_blocktime */
2951 if (expect_false (waittime < timeout_blocktime))
2952 waittime = timeout_blocktime;
2953
2954 /* at this point, we NEED to wait, so we have to ensure */
2955 /* to pass a minimum nonzero value to the backend */
2956 if (expect_false (waittime < backend_mintime))
2957 waittime = backend_mintime;
2958
2959 /* extra check because io_blocktime is commonly 0 */
1470 if (expect_false (block < 0.)) block = 0.; 2960 if (expect_false (io_blocktime))
2961 {
2962 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2963
2964 if (sleeptime > waittime - backend_mintime)
2965 sleeptime = waittime - backend_mintime;
2966
2967 if (expect_true (sleeptime > 0.))
2968 {
2969 ev_sleep (sleeptime);
2970 waittime -= sleeptime;
2971 }
2972 }
1471 } 2973 }
1472 2974
2975#if EV_FEATURE_API
1473 ++loop_count; 2976 ++loop_count;
2977#endif
2978 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1474 backend_poll (EV_A_ block); 2979 backend_poll (EV_A_ waittime);
2980 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2981
2982 pipe_write_wanted = 0; /* just an optimsiation, no fence needed */
2983
2984 if (pipe_write_skipped)
2985 {
2986 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
2987 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2988 }
2989
2990
2991 /* update ev_rt_now, do magic */
2992 time_update (EV_A_ waittime + sleeptime);
1475 } 2993 }
1476
1477 /* update ev_rt_now, do magic */
1478 time_update (EV_A);
1479 2994
1480 /* queue pending timers and reschedule them */ 2995 /* queue pending timers and reschedule them */
1481 timers_reify (EV_A); /* relative timers called last */ 2996 timers_reify (EV_A); /* relative timers called last */
1482#if EV_PERIODIC_ENABLE 2997#if EV_PERIODIC_ENABLE
1483 periodics_reify (EV_A); /* absolute timers called first */ 2998 periodics_reify (EV_A); /* absolute timers called first */
1486#if EV_IDLE_ENABLE 3001#if EV_IDLE_ENABLE
1487 /* queue idle watchers unless other events are pending */ 3002 /* queue idle watchers unless other events are pending */
1488 idle_reify (EV_A); 3003 idle_reify (EV_A);
1489#endif 3004#endif
1490 3005
3006#if EV_CHECK_ENABLE
1491 /* queue check watchers, to be executed first */ 3007 /* queue check watchers, to be executed first */
1492 if (expect_false (checkcnt)) 3008 if (expect_false (checkcnt))
1493 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3009 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3010#endif
1494 3011
1495 call_pending (EV_A); 3012 EV_INVOKE_PENDING;
1496
1497 } 3013 }
1498 while (expect_true (activecnt && !loop_done)); 3014 while (expect_true (
3015 activecnt
3016 && !loop_done
3017 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3018 ));
1499 3019
1500 if (loop_done == EVUNLOOP_ONE) 3020 if (loop_done == EVBREAK_ONE)
1501 loop_done = EVUNLOOP_CANCEL; 3021 loop_done = EVBREAK_CANCEL;
3022
3023#if EV_FEATURE_API
3024 --loop_depth;
3025#endif
1502} 3026}
1503 3027
1504void 3028void
1505ev_unloop (EV_P_ int how) 3029ev_break (EV_P_ int how)
1506{ 3030{
1507 loop_done = how; 3031 loop_done = how;
1508} 3032}
1509 3033
3034void
3035ev_ref (EV_P)
3036{
3037 ++activecnt;
3038}
3039
3040void
3041ev_unref (EV_P)
3042{
3043 --activecnt;
3044}
3045
3046void
3047ev_now_update (EV_P)
3048{
3049 time_update (EV_A_ 1e100);
3050}
3051
3052void
3053ev_suspend (EV_P)
3054{
3055 ev_now_update (EV_A);
3056}
3057
3058void
3059ev_resume (EV_P)
3060{
3061 ev_tstamp mn_prev = mn_now;
3062
3063 ev_now_update (EV_A);
3064 timers_reschedule (EV_A_ mn_now - mn_prev);
3065#if EV_PERIODIC_ENABLE
3066 /* TODO: really do this? */
3067 periodics_reschedule (EV_A);
3068#endif
3069}
3070
1510/*****************************************************************************/ 3071/*****************************************************************************/
3072/* singly-linked list management, used when the expected list length is short */
1511 3073
1512void inline_size 3074inline_size void
1513wlist_add (WL *head, WL elem) 3075wlist_add (WL *head, WL elem)
1514{ 3076{
1515 elem->next = *head; 3077 elem->next = *head;
1516 *head = elem; 3078 *head = elem;
1517} 3079}
1518 3080
1519void inline_size 3081inline_size void
1520wlist_del (WL *head, WL elem) 3082wlist_del (WL *head, WL elem)
1521{ 3083{
1522 while (*head) 3084 while (*head)
1523 { 3085 {
1524 if (*head == elem) 3086 if (expect_true (*head == elem))
1525 { 3087 {
1526 *head = elem->next; 3088 *head = elem->next;
1527 return; 3089 break;
1528 } 3090 }
1529 3091
1530 head = &(*head)->next; 3092 head = &(*head)->next;
1531 } 3093 }
1532} 3094}
1533 3095
1534void inline_speed 3096/* internal, faster, version of ev_clear_pending */
3097inline_speed void
1535clear_pending (EV_P_ W w) 3098clear_pending (EV_P_ W w)
1536{ 3099{
1537 if (w->pending) 3100 if (w->pending)
1538 { 3101 {
1539 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3102 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1540 w->pending = 0; 3103 w->pending = 0;
1541 } 3104 }
1542} 3105}
1543 3106
1544int 3107int
1545ev_clear_pending (EV_P_ void *w) 3108ev_clear_pending (EV_P_ void *w)
1546{ 3109{
1547 W w_ = (W)w; 3110 W w_ = (W)w;
1548 int pending = w_->pending; 3111 int pending = w_->pending;
1549 3112
1550 if (!pending) 3113 if (expect_true (pending))
3114 {
3115 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3116 p->w = (W)&pending_w;
3117 w_->pending = 0;
3118 return p->events;
3119 }
3120 else
1551 return 0; 3121 return 0;
1552
1553 w_->pending = 0;
1554 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1555 p->w = 0;
1556
1557 return p->events;
1558} 3122}
1559 3123
1560void inline_size 3124inline_size void
1561pri_adjust (EV_P_ W w) 3125pri_adjust (EV_P_ W w)
1562{ 3126{
1563 int pri = w->priority; 3127 int pri = ev_priority (w);
1564 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3128 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1565 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3129 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1566 w->priority = pri; 3130 ev_set_priority (w, pri);
1567} 3131}
1568 3132
1569void inline_speed 3133inline_speed void
1570ev_start (EV_P_ W w, int active) 3134ev_start (EV_P_ W w, int active)
1571{ 3135{
1572 pri_adjust (EV_A_ w); 3136 pri_adjust (EV_A_ w);
1573 w->active = active; 3137 w->active = active;
1574 ev_ref (EV_A); 3138 ev_ref (EV_A);
1575} 3139}
1576 3140
1577void inline_size 3141inline_size void
1578ev_stop (EV_P_ W w) 3142ev_stop (EV_P_ W w)
1579{ 3143{
1580 ev_unref (EV_A); 3144 ev_unref (EV_A);
1581 w->active = 0; 3145 w->active = 0;
1582} 3146}
1583 3147
1584/*****************************************************************************/ 3148/*****************************************************************************/
1585 3149
1586void 3150void noinline
1587ev_io_start (EV_P_ ev_io *w) 3151ev_io_start (EV_P_ ev_io *w)
1588{ 3152{
1589 int fd = w->fd; 3153 int fd = w->fd;
1590 3154
1591 if (expect_false (ev_is_active (w))) 3155 if (expect_false (ev_is_active (w)))
1592 return; 3156 return;
1593 3157
1594 assert (("ev_io_start called with negative fd", fd >= 0)); 3158 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3159 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3160
3161 EV_FREQUENT_CHECK;
1595 3162
1596 ev_start (EV_A_ (W)w, 1); 3163 ev_start (EV_A_ (W)w, 1);
1597 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3164 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1598 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3165 wlist_add (&anfds[fd].head, (WL)w);
1599 3166
1600 fd_change (EV_A_ fd); 3167 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1601} 3168 w->events &= ~EV__IOFDSET;
1602 3169
1603void 3170 EV_FREQUENT_CHECK;
3171}
3172
3173void noinline
1604ev_io_stop (EV_P_ ev_io *w) 3174ev_io_stop (EV_P_ ev_io *w)
1605{ 3175{
1606 clear_pending (EV_A_ (W)w); 3176 clear_pending (EV_A_ (W)w);
1607 if (expect_false (!ev_is_active (w))) 3177 if (expect_false (!ev_is_active (w)))
1608 return; 3178 return;
1609 3179
1610 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3180 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1611 3181
3182 EV_FREQUENT_CHECK;
3183
1612 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3184 wlist_del (&anfds[w->fd].head, (WL)w);
1613 ev_stop (EV_A_ (W)w); 3185 ev_stop (EV_A_ (W)w);
1614 3186
1615 fd_change (EV_A_ w->fd); 3187 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1616}
1617 3188
1618void 3189 EV_FREQUENT_CHECK;
3190}
3191
3192void noinline
1619ev_timer_start (EV_P_ ev_timer *w) 3193ev_timer_start (EV_P_ ev_timer *w)
1620{ 3194{
1621 if (expect_false (ev_is_active (w))) 3195 if (expect_false (ev_is_active (w)))
1622 return; 3196 return;
1623 3197
1624 ((WT)w)->at += mn_now; 3198 ev_at (w) += mn_now;
1625 3199
1626 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3200 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1627 3201
3202 EV_FREQUENT_CHECK;
3203
3204 ++timercnt;
1628 ev_start (EV_A_ (W)w, ++timercnt); 3205 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1629 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 3206 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1630 timers [timercnt - 1] = w; 3207 ANHE_w (timers [ev_active (w)]) = (WT)w;
1631 upheap ((WT *)timers, timercnt - 1); 3208 ANHE_at_cache (timers [ev_active (w)]);
3209 upheap (timers, ev_active (w));
1632 3210
3211 EV_FREQUENT_CHECK;
3212
1633 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3213 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1634} 3214}
1635 3215
1636void 3216void noinline
1637ev_timer_stop (EV_P_ ev_timer *w) 3217ev_timer_stop (EV_P_ ev_timer *w)
1638{ 3218{
1639 clear_pending (EV_A_ (W)w); 3219 clear_pending (EV_A_ (W)w);
1640 if (expect_false (!ev_is_active (w))) 3220 if (expect_false (!ev_is_active (w)))
1641 return; 3221 return;
1642 3222
1643 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3223 EV_FREQUENT_CHECK;
1644 3224
1645 { 3225 {
1646 int active = ((W)w)->active; 3226 int active = ev_active (w);
1647 3227
3228 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3229
3230 --timercnt;
3231
1648 if (expect_true (--active < --timercnt)) 3232 if (expect_true (active < timercnt + HEAP0))
1649 { 3233 {
1650 timers [active] = timers [timercnt]; 3234 timers [active] = timers [timercnt + HEAP0];
1651 adjustheap ((WT *)timers, timercnt, active); 3235 adjustheap (timers, timercnt, active);
1652 } 3236 }
1653 } 3237 }
1654 3238
1655 ((WT)w)->at -= mn_now; 3239 ev_at (w) -= mn_now;
1656 3240
1657 ev_stop (EV_A_ (W)w); 3241 ev_stop (EV_A_ (W)w);
1658}
1659 3242
1660void 3243 EV_FREQUENT_CHECK;
3244}
3245
3246void noinline
1661ev_timer_again (EV_P_ ev_timer *w) 3247ev_timer_again (EV_P_ ev_timer *w)
1662{ 3248{
3249 EV_FREQUENT_CHECK;
3250
1663 if (ev_is_active (w)) 3251 if (ev_is_active (w))
1664 { 3252 {
1665 if (w->repeat) 3253 if (w->repeat)
1666 { 3254 {
1667 ((WT)w)->at = mn_now + w->repeat; 3255 ev_at (w) = mn_now + w->repeat;
3256 ANHE_at_cache (timers [ev_active (w)]);
1668 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3257 adjustheap (timers, timercnt, ev_active (w));
1669 } 3258 }
1670 else 3259 else
1671 ev_timer_stop (EV_A_ w); 3260 ev_timer_stop (EV_A_ w);
1672 } 3261 }
1673 else if (w->repeat) 3262 else if (w->repeat)
1674 { 3263 {
1675 w->at = w->repeat; 3264 ev_at (w) = w->repeat;
1676 ev_timer_start (EV_A_ w); 3265 ev_timer_start (EV_A_ w);
1677 } 3266 }
3267
3268 EV_FREQUENT_CHECK;
3269}
3270
3271ev_tstamp
3272ev_timer_remaining (EV_P_ ev_timer *w)
3273{
3274 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1678} 3275}
1679 3276
1680#if EV_PERIODIC_ENABLE 3277#if EV_PERIODIC_ENABLE
1681void 3278void noinline
1682ev_periodic_start (EV_P_ ev_periodic *w) 3279ev_periodic_start (EV_P_ ev_periodic *w)
1683{ 3280{
1684 if (expect_false (ev_is_active (w))) 3281 if (expect_false (ev_is_active (w)))
1685 return; 3282 return;
1686 3283
1687 if (w->reschedule_cb) 3284 if (w->reschedule_cb)
1688 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3285 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval) 3286 else if (w->interval)
1690 { 3287 {
1691 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3288 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1692 /* this formula differs from the one in periodic_reify because we do not always round up */ 3289 periodic_recalc (EV_A_ w);
1693 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1694 } 3290 }
3291 else
3292 ev_at (w) = w->offset;
1695 3293
3294 EV_FREQUENT_CHECK;
3295
3296 ++periodiccnt;
1696 ev_start (EV_A_ (W)w, ++periodiccnt); 3297 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1697 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 3298 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1698 periodics [periodiccnt - 1] = w; 3299 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1699 upheap ((WT *)periodics, periodiccnt - 1); 3300 ANHE_at_cache (periodics [ev_active (w)]);
3301 upheap (periodics, ev_active (w));
1700 3302
3303 EV_FREQUENT_CHECK;
3304
1701 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3305 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1702} 3306}
1703 3307
1704void 3308void noinline
1705ev_periodic_stop (EV_P_ ev_periodic *w) 3309ev_periodic_stop (EV_P_ ev_periodic *w)
1706{ 3310{
1707 clear_pending (EV_A_ (W)w); 3311 clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 3312 if (expect_false (!ev_is_active (w)))
1709 return; 3313 return;
1710 3314
1711 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3315 EV_FREQUENT_CHECK;
1712 3316
1713 { 3317 {
1714 int active = ((W)w)->active; 3318 int active = ev_active (w);
1715 3319
3320 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3321
3322 --periodiccnt;
3323
1716 if (expect_true (--active < --periodiccnt)) 3324 if (expect_true (active < periodiccnt + HEAP0))
1717 { 3325 {
1718 periodics [active] = periodics [periodiccnt]; 3326 periodics [active] = periodics [periodiccnt + HEAP0];
1719 adjustheap ((WT *)periodics, periodiccnt, active); 3327 adjustheap (periodics, periodiccnt, active);
1720 } 3328 }
1721 } 3329 }
1722 3330
1723 ev_stop (EV_A_ (W)w); 3331 ev_stop (EV_A_ (W)w);
1724}
1725 3332
1726void 3333 EV_FREQUENT_CHECK;
3334}
3335
3336void noinline
1727ev_periodic_again (EV_P_ ev_periodic *w) 3337ev_periodic_again (EV_P_ ev_periodic *w)
1728{ 3338{
1729 /* TODO: use adjustheap and recalculation */ 3339 /* TODO: use adjustheap and recalculation */
1730 ev_periodic_stop (EV_A_ w); 3340 ev_periodic_stop (EV_A_ w);
1731 ev_periodic_start (EV_A_ w); 3341 ev_periodic_start (EV_A_ w);
1734 3344
1735#ifndef SA_RESTART 3345#ifndef SA_RESTART
1736# define SA_RESTART 0 3346# define SA_RESTART 0
1737#endif 3347#endif
1738 3348
1739void 3349#if EV_SIGNAL_ENABLE
3350
3351void noinline
1740ev_signal_start (EV_P_ ev_signal *w) 3352ev_signal_start (EV_P_ ev_signal *w)
1741{ 3353{
1742#if EV_MULTIPLICITY
1743 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1744#endif
1745 if (expect_false (ev_is_active (w))) 3354 if (expect_false (ev_is_active (w)))
1746 return; 3355 return;
1747 3356
1748 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3357 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3358
3359#if EV_MULTIPLICITY
3360 assert (("libev: a signal must not be attached to two different loops",
3361 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3362
3363 signals [w->signum - 1].loop = EV_A;
3364#endif
3365
3366 EV_FREQUENT_CHECK;
3367
3368#if EV_USE_SIGNALFD
3369 if (sigfd == -2)
3370 {
3371 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3372 if (sigfd < 0 && errno == EINVAL)
3373 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3374
3375 if (sigfd >= 0)
3376 {
3377 fd_intern (sigfd); /* doing it twice will not hurt */
3378
3379 sigemptyset (&sigfd_set);
3380
3381 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3382 ev_set_priority (&sigfd_w, EV_MAXPRI);
3383 ev_io_start (EV_A_ &sigfd_w);
3384 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3385 }
3386 }
3387
3388 if (sigfd >= 0)
3389 {
3390 /* TODO: check .head */
3391 sigaddset (&sigfd_set, w->signum);
3392 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3393
3394 signalfd (sigfd, &sigfd_set, 0);
3395 }
3396#endif
1749 3397
1750 ev_start (EV_A_ (W)w, 1); 3398 ev_start (EV_A_ (W)w, 1);
1751 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1752 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 3399 wlist_add (&signals [w->signum - 1].head, (WL)w);
1753 3400
1754 if (!((WL)w)->next) 3401 if (!((WL)w)->next)
3402# if EV_USE_SIGNALFD
3403 if (sigfd < 0) /*TODO*/
3404# endif
1755 { 3405 {
1756#if _WIN32 3406# ifdef _WIN32
3407 evpipe_init (EV_A);
3408
1757 signal (w->signum, sighandler); 3409 signal (w->signum, ev_sighandler);
1758#else 3410# else
1759 struct sigaction sa; 3411 struct sigaction sa;
3412
3413 evpipe_init (EV_A);
3414
1760 sa.sa_handler = sighandler; 3415 sa.sa_handler = ev_sighandler;
1761 sigfillset (&sa.sa_mask); 3416 sigfillset (&sa.sa_mask);
1762 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3417 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1763 sigaction (w->signum, &sa, 0); 3418 sigaction (w->signum, &sa, 0);
3419
3420 if (origflags & EVFLAG_NOSIGMASK)
3421 {
3422 sigemptyset (&sa.sa_mask);
3423 sigaddset (&sa.sa_mask, w->signum);
3424 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3425 }
1764#endif 3426#endif
1765 } 3427 }
1766}
1767 3428
1768void 3429 EV_FREQUENT_CHECK;
3430}
3431
3432void noinline
1769ev_signal_stop (EV_P_ ev_signal *w) 3433ev_signal_stop (EV_P_ ev_signal *w)
1770{ 3434{
1771 clear_pending (EV_A_ (W)w); 3435 clear_pending (EV_A_ (W)w);
1772 if (expect_false (!ev_is_active (w))) 3436 if (expect_false (!ev_is_active (w)))
1773 return; 3437 return;
1774 3438
3439 EV_FREQUENT_CHECK;
3440
1775 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3441 wlist_del (&signals [w->signum - 1].head, (WL)w);
1776 ev_stop (EV_A_ (W)w); 3442 ev_stop (EV_A_ (W)w);
1777 3443
1778 if (!signals [w->signum - 1].head) 3444 if (!signals [w->signum - 1].head)
3445 {
3446#if EV_MULTIPLICITY
3447 signals [w->signum - 1].loop = 0; /* unattach from signal */
3448#endif
3449#if EV_USE_SIGNALFD
3450 if (sigfd >= 0)
3451 {
3452 sigset_t ss;
3453
3454 sigemptyset (&ss);
3455 sigaddset (&ss, w->signum);
3456 sigdelset (&sigfd_set, w->signum);
3457
3458 signalfd (sigfd, &sigfd_set, 0);
3459 sigprocmask (SIG_UNBLOCK, &ss, 0);
3460 }
3461 else
3462#endif
1779 signal (w->signum, SIG_DFL); 3463 signal (w->signum, SIG_DFL);
3464 }
3465
3466 EV_FREQUENT_CHECK;
1780} 3467}
3468
3469#endif
3470
3471#if EV_CHILD_ENABLE
1781 3472
1782void 3473void
1783ev_child_start (EV_P_ ev_child *w) 3474ev_child_start (EV_P_ ev_child *w)
1784{ 3475{
1785#if EV_MULTIPLICITY 3476#if EV_MULTIPLICITY
1786 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3477 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1787#endif 3478#endif
1788 if (expect_false (ev_is_active (w))) 3479 if (expect_false (ev_is_active (w)))
1789 return; 3480 return;
1790 3481
3482 EV_FREQUENT_CHECK;
3483
1791 ev_start (EV_A_ (W)w, 1); 3484 ev_start (EV_A_ (W)w, 1);
1792 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3485 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3486
3487 EV_FREQUENT_CHECK;
1793} 3488}
1794 3489
1795void 3490void
1796ev_child_stop (EV_P_ ev_child *w) 3491ev_child_stop (EV_P_ ev_child *w)
1797{ 3492{
1798 clear_pending (EV_A_ (W)w); 3493 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 3494 if (expect_false (!ev_is_active (w)))
1800 return; 3495 return;
1801 3496
3497 EV_FREQUENT_CHECK;
3498
1802 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3499 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1803 ev_stop (EV_A_ (W)w); 3500 ev_stop (EV_A_ (W)w);
3501
3502 EV_FREQUENT_CHECK;
1804} 3503}
3504
3505#endif
1805 3506
1806#if EV_STAT_ENABLE 3507#if EV_STAT_ENABLE
1807 3508
1808# ifdef _WIN32 3509# ifdef _WIN32
1809# undef lstat 3510# undef lstat
1810# define lstat(a,b) _stati64 (a,b) 3511# define lstat(a,b) _stati64 (a,b)
1811# endif 3512# endif
1812 3513
1813#define DEF_STAT_INTERVAL 5.0074891 3514#define DEF_STAT_INTERVAL 5.0074891
3515#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1814#define MIN_STAT_INTERVAL 0.1074891 3516#define MIN_STAT_INTERVAL 0.1074891
1815 3517
1816static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3518static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1817 3519
1818#if EV_USE_INOTIFY 3520#if EV_USE_INOTIFY
1819# define EV_INOTIFY_BUFSIZE 8192 3521
3522/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3523# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1820 3524
1821static void noinline 3525static void noinline
1822infy_add (EV_P_ ev_stat *w) 3526infy_add (EV_P_ ev_stat *w)
1823{ 3527{
1824 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3528 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1825 3529
1826 if (w->wd < 0) 3530 if (w->wd >= 0)
3531 {
3532 struct statfs sfs;
3533
3534 /* now local changes will be tracked by inotify, but remote changes won't */
3535 /* unless the filesystem is known to be local, we therefore still poll */
3536 /* also do poll on <2.6.25, but with normal frequency */
3537
3538 if (!fs_2625)
3539 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3540 else if (!statfs (w->path, &sfs)
3541 && (sfs.f_type == 0x1373 /* devfs */
3542 || sfs.f_type == 0xEF53 /* ext2/3 */
3543 || sfs.f_type == 0x3153464a /* jfs */
3544 || sfs.f_type == 0x52654973 /* reiser3 */
3545 || sfs.f_type == 0x01021994 /* tempfs */
3546 || sfs.f_type == 0x58465342 /* xfs */))
3547 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3548 else
3549 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1827 { 3550 }
1828 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3551 else
3552 {
3553 /* can't use inotify, continue to stat */
3554 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1829 3555
1830 /* monitor some parent directory for speedup hints */ 3556 /* if path is not there, monitor some parent directory for speedup hints */
3557 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3558 /* but an efficiency issue only */
1831 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3559 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1832 { 3560 {
1833 char path [4096]; 3561 char path [4096];
1834 strcpy (path, w->path); 3562 strcpy (path, w->path);
1835 3563
1838 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3566 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1839 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3567 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1840 3568
1841 char *pend = strrchr (path, '/'); 3569 char *pend = strrchr (path, '/');
1842 3570
1843 if (!pend) 3571 if (!pend || pend == path)
1844 break; /* whoops, no '/', complain to your admin */ 3572 break;
1845 3573
1846 *pend = 0; 3574 *pend = 0;
1847 w->wd = inotify_add_watch (fs_fd, path, mask); 3575 w->wd = inotify_add_watch (fs_fd, path, mask);
1848 } 3576 }
1849 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3577 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1850 } 3578 }
1851 } 3579 }
1852 else
1853 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1854 3580
1855 if (w->wd >= 0) 3581 if (w->wd >= 0)
1856 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3582 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3583
3584 /* now re-arm timer, if required */
3585 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3586 ev_timer_again (EV_A_ &w->timer);
3587 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1857} 3588}
1858 3589
1859static void noinline 3590static void noinline
1860infy_del (EV_P_ ev_stat *w) 3591infy_del (EV_P_ ev_stat *w)
1861{ 3592{
1864 3595
1865 if (wd < 0) 3596 if (wd < 0)
1866 return; 3597 return;
1867 3598
1868 w->wd = -2; 3599 w->wd = -2;
1869 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3600 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1870 wlist_del (&fs_hash [slot].head, (WL)w); 3601 wlist_del (&fs_hash [slot].head, (WL)w);
1871 3602
1872 /* remove this watcher, if others are watching it, they will rearm */ 3603 /* remove this watcher, if others are watching it, they will rearm */
1873 inotify_rm_watch (fs_fd, wd); 3604 inotify_rm_watch (fs_fd, wd);
1874} 3605}
1875 3606
1876static void noinline 3607static void noinline
1877infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3608infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1878{ 3609{
1879 if (slot < 0) 3610 if (slot < 0)
1880 /* overflow, need to check for all hahs slots */ 3611 /* overflow, need to check for all hash slots */
1881 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3612 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1882 infy_wd (EV_A_ slot, wd, ev); 3613 infy_wd (EV_A_ slot, wd, ev);
1883 else 3614 else
1884 { 3615 {
1885 WL w_; 3616 WL w_;
1886 3617
1887 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3618 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1888 { 3619 {
1889 ev_stat *w = (ev_stat *)w_; 3620 ev_stat *w = (ev_stat *)w_;
1890 w_ = w_->next; /* lets us remove this watcher and all before it */ 3621 w_ = w_->next; /* lets us remove this watcher and all before it */
1891 3622
1892 if (w->wd == wd || wd == -1) 3623 if (w->wd == wd || wd == -1)
1893 { 3624 {
1894 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3625 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1895 { 3626 {
3627 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1896 w->wd = -1; 3628 w->wd = -1;
1897 infy_add (EV_A_ w); /* re-add, no matter what */ 3629 infy_add (EV_A_ w); /* re-add, no matter what */
1898 } 3630 }
1899 3631
1900 stat_timer_cb (EV_A_ &w->timer, 0); 3632 stat_timer_cb (EV_A_ &w->timer, 0);
1905 3637
1906static void 3638static void
1907infy_cb (EV_P_ ev_io *w, int revents) 3639infy_cb (EV_P_ ev_io *w, int revents)
1908{ 3640{
1909 char buf [EV_INOTIFY_BUFSIZE]; 3641 char buf [EV_INOTIFY_BUFSIZE];
1910 struct inotify_event *ev = (struct inotify_event *)buf;
1911 int ofs; 3642 int ofs;
1912 int len = read (fs_fd, buf, sizeof (buf)); 3643 int len = read (fs_fd, buf, sizeof (buf));
1913 3644
1914 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3645 for (ofs = 0; ofs < len; )
3646 {
3647 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1915 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3648 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3649 ofs += sizeof (struct inotify_event) + ev->len;
3650 }
1916} 3651}
1917 3652
1918void inline_size 3653inline_size void ecb_cold
3654ev_check_2625 (EV_P)
3655{
3656 /* kernels < 2.6.25 are borked
3657 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3658 */
3659 if (ev_linux_version () < 0x020619)
3660 return;
3661
3662 fs_2625 = 1;
3663}
3664
3665inline_size int
3666infy_newfd (void)
3667{
3668#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3669 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3670 if (fd >= 0)
3671 return fd;
3672#endif
3673 return inotify_init ();
3674}
3675
3676inline_size void
1919infy_init (EV_P) 3677infy_init (EV_P)
1920{ 3678{
1921 if (fs_fd != -2) 3679 if (fs_fd != -2)
1922 return; 3680 return;
1923 3681
3682 fs_fd = -1;
3683
3684 ev_check_2625 (EV_A);
3685
1924 fs_fd = inotify_init (); 3686 fs_fd = infy_newfd ();
1925 3687
1926 if (fs_fd >= 0) 3688 if (fs_fd >= 0)
1927 { 3689 {
3690 fd_intern (fs_fd);
1928 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3691 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1929 ev_set_priority (&fs_w, EV_MAXPRI); 3692 ev_set_priority (&fs_w, EV_MAXPRI);
1930 ev_io_start (EV_A_ &fs_w); 3693 ev_io_start (EV_A_ &fs_w);
3694 ev_unref (EV_A);
1931 } 3695 }
1932} 3696}
1933 3697
1934void inline_size 3698inline_size void
1935infy_fork (EV_P) 3699infy_fork (EV_P)
1936{ 3700{
1937 int slot; 3701 int slot;
1938 3702
1939 if (fs_fd < 0) 3703 if (fs_fd < 0)
1940 return; 3704 return;
1941 3705
3706 ev_ref (EV_A);
3707 ev_io_stop (EV_A_ &fs_w);
1942 close (fs_fd); 3708 close (fs_fd);
1943 fs_fd = inotify_init (); 3709 fs_fd = infy_newfd ();
1944 3710
3711 if (fs_fd >= 0)
3712 {
3713 fd_intern (fs_fd);
3714 ev_io_set (&fs_w, fs_fd, EV_READ);
3715 ev_io_start (EV_A_ &fs_w);
3716 ev_unref (EV_A);
3717 }
3718
1945 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3719 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1946 { 3720 {
1947 WL w_ = fs_hash [slot].head; 3721 WL w_ = fs_hash [slot].head;
1948 fs_hash [slot].head = 0; 3722 fs_hash [slot].head = 0;
1949 3723
1950 while (w_) 3724 while (w_)
1955 w->wd = -1; 3729 w->wd = -1;
1956 3730
1957 if (fs_fd >= 0) 3731 if (fs_fd >= 0)
1958 infy_add (EV_A_ w); /* re-add, no matter what */ 3732 infy_add (EV_A_ w); /* re-add, no matter what */
1959 else 3733 else
3734 {
3735 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3736 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1960 ev_timer_start (EV_A_ &w->timer); 3737 ev_timer_again (EV_A_ &w->timer);
3738 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3739 }
1961 } 3740 }
1962
1963 } 3741 }
1964} 3742}
1965 3743
3744#endif
3745
3746#ifdef _WIN32
3747# define EV_LSTAT(p,b) _stati64 (p, b)
3748#else
3749# define EV_LSTAT(p,b) lstat (p, b)
1966#endif 3750#endif
1967 3751
1968void 3752void
1969ev_stat_stat (EV_P_ ev_stat *w) 3753ev_stat_stat (EV_P_ ev_stat *w)
1970{ 3754{
1977static void noinline 3761static void noinline
1978stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3762stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1979{ 3763{
1980 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3764 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1981 3765
1982 /* we copy this here each the time so that */ 3766 ev_statdata prev = w->attr;
1983 /* prev has the old value when the callback gets invoked */
1984 w->prev = w->attr;
1985 ev_stat_stat (EV_A_ w); 3767 ev_stat_stat (EV_A_ w);
1986 3768
1987 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3769 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1988 if ( 3770 if (
1989 w->prev.st_dev != w->attr.st_dev 3771 prev.st_dev != w->attr.st_dev
1990 || w->prev.st_ino != w->attr.st_ino 3772 || prev.st_ino != w->attr.st_ino
1991 || w->prev.st_mode != w->attr.st_mode 3773 || prev.st_mode != w->attr.st_mode
1992 || w->prev.st_nlink != w->attr.st_nlink 3774 || prev.st_nlink != w->attr.st_nlink
1993 || w->prev.st_uid != w->attr.st_uid 3775 || prev.st_uid != w->attr.st_uid
1994 || w->prev.st_gid != w->attr.st_gid 3776 || prev.st_gid != w->attr.st_gid
1995 || w->prev.st_rdev != w->attr.st_rdev 3777 || prev.st_rdev != w->attr.st_rdev
1996 || w->prev.st_size != w->attr.st_size 3778 || prev.st_size != w->attr.st_size
1997 || w->prev.st_atime != w->attr.st_atime 3779 || prev.st_atime != w->attr.st_atime
1998 || w->prev.st_mtime != w->attr.st_mtime 3780 || prev.st_mtime != w->attr.st_mtime
1999 || w->prev.st_ctime != w->attr.st_ctime 3781 || prev.st_ctime != w->attr.st_ctime
2000 ) { 3782 ) {
3783 /* we only update w->prev on actual differences */
3784 /* in case we test more often than invoke the callback, */
3785 /* to ensure that prev is always different to attr */
3786 w->prev = prev;
3787
2001 #if EV_USE_INOTIFY 3788 #if EV_USE_INOTIFY
3789 if (fs_fd >= 0)
3790 {
2002 infy_del (EV_A_ w); 3791 infy_del (EV_A_ w);
2003 infy_add (EV_A_ w); 3792 infy_add (EV_A_ w);
2004 ev_stat_stat (EV_A_ w); /* avoid race... */ 3793 ev_stat_stat (EV_A_ w); /* avoid race... */
3794 }
2005 #endif 3795 #endif
2006 3796
2007 ev_feed_event (EV_A_ w, EV_STAT); 3797 ev_feed_event (EV_A_ w, EV_STAT);
2008 } 3798 }
2009} 3799}
2012ev_stat_start (EV_P_ ev_stat *w) 3802ev_stat_start (EV_P_ ev_stat *w)
2013{ 3803{
2014 if (expect_false (ev_is_active (w))) 3804 if (expect_false (ev_is_active (w)))
2015 return; 3805 return;
2016 3806
2017 /* since we use memcmp, we need to clear any padding data etc. */
2018 memset (&w->prev, 0, sizeof (ev_statdata));
2019 memset (&w->attr, 0, sizeof (ev_statdata));
2020
2021 ev_stat_stat (EV_A_ w); 3807 ev_stat_stat (EV_A_ w);
2022 3808
3809 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2023 if (w->interval < MIN_STAT_INTERVAL) 3810 w->interval = MIN_STAT_INTERVAL;
2024 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2025 3811
2026 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3812 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2027 ev_set_priority (&w->timer, ev_priority (w)); 3813 ev_set_priority (&w->timer, ev_priority (w));
2028 3814
2029#if EV_USE_INOTIFY 3815#if EV_USE_INOTIFY
2030 infy_init (EV_A); 3816 infy_init (EV_A);
2031 3817
2032 if (fs_fd >= 0) 3818 if (fs_fd >= 0)
2033 infy_add (EV_A_ w); 3819 infy_add (EV_A_ w);
2034 else 3820 else
2035#endif 3821#endif
3822 {
2036 ev_timer_start (EV_A_ &w->timer); 3823 ev_timer_again (EV_A_ &w->timer);
3824 ev_unref (EV_A);
3825 }
2037 3826
2038 ev_start (EV_A_ (W)w, 1); 3827 ev_start (EV_A_ (W)w, 1);
3828
3829 EV_FREQUENT_CHECK;
2039} 3830}
2040 3831
2041void 3832void
2042ev_stat_stop (EV_P_ ev_stat *w) 3833ev_stat_stop (EV_P_ ev_stat *w)
2043{ 3834{
2044 clear_pending (EV_A_ (W)w); 3835 clear_pending (EV_A_ (W)w);
2045 if (expect_false (!ev_is_active (w))) 3836 if (expect_false (!ev_is_active (w)))
2046 return; 3837 return;
2047 3838
3839 EV_FREQUENT_CHECK;
3840
2048#if EV_USE_INOTIFY 3841#if EV_USE_INOTIFY
2049 infy_del (EV_A_ w); 3842 infy_del (EV_A_ w);
2050#endif 3843#endif
3844
3845 if (ev_is_active (&w->timer))
3846 {
3847 ev_ref (EV_A);
2051 ev_timer_stop (EV_A_ &w->timer); 3848 ev_timer_stop (EV_A_ &w->timer);
3849 }
2052 3850
2053 ev_stop (EV_A_ (W)w); 3851 ev_stop (EV_A_ (W)w);
3852
3853 EV_FREQUENT_CHECK;
2054} 3854}
2055#endif 3855#endif
2056 3856
2057#if EV_IDLE_ENABLE 3857#if EV_IDLE_ENABLE
2058void 3858void
2061 if (expect_false (ev_is_active (w))) 3861 if (expect_false (ev_is_active (w)))
2062 return; 3862 return;
2063 3863
2064 pri_adjust (EV_A_ (W)w); 3864 pri_adjust (EV_A_ (W)w);
2065 3865
3866 EV_FREQUENT_CHECK;
3867
2066 { 3868 {
2067 int active = ++idlecnt [ABSPRI (w)]; 3869 int active = ++idlecnt [ABSPRI (w)];
2068 3870
2069 ++idleall; 3871 ++idleall;
2070 ev_start (EV_A_ (W)w, active); 3872 ev_start (EV_A_ (W)w, active);
2071 3873
2072 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3874 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2073 idles [ABSPRI (w)][active - 1] = w; 3875 idles [ABSPRI (w)][active - 1] = w;
2074 } 3876 }
3877
3878 EV_FREQUENT_CHECK;
2075} 3879}
2076 3880
2077void 3881void
2078ev_idle_stop (EV_P_ ev_idle *w) 3882ev_idle_stop (EV_P_ ev_idle *w)
2079{ 3883{
2080 clear_pending (EV_A_ (W)w); 3884 clear_pending (EV_A_ (W)w);
2081 if (expect_false (!ev_is_active (w))) 3885 if (expect_false (!ev_is_active (w)))
2082 return; 3886 return;
2083 3887
3888 EV_FREQUENT_CHECK;
3889
2084 { 3890 {
2085 int active = ((W)w)->active; 3891 int active = ev_active (w);
2086 3892
2087 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3893 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2088 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3894 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2089 3895
2090 ev_stop (EV_A_ (W)w); 3896 ev_stop (EV_A_ (W)w);
2091 --idleall; 3897 --idleall;
2092 } 3898 }
2093}
2094#endif
2095 3899
3900 EV_FREQUENT_CHECK;
3901}
3902#endif
3903
3904#if EV_PREPARE_ENABLE
2096void 3905void
2097ev_prepare_start (EV_P_ ev_prepare *w) 3906ev_prepare_start (EV_P_ ev_prepare *w)
2098{ 3907{
2099 if (expect_false (ev_is_active (w))) 3908 if (expect_false (ev_is_active (w)))
2100 return; 3909 return;
3910
3911 EV_FREQUENT_CHECK;
2101 3912
2102 ev_start (EV_A_ (W)w, ++preparecnt); 3913 ev_start (EV_A_ (W)w, ++preparecnt);
2103 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3914 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2104 prepares [preparecnt - 1] = w; 3915 prepares [preparecnt - 1] = w;
3916
3917 EV_FREQUENT_CHECK;
2105} 3918}
2106 3919
2107void 3920void
2108ev_prepare_stop (EV_P_ ev_prepare *w) 3921ev_prepare_stop (EV_P_ ev_prepare *w)
2109{ 3922{
2110 clear_pending (EV_A_ (W)w); 3923 clear_pending (EV_A_ (W)w);
2111 if (expect_false (!ev_is_active (w))) 3924 if (expect_false (!ev_is_active (w)))
2112 return; 3925 return;
2113 3926
3927 EV_FREQUENT_CHECK;
3928
2114 { 3929 {
2115 int active = ((W)w)->active; 3930 int active = ev_active (w);
3931
2116 prepares [active - 1] = prepares [--preparecnt]; 3932 prepares [active - 1] = prepares [--preparecnt];
2117 ((W)prepares [active - 1])->active = active; 3933 ev_active (prepares [active - 1]) = active;
2118 } 3934 }
2119 3935
2120 ev_stop (EV_A_ (W)w); 3936 ev_stop (EV_A_ (W)w);
2121}
2122 3937
3938 EV_FREQUENT_CHECK;
3939}
3940#endif
3941
3942#if EV_CHECK_ENABLE
2123void 3943void
2124ev_check_start (EV_P_ ev_check *w) 3944ev_check_start (EV_P_ ev_check *w)
2125{ 3945{
2126 if (expect_false (ev_is_active (w))) 3946 if (expect_false (ev_is_active (w)))
2127 return; 3947 return;
3948
3949 EV_FREQUENT_CHECK;
2128 3950
2129 ev_start (EV_A_ (W)w, ++checkcnt); 3951 ev_start (EV_A_ (W)w, ++checkcnt);
2130 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3952 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2131 checks [checkcnt - 1] = w; 3953 checks [checkcnt - 1] = w;
3954
3955 EV_FREQUENT_CHECK;
2132} 3956}
2133 3957
2134void 3958void
2135ev_check_stop (EV_P_ ev_check *w) 3959ev_check_stop (EV_P_ ev_check *w)
2136{ 3960{
2137 clear_pending (EV_A_ (W)w); 3961 clear_pending (EV_A_ (W)w);
2138 if (expect_false (!ev_is_active (w))) 3962 if (expect_false (!ev_is_active (w)))
2139 return; 3963 return;
2140 3964
3965 EV_FREQUENT_CHECK;
3966
2141 { 3967 {
2142 int active = ((W)w)->active; 3968 int active = ev_active (w);
3969
2143 checks [active - 1] = checks [--checkcnt]; 3970 checks [active - 1] = checks [--checkcnt];
2144 ((W)checks [active - 1])->active = active; 3971 ev_active (checks [active - 1]) = active;
2145 } 3972 }
2146 3973
2147 ev_stop (EV_A_ (W)w); 3974 ev_stop (EV_A_ (W)w);
3975
3976 EV_FREQUENT_CHECK;
2148} 3977}
3978#endif
2149 3979
2150#if EV_EMBED_ENABLE 3980#if EV_EMBED_ENABLE
2151void noinline 3981void noinline
2152ev_embed_sweep (EV_P_ ev_embed *w) 3982ev_embed_sweep (EV_P_ ev_embed *w)
2153{ 3983{
2154 ev_loop (w->loop, EVLOOP_NONBLOCK); 3984 ev_run (w->other, EVRUN_NOWAIT);
2155} 3985}
2156 3986
2157static void 3987static void
2158embed_cb (EV_P_ ev_io *io, int revents) 3988embed_io_cb (EV_P_ ev_io *io, int revents)
2159{ 3989{
2160 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3990 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2161 3991
2162 if (ev_cb (w)) 3992 if (ev_cb (w))
2163 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3993 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2164 else 3994 else
2165 ev_embed_sweep (loop, w); 3995 ev_run (w->other, EVRUN_NOWAIT);
2166} 3996}
3997
3998static void
3999embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4000{
4001 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4002
4003 {
4004 EV_P = w->other;
4005
4006 while (fdchangecnt)
4007 {
4008 fd_reify (EV_A);
4009 ev_run (EV_A_ EVRUN_NOWAIT);
4010 }
4011 }
4012}
4013
4014static void
4015embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4016{
4017 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4018
4019 ev_embed_stop (EV_A_ w);
4020
4021 {
4022 EV_P = w->other;
4023
4024 ev_loop_fork (EV_A);
4025 ev_run (EV_A_ EVRUN_NOWAIT);
4026 }
4027
4028 ev_embed_start (EV_A_ w);
4029}
4030
4031#if 0
4032static void
4033embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4034{
4035 ev_idle_stop (EV_A_ idle);
4036}
4037#endif
2167 4038
2168void 4039void
2169ev_embed_start (EV_P_ ev_embed *w) 4040ev_embed_start (EV_P_ ev_embed *w)
2170{ 4041{
2171 if (expect_false (ev_is_active (w))) 4042 if (expect_false (ev_is_active (w)))
2172 return; 4043 return;
2173 4044
2174 { 4045 {
2175 struct ev_loop *loop = w->loop; 4046 EV_P = w->other;
2176 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4047 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2177 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 4048 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2178 } 4049 }
4050
4051 EV_FREQUENT_CHECK;
2179 4052
2180 ev_set_priority (&w->io, ev_priority (w)); 4053 ev_set_priority (&w->io, ev_priority (w));
2181 ev_io_start (EV_A_ &w->io); 4054 ev_io_start (EV_A_ &w->io);
2182 4055
4056 ev_prepare_init (&w->prepare, embed_prepare_cb);
4057 ev_set_priority (&w->prepare, EV_MINPRI);
4058 ev_prepare_start (EV_A_ &w->prepare);
4059
4060 ev_fork_init (&w->fork, embed_fork_cb);
4061 ev_fork_start (EV_A_ &w->fork);
4062
4063 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4064
2183 ev_start (EV_A_ (W)w, 1); 4065 ev_start (EV_A_ (W)w, 1);
4066
4067 EV_FREQUENT_CHECK;
2184} 4068}
2185 4069
2186void 4070void
2187ev_embed_stop (EV_P_ ev_embed *w) 4071ev_embed_stop (EV_P_ ev_embed *w)
2188{ 4072{
2189 clear_pending (EV_A_ (W)w); 4073 clear_pending (EV_A_ (W)w);
2190 if (expect_false (!ev_is_active (w))) 4074 if (expect_false (!ev_is_active (w)))
2191 return; 4075 return;
2192 4076
4077 EV_FREQUENT_CHECK;
4078
2193 ev_io_stop (EV_A_ &w->io); 4079 ev_io_stop (EV_A_ &w->io);
4080 ev_prepare_stop (EV_A_ &w->prepare);
4081 ev_fork_stop (EV_A_ &w->fork);
2194 4082
2195 ev_stop (EV_A_ (W)w); 4083 ev_stop (EV_A_ (W)w);
4084
4085 EV_FREQUENT_CHECK;
2196} 4086}
2197#endif 4087#endif
2198 4088
2199#if EV_FORK_ENABLE 4089#if EV_FORK_ENABLE
2200void 4090void
2201ev_fork_start (EV_P_ ev_fork *w) 4091ev_fork_start (EV_P_ ev_fork *w)
2202{ 4092{
2203 if (expect_false (ev_is_active (w))) 4093 if (expect_false (ev_is_active (w)))
2204 return; 4094 return;
2205 4095
4096 EV_FREQUENT_CHECK;
4097
2206 ev_start (EV_A_ (W)w, ++forkcnt); 4098 ev_start (EV_A_ (W)w, ++forkcnt);
2207 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4099 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2208 forks [forkcnt - 1] = w; 4100 forks [forkcnt - 1] = w;
4101
4102 EV_FREQUENT_CHECK;
2209} 4103}
2210 4104
2211void 4105void
2212ev_fork_stop (EV_P_ ev_fork *w) 4106ev_fork_stop (EV_P_ ev_fork *w)
2213{ 4107{
2214 clear_pending (EV_A_ (W)w); 4108 clear_pending (EV_A_ (W)w);
2215 if (expect_false (!ev_is_active (w))) 4109 if (expect_false (!ev_is_active (w)))
2216 return; 4110 return;
2217 4111
4112 EV_FREQUENT_CHECK;
4113
2218 { 4114 {
2219 int active = ((W)w)->active; 4115 int active = ev_active (w);
4116
2220 forks [active - 1] = forks [--forkcnt]; 4117 forks [active - 1] = forks [--forkcnt];
2221 ((W)forks [active - 1])->active = active; 4118 ev_active (forks [active - 1]) = active;
2222 } 4119 }
2223 4120
2224 ev_stop (EV_A_ (W)w); 4121 ev_stop (EV_A_ (W)w);
4122
4123 EV_FREQUENT_CHECK;
4124}
4125#endif
4126
4127#if EV_CLEANUP_ENABLE
4128void
4129ev_cleanup_start (EV_P_ ev_cleanup *w)
4130{
4131 if (expect_false (ev_is_active (w)))
4132 return;
4133
4134 EV_FREQUENT_CHECK;
4135
4136 ev_start (EV_A_ (W)w, ++cleanupcnt);
4137 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4138 cleanups [cleanupcnt - 1] = w;
4139
4140 /* cleanup watchers should never keep a refcount on the loop */
4141 ev_unref (EV_A);
4142 EV_FREQUENT_CHECK;
4143}
4144
4145void
4146ev_cleanup_stop (EV_P_ ev_cleanup *w)
4147{
4148 clear_pending (EV_A_ (W)w);
4149 if (expect_false (!ev_is_active (w)))
4150 return;
4151
4152 EV_FREQUENT_CHECK;
4153 ev_ref (EV_A);
4154
4155 {
4156 int active = ev_active (w);
4157
4158 cleanups [active - 1] = cleanups [--cleanupcnt];
4159 ev_active (cleanups [active - 1]) = active;
4160 }
4161
4162 ev_stop (EV_A_ (W)w);
4163
4164 EV_FREQUENT_CHECK;
4165}
4166#endif
4167
4168#if EV_ASYNC_ENABLE
4169void
4170ev_async_start (EV_P_ ev_async *w)
4171{
4172 if (expect_false (ev_is_active (w)))
4173 return;
4174
4175 w->sent = 0;
4176
4177 evpipe_init (EV_A);
4178
4179 EV_FREQUENT_CHECK;
4180
4181 ev_start (EV_A_ (W)w, ++asynccnt);
4182 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4183 asyncs [asynccnt - 1] = w;
4184
4185 EV_FREQUENT_CHECK;
4186}
4187
4188void
4189ev_async_stop (EV_P_ ev_async *w)
4190{
4191 clear_pending (EV_A_ (W)w);
4192 if (expect_false (!ev_is_active (w)))
4193 return;
4194
4195 EV_FREQUENT_CHECK;
4196
4197 {
4198 int active = ev_active (w);
4199
4200 asyncs [active - 1] = asyncs [--asynccnt];
4201 ev_active (asyncs [active - 1]) = active;
4202 }
4203
4204 ev_stop (EV_A_ (W)w);
4205
4206 EV_FREQUENT_CHECK;
4207}
4208
4209void
4210ev_async_send (EV_P_ ev_async *w)
4211{
4212 w->sent = 1;
4213 evpipe_write (EV_A_ &async_pending);
2225} 4214}
2226#endif 4215#endif
2227 4216
2228/*****************************************************************************/ 4217/*****************************************************************************/
2229 4218
2239once_cb (EV_P_ struct ev_once *once, int revents) 4228once_cb (EV_P_ struct ev_once *once, int revents)
2240{ 4229{
2241 void (*cb)(int revents, void *arg) = once->cb; 4230 void (*cb)(int revents, void *arg) = once->cb;
2242 void *arg = once->arg; 4231 void *arg = once->arg;
2243 4232
2244 ev_io_stop (EV_A_ &once->io); 4233 ev_io_stop (EV_A_ &once->io);
2245 ev_timer_stop (EV_A_ &once->to); 4234 ev_timer_stop (EV_A_ &once->to);
2246 ev_free (once); 4235 ev_free (once);
2247 4236
2248 cb (revents, arg); 4237 cb (revents, arg);
2249} 4238}
2250 4239
2251static void 4240static void
2252once_cb_io (EV_P_ ev_io *w, int revents) 4241once_cb_io (EV_P_ ev_io *w, int revents)
2253{ 4242{
2254 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4243 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4244
4245 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2255} 4246}
2256 4247
2257static void 4248static void
2258once_cb_to (EV_P_ ev_timer *w, int revents) 4249once_cb_to (EV_P_ ev_timer *w, int revents)
2259{ 4250{
2260 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4251 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4252
4253 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2261} 4254}
2262 4255
2263void 4256void
2264ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4257ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2265{ 4258{
2266 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4259 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2267 4260
2268 if (expect_false (!once)) 4261 if (expect_false (!once))
2269 { 4262 {
2270 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4263 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2271 return; 4264 return;
2272 } 4265 }
2273 4266
2274 once->cb = cb; 4267 once->cb = cb;
2275 once->arg = arg; 4268 once->arg = arg;
2287 ev_timer_set (&once->to, timeout, 0.); 4280 ev_timer_set (&once->to, timeout, 0.);
2288 ev_timer_start (EV_A_ &once->to); 4281 ev_timer_start (EV_A_ &once->to);
2289 } 4282 }
2290} 4283}
2291 4284
2292#ifdef __cplusplus 4285/*****************************************************************************/
2293} 4286
4287#if EV_WALK_ENABLE
4288void ecb_cold
4289ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4290{
4291 int i, j;
4292 ev_watcher_list *wl, *wn;
4293
4294 if (types & (EV_IO | EV_EMBED))
4295 for (i = 0; i < anfdmax; ++i)
4296 for (wl = anfds [i].head; wl; )
4297 {
4298 wn = wl->next;
4299
4300#if EV_EMBED_ENABLE
4301 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4302 {
4303 if (types & EV_EMBED)
4304 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4305 }
4306 else
4307#endif
4308#if EV_USE_INOTIFY
4309 if (ev_cb ((ev_io *)wl) == infy_cb)
4310 ;
4311 else
4312#endif
4313 if ((ev_io *)wl != &pipe_w)
4314 if (types & EV_IO)
4315 cb (EV_A_ EV_IO, wl);
4316
4317 wl = wn;
4318 }
4319
4320 if (types & (EV_TIMER | EV_STAT))
4321 for (i = timercnt + HEAP0; i-- > HEAP0; )
4322#if EV_STAT_ENABLE
4323 /*TODO: timer is not always active*/
4324 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4325 {
4326 if (types & EV_STAT)
4327 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4328 }
4329 else
4330#endif
4331 if (types & EV_TIMER)
4332 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4333
4334#if EV_PERIODIC_ENABLE
4335 if (types & EV_PERIODIC)
4336 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4337 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4338#endif
4339
4340#if EV_IDLE_ENABLE
4341 if (types & EV_IDLE)
4342 for (j = NUMPRI; j--; )
4343 for (i = idlecnt [j]; i--; )
4344 cb (EV_A_ EV_IDLE, idles [j][i]);
4345#endif
4346
4347#if EV_FORK_ENABLE
4348 if (types & EV_FORK)
4349 for (i = forkcnt; i--; )
4350 if (ev_cb (forks [i]) != embed_fork_cb)
4351 cb (EV_A_ EV_FORK, forks [i]);
4352#endif
4353
4354#if EV_ASYNC_ENABLE
4355 if (types & EV_ASYNC)
4356 for (i = asynccnt; i--; )
4357 cb (EV_A_ EV_ASYNC, asyncs [i]);
4358#endif
4359
4360#if EV_PREPARE_ENABLE
4361 if (types & EV_PREPARE)
4362 for (i = preparecnt; i--; )
4363# if EV_EMBED_ENABLE
4364 if (ev_cb (prepares [i]) != embed_prepare_cb)
2294#endif 4365# endif
4366 cb (EV_A_ EV_PREPARE, prepares [i]);
4367#endif
2295 4368
4369#if EV_CHECK_ENABLE
4370 if (types & EV_CHECK)
4371 for (i = checkcnt; i--; )
4372 cb (EV_A_ EV_CHECK, checks [i]);
4373#endif
4374
4375#if EV_SIGNAL_ENABLE
4376 if (types & EV_SIGNAL)
4377 for (i = 0; i < EV_NSIG - 1; ++i)
4378 for (wl = signals [i].head; wl; )
4379 {
4380 wn = wl->next;
4381 cb (EV_A_ EV_SIGNAL, wl);
4382 wl = wn;
4383 }
4384#endif
4385
4386#if EV_CHILD_ENABLE
4387 if (types & EV_CHILD)
4388 for (i = (EV_PID_HASHSIZE); i--; )
4389 for (wl = childs [i]; wl; )
4390 {
4391 wn = wl->next;
4392 cb (EV_A_ EV_CHILD, wl);
4393 wl = wn;
4394 }
4395#endif
4396/* EV_STAT 0x00001000 /* stat data changed */
4397/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4398}
4399#endif
4400
4401#if EV_MULTIPLICITY
4402 #include "ev_wrap.h"
4403#endif
4404
4405EV_CPP(})
4406

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines