ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.168 by root, Sat Dec 8 14:12:07 2007 UTC vs.
Revision 1.452 by root, Mon Feb 18 03:20:29 2013 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
89# endif 127# endif
90 128
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
94# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
97# endif 136# endif
98 137
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
105# endif 145# endif
106 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
107#endif 154# endif
108 155
109#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
110#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
111#include <fcntl.h> 169#include <fcntl.h>
112#include <stddef.h> 170#include <stddef.h>
113 171
114#include <stdio.h> 172#include <stdio.h>
115 173
116#include <assert.h> 174#include <assert.h>
117#include <errno.h> 175#include <errno.h>
118#include <sys/types.h> 176#include <sys/types.h>
119#include <time.h> 177#include <time.h>
178#include <limits.h>
120 179
121#include <signal.h> 180#include <signal.h>
122 181
123#ifdef EV_H 182#ifdef EV_H
124# include EV_H 183# include EV_H
125#else 184#else
126# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
127#endif 197#endif
128 198
129#ifndef _WIN32 199#ifndef _WIN32
130# include <sys/time.h> 200# include <sys/time.h>
131# include <sys/wait.h> 201# include <sys/wait.h>
132# include <unistd.h> 202# include <unistd.h>
133#else 203#else
204# include <io.h>
134# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
135# include <windows.h> 207# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
138# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
139#endif 261# endif
140 262#endif
141/**/
142 263
143#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
144# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
269# endif
145#endif 270#endif
146 271
147#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274#endif
275
276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
280# define EV_USE_NANOSLEEP 0
281# endif
149#endif 282#endif
150 283
151#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 286#endif
154 287
155#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
156# ifdef _WIN32 289# ifdef _WIN32
157# define EV_USE_POLL 0 290# define EV_USE_POLL 0
158# else 291# else
159# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 293# endif
161#endif 294#endif
162 295
163#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
299# else
164# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
301# endif
165#endif 302#endif
166 303
167#ifndef EV_USE_KQUEUE 304#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 305# define EV_USE_KQUEUE 0
169#endif 306#endif
171#ifndef EV_USE_PORT 308#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 309# define EV_USE_PORT 0
173#endif 310#endif
174 311
175#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314# define EV_USE_INOTIFY EV_FEATURE_OS
315# else
176# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
317# endif
177#endif 318#endif
178 319
179#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 322#endif
323
324#ifndef EV_INOTIFY_HASHSIZE
325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326#endif
327
328#ifndef EV_USE_EVENTFD
329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 331# else
183# define EV_PID_HASHSIZE 16 332# define EV_USE_EVENTFD 0
184# endif 333# endif
185#endif 334#endif
186 335
187#ifndef EV_INOTIFY_HASHSIZE 336#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 338# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 339# else
191# define EV_INOTIFY_HASHSIZE 16 340# define EV_USE_SIGNALFD 0
192# endif 341# endif
193#endif 342#endif
194 343
195/**/ 344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362#ifdef ANDROID
363/* supposedly, android doesn't typedef fd_mask */
364# undef EV_USE_SELECT
365# define EV_USE_SELECT 0
366/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
367# undef EV_USE_CLOCK_SYSCALL
368# define EV_USE_CLOCK_SYSCALL 0
369#endif
370
371/* aix's poll.h seems to cause lots of trouble */
372#ifdef _AIX
373/* AIX has a completely broken poll.h header */
374# undef EV_USE_POLL
375# define EV_USE_POLL 0
376#endif
377
378/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
379/* which makes programs even slower. might work on other unices, too. */
380#if EV_USE_CLOCK_SYSCALL
381# include <sys/syscall.h>
382# ifdef SYS_clock_gettime
383# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
384# undef EV_USE_MONOTONIC
385# define EV_USE_MONOTONIC 1
386# else
387# undef EV_USE_CLOCK_SYSCALL
388# define EV_USE_CLOCK_SYSCALL 0
389# endif
390#endif
391
392/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 393
197#ifndef CLOCK_MONOTONIC 394#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 395# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 396# define EV_USE_MONOTONIC 0
200#endif 397#endif
202#ifndef CLOCK_REALTIME 399#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 400# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 401# define EV_USE_REALTIME 0
205#endif 402#endif
206 403
207#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h>
209#endif
210
211#if !EV_STAT_ENABLE 404#if !EV_STAT_ENABLE
405# undef EV_USE_INOTIFY
212# define EV_USE_INOTIFY 0 406# define EV_USE_INOTIFY 0
213#endif 407#endif
214 408
409#if !EV_USE_NANOSLEEP
410/* hp-ux has it in sys/time.h, which we unconditionally include above */
411# if !defined _WIN32 && !defined __hpux
412# include <sys/select.h>
413# endif
414#endif
415
215#if EV_USE_INOTIFY 416#if EV_USE_INOTIFY
417# include <sys/statfs.h>
216# include <sys/inotify.h> 418# include <sys/inotify.h>
419/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
420# ifndef IN_DONT_FOLLOW
421# undef EV_USE_INOTIFY
422# define EV_USE_INOTIFY 0
423# endif
424#endif
425
426#if EV_USE_EVENTFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef EFD_NONBLOCK
430# define EFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef EFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define EFD_CLOEXEC O_CLOEXEC
435# else
436# define EFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
440#endif
441
442#if EV_USE_SIGNALFD
443/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
444# include <stdint.h>
445# ifndef SFD_NONBLOCK
446# define SFD_NONBLOCK O_NONBLOCK
447# endif
448# ifndef SFD_CLOEXEC
449# ifdef O_CLOEXEC
450# define SFD_CLOEXEC O_CLOEXEC
451# else
452# define SFD_CLOEXEC 02000000
453# endif
454# endif
455EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
456
457struct signalfd_siginfo
458{
459 uint32_t ssi_signo;
460 char pad[128 - sizeof (uint32_t)];
461};
217#endif 462#endif
218 463
219/**/ 464/**/
465
466#if EV_VERIFY >= 3
467# define EV_FREQUENT_CHECK ev_verify (EV_A)
468#else
469# define EV_FREQUENT_CHECK do { } while (0)
470#endif
471
472/*
473 * This is used to work around floating point rounding problems.
474 * This value is good at least till the year 4000.
475 */
476#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
477/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
220 478
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 479#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 480#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 481
482#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
483#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
484
485/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
486/* ECB.H BEGIN */
487/*
488 * libecb - http://software.schmorp.de/pkg/libecb
489 *
490 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
491 * Copyright (©) 2011 Emanuele Giaquinta
492 * All rights reserved.
493 *
494 * Redistribution and use in source and binary forms, with or without modifica-
495 * tion, are permitted provided that the following conditions are met:
496 *
497 * 1. Redistributions of source code must retain the above copyright notice,
498 * this list of conditions and the following disclaimer.
499 *
500 * 2. Redistributions in binary form must reproduce the above copyright
501 * notice, this list of conditions and the following disclaimer in the
502 * documentation and/or other materials provided with the distribution.
503 *
504 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
505 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
506 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
507 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
508 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
509 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
510 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
511 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
512 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
513 * OF THE POSSIBILITY OF SUCH DAMAGE.
514 */
515
516#ifndef ECB_H
517#define ECB_H
518
519/* 16 bits major, 16 bits minor */
520#define ECB_VERSION 0x00010002
521
522#ifdef _WIN32
523 typedef signed char int8_t;
524 typedef unsigned char uint8_t;
525 typedef signed short int16_t;
526 typedef unsigned short uint16_t;
527 typedef signed int int32_t;
528 typedef unsigned int uint32_t;
225#if __GNUC__ >= 3 529 #if __GNUC__
226# define expect(expr,value) __builtin_expect ((expr),(value)) 530 typedef signed long long int64_t;
227# define inline_size static inline /* inline for codesize */ 531 typedef unsigned long long uint64_t;
228# if EV_MINIMAL 532 #else /* _MSC_VER || __BORLANDC__ */
229# define noinline __attribute__ ((noinline)) 533 typedef signed __int64 int64_t;
230# define inline_speed static noinline 534 typedef unsigned __int64 uint64_t;
231# else
232# define noinline
233# define inline_speed static inline
234# endif 535 #endif
536 #ifdef _WIN64
537 #define ECB_PTRSIZE 8
538 typedef uint64_t uintptr_t;
539 typedef int64_t intptr_t;
540 #else
541 #define ECB_PTRSIZE 4
542 typedef uint32_t uintptr_t;
543 typedef int32_t intptr_t;
544 #endif
235#else 545#else
546 #include <inttypes.h>
547 #if UINTMAX_MAX > 0xffffffffU
548 #define ECB_PTRSIZE 8
549 #else
550 #define ECB_PTRSIZE 4
551 #endif
552#endif
553
554/* many compilers define _GNUC_ to some versions but then only implement
555 * what their idiot authors think are the "more important" extensions,
556 * causing enormous grief in return for some better fake benchmark numbers.
557 * or so.
558 * we try to detect these and simply assume they are not gcc - if they have
559 * an issue with that they should have done it right in the first place.
560 */
561#ifndef ECB_GCC_VERSION
562 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
563 #define ECB_GCC_VERSION(major,minor) 0
564 #else
565 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
566 #endif
567#endif
568
569#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
570#define ECB_C99 (__STDC_VERSION__ >= 199901L)
571#define ECB_C11 (__STDC_VERSION__ >= 201112L)
572#define ECB_CPP (__cplusplus+0)
573#define ECB_CPP11 (__cplusplus >= 201103L)
574
575#if ECB_CPP
576 #define ECB_EXTERN_C extern "C"
577 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
578 #define ECB_EXTERN_C_END }
579#else
580 #define ECB_EXTERN_C extern
581 #define ECB_EXTERN_C_BEG
582 #define ECB_EXTERN_C_END
583#endif
584
585/*****************************************************************************/
586
587/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
588/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
589
590#if ECB_NO_THREADS
591 #define ECB_NO_SMP 1
592#endif
593
594#if ECB_NO_SMP
595 #define ECB_MEMORY_FENCE do { } while (0)
596#endif
597
598#ifndef ECB_MEMORY_FENCE
599 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
600 #if __i386 || __i386__
601 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
602 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
603 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
604 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
605 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
606 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
607 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
608 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
609 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
610 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
611 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
612 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
613 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
614 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
615 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
616 #elif __sparc || __sparc__
617 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
618 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
619 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
620 #elif defined __s390__ || defined __s390x__
621 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
622 #elif defined __mips__
623 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
624 #elif defined __alpha__
625 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
626 #elif defined __hppa__
627 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
628 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
629 #elif defined __ia64__
630 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
631 #endif
632 #endif
633#endif
634
635#ifndef ECB_MEMORY_FENCE
636 #if ECB_GCC_VERSION(4,7)
637 /* see comment below (stdatomic.h) about the C11 memory model. */
638 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
639
640 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
641 * without risking compile time errors with other compilers. We *could*
642 * define our own ecb_clang_has_feature, but I just can't be bothered to work
643 * around this shit time and again.
644 * #elif defined __clang && __has_feature (cxx_atomic)
645 * // see comment below (stdatomic.h) about the C11 memory model.
646 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
647 */
648
649 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
650 #define ECB_MEMORY_FENCE __sync_synchronize ()
651 #elif _MSC_VER >= 1400 /* VC++ 2005 */
652 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
653 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
654 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
655 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
656 #elif defined _WIN32
657 #include <WinNT.h>
658 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
659 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
660 #include <mbarrier.h>
661 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
662 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
663 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
664 #elif __xlC__
665 #define ECB_MEMORY_FENCE __sync ()
666 #endif
667#endif
668
669#ifndef ECB_MEMORY_FENCE
670 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
671 /* we assume that these memory fences work on all variables/all memory accesses, */
672 /* not just C11 atomics and atomic accesses */
673 #include <stdatomic.h>
674 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
675 /* any fence other than seq_cst, which isn't very efficient for us. */
676 /* Why that is, we don't know - either the C11 memory model is quite useless */
677 /* for most usages, or gcc and clang have a bug */
678 /* I *currently* lean towards the latter, and inefficiently implement */
679 /* all three of ecb's fences as a seq_cst fence */
680 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
681 #endif
682#endif
683
684#ifndef ECB_MEMORY_FENCE
685 #if !ECB_AVOID_PTHREADS
686 /*
687 * if you get undefined symbol references to pthread_mutex_lock,
688 * or failure to find pthread.h, then you should implement
689 * the ECB_MEMORY_FENCE operations for your cpu/compiler
690 * OR provide pthread.h and link against the posix thread library
691 * of your system.
692 */
693 #include <pthread.h>
694 #define ECB_NEEDS_PTHREADS 1
695 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
696
697 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
698 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
699 #endif
700#endif
701
702#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
703 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
704#endif
705
706#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
707 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
708#endif
709
710/*****************************************************************************/
711
712#if __cplusplus
713 #define ecb_inline static inline
714#elif ECB_GCC_VERSION(2,5)
715 #define ecb_inline static __inline__
716#elif ECB_C99
717 #define ecb_inline static inline
718#else
719 #define ecb_inline static
720#endif
721
722#if ECB_GCC_VERSION(3,3)
723 #define ecb_restrict __restrict__
724#elif ECB_C99
725 #define ecb_restrict restrict
726#else
727 #define ecb_restrict
728#endif
729
730typedef int ecb_bool;
731
732#define ECB_CONCAT_(a, b) a ## b
733#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
734#define ECB_STRINGIFY_(a) # a
735#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
736
737#define ecb_function_ ecb_inline
738
739#if ECB_GCC_VERSION(3,1)
740 #define ecb_attribute(attrlist) __attribute__(attrlist)
741 #define ecb_is_constant(expr) __builtin_constant_p (expr)
742 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
743 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
744#else
745 #define ecb_attribute(attrlist)
746 #define ecb_is_constant(expr) 0
236# define expect(expr,value) (expr) 747 #define ecb_expect(expr,value) (expr)
237# define inline_speed static 748 #define ecb_prefetch(addr,rw,locality)
238# define inline_size static
239# define noinline
240#endif 749#endif
241 750
751/* no emulation for ecb_decltype */
752#if ECB_GCC_VERSION(4,5)
753 #define ecb_decltype(x) __decltype(x)
754#elif ECB_GCC_VERSION(3,0)
755 #define ecb_decltype(x) __typeof(x)
756#endif
757
758#define ecb_noinline ecb_attribute ((__noinline__))
759#define ecb_unused ecb_attribute ((__unused__))
760#define ecb_const ecb_attribute ((__const__))
761#define ecb_pure ecb_attribute ((__pure__))
762
763#if ECB_C11
764 #define ecb_noreturn _Noreturn
765#else
766 #define ecb_noreturn ecb_attribute ((__noreturn__))
767#endif
768
769#if ECB_GCC_VERSION(4,3)
770 #define ecb_artificial ecb_attribute ((__artificial__))
771 #define ecb_hot ecb_attribute ((__hot__))
772 #define ecb_cold ecb_attribute ((__cold__))
773#else
774 #define ecb_artificial
775 #define ecb_hot
776 #define ecb_cold
777#endif
778
779/* put around conditional expressions if you are very sure that the */
780/* expression is mostly true or mostly false. note that these return */
781/* booleans, not the expression. */
242#define expect_false(expr) expect ((expr) != 0, 0) 782#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 783#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
784/* for compatibility to the rest of the world */
785#define ecb_likely(expr) ecb_expect_true (expr)
786#define ecb_unlikely(expr) ecb_expect_false (expr)
244 787
788/* count trailing zero bits and count # of one bits */
789#if ECB_GCC_VERSION(3,4)
790 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
791 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
792 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
793 #define ecb_ctz32(x) __builtin_ctz (x)
794 #define ecb_ctz64(x) __builtin_ctzll (x)
795 #define ecb_popcount32(x) __builtin_popcount (x)
796 /* no popcountll */
797#else
798 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
799 ecb_function_ int
800 ecb_ctz32 (uint32_t x)
801 {
802 int r = 0;
803
804 x &= ~x + 1; /* this isolates the lowest bit */
805
806#if ECB_branchless_on_i386
807 r += !!(x & 0xaaaaaaaa) << 0;
808 r += !!(x & 0xcccccccc) << 1;
809 r += !!(x & 0xf0f0f0f0) << 2;
810 r += !!(x & 0xff00ff00) << 3;
811 r += !!(x & 0xffff0000) << 4;
812#else
813 if (x & 0xaaaaaaaa) r += 1;
814 if (x & 0xcccccccc) r += 2;
815 if (x & 0xf0f0f0f0) r += 4;
816 if (x & 0xff00ff00) r += 8;
817 if (x & 0xffff0000) r += 16;
818#endif
819
820 return r;
821 }
822
823 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
824 ecb_function_ int
825 ecb_ctz64 (uint64_t x)
826 {
827 int shift = x & 0xffffffffU ? 0 : 32;
828 return ecb_ctz32 (x >> shift) + shift;
829 }
830
831 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
832 ecb_function_ int
833 ecb_popcount32 (uint32_t x)
834 {
835 x -= (x >> 1) & 0x55555555;
836 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
837 x = ((x >> 4) + x) & 0x0f0f0f0f;
838 x *= 0x01010101;
839
840 return x >> 24;
841 }
842
843 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
844 ecb_function_ int ecb_ld32 (uint32_t x)
845 {
846 int r = 0;
847
848 if (x >> 16) { x >>= 16; r += 16; }
849 if (x >> 8) { x >>= 8; r += 8; }
850 if (x >> 4) { x >>= 4; r += 4; }
851 if (x >> 2) { x >>= 2; r += 2; }
852 if (x >> 1) { r += 1; }
853
854 return r;
855 }
856
857 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
858 ecb_function_ int ecb_ld64 (uint64_t x)
859 {
860 int r = 0;
861
862 if (x >> 32) { x >>= 32; r += 32; }
863
864 return r + ecb_ld32 (x);
865 }
866#endif
867
868ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
869ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
870ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
871ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
872
873ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
874ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
875{
876 return ( (x * 0x0802U & 0x22110U)
877 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
878}
879
880ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
881ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
882{
883 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
884 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
885 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
886 x = ( x >> 8 ) | ( x << 8);
887
888 return x;
889}
890
891ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
892ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
893{
894 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
895 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
896 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
897 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
898 x = ( x >> 16 ) | ( x << 16);
899
900 return x;
901}
902
903/* popcount64 is only available on 64 bit cpus as gcc builtin */
904/* so for this version we are lazy */
905ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
906ecb_function_ int
907ecb_popcount64 (uint64_t x)
908{
909 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
910}
911
912ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
913ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
914ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
915ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
916ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
917ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
918ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
919ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
920
921ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
922ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
923ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
924ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
925ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
926ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
927ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
928ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
929
930#if ECB_GCC_VERSION(4,3)
931 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
932 #define ecb_bswap32(x) __builtin_bswap32 (x)
933 #define ecb_bswap64(x) __builtin_bswap64 (x)
934#else
935 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
936 ecb_function_ uint16_t
937 ecb_bswap16 (uint16_t x)
938 {
939 return ecb_rotl16 (x, 8);
940 }
941
942 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
943 ecb_function_ uint32_t
944 ecb_bswap32 (uint32_t x)
945 {
946 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
947 }
948
949 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
950 ecb_function_ uint64_t
951 ecb_bswap64 (uint64_t x)
952 {
953 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
954 }
955#endif
956
957#if ECB_GCC_VERSION(4,5)
958 #define ecb_unreachable() __builtin_unreachable ()
959#else
960 /* this seems to work fine, but gcc always emits a warning for it :/ */
961 ecb_inline void ecb_unreachable (void) ecb_noreturn;
962 ecb_inline void ecb_unreachable (void) { }
963#endif
964
965/* try to tell the compiler that some condition is definitely true */
966#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
967
968ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
969ecb_inline unsigned char
970ecb_byteorder_helper (void)
971{
972 /* the union code still generates code under pressure in gcc, */
973 /* but less than using pointers, and always seems to */
974 /* successfully return a constant. */
975 /* the reason why we have this horrible preprocessor mess */
976 /* is to avoid it in all cases, at least on common architectures */
977 /* or when using a recent enough gcc version (>= 4.6) */
978#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
979 return 0x44;
980#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
981 return 0x44;
982#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
983 return 0x11;
984#else
985 union
986 {
987 uint32_t i;
988 uint8_t c;
989 } u = { 0x11223344 };
990 return u.c;
991#endif
992}
993
994ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
995ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
996ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
997ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
998
999#if ECB_GCC_VERSION(3,0) || ECB_C99
1000 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1001#else
1002 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1003#endif
1004
1005#if __cplusplus
1006 template<typename T>
1007 static inline T ecb_div_rd (T val, T div)
1008 {
1009 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1010 }
1011 template<typename T>
1012 static inline T ecb_div_ru (T val, T div)
1013 {
1014 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1015 }
1016#else
1017 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1018 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1019#endif
1020
1021#if ecb_cplusplus_does_not_suck
1022 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1023 template<typename T, int N>
1024 static inline int ecb_array_length (const T (&arr)[N])
1025 {
1026 return N;
1027 }
1028#else
1029 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1030#endif
1031
1032/*******************************************************************************/
1033/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1034
1035/* basically, everything uses "ieee pure-endian" floating point numbers */
1036/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1037#if 0 \
1038 || __i386 || __i386__ \
1039 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1040 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1041 || defined __arm__ && defined __ARM_EABI__ \
1042 || defined __s390__ || defined __s390x__ \
1043 || defined __mips__ \
1044 || defined __alpha__ \
1045 || defined __hppa__ \
1046 || defined __ia64__ \
1047 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1048 #define ECB_STDFP 1
1049 #include <string.h> /* for memcpy */
1050#else
1051 #define ECB_STDFP 0
1052 #include <math.h> /* for frexp*, ldexp* */
1053#endif
1054
1055#ifndef ECB_NO_LIBM
1056
1057 /* convert a float to ieee single/binary32 */
1058 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1059 ecb_function_ uint32_t
1060 ecb_float_to_binary32 (float x)
1061 {
1062 uint32_t r;
1063
1064 #if ECB_STDFP
1065 memcpy (&r, &x, 4);
1066 #else
1067 /* slow emulation, works for anything but -0 */
1068 uint32_t m;
1069 int e;
1070
1071 if (x == 0e0f ) return 0x00000000U;
1072 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1073 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1074 if (x != x ) return 0x7fbfffffU;
1075
1076 m = frexpf (x, &e) * 0x1000000U;
1077
1078 r = m & 0x80000000U;
1079
1080 if (r)
1081 m = -m;
1082
1083 if (e <= -126)
1084 {
1085 m &= 0xffffffU;
1086 m >>= (-125 - e);
1087 e = -126;
1088 }
1089
1090 r |= (e + 126) << 23;
1091 r |= m & 0x7fffffU;
1092 #endif
1093
1094 return r;
1095 }
1096
1097 /* converts an ieee single/binary32 to a float */
1098 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1099 ecb_function_ float
1100 ecb_binary32_to_float (uint32_t x)
1101 {
1102 float r;
1103
1104 #if ECB_STDFP
1105 memcpy (&r, &x, 4);
1106 #else
1107 /* emulation, only works for normals and subnormals and +0 */
1108 int neg = x >> 31;
1109 int e = (x >> 23) & 0xffU;
1110
1111 x &= 0x7fffffU;
1112
1113 if (e)
1114 x |= 0x800000U;
1115 else
1116 e = 1;
1117
1118 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1119 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1120
1121 r = neg ? -r : r;
1122 #endif
1123
1124 return r;
1125 }
1126
1127 /* convert a double to ieee double/binary64 */
1128 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1129 ecb_function_ uint64_t
1130 ecb_double_to_binary64 (double x)
1131 {
1132 uint64_t r;
1133
1134 #if ECB_STDFP
1135 memcpy (&r, &x, 8);
1136 #else
1137 /* slow emulation, works for anything but -0 */
1138 uint64_t m;
1139 int e;
1140
1141 if (x == 0e0 ) return 0x0000000000000000U;
1142 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1143 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1144 if (x != x ) return 0X7ff7ffffffffffffU;
1145
1146 m = frexp (x, &e) * 0x20000000000000U;
1147
1148 r = m & 0x8000000000000000;;
1149
1150 if (r)
1151 m = -m;
1152
1153 if (e <= -1022)
1154 {
1155 m &= 0x1fffffffffffffU;
1156 m >>= (-1021 - e);
1157 e = -1022;
1158 }
1159
1160 r |= ((uint64_t)(e + 1022)) << 52;
1161 r |= m & 0xfffffffffffffU;
1162 #endif
1163
1164 return r;
1165 }
1166
1167 /* converts an ieee double/binary64 to a double */
1168 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1169 ecb_function_ double
1170 ecb_binary64_to_double (uint64_t x)
1171 {
1172 double r;
1173
1174 #if ECB_STDFP
1175 memcpy (&r, &x, 8);
1176 #else
1177 /* emulation, only works for normals and subnormals and +0 */
1178 int neg = x >> 63;
1179 int e = (x >> 52) & 0x7ffU;
1180
1181 x &= 0xfffffffffffffU;
1182
1183 if (e)
1184 x |= 0x10000000000000U;
1185 else
1186 e = 1;
1187
1188 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1189 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1190
1191 r = neg ? -r : r;
1192 #endif
1193
1194 return r;
1195 }
1196
1197#endif
1198
1199#endif
1200
1201/* ECB.H END */
1202
1203#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1204/* if your architecture doesn't need memory fences, e.g. because it is
1205 * single-cpu/core, or if you use libev in a project that doesn't use libev
1206 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1207 * libev, in which cases the memory fences become nops.
1208 * alternatively, you can remove this #error and link against libpthread,
1209 * which will then provide the memory fences.
1210 */
1211# error "memory fences not defined for your architecture, please report"
1212#endif
1213
1214#ifndef ECB_MEMORY_FENCE
1215# define ECB_MEMORY_FENCE do { } while (0)
1216# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1217# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1218#endif
1219
1220#define expect_false(cond) ecb_expect_false (cond)
1221#define expect_true(cond) ecb_expect_true (cond)
1222#define noinline ecb_noinline
1223
1224#define inline_size ecb_inline
1225
1226#if EV_FEATURE_CODE
1227# define inline_speed ecb_inline
1228#else
1229# define inline_speed static noinline
1230#endif
1231
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1232#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1233
1234#if EV_MINPRI == EV_MAXPRI
1235# define ABSPRI(w) (((W)w), 0)
1236#else
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1237# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1238#endif
247 1239
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1240#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 1241#define EMPTY2(a,b) /* used to suppress some warnings */
250 1242
251typedef ev_watcher *W; 1243typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 1244typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 1245typedef ev_watcher_time *WT;
254 1246
1247#define ev_active(w) ((W)(w))->active
1248#define ev_at(w) ((WT)(w))->at
1249
1250#if EV_USE_REALTIME
1251/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1252/* giving it a reasonably high chance of working on typical architectures */
1253static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1254#endif
1255
1256#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1257static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1258#endif
1259
1260#ifndef EV_FD_TO_WIN32_HANDLE
1261# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1262#endif
1263#ifndef EV_WIN32_HANDLE_TO_FD
1264# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1265#endif
1266#ifndef EV_WIN32_CLOSE_FD
1267# define EV_WIN32_CLOSE_FD(fd) close (fd)
1268#endif
256 1269
257#ifdef _WIN32 1270#ifdef _WIN32
258# include "ev_win32.c" 1271# include "ev_win32.c"
259#endif 1272#endif
260 1273
261/*****************************************************************************/ 1274/*****************************************************************************/
262 1275
1276/* define a suitable floor function (only used by periodics atm) */
1277
1278#if EV_USE_FLOOR
1279# include <math.h>
1280# define ev_floor(v) floor (v)
1281#else
1282
1283#include <float.h>
1284
1285/* a floor() replacement function, should be independent of ev_tstamp type */
1286static ev_tstamp noinline
1287ev_floor (ev_tstamp v)
1288{
1289 /* the choice of shift factor is not terribly important */
1290#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1291 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1292#else
1293 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1294#endif
1295
1296 /* argument too large for an unsigned long? */
1297 if (expect_false (v >= shift))
1298 {
1299 ev_tstamp f;
1300
1301 if (v == v - 1.)
1302 return v; /* very large number */
1303
1304 f = shift * ev_floor (v * (1. / shift));
1305 return f + ev_floor (v - f);
1306 }
1307
1308 /* special treatment for negative args? */
1309 if (expect_false (v < 0.))
1310 {
1311 ev_tstamp f = -ev_floor (-v);
1312
1313 return f - (f == v ? 0 : 1);
1314 }
1315
1316 /* fits into an unsigned long */
1317 return (unsigned long)v;
1318}
1319
1320#endif
1321
1322/*****************************************************************************/
1323
1324#ifdef __linux
1325# include <sys/utsname.h>
1326#endif
1327
1328static unsigned int noinline ecb_cold
1329ev_linux_version (void)
1330{
1331#ifdef __linux
1332 unsigned int v = 0;
1333 struct utsname buf;
1334 int i;
1335 char *p = buf.release;
1336
1337 if (uname (&buf))
1338 return 0;
1339
1340 for (i = 3+1; --i; )
1341 {
1342 unsigned int c = 0;
1343
1344 for (;;)
1345 {
1346 if (*p >= '0' && *p <= '9')
1347 c = c * 10 + *p++ - '0';
1348 else
1349 {
1350 p += *p == '.';
1351 break;
1352 }
1353 }
1354
1355 v = (v << 8) | c;
1356 }
1357
1358 return v;
1359#else
1360 return 0;
1361#endif
1362}
1363
1364/*****************************************************************************/
1365
1366#if EV_AVOID_STDIO
1367static void noinline ecb_cold
1368ev_printerr (const char *msg)
1369{
1370 write (STDERR_FILENO, msg, strlen (msg));
1371}
1372#endif
1373
263static void (*syserr_cb)(const char *msg); 1374static void (*syserr_cb)(const char *msg) EV_THROW;
264 1375
265void 1376void ecb_cold
266ev_set_syserr_cb (void (*cb)(const char *msg)) 1377ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
267{ 1378{
268 syserr_cb = cb; 1379 syserr_cb = cb;
269} 1380}
270 1381
271static void noinline 1382static void noinline ecb_cold
272syserr (const char *msg) 1383ev_syserr (const char *msg)
273{ 1384{
274 if (!msg) 1385 if (!msg)
275 msg = "(libev) system error"; 1386 msg = "(libev) system error";
276 1387
277 if (syserr_cb) 1388 if (syserr_cb)
278 syserr_cb (msg); 1389 syserr_cb (msg);
279 else 1390 else
280 { 1391 {
1392#if EV_AVOID_STDIO
1393 ev_printerr (msg);
1394 ev_printerr (": ");
1395 ev_printerr (strerror (errno));
1396 ev_printerr ("\n");
1397#else
281 perror (msg); 1398 perror (msg);
1399#endif
282 abort (); 1400 abort ();
283 } 1401 }
284} 1402}
285 1403
1404static void *
1405ev_realloc_emul (void *ptr, long size) EV_THROW
1406{
1407 /* some systems, notably openbsd and darwin, fail to properly
1408 * implement realloc (x, 0) (as required by both ansi c-89 and
1409 * the single unix specification, so work around them here.
1410 * recently, also (at least) fedora and debian started breaking it,
1411 * despite documenting it otherwise.
1412 */
1413
1414 if (size)
1415 return realloc (ptr, size);
1416
1417 free (ptr);
1418 return 0;
1419}
1420
286static void *(*alloc)(void *ptr, long size); 1421static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
287 1422
288void 1423void ecb_cold
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 1424ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
290{ 1425{
291 alloc = cb; 1426 alloc = cb;
292} 1427}
293 1428
294inline_speed void * 1429inline_speed void *
295ev_realloc (void *ptr, long size) 1430ev_realloc (void *ptr, long size)
296{ 1431{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1432 ptr = alloc (ptr, size);
298 1433
299 if (!ptr && size) 1434 if (!ptr && size)
300 { 1435 {
1436#if EV_AVOID_STDIO
1437 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1438#else
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1439 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1440#endif
302 abort (); 1441 abort ();
303 } 1442 }
304 1443
305 return ptr; 1444 return ptr;
306} 1445}
308#define ev_malloc(size) ev_realloc (0, (size)) 1447#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 1448#define ev_free(ptr) ev_realloc ((ptr), 0)
310 1449
311/*****************************************************************************/ 1450/*****************************************************************************/
312 1451
1452/* set in reify when reification needed */
1453#define EV_ANFD_REIFY 1
1454
1455/* file descriptor info structure */
313typedef struct 1456typedef struct
314{ 1457{
315 WL head; 1458 WL head;
316 unsigned char events; 1459 unsigned char events; /* the events watched for */
1460 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1461 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 1462 unsigned char unused;
1463#if EV_USE_EPOLL
1464 unsigned int egen; /* generation counter to counter epoll bugs */
1465#endif
318#if EV_SELECT_IS_WINSOCKET 1466#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
319 SOCKET handle; 1467 SOCKET handle;
320#endif 1468#endif
1469#if EV_USE_IOCP
1470 OVERLAPPED or, ow;
1471#endif
321} ANFD; 1472} ANFD;
322 1473
1474/* stores the pending event set for a given watcher */
323typedef struct 1475typedef struct
324{ 1476{
325 W w; 1477 W w;
326 int events; 1478 int events; /* the pending event set for the given watcher */
327} ANPENDING; 1479} ANPENDING;
328 1480
329#if EV_USE_INOTIFY 1481#if EV_USE_INOTIFY
1482/* hash table entry per inotify-id */
330typedef struct 1483typedef struct
331{ 1484{
332 WL head; 1485 WL head;
333} ANFS; 1486} ANFS;
1487#endif
1488
1489/* Heap Entry */
1490#if EV_HEAP_CACHE_AT
1491 /* a heap element */
1492 typedef struct {
1493 ev_tstamp at;
1494 WT w;
1495 } ANHE;
1496
1497 #define ANHE_w(he) (he).w /* access watcher, read-write */
1498 #define ANHE_at(he) (he).at /* access cached at, read-only */
1499 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1500#else
1501 /* a heap element */
1502 typedef WT ANHE;
1503
1504 #define ANHE_w(he) (he)
1505 #define ANHE_at(he) (he)->at
1506 #define ANHE_at_cache(he)
334#endif 1507#endif
335 1508
336#if EV_MULTIPLICITY 1509#if EV_MULTIPLICITY
337 1510
338 struct ev_loop 1511 struct ev_loop
344 #undef VAR 1517 #undef VAR
345 }; 1518 };
346 #include "ev_wrap.h" 1519 #include "ev_wrap.h"
347 1520
348 static struct ev_loop default_loop_struct; 1521 static struct ev_loop default_loop_struct;
349 struct ev_loop *ev_default_loop_ptr; 1522 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
350 1523
351#else 1524#else
352 1525
353 ev_tstamp ev_rt_now; 1526 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
354 #define VAR(name,decl) static decl; 1527 #define VAR(name,decl) static decl;
355 #include "ev_vars.h" 1528 #include "ev_vars.h"
356 #undef VAR 1529 #undef VAR
357 1530
358 static int ev_default_loop_ptr; 1531 static int ev_default_loop_ptr;
359 1532
360#endif 1533#endif
361 1534
1535#if EV_FEATURE_API
1536# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1537# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1538# define EV_INVOKE_PENDING invoke_cb (EV_A)
1539#else
1540# define EV_RELEASE_CB (void)0
1541# define EV_ACQUIRE_CB (void)0
1542# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1543#endif
1544
1545#define EVBREAK_RECURSE 0x80
1546
362/*****************************************************************************/ 1547/*****************************************************************************/
363 1548
1549#ifndef EV_HAVE_EV_TIME
364ev_tstamp 1550ev_tstamp
365ev_time (void) 1551ev_time (void) EV_THROW
366{ 1552{
367#if EV_USE_REALTIME 1553#if EV_USE_REALTIME
1554 if (expect_true (have_realtime))
1555 {
368 struct timespec ts; 1556 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 1557 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 1558 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 1559 }
1560#endif
1561
372 struct timeval tv; 1562 struct timeval tv;
373 gettimeofday (&tv, 0); 1563 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 1564 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 1565}
1566#endif
377 1567
378ev_tstamp inline_size 1568inline_size ev_tstamp
379get_clock (void) 1569get_clock (void)
380{ 1570{
381#if EV_USE_MONOTONIC 1571#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 1572 if (expect_true (have_monotonic))
383 { 1573 {
390 return ev_time (); 1580 return ev_time ();
391} 1581}
392 1582
393#if EV_MULTIPLICITY 1583#if EV_MULTIPLICITY
394ev_tstamp 1584ev_tstamp
395ev_now (EV_P) 1585ev_now (EV_P) EV_THROW
396{ 1586{
397 return ev_rt_now; 1587 return ev_rt_now;
398} 1588}
399#endif 1589#endif
400 1590
401int inline_size 1591void
1592ev_sleep (ev_tstamp delay) EV_THROW
1593{
1594 if (delay > 0.)
1595 {
1596#if EV_USE_NANOSLEEP
1597 struct timespec ts;
1598
1599 EV_TS_SET (ts, delay);
1600 nanosleep (&ts, 0);
1601#elif defined _WIN32
1602 Sleep ((unsigned long)(delay * 1e3));
1603#else
1604 struct timeval tv;
1605
1606 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1607 /* something not guaranteed by newer posix versions, but guaranteed */
1608 /* by older ones */
1609 EV_TV_SET (tv, delay);
1610 select (0, 0, 0, 0, &tv);
1611#endif
1612 }
1613}
1614
1615/*****************************************************************************/
1616
1617#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1618
1619/* find a suitable new size for the given array, */
1620/* hopefully by rounding to a nice-to-malloc size */
1621inline_size int
402array_nextsize (int elem, int cur, int cnt) 1622array_nextsize (int elem, int cur, int cnt)
403{ 1623{
404 int ncur = cur + 1; 1624 int ncur = cur + 1;
405 1625
406 do 1626 do
407 ncur <<= 1; 1627 ncur <<= 1;
408 while (cnt > ncur); 1628 while (cnt > ncur);
409 1629
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1630 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
411 if (elem * ncur > 4096) 1631 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 1632 {
413 ncur *= elem; 1633 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1634 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 1635 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 1636 ncur /= elem;
417 } 1637 }
418 1638
419 return ncur; 1639 return ncur;
420} 1640}
421 1641
422inline_speed void * 1642static void * noinline ecb_cold
423array_realloc (int elem, void *base, int *cur, int cnt) 1643array_realloc (int elem, void *base, int *cur, int cnt)
424{ 1644{
425 *cur = array_nextsize (elem, *cur, cnt); 1645 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 1646 return ev_realloc (base, elem * *cur);
427} 1647}
1648
1649#define array_init_zero(base,count) \
1650 memset ((void *)(base), 0, sizeof (*(base)) * (count))
428 1651
429#define array_needsize(type,base,cur,cnt,init) \ 1652#define array_needsize(type,base,cur,cnt,init) \
430 if (expect_false ((cnt) > (cur))) \ 1653 if (expect_false ((cnt) > (cur))) \
431 { \ 1654 { \
432 int ocur_ = (cur); \ 1655 int ecb_unused ocur_ = (cur); \
433 (base) = (type *)array_realloc \ 1656 (base) = (type *)array_realloc \
434 (sizeof (type), (base), &(cur), (cnt)); \ 1657 (sizeof (type), (base), &(cur), (cnt)); \
435 init ((base) + (ocur_), (cur) - ocur_); \ 1658 init ((base) + (ocur_), (cur) - ocur_); \
436 } 1659 }
437 1660
444 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1667 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
445 } 1668 }
446#endif 1669#endif
447 1670
448#define array_free(stem, idx) \ 1671#define array_free(stem, idx) \
449 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1672 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
450 1673
451/*****************************************************************************/ 1674/*****************************************************************************/
452 1675
1676/* dummy callback for pending events */
1677static void noinline
1678pendingcb (EV_P_ ev_prepare *w, int revents)
1679{
1680}
1681
453void noinline 1682void noinline
454ev_feed_event (EV_P_ void *w, int revents) 1683ev_feed_event (EV_P_ void *w, int revents) EV_THROW
455{ 1684{
456 W w_ = (W)w; 1685 W w_ = (W)w;
1686 int pri = ABSPRI (w_);
457 1687
458 if (expect_false (w_->pending)) 1688 if (expect_false (w_->pending))
1689 pendings [pri][w_->pending - 1].events |= revents;
1690 else
459 { 1691 {
1692 w_->pending = ++pendingcnt [pri];
1693 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1694 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1695 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 1696 }
463 1697
464 w_->pending = ++pendingcnt [ABSPRI (w_)]; 1698 pendingpri = NUMPRI - 1;
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 1699}
469 1700
470void inline_size 1701inline_speed void
1702feed_reverse (EV_P_ W w)
1703{
1704 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1705 rfeeds [rfeedcnt++] = w;
1706}
1707
1708inline_size void
1709feed_reverse_done (EV_P_ int revents)
1710{
1711 do
1712 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1713 while (rfeedcnt);
1714}
1715
1716inline_speed void
471queue_events (EV_P_ W *events, int eventcnt, int type) 1717queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 1718{
473 int i; 1719 int i;
474 1720
475 for (i = 0; i < eventcnt; ++i) 1721 for (i = 0; i < eventcnt; ++i)
476 ev_feed_event (EV_A_ events [i], type); 1722 ev_feed_event (EV_A_ events [i], type);
477} 1723}
478 1724
479/*****************************************************************************/ 1725/*****************************************************************************/
480 1726
481void inline_size 1727inline_speed void
482anfds_init (ANFD *base, int count)
483{
484 while (count--)
485 {
486 base->head = 0;
487 base->events = EV_NONE;
488 base->reify = 0;
489
490 ++base;
491 }
492}
493
494void inline_speed
495fd_event (EV_P_ int fd, int revents) 1728fd_event_nocheck (EV_P_ int fd, int revents)
496{ 1729{
497 ANFD *anfd = anfds + fd; 1730 ANFD *anfd = anfds + fd;
498 ev_io *w; 1731 ev_io *w;
499 1732
500 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1733 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
504 if (ev) 1737 if (ev)
505 ev_feed_event (EV_A_ (W)w, ev); 1738 ev_feed_event (EV_A_ (W)w, ev);
506 } 1739 }
507} 1740}
508 1741
1742/* do not submit kernel events for fds that have reify set */
1743/* because that means they changed while we were polling for new events */
1744inline_speed void
1745fd_event (EV_P_ int fd, int revents)
1746{
1747 ANFD *anfd = anfds + fd;
1748
1749 if (expect_true (!anfd->reify))
1750 fd_event_nocheck (EV_A_ fd, revents);
1751}
1752
509void 1753void
510ev_feed_fd_event (EV_P_ int fd, int revents) 1754ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
511{ 1755{
512 if (fd >= 0 && fd < anfdmax) 1756 if (fd >= 0 && fd < anfdmax)
513 fd_event (EV_A_ fd, revents); 1757 fd_event_nocheck (EV_A_ fd, revents);
514} 1758}
515 1759
516void inline_size 1760/* make sure the external fd watch events are in-sync */
1761/* with the kernel/libev internal state */
1762inline_size void
517fd_reify (EV_P) 1763fd_reify (EV_P)
518{ 1764{
519 int i; 1765 int i;
1766
1767#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1768 for (i = 0; i < fdchangecnt; ++i)
1769 {
1770 int fd = fdchanges [i];
1771 ANFD *anfd = anfds + fd;
1772
1773 if (anfd->reify & EV__IOFDSET && anfd->head)
1774 {
1775 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1776
1777 if (handle != anfd->handle)
1778 {
1779 unsigned long arg;
1780
1781 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1782
1783 /* handle changed, but fd didn't - we need to do it in two steps */
1784 backend_modify (EV_A_ fd, anfd->events, 0);
1785 anfd->events = 0;
1786 anfd->handle = handle;
1787 }
1788 }
1789 }
1790#endif
520 1791
521 for (i = 0; i < fdchangecnt; ++i) 1792 for (i = 0; i < fdchangecnt; ++i)
522 { 1793 {
523 int fd = fdchanges [i]; 1794 int fd = fdchanges [i];
524 ANFD *anfd = anfds + fd; 1795 ANFD *anfd = anfds + fd;
525 ev_io *w; 1796 ev_io *w;
526 1797
527 int events = 0; 1798 unsigned char o_events = anfd->events;
1799 unsigned char o_reify = anfd->reify;
528 1800
529 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1801 anfd->reify = 0;
530 events |= w->events;
531 1802
532#if EV_SELECT_IS_WINSOCKET 1803 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
533 if (events)
534 { 1804 {
535 unsigned long argp; 1805 anfd->events = 0;
536 anfd->handle = _get_osfhandle (fd); 1806
537 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1807 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1808 anfd->events |= (unsigned char)w->events;
1809
1810 if (o_events != anfd->events)
1811 o_reify = EV__IOFDSET; /* actually |= */
538 } 1812 }
539#endif
540 1813
541 anfd->reify = 0; 1814 if (o_reify & EV__IOFDSET)
542
543 backend_modify (EV_A_ fd, anfd->events, events); 1815 backend_modify (EV_A_ fd, o_events, anfd->events);
544 anfd->events = events;
545 } 1816 }
546 1817
547 fdchangecnt = 0; 1818 fdchangecnt = 0;
548} 1819}
549 1820
550void inline_size 1821/* something about the given fd changed */
1822inline_size void
551fd_change (EV_P_ int fd) 1823fd_change (EV_P_ int fd, int flags)
552{ 1824{
553 if (expect_false (anfds [fd].reify)) 1825 unsigned char reify = anfds [fd].reify;
554 return;
555
556 anfds [fd].reify = 1; 1826 anfds [fd].reify |= flags;
557 1827
1828 if (expect_true (!reify))
1829 {
558 ++fdchangecnt; 1830 ++fdchangecnt;
559 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1831 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
560 fdchanges [fdchangecnt - 1] = fd; 1832 fdchanges [fdchangecnt - 1] = fd;
1833 }
561} 1834}
562 1835
563void inline_speed 1836/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1837inline_speed void ecb_cold
564fd_kill (EV_P_ int fd) 1838fd_kill (EV_P_ int fd)
565{ 1839{
566 ev_io *w; 1840 ev_io *w;
567 1841
568 while ((w = (ev_io *)anfds [fd].head)) 1842 while ((w = (ev_io *)anfds [fd].head))
570 ev_io_stop (EV_A_ w); 1844 ev_io_stop (EV_A_ w);
571 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1845 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
572 } 1846 }
573} 1847}
574 1848
575int inline_size 1849/* check whether the given fd is actually valid, for error recovery */
1850inline_size int ecb_cold
576fd_valid (int fd) 1851fd_valid (int fd)
577{ 1852{
578#ifdef _WIN32 1853#ifdef _WIN32
579 return _get_osfhandle (fd) != -1; 1854 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
580#else 1855#else
581 return fcntl (fd, F_GETFD) != -1; 1856 return fcntl (fd, F_GETFD) != -1;
582#endif 1857#endif
583} 1858}
584 1859
585/* called on EBADF to verify fds */ 1860/* called on EBADF to verify fds */
586static void noinline 1861static void noinline ecb_cold
587fd_ebadf (EV_P) 1862fd_ebadf (EV_P)
588{ 1863{
589 int fd; 1864 int fd;
590 1865
591 for (fd = 0; fd < anfdmax; ++fd) 1866 for (fd = 0; fd < anfdmax; ++fd)
592 if (anfds [fd].events) 1867 if (anfds [fd].events)
593 if (!fd_valid (fd) == -1 && errno == EBADF) 1868 if (!fd_valid (fd) && errno == EBADF)
594 fd_kill (EV_A_ fd); 1869 fd_kill (EV_A_ fd);
595} 1870}
596 1871
597/* called on ENOMEM in select/poll to kill some fds and retry */ 1872/* called on ENOMEM in select/poll to kill some fds and retry */
598static void noinline 1873static void noinline ecb_cold
599fd_enomem (EV_P) 1874fd_enomem (EV_P)
600{ 1875{
601 int fd; 1876 int fd;
602 1877
603 for (fd = anfdmax; fd--; ) 1878 for (fd = anfdmax; fd--; )
604 if (anfds [fd].events) 1879 if (anfds [fd].events)
605 { 1880 {
606 fd_kill (EV_A_ fd); 1881 fd_kill (EV_A_ fd);
607 return; 1882 break;
608 } 1883 }
609} 1884}
610 1885
611/* usually called after fork if backend needs to re-arm all fds from scratch */ 1886/* usually called after fork if backend needs to re-arm all fds from scratch */
612static void noinline 1887static void noinline
616 1891
617 for (fd = 0; fd < anfdmax; ++fd) 1892 for (fd = 0; fd < anfdmax; ++fd)
618 if (anfds [fd].events) 1893 if (anfds [fd].events)
619 { 1894 {
620 anfds [fd].events = 0; 1895 anfds [fd].events = 0;
621 fd_change (EV_A_ fd); 1896 anfds [fd].emask = 0;
1897 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
622 } 1898 }
623} 1899}
624 1900
625/*****************************************************************************/ 1901/* used to prepare libev internal fd's */
626 1902/* this is not fork-safe */
627void inline_speed 1903inline_speed void
628upheap (WT *heap, int k)
629{
630 WT w = heap [k];
631
632 while (k && heap [k >> 1]->at > w->at)
633 {
634 heap [k] = heap [k >> 1];
635 ((W)heap [k])->active = k + 1;
636 k >>= 1;
637 }
638
639 heap [k] = w;
640 ((W)heap [k])->active = k + 1;
641
642}
643
644void inline_speed
645downheap (WT *heap, int N, int k)
646{
647 WT w = heap [k];
648
649 while (k < (N >> 1))
650 {
651 int j = k << 1;
652
653 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
654 ++j;
655
656 if (w->at <= heap [j]->at)
657 break;
658
659 heap [k] = heap [j];
660 ((W)heap [k])->active = k + 1;
661 k = j;
662 }
663
664 heap [k] = w;
665 ((W)heap [k])->active = k + 1;
666}
667
668void inline_size
669adjustheap (WT *heap, int N, int k)
670{
671 upheap (heap, k);
672 downheap (heap, N, k);
673}
674
675/*****************************************************************************/
676
677typedef struct
678{
679 WL head;
680 sig_atomic_t volatile gotsig;
681} ANSIG;
682
683static ANSIG *signals;
684static int signalmax;
685
686static int sigpipe [2];
687static sig_atomic_t volatile gotsig;
688static ev_io sigev;
689
690void inline_size
691signals_init (ANSIG *base, int count)
692{
693 while (count--)
694 {
695 base->head = 0;
696 base->gotsig = 0;
697
698 ++base;
699 }
700}
701
702static void
703sighandler (int signum)
704{
705#if _WIN32
706 signal (signum, sighandler);
707#endif
708
709 signals [signum - 1].gotsig = 1;
710
711 if (!gotsig)
712 {
713 int old_errno = errno;
714 gotsig = 1;
715 write (sigpipe [1], &signum, 1);
716 errno = old_errno;
717 }
718}
719
720void noinline
721ev_feed_signal_event (EV_P_ int signum)
722{
723 WL w;
724
725#if EV_MULTIPLICITY
726 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
727#endif
728
729 --signum;
730
731 if (signum < 0 || signum >= signalmax)
732 return;
733
734 signals [signum].gotsig = 0;
735
736 for (w = signals [signum].head; w; w = w->next)
737 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
738}
739
740static void
741sigcb (EV_P_ ev_io *iow, int revents)
742{
743 int signum;
744
745 read (sigpipe [0], &revents, 1);
746 gotsig = 0;
747
748 for (signum = signalmax; signum--; )
749 if (signals [signum].gotsig)
750 ev_feed_signal_event (EV_A_ signum + 1);
751}
752
753void inline_size
754fd_intern (int fd) 1904fd_intern (int fd)
755{ 1905{
756#ifdef _WIN32 1906#ifdef _WIN32
757 int arg = 1; 1907 unsigned long arg = 1;
758 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1908 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
759#else 1909#else
760 fcntl (fd, F_SETFD, FD_CLOEXEC); 1910 fcntl (fd, F_SETFD, FD_CLOEXEC);
761 fcntl (fd, F_SETFL, O_NONBLOCK); 1911 fcntl (fd, F_SETFL, O_NONBLOCK);
762#endif 1912#endif
763} 1913}
764 1914
765static void noinline
766siginit (EV_P)
767{
768 fd_intern (sigpipe [0]);
769 fd_intern (sigpipe [1]);
770
771 ev_io_set (&sigev, sigpipe [0], EV_READ);
772 ev_io_start (EV_A_ &sigev);
773 ev_unref (EV_A); /* child watcher should not keep loop alive */
774}
775
776/*****************************************************************************/ 1915/*****************************************************************************/
777 1916
778static ev_child *childs [EV_PID_HASHSIZE]; 1917/*
1918 * the heap functions want a real array index. array index 0 is guaranteed to not
1919 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1920 * the branching factor of the d-tree.
1921 */
779 1922
1923/*
1924 * at the moment we allow libev the luxury of two heaps,
1925 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1926 * which is more cache-efficient.
1927 * the difference is about 5% with 50000+ watchers.
1928 */
1929#if EV_USE_4HEAP
1930
1931#define DHEAP 4
1932#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1933#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1934#define UPHEAP_DONE(p,k) ((p) == (k))
1935
1936/* away from the root */
1937inline_speed void
1938downheap (ANHE *heap, int N, int k)
1939{
1940 ANHE he = heap [k];
1941 ANHE *E = heap + N + HEAP0;
1942
1943 for (;;)
1944 {
1945 ev_tstamp minat;
1946 ANHE *minpos;
1947 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1948
1949 /* find minimum child */
1950 if (expect_true (pos + DHEAP - 1 < E))
1951 {
1952 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1953 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1954 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1955 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1956 }
1957 else if (pos < E)
1958 {
1959 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1960 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1961 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1962 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1963 }
1964 else
1965 break;
1966
1967 if (ANHE_at (he) <= minat)
1968 break;
1969
1970 heap [k] = *minpos;
1971 ev_active (ANHE_w (*minpos)) = k;
1972
1973 k = minpos - heap;
1974 }
1975
1976 heap [k] = he;
1977 ev_active (ANHE_w (he)) = k;
1978}
1979
1980#else /* 4HEAP */
1981
1982#define HEAP0 1
1983#define HPARENT(k) ((k) >> 1)
1984#define UPHEAP_DONE(p,k) (!(p))
1985
1986/* away from the root */
1987inline_speed void
1988downheap (ANHE *heap, int N, int k)
1989{
1990 ANHE he = heap [k];
1991
1992 for (;;)
1993 {
1994 int c = k << 1;
1995
1996 if (c >= N + HEAP0)
1997 break;
1998
1999 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2000 ? 1 : 0;
2001
2002 if (ANHE_at (he) <= ANHE_at (heap [c]))
2003 break;
2004
2005 heap [k] = heap [c];
2006 ev_active (ANHE_w (heap [k])) = k;
2007
2008 k = c;
2009 }
2010
2011 heap [k] = he;
2012 ev_active (ANHE_w (he)) = k;
2013}
2014#endif
2015
2016/* towards the root */
2017inline_speed void
2018upheap (ANHE *heap, int k)
2019{
2020 ANHE he = heap [k];
2021
2022 for (;;)
2023 {
2024 int p = HPARENT (k);
2025
2026 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2027 break;
2028
2029 heap [k] = heap [p];
2030 ev_active (ANHE_w (heap [k])) = k;
2031 k = p;
2032 }
2033
2034 heap [k] = he;
2035 ev_active (ANHE_w (he)) = k;
2036}
2037
2038/* move an element suitably so it is in a correct place */
2039inline_size void
2040adjustheap (ANHE *heap, int N, int k)
2041{
2042 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2043 upheap (heap, k);
2044 else
2045 downheap (heap, N, k);
2046}
2047
2048/* rebuild the heap: this function is used only once and executed rarely */
2049inline_size void
2050reheap (ANHE *heap, int N)
2051{
2052 int i;
2053
2054 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2055 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2056 for (i = 0; i < N; ++i)
2057 upheap (heap, i + HEAP0);
2058}
2059
2060/*****************************************************************************/
2061
2062/* associate signal watchers to a signal signal */
2063typedef struct
2064{
2065 EV_ATOMIC_T pending;
2066#if EV_MULTIPLICITY
2067 EV_P;
2068#endif
2069 WL head;
2070} ANSIG;
2071
2072static ANSIG signals [EV_NSIG - 1];
2073
2074/*****************************************************************************/
2075
2076#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2077
2078static void noinline ecb_cold
2079evpipe_init (EV_P)
2080{
2081 if (!ev_is_active (&pipe_w))
2082 {
2083 int fds [2];
2084
2085# if EV_USE_EVENTFD
2086 fds [0] = -1;
2087 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2088 if (fds [1] < 0 && errno == EINVAL)
2089 fds [1] = eventfd (0, 0);
2090
2091 if (fds [1] < 0)
2092# endif
2093 {
2094 while (pipe (fds))
2095 ev_syserr ("(libev) error creating signal/async pipe");
2096
2097 fd_intern (fds [0]);
2098 }
2099
2100 fd_intern (fds [1]);
2101
2102 evpipe [0] = fds [0];
2103
2104 if (evpipe [1] < 0)
2105 evpipe [1] = fds [1]; /* first call, set write fd */
2106 else
2107 {
2108 /* on subsequent calls, do not change evpipe [1] */
2109 /* so that evpipe_write can always rely on its value. */
2110 /* this branch does not do anything sensible on windows, */
2111 /* so must not be executed on windows */
2112
2113 dup2 (fds [1], evpipe [1]);
2114 close (fds [1]);
2115 }
2116
2117 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2118 ev_io_start (EV_A_ &pipe_w);
2119 ev_unref (EV_A); /* watcher should not keep loop alive */
2120 }
2121}
2122
2123inline_speed void
2124evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2125{
2126 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2127
2128 if (expect_true (*flag))
2129 return;
2130
2131 *flag = 1;
2132 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2133
2134 pipe_write_skipped = 1;
2135
2136 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2137
2138 if (pipe_write_wanted)
2139 {
2140 int old_errno;
2141
2142 pipe_write_skipped = 0;
2143 ECB_MEMORY_FENCE_RELEASE;
2144
2145 old_errno = errno; /* save errno because write will clobber it */
2146
2147#if EV_USE_EVENTFD
2148 if (evpipe [0] < 0)
2149 {
2150 uint64_t counter = 1;
2151 write (evpipe [1], &counter, sizeof (uint64_t));
2152 }
2153 else
2154#endif
2155 {
780#ifndef _WIN32 2156#ifdef _WIN32
2157 WSABUF buf;
2158 DWORD sent;
2159 buf.buf = &buf;
2160 buf.len = 1;
2161 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2162#else
2163 write (evpipe [1], &(evpipe [1]), 1);
2164#endif
2165 }
2166
2167 errno = old_errno;
2168 }
2169}
2170
2171/* called whenever the libev signal pipe */
2172/* got some events (signal, async) */
2173static void
2174pipecb (EV_P_ ev_io *iow, int revents)
2175{
2176 int i;
2177
2178 if (revents & EV_READ)
2179 {
2180#if EV_USE_EVENTFD
2181 if (evpipe [0] < 0)
2182 {
2183 uint64_t counter;
2184 read (evpipe [1], &counter, sizeof (uint64_t));
2185 }
2186 else
2187#endif
2188 {
2189 char dummy[4];
2190#ifdef _WIN32
2191 WSABUF buf;
2192 DWORD recvd;
2193 DWORD flags = 0;
2194 buf.buf = dummy;
2195 buf.len = sizeof (dummy);
2196 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2197#else
2198 read (evpipe [0], &dummy, sizeof (dummy));
2199#endif
2200 }
2201 }
2202
2203 pipe_write_skipped = 0;
2204
2205 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2206
2207#if EV_SIGNAL_ENABLE
2208 if (sig_pending)
2209 {
2210 sig_pending = 0;
2211
2212 ECB_MEMORY_FENCE;
2213
2214 for (i = EV_NSIG - 1; i--; )
2215 if (expect_false (signals [i].pending))
2216 ev_feed_signal_event (EV_A_ i + 1);
2217 }
2218#endif
2219
2220#if EV_ASYNC_ENABLE
2221 if (async_pending)
2222 {
2223 async_pending = 0;
2224
2225 ECB_MEMORY_FENCE;
2226
2227 for (i = asynccnt; i--; )
2228 if (asyncs [i]->sent)
2229 {
2230 asyncs [i]->sent = 0;
2231 ECB_MEMORY_FENCE_RELEASE;
2232 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2233 }
2234 }
2235#endif
2236}
2237
2238/*****************************************************************************/
2239
2240void
2241ev_feed_signal (int signum) EV_THROW
2242{
2243#if EV_MULTIPLICITY
2244 ECB_MEMORY_FENCE_ACQUIRE;
2245 EV_P = signals [signum - 1].loop;
2246
2247 if (!EV_A)
2248 return;
2249#endif
2250
2251 signals [signum - 1].pending = 1;
2252 evpipe_write (EV_A_ &sig_pending);
2253}
2254
2255static void
2256ev_sighandler (int signum)
2257{
2258#ifdef _WIN32
2259 signal (signum, ev_sighandler);
2260#endif
2261
2262 ev_feed_signal (signum);
2263}
2264
2265void noinline
2266ev_feed_signal_event (EV_P_ int signum) EV_THROW
2267{
2268 WL w;
2269
2270 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2271 return;
2272
2273 --signum;
2274
2275#if EV_MULTIPLICITY
2276 /* it is permissible to try to feed a signal to the wrong loop */
2277 /* or, likely more useful, feeding a signal nobody is waiting for */
2278
2279 if (expect_false (signals [signum].loop != EV_A))
2280 return;
2281#endif
2282
2283 signals [signum].pending = 0;
2284 ECB_MEMORY_FENCE_RELEASE;
2285
2286 for (w = signals [signum].head; w; w = w->next)
2287 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2288}
2289
2290#if EV_USE_SIGNALFD
2291static void
2292sigfdcb (EV_P_ ev_io *iow, int revents)
2293{
2294 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2295
2296 for (;;)
2297 {
2298 ssize_t res = read (sigfd, si, sizeof (si));
2299
2300 /* not ISO-C, as res might be -1, but works with SuS */
2301 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2302 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2303
2304 if (res < (ssize_t)sizeof (si))
2305 break;
2306 }
2307}
2308#endif
2309
2310#endif
2311
2312/*****************************************************************************/
2313
2314#if EV_CHILD_ENABLE
2315static WL childs [EV_PID_HASHSIZE];
781 2316
782static ev_signal childev; 2317static ev_signal childev;
783 2318
784void inline_speed 2319#ifndef WIFCONTINUED
2320# define WIFCONTINUED(status) 0
2321#endif
2322
2323/* handle a single child status event */
2324inline_speed void
785child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2325child_reap (EV_P_ int chain, int pid, int status)
786{ 2326{
787 ev_child *w; 2327 ev_child *w;
2328 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
788 2329
789 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2330 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2331 {
790 if (w->pid == pid || !w->pid) 2332 if ((w->pid == pid || !w->pid)
2333 && (!traced || (w->flags & 1)))
791 { 2334 {
792 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2335 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
793 w->rpid = pid; 2336 w->rpid = pid;
794 w->rstatus = status; 2337 w->rstatus = status;
795 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2338 ev_feed_event (EV_A_ (W)w, EV_CHILD);
796 } 2339 }
2340 }
797} 2341}
798 2342
799#ifndef WCONTINUED 2343#ifndef WCONTINUED
800# define WCONTINUED 0 2344# define WCONTINUED 0
801#endif 2345#endif
802 2346
2347/* called on sigchld etc., calls waitpid */
803static void 2348static void
804childcb (EV_P_ ev_signal *sw, int revents) 2349childcb (EV_P_ ev_signal *sw, int revents)
805{ 2350{
806 int pid, status; 2351 int pid, status;
807 2352
810 if (!WCONTINUED 2355 if (!WCONTINUED
811 || errno != EINVAL 2356 || errno != EINVAL
812 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2357 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
813 return; 2358 return;
814 2359
815 /* make sure we are called again until all childs have been reaped */ 2360 /* make sure we are called again until all children have been reaped */
816 /* we need to do it this way so that the callback gets called before we continue */ 2361 /* we need to do it this way so that the callback gets called before we continue */
817 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2362 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
818 2363
819 child_reap (EV_A_ sw, pid, pid, status); 2364 child_reap (EV_A_ pid, pid, status);
820 if (EV_PID_HASHSIZE > 1) 2365 if ((EV_PID_HASHSIZE) > 1)
821 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2366 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
822} 2367}
823 2368
824#endif 2369#endif
825 2370
826/*****************************************************************************/ 2371/*****************************************************************************/
827 2372
2373#if EV_USE_IOCP
2374# include "ev_iocp.c"
2375#endif
828#if EV_USE_PORT 2376#if EV_USE_PORT
829# include "ev_port.c" 2377# include "ev_port.c"
830#endif 2378#endif
831#if EV_USE_KQUEUE 2379#if EV_USE_KQUEUE
832# include "ev_kqueue.c" 2380# include "ev_kqueue.c"
839#endif 2387#endif
840#if EV_USE_SELECT 2388#if EV_USE_SELECT
841# include "ev_select.c" 2389# include "ev_select.c"
842#endif 2390#endif
843 2391
844int 2392int ecb_cold
845ev_version_major (void) 2393ev_version_major (void) EV_THROW
846{ 2394{
847 return EV_VERSION_MAJOR; 2395 return EV_VERSION_MAJOR;
848} 2396}
849 2397
850int 2398int ecb_cold
851ev_version_minor (void) 2399ev_version_minor (void) EV_THROW
852{ 2400{
853 return EV_VERSION_MINOR; 2401 return EV_VERSION_MINOR;
854} 2402}
855 2403
856/* return true if we are running with elevated privileges and should ignore env variables */ 2404/* return true if we are running with elevated privileges and should ignore env variables */
857int inline_size 2405int inline_size ecb_cold
858enable_secure (void) 2406enable_secure (void)
859{ 2407{
860#ifdef _WIN32 2408#ifdef _WIN32
861 return 0; 2409 return 0;
862#else 2410#else
863 return getuid () != geteuid () 2411 return getuid () != geteuid ()
864 || getgid () != getegid (); 2412 || getgid () != getegid ();
865#endif 2413#endif
866} 2414}
867 2415
868unsigned int 2416unsigned int ecb_cold
869ev_supported_backends (void) 2417ev_supported_backends (void) EV_THROW
870{ 2418{
871 unsigned int flags = 0; 2419 unsigned int flags = 0;
872 2420
873 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2421 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
874 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2422 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
877 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2425 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
878 2426
879 return flags; 2427 return flags;
880} 2428}
881 2429
882unsigned int 2430unsigned int ecb_cold
883ev_recommended_backends (void) 2431ev_recommended_backends (void) EV_THROW
884{ 2432{
885 unsigned int flags = ev_supported_backends (); 2433 unsigned int flags = ev_supported_backends ();
886 2434
887#ifndef __NetBSD__ 2435#ifndef __NetBSD__
888 /* kqueue is borked on everything but netbsd apparently */ 2436 /* kqueue is borked on everything but netbsd apparently */
889 /* it usually doesn't work correctly on anything but sockets and pipes */ 2437 /* it usually doesn't work correctly on anything but sockets and pipes */
890 flags &= ~EVBACKEND_KQUEUE; 2438 flags &= ~EVBACKEND_KQUEUE;
891#endif 2439#endif
892#ifdef __APPLE__ 2440#ifdef __APPLE__
893 // flags &= ~EVBACKEND_KQUEUE; for documentation 2441 /* only select works correctly on that "unix-certified" platform */
894 flags &= ~EVBACKEND_POLL; 2442 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2443 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2444#endif
2445#ifdef __FreeBSD__
2446 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
895#endif 2447#endif
896 2448
897 return flags; 2449 return flags;
898} 2450}
899 2451
2452unsigned int ecb_cold
2453ev_embeddable_backends (void) EV_THROW
2454{
2455 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2456
2457 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2458 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2459 flags &= ~EVBACKEND_EPOLL;
2460
2461 return flags;
2462}
2463
900unsigned int 2464unsigned int
901ev_embeddable_backends (void) 2465ev_backend (EV_P) EV_THROW
902{ 2466{
903 return EVBACKEND_EPOLL 2467 return backend;
904 | EVBACKEND_KQUEUE
905 | EVBACKEND_PORT;
906} 2468}
907 2469
2470#if EV_FEATURE_API
908unsigned int 2471unsigned int
909ev_backend (EV_P) 2472ev_iteration (EV_P) EV_THROW
910{ 2473{
911 return backend; 2474 return loop_count;
912} 2475}
913 2476
914unsigned int 2477unsigned int
915ev_loop_count (EV_P) 2478ev_depth (EV_P) EV_THROW
916{ 2479{
917 return loop_count; 2480 return loop_depth;
918} 2481}
919 2482
2483void
2484ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2485{
2486 io_blocktime = interval;
2487}
2488
2489void
2490ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2491{
2492 timeout_blocktime = interval;
2493}
2494
2495void
2496ev_set_userdata (EV_P_ void *data) EV_THROW
2497{
2498 userdata = data;
2499}
2500
2501void *
2502ev_userdata (EV_P) EV_THROW
2503{
2504 return userdata;
2505}
2506
2507void
2508ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2509{
2510 invoke_cb = invoke_pending_cb;
2511}
2512
2513void
2514ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2515{
2516 release_cb = release;
2517 acquire_cb = acquire;
2518}
2519#endif
2520
2521/* initialise a loop structure, must be zero-initialised */
920static void noinline 2522static void noinline ecb_cold
921loop_init (EV_P_ unsigned int flags) 2523loop_init (EV_P_ unsigned int flags) EV_THROW
922{ 2524{
923 if (!backend) 2525 if (!backend)
924 { 2526 {
2527 origflags = flags;
2528
2529#if EV_USE_REALTIME
2530 if (!have_realtime)
2531 {
2532 struct timespec ts;
2533
2534 if (!clock_gettime (CLOCK_REALTIME, &ts))
2535 have_realtime = 1;
2536 }
2537#endif
2538
925#if EV_USE_MONOTONIC 2539#if EV_USE_MONOTONIC
2540 if (!have_monotonic)
926 { 2541 {
927 struct timespec ts; 2542 struct timespec ts;
2543
928 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2544 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
929 have_monotonic = 1; 2545 have_monotonic = 1;
930 } 2546 }
931#endif 2547#endif
932
933 ev_rt_now = ev_time ();
934 mn_now = get_clock ();
935 now_floor = mn_now;
936 rtmn_diff = ev_rt_now - mn_now;
937 2548
938 /* pid check not overridable via env */ 2549 /* pid check not overridable via env */
939#ifndef _WIN32 2550#ifndef _WIN32
940 if (flags & EVFLAG_FORKCHECK) 2551 if (flags & EVFLAG_FORKCHECK)
941 curpid = getpid (); 2552 curpid = getpid ();
944 if (!(flags & EVFLAG_NOENV) 2555 if (!(flags & EVFLAG_NOENV)
945 && !enable_secure () 2556 && !enable_secure ()
946 && getenv ("LIBEV_FLAGS")) 2557 && getenv ("LIBEV_FLAGS"))
947 flags = atoi (getenv ("LIBEV_FLAGS")); 2558 flags = atoi (getenv ("LIBEV_FLAGS"));
948 2559
949 if (!(flags & 0x0000ffffUL)) 2560 ev_rt_now = ev_time ();
2561 mn_now = get_clock ();
2562 now_floor = mn_now;
2563 rtmn_diff = ev_rt_now - mn_now;
2564#if EV_FEATURE_API
2565 invoke_cb = ev_invoke_pending;
2566#endif
2567
2568 io_blocktime = 0.;
2569 timeout_blocktime = 0.;
2570 backend = 0;
2571 backend_fd = -1;
2572 sig_pending = 0;
2573#if EV_ASYNC_ENABLE
2574 async_pending = 0;
2575#endif
2576 pipe_write_skipped = 0;
2577 pipe_write_wanted = 0;
2578 evpipe [0] = -1;
2579 evpipe [1] = -1;
2580#if EV_USE_INOTIFY
2581 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2582#endif
2583#if EV_USE_SIGNALFD
2584 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2585#endif
2586
2587 if (!(flags & EVBACKEND_MASK))
950 flags |= ev_recommended_backends (); 2588 flags |= ev_recommended_backends ();
951 2589
952 backend = 0;
953 backend_fd = -1;
954#if EV_USE_INOTIFY 2590#if EV_USE_IOCP
955 fs_fd = -2; 2591 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
956#endif 2592#endif
957
958#if EV_USE_PORT 2593#if EV_USE_PORT
959 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2594 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
960#endif 2595#endif
961#if EV_USE_KQUEUE 2596#if EV_USE_KQUEUE
962 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2597 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
969#endif 2604#endif
970#if EV_USE_SELECT 2605#if EV_USE_SELECT
971 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2606 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
972#endif 2607#endif
973 2608
2609 ev_prepare_init (&pending_w, pendingcb);
2610
2611#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
974 ev_init (&sigev, sigcb); 2612 ev_init (&pipe_w, pipecb);
975 ev_set_priority (&sigev, EV_MAXPRI); 2613 ev_set_priority (&pipe_w, EV_MAXPRI);
2614#endif
976 } 2615 }
977} 2616}
978 2617
979static void noinline 2618/* free up a loop structure */
2619void ecb_cold
980loop_destroy (EV_P) 2620ev_loop_destroy (EV_P)
981{ 2621{
982 int i; 2622 int i;
2623
2624#if EV_MULTIPLICITY
2625 /* mimic free (0) */
2626 if (!EV_A)
2627 return;
2628#endif
2629
2630#if EV_CLEANUP_ENABLE
2631 /* queue cleanup watchers (and execute them) */
2632 if (expect_false (cleanupcnt))
2633 {
2634 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2635 EV_INVOKE_PENDING;
2636 }
2637#endif
2638
2639#if EV_CHILD_ENABLE
2640 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2641 {
2642 ev_ref (EV_A); /* child watcher */
2643 ev_signal_stop (EV_A_ &childev);
2644 }
2645#endif
2646
2647 if (ev_is_active (&pipe_w))
2648 {
2649 /*ev_ref (EV_A);*/
2650 /*ev_io_stop (EV_A_ &pipe_w);*/
2651
2652 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2653 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2654 }
2655
2656#if EV_USE_SIGNALFD
2657 if (ev_is_active (&sigfd_w))
2658 close (sigfd);
2659#endif
983 2660
984#if EV_USE_INOTIFY 2661#if EV_USE_INOTIFY
985 if (fs_fd >= 0) 2662 if (fs_fd >= 0)
986 close (fs_fd); 2663 close (fs_fd);
987#endif 2664#endif
988 2665
989 if (backend_fd >= 0) 2666 if (backend_fd >= 0)
990 close (backend_fd); 2667 close (backend_fd);
991 2668
2669#if EV_USE_IOCP
2670 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2671#endif
992#if EV_USE_PORT 2672#if EV_USE_PORT
993 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2673 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
994#endif 2674#endif
995#if EV_USE_KQUEUE 2675#if EV_USE_KQUEUE
996 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2676 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1011#if EV_IDLE_ENABLE 2691#if EV_IDLE_ENABLE
1012 array_free (idle, [i]); 2692 array_free (idle, [i]);
1013#endif 2693#endif
1014 } 2694 }
1015 2695
2696 ev_free (anfds); anfds = 0; anfdmax = 0;
2697
1016 /* have to use the microsoft-never-gets-it-right macro */ 2698 /* have to use the microsoft-never-gets-it-right macro */
2699 array_free (rfeed, EMPTY);
1017 array_free (fdchange, EMPTY); 2700 array_free (fdchange, EMPTY);
1018 array_free (timer, EMPTY); 2701 array_free (timer, EMPTY);
1019#if EV_PERIODIC_ENABLE 2702#if EV_PERIODIC_ENABLE
1020 array_free (periodic, EMPTY); 2703 array_free (periodic, EMPTY);
1021#endif 2704#endif
2705#if EV_FORK_ENABLE
2706 array_free (fork, EMPTY);
2707#endif
2708#if EV_CLEANUP_ENABLE
2709 array_free (cleanup, EMPTY);
2710#endif
1022 array_free (prepare, EMPTY); 2711 array_free (prepare, EMPTY);
1023 array_free (check, EMPTY); 2712 array_free (check, EMPTY);
2713#if EV_ASYNC_ENABLE
2714 array_free (async, EMPTY);
2715#endif
1024 2716
1025 backend = 0; 2717 backend = 0;
1026}
1027 2718
2719#if EV_MULTIPLICITY
2720 if (ev_is_default_loop (EV_A))
2721#endif
2722 ev_default_loop_ptr = 0;
2723#if EV_MULTIPLICITY
2724 else
2725 ev_free (EV_A);
2726#endif
2727}
2728
2729#if EV_USE_INOTIFY
1028void inline_size infy_fork (EV_P); 2730inline_size void infy_fork (EV_P);
2731#endif
1029 2732
1030void inline_size 2733inline_size void
1031loop_fork (EV_P) 2734loop_fork (EV_P)
1032{ 2735{
1033#if EV_USE_PORT 2736#if EV_USE_PORT
1034 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2737 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1035#endif 2738#endif
1041#endif 2744#endif
1042#if EV_USE_INOTIFY 2745#if EV_USE_INOTIFY
1043 infy_fork (EV_A); 2746 infy_fork (EV_A);
1044#endif 2747#endif
1045 2748
2749#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1046 if (ev_is_active (&sigev)) 2750 if (ev_is_active (&pipe_w))
1047 { 2751 {
1048 /* default loop */ 2752 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1049 2753
1050 ev_ref (EV_A); 2754 ev_ref (EV_A);
1051 ev_io_stop (EV_A_ &sigev); 2755 ev_io_stop (EV_A_ &pipe_w);
1052 close (sigpipe [0]);
1053 close (sigpipe [1]);
1054 2756
1055 while (pipe (sigpipe)) 2757 if (evpipe [0] >= 0)
1056 syserr ("(libev) error creating pipe"); 2758 EV_WIN32_CLOSE_FD (evpipe [0]);
1057 2759
1058 siginit (EV_A); 2760 evpipe_init (EV_A);
2761 /* iterate over everything, in case we missed something before */
2762 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1059 } 2763 }
2764#endif
1060 2765
1061 postfork = 0; 2766 postfork = 0;
1062} 2767}
1063 2768
1064#if EV_MULTIPLICITY 2769#if EV_MULTIPLICITY
2770
1065struct ev_loop * 2771struct ev_loop * ecb_cold
1066ev_loop_new (unsigned int flags) 2772ev_loop_new (unsigned int flags) EV_THROW
1067{ 2773{
1068 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2774 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1069 2775
1070 memset (loop, 0, sizeof (struct ev_loop)); 2776 memset (EV_A, 0, sizeof (struct ev_loop));
1071
1072 loop_init (EV_A_ flags); 2777 loop_init (EV_A_ flags);
1073 2778
1074 if (ev_backend (EV_A)) 2779 if (ev_backend (EV_A))
1075 return loop; 2780 return EV_A;
1076 2781
2782 ev_free (EV_A);
1077 return 0; 2783 return 0;
1078} 2784}
1079 2785
1080void 2786#endif /* multiplicity */
1081ev_loop_destroy (EV_P)
1082{
1083 loop_destroy (EV_A);
1084 ev_free (loop);
1085}
1086 2787
1087void 2788#if EV_VERIFY
1088ev_loop_fork (EV_P) 2789static void noinline ecb_cold
2790verify_watcher (EV_P_ W w)
1089{ 2791{
1090 postfork = 1; 2792 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1091}
1092 2793
2794 if (w->pending)
2795 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2796}
2797
2798static void noinline ecb_cold
2799verify_heap (EV_P_ ANHE *heap, int N)
2800{
2801 int i;
2802
2803 for (i = HEAP0; i < N + HEAP0; ++i)
2804 {
2805 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2806 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2807 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2808
2809 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2810 }
2811}
2812
2813static void noinline ecb_cold
2814array_verify (EV_P_ W *ws, int cnt)
2815{
2816 while (cnt--)
2817 {
2818 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2819 verify_watcher (EV_A_ ws [cnt]);
2820 }
2821}
2822#endif
2823
2824#if EV_FEATURE_API
2825void ecb_cold
2826ev_verify (EV_P) EV_THROW
2827{
2828#if EV_VERIFY
2829 int i;
2830 WL w, w2;
2831
2832 assert (activecnt >= -1);
2833
2834 assert (fdchangemax >= fdchangecnt);
2835 for (i = 0; i < fdchangecnt; ++i)
2836 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2837
2838 assert (anfdmax >= 0);
2839 for (i = 0; i < anfdmax; ++i)
2840 {
2841 int j = 0;
2842
2843 for (w = w2 = anfds [i].head; w; w = w->next)
2844 {
2845 verify_watcher (EV_A_ (W)w);
2846
2847 if (j++ & 1)
2848 {
2849 assert (("libev: io watcher list contains a loop", w != w2));
2850 w2 = w2->next;
2851 }
2852
2853 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2854 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2855 }
2856 }
2857
2858 assert (timermax >= timercnt);
2859 verify_heap (EV_A_ timers, timercnt);
2860
2861#if EV_PERIODIC_ENABLE
2862 assert (periodicmax >= periodiccnt);
2863 verify_heap (EV_A_ periodics, periodiccnt);
2864#endif
2865
2866 for (i = NUMPRI; i--; )
2867 {
2868 assert (pendingmax [i] >= pendingcnt [i]);
2869#if EV_IDLE_ENABLE
2870 assert (idleall >= 0);
2871 assert (idlemax [i] >= idlecnt [i]);
2872 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2873#endif
2874 }
2875
2876#if EV_FORK_ENABLE
2877 assert (forkmax >= forkcnt);
2878 array_verify (EV_A_ (W *)forks, forkcnt);
2879#endif
2880
2881#if EV_CLEANUP_ENABLE
2882 assert (cleanupmax >= cleanupcnt);
2883 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2884#endif
2885
2886#if EV_ASYNC_ENABLE
2887 assert (asyncmax >= asynccnt);
2888 array_verify (EV_A_ (W *)asyncs, asynccnt);
2889#endif
2890
2891#if EV_PREPARE_ENABLE
2892 assert (preparemax >= preparecnt);
2893 array_verify (EV_A_ (W *)prepares, preparecnt);
2894#endif
2895
2896#if EV_CHECK_ENABLE
2897 assert (checkmax >= checkcnt);
2898 array_verify (EV_A_ (W *)checks, checkcnt);
2899#endif
2900
2901# if 0
2902#if EV_CHILD_ENABLE
2903 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2904 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2905#endif
2906# endif
2907#endif
2908}
1093#endif 2909#endif
1094 2910
1095#if EV_MULTIPLICITY 2911#if EV_MULTIPLICITY
1096struct ev_loop * 2912struct ev_loop * ecb_cold
1097ev_default_loop_init (unsigned int flags)
1098#else 2913#else
1099int 2914int
2915#endif
1100ev_default_loop (unsigned int flags) 2916ev_default_loop (unsigned int flags) EV_THROW
1101#endif
1102{ 2917{
1103 if (sigpipe [0] == sigpipe [1])
1104 if (pipe (sigpipe))
1105 return 0;
1106
1107 if (!ev_default_loop_ptr) 2918 if (!ev_default_loop_ptr)
1108 { 2919 {
1109#if EV_MULTIPLICITY 2920#if EV_MULTIPLICITY
1110 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2921 EV_P = ev_default_loop_ptr = &default_loop_struct;
1111#else 2922#else
1112 ev_default_loop_ptr = 1; 2923 ev_default_loop_ptr = 1;
1113#endif 2924#endif
1114 2925
1115 loop_init (EV_A_ flags); 2926 loop_init (EV_A_ flags);
1116 2927
1117 if (ev_backend (EV_A)) 2928 if (ev_backend (EV_A))
1118 { 2929 {
1119 siginit (EV_A); 2930#if EV_CHILD_ENABLE
1120
1121#ifndef _WIN32
1122 ev_signal_init (&childev, childcb, SIGCHLD); 2931 ev_signal_init (&childev, childcb, SIGCHLD);
1123 ev_set_priority (&childev, EV_MAXPRI); 2932 ev_set_priority (&childev, EV_MAXPRI);
1124 ev_signal_start (EV_A_ &childev); 2933 ev_signal_start (EV_A_ &childev);
1125 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2934 ev_unref (EV_A); /* child watcher should not keep loop alive */
1126#endif 2935#endif
1131 2940
1132 return ev_default_loop_ptr; 2941 return ev_default_loop_ptr;
1133} 2942}
1134 2943
1135void 2944void
1136ev_default_destroy (void) 2945ev_loop_fork (EV_P) EV_THROW
1137{ 2946{
1138#if EV_MULTIPLICITY
1139 struct ev_loop *loop = ev_default_loop_ptr;
1140#endif
1141
1142#ifndef _WIN32
1143 ev_ref (EV_A); /* child watcher */
1144 ev_signal_stop (EV_A_ &childev);
1145#endif
1146
1147 ev_ref (EV_A); /* signal watcher */
1148 ev_io_stop (EV_A_ &sigev);
1149
1150 close (sigpipe [0]); sigpipe [0] = 0;
1151 close (sigpipe [1]); sigpipe [1] = 0;
1152
1153 loop_destroy (EV_A);
1154}
1155
1156void
1157ev_default_fork (void)
1158{
1159#if EV_MULTIPLICITY
1160 struct ev_loop *loop = ev_default_loop_ptr;
1161#endif
1162
1163 if (backend)
1164 postfork = 1; 2947 postfork = 1;
1165} 2948}
1166 2949
1167/*****************************************************************************/ 2950/*****************************************************************************/
1168 2951
1169void 2952void
1170ev_invoke (EV_P_ void *w, int revents) 2953ev_invoke (EV_P_ void *w, int revents)
1171{ 2954{
1172 EV_CB_INVOKE ((W)w, revents); 2955 EV_CB_INVOKE ((W)w, revents);
1173} 2956}
1174 2957
1175void inline_speed 2958unsigned int
1176call_pending (EV_P) 2959ev_pending_count (EV_P) EV_THROW
1177{ 2960{
1178 int pri; 2961 int pri;
2962 unsigned int count = 0;
1179 2963
1180 for (pri = NUMPRI; pri--; ) 2964 for (pri = NUMPRI; pri--; )
2965 count += pendingcnt [pri];
2966
2967 return count;
2968}
2969
2970void noinline
2971ev_invoke_pending (EV_P)
2972{
2973 pendingpri = NUMPRI;
2974
2975 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2976 {
2977 --pendingpri;
2978
1181 while (pendingcnt [pri]) 2979 while (pendingcnt [pendingpri])
1182 {
1183 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1184
1185 if (expect_true (p->w))
1186 {
1187 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1188
1189 p->w->pending = 0;
1190 EV_CB_INVOKE (p->w, p->events);
1191 }
1192 }
1193}
1194
1195void inline_size
1196timers_reify (EV_P)
1197{
1198 while (timercnt && ((WT)timers [0])->at <= mn_now)
1199 {
1200 ev_timer *w = timers [0];
1201
1202 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1203
1204 /* first reschedule or stop timer */
1205 if (w->repeat)
1206 { 2980 {
1207 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2981 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1208 2982
1209 ((WT)w)->at += w->repeat; 2983 p->w->pending = 0;
1210 if (((WT)w)->at < mn_now) 2984 EV_CB_INVOKE (p->w, p->events);
1211 ((WT)w)->at = mn_now; 2985 EV_FREQUENT_CHECK;
1212
1213 downheap ((WT *)timers, timercnt, 0);
1214 } 2986 }
1215 else
1216 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1217
1218 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1219 }
1220}
1221
1222#if EV_PERIODIC_ENABLE
1223void inline_size
1224periodics_reify (EV_P)
1225{
1226 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1227 { 2987 }
1228 ev_periodic *w = periodics [0];
1229
1230 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1231
1232 /* first reschedule or stop timer */
1233 if (w->reschedule_cb)
1234 {
1235 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1236 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1237 downheap ((WT *)periodics, periodiccnt, 0);
1238 }
1239 else if (w->interval)
1240 {
1241 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1242 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1243 downheap ((WT *)periodics, periodiccnt, 0);
1244 }
1245 else
1246 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1247
1248 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1249 }
1250} 2988}
1251
1252static void noinline
1253periodics_reschedule (EV_P)
1254{
1255 int i;
1256
1257 /* adjust periodics after time jump */
1258 for (i = 0; i < periodiccnt; ++i)
1259 {
1260 ev_periodic *w = periodics [i];
1261
1262 if (w->reschedule_cb)
1263 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1264 else if (w->interval)
1265 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1266 }
1267
1268 /* now rebuild the heap */
1269 for (i = periodiccnt >> 1; i--; )
1270 downheap ((WT *)periodics, periodiccnt, i);
1271}
1272#endif
1273 2989
1274#if EV_IDLE_ENABLE 2990#if EV_IDLE_ENABLE
1275void inline_size 2991/* make idle watchers pending. this handles the "call-idle */
2992/* only when higher priorities are idle" logic */
2993inline_size void
1276idle_reify (EV_P) 2994idle_reify (EV_P)
1277{ 2995{
1278 if (expect_false (idleall)) 2996 if (expect_false (idleall))
1279 { 2997 {
1280 int pri; 2998 int pri;
1292 } 3010 }
1293 } 3011 }
1294} 3012}
1295#endif 3013#endif
1296 3014
1297int inline_size 3015/* make timers pending */
1298time_update_monotonic (EV_P) 3016inline_size void
3017timers_reify (EV_P)
1299{ 3018{
3019 EV_FREQUENT_CHECK;
3020
3021 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3022 {
3023 do
3024 {
3025 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3026
3027 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3028
3029 /* first reschedule or stop timer */
3030 if (w->repeat)
3031 {
3032 ev_at (w) += w->repeat;
3033 if (ev_at (w) < mn_now)
3034 ev_at (w) = mn_now;
3035
3036 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3037
3038 ANHE_at_cache (timers [HEAP0]);
3039 downheap (timers, timercnt, HEAP0);
3040 }
3041 else
3042 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3043
3044 EV_FREQUENT_CHECK;
3045 feed_reverse (EV_A_ (W)w);
3046 }
3047 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3048
3049 feed_reverse_done (EV_A_ EV_TIMER);
3050 }
3051}
3052
3053#if EV_PERIODIC_ENABLE
3054
3055static void noinline
3056periodic_recalc (EV_P_ ev_periodic *w)
3057{
3058 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3059 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3060
3061 /* the above almost always errs on the low side */
3062 while (at <= ev_rt_now)
3063 {
3064 ev_tstamp nat = at + w->interval;
3065
3066 /* when resolution fails us, we use ev_rt_now */
3067 if (expect_false (nat == at))
3068 {
3069 at = ev_rt_now;
3070 break;
3071 }
3072
3073 at = nat;
3074 }
3075
3076 ev_at (w) = at;
3077}
3078
3079/* make periodics pending */
3080inline_size void
3081periodics_reify (EV_P)
3082{
3083 EV_FREQUENT_CHECK;
3084
3085 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3086 {
3087 do
3088 {
3089 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3090
3091 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3092
3093 /* first reschedule or stop timer */
3094 if (w->reschedule_cb)
3095 {
3096 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3097
3098 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3099
3100 ANHE_at_cache (periodics [HEAP0]);
3101 downheap (periodics, periodiccnt, HEAP0);
3102 }
3103 else if (w->interval)
3104 {
3105 periodic_recalc (EV_A_ w);
3106 ANHE_at_cache (periodics [HEAP0]);
3107 downheap (periodics, periodiccnt, HEAP0);
3108 }
3109 else
3110 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3111
3112 EV_FREQUENT_CHECK;
3113 feed_reverse (EV_A_ (W)w);
3114 }
3115 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3116
3117 feed_reverse_done (EV_A_ EV_PERIODIC);
3118 }
3119}
3120
3121/* simply recalculate all periodics */
3122/* TODO: maybe ensure that at least one event happens when jumping forward? */
3123static void noinline ecb_cold
3124periodics_reschedule (EV_P)
3125{
3126 int i;
3127
3128 /* adjust periodics after time jump */
3129 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3130 {
3131 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3132
3133 if (w->reschedule_cb)
3134 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3135 else if (w->interval)
3136 periodic_recalc (EV_A_ w);
3137
3138 ANHE_at_cache (periodics [i]);
3139 }
3140
3141 reheap (periodics, periodiccnt);
3142}
3143#endif
3144
3145/* adjust all timers by a given offset */
3146static void noinline ecb_cold
3147timers_reschedule (EV_P_ ev_tstamp adjust)
3148{
3149 int i;
3150
3151 for (i = 0; i < timercnt; ++i)
3152 {
3153 ANHE *he = timers + i + HEAP0;
3154 ANHE_w (*he)->at += adjust;
3155 ANHE_at_cache (*he);
3156 }
3157}
3158
3159/* fetch new monotonic and realtime times from the kernel */
3160/* also detect if there was a timejump, and act accordingly */
3161inline_speed void
3162time_update (EV_P_ ev_tstamp max_block)
3163{
3164#if EV_USE_MONOTONIC
3165 if (expect_true (have_monotonic))
3166 {
3167 int i;
3168 ev_tstamp odiff = rtmn_diff;
3169
1300 mn_now = get_clock (); 3170 mn_now = get_clock ();
1301 3171
3172 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3173 /* interpolate in the meantime */
1302 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3174 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1303 { 3175 {
1304 ev_rt_now = rtmn_diff + mn_now; 3176 ev_rt_now = rtmn_diff + mn_now;
1305 return 0; 3177 return;
1306 } 3178 }
1307 else 3179
1308 {
1309 now_floor = mn_now; 3180 now_floor = mn_now;
1310 ev_rt_now = ev_time (); 3181 ev_rt_now = ev_time ();
1311 return 1;
1312 }
1313}
1314 3182
1315void inline_size 3183 /* loop a few times, before making important decisions.
1316time_update (EV_P) 3184 * on the choice of "4": one iteration isn't enough,
1317{ 3185 * in case we get preempted during the calls to
1318 int i; 3186 * ev_time and get_clock. a second call is almost guaranteed
1319 3187 * to succeed in that case, though. and looping a few more times
1320#if EV_USE_MONOTONIC 3188 * doesn't hurt either as we only do this on time-jumps or
1321 if (expect_true (have_monotonic)) 3189 * in the unlikely event of having been preempted here.
1322 { 3190 */
1323 if (time_update_monotonic (EV_A)) 3191 for (i = 4; --i; )
1324 { 3192 {
1325 ev_tstamp odiff = rtmn_diff; 3193 ev_tstamp diff;
1326
1327 /* loop a few times, before making important decisions.
1328 * on the choice of "4": one iteration isn't enough,
1329 * in case we get preempted during the calls to
1330 * ev_time and get_clock. a second call is almost guaranteed
1331 * to succeed in that case, though. and looping a few more times
1332 * doesn't hurt either as we only do this on time-jumps or
1333 * in the unlikely event of having been preempted here.
1334 */
1335 for (i = 4; --i; )
1336 {
1337 rtmn_diff = ev_rt_now - mn_now; 3194 rtmn_diff = ev_rt_now - mn_now;
1338 3195
1339 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3196 diff = odiff - rtmn_diff;
3197
3198 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1340 return; /* all is well */ 3199 return; /* all is well */
1341 3200
1342 ev_rt_now = ev_time (); 3201 ev_rt_now = ev_time ();
1343 mn_now = get_clock (); 3202 mn_now = get_clock ();
1344 now_floor = mn_now; 3203 now_floor = mn_now;
1345 } 3204 }
1346 3205
3206 /* no timer adjustment, as the monotonic clock doesn't jump */
3207 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1347# if EV_PERIODIC_ENABLE 3208# if EV_PERIODIC_ENABLE
1348 periodics_reschedule (EV_A); 3209 periodics_reschedule (EV_A);
1349# endif 3210# endif
1350 /* no timer adjustment, as the monotonic clock doesn't jump */
1351 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1352 }
1353 } 3211 }
1354 else 3212 else
1355#endif 3213#endif
1356 { 3214 {
1357 ev_rt_now = ev_time (); 3215 ev_rt_now = ev_time ();
1358 3216
1359 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 3217 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1360 { 3218 {
3219 /* adjust timers. this is easy, as the offset is the same for all of them */
3220 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1361#if EV_PERIODIC_ENABLE 3221#if EV_PERIODIC_ENABLE
1362 periodics_reschedule (EV_A); 3222 periodics_reschedule (EV_A);
1363#endif 3223#endif
1364
1365 /* adjust timers. this is easy, as the offset is the same for all of them */
1366 for (i = 0; i < timercnt; ++i)
1367 ((WT)timers [i])->at += ev_rt_now - mn_now;
1368 } 3224 }
1369 3225
1370 mn_now = ev_rt_now; 3226 mn_now = ev_rt_now;
1371 } 3227 }
1372} 3228}
1373 3229
1374void 3230int
1375ev_ref (EV_P)
1376{
1377 ++activecnt;
1378}
1379
1380void
1381ev_unref (EV_P)
1382{
1383 --activecnt;
1384}
1385
1386static int loop_done;
1387
1388void
1389ev_loop (EV_P_ int flags) 3231ev_run (EV_P_ int flags)
1390{ 3232{
1391 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 3233#if EV_FEATURE_API
1392 ? EVUNLOOP_ONE 3234 ++loop_depth;
1393 : EVUNLOOP_CANCEL; 3235#endif
1394 3236
3237 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3238
3239 loop_done = EVBREAK_CANCEL;
3240
1395 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3241 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1396 3242
1397 do 3243 do
1398 { 3244 {
3245#if EV_VERIFY >= 2
3246 ev_verify (EV_A);
3247#endif
3248
1399#ifndef _WIN32 3249#ifndef _WIN32
1400 if (expect_false (curpid)) /* penalise the forking check even more */ 3250 if (expect_false (curpid)) /* penalise the forking check even more */
1401 if (expect_false (getpid () != curpid)) 3251 if (expect_false (getpid () != curpid))
1402 { 3252 {
1403 curpid = getpid (); 3253 curpid = getpid ();
1409 /* we might have forked, so queue fork handlers */ 3259 /* we might have forked, so queue fork handlers */
1410 if (expect_false (postfork)) 3260 if (expect_false (postfork))
1411 if (forkcnt) 3261 if (forkcnt)
1412 { 3262 {
1413 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3263 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1414 call_pending (EV_A); 3264 EV_INVOKE_PENDING;
1415 } 3265 }
1416#endif 3266#endif
1417 3267
3268#if EV_PREPARE_ENABLE
1418 /* queue check watchers (and execute them) */ 3269 /* queue prepare watchers (and execute them) */
1419 if (expect_false (preparecnt)) 3270 if (expect_false (preparecnt))
1420 { 3271 {
1421 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3272 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1422 call_pending (EV_A); 3273 EV_INVOKE_PENDING;
1423 } 3274 }
3275#endif
1424 3276
1425 if (expect_false (!activecnt)) 3277 if (expect_false (loop_done))
1426 break; 3278 break;
1427 3279
1428 /* we might have forked, so reify kernel state if necessary */ 3280 /* we might have forked, so reify kernel state if necessary */
1429 if (expect_false (postfork)) 3281 if (expect_false (postfork))
1430 loop_fork (EV_A); 3282 loop_fork (EV_A);
1432 /* update fd-related kernel structures */ 3284 /* update fd-related kernel structures */
1433 fd_reify (EV_A); 3285 fd_reify (EV_A);
1434 3286
1435 /* calculate blocking time */ 3287 /* calculate blocking time */
1436 { 3288 {
1437 ev_tstamp block; 3289 ev_tstamp waittime = 0.;
3290 ev_tstamp sleeptime = 0.;
1438 3291
1439 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 3292 /* remember old timestamp for io_blocktime calculation */
1440 block = 0.; /* do not block at all */ 3293 ev_tstamp prev_mn_now = mn_now;
1441 else 3294
3295 /* update time to cancel out callback processing overhead */
3296 time_update (EV_A_ 1e100);
3297
3298 /* from now on, we want a pipe-wake-up */
3299 pipe_write_wanted = 1;
3300
3301 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3302
3303 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1442 { 3304 {
1443 /* update time to cancel out callback processing overhead */
1444#if EV_USE_MONOTONIC
1445 if (expect_true (have_monotonic))
1446 time_update_monotonic (EV_A);
1447 else
1448#endif
1449 {
1450 ev_rt_now = ev_time ();
1451 mn_now = ev_rt_now;
1452 }
1453
1454 block = MAX_BLOCKTIME; 3305 waittime = MAX_BLOCKTIME;
1455 3306
1456 if (timercnt) 3307 if (timercnt)
1457 { 3308 {
1458 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3309 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1459 if (block > to) block = to; 3310 if (waittime > to) waittime = to;
1460 } 3311 }
1461 3312
1462#if EV_PERIODIC_ENABLE 3313#if EV_PERIODIC_ENABLE
1463 if (periodiccnt) 3314 if (periodiccnt)
1464 { 3315 {
1465 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3316 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1466 if (block > to) block = to; 3317 if (waittime > to) waittime = to;
1467 } 3318 }
1468#endif 3319#endif
1469 3320
3321 /* don't let timeouts decrease the waittime below timeout_blocktime */
3322 if (expect_false (waittime < timeout_blocktime))
3323 waittime = timeout_blocktime;
3324
3325 /* at this point, we NEED to wait, so we have to ensure */
3326 /* to pass a minimum nonzero value to the backend */
3327 if (expect_false (waittime < backend_mintime))
3328 waittime = backend_mintime;
3329
3330 /* extra check because io_blocktime is commonly 0 */
1470 if (expect_false (block < 0.)) block = 0.; 3331 if (expect_false (io_blocktime))
3332 {
3333 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3334
3335 if (sleeptime > waittime - backend_mintime)
3336 sleeptime = waittime - backend_mintime;
3337
3338 if (expect_true (sleeptime > 0.))
3339 {
3340 ev_sleep (sleeptime);
3341 waittime -= sleeptime;
3342 }
3343 }
1471 } 3344 }
1472 3345
3346#if EV_FEATURE_API
1473 ++loop_count; 3347 ++loop_count;
3348#endif
3349 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1474 backend_poll (EV_A_ block); 3350 backend_poll (EV_A_ waittime);
3351 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3352
3353 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3354
3355 ECB_MEMORY_FENCE_ACQUIRE;
3356 if (pipe_write_skipped)
3357 {
3358 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3359 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3360 }
3361
3362
3363 /* update ev_rt_now, do magic */
3364 time_update (EV_A_ waittime + sleeptime);
1475 } 3365 }
1476
1477 /* update ev_rt_now, do magic */
1478 time_update (EV_A);
1479 3366
1480 /* queue pending timers and reschedule them */ 3367 /* queue pending timers and reschedule them */
1481 timers_reify (EV_A); /* relative timers called last */ 3368 timers_reify (EV_A); /* relative timers called last */
1482#if EV_PERIODIC_ENABLE 3369#if EV_PERIODIC_ENABLE
1483 periodics_reify (EV_A); /* absolute timers called first */ 3370 periodics_reify (EV_A); /* absolute timers called first */
1486#if EV_IDLE_ENABLE 3373#if EV_IDLE_ENABLE
1487 /* queue idle watchers unless other events are pending */ 3374 /* queue idle watchers unless other events are pending */
1488 idle_reify (EV_A); 3375 idle_reify (EV_A);
1489#endif 3376#endif
1490 3377
3378#if EV_CHECK_ENABLE
1491 /* queue check watchers, to be executed first */ 3379 /* queue check watchers, to be executed first */
1492 if (expect_false (checkcnt)) 3380 if (expect_false (checkcnt))
1493 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3381 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3382#endif
1494 3383
1495 call_pending (EV_A); 3384 EV_INVOKE_PENDING;
1496
1497 } 3385 }
1498 while (expect_true (activecnt && !loop_done)); 3386 while (expect_true (
3387 activecnt
3388 && !loop_done
3389 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3390 ));
1499 3391
1500 if (loop_done == EVUNLOOP_ONE) 3392 if (loop_done == EVBREAK_ONE)
1501 loop_done = EVUNLOOP_CANCEL; 3393 loop_done = EVBREAK_CANCEL;
3394
3395#if EV_FEATURE_API
3396 --loop_depth;
3397#endif
3398
3399 return activecnt;
1502} 3400}
1503 3401
1504void 3402void
1505ev_unloop (EV_P_ int how) 3403ev_break (EV_P_ int how) EV_THROW
1506{ 3404{
1507 loop_done = how; 3405 loop_done = how;
1508} 3406}
1509 3407
3408void
3409ev_ref (EV_P) EV_THROW
3410{
3411 ++activecnt;
3412}
3413
3414void
3415ev_unref (EV_P) EV_THROW
3416{
3417 --activecnt;
3418}
3419
3420void
3421ev_now_update (EV_P) EV_THROW
3422{
3423 time_update (EV_A_ 1e100);
3424}
3425
3426void
3427ev_suspend (EV_P) EV_THROW
3428{
3429 ev_now_update (EV_A);
3430}
3431
3432void
3433ev_resume (EV_P) EV_THROW
3434{
3435 ev_tstamp mn_prev = mn_now;
3436
3437 ev_now_update (EV_A);
3438 timers_reschedule (EV_A_ mn_now - mn_prev);
3439#if EV_PERIODIC_ENABLE
3440 /* TODO: really do this? */
3441 periodics_reschedule (EV_A);
3442#endif
3443}
3444
1510/*****************************************************************************/ 3445/*****************************************************************************/
3446/* singly-linked list management, used when the expected list length is short */
1511 3447
1512void inline_size 3448inline_size void
1513wlist_add (WL *head, WL elem) 3449wlist_add (WL *head, WL elem)
1514{ 3450{
1515 elem->next = *head; 3451 elem->next = *head;
1516 *head = elem; 3452 *head = elem;
1517} 3453}
1518 3454
1519void inline_size 3455inline_size void
1520wlist_del (WL *head, WL elem) 3456wlist_del (WL *head, WL elem)
1521{ 3457{
1522 while (*head) 3458 while (*head)
1523 { 3459 {
1524 if (*head == elem) 3460 if (expect_true (*head == elem))
1525 { 3461 {
1526 *head = elem->next; 3462 *head = elem->next;
1527 return; 3463 break;
1528 } 3464 }
1529 3465
1530 head = &(*head)->next; 3466 head = &(*head)->next;
1531 } 3467 }
1532} 3468}
1533 3469
1534void inline_speed 3470/* internal, faster, version of ev_clear_pending */
3471inline_speed void
1535clear_pending (EV_P_ W w) 3472clear_pending (EV_P_ W w)
1536{ 3473{
1537 if (w->pending) 3474 if (w->pending)
1538 { 3475 {
1539 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3476 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1540 w->pending = 0; 3477 w->pending = 0;
1541 } 3478 }
1542} 3479}
1543 3480
1544int 3481int
1545ev_clear_pending (EV_P_ void *w) 3482ev_clear_pending (EV_P_ void *w) EV_THROW
1546{ 3483{
1547 W w_ = (W)w; 3484 W w_ = (W)w;
1548 int pending = w_->pending; 3485 int pending = w_->pending;
1549 3486
1550 if (!pending) 3487 if (expect_true (pending))
3488 {
3489 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3490 p->w = (W)&pending_w;
3491 w_->pending = 0;
3492 return p->events;
3493 }
3494 else
1551 return 0; 3495 return 0;
1552
1553 w_->pending = 0;
1554 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1555 p->w = 0;
1556
1557 return p->events;
1558} 3496}
1559 3497
1560void inline_size 3498inline_size void
1561pri_adjust (EV_P_ W w) 3499pri_adjust (EV_P_ W w)
1562{ 3500{
1563 int pri = w->priority; 3501 int pri = ev_priority (w);
1564 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3502 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1565 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3503 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1566 w->priority = pri; 3504 ev_set_priority (w, pri);
1567} 3505}
1568 3506
1569void inline_speed 3507inline_speed void
1570ev_start (EV_P_ W w, int active) 3508ev_start (EV_P_ W w, int active)
1571{ 3509{
1572 pri_adjust (EV_A_ w); 3510 pri_adjust (EV_A_ w);
1573 w->active = active; 3511 w->active = active;
1574 ev_ref (EV_A); 3512 ev_ref (EV_A);
1575} 3513}
1576 3514
1577void inline_size 3515inline_size void
1578ev_stop (EV_P_ W w) 3516ev_stop (EV_P_ W w)
1579{ 3517{
1580 ev_unref (EV_A); 3518 ev_unref (EV_A);
1581 w->active = 0; 3519 w->active = 0;
1582} 3520}
1583 3521
1584/*****************************************************************************/ 3522/*****************************************************************************/
1585 3523
1586void 3524void noinline
1587ev_io_start (EV_P_ ev_io *w) 3525ev_io_start (EV_P_ ev_io *w) EV_THROW
1588{ 3526{
1589 int fd = w->fd; 3527 int fd = w->fd;
1590 3528
1591 if (expect_false (ev_is_active (w))) 3529 if (expect_false (ev_is_active (w)))
1592 return; 3530 return;
1593 3531
1594 assert (("ev_io_start called with negative fd", fd >= 0)); 3532 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3533 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3534
3535 EV_FREQUENT_CHECK;
1595 3536
1596 ev_start (EV_A_ (W)w, 1); 3537 ev_start (EV_A_ (W)w, 1);
1597 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3538 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1598 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3539 wlist_add (&anfds[fd].head, (WL)w);
1599 3540
1600 fd_change (EV_A_ fd); 3541 /* common bug, apparently */
1601} 3542 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1602 3543
1603void 3544 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3545 w->events &= ~EV__IOFDSET;
3546
3547 EV_FREQUENT_CHECK;
3548}
3549
3550void noinline
1604ev_io_stop (EV_P_ ev_io *w) 3551ev_io_stop (EV_P_ ev_io *w) EV_THROW
1605{ 3552{
1606 clear_pending (EV_A_ (W)w); 3553 clear_pending (EV_A_ (W)w);
1607 if (expect_false (!ev_is_active (w))) 3554 if (expect_false (!ev_is_active (w)))
1608 return; 3555 return;
1609 3556
1610 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3557 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1611 3558
3559 EV_FREQUENT_CHECK;
3560
1612 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3561 wlist_del (&anfds[w->fd].head, (WL)w);
1613 ev_stop (EV_A_ (W)w); 3562 ev_stop (EV_A_ (W)w);
1614 3563
1615 fd_change (EV_A_ w->fd); 3564 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1616}
1617 3565
1618void 3566 EV_FREQUENT_CHECK;
3567}
3568
3569void noinline
1619ev_timer_start (EV_P_ ev_timer *w) 3570ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1620{ 3571{
1621 if (expect_false (ev_is_active (w))) 3572 if (expect_false (ev_is_active (w)))
1622 return; 3573 return;
1623 3574
1624 ((WT)w)->at += mn_now; 3575 ev_at (w) += mn_now;
1625 3576
1626 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3577 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1627 3578
3579 EV_FREQUENT_CHECK;
3580
3581 ++timercnt;
1628 ev_start (EV_A_ (W)w, ++timercnt); 3582 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1629 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 3583 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1630 timers [timercnt - 1] = w; 3584 ANHE_w (timers [ev_active (w)]) = (WT)w;
1631 upheap ((WT *)timers, timercnt - 1); 3585 ANHE_at_cache (timers [ev_active (w)]);
3586 upheap (timers, ev_active (w));
1632 3587
3588 EV_FREQUENT_CHECK;
3589
1633 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3590 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1634} 3591}
1635 3592
1636void 3593void noinline
1637ev_timer_stop (EV_P_ ev_timer *w) 3594ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1638{ 3595{
1639 clear_pending (EV_A_ (W)w); 3596 clear_pending (EV_A_ (W)w);
1640 if (expect_false (!ev_is_active (w))) 3597 if (expect_false (!ev_is_active (w)))
1641 return; 3598 return;
1642 3599
1643 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3600 EV_FREQUENT_CHECK;
1644 3601
1645 { 3602 {
1646 int active = ((W)w)->active; 3603 int active = ev_active (w);
1647 3604
3605 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3606
3607 --timercnt;
3608
1648 if (expect_true (--active < --timercnt)) 3609 if (expect_true (active < timercnt + HEAP0))
1649 { 3610 {
1650 timers [active] = timers [timercnt]; 3611 timers [active] = timers [timercnt + HEAP0];
1651 adjustheap ((WT *)timers, timercnt, active); 3612 adjustheap (timers, timercnt, active);
1652 } 3613 }
1653 } 3614 }
1654 3615
1655 ((WT)w)->at -= mn_now; 3616 ev_at (w) -= mn_now;
1656 3617
1657 ev_stop (EV_A_ (W)w); 3618 ev_stop (EV_A_ (W)w);
1658}
1659 3619
1660void 3620 EV_FREQUENT_CHECK;
3621}
3622
3623void noinline
1661ev_timer_again (EV_P_ ev_timer *w) 3624ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1662{ 3625{
3626 EV_FREQUENT_CHECK;
3627
3628 clear_pending (EV_A_ (W)w);
3629
1663 if (ev_is_active (w)) 3630 if (ev_is_active (w))
1664 { 3631 {
1665 if (w->repeat) 3632 if (w->repeat)
1666 { 3633 {
1667 ((WT)w)->at = mn_now + w->repeat; 3634 ev_at (w) = mn_now + w->repeat;
3635 ANHE_at_cache (timers [ev_active (w)]);
1668 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3636 adjustheap (timers, timercnt, ev_active (w));
1669 } 3637 }
1670 else 3638 else
1671 ev_timer_stop (EV_A_ w); 3639 ev_timer_stop (EV_A_ w);
1672 } 3640 }
1673 else if (w->repeat) 3641 else if (w->repeat)
1674 { 3642 {
1675 w->at = w->repeat; 3643 ev_at (w) = w->repeat;
1676 ev_timer_start (EV_A_ w); 3644 ev_timer_start (EV_A_ w);
1677 } 3645 }
3646
3647 EV_FREQUENT_CHECK;
3648}
3649
3650ev_tstamp
3651ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3652{
3653 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1678} 3654}
1679 3655
1680#if EV_PERIODIC_ENABLE 3656#if EV_PERIODIC_ENABLE
1681void 3657void noinline
1682ev_periodic_start (EV_P_ ev_periodic *w) 3658ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1683{ 3659{
1684 if (expect_false (ev_is_active (w))) 3660 if (expect_false (ev_is_active (w)))
1685 return; 3661 return;
1686 3662
1687 if (w->reschedule_cb) 3663 if (w->reschedule_cb)
1688 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3664 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval) 3665 else if (w->interval)
1690 { 3666 {
1691 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3667 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1692 /* this formula differs from the one in periodic_reify because we do not always round up */ 3668 periodic_recalc (EV_A_ w);
1693 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1694 } 3669 }
3670 else
3671 ev_at (w) = w->offset;
1695 3672
3673 EV_FREQUENT_CHECK;
3674
3675 ++periodiccnt;
1696 ev_start (EV_A_ (W)w, ++periodiccnt); 3676 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1697 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 3677 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1698 periodics [periodiccnt - 1] = w; 3678 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1699 upheap ((WT *)periodics, periodiccnt - 1); 3679 ANHE_at_cache (periodics [ev_active (w)]);
3680 upheap (periodics, ev_active (w));
1700 3681
3682 EV_FREQUENT_CHECK;
3683
1701 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3684 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1702} 3685}
1703 3686
1704void 3687void noinline
1705ev_periodic_stop (EV_P_ ev_periodic *w) 3688ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1706{ 3689{
1707 clear_pending (EV_A_ (W)w); 3690 clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 3691 if (expect_false (!ev_is_active (w)))
1709 return; 3692 return;
1710 3693
1711 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3694 EV_FREQUENT_CHECK;
1712 3695
1713 { 3696 {
1714 int active = ((W)w)->active; 3697 int active = ev_active (w);
1715 3698
3699 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3700
3701 --periodiccnt;
3702
1716 if (expect_true (--active < --periodiccnt)) 3703 if (expect_true (active < periodiccnt + HEAP0))
1717 { 3704 {
1718 periodics [active] = periodics [periodiccnt]; 3705 periodics [active] = periodics [periodiccnt + HEAP0];
1719 adjustheap ((WT *)periodics, periodiccnt, active); 3706 adjustheap (periodics, periodiccnt, active);
1720 } 3707 }
1721 } 3708 }
1722 3709
1723 ev_stop (EV_A_ (W)w); 3710 ev_stop (EV_A_ (W)w);
1724}
1725 3711
1726void 3712 EV_FREQUENT_CHECK;
3713}
3714
3715void noinline
1727ev_periodic_again (EV_P_ ev_periodic *w) 3716ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1728{ 3717{
1729 /* TODO: use adjustheap and recalculation */ 3718 /* TODO: use adjustheap and recalculation */
1730 ev_periodic_stop (EV_A_ w); 3719 ev_periodic_stop (EV_A_ w);
1731 ev_periodic_start (EV_A_ w); 3720 ev_periodic_start (EV_A_ w);
1732} 3721}
1734 3723
1735#ifndef SA_RESTART 3724#ifndef SA_RESTART
1736# define SA_RESTART 0 3725# define SA_RESTART 0
1737#endif 3726#endif
1738 3727
1739void 3728#if EV_SIGNAL_ENABLE
3729
3730void noinline
1740ev_signal_start (EV_P_ ev_signal *w) 3731ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1741{ 3732{
1742#if EV_MULTIPLICITY
1743 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1744#endif
1745 if (expect_false (ev_is_active (w))) 3733 if (expect_false (ev_is_active (w)))
1746 return; 3734 return;
1747 3735
1748 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3736 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3737
3738#if EV_MULTIPLICITY
3739 assert (("libev: a signal must not be attached to two different loops",
3740 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3741
3742 signals [w->signum - 1].loop = EV_A;
3743 ECB_MEMORY_FENCE_RELEASE;
3744#endif
3745
3746 EV_FREQUENT_CHECK;
3747
3748#if EV_USE_SIGNALFD
3749 if (sigfd == -2)
3750 {
3751 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3752 if (sigfd < 0 && errno == EINVAL)
3753 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3754
3755 if (sigfd >= 0)
3756 {
3757 fd_intern (sigfd); /* doing it twice will not hurt */
3758
3759 sigemptyset (&sigfd_set);
3760
3761 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3762 ev_set_priority (&sigfd_w, EV_MAXPRI);
3763 ev_io_start (EV_A_ &sigfd_w);
3764 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3765 }
3766 }
3767
3768 if (sigfd >= 0)
3769 {
3770 /* TODO: check .head */
3771 sigaddset (&sigfd_set, w->signum);
3772 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3773
3774 signalfd (sigfd, &sigfd_set, 0);
3775 }
3776#endif
1749 3777
1750 ev_start (EV_A_ (W)w, 1); 3778 ev_start (EV_A_ (W)w, 1);
1751 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1752 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 3779 wlist_add (&signals [w->signum - 1].head, (WL)w);
1753 3780
1754 if (!((WL)w)->next) 3781 if (!((WL)w)->next)
3782# if EV_USE_SIGNALFD
3783 if (sigfd < 0) /*TODO*/
3784# endif
1755 { 3785 {
1756#if _WIN32 3786# ifdef _WIN32
3787 evpipe_init (EV_A);
3788
1757 signal (w->signum, sighandler); 3789 signal (w->signum, ev_sighandler);
1758#else 3790# else
1759 struct sigaction sa; 3791 struct sigaction sa;
3792
3793 evpipe_init (EV_A);
3794
1760 sa.sa_handler = sighandler; 3795 sa.sa_handler = ev_sighandler;
1761 sigfillset (&sa.sa_mask); 3796 sigfillset (&sa.sa_mask);
1762 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3797 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1763 sigaction (w->signum, &sa, 0); 3798 sigaction (w->signum, &sa, 0);
3799
3800 if (origflags & EVFLAG_NOSIGMASK)
3801 {
3802 sigemptyset (&sa.sa_mask);
3803 sigaddset (&sa.sa_mask, w->signum);
3804 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3805 }
1764#endif 3806#endif
1765 } 3807 }
1766}
1767 3808
1768void 3809 EV_FREQUENT_CHECK;
3810}
3811
3812void noinline
1769ev_signal_stop (EV_P_ ev_signal *w) 3813ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1770{ 3814{
1771 clear_pending (EV_A_ (W)w); 3815 clear_pending (EV_A_ (W)w);
1772 if (expect_false (!ev_is_active (w))) 3816 if (expect_false (!ev_is_active (w)))
1773 return; 3817 return;
1774 3818
3819 EV_FREQUENT_CHECK;
3820
1775 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3821 wlist_del (&signals [w->signum - 1].head, (WL)w);
1776 ev_stop (EV_A_ (W)w); 3822 ev_stop (EV_A_ (W)w);
1777 3823
1778 if (!signals [w->signum - 1].head) 3824 if (!signals [w->signum - 1].head)
3825 {
3826#if EV_MULTIPLICITY
3827 signals [w->signum - 1].loop = 0; /* unattach from signal */
3828#endif
3829#if EV_USE_SIGNALFD
3830 if (sigfd >= 0)
3831 {
3832 sigset_t ss;
3833
3834 sigemptyset (&ss);
3835 sigaddset (&ss, w->signum);
3836 sigdelset (&sigfd_set, w->signum);
3837
3838 signalfd (sigfd, &sigfd_set, 0);
3839 sigprocmask (SIG_UNBLOCK, &ss, 0);
3840 }
3841 else
3842#endif
1779 signal (w->signum, SIG_DFL); 3843 signal (w->signum, SIG_DFL);
3844 }
3845
3846 EV_FREQUENT_CHECK;
1780} 3847}
3848
3849#endif
3850
3851#if EV_CHILD_ENABLE
1781 3852
1782void 3853void
1783ev_child_start (EV_P_ ev_child *w) 3854ev_child_start (EV_P_ ev_child *w) EV_THROW
1784{ 3855{
1785#if EV_MULTIPLICITY 3856#if EV_MULTIPLICITY
1786 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3857 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1787#endif 3858#endif
1788 if (expect_false (ev_is_active (w))) 3859 if (expect_false (ev_is_active (w)))
1789 return; 3860 return;
1790 3861
3862 EV_FREQUENT_CHECK;
3863
1791 ev_start (EV_A_ (W)w, 1); 3864 ev_start (EV_A_ (W)w, 1);
1792 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3865 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3866
3867 EV_FREQUENT_CHECK;
1793} 3868}
1794 3869
1795void 3870void
1796ev_child_stop (EV_P_ ev_child *w) 3871ev_child_stop (EV_P_ ev_child *w) EV_THROW
1797{ 3872{
1798 clear_pending (EV_A_ (W)w); 3873 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 3874 if (expect_false (!ev_is_active (w)))
1800 return; 3875 return;
1801 3876
3877 EV_FREQUENT_CHECK;
3878
1802 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3879 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1803 ev_stop (EV_A_ (W)w); 3880 ev_stop (EV_A_ (W)w);
3881
3882 EV_FREQUENT_CHECK;
1804} 3883}
3884
3885#endif
1805 3886
1806#if EV_STAT_ENABLE 3887#if EV_STAT_ENABLE
1807 3888
1808# ifdef _WIN32 3889# ifdef _WIN32
1809# undef lstat 3890# undef lstat
1810# define lstat(a,b) _stati64 (a,b) 3891# define lstat(a,b) _stati64 (a,b)
1811# endif 3892# endif
1812 3893
1813#define DEF_STAT_INTERVAL 5.0074891 3894#define DEF_STAT_INTERVAL 5.0074891
3895#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1814#define MIN_STAT_INTERVAL 0.1074891 3896#define MIN_STAT_INTERVAL 0.1074891
1815 3897
1816static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3898static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1817 3899
1818#if EV_USE_INOTIFY 3900#if EV_USE_INOTIFY
1819# define EV_INOTIFY_BUFSIZE 8192 3901
3902/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3903# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1820 3904
1821static void noinline 3905static void noinline
1822infy_add (EV_P_ ev_stat *w) 3906infy_add (EV_P_ ev_stat *w)
1823{ 3907{
1824 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3908 w->wd = inotify_add_watch (fs_fd, w->path,
3909 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3910 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3911 | IN_DONT_FOLLOW | IN_MASK_ADD);
1825 3912
1826 if (w->wd < 0) 3913 if (w->wd >= 0)
3914 {
3915 struct statfs sfs;
3916
3917 /* now local changes will be tracked by inotify, but remote changes won't */
3918 /* unless the filesystem is known to be local, we therefore still poll */
3919 /* also do poll on <2.6.25, but with normal frequency */
3920
3921 if (!fs_2625)
3922 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3923 else if (!statfs (w->path, &sfs)
3924 && (sfs.f_type == 0x1373 /* devfs */
3925 || sfs.f_type == 0x4006 /* fat */
3926 || sfs.f_type == 0x4d44 /* msdos */
3927 || sfs.f_type == 0xEF53 /* ext2/3 */
3928 || sfs.f_type == 0x72b6 /* jffs2 */
3929 || sfs.f_type == 0x858458f6 /* ramfs */
3930 || sfs.f_type == 0x5346544e /* ntfs */
3931 || sfs.f_type == 0x3153464a /* jfs */
3932 || sfs.f_type == 0x9123683e /* btrfs */
3933 || sfs.f_type == 0x52654973 /* reiser3 */
3934 || sfs.f_type == 0x01021994 /* tmpfs */
3935 || sfs.f_type == 0x58465342 /* xfs */))
3936 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3937 else
3938 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1827 { 3939 }
1828 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3940 else
3941 {
3942 /* can't use inotify, continue to stat */
3943 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1829 3944
1830 /* monitor some parent directory for speedup hints */ 3945 /* if path is not there, monitor some parent directory for speedup hints */
3946 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3947 /* but an efficiency issue only */
1831 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3948 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1832 { 3949 {
1833 char path [4096]; 3950 char path [4096];
1834 strcpy (path, w->path); 3951 strcpy (path, w->path);
1835 3952
1838 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3955 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1839 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3956 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1840 3957
1841 char *pend = strrchr (path, '/'); 3958 char *pend = strrchr (path, '/');
1842 3959
1843 if (!pend) 3960 if (!pend || pend == path)
1844 break; /* whoops, no '/', complain to your admin */ 3961 break;
1845 3962
1846 *pend = 0; 3963 *pend = 0;
1847 w->wd = inotify_add_watch (fs_fd, path, mask); 3964 w->wd = inotify_add_watch (fs_fd, path, mask);
1848 } 3965 }
1849 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3966 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1850 } 3967 }
1851 } 3968 }
1852 else
1853 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1854 3969
1855 if (w->wd >= 0) 3970 if (w->wd >= 0)
1856 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3971 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3972
3973 /* now re-arm timer, if required */
3974 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3975 ev_timer_again (EV_A_ &w->timer);
3976 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1857} 3977}
1858 3978
1859static void noinline 3979static void noinline
1860infy_del (EV_P_ ev_stat *w) 3980infy_del (EV_P_ ev_stat *w)
1861{ 3981{
1864 3984
1865 if (wd < 0) 3985 if (wd < 0)
1866 return; 3986 return;
1867 3987
1868 w->wd = -2; 3988 w->wd = -2;
1869 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3989 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1870 wlist_del (&fs_hash [slot].head, (WL)w); 3990 wlist_del (&fs_hash [slot].head, (WL)w);
1871 3991
1872 /* remove this watcher, if others are watching it, they will rearm */ 3992 /* remove this watcher, if others are watching it, they will rearm */
1873 inotify_rm_watch (fs_fd, wd); 3993 inotify_rm_watch (fs_fd, wd);
1874} 3994}
1875 3995
1876static void noinline 3996static void noinline
1877infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3997infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1878{ 3998{
1879 if (slot < 0) 3999 if (slot < 0)
1880 /* overflow, need to check for all hahs slots */ 4000 /* overflow, need to check for all hash slots */
1881 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4001 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1882 infy_wd (EV_A_ slot, wd, ev); 4002 infy_wd (EV_A_ slot, wd, ev);
1883 else 4003 else
1884 { 4004 {
1885 WL w_; 4005 WL w_;
1886 4006
1887 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4007 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1888 { 4008 {
1889 ev_stat *w = (ev_stat *)w_; 4009 ev_stat *w = (ev_stat *)w_;
1890 w_ = w_->next; /* lets us remove this watcher and all before it */ 4010 w_ = w_->next; /* lets us remove this watcher and all before it */
1891 4011
1892 if (w->wd == wd || wd == -1) 4012 if (w->wd == wd || wd == -1)
1893 { 4013 {
1894 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4014 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1895 { 4015 {
4016 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1896 w->wd = -1; 4017 w->wd = -1;
1897 infy_add (EV_A_ w); /* re-add, no matter what */ 4018 infy_add (EV_A_ w); /* re-add, no matter what */
1898 } 4019 }
1899 4020
1900 stat_timer_cb (EV_A_ &w->timer, 0); 4021 stat_timer_cb (EV_A_ &w->timer, 0);
1905 4026
1906static void 4027static void
1907infy_cb (EV_P_ ev_io *w, int revents) 4028infy_cb (EV_P_ ev_io *w, int revents)
1908{ 4029{
1909 char buf [EV_INOTIFY_BUFSIZE]; 4030 char buf [EV_INOTIFY_BUFSIZE];
1910 struct inotify_event *ev = (struct inotify_event *)buf;
1911 int ofs; 4031 int ofs;
1912 int len = read (fs_fd, buf, sizeof (buf)); 4032 int len = read (fs_fd, buf, sizeof (buf));
1913 4033
1914 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4034 for (ofs = 0; ofs < len; )
4035 {
4036 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1915 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4037 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4038 ofs += sizeof (struct inotify_event) + ev->len;
4039 }
1916} 4040}
1917 4041
1918void inline_size 4042inline_size void ecb_cold
4043ev_check_2625 (EV_P)
4044{
4045 /* kernels < 2.6.25 are borked
4046 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4047 */
4048 if (ev_linux_version () < 0x020619)
4049 return;
4050
4051 fs_2625 = 1;
4052}
4053
4054inline_size int
4055infy_newfd (void)
4056{
4057#if defined IN_CLOEXEC && defined IN_NONBLOCK
4058 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4059 if (fd >= 0)
4060 return fd;
4061#endif
4062 return inotify_init ();
4063}
4064
4065inline_size void
1919infy_init (EV_P) 4066infy_init (EV_P)
1920{ 4067{
1921 if (fs_fd != -2) 4068 if (fs_fd != -2)
1922 return; 4069 return;
1923 4070
4071 fs_fd = -1;
4072
4073 ev_check_2625 (EV_A);
4074
1924 fs_fd = inotify_init (); 4075 fs_fd = infy_newfd ();
1925 4076
1926 if (fs_fd >= 0) 4077 if (fs_fd >= 0)
1927 { 4078 {
4079 fd_intern (fs_fd);
1928 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4080 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1929 ev_set_priority (&fs_w, EV_MAXPRI); 4081 ev_set_priority (&fs_w, EV_MAXPRI);
1930 ev_io_start (EV_A_ &fs_w); 4082 ev_io_start (EV_A_ &fs_w);
4083 ev_unref (EV_A);
1931 } 4084 }
1932} 4085}
1933 4086
1934void inline_size 4087inline_size void
1935infy_fork (EV_P) 4088infy_fork (EV_P)
1936{ 4089{
1937 int slot; 4090 int slot;
1938 4091
1939 if (fs_fd < 0) 4092 if (fs_fd < 0)
1940 return; 4093 return;
1941 4094
4095 ev_ref (EV_A);
4096 ev_io_stop (EV_A_ &fs_w);
1942 close (fs_fd); 4097 close (fs_fd);
1943 fs_fd = inotify_init (); 4098 fs_fd = infy_newfd ();
1944 4099
4100 if (fs_fd >= 0)
4101 {
4102 fd_intern (fs_fd);
4103 ev_io_set (&fs_w, fs_fd, EV_READ);
4104 ev_io_start (EV_A_ &fs_w);
4105 ev_unref (EV_A);
4106 }
4107
1945 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4108 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1946 { 4109 {
1947 WL w_ = fs_hash [slot].head; 4110 WL w_ = fs_hash [slot].head;
1948 fs_hash [slot].head = 0; 4111 fs_hash [slot].head = 0;
1949 4112
1950 while (w_) 4113 while (w_)
1955 w->wd = -1; 4118 w->wd = -1;
1956 4119
1957 if (fs_fd >= 0) 4120 if (fs_fd >= 0)
1958 infy_add (EV_A_ w); /* re-add, no matter what */ 4121 infy_add (EV_A_ w); /* re-add, no matter what */
1959 else 4122 else
4123 {
4124 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4125 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1960 ev_timer_start (EV_A_ &w->timer); 4126 ev_timer_again (EV_A_ &w->timer);
4127 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4128 }
1961 } 4129 }
1962
1963 } 4130 }
1964} 4131}
1965 4132
4133#endif
4134
4135#ifdef _WIN32
4136# define EV_LSTAT(p,b) _stati64 (p, b)
4137#else
4138# define EV_LSTAT(p,b) lstat (p, b)
1966#endif 4139#endif
1967 4140
1968void 4141void
1969ev_stat_stat (EV_P_ ev_stat *w) 4142ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
1970{ 4143{
1971 if (lstat (w->path, &w->attr) < 0) 4144 if (lstat (w->path, &w->attr) < 0)
1972 w->attr.st_nlink = 0; 4145 w->attr.st_nlink = 0;
1973 else if (!w->attr.st_nlink) 4146 else if (!w->attr.st_nlink)
1974 w->attr.st_nlink = 1; 4147 w->attr.st_nlink = 1;
1977static void noinline 4150static void noinline
1978stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4151stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1979{ 4152{
1980 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4153 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1981 4154
1982 /* we copy this here each the time so that */ 4155 ev_statdata prev = w->attr;
1983 /* prev has the old value when the callback gets invoked */
1984 w->prev = w->attr;
1985 ev_stat_stat (EV_A_ w); 4156 ev_stat_stat (EV_A_ w);
1986 4157
1987 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4158 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1988 if ( 4159 if (
1989 w->prev.st_dev != w->attr.st_dev 4160 prev.st_dev != w->attr.st_dev
1990 || w->prev.st_ino != w->attr.st_ino 4161 || prev.st_ino != w->attr.st_ino
1991 || w->prev.st_mode != w->attr.st_mode 4162 || prev.st_mode != w->attr.st_mode
1992 || w->prev.st_nlink != w->attr.st_nlink 4163 || prev.st_nlink != w->attr.st_nlink
1993 || w->prev.st_uid != w->attr.st_uid 4164 || prev.st_uid != w->attr.st_uid
1994 || w->prev.st_gid != w->attr.st_gid 4165 || prev.st_gid != w->attr.st_gid
1995 || w->prev.st_rdev != w->attr.st_rdev 4166 || prev.st_rdev != w->attr.st_rdev
1996 || w->prev.st_size != w->attr.st_size 4167 || prev.st_size != w->attr.st_size
1997 || w->prev.st_atime != w->attr.st_atime 4168 || prev.st_atime != w->attr.st_atime
1998 || w->prev.st_mtime != w->attr.st_mtime 4169 || prev.st_mtime != w->attr.st_mtime
1999 || w->prev.st_ctime != w->attr.st_ctime 4170 || prev.st_ctime != w->attr.st_ctime
2000 ) { 4171 ) {
4172 /* we only update w->prev on actual differences */
4173 /* in case we test more often than invoke the callback, */
4174 /* to ensure that prev is always different to attr */
4175 w->prev = prev;
4176
2001 #if EV_USE_INOTIFY 4177 #if EV_USE_INOTIFY
4178 if (fs_fd >= 0)
4179 {
2002 infy_del (EV_A_ w); 4180 infy_del (EV_A_ w);
2003 infy_add (EV_A_ w); 4181 infy_add (EV_A_ w);
2004 ev_stat_stat (EV_A_ w); /* avoid race... */ 4182 ev_stat_stat (EV_A_ w); /* avoid race... */
4183 }
2005 #endif 4184 #endif
2006 4185
2007 ev_feed_event (EV_A_ w, EV_STAT); 4186 ev_feed_event (EV_A_ w, EV_STAT);
2008 } 4187 }
2009} 4188}
2010 4189
2011void 4190void
2012ev_stat_start (EV_P_ ev_stat *w) 4191ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2013{ 4192{
2014 if (expect_false (ev_is_active (w))) 4193 if (expect_false (ev_is_active (w)))
2015 return; 4194 return;
2016 4195
2017 /* since we use memcmp, we need to clear any padding data etc. */
2018 memset (&w->prev, 0, sizeof (ev_statdata));
2019 memset (&w->attr, 0, sizeof (ev_statdata));
2020
2021 ev_stat_stat (EV_A_ w); 4196 ev_stat_stat (EV_A_ w);
2022 4197
4198 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2023 if (w->interval < MIN_STAT_INTERVAL) 4199 w->interval = MIN_STAT_INTERVAL;
2024 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2025 4200
2026 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4201 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2027 ev_set_priority (&w->timer, ev_priority (w)); 4202 ev_set_priority (&w->timer, ev_priority (w));
2028 4203
2029#if EV_USE_INOTIFY 4204#if EV_USE_INOTIFY
2030 infy_init (EV_A); 4205 infy_init (EV_A);
2031 4206
2032 if (fs_fd >= 0) 4207 if (fs_fd >= 0)
2033 infy_add (EV_A_ w); 4208 infy_add (EV_A_ w);
2034 else 4209 else
2035#endif 4210#endif
4211 {
2036 ev_timer_start (EV_A_ &w->timer); 4212 ev_timer_again (EV_A_ &w->timer);
4213 ev_unref (EV_A);
4214 }
2037 4215
2038 ev_start (EV_A_ (W)w, 1); 4216 ev_start (EV_A_ (W)w, 1);
4217
4218 EV_FREQUENT_CHECK;
2039} 4219}
2040 4220
2041void 4221void
2042ev_stat_stop (EV_P_ ev_stat *w) 4222ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2043{ 4223{
2044 clear_pending (EV_A_ (W)w); 4224 clear_pending (EV_A_ (W)w);
2045 if (expect_false (!ev_is_active (w))) 4225 if (expect_false (!ev_is_active (w)))
2046 return; 4226 return;
2047 4227
4228 EV_FREQUENT_CHECK;
4229
2048#if EV_USE_INOTIFY 4230#if EV_USE_INOTIFY
2049 infy_del (EV_A_ w); 4231 infy_del (EV_A_ w);
2050#endif 4232#endif
4233
4234 if (ev_is_active (&w->timer))
4235 {
4236 ev_ref (EV_A);
2051 ev_timer_stop (EV_A_ &w->timer); 4237 ev_timer_stop (EV_A_ &w->timer);
4238 }
2052 4239
2053 ev_stop (EV_A_ (W)w); 4240 ev_stop (EV_A_ (W)w);
4241
4242 EV_FREQUENT_CHECK;
2054} 4243}
2055#endif 4244#endif
2056 4245
2057#if EV_IDLE_ENABLE 4246#if EV_IDLE_ENABLE
2058void 4247void
2059ev_idle_start (EV_P_ ev_idle *w) 4248ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2060{ 4249{
2061 if (expect_false (ev_is_active (w))) 4250 if (expect_false (ev_is_active (w)))
2062 return; 4251 return;
2063 4252
2064 pri_adjust (EV_A_ (W)w); 4253 pri_adjust (EV_A_ (W)w);
4254
4255 EV_FREQUENT_CHECK;
2065 4256
2066 { 4257 {
2067 int active = ++idlecnt [ABSPRI (w)]; 4258 int active = ++idlecnt [ABSPRI (w)];
2068 4259
2069 ++idleall; 4260 ++idleall;
2070 ev_start (EV_A_ (W)w, active); 4261 ev_start (EV_A_ (W)w, active);
2071 4262
2072 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4263 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2073 idles [ABSPRI (w)][active - 1] = w; 4264 idles [ABSPRI (w)][active - 1] = w;
2074 } 4265 }
4266
4267 EV_FREQUENT_CHECK;
2075} 4268}
2076 4269
2077void 4270void
2078ev_idle_stop (EV_P_ ev_idle *w) 4271ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2079{ 4272{
2080 clear_pending (EV_A_ (W)w); 4273 clear_pending (EV_A_ (W)w);
2081 if (expect_false (!ev_is_active (w))) 4274 if (expect_false (!ev_is_active (w)))
2082 return; 4275 return;
2083 4276
4277 EV_FREQUENT_CHECK;
4278
2084 { 4279 {
2085 int active = ((W)w)->active; 4280 int active = ev_active (w);
2086 4281
2087 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4282 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2088 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4283 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2089 4284
2090 ev_stop (EV_A_ (W)w); 4285 ev_stop (EV_A_ (W)w);
2091 --idleall; 4286 --idleall;
2092 } 4287 }
2093}
2094#endif
2095 4288
4289 EV_FREQUENT_CHECK;
4290}
4291#endif
4292
4293#if EV_PREPARE_ENABLE
2096void 4294void
2097ev_prepare_start (EV_P_ ev_prepare *w) 4295ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2098{ 4296{
2099 if (expect_false (ev_is_active (w))) 4297 if (expect_false (ev_is_active (w)))
2100 return; 4298 return;
4299
4300 EV_FREQUENT_CHECK;
2101 4301
2102 ev_start (EV_A_ (W)w, ++preparecnt); 4302 ev_start (EV_A_ (W)w, ++preparecnt);
2103 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4303 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2104 prepares [preparecnt - 1] = w; 4304 prepares [preparecnt - 1] = w;
4305
4306 EV_FREQUENT_CHECK;
2105} 4307}
2106 4308
2107void 4309void
2108ev_prepare_stop (EV_P_ ev_prepare *w) 4310ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2109{ 4311{
2110 clear_pending (EV_A_ (W)w); 4312 clear_pending (EV_A_ (W)w);
2111 if (expect_false (!ev_is_active (w))) 4313 if (expect_false (!ev_is_active (w)))
2112 return; 4314 return;
2113 4315
4316 EV_FREQUENT_CHECK;
4317
2114 { 4318 {
2115 int active = ((W)w)->active; 4319 int active = ev_active (w);
4320
2116 prepares [active - 1] = prepares [--preparecnt]; 4321 prepares [active - 1] = prepares [--preparecnt];
2117 ((W)prepares [active - 1])->active = active; 4322 ev_active (prepares [active - 1]) = active;
2118 } 4323 }
2119 4324
2120 ev_stop (EV_A_ (W)w); 4325 ev_stop (EV_A_ (W)w);
2121}
2122 4326
4327 EV_FREQUENT_CHECK;
4328}
4329#endif
4330
4331#if EV_CHECK_ENABLE
2123void 4332void
2124ev_check_start (EV_P_ ev_check *w) 4333ev_check_start (EV_P_ ev_check *w) EV_THROW
2125{ 4334{
2126 if (expect_false (ev_is_active (w))) 4335 if (expect_false (ev_is_active (w)))
2127 return; 4336 return;
4337
4338 EV_FREQUENT_CHECK;
2128 4339
2129 ev_start (EV_A_ (W)w, ++checkcnt); 4340 ev_start (EV_A_ (W)w, ++checkcnt);
2130 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4341 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2131 checks [checkcnt - 1] = w; 4342 checks [checkcnt - 1] = w;
4343
4344 EV_FREQUENT_CHECK;
2132} 4345}
2133 4346
2134void 4347void
2135ev_check_stop (EV_P_ ev_check *w) 4348ev_check_stop (EV_P_ ev_check *w) EV_THROW
2136{ 4349{
2137 clear_pending (EV_A_ (W)w); 4350 clear_pending (EV_A_ (W)w);
2138 if (expect_false (!ev_is_active (w))) 4351 if (expect_false (!ev_is_active (w)))
2139 return; 4352 return;
2140 4353
4354 EV_FREQUENT_CHECK;
4355
2141 { 4356 {
2142 int active = ((W)w)->active; 4357 int active = ev_active (w);
4358
2143 checks [active - 1] = checks [--checkcnt]; 4359 checks [active - 1] = checks [--checkcnt];
2144 ((W)checks [active - 1])->active = active; 4360 ev_active (checks [active - 1]) = active;
2145 } 4361 }
2146 4362
2147 ev_stop (EV_A_ (W)w); 4363 ev_stop (EV_A_ (W)w);
4364
4365 EV_FREQUENT_CHECK;
2148} 4366}
4367#endif
2149 4368
2150#if EV_EMBED_ENABLE 4369#if EV_EMBED_ENABLE
2151void noinline 4370void noinline
2152ev_embed_sweep (EV_P_ ev_embed *w) 4371ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2153{ 4372{
2154 ev_loop (w->loop, EVLOOP_NONBLOCK); 4373 ev_run (w->other, EVRUN_NOWAIT);
2155} 4374}
2156 4375
2157static void 4376static void
2158embed_cb (EV_P_ ev_io *io, int revents) 4377embed_io_cb (EV_P_ ev_io *io, int revents)
2159{ 4378{
2160 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4379 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2161 4380
2162 if (ev_cb (w)) 4381 if (ev_cb (w))
2163 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4382 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2164 else 4383 else
2165 ev_embed_sweep (loop, w); 4384 ev_run (w->other, EVRUN_NOWAIT);
2166} 4385}
4386
4387static void
4388embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4389{
4390 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4391
4392 {
4393 EV_P = w->other;
4394
4395 while (fdchangecnt)
4396 {
4397 fd_reify (EV_A);
4398 ev_run (EV_A_ EVRUN_NOWAIT);
4399 }
4400 }
4401}
4402
4403static void
4404embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4405{
4406 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4407
4408 ev_embed_stop (EV_A_ w);
4409
4410 {
4411 EV_P = w->other;
4412
4413 ev_loop_fork (EV_A);
4414 ev_run (EV_A_ EVRUN_NOWAIT);
4415 }
4416
4417 ev_embed_start (EV_A_ w);
4418}
4419
4420#if 0
4421static void
4422embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4423{
4424 ev_idle_stop (EV_A_ idle);
4425}
4426#endif
2167 4427
2168void 4428void
2169ev_embed_start (EV_P_ ev_embed *w) 4429ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2170{ 4430{
2171 if (expect_false (ev_is_active (w))) 4431 if (expect_false (ev_is_active (w)))
2172 return; 4432 return;
2173 4433
2174 { 4434 {
2175 struct ev_loop *loop = w->loop; 4435 EV_P = w->other;
2176 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4436 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2177 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 4437 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2178 } 4438 }
4439
4440 EV_FREQUENT_CHECK;
2179 4441
2180 ev_set_priority (&w->io, ev_priority (w)); 4442 ev_set_priority (&w->io, ev_priority (w));
2181 ev_io_start (EV_A_ &w->io); 4443 ev_io_start (EV_A_ &w->io);
2182 4444
4445 ev_prepare_init (&w->prepare, embed_prepare_cb);
4446 ev_set_priority (&w->prepare, EV_MINPRI);
4447 ev_prepare_start (EV_A_ &w->prepare);
4448
4449 ev_fork_init (&w->fork, embed_fork_cb);
4450 ev_fork_start (EV_A_ &w->fork);
4451
4452 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4453
2183 ev_start (EV_A_ (W)w, 1); 4454 ev_start (EV_A_ (W)w, 1);
4455
4456 EV_FREQUENT_CHECK;
2184} 4457}
2185 4458
2186void 4459void
2187ev_embed_stop (EV_P_ ev_embed *w) 4460ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2188{ 4461{
2189 clear_pending (EV_A_ (W)w); 4462 clear_pending (EV_A_ (W)w);
2190 if (expect_false (!ev_is_active (w))) 4463 if (expect_false (!ev_is_active (w)))
2191 return; 4464 return;
2192 4465
4466 EV_FREQUENT_CHECK;
4467
2193 ev_io_stop (EV_A_ &w->io); 4468 ev_io_stop (EV_A_ &w->io);
4469 ev_prepare_stop (EV_A_ &w->prepare);
4470 ev_fork_stop (EV_A_ &w->fork);
2194 4471
2195 ev_stop (EV_A_ (W)w); 4472 ev_stop (EV_A_ (W)w);
4473
4474 EV_FREQUENT_CHECK;
2196} 4475}
2197#endif 4476#endif
2198 4477
2199#if EV_FORK_ENABLE 4478#if EV_FORK_ENABLE
2200void 4479void
2201ev_fork_start (EV_P_ ev_fork *w) 4480ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2202{ 4481{
2203 if (expect_false (ev_is_active (w))) 4482 if (expect_false (ev_is_active (w)))
2204 return; 4483 return;
4484
4485 EV_FREQUENT_CHECK;
2205 4486
2206 ev_start (EV_A_ (W)w, ++forkcnt); 4487 ev_start (EV_A_ (W)w, ++forkcnt);
2207 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4488 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2208 forks [forkcnt - 1] = w; 4489 forks [forkcnt - 1] = w;
4490
4491 EV_FREQUENT_CHECK;
2209} 4492}
2210 4493
2211void 4494void
2212ev_fork_stop (EV_P_ ev_fork *w) 4495ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2213{ 4496{
2214 clear_pending (EV_A_ (W)w); 4497 clear_pending (EV_A_ (W)w);
2215 if (expect_false (!ev_is_active (w))) 4498 if (expect_false (!ev_is_active (w)))
2216 return; 4499 return;
2217 4500
4501 EV_FREQUENT_CHECK;
4502
2218 { 4503 {
2219 int active = ((W)w)->active; 4504 int active = ev_active (w);
4505
2220 forks [active - 1] = forks [--forkcnt]; 4506 forks [active - 1] = forks [--forkcnt];
2221 ((W)forks [active - 1])->active = active; 4507 ev_active (forks [active - 1]) = active;
2222 } 4508 }
2223 4509
2224 ev_stop (EV_A_ (W)w); 4510 ev_stop (EV_A_ (W)w);
4511
4512 EV_FREQUENT_CHECK;
4513}
4514#endif
4515
4516#if EV_CLEANUP_ENABLE
4517void
4518ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4519{
4520 if (expect_false (ev_is_active (w)))
4521 return;
4522
4523 EV_FREQUENT_CHECK;
4524
4525 ev_start (EV_A_ (W)w, ++cleanupcnt);
4526 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4527 cleanups [cleanupcnt - 1] = w;
4528
4529 /* cleanup watchers should never keep a refcount on the loop */
4530 ev_unref (EV_A);
4531 EV_FREQUENT_CHECK;
4532}
4533
4534void
4535ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4536{
4537 clear_pending (EV_A_ (W)w);
4538 if (expect_false (!ev_is_active (w)))
4539 return;
4540
4541 EV_FREQUENT_CHECK;
4542 ev_ref (EV_A);
4543
4544 {
4545 int active = ev_active (w);
4546
4547 cleanups [active - 1] = cleanups [--cleanupcnt];
4548 ev_active (cleanups [active - 1]) = active;
4549 }
4550
4551 ev_stop (EV_A_ (W)w);
4552
4553 EV_FREQUENT_CHECK;
4554}
4555#endif
4556
4557#if EV_ASYNC_ENABLE
4558void
4559ev_async_start (EV_P_ ev_async *w) EV_THROW
4560{
4561 if (expect_false (ev_is_active (w)))
4562 return;
4563
4564 w->sent = 0;
4565
4566 evpipe_init (EV_A);
4567
4568 EV_FREQUENT_CHECK;
4569
4570 ev_start (EV_A_ (W)w, ++asynccnt);
4571 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4572 asyncs [asynccnt - 1] = w;
4573
4574 EV_FREQUENT_CHECK;
4575}
4576
4577void
4578ev_async_stop (EV_P_ ev_async *w) EV_THROW
4579{
4580 clear_pending (EV_A_ (W)w);
4581 if (expect_false (!ev_is_active (w)))
4582 return;
4583
4584 EV_FREQUENT_CHECK;
4585
4586 {
4587 int active = ev_active (w);
4588
4589 asyncs [active - 1] = asyncs [--asynccnt];
4590 ev_active (asyncs [active - 1]) = active;
4591 }
4592
4593 ev_stop (EV_A_ (W)w);
4594
4595 EV_FREQUENT_CHECK;
4596}
4597
4598void
4599ev_async_send (EV_P_ ev_async *w) EV_THROW
4600{
4601 w->sent = 1;
4602 evpipe_write (EV_A_ &async_pending);
2225} 4603}
2226#endif 4604#endif
2227 4605
2228/*****************************************************************************/ 4606/*****************************************************************************/
2229 4607
2239once_cb (EV_P_ struct ev_once *once, int revents) 4617once_cb (EV_P_ struct ev_once *once, int revents)
2240{ 4618{
2241 void (*cb)(int revents, void *arg) = once->cb; 4619 void (*cb)(int revents, void *arg) = once->cb;
2242 void *arg = once->arg; 4620 void *arg = once->arg;
2243 4621
2244 ev_io_stop (EV_A_ &once->io); 4622 ev_io_stop (EV_A_ &once->io);
2245 ev_timer_stop (EV_A_ &once->to); 4623 ev_timer_stop (EV_A_ &once->to);
2246 ev_free (once); 4624 ev_free (once);
2247 4625
2248 cb (revents, arg); 4626 cb (revents, arg);
2249} 4627}
2250 4628
2251static void 4629static void
2252once_cb_io (EV_P_ ev_io *w, int revents) 4630once_cb_io (EV_P_ ev_io *w, int revents)
2253{ 4631{
2254 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4632 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4633
4634 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2255} 4635}
2256 4636
2257static void 4637static void
2258once_cb_to (EV_P_ ev_timer *w, int revents) 4638once_cb_to (EV_P_ ev_timer *w, int revents)
2259{ 4639{
2260 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4640 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4641
4642 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2261} 4643}
2262 4644
2263void 4645void
2264ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4646ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2265{ 4647{
2266 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4648 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2267 4649
2268 if (expect_false (!once)) 4650 if (expect_false (!once))
2269 { 4651 {
2270 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4652 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2271 return; 4653 return;
2272 } 4654 }
2273 4655
2274 once->cb = cb; 4656 once->cb = cb;
2275 once->arg = arg; 4657 once->arg = arg;
2287 ev_timer_set (&once->to, timeout, 0.); 4669 ev_timer_set (&once->to, timeout, 0.);
2288 ev_timer_start (EV_A_ &once->to); 4670 ev_timer_start (EV_A_ &once->to);
2289 } 4671 }
2290} 4672}
2291 4673
2292#ifdef __cplusplus 4674/*****************************************************************************/
2293} 4675
4676#if EV_WALK_ENABLE
4677void ecb_cold
4678ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4679{
4680 int i, j;
4681 ev_watcher_list *wl, *wn;
4682
4683 if (types & (EV_IO | EV_EMBED))
4684 for (i = 0; i < anfdmax; ++i)
4685 for (wl = anfds [i].head; wl; )
4686 {
4687 wn = wl->next;
4688
4689#if EV_EMBED_ENABLE
4690 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4691 {
4692 if (types & EV_EMBED)
4693 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4694 }
4695 else
4696#endif
4697#if EV_USE_INOTIFY
4698 if (ev_cb ((ev_io *)wl) == infy_cb)
4699 ;
4700 else
4701#endif
4702 if ((ev_io *)wl != &pipe_w)
4703 if (types & EV_IO)
4704 cb (EV_A_ EV_IO, wl);
4705
4706 wl = wn;
4707 }
4708
4709 if (types & (EV_TIMER | EV_STAT))
4710 for (i = timercnt + HEAP0; i-- > HEAP0; )
4711#if EV_STAT_ENABLE
4712 /*TODO: timer is not always active*/
4713 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4714 {
4715 if (types & EV_STAT)
4716 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4717 }
4718 else
4719#endif
4720 if (types & EV_TIMER)
4721 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4722
4723#if EV_PERIODIC_ENABLE
4724 if (types & EV_PERIODIC)
4725 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4726 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4727#endif
4728
4729#if EV_IDLE_ENABLE
4730 if (types & EV_IDLE)
4731 for (j = NUMPRI; j--; )
4732 for (i = idlecnt [j]; i--; )
4733 cb (EV_A_ EV_IDLE, idles [j][i]);
4734#endif
4735
4736#if EV_FORK_ENABLE
4737 if (types & EV_FORK)
4738 for (i = forkcnt; i--; )
4739 if (ev_cb (forks [i]) != embed_fork_cb)
4740 cb (EV_A_ EV_FORK, forks [i]);
4741#endif
4742
4743#if EV_ASYNC_ENABLE
4744 if (types & EV_ASYNC)
4745 for (i = asynccnt; i--; )
4746 cb (EV_A_ EV_ASYNC, asyncs [i]);
4747#endif
4748
4749#if EV_PREPARE_ENABLE
4750 if (types & EV_PREPARE)
4751 for (i = preparecnt; i--; )
4752# if EV_EMBED_ENABLE
4753 if (ev_cb (prepares [i]) != embed_prepare_cb)
2294#endif 4754# endif
4755 cb (EV_A_ EV_PREPARE, prepares [i]);
4756#endif
2295 4757
4758#if EV_CHECK_ENABLE
4759 if (types & EV_CHECK)
4760 for (i = checkcnt; i--; )
4761 cb (EV_A_ EV_CHECK, checks [i]);
4762#endif
4763
4764#if EV_SIGNAL_ENABLE
4765 if (types & EV_SIGNAL)
4766 for (i = 0; i < EV_NSIG - 1; ++i)
4767 for (wl = signals [i].head; wl; )
4768 {
4769 wn = wl->next;
4770 cb (EV_A_ EV_SIGNAL, wl);
4771 wl = wn;
4772 }
4773#endif
4774
4775#if EV_CHILD_ENABLE
4776 if (types & EV_CHILD)
4777 for (i = (EV_PID_HASHSIZE); i--; )
4778 for (wl = childs [i]; wl; )
4779 {
4780 wn = wl->next;
4781 cb (EV_A_ EV_CHILD, wl);
4782 wl = wn;
4783 }
4784#endif
4785/* EV_STAT 0x00001000 /* stat data changed */
4786/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4787}
4788#endif
4789
4790#if EV_MULTIPLICITY
4791 #include "ev_wrap.h"
4792#endif
4793

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines