ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.168 by root, Sat Dec 8 14:12:07 2007 UTC vs.
Revision 1.479 by root, Sun Dec 20 01:31:17 2015 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
89# endif 127# endif
90 128
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
94# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
97# endif 136# endif
98 137
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
105# endif 145# endif
106 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
107#endif 154# endif
108 155
109#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
110#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
111#include <fcntl.h> 169#include <fcntl.h>
112#include <stddef.h> 170#include <stddef.h>
113 171
114#include <stdio.h> 172#include <stdio.h>
115 173
116#include <assert.h> 174#include <assert.h>
117#include <errno.h> 175#include <errno.h>
118#include <sys/types.h> 176#include <sys/types.h>
119#include <time.h> 177#include <time.h>
178#include <limits.h>
120 179
121#include <signal.h> 180#include <signal.h>
122 181
123#ifdef EV_H 182#ifdef EV_H
124# include EV_H 183# include EV_H
125#else 184#else
126# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
127#endif 197#endif
128 198
129#ifndef _WIN32 199#ifndef _WIN32
130# include <sys/time.h> 200# include <sys/time.h>
131# include <sys/wait.h> 201# include <sys/wait.h>
132# include <unistd.h> 202# include <unistd.h>
133#else 203#else
204# include <io.h>
134# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
135# include <windows.h> 207# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
138# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
139#endif 258# endif
259#endif
140 260
141/**/ 261#if !(_POSIX_TIMERS > 0)
262# ifndef EV_USE_MONOTONIC
263# define EV_USE_MONOTONIC 0
264# endif
265# ifndef EV_USE_REALTIME
266# define EV_USE_REALTIME 0
267# endif
268#endif
142 269
143#ifndef EV_USE_MONOTONIC 270#ifndef EV_USE_MONOTONIC
271# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
272# define EV_USE_MONOTONIC EV_FEATURE_OS
273# else
144# define EV_USE_MONOTONIC 0 274# define EV_USE_MONOTONIC 0
275# endif
145#endif 276#endif
146 277
147#ifndef EV_USE_REALTIME 278#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 279# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
280#endif
281
282#ifndef EV_USE_NANOSLEEP
283# if _POSIX_C_SOURCE >= 199309L
284# define EV_USE_NANOSLEEP EV_FEATURE_OS
285# else
286# define EV_USE_NANOSLEEP 0
287# endif
149#endif 288#endif
150 289
151#ifndef EV_USE_SELECT 290#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 291# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 292#endif
154 293
155#ifndef EV_USE_POLL 294#ifndef EV_USE_POLL
156# ifdef _WIN32 295# ifdef _WIN32
157# define EV_USE_POLL 0 296# define EV_USE_POLL 0
158# else 297# else
159# define EV_USE_POLL 1 298# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 299# endif
161#endif 300#endif
162 301
163#ifndef EV_USE_EPOLL 302#ifndef EV_USE_EPOLL
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
304# define EV_USE_EPOLL EV_FEATURE_BACKENDS
305# else
164# define EV_USE_EPOLL 0 306# define EV_USE_EPOLL 0
307# endif
165#endif 308#endif
166 309
167#ifndef EV_USE_KQUEUE 310#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 311# define EV_USE_KQUEUE 0
169#endif 312#endif
171#ifndef EV_USE_PORT 314#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 315# define EV_USE_PORT 0
173#endif 316#endif
174 317
175#ifndef EV_USE_INOTIFY 318#ifndef EV_USE_INOTIFY
319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
320# define EV_USE_INOTIFY EV_FEATURE_OS
321# else
176# define EV_USE_INOTIFY 0 322# define EV_USE_INOTIFY 0
323# endif
177#endif 324#endif
178 325
179#ifndef EV_PID_HASHSIZE 326#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 327# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 328#endif
329
330#ifndef EV_INOTIFY_HASHSIZE
331# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
332#endif
333
334#ifndef EV_USE_EVENTFD
335# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
336# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 337# else
183# define EV_PID_HASHSIZE 16 338# define EV_USE_EVENTFD 0
184# endif 339# endif
185#endif 340#endif
186 341
187#ifndef EV_INOTIFY_HASHSIZE 342#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 343# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 344# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 345# else
191# define EV_INOTIFY_HASHSIZE 16 346# define EV_USE_SIGNALFD 0
192# endif 347# endif
193#endif 348#endif
194 349
195/**/ 350#if 0 /* debugging */
351# define EV_VERIFY 3
352# define EV_USE_4HEAP 1
353# define EV_HEAP_CACHE_AT 1
354#endif
355
356#ifndef EV_VERIFY
357# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
358#endif
359
360#ifndef EV_USE_4HEAP
361# define EV_USE_4HEAP EV_FEATURE_DATA
362#endif
363
364#ifndef EV_HEAP_CACHE_AT
365# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
366#endif
367
368#ifdef ANDROID
369/* supposedly, android doesn't typedef fd_mask */
370# undef EV_USE_SELECT
371# define EV_USE_SELECT 0
372/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
373# undef EV_USE_CLOCK_SYSCALL
374# define EV_USE_CLOCK_SYSCALL 0
375#endif
376
377/* aix's poll.h seems to cause lots of trouble */
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
383
384/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
385/* which makes programs even slower. might work on other unices, too. */
386#if EV_USE_CLOCK_SYSCALL
387# include <sys/syscall.h>
388# ifdef SYS_clock_gettime
389# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
390# undef EV_USE_MONOTONIC
391# define EV_USE_MONOTONIC 1
392# else
393# undef EV_USE_CLOCK_SYSCALL
394# define EV_USE_CLOCK_SYSCALL 0
395# endif
396#endif
397
398/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 399
197#ifndef CLOCK_MONOTONIC 400#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 401# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 402# define EV_USE_MONOTONIC 0
200#endif 403#endif
202#ifndef CLOCK_REALTIME 405#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 406# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 407# define EV_USE_REALTIME 0
205#endif 408#endif
206 409
207#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h>
209#endif
210
211#if !EV_STAT_ENABLE 410#if !EV_STAT_ENABLE
411# undef EV_USE_INOTIFY
212# define EV_USE_INOTIFY 0 412# define EV_USE_INOTIFY 0
213#endif 413#endif
214 414
415#if !EV_USE_NANOSLEEP
416/* hp-ux has it in sys/time.h, which we unconditionally include above */
417# if !defined _WIN32 && !defined __hpux
418# include <sys/select.h>
419# endif
420#endif
421
215#if EV_USE_INOTIFY 422#if EV_USE_INOTIFY
423# include <sys/statfs.h>
216# include <sys/inotify.h> 424# include <sys/inotify.h>
425/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
426# ifndef IN_DONT_FOLLOW
427# undef EV_USE_INOTIFY
428# define EV_USE_INOTIFY 0
429# endif
430#endif
431
432#if EV_USE_EVENTFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef EFD_NONBLOCK
436# define EFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef EFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define EFD_CLOEXEC O_CLOEXEC
441# else
442# define EFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
446#endif
447
448#if EV_USE_SIGNALFD
449/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
450# include <stdint.h>
451# ifndef SFD_NONBLOCK
452# define SFD_NONBLOCK O_NONBLOCK
453# endif
454# ifndef SFD_CLOEXEC
455# ifdef O_CLOEXEC
456# define SFD_CLOEXEC O_CLOEXEC
457# else
458# define SFD_CLOEXEC 02000000
459# endif
460# endif
461EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
462
463struct signalfd_siginfo
464{
465 uint32_t ssi_signo;
466 char pad[128 - sizeof (uint32_t)];
467};
217#endif 468#endif
218 469
219/**/ 470/**/
471
472#if EV_VERIFY >= 3
473# define EV_FREQUENT_CHECK ev_verify (EV_A)
474#else
475# define EV_FREQUENT_CHECK do { } while (0)
476#endif
477
478/*
479 * This is used to work around floating point rounding problems.
480 * This value is good at least till the year 4000.
481 */
482#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
483/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
220 484
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 485#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 486#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 487
488#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
489#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
490
491/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
492/* ECB.H BEGIN */
493/*
494 * libecb - http://software.schmorp.de/pkg/libecb
495 *
496 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
497 * Copyright (©) 2011 Emanuele Giaquinta
498 * All rights reserved.
499 *
500 * Redistribution and use in source and binary forms, with or without modifica-
501 * tion, are permitted provided that the following conditions are met:
502 *
503 * 1. Redistributions of source code must retain the above copyright notice,
504 * this list of conditions and the following disclaimer.
505 *
506 * 2. Redistributions in binary form must reproduce the above copyright
507 * notice, this list of conditions and the following disclaimer in the
508 * documentation and/or other materials provided with the distribution.
509 *
510 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
511 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
512 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
513 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
514 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
515 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
516 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
517 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
518 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
519 * OF THE POSSIBILITY OF SUCH DAMAGE.
520 *
521 * Alternatively, the contents of this file may be used under the terms of
522 * the GNU General Public License ("GPL") version 2 or any later version,
523 * in which case the provisions of the GPL are applicable instead of
524 * the above. If you wish to allow the use of your version of this file
525 * only under the terms of the GPL and not to allow others to use your
526 * version of this file under the BSD license, indicate your decision
527 * by deleting the provisions above and replace them with the notice
528 * and other provisions required by the GPL. If you do not delete the
529 * provisions above, a recipient may use your version of this file under
530 * either the BSD or the GPL.
531 */
532
533#ifndef ECB_H
534#define ECB_H
535
536/* 16 bits major, 16 bits minor */
537#define ECB_VERSION 0x00010005
538
539#ifdef _WIN32
540 typedef signed char int8_t;
541 typedef unsigned char uint8_t;
542 typedef signed short int16_t;
543 typedef unsigned short uint16_t;
544 typedef signed int int32_t;
545 typedef unsigned int uint32_t;
225#if __GNUC__ >= 3 546 #if __GNUC__
547 typedef signed long long int64_t;
548 typedef unsigned long long uint64_t;
549 #else /* _MSC_VER || __BORLANDC__ */
550 typedef signed __int64 int64_t;
551 typedef unsigned __int64 uint64_t;
552 #endif
553 #ifdef _WIN64
554 #define ECB_PTRSIZE 8
555 typedef uint64_t uintptr_t;
556 typedef int64_t intptr_t;
557 #else
558 #define ECB_PTRSIZE 4
559 typedef uint32_t uintptr_t;
560 typedef int32_t intptr_t;
561 #endif
562#else
563 #include <inttypes.h>
564 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
565 #define ECB_PTRSIZE 8
566 #else
567 #define ECB_PTRSIZE 4
568 #endif
569#endif
570
571#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
572#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
573
574/* work around x32 idiocy by defining proper macros */
575#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
576 #if _ILP32
577 #define ECB_AMD64_X32 1
578 #else
579 #define ECB_AMD64 1
580 #endif
581#endif
582
583/* many compilers define _GNUC_ to some versions but then only implement
584 * what their idiot authors think are the "more important" extensions,
585 * causing enormous grief in return for some better fake benchmark numbers.
586 * or so.
587 * we try to detect these and simply assume they are not gcc - if they have
588 * an issue with that they should have done it right in the first place.
589 */
590#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
591 #define ECB_GCC_VERSION(major,minor) 0
592#else
593 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
594#endif
595
596#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
597
598#if __clang__ && defined __has_builtin
599 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
600#else
601 #define ECB_CLANG_BUILTIN(x) 0
602#endif
603
604#if __clang__ && defined __has_extension
605 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
606#else
607 #define ECB_CLANG_EXTENSION(x) 0
608#endif
609
610#define ECB_CPP (__cplusplus+0)
611#define ECB_CPP11 (__cplusplus >= 201103L)
612
613#if ECB_CPP
614 #define ECB_C 0
615 #define ECB_STDC_VERSION 0
616#else
617 #define ECB_C 1
618 #define ECB_STDC_VERSION __STDC_VERSION__
619#endif
620
621#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
622#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
623
624#if ECB_CPP
625 #define ECB_EXTERN_C extern "C"
626 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
627 #define ECB_EXTERN_C_END }
628#else
629 #define ECB_EXTERN_C extern
630 #define ECB_EXTERN_C_BEG
631 #define ECB_EXTERN_C_END
632#endif
633
634/*****************************************************************************/
635
636/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
637/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
638
639#if ECB_NO_THREADS
640 #define ECB_NO_SMP 1
641#endif
642
643#if ECB_NO_SMP
644 #define ECB_MEMORY_FENCE do { } while (0)
645#endif
646
647/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
648#if __xlC__ && ECB_CPP
649 #include <builtins.h>
650#endif
651
652#if 1400 <= _MSC_VER
653 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
654#endif
655
656#ifndef ECB_MEMORY_FENCE
657 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
658 #if __i386 || __i386__
659 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
660 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
661 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
662 #elif ECB_GCC_AMD64
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
664 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
665 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
666 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
667 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
668 #elif defined __ARM_ARCH_2__ \
669 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
670 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
671 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
672 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
673 || defined __ARM_ARCH_5TEJ__
674 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
675 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
676 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
677 || defined __ARM_ARCH_6T2__
678 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
679 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
680 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
681 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
682 #elif __aarch64__
683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
684 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
685 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
686 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
687 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
688 #elif defined __s390__ || defined __s390x__
689 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
690 #elif defined __mips__
691 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
692 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
693 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
694 #elif defined __alpha__
695 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
696 #elif defined __hppa__
697 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
698 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
699 #elif defined __ia64__
700 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
701 #elif defined __m68k__
702 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
703 #elif defined __m88k__
704 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
705 #elif defined __sh__
706 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
707 #endif
708 #endif
709#endif
710
711#ifndef ECB_MEMORY_FENCE
712 #if ECB_GCC_VERSION(4,7)
713 /* see comment below (stdatomic.h) about the C11 memory model. */
714 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
715 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
716 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
717
718 #elif ECB_CLANG_EXTENSION(c_atomic)
719 /* see comment below (stdatomic.h) about the C11 memory model. */
720 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
721 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
722 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
723
724 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
725 #define ECB_MEMORY_FENCE __sync_synchronize ()
726 #elif _MSC_VER >= 1500 /* VC++ 2008 */
727 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
728 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
729 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
730 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
731 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
732 #elif _MSC_VER >= 1400 /* VC++ 2005 */
733 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
734 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
735 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
736 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
737 #elif defined _WIN32
738 #include <WinNT.h>
739 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
740 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
741 #include <mbarrier.h>
742 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
743 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
744 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
745 #elif __xlC__
746 #define ECB_MEMORY_FENCE __sync ()
747 #endif
748#endif
749
750#ifndef ECB_MEMORY_FENCE
751 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
752 /* we assume that these memory fences work on all variables/all memory accesses, */
753 /* not just C11 atomics and atomic accesses */
754 #include <stdatomic.h>
755 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
756 /* any fence other than seq_cst, which isn't very efficient for us. */
757 /* Why that is, we don't know - either the C11 memory model is quite useless */
758 /* for most usages, or gcc and clang have a bug */
759 /* I *currently* lean towards the latter, and inefficiently implement */
760 /* all three of ecb's fences as a seq_cst fence */
761 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
762 /* for all __atomic_thread_fence's except seq_cst */
763 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
764 #endif
765#endif
766
767#ifndef ECB_MEMORY_FENCE
768 #if !ECB_AVOID_PTHREADS
769 /*
770 * if you get undefined symbol references to pthread_mutex_lock,
771 * or failure to find pthread.h, then you should implement
772 * the ECB_MEMORY_FENCE operations for your cpu/compiler
773 * OR provide pthread.h and link against the posix thread library
774 * of your system.
775 */
776 #include <pthread.h>
777 #define ECB_NEEDS_PTHREADS 1
778 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
779
780 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
781 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
782 #endif
783#endif
784
785#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
786 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
787#endif
788
789#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
790 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
791#endif
792
793/*****************************************************************************/
794
795#if ECB_CPP
796 #define ecb_inline static inline
797#elif ECB_GCC_VERSION(2,5)
798 #define ecb_inline static __inline__
799#elif ECB_C99
800 #define ecb_inline static inline
801#else
802 #define ecb_inline static
803#endif
804
805#if ECB_GCC_VERSION(3,3)
806 #define ecb_restrict __restrict__
807#elif ECB_C99
808 #define ecb_restrict restrict
809#else
810 #define ecb_restrict
811#endif
812
813typedef int ecb_bool;
814
815#define ECB_CONCAT_(a, b) a ## b
816#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
817#define ECB_STRINGIFY_(a) # a
818#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
819#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
820
821#define ecb_function_ ecb_inline
822
823#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
824 #define ecb_attribute(attrlist) __attribute__ (attrlist)
825#else
826 #define ecb_attribute(attrlist)
827#endif
828
829#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
830 #define ecb_is_constant(expr) __builtin_constant_p (expr)
831#else
832 /* possible C11 impl for integral types
833 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
834 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
835
836 #define ecb_is_constant(expr) 0
837#endif
838
839#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
226# define expect(expr,value) __builtin_expect ((expr),(value)) 840 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else 841#else
232# define noinline 842 #define ecb_expect(expr,value) (expr)
233# define inline_speed static inline
234# endif 843#endif
235#else
236# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline
240#endif
241 844
845#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
846 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
847#else
848 #define ecb_prefetch(addr,rw,locality)
849#endif
850
851/* no emulation for ecb_decltype */
852#if ECB_CPP11
853 // older implementations might have problems with decltype(x)::type, work around it
854 template<class T> struct ecb_decltype_t { typedef T type; };
855 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
856#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
857 #define ecb_decltype(x) __typeof__ (x)
858#endif
859
860#if _MSC_VER >= 1300
861 #define ecb_deprecated __declspec (deprecated)
862#else
863 #define ecb_deprecated ecb_attribute ((__deprecated__))
864#endif
865
866#if _MSC_VER >= 1500
867 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
868#elif ECB_GCC_VERSION(4,5)
869 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
870#else
871 #define ecb_deprecated_message(msg) ecb_deprecated
872#endif
873
874#if _MSC_VER >= 1400
875 #define ecb_noinline __declspec (noinline)
876#else
877 #define ecb_noinline ecb_attribute ((__noinline__))
878#endif
879
880#define ecb_unused ecb_attribute ((__unused__))
881#define ecb_const ecb_attribute ((__const__))
882#define ecb_pure ecb_attribute ((__pure__))
883
884#if ECB_C11 || __IBMC_NORETURN
885 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
886 #define ecb_noreturn _Noreturn
887#elif ECB_CPP11
888 #define ecb_noreturn [[noreturn]]
889#elif _MSC_VER >= 1200
890 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
891 #define ecb_noreturn __declspec (noreturn)
892#else
893 #define ecb_noreturn ecb_attribute ((__noreturn__))
894#endif
895
896#if ECB_GCC_VERSION(4,3)
897 #define ecb_artificial ecb_attribute ((__artificial__))
898 #define ecb_hot ecb_attribute ((__hot__))
899 #define ecb_cold ecb_attribute ((__cold__))
900#else
901 #define ecb_artificial
902 #define ecb_hot
903 #define ecb_cold
904#endif
905
906/* put around conditional expressions if you are very sure that the */
907/* expression is mostly true or mostly false. note that these return */
908/* booleans, not the expression. */
242#define expect_false(expr) expect ((expr) != 0, 0) 909#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 910#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
911/* for compatibility to the rest of the world */
912#define ecb_likely(expr) ecb_expect_true (expr)
913#define ecb_unlikely(expr) ecb_expect_false (expr)
244 914
915/* count trailing zero bits and count # of one bits */
916#if ECB_GCC_VERSION(3,4) \
917 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
918 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
919 && ECB_CLANG_BUILTIN(__builtin_popcount))
920 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
921 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
922 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
923 #define ecb_ctz32(x) __builtin_ctz (x)
924 #define ecb_ctz64(x) __builtin_ctzll (x)
925 #define ecb_popcount32(x) __builtin_popcount (x)
926 /* no popcountll */
927#else
928 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
929 ecb_function_ ecb_const int
930 ecb_ctz32 (uint32_t x)
931 {
932#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
933 unsigned long r;
934 _BitScanForward (&r, x);
935 return (int)r;
936#else
937 int r = 0;
938
939 x &= ~x + 1; /* this isolates the lowest bit */
940
941#if ECB_branchless_on_i386
942 r += !!(x & 0xaaaaaaaa) << 0;
943 r += !!(x & 0xcccccccc) << 1;
944 r += !!(x & 0xf0f0f0f0) << 2;
945 r += !!(x & 0xff00ff00) << 3;
946 r += !!(x & 0xffff0000) << 4;
947#else
948 if (x & 0xaaaaaaaa) r += 1;
949 if (x & 0xcccccccc) r += 2;
950 if (x & 0xf0f0f0f0) r += 4;
951 if (x & 0xff00ff00) r += 8;
952 if (x & 0xffff0000) r += 16;
953#endif
954
955 return r;
956#endif
957 }
958
959 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
960 ecb_function_ ecb_const int
961 ecb_ctz64 (uint64_t x)
962 {
963#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
964 unsigned long r;
965 _BitScanForward64 (&r, x);
966 return (int)r;
967#else
968 int shift = x & 0xffffffff ? 0 : 32;
969 return ecb_ctz32 (x >> shift) + shift;
970#endif
971 }
972
973 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
974 ecb_function_ ecb_const int
975 ecb_popcount32 (uint32_t x)
976 {
977 x -= (x >> 1) & 0x55555555;
978 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
979 x = ((x >> 4) + x) & 0x0f0f0f0f;
980 x *= 0x01010101;
981
982 return x >> 24;
983 }
984
985 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
986 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
987 {
988#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
989 unsigned long r;
990 _BitScanReverse (&r, x);
991 return (int)r;
992#else
993 int r = 0;
994
995 if (x >> 16) { x >>= 16; r += 16; }
996 if (x >> 8) { x >>= 8; r += 8; }
997 if (x >> 4) { x >>= 4; r += 4; }
998 if (x >> 2) { x >>= 2; r += 2; }
999 if (x >> 1) { r += 1; }
1000
1001 return r;
1002#endif
1003 }
1004
1005 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1006 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1007 {
1008#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1009 unsigned long r;
1010 _BitScanReverse64 (&r, x);
1011 return (int)r;
1012#else
1013 int r = 0;
1014
1015 if (x >> 32) { x >>= 32; r += 32; }
1016
1017 return r + ecb_ld32 (x);
1018#endif
1019 }
1020#endif
1021
1022ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1023ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1024ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1025ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1026
1027ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1028ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1029{
1030 return ( (x * 0x0802U & 0x22110U)
1031 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1032}
1033
1034ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1035ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1036{
1037 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1038 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1039 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1040 x = ( x >> 8 ) | ( x << 8);
1041
1042 return x;
1043}
1044
1045ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1046ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1047{
1048 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1049 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1050 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1051 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1052 x = ( x >> 16 ) | ( x << 16);
1053
1054 return x;
1055}
1056
1057/* popcount64 is only available on 64 bit cpus as gcc builtin */
1058/* so for this version we are lazy */
1059ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1060ecb_function_ ecb_const int
1061ecb_popcount64 (uint64_t x)
1062{
1063 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1064}
1065
1066ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1067ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1068ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1069ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1070ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1071ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1072ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1073ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1074
1075ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1076ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1077ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1078ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1079ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1080ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1081ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1082ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1083
1084#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1085 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1086 #define ecb_bswap16(x) __builtin_bswap16 (x)
1087 #else
1088 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1089 #endif
1090 #define ecb_bswap32(x) __builtin_bswap32 (x)
1091 #define ecb_bswap64(x) __builtin_bswap64 (x)
1092#elif _MSC_VER
1093 #include <stdlib.h>
1094 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1095 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1096 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1097#else
1098 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1099 ecb_function_ ecb_const uint16_t
1100 ecb_bswap16 (uint16_t x)
1101 {
1102 return ecb_rotl16 (x, 8);
1103 }
1104
1105 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1106 ecb_function_ ecb_const uint32_t
1107 ecb_bswap32 (uint32_t x)
1108 {
1109 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1110 }
1111
1112 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1113 ecb_function_ ecb_const uint64_t
1114 ecb_bswap64 (uint64_t x)
1115 {
1116 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1117 }
1118#endif
1119
1120#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1121 #define ecb_unreachable() __builtin_unreachable ()
1122#else
1123 /* this seems to work fine, but gcc always emits a warning for it :/ */
1124 ecb_inline ecb_noreturn void ecb_unreachable (void);
1125 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1126#endif
1127
1128/* try to tell the compiler that some condition is definitely true */
1129#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1130
1131ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1132ecb_inline ecb_const uint32_t
1133ecb_byteorder_helper (void)
1134{
1135 /* the union code still generates code under pressure in gcc, */
1136 /* but less than using pointers, and always seems to */
1137 /* successfully return a constant. */
1138 /* the reason why we have this horrible preprocessor mess */
1139 /* is to avoid it in all cases, at least on common architectures */
1140 /* or when using a recent enough gcc version (>= 4.6) */
1141#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1142 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1143 #define ECB_LITTLE_ENDIAN 1
1144 return 0x44332211;
1145#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1146 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1147 #define ECB_BIG_ENDIAN 1
1148 return 0x11223344;
1149#else
1150 union
1151 {
1152 uint8_t c[4];
1153 uint32_t u;
1154 } u = { 0x11, 0x22, 0x33, 0x44 };
1155 return u.u;
1156#endif
1157}
1158
1159ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1160ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1161ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1162ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1163
1164#if ECB_GCC_VERSION(3,0) || ECB_C99
1165 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1166#else
1167 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1168#endif
1169
1170#if ECB_CPP
1171 template<typename T>
1172 static inline T ecb_div_rd (T val, T div)
1173 {
1174 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1175 }
1176 template<typename T>
1177 static inline T ecb_div_ru (T val, T div)
1178 {
1179 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1180 }
1181#else
1182 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1183 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1184#endif
1185
1186#if ecb_cplusplus_does_not_suck
1187 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1188 template<typename T, int N>
1189 static inline int ecb_array_length (const T (&arr)[N])
1190 {
1191 return N;
1192 }
1193#else
1194 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1195#endif
1196
1197ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1198ecb_function_ ecb_const uint32_t
1199ecb_binary16_to_binary32 (uint32_t x)
1200{
1201 unsigned int s = (x & 0x8000) << (31 - 15);
1202 int e = (x >> 10) & 0x001f;
1203 unsigned int m = x & 0x03ff;
1204
1205 if (ecb_expect_false (e == 31))
1206 /* infinity or NaN */
1207 e = 255 - (127 - 15);
1208 else if (ecb_expect_false (!e))
1209 {
1210 if (ecb_expect_true (!m))
1211 /* zero, handled by code below by forcing e to 0 */
1212 e = 0 - (127 - 15);
1213 else
1214 {
1215 /* subnormal, renormalise */
1216 unsigned int s = 10 - ecb_ld32 (m);
1217
1218 m = (m << s) & 0x3ff; /* mask implicit bit */
1219 e -= s - 1;
1220 }
1221 }
1222
1223 /* e and m now are normalised, or zero, (or inf or nan) */
1224 e += 127 - 15;
1225
1226 return s | (e << 23) | (m << (23 - 10));
1227}
1228
1229ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1230ecb_function_ ecb_const uint16_t
1231ecb_binary32_to_binary16 (uint32_t x)
1232{
1233 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1234 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1235 unsigned int m = x & 0x007fffff;
1236
1237 x &= 0x7fffffff;
1238
1239 /* if it's within range of binary16 normals, use fast path */
1240 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1241 {
1242 /* mantissa round-to-even */
1243 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1244
1245 /* handle overflow */
1246 if (ecb_expect_false (m >= 0x00800000))
1247 {
1248 m >>= 1;
1249 e += 1;
1250 }
1251
1252 return s | (e << 10) | (m >> (23 - 10));
1253 }
1254
1255 /* handle large numbers and infinity */
1256 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1257 return s | 0x7c00;
1258
1259 /* handle zero, subnormals and small numbers */
1260 if (ecb_expect_true (x < 0x38800000))
1261 {
1262 /* zero */
1263 if (ecb_expect_true (!x))
1264 return s;
1265
1266 /* handle subnormals */
1267
1268 /* too small, will be zero */
1269 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1270 return s;
1271
1272 m |= 0x00800000; /* make implicit bit explicit */
1273
1274 /* very tricky - we need to round to the nearest e (+10) bit value */
1275 {
1276 unsigned int bits = 14 - e;
1277 unsigned int half = (1 << (bits - 1)) - 1;
1278 unsigned int even = (m >> bits) & 1;
1279
1280 /* if this overflows, we will end up with a normalised number */
1281 m = (m + half + even) >> bits;
1282 }
1283
1284 return s | m;
1285 }
1286
1287 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1288 m >>= 13;
1289
1290 return s | 0x7c00 | m | !m;
1291}
1292
1293/*******************************************************************************/
1294/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1295
1296/* basically, everything uses "ieee pure-endian" floating point numbers */
1297/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1298#if 0 \
1299 || __i386 || __i386__ \
1300 || ECB_GCC_AMD64 \
1301 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1302 || defined __s390__ || defined __s390x__ \
1303 || defined __mips__ \
1304 || defined __alpha__ \
1305 || defined __hppa__ \
1306 || defined __ia64__ \
1307 || defined __m68k__ \
1308 || defined __m88k__ \
1309 || defined __sh__ \
1310 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1311 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1312 || defined __aarch64__
1313 #define ECB_STDFP 1
1314 #include <string.h> /* for memcpy */
1315#else
1316 #define ECB_STDFP 0
1317#endif
1318
1319#ifndef ECB_NO_LIBM
1320
1321 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1322
1323 /* only the oldest of old doesn't have this one. solaris. */
1324 #ifdef INFINITY
1325 #define ECB_INFINITY INFINITY
1326 #else
1327 #define ECB_INFINITY HUGE_VAL
1328 #endif
1329
1330 #ifdef NAN
1331 #define ECB_NAN NAN
1332 #else
1333 #define ECB_NAN ECB_INFINITY
1334 #endif
1335
1336 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1337 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1338 #define ecb_frexpf(x,e) frexpf ((x), (e))
1339 #else
1340 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1341 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1342 #endif
1343
1344 /* convert a float to ieee single/binary32 */
1345 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1346 ecb_function_ ecb_const uint32_t
1347 ecb_float_to_binary32 (float x)
1348 {
1349 uint32_t r;
1350
1351 #if ECB_STDFP
1352 memcpy (&r, &x, 4);
1353 #else
1354 /* slow emulation, works for anything but -0 */
1355 uint32_t m;
1356 int e;
1357
1358 if (x == 0e0f ) return 0x00000000U;
1359 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1360 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1361 if (x != x ) return 0x7fbfffffU;
1362
1363 m = ecb_frexpf (x, &e) * 0x1000000U;
1364
1365 r = m & 0x80000000U;
1366
1367 if (r)
1368 m = -m;
1369
1370 if (e <= -126)
1371 {
1372 m &= 0xffffffU;
1373 m >>= (-125 - e);
1374 e = -126;
1375 }
1376
1377 r |= (e + 126) << 23;
1378 r |= m & 0x7fffffU;
1379 #endif
1380
1381 return r;
1382 }
1383
1384 /* converts an ieee single/binary32 to a float */
1385 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1386 ecb_function_ ecb_const float
1387 ecb_binary32_to_float (uint32_t x)
1388 {
1389 float r;
1390
1391 #if ECB_STDFP
1392 memcpy (&r, &x, 4);
1393 #else
1394 /* emulation, only works for normals and subnormals and +0 */
1395 int neg = x >> 31;
1396 int e = (x >> 23) & 0xffU;
1397
1398 x &= 0x7fffffU;
1399
1400 if (e)
1401 x |= 0x800000U;
1402 else
1403 e = 1;
1404
1405 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1406 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1407
1408 r = neg ? -r : r;
1409 #endif
1410
1411 return r;
1412 }
1413
1414 /* convert a double to ieee double/binary64 */
1415 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1416 ecb_function_ ecb_const uint64_t
1417 ecb_double_to_binary64 (double x)
1418 {
1419 uint64_t r;
1420
1421 #if ECB_STDFP
1422 memcpy (&r, &x, 8);
1423 #else
1424 /* slow emulation, works for anything but -0 */
1425 uint64_t m;
1426 int e;
1427
1428 if (x == 0e0 ) return 0x0000000000000000U;
1429 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1430 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1431 if (x != x ) return 0X7ff7ffffffffffffU;
1432
1433 m = frexp (x, &e) * 0x20000000000000U;
1434
1435 r = m & 0x8000000000000000;;
1436
1437 if (r)
1438 m = -m;
1439
1440 if (e <= -1022)
1441 {
1442 m &= 0x1fffffffffffffU;
1443 m >>= (-1021 - e);
1444 e = -1022;
1445 }
1446
1447 r |= ((uint64_t)(e + 1022)) << 52;
1448 r |= m & 0xfffffffffffffU;
1449 #endif
1450
1451 return r;
1452 }
1453
1454 /* converts an ieee double/binary64 to a double */
1455 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1456 ecb_function_ ecb_const double
1457 ecb_binary64_to_double (uint64_t x)
1458 {
1459 double r;
1460
1461 #if ECB_STDFP
1462 memcpy (&r, &x, 8);
1463 #else
1464 /* emulation, only works for normals and subnormals and +0 */
1465 int neg = x >> 63;
1466 int e = (x >> 52) & 0x7ffU;
1467
1468 x &= 0xfffffffffffffU;
1469
1470 if (e)
1471 x |= 0x10000000000000U;
1472 else
1473 e = 1;
1474
1475 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1476 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1477
1478 r = neg ? -r : r;
1479 #endif
1480
1481 return r;
1482 }
1483
1484 /* convert a float to ieee half/binary16 */
1485 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1486 ecb_function_ ecb_const uint16_t
1487 ecb_float_to_binary16 (float x)
1488 {
1489 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1490 }
1491
1492 /* convert an ieee half/binary16 to float */
1493 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1494 ecb_function_ ecb_const float
1495 ecb_binary16_to_float (uint16_t x)
1496 {
1497 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1498 }
1499
1500#endif
1501
1502#endif
1503
1504/* ECB.H END */
1505
1506#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1507/* if your architecture doesn't need memory fences, e.g. because it is
1508 * single-cpu/core, or if you use libev in a project that doesn't use libev
1509 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1510 * libev, in which cases the memory fences become nops.
1511 * alternatively, you can remove this #error and link against libpthread,
1512 * which will then provide the memory fences.
1513 */
1514# error "memory fences not defined for your architecture, please report"
1515#endif
1516
1517#ifndef ECB_MEMORY_FENCE
1518# define ECB_MEMORY_FENCE do { } while (0)
1519# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1520# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1521#endif
1522
1523#define expect_false(cond) ecb_expect_false (cond)
1524#define expect_true(cond) ecb_expect_true (cond)
1525#define noinline ecb_noinline
1526
1527#define inline_size ecb_inline
1528
1529#if EV_FEATURE_CODE
1530# define inline_speed ecb_inline
1531#else
1532# define inline_speed static noinline
1533#endif
1534
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1535#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1536
1537#if EV_MINPRI == EV_MAXPRI
1538# define ABSPRI(w) (((W)w), 0)
1539#else
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1540# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1541#endif
247 1542
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1543#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 1544#define EMPTY2(a,b) /* used to suppress some warnings */
250 1545
251typedef ev_watcher *W; 1546typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 1547typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 1548typedef ev_watcher_time *WT;
254 1549
1550#define ev_active(w) ((W)(w))->active
1551#define ev_at(w) ((WT)(w))->at
1552
1553#if EV_USE_REALTIME
1554/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1555/* giving it a reasonably high chance of working on typical architectures */
1556static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1557#endif
1558
1559#if EV_USE_MONOTONIC
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1560static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1561#endif
1562
1563#ifndef EV_FD_TO_WIN32_HANDLE
1564# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1565#endif
1566#ifndef EV_WIN32_HANDLE_TO_FD
1567# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1568#endif
1569#ifndef EV_WIN32_CLOSE_FD
1570# define EV_WIN32_CLOSE_FD(fd) close (fd)
1571#endif
256 1572
257#ifdef _WIN32 1573#ifdef _WIN32
258# include "ev_win32.c" 1574# include "ev_win32.c"
259#endif 1575#endif
260 1576
261/*****************************************************************************/ 1577/*****************************************************************************/
262 1578
1579/* define a suitable floor function (only used by periodics atm) */
1580
1581#if EV_USE_FLOOR
1582# include <math.h>
1583# define ev_floor(v) floor (v)
1584#else
1585
1586#include <float.h>
1587
1588/* a floor() replacement function, should be independent of ev_tstamp type */
1589static ev_tstamp noinline
1590ev_floor (ev_tstamp v)
1591{
1592 /* the choice of shift factor is not terribly important */
1593#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1594 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1595#else
1596 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1597#endif
1598
1599 /* argument too large for an unsigned long? */
1600 if (expect_false (v >= shift))
1601 {
1602 ev_tstamp f;
1603
1604 if (v == v - 1.)
1605 return v; /* very large number */
1606
1607 f = shift * ev_floor (v * (1. / shift));
1608 return f + ev_floor (v - f);
1609 }
1610
1611 /* special treatment for negative args? */
1612 if (expect_false (v < 0.))
1613 {
1614 ev_tstamp f = -ev_floor (-v);
1615
1616 return f - (f == v ? 0 : 1);
1617 }
1618
1619 /* fits into an unsigned long */
1620 return (unsigned long)v;
1621}
1622
1623#endif
1624
1625/*****************************************************************************/
1626
1627#ifdef __linux
1628# include <sys/utsname.h>
1629#endif
1630
1631static unsigned int noinline ecb_cold
1632ev_linux_version (void)
1633{
1634#ifdef __linux
1635 unsigned int v = 0;
1636 struct utsname buf;
1637 int i;
1638 char *p = buf.release;
1639
1640 if (uname (&buf))
1641 return 0;
1642
1643 for (i = 3+1; --i; )
1644 {
1645 unsigned int c = 0;
1646
1647 for (;;)
1648 {
1649 if (*p >= '0' && *p <= '9')
1650 c = c * 10 + *p++ - '0';
1651 else
1652 {
1653 p += *p == '.';
1654 break;
1655 }
1656 }
1657
1658 v = (v << 8) | c;
1659 }
1660
1661 return v;
1662#else
1663 return 0;
1664#endif
1665}
1666
1667/*****************************************************************************/
1668
1669#if EV_AVOID_STDIO
1670static void noinline ecb_cold
1671ev_printerr (const char *msg)
1672{
1673 write (STDERR_FILENO, msg, strlen (msg));
1674}
1675#endif
1676
263static void (*syserr_cb)(const char *msg); 1677static void (*syserr_cb)(const char *msg) EV_THROW;
264 1678
265void 1679void ecb_cold
266ev_set_syserr_cb (void (*cb)(const char *msg)) 1680ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
267{ 1681{
268 syserr_cb = cb; 1682 syserr_cb = cb;
269} 1683}
270 1684
271static void noinline 1685static void noinline ecb_cold
272syserr (const char *msg) 1686ev_syserr (const char *msg)
273{ 1687{
274 if (!msg) 1688 if (!msg)
275 msg = "(libev) system error"; 1689 msg = "(libev) system error";
276 1690
277 if (syserr_cb) 1691 if (syserr_cb)
278 syserr_cb (msg); 1692 syserr_cb (msg);
279 else 1693 else
280 { 1694 {
1695#if EV_AVOID_STDIO
1696 ev_printerr (msg);
1697 ev_printerr (": ");
1698 ev_printerr (strerror (errno));
1699 ev_printerr ("\n");
1700#else
281 perror (msg); 1701 perror (msg);
1702#endif
282 abort (); 1703 abort ();
283 } 1704 }
284} 1705}
285 1706
1707static void *
1708ev_realloc_emul (void *ptr, long size) EV_THROW
1709{
1710 /* some systems, notably openbsd and darwin, fail to properly
1711 * implement realloc (x, 0) (as required by both ansi c-89 and
1712 * the single unix specification, so work around them here.
1713 * recently, also (at least) fedora and debian started breaking it,
1714 * despite documenting it otherwise.
1715 */
1716
1717 if (size)
1718 return realloc (ptr, size);
1719
1720 free (ptr);
1721 return 0;
1722}
1723
286static void *(*alloc)(void *ptr, long size); 1724static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
287 1725
288void 1726void ecb_cold
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 1727ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
290{ 1728{
291 alloc = cb; 1729 alloc = cb;
292} 1730}
293 1731
294inline_speed void * 1732inline_speed void *
295ev_realloc (void *ptr, long size) 1733ev_realloc (void *ptr, long size)
296{ 1734{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1735 ptr = alloc (ptr, size);
298 1736
299 if (!ptr && size) 1737 if (!ptr && size)
300 { 1738 {
1739#if EV_AVOID_STDIO
1740 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1741#else
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1742 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1743#endif
302 abort (); 1744 abort ();
303 } 1745 }
304 1746
305 return ptr; 1747 return ptr;
306} 1748}
308#define ev_malloc(size) ev_realloc (0, (size)) 1750#define ev_malloc(size) ev_realloc (0, (size))
309#define ev_free(ptr) ev_realloc ((ptr), 0) 1751#define ev_free(ptr) ev_realloc ((ptr), 0)
310 1752
311/*****************************************************************************/ 1753/*****************************************************************************/
312 1754
1755/* set in reify when reification needed */
1756#define EV_ANFD_REIFY 1
1757
1758/* file descriptor info structure */
313typedef struct 1759typedef struct
314{ 1760{
315 WL head; 1761 WL head;
316 unsigned char events; 1762 unsigned char events; /* the events watched for */
1763 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1764 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
317 unsigned char reify; 1765 unsigned char unused;
1766#if EV_USE_EPOLL
1767 unsigned int egen; /* generation counter to counter epoll bugs */
1768#endif
318#if EV_SELECT_IS_WINSOCKET 1769#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
319 SOCKET handle; 1770 SOCKET handle;
320#endif 1771#endif
1772#if EV_USE_IOCP
1773 OVERLAPPED or, ow;
1774#endif
321} ANFD; 1775} ANFD;
322 1776
1777/* stores the pending event set for a given watcher */
323typedef struct 1778typedef struct
324{ 1779{
325 W w; 1780 W w;
326 int events; 1781 int events; /* the pending event set for the given watcher */
327} ANPENDING; 1782} ANPENDING;
328 1783
329#if EV_USE_INOTIFY 1784#if EV_USE_INOTIFY
1785/* hash table entry per inotify-id */
330typedef struct 1786typedef struct
331{ 1787{
332 WL head; 1788 WL head;
333} ANFS; 1789} ANFS;
1790#endif
1791
1792/* Heap Entry */
1793#if EV_HEAP_CACHE_AT
1794 /* a heap element */
1795 typedef struct {
1796 ev_tstamp at;
1797 WT w;
1798 } ANHE;
1799
1800 #define ANHE_w(he) (he).w /* access watcher, read-write */
1801 #define ANHE_at(he) (he).at /* access cached at, read-only */
1802 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1803#else
1804 /* a heap element */
1805 typedef WT ANHE;
1806
1807 #define ANHE_w(he) (he)
1808 #define ANHE_at(he) (he)->at
1809 #define ANHE_at_cache(he)
334#endif 1810#endif
335 1811
336#if EV_MULTIPLICITY 1812#if EV_MULTIPLICITY
337 1813
338 struct ev_loop 1814 struct ev_loop
344 #undef VAR 1820 #undef VAR
345 }; 1821 };
346 #include "ev_wrap.h" 1822 #include "ev_wrap.h"
347 1823
348 static struct ev_loop default_loop_struct; 1824 static struct ev_loop default_loop_struct;
349 struct ev_loop *ev_default_loop_ptr; 1825 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
350 1826
351#else 1827#else
352 1828
353 ev_tstamp ev_rt_now; 1829 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
354 #define VAR(name,decl) static decl; 1830 #define VAR(name,decl) static decl;
355 #include "ev_vars.h" 1831 #include "ev_vars.h"
356 #undef VAR 1832 #undef VAR
357 1833
358 static int ev_default_loop_ptr; 1834 static int ev_default_loop_ptr;
359 1835
360#endif 1836#endif
361 1837
1838#if EV_FEATURE_API
1839# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1840# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1841# define EV_INVOKE_PENDING invoke_cb (EV_A)
1842#else
1843# define EV_RELEASE_CB (void)0
1844# define EV_ACQUIRE_CB (void)0
1845# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1846#endif
1847
1848#define EVBREAK_RECURSE 0x80
1849
362/*****************************************************************************/ 1850/*****************************************************************************/
363 1851
1852#ifndef EV_HAVE_EV_TIME
364ev_tstamp 1853ev_tstamp
365ev_time (void) 1854ev_time (void) EV_THROW
366{ 1855{
367#if EV_USE_REALTIME 1856#if EV_USE_REALTIME
1857 if (expect_true (have_realtime))
1858 {
368 struct timespec ts; 1859 struct timespec ts;
369 clock_gettime (CLOCK_REALTIME, &ts); 1860 clock_gettime (CLOCK_REALTIME, &ts);
370 return ts.tv_sec + ts.tv_nsec * 1e-9; 1861 return ts.tv_sec + ts.tv_nsec * 1e-9;
371#else 1862 }
1863#endif
1864
372 struct timeval tv; 1865 struct timeval tv;
373 gettimeofday (&tv, 0); 1866 gettimeofday (&tv, 0);
374 return tv.tv_sec + tv.tv_usec * 1e-6; 1867 return tv.tv_sec + tv.tv_usec * 1e-6;
375#endif
376} 1868}
1869#endif
377 1870
378ev_tstamp inline_size 1871inline_size ev_tstamp
379get_clock (void) 1872get_clock (void)
380{ 1873{
381#if EV_USE_MONOTONIC 1874#if EV_USE_MONOTONIC
382 if (expect_true (have_monotonic)) 1875 if (expect_true (have_monotonic))
383 { 1876 {
390 return ev_time (); 1883 return ev_time ();
391} 1884}
392 1885
393#if EV_MULTIPLICITY 1886#if EV_MULTIPLICITY
394ev_tstamp 1887ev_tstamp
395ev_now (EV_P) 1888ev_now (EV_P) EV_THROW
396{ 1889{
397 return ev_rt_now; 1890 return ev_rt_now;
398} 1891}
399#endif 1892#endif
400 1893
401int inline_size 1894void
1895ev_sleep (ev_tstamp delay) EV_THROW
1896{
1897 if (delay > 0.)
1898 {
1899#if EV_USE_NANOSLEEP
1900 struct timespec ts;
1901
1902 EV_TS_SET (ts, delay);
1903 nanosleep (&ts, 0);
1904#elif defined _WIN32
1905 Sleep ((unsigned long)(delay * 1e3));
1906#else
1907 struct timeval tv;
1908
1909 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1910 /* something not guaranteed by newer posix versions, but guaranteed */
1911 /* by older ones */
1912 EV_TV_SET (tv, delay);
1913 select (0, 0, 0, 0, &tv);
1914#endif
1915 }
1916}
1917
1918/*****************************************************************************/
1919
1920#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1921
1922/* find a suitable new size for the given array, */
1923/* hopefully by rounding to a nice-to-malloc size */
1924inline_size int
402array_nextsize (int elem, int cur, int cnt) 1925array_nextsize (int elem, int cur, int cnt)
403{ 1926{
404 int ncur = cur + 1; 1927 int ncur = cur + 1;
405 1928
406 do 1929 do
407 ncur <<= 1; 1930 ncur <<= 1;
408 while (cnt > ncur); 1931 while (cnt > ncur);
409 1932
410 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1933 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
411 if (elem * ncur > 4096) 1934 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
412 { 1935 {
413 ncur *= elem; 1936 ncur *= elem;
414 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1937 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
415 ncur = ncur - sizeof (void *) * 4; 1938 ncur = ncur - sizeof (void *) * 4;
416 ncur /= elem; 1939 ncur /= elem;
417 } 1940 }
418 1941
419 return ncur; 1942 return ncur;
420} 1943}
421 1944
422inline_speed void * 1945static void * noinline ecb_cold
423array_realloc (int elem, void *base, int *cur, int cnt) 1946array_realloc (int elem, void *base, int *cur, int cnt)
424{ 1947{
425 *cur = array_nextsize (elem, *cur, cnt); 1948 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 1949 return ev_realloc (base, elem * *cur);
427} 1950}
1951
1952#define array_init_zero(base,count) \
1953 memset ((void *)(base), 0, sizeof (*(base)) * (count))
428 1954
429#define array_needsize(type,base,cur,cnt,init) \ 1955#define array_needsize(type,base,cur,cnt,init) \
430 if (expect_false ((cnt) > (cur))) \ 1956 if (expect_false ((cnt) > (cur))) \
431 { \ 1957 { \
432 int ocur_ = (cur); \ 1958 int ecb_unused ocur_ = (cur); \
433 (base) = (type *)array_realloc \ 1959 (base) = (type *)array_realloc \
434 (sizeof (type), (base), &(cur), (cnt)); \ 1960 (sizeof (type), (base), &(cur), (cnt)); \
435 init ((base) + (ocur_), (cur) - ocur_); \ 1961 init ((base) + (ocur_), (cur) - ocur_); \
436 } 1962 }
437 1963
444 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1970 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
445 } 1971 }
446#endif 1972#endif
447 1973
448#define array_free(stem, idx) \ 1974#define array_free(stem, idx) \
449 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1975 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
450 1976
451/*****************************************************************************/ 1977/*****************************************************************************/
452 1978
1979/* dummy callback for pending events */
1980static void noinline
1981pendingcb (EV_P_ ev_prepare *w, int revents)
1982{
1983}
1984
453void noinline 1985void noinline
454ev_feed_event (EV_P_ void *w, int revents) 1986ev_feed_event (EV_P_ void *w, int revents) EV_THROW
455{ 1987{
456 W w_ = (W)w; 1988 W w_ = (W)w;
1989 int pri = ABSPRI (w_);
457 1990
458 if (expect_false (w_->pending)) 1991 if (expect_false (w_->pending))
1992 pendings [pri][w_->pending - 1].events |= revents;
1993 else
459 { 1994 {
1995 w_->pending = ++pendingcnt [pri];
1996 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1997 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1998 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 1999 }
463 2000
464 w_->pending = ++pendingcnt [ABSPRI (w_)]; 2001 pendingpri = NUMPRI - 1;
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 2002}
469 2003
470void inline_size 2004inline_speed void
2005feed_reverse (EV_P_ W w)
2006{
2007 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
2008 rfeeds [rfeedcnt++] = w;
2009}
2010
2011inline_size void
2012feed_reverse_done (EV_P_ int revents)
2013{
2014 do
2015 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2016 while (rfeedcnt);
2017}
2018
2019inline_speed void
471queue_events (EV_P_ W *events, int eventcnt, int type) 2020queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 2021{
473 int i; 2022 int i;
474 2023
475 for (i = 0; i < eventcnt; ++i) 2024 for (i = 0; i < eventcnt; ++i)
476 ev_feed_event (EV_A_ events [i], type); 2025 ev_feed_event (EV_A_ events [i], type);
477} 2026}
478 2027
479/*****************************************************************************/ 2028/*****************************************************************************/
480 2029
481void inline_size 2030inline_speed void
482anfds_init (ANFD *base, int count)
483{
484 while (count--)
485 {
486 base->head = 0;
487 base->events = EV_NONE;
488 base->reify = 0;
489
490 ++base;
491 }
492}
493
494void inline_speed
495fd_event (EV_P_ int fd, int revents) 2031fd_event_nocheck (EV_P_ int fd, int revents)
496{ 2032{
497 ANFD *anfd = anfds + fd; 2033 ANFD *anfd = anfds + fd;
498 ev_io *w; 2034 ev_io *w;
499 2035
500 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2036 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
504 if (ev) 2040 if (ev)
505 ev_feed_event (EV_A_ (W)w, ev); 2041 ev_feed_event (EV_A_ (W)w, ev);
506 } 2042 }
507} 2043}
508 2044
2045/* do not submit kernel events for fds that have reify set */
2046/* because that means they changed while we were polling for new events */
2047inline_speed void
2048fd_event (EV_P_ int fd, int revents)
2049{
2050 ANFD *anfd = anfds + fd;
2051
2052 if (expect_true (!anfd->reify))
2053 fd_event_nocheck (EV_A_ fd, revents);
2054}
2055
509void 2056void
510ev_feed_fd_event (EV_P_ int fd, int revents) 2057ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
511{ 2058{
512 if (fd >= 0 && fd < anfdmax) 2059 if (fd >= 0 && fd < anfdmax)
513 fd_event (EV_A_ fd, revents); 2060 fd_event_nocheck (EV_A_ fd, revents);
514} 2061}
515 2062
516void inline_size 2063/* make sure the external fd watch events are in-sync */
2064/* with the kernel/libev internal state */
2065inline_size void
517fd_reify (EV_P) 2066fd_reify (EV_P)
518{ 2067{
519 int i; 2068 int i;
2069
2070#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2071 for (i = 0; i < fdchangecnt; ++i)
2072 {
2073 int fd = fdchanges [i];
2074 ANFD *anfd = anfds + fd;
2075
2076 if (anfd->reify & EV__IOFDSET && anfd->head)
2077 {
2078 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2079
2080 if (handle != anfd->handle)
2081 {
2082 unsigned long arg;
2083
2084 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2085
2086 /* handle changed, but fd didn't - we need to do it in two steps */
2087 backend_modify (EV_A_ fd, anfd->events, 0);
2088 anfd->events = 0;
2089 anfd->handle = handle;
2090 }
2091 }
2092 }
2093#endif
520 2094
521 for (i = 0; i < fdchangecnt; ++i) 2095 for (i = 0; i < fdchangecnt; ++i)
522 { 2096 {
523 int fd = fdchanges [i]; 2097 int fd = fdchanges [i];
524 ANFD *anfd = anfds + fd; 2098 ANFD *anfd = anfds + fd;
525 ev_io *w; 2099 ev_io *w;
526 2100
527 int events = 0; 2101 unsigned char o_events = anfd->events;
2102 unsigned char o_reify = anfd->reify;
528 2103
529 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2104 anfd->reify = 0;
530 events |= w->events;
531 2105
532#if EV_SELECT_IS_WINSOCKET 2106 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
533 if (events)
534 { 2107 {
535 unsigned long argp; 2108 anfd->events = 0;
536 anfd->handle = _get_osfhandle (fd); 2109
537 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2110 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2111 anfd->events |= (unsigned char)w->events;
2112
2113 if (o_events != anfd->events)
2114 o_reify = EV__IOFDSET; /* actually |= */
538 } 2115 }
539#endif
540 2116
541 anfd->reify = 0; 2117 if (o_reify & EV__IOFDSET)
542
543 backend_modify (EV_A_ fd, anfd->events, events); 2118 backend_modify (EV_A_ fd, o_events, anfd->events);
544 anfd->events = events;
545 } 2119 }
546 2120
547 fdchangecnt = 0; 2121 fdchangecnt = 0;
548} 2122}
549 2123
550void inline_size 2124/* something about the given fd changed */
2125inline_size void
551fd_change (EV_P_ int fd) 2126fd_change (EV_P_ int fd, int flags)
552{ 2127{
553 if (expect_false (anfds [fd].reify)) 2128 unsigned char reify = anfds [fd].reify;
554 return;
555
556 anfds [fd].reify = 1; 2129 anfds [fd].reify |= flags;
557 2130
2131 if (expect_true (!reify))
2132 {
558 ++fdchangecnt; 2133 ++fdchangecnt;
559 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2134 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
560 fdchanges [fdchangecnt - 1] = fd; 2135 fdchanges [fdchangecnt - 1] = fd;
2136 }
561} 2137}
562 2138
563void inline_speed 2139/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2140inline_speed void ecb_cold
564fd_kill (EV_P_ int fd) 2141fd_kill (EV_P_ int fd)
565{ 2142{
566 ev_io *w; 2143 ev_io *w;
567 2144
568 while ((w = (ev_io *)anfds [fd].head)) 2145 while ((w = (ev_io *)anfds [fd].head))
570 ev_io_stop (EV_A_ w); 2147 ev_io_stop (EV_A_ w);
571 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2148 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
572 } 2149 }
573} 2150}
574 2151
575int inline_size 2152/* check whether the given fd is actually valid, for error recovery */
2153inline_size int ecb_cold
576fd_valid (int fd) 2154fd_valid (int fd)
577{ 2155{
578#ifdef _WIN32 2156#ifdef _WIN32
579 return _get_osfhandle (fd) != -1; 2157 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
580#else 2158#else
581 return fcntl (fd, F_GETFD) != -1; 2159 return fcntl (fd, F_GETFD) != -1;
582#endif 2160#endif
583} 2161}
584 2162
585/* called on EBADF to verify fds */ 2163/* called on EBADF to verify fds */
586static void noinline 2164static void noinline ecb_cold
587fd_ebadf (EV_P) 2165fd_ebadf (EV_P)
588{ 2166{
589 int fd; 2167 int fd;
590 2168
591 for (fd = 0; fd < anfdmax; ++fd) 2169 for (fd = 0; fd < anfdmax; ++fd)
592 if (anfds [fd].events) 2170 if (anfds [fd].events)
593 if (!fd_valid (fd) == -1 && errno == EBADF) 2171 if (!fd_valid (fd) && errno == EBADF)
594 fd_kill (EV_A_ fd); 2172 fd_kill (EV_A_ fd);
595} 2173}
596 2174
597/* called on ENOMEM in select/poll to kill some fds and retry */ 2175/* called on ENOMEM in select/poll to kill some fds and retry */
598static void noinline 2176static void noinline ecb_cold
599fd_enomem (EV_P) 2177fd_enomem (EV_P)
600{ 2178{
601 int fd; 2179 int fd;
602 2180
603 for (fd = anfdmax; fd--; ) 2181 for (fd = anfdmax; fd--; )
604 if (anfds [fd].events) 2182 if (anfds [fd].events)
605 { 2183 {
606 fd_kill (EV_A_ fd); 2184 fd_kill (EV_A_ fd);
607 return; 2185 break;
608 } 2186 }
609} 2187}
610 2188
611/* usually called after fork if backend needs to re-arm all fds from scratch */ 2189/* usually called after fork if backend needs to re-arm all fds from scratch */
612static void noinline 2190static void noinline
616 2194
617 for (fd = 0; fd < anfdmax; ++fd) 2195 for (fd = 0; fd < anfdmax; ++fd)
618 if (anfds [fd].events) 2196 if (anfds [fd].events)
619 { 2197 {
620 anfds [fd].events = 0; 2198 anfds [fd].events = 0;
621 fd_change (EV_A_ fd); 2199 anfds [fd].emask = 0;
2200 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
622 } 2201 }
623} 2202}
624 2203
2204/* used to prepare libev internal fd's */
2205/* this is not fork-safe */
2206inline_speed void
2207fd_intern (int fd)
2208{
2209#ifdef _WIN32
2210 unsigned long arg = 1;
2211 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2212#else
2213 fcntl (fd, F_SETFD, FD_CLOEXEC);
2214 fcntl (fd, F_SETFL, O_NONBLOCK);
2215#endif
2216}
2217
625/*****************************************************************************/ 2218/*****************************************************************************/
626 2219
627void inline_speed 2220/*
628upheap (WT *heap, int k) 2221 * the heap functions want a real array index. array index 0 is guaranteed to not
629{ 2222 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
630 WT w = heap [k]; 2223 * the branching factor of the d-tree.
2224 */
631 2225
632 while (k && heap [k >> 1]->at > w->at) 2226/*
633 { 2227 * at the moment we allow libev the luxury of two heaps,
634 heap [k] = heap [k >> 1]; 2228 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
635 ((W)heap [k])->active = k + 1; 2229 * which is more cache-efficient.
636 k >>= 1; 2230 * the difference is about 5% with 50000+ watchers.
637 } 2231 */
2232#if EV_USE_4HEAP
638 2233
639 heap [k] = w; 2234#define DHEAP 4
640 ((W)heap [k])->active = k + 1; 2235#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2236#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2237#define UPHEAP_DONE(p,k) ((p) == (k))
641 2238
642} 2239/* away from the root */
643 2240inline_speed void
644void inline_speed
645downheap (WT *heap, int N, int k) 2241downheap (ANHE *heap, int N, int k)
646{ 2242{
647 WT w = heap [k]; 2243 ANHE he = heap [k];
2244 ANHE *E = heap + N + HEAP0;
648 2245
649 while (k < (N >> 1)) 2246 for (;;)
650 { 2247 {
651 int j = k << 1; 2248 ev_tstamp minat;
2249 ANHE *minpos;
2250 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
652 2251
653 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 2252 /* find minimum child */
2253 if (expect_true (pos + DHEAP - 1 < E))
654 ++j; 2254 {
655 2255 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
656 if (w->at <= heap [j]->at) 2256 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2257 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2258 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2259 }
2260 else if (pos < E)
2261 {
2262 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2263 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2264 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2265 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2266 }
2267 else
657 break; 2268 break;
658 2269
2270 if (ANHE_at (he) <= minat)
2271 break;
2272
2273 heap [k] = *minpos;
2274 ev_active (ANHE_w (*minpos)) = k;
2275
2276 k = minpos - heap;
2277 }
2278
2279 heap [k] = he;
2280 ev_active (ANHE_w (he)) = k;
2281}
2282
2283#else /* 4HEAP */
2284
2285#define HEAP0 1
2286#define HPARENT(k) ((k) >> 1)
2287#define UPHEAP_DONE(p,k) (!(p))
2288
2289/* away from the root */
2290inline_speed void
2291downheap (ANHE *heap, int N, int k)
2292{
2293 ANHE he = heap [k];
2294
2295 for (;;)
2296 {
2297 int c = k << 1;
2298
2299 if (c >= N + HEAP0)
2300 break;
2301
2302 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2303 ? 1 : 0;
2304
2305 if (ANHE_at (he) <= ANHE_at (heap [c]))
2306 break;
2307
659 heap [k] = heap [j]; 2308 heap [k] = heap [c];
660 ((W)heap [k])->active = k + 1; 2309 ev_active (ANHE_w (heap [k])) = k;
2310
661 k = j; 2311 k = c;
662 } 2312 }
663 2313
664 heap [k] = w; 2314 heap [k] = he;
665 ((W)heap [k])->active = k + 1; 2315 ev_active (ANHE_w (he)) = k;
666} 2316}
2317#endif
667 2318
668void inline_size 2319/* towards the root */
2320inline_speed void
2321upheap (ANHE *heap, int k)
2322{
2323 ANHE he = heap [k];
2324
2325 for (;;)
2326 {
2327 int p = HPARENT (k);
2328
2329 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2330 break;
2331
2332 heap [k] = heap [p];
2333 ev_active (ANHE_w (heap [k])) = k;
2334 k = p;
2335 }
2336
2337 heap [k] = he;
2338 ev_active (ANHE_w (he)) = k;
2339}
2340
2341/* move an element suitably so it is in a correct place */
2342inline_size void
669adjustheap (WT *heap, int N, int k) 2343adjustheap (ANHE *heap, int N, int k)
670{ 2344{
2345 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
671 upheap (heap, k); 2346 upheap (heap, k);
2347 else
672 downheap (heap, N, k); 2348 downheap (heap, N, k);
2349}
2350
2351/* rebuild the heap: this function is used only once and executed rarely */
2352inline_size void
2353reheap (ANHE *heap, int N)
2354{
2355 int i;
2356
2357 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2358 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2359 for (i = 0; i < N; ++i)
2360 upheap (heap, i + HEAP0);
673} 2361}
674 2362
675/*****************************************************************************/ 2363/*****************************************************************************/
676 2364
2365/* associate signal watchers to a signal signal */
677typedef struct 2366typedef struct
678{ 2367{
2368 EV_ATOMIC_T pending;
2369#if EV_MULTIPLICITY
2370 EV_P;
2371#endif
679 WL head; 2372 WL head;
680 sig_atomic_t volatile gotsig;
681} ANSIG; 2373} ANSIG;
682 2374
683static ANSIG *signals; 2375static ANSIG signals [EV_NSIG - 1];
684static int signalmax;
685 2376
686static int sigpipe [2]; 2377/*****************************************************************************/
687static sig_atomic_t volatile gotsig;
688static ev_io sigev;
689 2378
690void inline_size 2379#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
691signals_init (ANSIG *base, int count)
692{
693 while (count--)
694 {
695 base->head = 0;
696 base->gotsig = 0;
697 2380
698 ++base; 2381static void noinline ecb_cold
2382evpipe_init (EV_P)
2383{
2384 if (!ev_is_active (&pipe_w))
699 } 2385 {
700} 2386 int fds [2];
701 2387
2388# if EV_USE_EVENTFD
2389 fds [0] = -1;
2390 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2391 if (fds [1] < 0 && errno == EINVAL)
2392 fds [1] = eventfd (0, 0);
2393
2394 if (fds [1] < 0)
2395# endif
2396 {
2397 while (pipe (fds))
2398 ev_syserr ("(libev) error creating signal/async pipe");
2399
2400 fd_intern (fds [0]);
2401 }
2402
2403 evpipe [0] = fds [0];
2404
2405 if (evpipe [1] < 0)
2406 evpipe [1] = fds [1]; /* first call, set write fd */
2407 else
2408 {
2409 /* on subsequent calls, do not change evpipe [1] */
2410 /* so that evpipe_write can always rely on its value. */
2411 /* this branch does not do anything sensible on windows, */
2412 /* so must not be executed on windows */
2413
2414 dup2 (fds [1], evpipe [1]);
2415 close (fds [1]);
2416 }
2417
2418 fd_intern (evpipe [1]);
2419
2420 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2421 ev_io_start (EV_A_ &pipe_w);
2422 ev_unref (EV_A); /* watcher should not keep loop alive */
2423 }
2424}
2425
2426inline_speed void
2427evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2428{
2429 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2430
2431 if (expect_true (*flag))
2432 return;
2433
2434 *flag = 1;
2435 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2436
2437 pipe_write_skipped = 1;
2438
2439 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2440
2441 if (pipe_write_wanted)
2442 {
2443 int old_errno;
2444
2445 pipe_write_skipped = 0;
2446 ECB_MEMORY_FENCE_RELEASE;
2447
2448 old_errno = errno; /* save errno because write will clobber it */
2449
2450#if EV_USE_EVENTFD
2451 if (evpipe [0] < 0)
2452 {
2453 uint64_t counter = 1;
2454 write (evpipe [1], &counter, sizeof (uint64_t));
2455 }
2456 else
2457#endif
2458 {
2459#ifdef _WIN32
2460 WSABUF buf;
2461 DWORD sent;
2462 buf.buf = &buf;
2463 buf.len = 1;
2464 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2465#else
2466 write (evpipe [1], &(evpipe [1]), 1);
2467#endif
2468 }
2469
2470 errno = old_errno;
2471 }
2472}
2473
2474/* called whenever the libev signal pipe */
2475/* got some events (signal, async) */
702static void 2476static void
2477pipecb (EV_P_ ev_io *iow, int revents)
2478{
2479 int i;
2480
2481 if (revents & EV_READ)
2482 {
2483#if EV_USE_EVENTFD
2484 if (evpipe [0] < 0)
2485 {
2486 uint64_t counter;
2487 read (evpipe [1], &counter, sizeof (uint64_t));
2488 }
2489 else
2490#endif
2491 {
2492 char dummy[4];
2493#ifdef _WIN32
2494 WSABUF buf;
2495 DWORD recvd;
2496 DWORD flags = 0;
2497 buf.buf = dummy;
2498 buf.len = sizeof (dummy);
2499 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2500#else
2501 read (evpipe [0], &dummy, sizeof (dummy));
2502#endif
2503 }
2504 }
2505
2506 pipe_write_skipped = 0;
2507
2508 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2509
2510#if EV_SIGNAL_ENABLE
2511 if (sig_pending)
2512 {
2513 sig_pending = 0;
2514
2515 ECB_MEMORY_FENCE;
2516
2517 for (i = EV_NSIG - 1; i--; )
2518 if (expect_false (signals [i].pending))
2519 ev_feed_signal_event (EV_A_ i + 1);
2520 }
2521#endif
2522
2523#if EV_ASYNC_ENABLE
2524 if (async_pending)
2525 {
2526 async_pending = 0;
2527
2528 ECB_MEMORY_FENCE;
2529
2530 for (i = asynccnt; i--; )
2531 if (asyncs [i]->sent)
2532 {
2533 asyncs [i]->sent = 0;
2534 ECB_MEMORY_FENCE_RELEASE;
2535 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2536 }
2537 }
2538#endif
2539}
2540
2541/*****************************************************************************/
2542
2543void
2544ev_feed_signal (int signum) EV_THROW
2545{
2546#if EV_MULTIPLICITY
2547 EV_P;
2548 ECB_MEMORY_FENCE_ACQUIRE;
2549 EV_A = signals [signum - 1].loop;
2550
2551 if (!EV_A)
2552 return;
2553#endif
2554
2555 signals [signum - 1].pending = 1;
2556 evpipe_write (EV_A_ &sig_pending);
2557}
2558
2559static void
703sighandler (int signum) 2560ev_sighandler (int signum)
704{ 2561{
705#if _WIN32 2562#ifdef _WIN32
706 signal (signum, sighandler); 2563 signal (signum, ev_sighandler);
707#endif 2564#endif
708 2565
709 signals [signum - 1].gotsig = 1; 2566 ev_feed_signal (signum);
710
711 if (!gotsig)
712 {
713 int old_errno = errno;
714 gotsig = 1;
715 write (sigpipe [1], &signum, 1);
716 errno = old_errno;
717 }
718} 2567}
719 2568
720void noinline 2569void noinline
721ev_feed_signal_event (EV_P_ int signum) 2570ev_feed_signal_event (EV_P_ int signum) EV_THROW
722{ 2571{
723 WL w; 2572 WL w;
724 2573
2574 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2575 return;
2576
2577 --signum;
2578
725#if EV_MULTIPLICITY 2579#if EV_MULTIPLICITY
726 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 2580 /* it is permissible to try to feed a signal to the wrong loop */
727#endif 2581 /* or, likely more useful, feeding a signal nobody is waiting for */
728 2582
729 --signum; 2583 if (expect_false (signals [signum].loop != EV_A))
730
731 if (signum < 0 || signum >= signalmax)
732 return; 2584 return;
2585#endif
733 2586
734 signals [signum].gotsig = 0; 2587 signals [signum].pending = 0;
2588 ECB_MEMORY_FENCE_RELEASE;
735 2589
736 for (w = signals [signum].head; w; w = w->next) 2590 for (w = signals [signum].head; w; w = w->next)
737 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2591 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
738} 2592}
739 2593
2594#if EV_USE_SIGNALFD
740static void 2595static void
741sigcb (EV_P_ ev_io *iow, int revents) 2596sigfdcb (EV_P_ ev_io *iow, int revents)
742{ 2597{
743 int signum; 2598 struct signalfd_siginfo si[2], *sip; /* these structs are big */
744 2599
745 read (sigpipe [0], &revents, 1); 2600 for (;;)
746 gotsig = 0; 2601 {
2602 ssize_t res = read (sigfd, si, sizeof (si));
747 2603
748 for (signum = signalmax; signum--; ) 2604 /* not ISO-C, as res might be -1, but works with SuS */
749 if (signals [signum].gotsig) 2605 for (sip = si; (char *)sip < (char *)si + res; ++sip)
750 ev_feed_signal_event (EV_A_ signum + 1); 2606 ev_feed_signal_event (EV_A_ sip->ssi_signo);
751}
752 2607
753void inline_size 2608 if (res < (ssize_t)sizeof (si))
754fd_intern (int fd) 2609 break;
755{ 2610 }
756#ifdef _WIN32
757 int arg = 1;
758 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
759#else
760 fcntl (fd, F_SETFD, FD_CLOEXEC);
761 fcntl (fd, F_SETFL, O_NONBLOCK);
762#endif
763} 2611}
2612#endif
764 2613
765static void noinline 2614#endif
766siginit (EV_P)
767{
768 fd_intern (sigpipe [0]);
769 fd_intern (sigpipe [1]);
770
771 ev_io_set (&sigev, sigpipe [0], EV_READ);
772 ev_io_start (EV_A_ &sigev);
773 ev_unref (EV_A); /* child watcher should not keep loop alive */
774}
775 2615
776/*****************************************************************************/ 2616/*****************************************************************************/
777 2617
2618#if EV_CHILD_ENABLE
778static ev_child *childs [EV_PID_HASHSIZE]; 2619static WL childs [EV_PID_HASHSIZE];
779
780#ifndef _WIN32
781 2620
782static ev_signal childev; 2621static ev_signal childev;
783 2622
784void inline_speed 2623#ifndef WIFCONTINUED
2624# define WIFCONTINUED(status) 0
2625#endif
2626
2627/* handle a single child status event */
2628inline_speed void
785child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2629child_reap (EV_P_ int chain, int pid, int status)
786{ 2630{
787 ev_child *w; 2631 ev_child *w;
2632 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
788 2633
789 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2634 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2635 {
790 if (w->pid == pid || !w->pid) 2636 if ((w->pid == pid || !w->pid)
2637 && (!traced || (w->flags & 1)))
791 { 2638 {
792 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2639 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
793 w->rpid = pid; 2640 w->rpid = pid;
794 w->rstatus = status; 2641 w->rstatus = status;
795 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2642 ev_feed_event (EV_A_ (W)w, EV_CHILD);
796 } 2643 }
2644 }
797} 2645}
798 2646
799#ifndef WCONTINUED 2647#ifndef WCONTINUED
800# define WCONTINUED 0 2648# define WCONTINUED 0
801#endif 2649#endif
802 2650
2651/* called on sigchld etc., calls waitpid */
803static void 2652static void
804childcb (EV_P_ ev_signal *sw, int revents) 2653childcb (EV_P_ ev_signal *sw, int revents)
805{ 2654{
806 int pid, status; 2655 int pid, status;
807 2656
810 if (!WCONTINUED 2659 if (!WCONTINUED
811 || errno != EINVAL 2660 || errno != EINVAL
812 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2661 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
813 return; 2662 return;
814 2663
815 /* make sure we are called again until all childs have been reaped */ 2664 /* make sure we are called again until all children have been reaped */
816 /* we need to do it this way so that the callback gets called before we continue */ 2665 /* we need to do it this way so that the callback gets called before we continue */
817 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2666 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
818 2667
819 child_reap (EV_A_ sw, pid, pid, status); 2668 child_reap (EV_A_ pid, pid, status);
820 if (EV_PID_HASHSIZE > 1) 2669 if ((EV_PID_HASHSIZE) > 1)
821 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2670 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
822} 2671}
823 2672
824#endif 2673#endif
825 2674
826/*****************************************************************************/ 2675/*****************************************************************************/
827 2676
2677#if EV_USE_IOCP
2678# include "ev_iocp.c"
2679#endif
828#if EV_USE_PORT 2680#if EV_USE_PORT
829# include "ev_port.c" 2681# include "ev_port.c"
830#endif 2682#endif
831#if EV_USE_KQUEUE 2683#if EV_USE_KQUEUE
832# include "ev_kqueue.c" 2684# include "ev_kqueue.c"
839#endif 2691#endif
840#if EV_USE_SELECT 2692#if EV_USE_SELECT
841# include "ev_select.c" 2693# include "ev_select.c"
842#endif 2694#endif
843 2695
844int 2696int ecb_cold
845ev_version_major (void) 2697ev_version_major (void) EV_THROW
846{ 2698{
847 return EV_VERSION_MAJOR; 2699 return EV_VERSION_MAJOR;
848} 2700}
849 2701
850int 2702int ecb_cold
851ev_version_minor (void) 2703ev_version_minor (void) EV_THROW
852{ 2704{
853 return EV_VERSION_MINOR; 2705 return EV_VERSION_MINOR;
854} 2706}
855 2707
856/* return true if we are running with elevated privileges and should ignore env variables */ 2708/* return true if we are running with elevated privileges and should ignore env variables */
857int inline_size 2709int inline_size ecb_cold
858enable_secure (void) 2710enable_secure (void)
859{ 2711{
860#ifdef _WIN32 2712#ifdef _WIN32
861 return 0; 2713 return 0;
862#else 2714#else
863 return getuid () != geteuid () 2715 return getuid () != geteuid ()
864 || getgid () != getegid (); 2716 || getgid () != getegid ();
865#endif 2717#endif
866} 2718}
867 2719
868unsigned int 2720unsigned int ecb_cold
869ev_supported_backends (void) 2721ev_supported_backends (void) EV_THROW
870{ 2722{
871 unsigned int flags = 0; 2723 unsigned int flags = 0;
872 2724
873 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2725 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
874 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2726 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
877 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2729 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
878 2730
879 return flags; 2731 return flags;
880} 2732}
881 2733
882unsigned int 2734unsigned int ecb_cold
883ev_recommended_backends (void) 2735ev_recommended_backends (void) EV_THROW
884{ 2736{
885 unsigned int flags = ev_supported_backends (); 2737 unsigned int flags = ev_supported_backends ();
886 2738
887#ifndef __NetBSD__ 2739#ifndef __NetBSD__
888 /* kqueue is borked on everything but netbsd apparently */ 2740 /* kqueue is borked on everything but netbsd apparently */
889 /* it usually doesn't work correctly on anything but sockets and pipes */ 2741 /* it usually doesn't work correctly on anything but sockets and pipes */
890 flags &= ~EVBACKEND_KQUEUE; 2742 flags &= ~EVBACKEND_KQUEUE;
891#endif 2743#endif
892#ifdef __APPLE__ 2744#ifdef __APPLE__
893 // flags &= ~EVBACKEND_KQUEUE; for documentation 2745 /* only select works correctly on that "unix-certified" platform */
894 flags &= ~EVBACKEND_POLL; 2746 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2747 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2748#endif
2749#ifdef __FreeBSD__
2750 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
895#endif 2751#endif
896 2752
897 return flags; 2753 return flags;
898} 2754}
899 2755
2756unsigned int ecb_cold
2757ev_embeddable_backends (void) EV_THROW
2758{
2759 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2760
2761 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2762 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2763 flags &= ~EVBACKEND_EPOLL;
2764
2765 return flags;
2766}
2767
900unsigned int 2768unsigned int
901ev_embeddable_backends (void) 2769ev_backend (EV_P) EV_THROW
902{ 2770{
903 return EVBACKEND_EPOLL 2771 return backend;
904 | EVBACKEND_KQUEUE
905 | EVBACKEND_PORT;
906} 2772}
907 2773
2774#if EV_FEATURE_API
908unsigned int 2775unsigned int
909ev_backend (EV_P) 2776ev_iteration (EV_P) EV_THROW
910{ 2777{
911 return backend; 2778 return loop_count;
912} 2779}
913 2780
914unsigned int 2781unsigned int
915ev_loop_count (EV_P) 2782ev_depth (EV_P) EV_THROW
916{ 2783{
917 return loop_count; 2784 return loop_depth;
918} 2785}
919 2786
2787void
2788ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2789{
2790 io_blocktime = interval;
2791}
2792
2793void
2794ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2795{
2796 timeout_blocktime = interval;
2797}
2798
2799void
2800ev_set_userdata (EV_P_ void *data) EV_THROW
2801{
2802 userdata = data;
2803}
2804
2805void *
2806ev_userdata (EV_P) EV_THROW
2807{
2808 return userdata;
2809}
2810
2811void
2812ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2813{
2814 invoke_cb = invoke_pending_cb;
2815}
2816
2817void
2818ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2819{
2820 release_cb = release;
2821 acquire_cb = acquire;
2822}
2823#endif
2824
2825/* initialise a loop structure, must be zero-initialised */
920static void noinline 2826static void noinline ecb_cold
921loop_init (EV_P_ unsigned int flags) 2827loop_init (EV_P_ unsigned int flags) EV_THROW
922{ 2828{
923 if (!backend) 2829 if (!backend)
924 { 2830 {
2831 origflags = flags;
2832
2833#if EV_USE_REALTIME
2834 if (!have_realtime)
2835 {
2836 struct timespec ts;
2837
2838 if (!clock_gettime (CLOCK_REALTIME, &ts))
2839 have_realtime = 1;
2840 }
2841#endif
2842
925#if EV_USE_MONOTONIC 2843#if EV_USE_MONOTONIC
2844 if (!have_monotonic)
926 { 2845 {
927 struct timespec ts; 2846 struct timespec ts;
2847
928 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2848 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
929 have_monotonic = 1; 2849 have_monotonic = 1;
930 } 2850 }
931#endif 2851#endif
932
933 ev_rt_now = ev_time ();
934 mn_now = get_clock ();
935 now_floor = mn_now;
936 rtmn_diff = ev_rt_now - mn_now;
937 2852
938 /* pid check not overridable via env */ 2853 /* pid check not overridable via env */
939#ifndef _WIN32 2854#ifndef _WIN32
940 if (flags & EVFLAG_FORKCHECK) 2855 if (flags & EVFLAG_FORKCHECK)
941 curpid = getpid (); 2856 curpid = getpid ();
944 if (!(flags & EVFLAG_NOENV) 2859 if (!(flags & EVFLAG_NOENV)
945 && !enable_secure () 2860 && !enable_secure ()
946 && getenv ("LIBEV_FLAGS")) 2861 && getenv ("LIBEV_FLAGS"))
947 flags = atoi (getenv ("LIBEV_FLAGS")); 2862 flags = atoi (getenv ("LIBEV_FLAGS"));
948 2863
949 if (!(flags & 0x0000ffffUL)) 2864 ev_rt_now = ev_time ();
2865 mn_now = get_clock ();
2866 now_floor = mn_now;
2867 rtmn_diff = ev_rt_now - mn_now;
2868#if EV_FEATURE_API
2869 invoke_cb = ev_invoke_pending;
2870#endif
2871
2872 io_blocktime = 0.;
2873 timeout_blocktime = 0.;
2874 backend = 0;
2875 backend_fd = -1;
2876 sig_pending = 0;
2877#if EV_ASYNC_ENABLE
2878 async_pending = 0;
2879#endif
2880 pipe_write_skipped = 0;
2881 pipe_write_wanted = 0;
2882 evpipe [0] = -1;
2883 evpipe [1] = -1;
2884#if EV_USE_INOTIFY
2885 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2886#endif
2887#if EV_USE_SIGNALFD
2888 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2889#endif
2890
2891 if (!(flags & EVBACKEND_MASK))
950 flags |= ev_recommended_backends (); 2892 flags |= ev_recommended_backends ();
951 2893
952 backend = 0;
953 backend_fd = -1;
954#if EV_USE_INOTIFY 2894#if EV_USE_IOCP
955 fs_fd = -2; 2895 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
956#endif 2896#endif
957
958#if EV_USE_PORT 2897#if EV_USE_PORT
959 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2898 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
960#endif 2899#endif
961#if EV_USE_KQUEUE 2900#if EV_USE_KQUEUE
962 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2901 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
969#endif 2908#endif
970#if EV_USE_SELECT 2909#if EV_USE_SELECT
971 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2910 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
972#endif 2911#endif
973 2912
2913 ev_prepare_init (&pending_w, pendingcb);
2914
2915#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
974 ev_init (&sigev, sigcb); 2916 ev_init (&pipe_w, pipecb);
975 ev_set_priority (&sigev, EV_MAXPRI); 2917 ev_set_priority (&pipe_w, EV_MAXPRI);
2918#endif
976 } 2919 }
977} 2920}
978 2921
979static void noinline 2922/* free up a loop structure */
2923void ecb_cold
980loop_destroy (EV_P) 2924ev_loop_destroy (EV_P)
981{ 2925{
982 int i; 2926 int i;
2927
2928#if EV_MULTIPLICITY
2929 /* mimic free (0) */
2930 if (!EV_A)
2931 return;
2932#endif
2933
2934#if EV_CLEANUP_ENABLE
2935 /* queue cleanup watchers (and execute them) */
2936 if (expect_false (cleanupcnt))
2937 {
2938 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2939 EV_INVOKE_PENDING;
2940 }
2941#endif
2942
2943#if EV_CHILD_ENABLE
2944 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2945 {
2946 ev_ref (EV_A); /* child watcher */
2947 ev_signal_stop (EV_A_ &childev);
2948 }
2949#endif
2950
2951 if (ev_is_active (&pipe_w))
2952 {
2953 /*ev_ref (EV_A);*/
2954 /*ev_io_stop (EV_A_ &pipe_w);*/
2955
2956 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2957 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2958 }
2959
2960#if EV_USE_SIGNALFD
2961 if (ev_is_active (&sigfd_w))
2962 close (sigfd);
2963#endif
983 2964
984#if EV_USE_INOTIFY 2965#if EV_USE_INOTIFY
985 if (fs_fd >= 0) 2966 if (fs_fd >= 0)
986 close (fs_fd); 2967 close (fs_fd);
987#endif 2968#endif
988 2969
989 if (backend_fd >= 0) 2970 if (backend_fd >= 0)
990 close (backend_fd); 2971 close (backend_fd);
991 2972
2973#if EV_USE_IOCP
2974 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2975#endif
992#if EV_USE_PORT 2976#if EV_USE_PORT
993 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2977 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
994#endif 2978#endif
995#if EV_USE_KQUEUE 2979#if EV_USE_KQUEUE
996 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2980 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1011#if EV_IDLE_ENABLE 2995#if EV_IDLE_ENABLE
1012 array_free (idle, [i]); 2996 array_free (idle, [i]);
1013#endif 2997#endif
1014 } 2998 }
1015 2999
3000 ev_free (anfds); anfds = 0; anfdmax = 0;
3001
1016 /* have to use the microsoft-never-gets-it-right macro */ 3002 /* have to use the microsoft-never-gets-it-right macro */
3003 array_free (rfeed, EMPTY);
1017 array_free (fdchange, EMPTY); 3004 array_free (fdchange, EMPTY);
1018 array_free (timer, EMPTY); 3005 array_free (timer, EMPTY);
1019#if EV_PERIODIC_ENABLE 3006#if EV_PERIODIC_ENABLE
1020 array_free (periodic, EMPTY); 3007 array_free (periodic, EMPTY);
1021#endif 3008#endif
3009#if EV_FORK_ENABLE
3010 array_free (fork, EMPTY);
3011#endif
3012#if EV_CLEANUP_ENABLE
3013 array_free (cleanup, EMPTY);
3014#endif
1022 array_free (prepare, EMPTY); 3015 array_free (prepare, EMPTY);
1023 array_free (check, EMPTY); 3016 array_free (check, EMPTY);
3017#if EV_ASYNC_ENABLE
3018 array_free (async, EMPTY);
3019#endif
1024 3020
1025 backend = 0; 3021 backend = 0;
1026}
1027 3022
3023#if EV_MULTIPLICITY
3024 if (ev_is_default_loop (EV_A))
3025#endif
3026 ev_default_loop_ptr = 0;
3027#if EV_MULTIPLICITY
3028 else
3029 ev_free (EV_A);
3030#endif
3031}
3032
3033#if EV_USE_INOTIFY
1028void inline_size infy_fork (EV_P); 3034inline_size void infy_fork (EV_P);
3035#endif
1029 3036
1030void inline_size 3037inline_size void
1031loop_fork (EV_P) 3038loop_fork (EV_P)
1032{ 3039{
1033#if EV_USE_PORT 3040#if EV_USE_PORT
1034 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3041 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1035#endif 3042#endif
1041#endif 3048#endif
1042#if EV_USE_INOTIFY 3049#if EV_USE_INOTIFY
1043 infy_fork (EV_A); 3050 infy_fork (EV_A);
1044#endif 3051#endif
1045 3052
1046 if (ev_is_active (&sigev)) 3053#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3054 if (ev_is_active (&pipe_w) && postfork != 2)
1047 { 3055 {
1048 /* default loop */ 3056 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1049 3057
1050 ev_ref (EV_A); 3058 ev_ref (EV_A);
1051 ev_io_stop (EV_A_ &sigev); 3059 ev_io_stop (EV_A_ &pipe_w);
1052 close (sigpipe [0]);
1053 close (sigpipe [1]);
1054 3060
1055 while (pipe (sigpipe)) 3061 if (evpipe [0] >= 0)
1056 syserr ("(libev) error creating pipe"); 3062 EV_WIN32_CLOSE_FD (evpipe [0]);
1057 3063
1058 siginit (EV_A); 3064 evpipe_init (EV_A);
3065 /* iterate over everything, in case we missed something before */
3066 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1059 } 3067 }
3068#endif
1060 3069
1061 postfork = 0; 3070 postfork = 0;
1062} 3071}
1063 3072
1064#if EV_MULTIPLICITY 3073#if EV_MULTIPLICITY
3074
1065struct ev_loop * 3075struct ev_loop * ecb_cold
1066ev_loop_new (unsigned int flags) 3076ev_loop_new (unsigned int flags) EV_THROW
1067{ 3077{
1068 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3078 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1069 3079
1070 memset (loop, 0, sizeof (struct ev_loop)); 3080 memset (EV_A, 0, sizeof (struct ev_loop));
1071
1072 loop_init (EV_A_ flags); 3081 loop_init (EV_A_ flags);
1073 3082
1074 if (ev_backend (EV_A)) 3083 if (ev_backend (EV_A))
1075 return loop; 3084 return EV_A;
1076 3085
3086 ev_free (EV_A);
1077 return 0; 3087 return 0;
1078} 3088}
1079 3089
1080void 3090#endif /* multiplicity */
1081ev_loop_destroy (EV_P)
1082{
1083 loop_destroy (EV_A);
1084 ev_free (loop);
1085}
1086 3091
1087void 3092#if EV_VERIFY
1088ev_loop_fork (EV_P) 3093static void noinline ecb_cold
3094verify_watcher (EV_P_ W w)
1089{ 3095{
1090 postfork = 1; 3096 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1091}
1092 3097
3098 if (w->pending)
3099 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3100}
3101
3102static void noinline ecb_cold
3103verify_heap (EV_P_ ANHE *heap, int N)
3104{
3105 int i;
3106
3107 for (i = HEAP0; i < N + HEAP0; ++i)
3108 {
3109 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3110 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3111 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3112
3113 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3114 }
3115}
3116
3117static void noinline ecb_cold
3118array_verify (EV_P_ W *ws, int cnt)
3119{
3120 while (cnt--)
3121 {
3122 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3123 verify_watcher (EV_A_ ws [cnt]);
3124 }
3125}
3126#endif
3127
3128#if EV_FEATURE_API
3129void ecb_cold
3130ev_verify (EV_P) EV_THROW
3131{
3132#if EV_VERIFY
3133 int i;
3134 WL w, w2;
3135
3136 assert (activecnt >= -1);
3137
3138 assert (fdchangemax >= fdchangecnt);
3139 for (i = 0; i < fdchangecnt; ++i)
3140 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3141
3142 assert (anfdmax >= 0);
3143 for (i = 0; i < anfdmax; ++i)
3144 {
3145 int j = 0;
3146
3147 for (w = w2 = anfds [i].head; w; w = w->next)
3148 {
3149 verify_watcher (EV_A_ (W)w);
3150
3151 if (j++ & 1)
3152 {
3153 assert (("libev: io watcher list contains a loop", w != w2));
3154 w2 = w2->next;
3155 }
3156
3157 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3158 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3159 }
3160 }
3161
3162 assert (timermax >= timercnt);
3163 verify_heap (EV_A_ timers, timercnt);
3164
3165#if EV_PERIODIC_ENABLE
3166 assert (periodicmax >= periodiccnt);
3167 verify_heap (EV_A_ periodics, periodiccnt);
3168#endif
3169
3170 for (i = NUMPRI; i--; )
3171 {
3172 assert (pendingmax [i] >= pendingcnt [i]);
3173#if EV_IDLE_ENABLE
3174 assert (idleall >= 0);
3175 assert (idlemax [i] >= idlecnt [i]);
3176 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3177#endif
3178 }
3179
3180#if EV_FORK_ENABLE
3181 assert (forkmax >= forkcnt);
3182 array_verify (EV_A_ (W *)forks, forkcnt);
3183#endif
3184
3185#if EV_CLEANUP_ENABLE
3186 assert (cleanupmax >= cleanupcnt);
3187 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3188#endif
3189
3190#if EV_ASYNC_ENABLE
3191 assert (asyncmax >= asynccnt);
3192 array_verify (EV_A_ (W *)asyncs, asynccnt);
3193#endif
3194
3195#if EV_PREPARE_ENABLE
3196 assert (preparemax >= preparecnt);
3197 array_verify (EV_A_ (W *)prepares, preparecnt);
3198#endif
3199
3200#if EV_CHECK_ENABLE
3201 assert (checkmax >= checkcnt);
3202 array_verify (EV_A_ (W *)checks, checkcnt);
3203#endif
3204
3205# if 0
3206#if EV_CHILD_ENABLE
3207 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3208 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3209#endif
3210# endif
3211#endif
3212}
1093#endif 3213#endif
1094 3214
1095#if EV_MULTIPLICITY 3215#if EV_MULTIPLICITY
1096struct ev_loop * 3216struct ev_loop * ecb_cold
1097ev_default_loop_init (unsigned int flags)
1098#else 3217#else
1099int 3218int
3219#endif
1100ev_default_loop (unsigned int flags) 3220ev_default_loop (unsigned int flags) EV_THROW
1101#endif
1102{ 3221{
1103 if (sigpipe [0] == sigpipe [1])
1104 if (pipe (sigpipe))
1105 return 0;
1106
1107 if (!ev_default_loop_ptr) 3222 if (!ev_default_loop_ptr)
1108 { 3223 {
1109#if EV_MULTIPLICITY 3224#if EV_MULTIPLICITY
1110 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3225 EV_P = ev_default_loop_ptr = &default_loop_struct;
1111#else 3226#else
1112 ev_default_loop_ptr = 1; 3227 ev_default_loop_ptr = 1;
1113#endif 3228#endif
1114 3229
1115 loop_init (EV_A_ flags); 3230 loop_init (EV_A_ flags);
1116 3231
1117 if (ev_backend (EV_A)) 3232 if (ev_backend (EV_A))
1118 { 3233 {
1119 siginit (EV_A); 3234#if EV_CHILD_ENABLE
1120
1121#ifndef _WIN32
1122 ev_signal_init (&childev, childcb, SIGCHLD); 3235 ev_signal_init (&childev, childcb, SIGCHLD);
1123 ev_set_priority (&childev, EV_MAXPRI); 3236 ev_set_priority (&childev, EV_MAXPRI);
1124 ev_signal_start (EV_A_ &childev); 3237 ev_signal_start (EV_A_ &childev);
1125 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3238 ev_unref (EV_A); /* child watcher should not keep loop alive */
1126#endif 3239#endif
1131 3244
1132 return ev_default_loop_ptr; 3245 return ev_default_loop_ptr;
1133} 3246}
1134 3247
1135void 3248void
1136ev_default_destroy (void) 3249ev_loop_fork (EV_P) EV_THROW
1137{ 3250{
1138#if EV_MULTIPLICITY
1139 struct ev_loop *loop = ev_default_loop_ptr;
1140#endif
1141
1142#ifndef _WIN32
1143 ev_ref (EV_A); /* child watcher */
1144 ev_signal_stop (EV_A_ &childev);
1145#endif
1146
1147 ev_ref (EV_A); /* signal watcher */
1148 ev_io_stop (EV_A_ &sigev);
1149
1150 close (sigpipe [0]); sigpipe [0] = 0;
1151 close (sigpipe [1]); sigpipe [1] = 0;
1152
1153 loop_destroy (EV_A);
1154}
1155
1156void
1157ev_default_fork (void)
1158{
1159#if EV_MULTIPLICITY
1160 struct ev_loop *loop = ev_default_loop_ptr;
1161#endif
1162
1163 if (backend)
1164 postfork = 1; 3251 postfork = 1;
1165} 3252}
1166 3253
1167/*****************************************************************************/ 3254/*****************************************************************************/
1168 3255
1169void 3256void
1170ev_invoke (EV_P_ void *w, int revents) 3257ev_invoke (EV_P_ void *w, int revents)
1171{ 3258{
1172 EV_CB_INVOKE ((W)w, revents); 3259 EV_CB_INVOKE ((W)w, revents);
1173} 3260}
1174 3261
1175void inline_speed 3262unsigned int
1176call_pending (EV_P) 3263ev_pending_count (EV_P) EV_THROW
1177{ 3264{
1178 int pri; 3265 int pri;
3266 unsigned int count = 0;
1179 3267
1180 for (pri = NUMPRI; pri--; ) 3268 for (pri = NUMPRI; pri--; )
3269 count += pendingcnt [pri];
3270
3271 return count;
3272}
3273
3274void noinline
3275ev_invoke_pending (EV_P)
3276{
3277 pendingpri = NUMPRI;
3278
3279 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3280 {
3281 --pendingpri;
3282
1181 while (pendingcnt [pri]) 3283 while (pendingcnt [pendingpri])
1182 {
1183 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1184
1185 if (expect_true (p->w))
1186 {
1187 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1188
1189 p->w->pending = 0;
1190 EV_CB_INVOKE (p->w, p->events);
1191 }
1192 }
1193}
1194
1195void inline_size
1196timers_reify (EV_P)
1197{
1198 while (timercnt && ((WT)timers [0])->at <= mn_now)
1199 {
1200 ev_timer *w = timers [0];
1201
1202 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1203
1204 /* first reschedule or stop timer */
1205 if (w->repeat)
1206 { 3284 {
1207 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3285 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1208 3286
1209 ((WT)w)->at += w->repeat; 3287 p->w->pending = 0;
1210 if (((WT)w)->at < mn_now) 3288 EV_CB_INVOKE (p->w, p->events);
1211 ((WT)w)->at = mn_now; 3289 EV_FREQUENT_CHECK;
1212
1213 downheap ((WT *)timers, timercnt, 0);
1214 } 3290 }
1215 else
1216 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1217
1218 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1219 }
1220}
1221
1222#if EV_PERIODIC_ENABLE
1223void inline_size
1224periodics_reify (EV_P)
1225{
1226 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1227 { 3291 }
1228 ev_periodic *w = periodics [0];
1229
1230 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1231
1232 /* first reschedule or stop timer */
1233 if (w->reschedule_cb)
1234 {
1235 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1236 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1237 downheap ((WT *)periodics, periodiccnt, 0);
1238 }
1239 else if (w->interval)
1240 {
1241 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1242 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1243 downheap ((WT *)periodics, periodiccnt, 0);
1244 }
1245 else
1246 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1247
1248 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1249 }
1250} 3292}
1251
1252static void noinline
1253periodics_reschedule (EV_P)
1254{
1255 int i;
1256
1257 /* adjust periodics after time jump */
1258 for (i = 0; i < periodiccnt; ++i)
1259 {
1260 ev_periodic *w = periodics [i];
1261
1262 if (w->reschedule_cb)
1263 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1264 else if (w->interval)
1265 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1266 }
1267
1268 /* now rebuild the heap */
1269 for (i = periodiccnt >> 1; i--; )
1270 downheap ((WT *)periodics, periodiccnt, i);
1271}
1272#endif
1273 3293
1274#if EV_IDLE_ENABLE 3294#if EV_IDLE_ENABLE
1275void inline_size 3295/* make idle watchers pending. this handles the "call-idle */
3296/* only when higher priorities are idle" logic */
3297inline_size void
1276idle_reify (EV_P) 3298idle_reify (EV_P)
1277{ 3299{
1278 if (expect_false (idleall)) 3300 if (expect_false (idleall))
1279 { 3301 {
1280 int pri; 3302 int pri;
1292 } 3314 }
1293 } 3315 }
1294} 3316}
1295#endif 3317#endif
1296 3318
1297int inline_size 3319/* make timers pending */
1298time_update_monotonic (EV_P) 3320inline_size void
3321timers_reify (EV_P)
1299{ 3322{
3323 EV_FREQUENT_CHECK;
3324
3325 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3326 {
3327 do
3328 {
3329 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3330
3331 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3332
3333 /* first reschedule or stop timer */
3334 if (w->repeat)
3335 {
3336 ev_at (w) += w->repeat;
3337 if (ev_at (w) < mn_now)
3338 ev_at (w) = mn_now;
3339
3340 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3341
3342 ANHE_at_cache (timers [HEAP0]);
3343 downheap (timers, timercnt, HEAP0);
3344 }
3345 else
3346 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3347
3348 EV_FREQUENT_CHECK;
3349 feed_reverse (EV_A_ (W)w);
3350 }
3351 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3352
3353 feed_reverse_done (EV_A_ EV_TIMER);
3354 }
3355}
3356
3357#if EV_PERIODIC_ENABLE
3358
3359static void noinline
3360periodic_recalc (EV_P_ ev_periodic *w)
3361{
3362 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3363 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3364
3365 /* the above almost always errs on the low side */
3366 while (at <= ev_rt_now)
3367 {
3368 ev_tstamp nat = at + w->interval;
3369
3370 /* when resolution fails us, we use ev_rt_now */
3371 if (expect_false (nat == at))
3372 {
3373 at = ev_rt_now;
3374 break;
3375 }
3376
3377 at = nat;
3378 }
3379
3380 ev_at (w) = at;
3381}
3382
3383/* make periodics pending */
3384inline_size void
3385periodics_reify (EV_P)
3386{
3387 EV_FREQUENT_CHECK;
3388
3389 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3390 {
3391 do
3392 {
3393 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3394
3395 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3396
3397 /* first reschedule or stop timer */
3398 if (w->reschedule_cb)
3399 {
3400 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3401
3402 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3403
3404 ANHE_at_cache (periodics [HEAP0]);
3405 downheap (periodics, periodiccnt, HEAP0);
3406 }
3407 else if (w->interval)
3408 {
3409 periodic_recalc (EV_A_ w);
3410 ANHE_at_cache (periodics [HEAP0]);
3411 downheap (periodics, periodiccnt, HEAP0);
3412 }
3413 else
3414 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3415
3416 EV_FREQUENT_CHECK;
3417 feed_reverse (EV_A_ (W)w);
3418 }
3419 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3420
3421 feed_reverse_done (EV_A_ EV_PERIODIC);
3422 }
3423}
3424
3425/* simply recalculate all periodics */
3426/* TODO: maybe ensure that at least one event happens when jumping forward? */
3427static void noinline ecb_cold
3428periodics_reschedule (EV_P)
3429{
3430 int i;
3431
3432 /* adjust periodics after time jump */
3433 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3434 {
3435 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3436
3437 if (w->reschedule_cb)
3438 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3439 else if (w->interval)
3440 periodic_recalc (EV_A_ w);
3441
3442 ANHE_at_cache (periodics [i]);
3443 }
3444
3445 reheap (periodics, periodiccnt);
3446}
3447#endif
3448
3449/* adjust all timers by a given offset */
3450static void noinline ecb_cold
3451timers_reschedule (EV_P_ ev_tstamp adjust)
3452{
3453 int i;
3454
3455 for (i = 0; i < timercnt; ++i)
3456 {
3457 ANHE *he = timers + i + HEAP0;
3458 ANHE_w (*he)->at += adjust;
3459 ANHE_at_cache (*he);
3460 }
3461}
3462
3463/* fetch new monotonic and realtime times from the kernel */
3464/* also detect if there was a timejump, and act accordingly */
3465inline_speed void
3466time_update (EV_P_ ev_tstamp max_block)
3467{
3468#if EV_USE_MONOTONIC
3469 if (expect_true (have_monotonic))
3470 {
3471 int i;
3472 ev_tstamp odiff = rtmn_diff;
3473
1300 mn_now = get_clock (); 3474 mn_now = get_clock ();
1301 3475
3476 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3477 /* interpolate in the meantime */
1302 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3478 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1303 { 3479 {
1304 ev_rt_now = rtmn_diff + mn_now; 3480 ev_rt_now = rtmn_diff + mn_now;
1305 return 0; 3481 return;
1306 } 3482 }
1307 else 3483
1308 {
1309 now_floor = mn_now; 3484 now_floor = mn_now;
1310 ev_rt_now = ev_time (); 3485 ev_rt_now = ev_time ();
1311 return 1;
1312 }
1313}
1314 3486
1315void inline_size 3487 /* loop a few times, before making important decisions.
1316time_update (EV_P) 3488 * on the choice of "4": one iteration isn't enough,
1317{ 3489 * in case we get preempted during the calls to
1318 int i; 3490 * ev_time and get_clock. a second call is almost guaranteed
1319 3491 * to succeed in that case, though. and looping a few more times
1320#if EV_USE_MONOTONIC 3492 * doesn't hurt either as we only do this on time-jumps or
1321 if (expect_true (have_monotonic)) 3493 * in the unlikely event of having been preempted here.
1322 { 3494 */
1323 if (time_update_monotonic (EV_A)) 3495 for (i = 4; --i; )
1324 { 3496 {
1325 ev_tstamp odiff = rtmn_diff; 3497 ev_tstamp diff;
1326
1327 /* loop a few times, before making important decisions.
1328 * on the choice of "4": one iteration isn't enough,
1329 * in case we get preempted during the calls to
1330 * ev_time and get_clock. a second call is almost guaranteed
1331 * to succeed in that case, though. and looping a few more times
1332 * doesn't hurt either as we only do this on time-jumps or
1333 * in the unlikely event of having been preempted here.
1334 */
1335 for (i = 4; --i; )
1336 {
1337 rtmn_diff = ev_rt_now - mn_now; 3498 rtmn_diff = ev_rt_now - mn_now;
1338 3499
1339 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3500 diff = odiff - rtmn_diff;
3501
3502 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1340 return; /* all is well */ 3503 return; /* all is well */
1341 3504
1342 ev_rt_now = ev_time (); 3505 ev_rt_now = ev_time ();
1343 mn_now = get_clock (); 3506 mn_now = get_clock ();
1344 now_floor = mn_now; 3507 now_floor = mn_now;
1345 } 3508 }
1346 3509
3510 /* no timer adjustment, as the monotonic clock doesn't jump */
3511 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1347# if EV_PERIODIC_ENABLE 3512# if EV_PERIODIC_ENABLE
1348 periodics_reschedule (EV_A); 3513 periodics_reschedule (EV_A);
1349# endif 3514# endif
1350 /* no timer adjustment, as the monotonic clock doesn't jump */
1351 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1352 }
1353 } 3515 }
1354 else 3516 else
1355#endif 3517#endif
1356 { 3518 {
1357 ev_rt_now = ev_time (); 3519 ev_rt_now = ev_time ();
1358 3520
1359 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 3521 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1360 { 3522 {
3523 /* adjust timers. this is easy, as the offset is the same for all of them */
3524 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1361#if EV_PERIODIC_ENABLE 3525#if EV_PERIODIC_ENABLE
1362 periodics_reschedule (EV_A); 3526 periodics_reschedule (EV_A);
1363#endif 3527#endif
1364
1365 /* adjust timers. this is easy, as the offset is the same for all of them */
1366 for (i = 0; i < timercnt; ++i)
1367 ((WT)timers [i])->at += ev_rt_now - mn_now;
1368 } 3528 }
1369 3529
1370 mn_now = ev_rt_now; 3530 mn_now = ev_rt_now;
1371 } 3531 }
1372} 3532}
1373 3533
1374void 3534int
1375ev_ref (EV_P)
1376{
1377 ++activecnt;
1378}
1379
1380void
1381ev_unref (EV_P)
1382{
1383 --activecnt;
1384}
1385
1386static int loop_done;
1387
1388void
1389ev_loop (EV_P_ int flags) 3535ev_run (EV_P_ int flags)
1390{ 3536{
1391 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 3537#if EV_FEATURE_API
1392 ? EVUNLOOP_ONE 3538 ++loop_depth;
1393 : EVUNLOOP_CANCEL; 3539#endif
1394 3540
3541 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3542
3543 loop_done = EVBREAK_CANCEL;
3544
1395 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3545 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1396 3546
1397 do 3547 do
1398 { 3548 {
3549#if EV_VERIFY >= 2
3550 ev_verify (EV_A);
3551#endif
3552
1399#ifndef _WIN32 3553#ifndef _WIN32
1400 if (expect_false (curpid)) /* penalise the forking check even more */ 3554 if (expect_false (curpid)) /* penalise the forking check even more */
1401 if (expect_false (getpid () != curpid)) 3555 if (expect_false (getpid () != curpid))
1402 { 3556 {
1403 curpid = getpid (); 3557 curpid = getpid ();
1409 /* we might have forked, so queue fork handlers */ 3563 /* we might have forked, so queue fork handlers */
1410 if (expect_false (postfork)) 3564 if (expect_false (postfork))
1411 if (forkcnt) 3565 if (forkcnt)
1412 { 3566 {
1413 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3567 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1414 call_pending (EV_A); 3568 EV_INVOKE_PENDING;
1415 } 3569 }
1416#endif 3570#endif
1417 3571
3572#if EV_PREPARE_ENABLE
1418 /* queue check watchers (and execute them) */ 3573 /* queue prepare watchers (and execute them) */
1419 if (expect_false (preparecnt)) 3574 if (expect_false (preparecnt))
1420 { 3575 {
1421 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3576 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1422 call_pending (EV_A); 3577 EV_INVOKE_PENDING;
1423 } 3578 }
3579#endif
1424 3580
1425 if (expect_false (!activecnt)) 3581 if (expect_false (loop_done))
1426 break; 3582 break;
1427 3583
1428 /* we might have forked, so reify kernel state if necessary */ 3584 /* we might have forked, so reify kernel state if necessary */
1429 if (expect_false (postfork)) 3585 if (expect_false (postfork))
1430 loop_fork (EV_A); 3586 loop_fork (EV_A);
1432 /* update fd-related kernel structures */ 3588 /* update fd-related kernel structures */
1433 fd_reify (EV_A); 3589 fd_reify (EV_A);
1434 3590
1435 /* calculate blocking time */ 3591 /* calculate blocking time */
1436 { 3592 {
1437 ev_tstamp block; 3593 ev_tstamp waittime = 0.;
3594 ev_tstamp sleeptime = 0.;
1438 3595
1439 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 3596 /* remember old timestamp for io_blocktime calculation */
1440 block = 0.; /* do not block at all */ 3597 ev_tstamp prev_mn_now = mn_now;
1441 else 3598
3599 /* update time to cancel out callback processing overhead */
3600 time_update (EV_A_ 1e100);
3601
3602 /* from now on, we want a pipe-wake-up */
3603 pipe_write_wanted = 1;
3604
3605 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3606
3607 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1442 { 3608 {
1443 /* update time to cancel out callback processing overhead */
1444#if EV_USE_MONOTONIC
1445 if (expect_true (have_monotonic))
1446 time_update_monotonic (EV_A);
1447 else
1448#endif
1449 {
1450 ev_rt_now = ev_time ();
1451 mn_now = ev_rt_now;
1452 }
1453
1454 block = MAX_BLOCKTIME; 3609 waittime = MAX_BLOCKTIME;
1455 3610
1456 if (timercnt) 3611 if (timercnt)
1457 { 3612 {
1458 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3613 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1459 if (block > to) block = to; 3614 if (waittime > to) waittime = to;
1460 } 3615 }
1461 3616
1462#if EV_PERIODIC_ENABLE 3617#if EV_PERIODIC_ENABLE
1463 if (periodiccnt) 3618 if (periodiccnt)
1464 { 3619 {
1465 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3620 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1466 if (block > to) block = to; 3621 if (waittime > to) waittime = to;
1467 } 3622 }
1468#endif 3623#endif
1469 3624
3625 /* don't let timeouts decrease the waittime below timeout_blocktime */
3626 if (expect_false (waittime < timeout_blocktime))
3627 waittime = timeout_blocktime;
3628
3629 /* at this point, we NEED to wait, so we have to ensure */
3630 /* to pass a minimum nonzero value to the backend */
3631 if (expect_false (waittime < backend_mintime))
3632 waittime = backend_mintime;
3633
3634 /* extra check because io_blocktime is commonly 0 */
1470 if (expect_false (block < 0.)) block = 0.; 3635 if (expect_false (io_blocktime))
3636 {
3637 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3638
3639 if (sleeptime > waittime - backend_mintime)
3640 sleeptime = waittime - backend_mintime;
3641
3642 if (expect_true (sleeptime > 0.))
3643 {
3644 ev_sleep (sleeptime);
3645 waittime -= sleeptime;
3646 }
3647 }
1471 } 3648 }
1472 3649
3650#if EV_FEATURE_API
1473 ++loop_count; 3651 ++loop_count;
3652#endif
3653 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1474 backend_poll (EV_A_ block); 3654 backend_poll (EV_A_ waittime);
3655 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3656
3657 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3658
3659 ECB_MEMORY_FENCE_ACQUIRE;
3660 if (pipe_write_skipped)
3661 {
3662 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3663 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3664 }
3665
3666
3667 /* update ev_rt_now, do magic */
3668 time_update (EV_A_ waittime + sleeptime);
1475 } 3669 }
1476
1477 /* update ev_rt_now, do magic */
1478 time_update (EV_A);
1479 3670
1480 /* queue pending timers and reschedule them */ 3671 /* queue pending timers and reschedule them */
1481 timers_reify (EV_A); /* relative timers called last */ 3672 timers_reify (EV_A); /* relative timers called last */
1482#if EV_PERIODIC_ENABLE 3673#if EV_PERIODIC_ENABLE
1483 periodics_reify (EV_A); /* absolute timers called first */ 3674 periodics_reify (EV_A); /* absolute timers called first */
1486#if EV_IDLE_ENABLE 3677#if EV_IDLE_ENABLE
1487 /* queue idle watchers unless other events are pending */ 3678 /* queue idle watchers unless other events are pending */
1488 idle_reify (EV_A); 3679 idle_reify (EV_A);
1489#endif 3680#endif
1490 3681
3682#if EV_CHECK_ENABLE
1491 /* queue check watchers, to be executed first */ 3683 /* queue check watchers, to be executed first */
1492 if (expect_false (checkcnt)) 3684 if (expect_false (checkcnt))
1493 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3685 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3686#endif
1494 3687
1495 call_pending (EV_A); 3688 EV_INVOKE_PENDING;
1496
1497 } 3689 }
1498 while (expect_true (activecnt && !loop_done)); 3690 while (expect_true (
3691 activecnt
3692 && !loop_done
3693 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3694 ));
1499 3695
1500 if (loop_done == EVUNLOOP_ONE) 3696 if (loop_done == EVBREAK_ONE)
1501 loop_done = EVUNLOOP_CANCEL; 3697 loop_done = EVBREAK_CANCEL;
3698
3699#if EV_FEATURE_API
3700 --loop_depth;
3701#endif
3702
3703 return activecnt;
1502} 3704}
1503 3705
1504void 3706void
1505ev_unloop (EV_P_ int how) 3707ev_break (EV_P_ int how) EV_THROW
1506{ 3708{
1507 loop_done = how; 3709 loop_done = how;
1508} 3710}
1509 3711
3712void
3713ev_ref (EV_P) EV_THROW
3714{
3715 ++activecnt;
3716}
3717
3718void
3719ev_unref (EV_P) EV_THROW
3720{
3721 --activecnt;
3722}
3723
3724void
3725ev_now_update (EV_P) EV_THROW
3726{
3727 time_update (EV_A_ 1e100);
3728}
3729
3730void
3731ev_suspend (EV_P) EV_THROW
3732{
3733 ev_now_update (EV_A);
3734}
3735
3736void
3737ev_resume (EV_P) EV_THROW
3738{
3739 ev_tstamp mn_prev = mn_now;
3740
3741 ev_now_update (EV_A);
3742 timers_reschedule (EV_A_ mn_now - mn_prev);
3743#if EV_PERIODIC_ENABLE
3744 /* TODO: really do this? */
3745 periodics_reschedule (EV_A);
3746#endif
3747}
3748
1510/*****************************************************************************/ 3749/*****************************************************************************/
3750/* singly-linked list management, used when the expected list length is short */
1511 3751
1512void inline_size 3752inline_size void
1513wlist_add (WL *head, WL elem) 3753wlist_add (WL *head, WL elem)
1514{ 3754{
1515 elem->next = *head; 3755 elem->next = *head;
1516 *head = elem; 3756 *head = elem;
1517} 3757}
1518 3758
1519void inline_size 3759inline_size void
1520wlist_del (WL *head, WL elem) 3760wlist_del (WL *head, WL elem)
1521{ 3761{
1522 while (*head) 3762 while (*head)
1523 { 3763 {
1524 if (*head == elem) 3764 if (expect_true (*head == elem))
1525 { 3765 {
1526 *head = elem->next; 3766 *head = elem->next;
1527 return; 3767 break;
1528 } 3768 }
1529 3769
1530 head = &(*head)->next; 3770 head = &(*head)->next;
1531 } 3771 }
1532} 3772}
1533 3773
1534void inline_speed 3774/* internal, faster, version of ev_clear_pending */
3775inline_speed void
1535clear_pending (EV_P_ W w) 3776clear_pending (EV_P_ W w)
1536{ 3777{
1537 if (w->pending) 3778 if (w->pending)
1538 { 3779 {
1539 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3780 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1540 w->pending = 0; 3781 w->pending = 0;
1541 } 3782 }
1542} 3783}
1543 3784
1544int 3785int
1545ev_clear_pending (EV_P_ void *w) 3786ev_clear_pending (EV_P_ void *w) EV_THROW
1546{ 3787{
1547 W w_ = (W)w; 3788 W w_ = (W)w;
1548 int pending = w_->pending; 3789 int pending = w_->pending;
1549 3790
1550 if (!pending) 3791 if (expect_true (pending))
3792 {
3793 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3794 p->w = (W)&pending_w;
3795 w_->pending = 0;
3796 return p->events;
3797 }
3798 else
1551 return 0; 3799 return 0;
1552
1553 w_->pending = 0;
1554 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1555 p->w = 0;
1556
1557 return p->events;
1558} 3800}
1559 3801
1560void inline_size 3802inline_size void
1561pri_adjust (EV_P_ W w) 3803pri_adjust (EV_P_ W w)
1562{ 3804{
1563 int pri = w->priority; 3805 int pri = ev_priority (w);
1564 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3806 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1565 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3807 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1566 w->priority = pri; 3808 ev_set_priority (w, pri);
1567} 3809}
1568 3810
1569void inline_speed 3811inline_speed void
1570ev_start (EV_P_ W w, int active) 3812ev_start (EV_P_ W w, int active)
1571{ 3813{
1572 pri_adjust (EV_A_ w); 3814 pri_adjust (EV_A_ w);
1573 w->active = active; 3815 w->active = active;
1574 ev_ref (EV_A); 3816 ev_ref (EV_A);
1575} 3817}
1576 3818
1577void inline_size 3819inline_size void
1578ev_stop (EV_P_ W w) 3820ev_stop (EV_P_ W w)
1579{ 3821{
1580 ev_unref (EV_A); 3822 ev_unref (EV_A);
1581 w->active = 0; 3823 w->active = 0;
1582} 3824}
1583 3825
1584/*****************************************************************************/ 3826/*****************************************************************************/
1585 3827
1586void 3828void noinline
1587ev_io_start (EV_P_ ev_io *w) 3829ev_io_start (EV_P_ ev_io *w) EV_THROW
1588{ 3830{
1589 int fd = w->fd; 3831 int fd = w->fd;
1590 3832
1591 if (expect_false (ev_is_active (w))) 3833 if (expect_false (ev_is_active (w)))
1592 return; 3834 return;
1593 3835
1594 assert (("ev_io_start called with negative fd", fd >= 0)); 3836 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3837 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3838
3839 EV_FREQUENT_CHECK;
1595 3840
1596 ev_start (EV_A_ (W)w, 1); 3841 ev_start (EV_A_ (W)w, 1);
1597 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3842 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1598 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3843 wlist_add (&anfds[fd].head, (WL)w);
1599 3844
1600 fd_change (EV_A_ fd); 3845 /* common bug, apparently */
1601} 3846 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1602 3847
1603void 3848 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3849 w->events &= ~EV__IOFDSET;
3850
3851 EV_FREQUENT_CHECK;
3852}
3853
3854void noinline
1604ev_io_stop (EV_P_ ev_io *w) 3855ev_io_stop (EV_P_ ev_io *w) EV_THROW
1605{ 3856{
1606 clear_pending (EV_A_ (W)w); 3857 clear_pending (EV_A_ (W)w);
1607 if (expect_false (!ev_is_active (w))) 3858 if (expect_false (!ev_is_active (w)))
1608 return; 3859 return;
1609 3860
1610 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3861 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1611 3862
3863 EV_FREQUENT_CHECK;
3864
1612 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3865 wlist_del (&anfds[w->fd].head, (WL)w);
1613 ev_stop (EV_A_ (W)w); 3866 ev_stop (EV_A_ (W)w);
1614 3867
1615 fd_change (EV_A_ w->fd); 3868 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1616}
1617 3869
1618void 3870 EV_FREQUENT_CHECK;
3871}
3872
3873void noinline
1619ev_timer_start (EV_P_ ev_timer *w) 3874ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1620{ 3875{
1621 if (expect_false (ev_is_active (w))) 3876 if (expect_false (ev_is_active (w)))
1622 return; 3877 return;
1623 3878
1624 ((WT)w)->at += mn_now; 3879 ev_at (w) += mn_now;
1625 3880
1626 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3881 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1627 3882
3883 EV_FREQUENT_CHECK;
3884
3885 ++timercnt;
1628 ev_start (EV_A_ (W)w, ++timercnt); 3886 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1629 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 3887 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1630 timers [timercnt - 1] = w; 3888 ANHE_w (timers [ev_active (w)]) = (WT)w;
1631 upheap ((WT *)timers, timercnt - 1); 3889 ANHE_at_cache (timers [ev_active (w)]);
3890 upheap (timers, ev_active (w));
1632 3891
3892 EV_FREQUENT_CHECK;
3893
1633 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3894 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1634} 3895}
1635 3896
1636void 3897void noinline
1637ev_timer_stop (EV_P_ ev_timer *w) 3898ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1638{ 3899{
1639 clear_pending (EV_A_ (W)w); 3900 clear_pending (EV_A_ (W)w);
1640 if (expect_false (!ev_is_active (w))) 3901 if (expect_false (!ev_is_active (w)))
1641 return; 3902 return;
1642 3903
1643 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3904 EV_FREQUENT_CHECK;
1644 3905
1645 { 3906 {
1646 int active = ((W)w)->active; 3907 int active = ev_active (w);
1647 3908
3909 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3910
3911 --timercnt;
3912
1648 if (expect_true (--active < --timercnt)) 3913 if (expect_true (active < timercnt + HEAP0))
1649 { 3914 {
1650 timers [active] = timers [timercnt]; 3915 timers [active] = timers [timercnt + HEAP0];
1651 adjustheap ((WT *)timers, timercnt, active); 3916 adjustheap (timers, timercnt, active);
1652 } 3917 }
1653 } 3918 }
1654 3919
1655 ((WT)w)->at -= mn_now; 3920 ev_at (w) -= mn_now;
1656 3921
1657 ev_stop (EV_A_ (W)w); 3922 ev_stop (EV_A_ (W)w);
1658}
1659 3923
1660void 3924 EV_FREQUENT_CHECK;
3925}
3926
3927void noinline
1661ev_timer_again (EV_P_ ev_timer *w) 3928ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1662{ 3929{
3930 EV_FREQUENT_CHECK;
3931
3932 clear_pending (EV_A_ (W)w);
3933
1663 if (ev_is_active (w)) 3934 if (ev_is_active (w))
1664 { 3935 {
1665 if (w->repeat) 3936 if (w->repeat)
1666 { 3937 {
1667 ((WT)w)->at = mn_now + w->repeat; 3938 ev_at (w) = mn_now + w->repeat;
3939 ANHE_at_cache (timers [ev_active (w)]);
1668 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3940 adjustheap (timers, timercnt, ev_active (w));
1669 } 3941 }
1670 else 3942 else
1671 ev_timer_stop (EV_A_ w); 3943 ev_timer_stop (EV_A_ w);
1672 } 3944 }
1673 else if (w->repeat) 3945 else if (w->repeat)
1674 { 3946 {
1675 w->at = w->repeat; 3947 ev_at (w) = w->repeat;
1676 ev_timer_start (EV_A_ w); 3948 ev_timer_start (EV_A_ w);
1677 } 3949 }
3950
3951 EV_FREQUENT_CHECK;
3952}
3953
3954ev_tstamp
3955ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3956{
3957 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1678} 3958}
1679 3959
1680#if EV_PERIODIC_ENABLE 3960#if EV_PERIODIC_ENABLE
1681void 3961void noinline
1682ev_periodic_start (EV_P_ ev_periodic *w) 3962ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1683{ 3963{
1684 if (expect_false (ev_is_active (w))) 3964 if (expect_false (ev_is_active (w)))
1685 return; 3965 return;
1686 3966
1687 if (w->reschedule_cb) 3967 if (w->reschedule_cb)
1688 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3968 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval) 3969 else if (w->interval)
1690 { 3970 {
1691 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3971 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1692 /* this formula differs from the one in periodic_reify because we do not always round up */ 3972 periodic_recalc (EV_A_ w);
1693 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1694 } 3973 }
3974 else
3975 ev_at (w) = w->offset;
1695 3976
3977 EV_FREQUENT_CHECK;
3978
3979 ++periodiccnt;
1696 ev_start (EV_A_ (W)w, ++periodiccnt); 3980 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1697 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 3981 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1698 periodics [periodiccnt - 1] = w; 3982 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1699 upheap ((WT *)periodics, periodiccnt - 1); 3983 ANHE_at_cache (periodics [ev_active (w)]);
3984 upheap (periodics, ev_active (w));
1700 3985
3986 EV_FREQUENT_CHECK;
3987
1701 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3988 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1702} 3989}
1703 3990
1704void 3991void noinline
1705ev_periodic_stop (EV_P_ ev_periodic *w) 3992ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1706{ 3993{
1707 clear_pending (EV_A_ (W)w); 3994 clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 3995 if (expect_false (!ev_is_active (w)))
1709 return; 3996 return;
1710 3997
1711 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3998 EV_FREQUENT_CHECK;
1712 3999
1713 { 4000 {
1714 int active = ((W)w)->active; 4001 int active = ev_active (w);
1715 4002
4003 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4004
4005 --periodiccnt;
4006
1716 if (expect_true (--active < --periodiccnt)) 4007 if (expect_true (active < periodiccnt + HEAP0))
1717 { 4008 {
1718 periodics [active] = periodics [periodiccnt]; 4009 periodics [active] = periodics [periodiccnt + HEAP0];
1719 adjustheap ((WT *)periodics, periodiccnt, active); 4010 adjustheap (periodics, periodiccnt, active);
1720 } 4011 }
1721 } 4012 }
1722 4013
1723 ev_stop (EV_A_ (W)w); 4014 ev_stop (EV_A_ (W)w);
1724}
1725 4015
1726void 4016 EV_FREQUENT_CHECK;
4017}
4018
4019void noinline
1727ev_periodic_again (EV_P_ ev_periodic *w) 4020ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1728{ 4021{
1729 /* TODO: use adjustheap and recalculation */ 4022 /* TODO: use adjustheap and recalculation */
1730 ev_periodic_stop (EV_A_ w); 4023 ev_periodic_stop (EV_A_ w);
1731 ev_periodic_start (EV_A_ w); 4024 ev_periodic_start (EV_A_ w);
1732} 4025}
1734 4027
1735#ifndef SA_RESTART 4028#ifndef SA_RESTART
1736# define SA_RESTART 0 4029# define SA_RESTART 0
1737#endif 4030#endif
1738 4031
1739void 4032#if EV_SIGNAL_ENABLE
4033
4034void noinline
1740ev_signal_start (EV_P_ ev_signal *w) 4035ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1741{ 4036{
1742#if EV_MULTIPLICITY
1743 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1744#endif
1745 if (expect_false (ev_is_active (w))) 4037 if (expect_false (ev_is_active (w)))
1746 return; 4038 return;
1747 4039
1748 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4040 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4041
4042#if EV_MULTIPLICITY
4043 assert (("libev: a signal must not be attached to two different loops",
4044 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4045
4046 signals [w->signum - 1].loop = EV_A;
4047 ECB_MEMORY_FENCE_RELEASE;
4048#endif
4049
4050 EV_FREQUENT_CHECK;
4051
4052#if EV_USE_SIGNALFD
4053 if (sigfd == -2)
4054 {
4055 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4056 if (sigfd < 0 && errno == EINVAL)
4057 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4058
4059 if (sigfd >= 0)
4060 {
4061 fd_intern (sigfd); /* doing it twice will not hurt */
4062
4063 sigemptyset (&sigfd_set);
4064
4065 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4066 ev_set_priority (&sigfd_w, EV_MAXPRI);
4067 ev_io_start (EV_A_ &sigfd_w);
4068 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4069 }
4070 }
4071
4072 if (sigfd >= 0)
4073 {
4074 /* TODO: check .head */
4075 sigaddset (&sigfd_set, w->signum);
4076 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4077
4078 signalfd (sigfd, &sigfd_set, 0);
4079 }
4080#endif
1749 4081
1750 ev_start (EV_A_ (W)w, 1); 4082 ev_start (EV_A_ (W)w, 1);
1751 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1752 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 4083 wlist_add (&signals [w->signum - 1].head, (WL)w);
1753 4084
1754 if (!((WL)w)->next) 4085 if (!((WL)w)->next)
4086# if EV_USE_SIGNALFD
4087 if (sigfd < 0) /*TODO*/
4088# endif
1755 { 4089 {
1756#if _WIN32 4090# ifdef _WIN32
4091 evpipe_init (EV_A);
4092
1757 signal (w->signum, sighandler); 4093 signal (w->signum, ev_sighandler);
1758#else 4094# else
1759 struct sigaction sa; 4095 struct sigaction sa;
4096
4097 evpipe_init (EV_A);
4098
1760 sa.sa_handler = sighandler; 4099 sa.sa_handler = ev_sighandler;
1761 sigfillset (&sa.sa_mask); 4100 sigfillset (&sa.sa_mask);
1762 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4101 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1763 sigaction (w->signum, &sa, 0); 4102 sigaction (w->signum, &sa, 0);
4103
4104 if (origflags & EVFLAG_NOSIGMASK)
4105 {
4106 sigemptyset (&sa.sa_mask);
4107 sigaddset (&sa.sa_mask, w->signum);
4108 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4109 }
1764#endif 4110#endif
1765 } 4111 }
1766}
1767 4112
1768void 4113 EV_FREQUENT_CHECK;
4114}
4115
4116void noinline
1769ev_signal_stop (EV_P_ ev_signal *w) 4117ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1770{ 4118{
1771 clear_pending (EV_A_ (W)w); 4119 clear_pending (EV_A_ (W)w);
1772 if (expect_false (!ev_is_active (w))) 4120 if (expect_false (!ev_is_active (w)))
1773 return; 4121 return;
1774 4122
4123 EV_FREQUENT_CHECK;
4124
1775 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4125 wlist_del (&signals [w->signum - 1].head, (WL)w);
1776 ev_stop (EV_A_ (W)w); 4126 ev_stop (EV_A_ (W)w);
1777 4127
1778 if (!signals [w->signum - 1].head) 4128 if (!signals [w->signum - 1].head)
4129 {
4130#if EV_MULTIPLICITY
4131 signals [w->signum - 1].loop = 0; /* unattach from signal */
4132#endif
4133#if EV_USE_SIGNALFD
4134 if (sigfd >= 0)
4135 {
4136 sigset_t ss;
4137
4138 sigemptyset (&ss);
4139 sigaddset (&ss, w->signum);
4140 sigdelset (&sigfd_set, w->signum);
4141
4142 signalfd (sigfd, &sigfd_set, 0);
4143 sigprocmask (SIG_UNBLOCK, &ss, 0);
4144 }
4145 else
4146#endif
1779 signal (w->signum, SIG_DFL); 4147 signal (w->signum, SIG_DFL);
4148 }
4149
4150 EV_FREQUENT_CHECK;
1780} 4151}
4152
4153#endif
4154
4155#if EV_CHILD_ENABLE
1781 4156
1782void 4157void
1783ev_child_start (EV_P_ ev_child *w) 4158ev_child_start (EV_P_ ev_child *w) EV_THROW
1784{ 4159{
1785#if EV_MULTIPLICITY 4160#if EV_MULTIPLICITY
1786 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4161 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1787#endif 4162#endif
1788 if (expect_false (ev_is_active (w))) 4163 if (expect_false (ev_is_active (w)))
1789 return; 4164 return;
1790 4165
4166 EV_FREQUENT_CHECK;
4167
1791 ev_start (EV_A_ (W)w, 1); 4168 ev_start (EV_A_ (W)w, 1);
1792 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4169 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
4170
4171 EV_FREQUENT_CHECK;
1793} 4172}
1794 4173
1795void 4174void
1796ev_child_stop (EV_P_ ev_child *w) 4175ev_child_stop (EV_P_ ev_child *w) EV_THROW
1797{ 4176{
1798 clear_pending (EV_A_ (W)w); 4177 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 4178 if (expect_false (!ev_is_active (w)))
1800 return; 4179 return;
1801 4180
4181 EV_FREQUENT_CHECK;
4182
1802 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4183 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1803 ev_stop (EV_A_ (W)w); 4184 ev_stop (EV_A_ (W)w);
4185
4186 EV_FREQUENT_CHECK;
1804} 4187}
4188
4189#endif
1805 4190
1806#if EV_STAT_ENABLE 4191#if EV_STAT_ENABLE
1807 4192
1808# ifdef _WIN32 4193# ifdef _WIN32
1809# undef lstat 4194# undef lstat
1810# define lstat(a,b) _stati64 (a,b) 4195# define lstat(a,b) _stati64 (a,b)
1811# endif 4196# endif
1812 4197
1813#define DEF_STAT_INTERVAL 5.0074891 4198#define DEF_STAT_INTERVAL 5.0074891
4199#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1814#define MIN_STAT_INTERVAL 0.1074891 4200#define MIN_STAT_INTERVAL 0.1074891
1815 4201
1816static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4202static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1817 4203
1818#if EV_USE_INOTIFY 4204#if EV_USE_INOTIFY
1819# define EV_INOTIFY_BUFSIZE 8192 4205
4206/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4207# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1820 4208
1821static void noinline 4209static void noinline
1822infy_add (EV_P_ ev_stat *w) 4210infy_add (EV_P_ ev_stat *w)
1823{ 4211{
1824 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4212 w->wd = inotify_add_watch (fs_fd, w->path,
4213 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4214 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4215 | IN_DONT_FOLLOW | IN_MASK_ADD);
1825 4216
1826 if (w->wd < 0) 4217 if (w->wd >= 0)
4218 {
4219 struct statfs sfs;
4220
4221 /* now local changes will be tracked by inotify, but remote changes won't */
4222 /* unless the filesystem is known to be local, we therefore still poll */
4223 /* also do poll on <2.6.25, but with normal frequency */
4224
4225 if (!fs_2625)
4226 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4227 else if (!statfs (w->path, &sfs)
4228 && (sfs.f_type == 0x1373 /* devfs */
4229 || sfs.f_type == 0x4006 /* fat */
4230 || sfs.f_type == 0x4d44 /* msdos */
4231 || sfs.f_type == 0xEF53 /* ext2/3 */
4232 || sfs.f_type == 0x72b6 /* jffs2 */
4233 || sfs.f_type == 0x858458f6 /* ramfs */
4234 || sfs.f_type == 0x5346544e /* ntfs */
4235 || sfs.f_type == 0x3153464a /* jfs */
4236 || sfs.f_type == 0x9123683e /* btrfs */
4237 || sfs.f_type == 0x52654973 /* reiser3 */
4238 || sfs.f_type == 0x01021994 /* tmpfs */
4239 || sfs.f_type == 0x58465342 /* xfs */))
4240 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4241 else
4242 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1827 { 4243 }
1828 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4244 else
4245 {
4246 /* can't use inotify, continue to stat */
4247 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1829 4248
1830 /* monitor some parent directory for speedup hints */ 4249 /* if path is not there, monitor some parent directory for speedup hints */
4250 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4251 /* but an efficiency issue only */
1831 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4252 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1832 { 4253 {
1833 char path [4096]; 4254 char path [4096];
1834 strcpy (path, w->path); 4255 strcpy (path, w->path);
1835 4256
1838 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4259 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1839 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4260 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1840 4261
1841 char *pend = strrchr (path, '/'); 4262 char *pend = strrchr (path, '/');
1842 4263
1843 if (!pend) 4264 if (!pend || pend == path)
1844 break; /* whoops, no '/', complain to your admin */ 4265 break;
1845 4266
1846 *pend = 0; 4267 *pend = 0;
1847 w->wd = inotify_add_watch (fs_fd, path, mask); 4268 w->wd = inotify_add_watch (fs_fd, path, mask);
1848 } 4269 }
1849 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4270 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1850 } 4271 }
1851 } 4272 }
1852 else
1853 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1854 4273
1855 if (w->wd >= 0) 4274 if (w->wd >= 0)
1856 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4275 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4276
4277 /* now re-arm timer, if required */
4278 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4279 ev_timer_again (EV_A_ &w->timer);
4280 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1857} 4281}
1858 4282
1859static void noinline 4283static void noinline
1860infy_del (EV_P_ ev_stat *w) 4284infy_del (EV_P_ ev_stat *w)
1861{ 4285{
1864 4288
1865 if (wd < 0) 4289 if (wd < 0)
1866 return; 4290 return;
1867 4291
1868 w->wd = -2; 4292 w->wd = -2;
1869 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4293 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1870 wlist_del (&fs_hash [slot].head, (WL)w); 4294 wlist_del (&fs_hash [slot].head, (WL)w);
1871 4295
1872 /* remove this watcher, if others are watching it, they will rearm */ 4296 /* remove this watcher, if others are watching it, they will rearm */
1873 inotify_rm_watch (fs_fd, wd); 4297 inotify_rm_watch (fs_fd, wd);
1874} 4298}
1875 4299
1876static void noinline 4300static void noinline
1877infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4301infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1878{ 4302{
1879 if (slot < 0) 4303 if (slot < 0)
1880 /* overflow, need to check for all hahs slots */ 4304 /* overflow, need to check for all hash slots */
1881 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4305 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1882 infy_wd (EV_A_ slot, wd, ev); 4306 infy_wd (EV_A_ slot, wd, ev);
1883 else 4307 else
1884 { 4308 {
1885 WL w_; 4309 WL w_;
1886 4310
1887 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4311 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1888 { 4312 {
1889 ev_stat *w = (ev_stat *)w_; 4313 ev_stat *w = (ev_stat *)w_;
1890 w_ = w_->next; /* lets us remove this watcher and all before it */ 4314 w_ = w_->next; /* lets us remove this watcher and all before it */
1891 4315
1892 if (w->wd == wd || wd == -1) 4316 if (w->wd == wd || wd == -1)
1893 { 4317 {
1894 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4318 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1895 { 4319 {
4320 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1896 w->wd = -1; 4321 w->wd = -1;
1897 infy_add (EV_A_ w); /* re-add, no matter what */ 4322 infy_add (EV_A_ w); /* re-add, no matter what */
1898 } 4323 }
1899 4324
1900 stat_timer_cb (EV_A_ &w->timer, 0); 4325 stat_timer_cb (EV_A_ &w->timer, 0);
1905 4330
1906static void 4331static void
1907infy_cb (EV_P_ ev_io *w, int revents) 4332infy_cb (EV_P_ ev_io *w, int revents)
1908{ 4333{
1909 char buf [EV_INOTIFY_BUFSIZE]; 4334 char buf [EV_INOTIFY_BUFSIZE];
1910 struct inotify_event *ev = (struct inotify_event *)buf;
1911 int ofs; 4335 int ofs;
1912 int len = read (fs_fd, buf, sizeof (buf)); 4336 int len = read (fs_fd, buf, sizeof (buf));
1913 4337
1914 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4338 for (ofs = 0; ofs < len; )
4339 {
4340 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1915 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4341 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4342 ofs += sizeof (struct inotify_event) + ev->len;
4343 }
1916} 4344}
1917 4345
1918void inline_size 4346inline_size void ecb_cold
4347ev_check_2625 (EV_P)
4348{
4349 /* kernels < 2.6.25 are borked
4350 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4351 */
4352 if (ev_linux_version () < 0x020619)
4353 return;
4354
4355 fs_2625 = 1;
4356}
4357
4358inline_size int
4359infy_newfd (void)
4360{
4361#if defined IN_CLOEXEC && defined IN_NONBLOCK
4362 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4363 if (fd >= 0)
4364 return fd;
4365#endif
4366 return inotify_init ();
4367}
4368
4369inline_size void
1919infy_init (EV_P) 4370infy_init (EV_P)
1920{ 4371{
1921 if (fs_fd != -2) 4372 if (fs_fd != -2)
1922 return; 4373 return;
1923 4374
4375 fs_fd = -1;
4376
4377 ev_check_2625 (EV_A);
4378
1924 fs_fd = inotify_init (); 4379 fs_fd = infy_newfd ();
1925 4380
1926 if (fs_fd >= 0) 4381 if (fs_fd >= 0)
1927 { 4382 {
4383 fd_intern (fs_fd);
1928 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4384 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1929 ev_set_priority (&fs_w, EV_MAXPRI); 4385 ev_set_priority (&fs_w, EV_MAXPRI);
1930 ev_io_start (EV_A_ &fs_w); 4386 ev_io_start (EV_A_ &fs_w);
4387 ev_unref (EV_A);
1931 } 4388 }
1932} 4389}
1933 4390
1934void inline_size 4391inline_size void
1935infy_fork (EV_P) 4392infy_fork (EV_P)
1936{ 4393{
1937 int slot; 4394 int slot;
1938 4395
1939 if (fs_fd < 0) 4396 if (fs_fd < 0)
1940 return; 4397 return;
1941 4398
4399 ev_ref (EV_A);
4400 ev_io_stop (EV_A_ &fs_w);
1942 close (fs_fd); 4401 close (fs_fd);
1943 fs_fd = inotify_init (); 4402 fs_fd = infy_newfd ();
1944 4403
4404 if (fs_fd >= 0)
4405 {
4406 fd_intern (fs_fd);
4407 ev_io_set (&fs_w, fs_fd, EV_READ);
4408 ev_io_start (EV_A_ &fs_w);
4409 ev_unref (EV_A);
4410 }
4411
1945 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4412 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1946 { 4413 {
1947 WL w_ = fs_hash [slot].head; 4414 WL w_ = fs_hash [slot].head;
1948 fs_hash [slot].head = 0; 4415 fs_hash [slot].head = 0;
1949 4416
1950 while (w_) 4417 while (w_)
1955 w->wd = -1; 4422 w->wd = -1;
1956 4423
1957 if (fs_fd >= 0) 4424 if (fs_fd >= 0)
1958 infy_add (EV_A_ w); /* re-add, no matter what */ 4425 infy_add (EV_A_ w); /* re-add, no matter what */
1959 else 4426 else
4427 {
4428 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4429 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1960 ev_timer_start (EV_A_ &w->timer); 4430 ev_timer_again (EV_A_ &w->timer);
4431 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4432 }
1961 } 4433 }
1962
1963 } 4434 }
1964} 4435}
1965 4436
4437#endif
4438
4439#ifdef _WIN32
4440# define EV_LSTAT(p,b) _stati64 (p, b)
4441#else
4442# define EV_LSTAT(p,b) lstat (p, b)
1966#endif 4443#endif
1967 4444
1968void 4445void
1969ev_stat_stat (EV_P_ ev_stat *w) 4446ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
1970{ 4447{
1971 if (lstat (w->path, &w->attr) < 0) 4448 if (lstat (w->path, &w->attr) < 0)
1972 w->attr.st_nlink = 0; 4449 w->attr.st_nlink = 0;
1973 else if (!w->attr.st_nlink) 4450 else if (!w->attr.st_nlink)
1974 w->attr.st_nlink = 1; 4451 w->attr.st_nlink = 1;
1977static void noinline 4454static void noinline
1978stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4455stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1979{ 4456{
1980 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4457 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1981 4458
1982 /* we copy this here each the time so that */ 4459 ev_statdata prev = w->attr;
1983 /* prev has the old value when the callback gets invoked */
1984 w->prev = w->attr;
1985 ev_stat_stat (EV_A_ w); 4460 ev_stat_stat (EV_A_ w);
1986 4461
1987 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4462 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1988 if ( 4463 if (
1989 w->prev.st_dev != w->attr.st_dev 4464 prev.st_dev != w->attr.st_dev
1990 || w->prev.st_ino != w->attr.st_ino 4465 || prev.st_ino != w->attr.st_ino
1991 || w->prev.st_mode != w->attr.st_mode 4466 || prev.st_mode != w->attr.st_mode
1992 || w->prev.st_nlink != w->attr.st_nlink 4467 || prev.st_nlink != w->attr.st_nlink
1993 || w->prev.st_uid != w->attr.st_uid 4468 || prev.st_uid != w->attr.st_uid
1994 || w->prev.st_gid != w->attr.st_gid 4469 || prev.st_gid != w->attr.st_gid
1995 || w->prev.st_rdev != w->attr.st_rdev 4470 || prev.st_rdev != w->attr.st_rdev
1996 || w->prev.st_size != w->attr.st_size 4471 || prev.st_size != w->attr.st_size
1997 || w->prev.st_atime != w->attr.st_atime 4472 || prev.st_atime != w->attr.st_atime
1998 || w->prev.st_mtime != w->attr.st_mtime 4473 || prev.st_mtime != w->attr.st_mtime
1999 || w->prev.st_ctime != w->attr.st_ctime 4474 || prev.st_ctime != w->attr.st_ctime
2000 ) { 4475 ) {
4476 /* we only update w->prev on actual differences */
4477 /* in case we test more often than invoke the callback, */
4478 /* to ensure that prev is always different to attr */
4479 w->prev = prev;
4480
2001 #if EV_USE_INOTIFY 4481 #if EV_USE_INOTIFY
4482 if (fs_fd >= 0)
4483 {
2002 infy_del (EV_A_ w); 4484 infy_del (EV_A_ w);
2003 infy_add (EV_A_ w); 4485 infy_add (EV_A_ w);
2004 ev_stat_stat (EV_A_ w); /* avoid race... */ 4486 ev_stat_stat (EV_A_ w); /* avoid race... */
4487 }
2005 #endif 4488 #endif
2006 4489
2007 ev_feed_event (EV_A_ w, EV_STAT); 4490 ev_feed_event (EV_A_ w, EV_STAT);
2008 } 4491 }
2009} 4492}
2010 4493
2011void 4494void
2012ev_stat_start (EV_P_ ev_stat *w) 4495ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2013{ 4496{
2014 if (expect_false (ev_is_active (w))) 4497 if (expect_false (ev_is_active (w)))
2015 return; 4498 return;
2016 4499
2017 /* since we use memcmp, we need to clear any padding data etc. */
2018 memset (&w->prev, 0, sizeof (ev_statdata));
2019 memset (&w->attr, 0, sizeof (ev_statdata));
2020
2021 ev_stat_stat (EV_A_ w); 4500 ev_stat_stat (EV_A_ w);
2022 4501
4502 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2023 if (w->interval < MIN_STAT_INTERVAL) 4503 w->interval = MIN_STAT_INTERVAL;
2024 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2025 4504
2026 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4505 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2027 ev_set_priority (&w->timer, ev_priority (w)); 4506 ev_set_priority (&w->timer, ev_priority (w));
2028 4507
2029#if EV_USE_INOTIFY 4508#if EV_USE_INOTIFY
2030 infy_init (EV_A); 4509 infy_init (EV_A);
2031 4510
2032 if (fs_fd >= 0) 4511 if (fs_fd >= 0)
2033 infy_add (EV_A_ w); 4512 infy_add (EV_A_ w);
2034 else 4513 else
2035#endif 4514#endif
4515 {
2036 ev_timer_start (EV_A_ &w->timer); 4516 ev_timer_again (EV_A_ &w->timer);
4517 ev_unref (EV_A);
4518 }
2037 4519
2038 ev_start (EV_A_ (W)w, 1); 4520 ev_start (EV_A_ (W)w, 1);
4521
4522 EV_FREQUENT_CHECK;
2039} 4523}
2040 4524
2041void 4525void
2042ev_stat_stop (EV_P_ ev_stat *w) 4526ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2043{ 4527{
2044 clear_pending (EV_A_ (W)w); 4528 clear_pending (EV_A_ (W)w);
2045 if (expect_false (!ev_is_active (w))) 4529 if (expect_false (!ev_is_active (w)))
2046 return; 4530 return;
2047 4531
4532 EV_FREQUENT_CHECK;
4533
2048#if EV_USE_INOTIFY 4534#if EV_USE_INOTIFY
2049 infy_del (EV_A_ w); 4535 infy_del (EV_A_ w);
2050#endif 4536#endif
4537
4538 if (ev_is_active (&w->timer))
4539 {
4540 ev_ref (EV_A);
2051 ev_timer_stop (EV_A_ &w->timer); 4541 ev_timer_stop (EV_A_ &w->timer);
4542 }
2052 4543
2053 ev_stop (EV_A_ (W)w); 4544 ev_stop (EV_A_ (W)w);
4545
4546 EV_FREQUENT_CHECK;
2054} 4547}
2055#endif 4548#endif
2056 4549
2057#if EV_IDLE_ENABLE 4550#if EV_IDLE_ENABLE
2058void 4551void
2059ev_idle_start (EV_P_ ev_idle *w) 4552ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2060{ 4553{
2061 if (expect_false (ev_is_active (w))) 4554 if (expect_false (ev_is_active (w)))
2062 return; 4555 return;
2063 4556
2064 pri_adjust (EV_A_ (W)w); 4557 pri_adjust (EV_A_ (W)w);
4558
4559 EV_FREQUENT_CHECK;
2065 4560
2066 { 4561 {
2067 int active = ++idlecnt [ABSPRI (w)]; 4562 int active = ++idlecnt [ABSPRI (w)];
2068 4563
2069 ++idleall; 4564 ++idleall;
2070 ev_start (EV_A_ (W)w, active); 4565 ev_start (EV_A_ (W)w, active);
2071 4566
2072 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4567 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2073 idles [ABSPRI (w)][active - 1] = w; 4568 idles [ABSPRI (w)][active - 1] = w;
2074 } 4569 }
4570
4571 EV_FREQUENT_CHECK;
2075} 4572}
2076 4573
2077void 4574void
2078ev_idle_stop (EV_P_ ev_idle *w) 4575ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2079{ 4576{
2080 clear_pending (EV_A_ (W)w); 4577 clear_pending (EV_A_ (W)w);
2081 if (expect_false (!ev_is_active (w))) 4578 if (expect_false (!ev_is_active (w)))
2082 return; 4579 return;
2083 4580
4581 EV_FREQUENT_CHECK;
4582
2084 { 4583 {
2085 int active = ((W)w)->active; 4584 int active = ev_active (w);
2086 4585
2087 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4586 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2088 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4587 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2089 4588
2090 ev_stop (EV_A_ (W)w); 4589 ev_stop (EV_A_ (W)w);
2091 --idleall; 4590 --idleall;
2092 } 4591 }
2093}
2094#endif
2095 4592
4593 EV_FREQUENT_CHECK;
4594}
4595#endif
4596
4597#if EV_PREPARE_ENABLE
2096void 4598void
2097ev_prepare_start (EV_P_ ev_prepare *w) 4599ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2098{ 4600{
2099 if (expect_false (ev_is_active (w))) 4601 if (expect_false (ev_is_active (w)))
2100 return; 4602 return;
4603
4604 EV_FREQUENT_CHECK;
2101 4605
2102 ev_start (EV_A_ (W)w, ++preparecnt); 4606 ev_start (EV_A_ (W)w, ++preparecnt);
2103 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4607 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2104 prepares [preparecnt - 1] = w; 4608 prepares [preparecnt - 1] = w;
4609
4610 EV_FREQUENT_CHECK;
2105} 4611}
2106 4612
2107void 4613void
2108ev_prepare_stop (EV_P_ ev_prepare *w) 4614ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2109{ 4615{
2110 clear_pending (EV_A_ (W)w); 4616 clear_pending (EV_A_ (W)w);
2111 if (expect_false (!ev_is_active (w))) 4617 if (expect_false (!ev_is_active (w)))
2112 return; 4618 return;
2113 4619
4620 EV_FREQUENT_CHECK;
4621
2114 { 4622 {
2115 int active = ((W)w)->active; 4623 int active = ev_active (w);
4624
2116 prepares [active - 1] = prepares [--preparecnt]; 4625 prepares [active - 1] = prepares [--preparecnt];
2117 ((W)prepares [active - 1])->active = active; 4626 ev_active (prepares [active - 1]) = active;
2118 } 4627 }
2119 4628
2120 ev_stop (EV_A_ (W)w); 4629 ev_stop (EV_A_ (W)w);
2121}
2122 4630
4631 EV_FREQUENT_CHECK;
4632}
4633#endif
4634
4635#if EV_CHECK_ENABLE
2123void 4636void
2124ev_check_start (EV_P_ ev_check *w) 4637ev_check_start (EV_P_ ev_check *w) EV_THROW
2125{ 4638{
2126 if (expect_false (ev_is_active (w))) 4639 if (expect_false (ev_is_active (w)))
2127 return; 4640 return;
4641
4642 EV_FREQUENT_CHECK;
2128 4643
2129 ev_start (EV_A_ (W)w, ++checkcnt); 4644 ev_start (EV_A_ (W)w, ++checkcnt);
2130 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4645 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2131 checks [checkcnt - 1] = w; 4646 checks [checkcnt - 1] = w;
4647
4648 EV_FREQUENT_CHECK;
2132} 4649}
2133 4650
2134void 4651void
2135ev_check_stop (EV_P_ ev_check *w) 4652ev_check_stop (EV_P_ ev_check *w) EV_THROW
2136{ 4653{
2137 clear_pending (EV_A_ (W)w); 4654 clear_pending (EV_A_ (W)w);
2138 if (expect_false (!ev_is_active (w))) 4655 if (expect_false (!ev_is_active (w)))
2139 return; 4656 return;
2140 4657
4658 EV_FREQUENT_CHECK;
4659
2141 { 4660 {
2142 int active = ((W)w)->active; 4661 int active = ev_active (w);
4662
2143 checks [active - 1] = checks [--checkcnt]; 4663 checks [active - 1] = checks [--checkcnt];
2144 ((W)checks [active - 1])->active = active; 4664 ev_active (checks [active - 1]) = active;
2145 } 4665 }
2146 4666
2147 ev_stop (EV_A_ (W)w); 4667 ev_stop (EV_A_ (W)w);
4668
4669 EV_FREQUENT_CHECK;
2148} 4670}
4671#endif
2149 4672
2150#if EV_EMBED_ENABLE 4673#if EV_EMBED_ENABLE
2151void noinline 4674void noinline
2152ev_embed_sweep (EV_P_ ev_embed *w) 4675ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2153{ 4676{
2154 ev_loop (w->loop, EVLOOP_NONBLOCK); 4677 ev_run (w->other, EVRUN_NOWAIT);
2155} 4678}
2156 4679
2157static void 4680static void
2158embed_cb (EV_P_ ev_io *io, int revents) 4681embed_io_cb (EV_P_ ev_io *io, int revents)
2159{ 4682{
2160 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4683 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2161 4684
2162 if (ev_cb (w)) 4685 if (ev_cb (w))
2163 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4686 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2164 else 4687 else
2165 ev_embed_sweep (loop, w); 4688 ev_run (w->other, EVRUN_NOWAIT);
2166} 4689}
4690
4691static void
4692embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4693{
4694 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4695
4696 {
4697 EV_P = w->other;
4698
4699 while (fdchangecnt)
4700 {
4701 fd_reify (EV_A);
4702 ev_run (EV_A_ EVRUN_NOWAIT);
4703 }
4704 }
4705}
4706
4707static void
4708embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4709{
4710 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4711
4712 ev_embed_stop (EV_A_ w);
4713
4714 {
4715 EV_P = w->other;
4716
4717 ev_loop_fork (EV_A);
4718 ev_run (EV_A_ EVRUN_NOWAIT);
4719 }
4720
4721 ev_embed_start (EV_A_ w);
4722}
4723
4724#if 0
4725static void
4726embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4727{
4728 ev_idle_stop (EV_A_ idle);
4729}
4730#endif
2167 4731
2168void 4732void
2169ev_embed_start (EV_P_ ev_embed *w) 4733ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2170{ 4734{
2171 if (expect_false (ev_is_active (w))) 4735 if (expect_false (ev_is_active (w)))
2172 return; 4736 return;
2173 4737
2174 { 4738 {
2175 struct ev_loop *loop = w->loop; 4739 EV_P = w->other;
2176 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4740 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2177 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 4741 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2178 } 4742 }
4743
4744 EV_FREQUENT_CHECK;
2179 4745
2180 ev_set_priority (&w->io, ev_priority (w)); 4746 ev_set_priority (&w->io, ev_priority (w));
2181 ev_io_start (EV_A_ &w->io); 4747 ev_io_start (EV_A_ &w->io);
2182 4748
4749 ev_prepare_init (&w->prepare, embed_prepare_cb);
4750 ev_set_priority (&w->prepare, EV_MINPRI);
4751 ev_prepare_start (EV_A_ &w->prepare);
4752
4753 ev_fork_init (&w->fork, embed_fork_cb);
4754 ev_fork_start (EV_A_ &w->fork);
4755
4756 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4757
2183 ev_start (EV_A_ (W)w, 1); 4758 ev_start (EV_A_ (W)w, 1);
4759
4760 EV_FREQUENT_CHECK;
2184} 4761}
2185 4762
2186void 4763void
2187ev_embed_stop (EV_P_ ev_embed *w) 4764ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2188{ 4765{
2189 clear_pending (EV_A_ (W)w); 4766 clear_pending (EV_A_ (W)w);
2190 if (expect_false (!ev_is_active (w))) 4767 if (expect_false (!ev_is_active (w)))
2191 return; 4768 return;
2192 4769
4770 EV_FREQUENT_CHECK;
4771
2193 ev_io_stop (EV_A_ &w->io); 4772 ev_io_stop (EV_A_ &w->io);
4773 ev_prepare_stop (EV_A_ &w->prepare);
4774 ev_fork_stop (EV_A_ &w->fork);
2194 4775
2195 ev_stop (EV_A_ (W)w); 4776 ev_stop (EV_A_ (W)w);
4777
4778 EV_FREQUENT_CHECK;
2196} 4779}
2197#endif 4780#endif
2198 4781
2199#if EV_FORK_ENABLE 4782#if EV_FORK_ENABLE
2200void 4783void
2201ev_fork_start (EV_P_ ev_fork *w) 4784ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2202{ 4785{
2203 if (expect_false (ev_is_active (w))) 4786 if (expect_false (ev_is_active (w)))
2204 return; 4787 return;
4788
4789 EV_FREQUENT_CHECK;
2205 4790
2206 ev_start (EV_A_ (W)w, ++forkcnt); 4791 ev_start (EV_A_ (W)w, ++forkcnt);
2207 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4792 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2208 forks [forkcnt - 1] = w; 4793 forks [forkcnt - 1] = w;
4794
4795 EV_FREQUENT_CHECK;
2209} 4796}
2210 4797
2211void 4798void
2212ev_fork_stop (EV_P_ ev_fork *w) 4799ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2213{ 4800{
2214 clear_pending (EV_A_ (W)w); 4801 clear_pending (EV_A_ (W)w);
2215 if (expect_false (!ev_is_active (w))) 4802 if (expect_false (!ev_is_active (w)))
2216 return; 4803 return;
2217 4804
4805 EV_FREQUENT_CHECK;
4806
2218 { 4807 {
2219 int active = ((W)w)->active; 4808 int active = ev_active (w);
4809
2220 forks [active - 1] = forks [--forkcnt]; 4810 forks [active - 1] = forks [--forkcnt];
2221 ((W)forks [active - 1])->active = active; 4811 ev_active (forks [active - 1]) = active;
2222 } 4812 }
2223 4813
2224 ev_stop (EV_A_ (W)w); 4814 ev_stop (EV_A_ (W)w);
4815
4816 EV_FREQUENT_CHECK;
4817}
4818#endif
4819
4820#if EV_CLEANUP_ENABLE
4821void
4822ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4823{
4824 if (expect_false (ev_is_active (w)))
4825 return;
4826
4827 EV_FREQUENT_CHECK;
4828
4829 ev_start (EV_A_ (W)w, ++cleanupcnt);
4830 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4831 cleanups [cleanupcnt - 1] = w;
4832
4833 /* cleanup watchers should never keep a refcount on the loop */
4834 ev_unref (EV_A);
4835 EV_FREQUENT_CHECK;
4836}
4837
4838void
4839ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4840{
4841 clear_pending (EV_A_ (W)w);
4842 if (expect_false (!ev_is_active (w)))
4843 return;
4844
4845 EV_FREQUENT_CHECK;
4846 ev_ref (EV_A);
4847
4848 {
4849 int active = ev_active (w);
4850
4851 cleanups [active - 1] = cleanups [--cleanupcnt];
4852 ev_active (cleanups [active - 1]) = active;
4853 }
4854
4855 ev_stop (EV_A_ (W)w);
4856
4857 EV_FREQUENT_CHECK;
4858}
4859#endif
4860
4861#if EV_ASYNC_ENABLE
4862void
4863ev_async_start (EV_P_ ev_async *w) EV_THROW
4864{
4865 if (expect_false (ev_is_active (w)))
4866 return;
4867
4868 w->sent = 0;
4869
4870 evpipe_init (EV_A);
4871
4872 EV_FREQUENT_CHECK;
4873
4874 ev_start (EV_A_ (W)w, ++asynccnt);
4875 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4876 asyncs [asynccnt - 1] = w;
4877
4878 EV_FREQUENT_CHECK;
4879}
4880
4881void
4882ev_async_stop (EV_P_ ev_async *w) EV_THROW
4883{
4884 clear_pending (EV_A_ (W)w);
4885 if (expect_false (!ev_is_active (w)))
4886 return;
4887
4888 EV_FREQUENT_CHECK;
4889
4890 {
4891 int active = ev_active (w);
4892
4893 asyncs [active - 1] = asyncs [--asynccnt];
4894 ev_active (asyncs [active - 1]) = active;
4895 }
4896
4897 ev_stop (EV_A_ (W)w);
4898
4899 EV_FREQUENT_CHECK;
4900}
4901
4902void
4903ev_async_send (EV_P_ ev_async *w) EV_THROW
4904{
4905 w->sent = 1;
4906 evpipe_write (EV_A_ &async_pending);
2225} 4907}
2226#endif 4908#endif
2227 4909
2228/*****************************************************************************/ 4910/*****************************************************************************/
2229 4911
2239once_cb (EV_P_ struct ev_once *once, int revents) 4921once_cb (EV_P_ struct ev_once *once, int revents)
2240{ 4922{
2241 void (*cb)(int revents, void *arg) = once->cb; 4923 void (*cb)(int revents, void *arg) = once->cb;
2242 void *arg = once->arg; 4924 void *arg = once->arg;
2243 4925
2244 ev_io_stop (EV_A_ &once->io); 4926 ev_io_stop (EV_A_ &once->io);
2245 ev_timer_stop (EV_A_ &once->to); 4927 ev_timer_stop (EV_A_ &once->to);
2246 ev_free (once); 4928 ev_free (once);
2247 4929
2248 cb (revents, arg); 4930 cb (revents, arg);
2249} 4931}
2250 4932
2251static void 4933static void
2252once_cb_io (EV_P_ ev_io *w, int revents) 4934once_cb_io (EV_P_ ev_io *w, int revents)
2253{ 4935{
2254 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4936 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4937
4938 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2255} 4939}
2256 4940
2257static void 4941static void
2258once_cb_to (EV_P_ ev_timer *w, int revents) 4942once_cb_to (EV_P_ ev_timer *w, int revents)
2259{ 4943{
2260 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4944 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4945
4946 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2261} 4947}
2262 4948
2263void 4949void
2264ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4950ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2265{ 4951{
2266 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4952 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2267 4953
2268 if (expect_false (!once)) 4954 if (expect_false (!once))
2269 { 4955 {
2270 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4956 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2271 return; 4957 return;
2272 } 4958 }
2273 4959
2274 once->cb = cb; 4960 once->cb = cb;
2275 once->arg = arg; 4961 once->arg = arg;
2287 ev_timer_set (&once->to, timeout, 0.); 4973 ev_timer_set (&once->to, timeout, 0.);
2288 ev_timer_start (EV_A_ &once->to); 4974 ev_timer_start (EV_A_ &once->to);
2289 } 4975 }
2290} 4976}
2291 4977
2292#ifdef __cplusplus 4978/*****************************************************************************/
2293} 4979
4980#if EV_WALK_ENABLE
4981void ecb_cold
4982ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4983{
4984 int i, j;
4985 ev_watcher_list *wl, *wn;
4986
4987 if (types & (EV_IO | EV_EMBED))
4988 for (i = 0; i < anfdmax; ++i)
4989 for (wl = anfds [i].head; wl; )
4990 {
4991 wn = wl->next;
4992
4993#if EV_EMBED_ENABLE
4994 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4995 {
4996 if (types & EV_EMBED)
4997 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4998 }
4999 else
5000#endif
5001#if EV_USE_INOTIFY
5002 if (ev_cb ((ev_io *)wl) == infy_cb)
5003 ;
5004 else
5005#endif
5006 if ((ev_io *)wl != &pipe_w)
5007 if (types & EV_IO)
5008 cb (EV_A_ EV_IO, wl);
5009
5010 wl = wn;
5011 }
5012
5013 if (types & (EV_TIMER | EV_STAT))
5014 for (i = timercnt + HEAP0; i-- > HEAP0; )
5015#if EV_STAT_ENABLE
5016 /*TODO: timer is not always active*/
5017 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5018 {
5019 if (types & EV_STAT)
5020 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5021 }
5022 else
5023#endif
5024 if (types & EV_TIMER)
5025 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5026
5027#if EV_PERIODIC_ENABLE
5028 if (types & EV_PERIODIC)
5029 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5030 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5031#endif
5032
5033#if EV_IDLE_ENABLE
5034 if (types & EV_IDLE)
5035 for (j = NUMPRI; j--; )
5036 for (i = idlecnt [j]; i--; )
5037 cb (EV_A_ EV_IDLE, idles [j][i]);
5038#endif
5039
5040#if EV_FORK_ENABLE
5041 if (types & EV_FORK)
5042 for (i = forkcnt; i--; )
5043 if (ev_cb (forks [i]) != embed_fork_cb)
5044 cb (EV_A_ EV_FORK, forks [i]);
5045#endif
5046
5047#if EV_ASYNC_ENABLE
5048 if (types & EV_ASYNC)
5049 for (i = asynccnt; i--; )
5050 cb (EV_A_ EV_ASYNC, asyncs [i]);
5051#endif
5052
5053#if EV_PREPARE_ENABLE
5054 if (types & EV_PREPARE)
5055 for (i = preparecnt; i--; )
5056# if EV_EMBED_ENABLE
5057 if (ev_cb (prepares [i]) != embed_prepare_cb)
2294#endif 5058# endif
5059 cb (EV_A_ EV_PREPARE, prepares [i]);
5060#endif
2295 5061
5062#if EV_CHECK_ENABLE
5063 if (types & EV_CHECK)
5064 for (i = checkcnt; i--; )
5065 cb (EV_A_ EV_CHECK, checks [i]);
5066#endif
5067
5068#if EV_SIGNAL_ENABLE
5069 if (types & EV_SIGNAL)
5070 for (i = 0; i < EV_NSIG - 1; ++i)
5071 for (wl = signals [i].head; wl; )
5072 {
5073 wn = wl->next;
5074 cb (EV_A_ EV_SIGNAL, wl);
5075 wl = wn;
5076 }
5077#endif
5078
5079#if EV_CHILD_ENABLE
5080 if (types & EV_CHILD)
5081 for (i = (EV_PID_HASHSIZE); i--; )
5082 for (wl = childs [i]; wl; )
5083 {
5084 wn = wl->next;
5085 cb (EV_A_ EV_CHILD, wl);
5086 wl = wn;
5087 }
5088#endif
5089/* EV_STAT 0x00001000 /* stat data changed */
5090/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5091}
5092#endif
5093
5094#if EV_MULTIPLICITY
5095 #include "ev_wrap.h"
5096#endif
5097

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines