ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.169 by root, Sat Dec 8 14:27:39 2007 UTC vs.
Revision 1.345 by sf-exg, Sat Jul 31 22:33:26 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 83# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 84# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 85# endif
86# else
87# undef EV_USE_NANOSLEEP
88# define EV_USE_NANOSLEEP 0
65# endif 89# endif
66 90
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 92# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 93# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 94# endif
95# else
96# undef EV_USE_SELECT
97# define EV_USE_SELECT 0
98# endif
99
100# if HAVE_POLL && HAVE_POLL_H
101# ifndef EV_USE_POLL
102# define EV_USE_POLL EV_FEATURE_BACKENDS
103# endif
104# else
105# undef EV_USE_POLL
106# define EV_USE_POLL 0
73# endif 107# endif
74 108
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 109# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 110# ifndef EV_USE_EPOLL
78# else 111# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 112# endif
113# else
114# undef EV_USE_EPOLL
115# define EV_USE_EPOLL 0
81# endif 116# endif
82 117
118# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 119# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 120# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 121# endif
122# else
123# undef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0
89# endif 125# endif
90 126
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 127# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 128# ifndef EV_USE_PORT
94# else 129# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 130# endif
131# else
132# undef EV_USE_PORT
133# define EV_USE_PORT 0
97# endif 134# endif
98 135
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 136# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 137# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 138# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 139# endif
140# else
141# undef EV_USE_INOTIFY
142# define EV_USE_INOTIFY 0
105# endif 143# endif
106 144
145# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
146# ifndef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD EV_FEATURE_OS
148# endif
149# else
150# undef EV_USE_SIGNALFD
151# define EV_USE_SIGNALFD 0
152# endif
153
154# if HAVE_EVENTFD
155# ifndef EV_USE_EVENTFD
156# define EV_USE_EVENTFD EV_FEATURE_OS
157# endif
158# else
159# undef EV_USE_EVENTFD
160# define EV_USE_EVENTFD 0
161# endif
162
107#endif 163#endif
108 164
109#include <math.h> 165#include <math.h>
110#include <stdlib.h> 166#include <stdlib.h>
167#include <string.h>
111#include <fcntl.h> 168#include <fcntl.h>
112#include <stddef.h> 169#include <stddef.h>
113 170
114#include <stdio.h> 171#include <stdio.h>
115 172
116#include <assert.h> 173#include <assert.h>
117#include <errno.h> 174#include <errno.h>
118#include <sys/types.h> 175#include <sys/types.h>
119#include <time.h> 176#include <time.h>
177#include <limits.h>
120 178
121#include <signal.h> 179#include <signal.h>
122 180
123#ifdef EV_H 181#ifdef EV_H
124# include EV_H 182# include EV_H
129#ifndef _WIN32 187#ifndef _WIN32
130# include <sys/time.h> 188# include <sys/time.h>
131# include <sys/wait.h> 189# include <sys/wait.h>
132# include <unistd.h> 190# include <unistd.h>
133#else 191#else
192# include <io.h>
134# define WIN32_LEAN_AND_MEAN 193# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 194# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 195# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 196# define EV_SELECT_IS_WINSOCKET 1
138# endif 197# endif
198# undef EV_AVOID_STDIO
199#endif
200
201/* OS X, in its infinite idiocy, actually HARDCODES
202 * a limit of 1024 into their select. Where people have brains,
203 * OS X engineers apparently have a vacuum. Or maybe they were
204 * ordered to have a vacuum, or they do anything for money.
205 * This might help. Or not.
206 */
207#define _DARWIN_UNLIMITED_SELECT 1
208
209/* this block tries to deduce configuration from header-defined symbols and defaults */
210
211/* try to deduce the maximum number of signals on this platform */
212#if defined (EV_NSIG)
213/* use what's provided */
214#elif defined (NSIG)
215# define EV_NSIG (NSIG)
216#elif defined(_NSIG)
217# define EV_NSIG (_NSIG)
218#elif defined (SIGMAX)
219# define EV_NSIG (SIGMAX+1)
220#elif defined (SIG_MAX)
221# define EV_NSIG (SIG_MAX+1)
222#elif defined (_SIG_MAX)
223# define EV_NSIG (_SIG_MAX+1)
224#elif defined (MAXSIG)
225# define EV_NSIG (MAXSIG+1)
226#elif defined (MAX_SIG)
227# define EV_NSIG (MAX_SIG+1)
228#elif defined (SIGARRAYSIZE)
229# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
230#elif defined (_sys_nsig)
231# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
232#else
233# error "unable to find value for NSIG, please report"
234/* to make it compile regardless, just remove the above line, */
235/* but consider reporting it, too! :) */
236# define EV_NSIG 65
237#endif
238
239#ifndef EV_USE_CLOCK_SYSCALL
240# if __linux && __GLIBC__ >= 2
241# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
242# else
243# define EV_USE_CLOCK_SYSCALL 0
139#endif 244# endif
140 245#endif
141/**/
142 246
143#ifndef EV_USE_MONOTONIC 247#ifndef EV_USE_MONOTONIC
248# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
249# define EV_USE_MONOTONIC EV_FEATURE_OS
250# else
144# define EV_USE_MONOTONIC 0 251# define EV_USE_MONOTONIC 0
252# endif
145#endif 253#endif
146 254
147#ifndef EV_USE_REALTIME 255#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 256# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
257#endif
258
259#ifndef EV_USE_NANOSLEEP
260# if _POSIX_C_SOURCE >= 199309L
261# define EV_USE_NANOSLEEP EV_FEATURE_OS
262# else
263# define EV_USE_NANOSLEEP 0
264# endif
149#endif 265#endif
150 266
151#ifndef EV_USE_SELECT 267#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 268# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 269#endif
154 270
155#ifndef EV_USE_POLL 271#ifndef EV_USE_POLL
156# ifdef _WIN32 272# ifdef _WIN32
157# define EV_USE_POLL 0 273# define EV_USE_POLL 0
158# else 274# else
159# define EV_USE_POLL 1 275# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 276# endif
161#endif 277#endif
162 278
163#ifndef EV_USE_EPOLL 279#ifndef EV_USE_EPOLL
280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
281# define EV_USE_EPOLL EV_FEATURE_BACKENDS
282# else
164# define EV_USE_EPOLL 0 283# define EV_USE_EPOLL 0
284# endif
165#endif 285#endif
166 286
167#ifndef EV_USE_KQUEUE 287#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 288# define EV_USE_KQUEUE 0
169#endif 289#endif
171#ifndef EV_USE_PORT 291#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 292# define EV_USE_PORT 0
173#endif 293#endif
174 294
175#ifndef EV_USE_INOTIFY 295#ifndef EV_USE_INOTIFY
296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297# define EV_USE_INOTIFY EV_FEATURE_OS
298# else
176# define EV_USE_INOTIFY 0 299# define EV_USE_INOTIFY 0
300# endif
177#endif 301#endif
178 302
179#ifndef EV_PID_HASHSIZE 303#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 304# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 305#endif
306
307#ifndef EV_INOTIFY_HASHSIZE
308# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
309#endif
310
311#ifndef EV_USE_EVENTFD
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
313# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 314# else
183# define EV_PID_HASHSIZE 16 315# define EV_USE_EVENTFD 0
184# endif 316# endif
185#endif 317#endif
186 318
187#ifndef EV_INOTIFY_HASHSIZE 319#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 320# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 321# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 322# else
191# define EV_INOTIFY_HASHSIZE 16 323# define EV_USE_SIGNALFD 0
192# endif 324# endif
193#endif 325#endif
194 326
195/**/ 327#if 0 /* debugging */
328# define EV_VERIFY 3
329# define EV_USE_4HEAP 1
330# define EV_HEAP_CACHE_AT 1
331#endif
332
333#ifndef EV_VERIFY
334# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
335#endif
336
337#ifndef EV_USE_4HEAP
338# define EV_USE_4HEAP EV_FEATURE_DATA
339#endif
340
341#ifndef EV_HEAP_CACHE_AT
342# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
343#endif
344
345/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
346/* which makes programs even slower. might work on other unices, too. */
347#if EV_USE_CLOCK_SYSCALL
348# include <syscall.h>
349# ifdef SYS_clock_gettime
350# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
351# undef EV_USE_MONOTONIC
352# define EV_USE_MONOTONIC 1
353# else
354# undef EV_USE_CLOCK_SYSCALL
355# define EV_USE_CLOCK_SYSCALL 0
356# endif
357#endif
358
359/* this block fixes any misconfiguration where we know we run into trouble otherwise */
360
361#ifdef _AIX
362/* AIX has a completely broken poll.h header */
363# undef EV_USE_POLL
364# define EV_USE_POLL 0
365#endif
196 366
197#ifndef CLOCK_MONOTONIC 367#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 368# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 369# define EV_USE_MONOTONIC 0
200#endif 370#endif
202#ifndef CLOCK_REALTIME 372#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 373# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 374# define EV_USE_REALTIME 0
205#endif 375#endif
206 376
377#if !EV_STAT_ENABLE
378# undef EV_USE_INOTIFY
379# define EV_USE_INOTIFY 0
380#endif
381
382#if !EV_USE_NANOSLEEP
383# ifndef _WIN32
384# include <sys/select.h>
385# endif
386#endif
387
388#if EV_USE_INOTIFY
389# include <sys/utsname.h>
390# include <sys/statfs.h>
391# include <sys/inotify.h>
392/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
393# ifndef IN_DONT_FOLLOW
394# undef EV_USE_INOTIFY
395# define EV_USE_INOTIFY 0
396# endif
397#endif
398
207#if EV_SELECT_IS_WINSOCKET 399#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 400# include <winsock.h>
209#endif 401#endif
210 402
211#if !EV_STAT_ENABLE 403#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 404/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
405# include <stdint.h>
406# ifndef EFD_NONBLOCK
407# define EFD_NONBLOCK O_NONBLOCK
213#endif 408# endif
214 409# ifndef EFD_CLOEXEC
215#if EV_USE_INOTIFY 410# ifdef O_CLOEXEC
216# include <sys/inotify.h> 411# define EFD_CLOEXEC O_CLOEXEC
412# else
413# define EFD_CLOEXEC 02000000
414# endif
217#endif 415# endif
416# ifdef __cplusplus
417extern "C" {
418# endif
419int (eventfd) (unsigned int initval, int flags);
420# ifdef __cplusplus
421}
422# endif
423#endif
424
425#if EV_USE_SIGNALFD
426/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
427# include <stdint.h>
428# ifndef SFD_NONBLOCK
429# define SFD_NONBLOCK O_NONBLOCK
430# endif
431# ifndef SFD_CLOEXEC
432# ifdef O_CLOEXEC
433# define SFD_CLOEXEC O_CLOEXEC
434# else
435# define SFD_CLOEXEC 02000000
436# endif
437# endif
438# ifdef __cplusplus
439extern "C" {
440# endif
441int signalfd (int fd, const sigset_t *mask, int flags);
442
443struct signalfd_siginfo
444{
445 uint32_t ssi_signo;
446 char pad[128 - sizeof (uint32_t)];
447};
448# ifdef __cplusplus
449}
450# endif
451#endif
452
218 453
219/**/ 454/**/
455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
461
462/*
463 * This is used to avoid floating point rounding problems.
464 * It is added to ev_rt_now when scheduling periodics
465 * to ensure progress, time-wise, even when rounding
466 * errors are against us.
467 * This value is good at least till the year 4000.
468 * Better solutions welcome.
469 */
470#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 471
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 474
225#if __GNUC__ >= 3 475#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 476# define expect(expr,value) __builtin_expect ((expr),(value))
227# define noinline __attribute__ ((noinline)) 477# define noinline __attribute__ ((noinline))
228#else 478#else
229# define expect(expr,value) (expr) 479# define expect(expr,value) (expr)
230# define noinline 480# define noinline
231# if __STDC_VERSION__ < 199901L 481# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
232# define inline 482# define inline
233# endif 483# endif
234#endif 484#endif
235 485
236#define expect_false(expr) expect ((expr) != 0, 0) 486#define expect_false(expr) expect ((expr) != 0, 0)
237#define expect_true(expr) expect ((expr) != 0, 1) 487#define expect_true(expr) expect ((expr) != 0, 1)
238#define inline_size static inline 488#define inline_size static inline
239 489
240#if EV_MINIMAL 490#if EV_FEATURE_CODE
491# define inline_speed static inline
492#else
241# define inline_speed static noinline 493# define inline_speed static noinline
494#endif
495
496#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
497
498#if EV_MINPRI == EV_MAXPRI
499# define ABSPRI(w) (((W)w), 0)
242#else 500#else
243# define inline_speed static inline
244#endif
245
246#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
247#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 501# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
502#endif
248 503
249#define EMPTY /* required for microsofts broken pseudo-c compiler */ 504#define EMPTY /* required for microsofts broken pseudo-c compiler */
250#define EMPTY2(a,b) /* used to suppress some warnings */ 505#define EMPTY2(a,b) /* used to suppress some warnings */
251 506
252typedef ev_watcher *W; 507typedef ev_watcher *W;
253typedef ev_watcher_list *WL; 508typedef ev_watcher_list *WL;
254typedef ev_watcher_time *WT; 509typedef ev_watcher_time *WT;
255 510
511#define ev_active(w) ((W)(w))->active
512#define ev_at(w) ((WT)(w))->at
513
514#if EV_USE_REALTIME
515/* sig_atomic_t is used to avoid per-thread variables or locking but still */
516/* giving it a reasonably high chance of working on typical architectures */
517static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
518#endif
519
520#if EV_USE_MONOTONIC
256static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 521static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
522#endif
523
524#ifndef EV_FD_TO_WIN32_HANDLE
525# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
526#endif
527#ifndef EV_WIN32_HANDLE_TO_FD
528# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
529#endif
530#ifndef EV_WIN32_CLOSE_FD
531# define EV_WIN32_CLOSE_FD(fd) close (fd)
532#endif
257 533
258#ifdef _WIN32 534#ifdef _WIN32
259# include "ev_win32.c" 535# include "ev_win32.c"
260#endif 536#endif
261 537
262/*****************************************************************************/ 538/*****************************************************************************/
263 539
540#if EV_AVOID_STDIO
541static void noinline
542ev_printerr (const char *msg)
543{
544 write (STDERR_FILENO, msg, strlen (msg));
545}
546#endif
547
264static void (*syserr_cb)(const char *msg); 548static void (*syserr_cb)(const char *msg);
265 549
266void 550void
267ev_set_syserr_cb (void (*cb)(const char *msg)) 551ev_set_syserr_cb (void (*cb)(const char *msg))
268{ 552{
269 syserr_cb = cb; 553 syserr_cb = cb;
270} 554}
271 555
272static void noinline 556static void noinline
273syserr (const char *msg) 557ev_syserr (const char *msg)
274{ 558{
275 if (!msg) 559 if (!msg)
276 msg = "(libev) system error"; 560 msg = "(libev) system error";
277 561
278 if (syserr_cb) 562 if (syserr_cb)
279 syserr_cb (msg); 563 syserr_cb (msg);
280 else 564 else
281 { 565 {
566#if EV_AVOID_STDIO
567 const char *err = strerror (errno);
568
569 ev_printerr (msg);
570 ev_printerr (": ");
571 ev_printerr (err);
572 ev_printerr ("\n");
573#else
282 perror (msg); 574 perror (msg);
575#endif
283 abort (); 576 abort ();
284 } 577 }
285} 578}
286 579
580static void *
581ev_realloc_emul (void *ptr, long size)
582{
583#if __GLIBC__
584 return realloc (ptr, size);
585#else
586 /* some systems, notably openbsd and darwin, fail to properly
587 * implement realloc (x, 0) (as required by both ansi c-89 and
588 * the single unix specification, so work around them here.
589 */
590
591 if (size)
592 return realloc (ptr, size);
593
594 free (ptr);
595 return 0;
596#endif
597}
598
287static void *(*alloc)(void *ptr, long size); 599static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
288 600
289void 601void
290ev_set_allocator (void *(*cb)(void *ptr, long size)) 602ev_set_allocator (void *(*cb)(void *ptr, long size))
291{ 603{
292 alloc = cb; 604 alloc = cb;
293} 605}
294 606
295inline_speed void * 607inline_speed void *
296ev_realloc (void *ptr, long size) 608ev_realloc (void *ptr, long size)
297{ 609{
298 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 610 ptr = alloc (ptr, size);
299 611
300 if (!ptr && size) 612 if (!ptr && size)
301 { 613 {
614#if EV_AVOID_STDIO
615 ev_printerr ("libev: memory allocation failed, aborting.\n");
616#else
302 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 617 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
618#endif
303 abort (); 619 abort ();
304 } 620 }
305 621
306 return ptr; 622 return ptr;
307} 623}
309#define ev_malloc(size) ev_realloc (0, (size)) 625#define ev_malloc(size) ev_realloc (0, (size))
310#define ev_free(ptr) ev_realloc ((ptr), 0) 626#define ev_free(ptr) ev_realloc ((ptr), 0)
311 627
312/*****************************************************************************/ 628/*****************************************************************************/
313 629
630/* set in reify when reification needed */
631#define EV_ANFD_REIFY 1
632
633/* file descriptor info structure */
314typedef struct 634typedef struct
315{ 635{
316 WL head; 636 WL head;
317 unsigned char events; 637 unsigned char events; /* the events watched for */
638 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
639 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
318 unsigned char reify; 640 unsigned char unused;
641#if EV_USE_EPOLL
642 unsigned int egen; /* generation counter to counter epoll bugs */
643#endif
319#if EV_SELECT_IS_WINSOCKET 644#if EV_SELECT_IS_WINSOCKET
320 SOCKET handle; 645 SOCKET handle;
321#endif 646#endif
322} ANFD; 647} ANFD;
323 648
649/* stores the pending event set for a given watcher */
324typedef struct 650typedef struct
325{ 651{
326 W w; 652 W w;
327 int events; 653 int events; /* the pending event set for the given watcher */
328} ANPENDING; 654} ANPENDING;
329 655
330#if EV_USE_INOTIFY 656#if EV_USE_INOTIFY
657/* hash table entry per inotify-id */
331typedef struct 658typedef struct
332{ 659{
333 WL head; 660 WL head;
334} ANFS; 661} ANFS;
662#endif
663
664/* Heap Entry */
665#if EV_HEAP_CACHE_AT
666 /* a heap element */
667 typedef struct {
668 ev_tstamp at;
669 WT w;
670 } ANHE;
671
672 #define ANHE_w(he) (he).w /* access watcher, read-write */
673 #define ANHE_at(he) (he).at /* access cached at, read-only */
674 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
675#else
676 /* a heap element */
677 typedef WT ANHE;
678
679 #define ANHE_w(he) (he)
680 #define ANHE_at(he) (he)->at
681 #define ANHE_at_cache(he)
335#endif 682#endif
336 683
337#if EV_MULTIPLICITY 684#if EV_MULTIPLICITY
338 685
339 struct ev_loop 686 struct ev_loop
358 705
359 static int ev_default_loop_ptr; 706 static int ev_default_loop_ptr;
360 707
361#endif 708#endif
362 709
710#if EV_FEATURE_API
711# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
712# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
713# define EV_INVOKE_PENDING invoke_cb (EV_A)
714#else
715# define EV_RELEASE_CB (void)0
716# define EV_ACQUIRE_CB (void)0
717# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
718#endif
719
720#define EVUNLOOP_RECURSE 0x80
721
363/*****************************************************************************/ 722/*****************************************************************************/
364 723
724#ifndef EV_HAVE_EV_TIME
365ev_tstamp 725ev_tstamp
366ev_time (void) 726ev_time (void)
367{ 727{
368#if EV_USE_REALTIME 728#if EV_USE_REALTIME
729 if (expect_true (have_realtime))
730 {
369 struct timespec ts; 731 struct timespec ts;
370 clock_gettime (CLOCK_REALTIME, &ts); 732 clock_gettime (CLOCK_REALTIME, &ts);
371 return ts.tv_sec + ts.tv_nsec * 1e-9; 733 return ts.tv_sec + ts.tv_nsec * 1e-9;
372#else 734 }
735#endif
736
373 struct timeval tv; 737 struct timeval tv;
374 gettimeofday (&tv, 0); 738 gettimeofday (&tv, 0);
375 return tv.tv_sec + tv.tv_usec * 1e-6; 739 return tv.tv_sec + tv.tv_usec * 1e-6;
376#endif
377} 740}
741#endif
378 742
379ev_tstamp inline_size 743inline_size ev_tstamp
380get_clock (void) 744get_clock (void)
381{ 745{
382#if EV_USE_MONOTONIC 746#if EV_USE_MONOTONIC
383 if (expect_true (have_monotonic)) 747 if (expect_true (have_monotonic))
384 { 748 {
397{ 761{
398 return ev_rt_now; 762 return ev_rt_now;
399} 763}
400#endif 764#endif
401 765
402int inline_size 766void
767ev_sleep (ev_tstamp delay)
768{
769 if (delay > 0.)
770 {
771#if EV_USE_NANOSLEEP
772 struct timespec ts;
773
774 ts.tv_sec = (time_t)delay;
775 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
776
777 nanosleep (&ts, 0);
778#elif defined(_WIN32)
779 Sleep ((unsigned long)(delay * 1e3));
780#else
781 struct timeval tv;
782
783 tv.tv_sec = (time_t)delay;
784 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
785
786 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
787 /* something not guaranteed by newer posix versions, but guaranteed */
788 /* by older ones */
789 select (0, 0, 0, 0, &tv);
790#endif
791 }
792}
793
794/*****************************************************************************/
795
796#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
797
798/* find a suitable new size for the given array, */
799/* hopefully by rounding to a nice-to-malloc size */
800inline_size int
403array_nextsize (int elem, int cur, int cnt) 801array_nextsize (int elem, int cur, int cnt)
404{ 802{
405 int ncur = cur + 1; 803 int ncur = cur + 1;
406 804
407 do 805 do
408 ncur <<= 1; 806 ncur <<= 1;
409 while (cnt > ncur); 807 while (cnt > ncur);
410 808
411 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 809 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
412 if (elem * ncur > 4096) 810 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
413 { 811 {
414 ncur *= elem; 812 ncur *= elem;
415 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 813 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
416 ncur = ncur - sizeof (void *) * 4; 814 ncur = ncur - sizeof (void *) * 4;
417 ncur /= elem; 815 ncur /= elem;
418 } 816 }
419 817
420 return ncur; 818 return ncur;
421} 819}
422 820
423inline_speed void * 821static noinline void *
424array_realloc (int elem, void *base, int *cur, int cnt) 822array_realloc (int elem, void *base, int *cur, int cnt)
425{ 823{
426 *cur = array_nextsize (elem, *cur, cnt); 824 *cur = array_nextsize (elem, *cur, cnt);
427 return ev_realloc (base, elem * *cur); 825 return ev_realloc (base, elem * *cur);
428} 826}
827
828#define array_init_zero(base,count) \
829 memset ((void *)(base), 0, sizeof (*(base)) * (count))
429 830
430#define array_needsize(type,base,cur,cnt,init) \ 831#define array_needsize(type,base,cur,cnt,init) \
431 if (expect_false ((cnt) > (cur))) \ 832 if (expect_false ((cnt) > (cur))) \
432 { \ 833 { \
433 int ocur_ = (cur); \ 834 int ocur_ = (cur); \
445 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 846 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
446 } 847 }
447#endif 848#endif
448 849
449#define array_free(stem, idx) \ 850#define array_free(stem, idx) \
450 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 851 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
451 852
452/*****************************************************************************/ 853/*****************************************************************************/
854
855/* dummy callback for pending events */
856static void noinline
857pendingcb (EV_P_ ev_prepare *w, int revents)
858{
859}
453 860
454void noinline 861void noinline
455ev_feed_event (EV_P_ void *w, int revents) 862ev_feed_event (EV_P_ void *w, int revents)
456{ 863{
457 W w_ = (W)w; 864 W w_ = (W)w;
865 int pri = ABSPRI (w_);
458 866
459 if (expect_false (w_->pending)) 867 if (expect_false (w_->pending))
868 pendings [pri][w_->pending - 1].events |= revents;
869 else
460 { 870 {
871 w_->pending = ++pendingcnt [pri];
872 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
873 pendings [pri][w_->pending - 1].w = w_;
461 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 874 pendings [pri][w_->pending - 1].events = revents;
462 return;
463 } 875 }
464
465 w_->pending = ++pendingcnt [ABSPRI (w_)];
466 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
467 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
468 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
469} 876}
470 877
471void inline_size 878inline_speed void
879feed_reverse (EV_P_ W w)
880{
881 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
882 rfeeds [rfeedcnt++] = w;
883}
884
885inline_size void
886feed_reverse_done (EV_P_ int revents)
887{
888 do
889 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
890 while (rfeedcnt);
891}
892
893inline_speed void
472queue_events (EV_P_ W *events, int eventcnt, int type) 894queue_events (EV_P_ W *events, int eventcnt, int type)
473{ 895{
474 int i; 896 int i;
475 897
476 for (i = 0; i < eventcnt; ++i) 898 for (i = 0; i < eventcnt; ++i)
477 ev_feed_event (EV_A_ events [i], type); 899 ev_feed_event (EV_A_ events [i], type);
478} 900}
479 901
480/*****************************************************************************/ 902/*****************************************************************************/
481 903
482void inline_size 904inline_speed void
483anfds_init (ANFD *base, int count)
484{
485 while (count--)
486 {
487 base->head = 0;
488 base->events = EV_NONE;
489 base->reify = 0;
490
491 ++base;
492 }
493}
494
495void inline_speed
496fd_event (EV_P_ int fd, int revents) 905fd_event_nocheck (EV_P_ int fd, int revents)
497{ 906{
498 ANFD *anfd = anfds + fd; 907 ANFD *anfd = anfds + fd;
499 ev_io *w; 908 ev_io *w;
500 909
501 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 910 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
505 if (ev) 914 if (ev)
506 ev_feed_event (EV_A_ (W)w, ev); 915 ev_feed_event (EV_A_ (W)w, ev);
507 } 916 }
508} 917}
509 918
919/* do not submit kernel events for fds that have reify set */
920/* because that means they changed while we were polling for new events */
921inline_speed void
922fd_event (EV_P_ int fd, int revents)
923{
924 ANFD *anfd = anfds + fd;
925
926 if (expect_true (!anfd->reify))
927 fd_event_nocheck (EV_A_ fd, revents);
928}
929
510void 930void
511ev_feed_fd_event (EV_P_ int fd, int revents) 931ev_feed_fd_event (EV_P_ int fd, int revents)
512{ 932{
513 if (fd >= 0 && fd < anfdmax) 933 if (fd >= 0 && fd < anfdmax)
514 fd_event (EV_A_ fd, revents); 934 fd_event_nocheck (EV_A_ fd, revents);
515} 935}
516 936
517void inline_size 937/* make sure the external fd watch events are in-sync */
938/* with the kernel/libev internal state */
939inline_size void
518fd_reify (EV_P) 940fd_reify (EV_P)
519{ 941{
520 int i; 942 int i;
521 943
522 for (i = 0; i < fdchangecnt; ++i) 944 for (i = 0; i < fdchangecnt; ++i)
523 { 945 {
524 int fd = fdchanges [i]; 946 int fd = fdchanges [i];
525 ANFD *anfd = anfds + fd; 947 ANFD *anfd = anfds + fd;
526 ev_io *w; 948 ev_io *w;
527 949
528 int events = 0; 950 unsigned char events = 0;
529 951
530 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 952 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
531 events |= w->events; 953 events |= (unsigned char)w->events;
532 954
533#if EV_SELECT_IS_WINSOCKET 955#if EV_SELECT_IS_WINSOCKET
534 if (events) 956 if (events)
535 { 957 {
536 unsigned long argp; 958 unsigned long arg;
537 anfd->handle = _get_osfhandle (fd); 959 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
538 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 960 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
539 } 961 }
540#endif 962#endif
541 963
964 {
965 unsigned char o_events = anfd->events;
966 unsigned char o_reify = anfd->reify;
967
542 anfd->reify = 0; 968 anfd->reify = 0;
543
544 backend_modify (EV_A_ fd, anfd->events, events);
545 anfd->events = events; 969 anfd->events = events;
970
971 if (o_events != events || o_reify & EV__IOFDSET)
972 backend_modify (EV_A_ fd, o_events, events);
973 }
546 } 974 }
547 975
548 fdchangecnt = 0; 976 fdchangecnt = 0;
549} 977}
550 978
551void inline_size 979/* something about the given fd changed */
980inline_size void
552fd_change (EV_P_ int fd) 981fd_change (EV_P_ int fd, int flags)
553{ 982{
554 if (expect_false (anfds [fd].reify)) 983 unsigned char reify = anfds [fd].reify;
555 return;
556
557 anfds [fd].reify = 1; 984 anfds [fd].reify |= flags;
558 985
986 if (expect_true (!reify))
987 {
559 ++fdchangecnt; 988 ++fdchangecnt;
560 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 989 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
561 fdchanges [fdchangecnt - 1] = fd; 990 fdchanges [fdchangecnt - 1] = fd;
991 }
562} 992}
563 993
564void inline_speed 994/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
995inline_speed void
565fd_kill (EV_P_ int fd) 996fd_kill (EV_P_ int fd)
566{ 997{
567 ev_io *w; 998 ev_io *w;
568 999
569 while ((w = (ev_io *)anfds [fd].head)) 1000 while ((w = (ev_io *)anfds [fd].head))
571 ev_io_stop (EV_A_ w); 1002 ev_io_stop (EV_A_ w);
572 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1003 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
573 } 1004 }
574} 1005}
575 1006
576int inline_size 1007/* check whether the given fd is actually valid, for error recovery */
1008inline_size int
577fd_valid (int fd) 1009fd_valid (int fd)
578{ 1010{
579#ifdef _WIN32 1011#ifdef _WIN32
580 return _get_osfhandle (fd) != -1; 1012 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
581#else 1013#else
582 return fcntl (fd, F_GETFD) != -1; 1014 return fcntl (fd, F_GETFD) != -1;
583#endif 1015#endif
584} 1016}
585 1017
589{ 1021{
590 int fd; 1022 int fd;
591 1023
592 for (fd = 0; fd < anfdmax; ++fd) 1024 for (fd = 0; fd < anfdmax; ++fd)
593 if (anfds [fd].events) 1025 if (anfds [fd].events)
594 if (!fd_valid (fd) == -1 && errno == EBADF) 1026 if (!fd_valid (fd) && errno == EBADF)
595 fd_kill (EV_A_ fd); 1027 fd_kill (EV_A_ fd);
596} 1028}
597 1029
598/* called on ENOMEM in select/poll to kill some fds and retry */ 1030/* called on ENOMEM in select/poll to kill some fds and retry */
599static void noinline 1031static void noinline
603 1035
604 for (fd = anfdmax; fd--; ) 1036 for (fd = anfdmax; fd--; )
605 if (anfds [fd].events) 1037 if (anfds [fd].events)
606 { 1038 {
607 fd_kill (EV_A_ fd); 1039 fd_kill (EV_A_ fd);
608 return; 1040 break;
609 } 1041 }
610} 1042}
611 1043
612/* usually called after fork if backend needs to re-arm all fds from scratch */ 1044/* usually called after fork if backend needs to re-arm all fds from scratch */
613static void noinline 1045static void noinline
617 1049
618 for (fd = 0; fd < anfdmax; ++fd) 1050 for (fd = 0; fd < anfdmax; ++fd)
619 if (anfds [fd].events) 1051 if (anfds [fd].events)
620 { 1052 {
621 anfds [fd].events = 0; 1053 anfds [fd].events = 0;
622 fd_change (EV_A_ fd); 1054 anfds [fd].emask = 0;
1055 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
623 } 1056 }
624} 1057}
625 1058
626/*****************************************************************************/ 1059/* used to prepare libev internal fd's */
627 1060/* this is not fork-safe */
628void inline_speed 1061inline_speed void
629upheap (WT *heap, int k)
630{
631 WT w = heap [k];
632
633 while (k && heap [k >> 1]->at > w->at)
634 {
635 heap [k] = heap [k >> 1];
636 ((W)heap [k])->active = k + 1;
637 k >>= 1;
638 }
639
640 heap [k] = w;
641 ((W)heap [k])->active = k + 1;
642
643}
644
645void inline_speed
646downheap (WT *heap, int N, int k)
647{
648 WT w = heap [k];
649
650 while (k < (N >> 1))
651 {
652 int j = k << 1;
653
654 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
655 ++j;
656
657 if (w->at <= heap [j]->at)
658 break;
659
660 heap [k] = heap [j];
661 ((W)heap [k])->active = k + 1;
662 k = j;
663 }
664
665 heap [k] = w;
666 ((W)heap [k])->active = k + 1;
667}
668
669void inline_size
670adjustheap (WT *heap, int N, int k)
671{
672 upheap (heap, k);
673 downheap (heap, N, k);
674}
675
676/*****************************************************************************/
677
678typedef struct
679{
680 WL head;
681 sig_atomic_t volatile gotsig;
682} ANSIG;
683
684static ANSIG *signals;
685static int signalmax;
686
687static int sigpipe [2];
688static sig_atomic_t volatile gotsig;
689static ev_io sigev;
690
691void inline_size
692signals_init (ANSIG *base, int count)
693{
694 while (count--)
695 {
696 base->head = 0;
697 base->gotsig = 0;
698
699 ++base;
700 }
701}
702
703static void
704sighandler (int signum)
705{
706#if _WIN32
707 signal (signum, sighandler);
708#endif
709
710 signals [signum - 1].gotsig = 1;
711
712 if (!gotsig)
713 {
714 int old_errno = errno;
715 gotsig = 1;
716 write (sigpipe [1], &signum, 1);
717 errno = old_errno;
718 }
719}
720
721void noinline
722ev_feed_signal_event (EV_P_ int signum)
723{
724 WL w;
725
726#if EV_MULTIPLICITY
727 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
728#endif
729
730 --signum;
731
732 if (signum < 0 || signum >= signalmax)
733 return;
734
735 signals [signum].gotsig = 0;
736
737 for (w = signals [signum].head; w; w = w->next)
738 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
739}
740
741static void
742sigcb (EV_P_ ev_io *iow, int revents)
743{
744 int signum;
745
746 read (sigpipe [0], &revents, 1);
747 gotsig = 0;
748
749 for (signum = signalmax; signum--; )
750 if (signals [signum].gotsig)
751 ev_feed_signal_event (EV_A_ signum + 1);
752}
753
754void inline_size
755fd_intern (int fd) 1062fd_intern (int fd)
756{ 1063{
757#ifdef _WIN32 1064#ifdef _WIN32
758 int arg = 1; 1065 unsigned long arg = 1;
759 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1066 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
760#else 1067#else
761 fcntl (fd, F_SETFD, FD_CLOEXEC); 1068 fcntl (fd, F_SETFD, FD_CLOEXEC);
762 fcntl (fd, F_SETFL, O_NONBLOCK); 1069 fcntl (fd, F_SETFL, O_NONBLOCK);
763#endif 1070#endif
764} 1071}
765 1072
1073/*****************************************************************************/
1074
1075/*
1076 * the heap functions want a real array index. array index 0 is guaranteed to not
1077 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1078 * the branching factor of the d-tree.
1079 */
1080
1081/*
1082 * at the moment we allow libev the luxury of two heaps,
1083 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1084 * which is more cache-efficient.
1085 * the difference is about 5% with 50000+ watchers.
1086 */
1087#if EV_USE_4HEAP
1088
1089#define DHEAP 4
1090#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1091#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1092#define UPHEAP_DONE(p,k) ((p) == (k))
1093
1094/* away from the root */
1095inline_speed void
1096downheap (ANHE *heap, int N, int k)
1097{
1098 ANHE he = heap [k];
1099 ANHE *E = heap + N + HEAP0;
1100
1101 for (;;)
1102 {
1103 ev_tstamp minat;
1104 ANHE *minpos;
1105 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1106
1107 /* find minimum child */
1108 if (expect_true (pos + DHEAP - 1 < E))
1109 {
1110 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1111 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1112 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1113 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1114 }
1115 else if (pos < E)
1116 {
1117 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1118 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1119 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1120 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1121 }
1122 else
1123 break;
1124
1125 if (ANHE_at (he) <= minat)
1126 break;
1127
1128 heap [k] = *minpos;
1129 ev_active (ANHE_w (*minpos)) = k;
1130
1131 k = minpos - heap;
1132 }
1133
1134 heap [k] = he;
1135 ev_active (ANHE_w (he)) = k;
1136}
1137
1138#else /* 4HEAP */
1139
1140#define HEAP0 1
1141#define HPARENT(k) ((k) >> 1)
1142#define UPHEAP_DONE(p,k) (!(p))
1143
1144/* away from the root */
1145inline_speed void
1146downheap (ANHE *heap, int N, int k)
1147{
1148 ANHE he = heap [k];
1149
1150 for (;;)
1151 {
1152 int c = k << 1;
1153
1154 if (c >= N + HEAP0)
1155 break;
1156
1157 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1158 ? 1 : 0;
1159
1160 if (ANHE_at (he) <= ANHE_at (heap [c]))
1161 break;
1162
1163 heap [k] = heap [c];
1164 ev_active (ANHE_w (heap [k])) = k;
1165
1166 k = c;
1167 }
1168
1169 heap [k] = he;
1170 ev_active (ANHE_w (he)) = k;
1171}
1172#endif
1173
1174/* towards the root */
1175inline_speed void
1176upheap (ANHE *heap, int k)
1177{
1178 ANHE he = heap [k];
1179
1180 for (;;)
1181 {
1182 int p = HPARENT (k);
1183
1184 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1185 break;
1186
1187 heap [k] = heap [p];
1188 ev_active (ANHE_w (heap [k])) = k;
1189 k = p;
1190 }
1191
1192 heap [k] = he;
1193 ev_active (ANHE_w (he)) = k;
1194}
1195
1196/* move an element suitably so it is in a correct place */
1197inline_size void
1198adjustheap (ANHE *heap, int N, int k)
1199{
1200 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1201 upheap (heap, k);
1202 else
1203 downheap (heap, N, k);
1204}
1205
1206/* rebuild the heap: this function is used only once and executed rarely */
1207inline_size void
1208reheap (ANHE *heap, int N)
1209{
1210 int i;
1211
1212 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1213 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1214 for (i = 0; i < N; ++i)
1215 upheap (heap, i + HEAP0);
1216}
1217
1218/*****************************************************************************/
1219
1220/* associate signal watchers to a signal signal */
1221typedef struct
1222{
1223 EV_ATOMIC_T pending;
1224#if EV_MULTIPLICITY
1225 EV_P;
1226#endif
1227 WL head;
1228} ANSIG;
1229
1230static ANSIG signals [EV_NSIG - 1];
1231
1232/*****************************************************************************/
1233
1234#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1235
766static void noinline 1236static void noinline
767siginit (EV_P) 1237evpipe_init (EV_P)
768{ 1238{
1239 if (!ev_is_active (&pipe_w))
1240 {
1241# if EV_USE_EVENTFD
1242 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1243 if (evfd < 0 && errno == EINVAL)
1244 evfd = eventfd (0, 0);
1245
1246 if (evfd >= 0)
1247 {
1248 evpipe [0] = -1;
1249 fd_intern (evfd); /* doing it twice doesn't hurt */
1250 ev_io_set (&pipe_w, evfd, EV_READ);
1251 }
1252 else
1253# endif
1254 {
1255 while (pipe (evpipe))
1256 ev_syserr ("(libev) error creating signal/async pipe");
1257
769 fd_intern (sigpipe [0]); 1258 fd_intern (evpipe [0]);
770 fd_intern (sigpipe [1]); 1259 fd_intern (evpipe [1]);
1260 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1261 }
771 1262
772 ev_io_set (&sigev, sigpipe [0], EV_READ);
773 ev_io_start (EV_A_ &sigev); 1263 ev_io_start (EV_A_ &pipe_w);
774 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1264 ev_unref (EV_A); /* watcher should not keep loop alive */
1265 }
1266}
1267
1268inline_size void
1269evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1270{
1271 if (!*flag)
1272 {
1273 int old_errno = errno; /* save errno because write might clobber it */
1274 char dummy;
1275
1276 *flag = 1;
1277
1278#if EV_USE_EVENTFD
1279 if (evfd >= 0)
1280 {
1281 uint64_t counter = 1;
1282 write (evfd, &counter, sizeof (uint64_t));
1283 }
1284 else
1285#endif
1286 write (evpipe [1], &dummy, 1);
1287
1288 errno = old_errno;
1289 }
1290}
1291
1292/* called whenever the libev signal pipe */
1293/* got some events (signal, async) */
1294static void
1295pipecb (EV_P_ ev_io *iow, int revents)
1296{
1297 int i;
1298
1299#if EV_USE_EVENTFD
1300 if (evfd >= 0)
1301 {
1302 uint64_t counter;
1303 read (evfd, &counter, sizeof (uint64_t));
1304 }
1305 else
1306#endif
1307 {
1308 char dummy;
1309 read (evpipe [0], &dummy, 1);
1310 }
1311
1312 if (sig_pending)
1313 {
1314 sig_pending = 0;
1315
1316 for (i = EV_NSIG - 1; i--; )
1317 if (expect_false (signals [i].pending))
1318 ev_feed_signal_event (EV_A_ i + 1);
1319 }
1320
1321#if EV_ASYNC_ENABLE
1322 if (async_pending)
1323 {
1324 async_pending = 0;
1325
1326 for (i = asynccnt; i--; )
1327 if (asyncs [i]->sent)
1328 {
1329 asyncs [i]->sent = 0;
1330 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1331 }
1332 }
1333#endif
775} 1334}
776 1335
777/*****************************************************************************/ 1336/*****************************************************************************/
778 1337
779static ev_child *childs [EV_PID_HASHSIZE]; 1338static void
1339ev_sighandler (int signum)
1340{
1341#if EV_MULTIPLICITY
1342 EV_P = signals [signum - 1].loop;
1343#endif
780 1344
781#ifndef _WIN32 1345#ifdef _WIN32
1346 signal (signum, ev_sighandler);
1347#endif
1348
1349 signals [signum - 1].pending = 1;
1350 evpipe_write (EV_A_ &sig_pending);
1351}
1352
1353void noinline
1354ev_feed_signal_event (EV_P_ int signum)
1355{
1356 WL w;
1357
1358 if (expect_false (signum <= 0 || signum > EV_NSIG))
1359 return;
1360
1361 --signum;
1362
1363#if EV_MULTIPLICITY
1364 /* it is permissible to try to feed a signal to the wrong loop */
1365 /* or, likely more useful, feeding a signal nobody is waiting for */
1366
1367 if (expect_false (signals [signum].loop != EV_A))
1368 return;
1369#endif
1370
1371 signals [signum].pending = 0;
1372
1373 for (w = signals [signum].head; w; w = w->next)
1374 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1375}
1376
1377#if EV_USE_SIGNALFD
1378static void
1379sigfdcb (EV_P_ ev_io *iow, int revents)
1380{
1381 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1382
1383 for (;;)
1384 {
1385 ssize_t res = read (sigfd, si, sizeof (si));
1386
1387 /* not ISO-C, as res might be -1, but works with SuS */
1388 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1389 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1390
1391 if (res < (ssize_t)sizeof (si))
1392 break;
1393 }
1394}
1395#endif
1396
1397#endif
1398
1399/*****************************************************************************/
1400
1401#if EV_CHILD_ENABLE
1402static WL childs [EV_PID_HASHSIZE];
782 1403
783static ev_signal childev; 1404static ev_signal childev;
784 1405
785void inline_speed 1406#ifndef WIFCONTINUED
1407# define WIFCONTINUED(status) 0
1408#endif
1409
1410/* handle a single child status event */
1411inline_speed void
786child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1412child_reap (EV_P_ int chain, int pid, int status)
787{ 1413{
788 ev_child *w; 1414 ev_child *w;
1415 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
789 1416
790 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1417 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1418 {
791 if (w->pid == pid || !w->pid) 1419 if ((w->pid == pid || !w->pid)
1420 && (!traced || (w->flags & 1)))
792 { 1421 {
793 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1422 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
794 w->rpid = pid; 1423 w->rpid = pid;
795 w->rstatus = status; 1424 w->rstatus = status;
796 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1425 ev_feed_event (EV_A_ (W)w, EV_CHILD);
797 } 1426 }
1427 }
798} 1428}
799 1429
800#ifndef WCONTINUED 1430#ifndef WCONTINUED
801# define WCONTINUED 0 1431# define WCONTINUED 0
802#endif 1432#endif
803 1433
1434/* called on sigchld etc., calls waitpid */
804static void 1435static void
805childcb (EV_P_ ev_signal *sw, int revents) 1436childcb (EV_P_ ev_signal *sw, int revents)
806{ 1437{
807 int pid, status; 1438 int pid, status;
808 1439
811 if (!WCONTINUED 1442 if (!WCONTINUED
812 || errno != EINVAL 1443 || errno != EINVAL
813 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1444 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
814 return; 1445 return;
815 1446
816 /* make sure we are called again until all childs have been reaped */ 1447 /* make sure we are called again until all children have been reaped */
817 /* we need to do it this way so that the callback gets called before we continue */ 1448 /* we need to do it this way so that the callback gets called before we continue */
818 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1449 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
819 1450
820 child_reap (EV_A_ sw, pid, pid, status); 1451 child_reap (EV_A_ pid, pid, status);
821 if (EV_PID_HASHSIZE > 1) 1452 if ((EV_PID_HASHSIZE) > 1)
822 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1453 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
823} 1454}
824 1455
825#endif 1456#endif
826 1457
827/*****************************************************************************/ 1458/*****************************************************************************/
889 /* kqueue is borked on everything but netbsd apparently */ 1520 /* kqueue is borked on everything but netbsd apparently */
890 /* it usually doesn't work correctly on anything but sockets and pipes */ 1521 /* it usually doesn't work correctly on anything but sockets and pipes */
891 flags &= ~EVBACKEND_KQUEUE; 1522 flags &= ~EVBACKEND_KQUEUE;
892#endif 1523#endif
893#ifdef __APPLE__ 1524#ifdef __APPLE__
894 // flags &= ~EVBACKEND_KQUEUE; for documentation 1525 /* only select works correctly on that "unix-certified" platform */
895 flags &= ~EVBACKEND_POLL; 1526 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1527 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1528#endif
1529#ifdef __FreeBSD__
1530 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
896#endif 1531#endif
897 1532
898 return flags; 1533 return flags;
899} 1534}
900 1535
901unsigned int 1536unsigned int
902ev_embeddable_backends (void) 1537ev_embeddable_backends (void)
903{ 1538{
904 return EVBACKEND_EPOLL 1539 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
905 | EVBACKEND_KQUEUE 1540
906 | EVBACKEND_PORT; 1541 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1542 /* please fix it and tell me how to detect the fix */
1543 flags &= ~EVBACKEND_EPOLL;
1544
1545 return flags;
907} 1546}
908 1547
909unsigned int 1548unsigned int
910ev_backend (EV_P) 1549ev_backend (EV_P)
911{ 1550{
912 return backend; 1551 return backend;
913} 1552}
914 1553
1554#if EV_FEATURE_API
915unsigned int 1555unsigned int
916ev_loop_count (EV_P) 1556ev_iteration (EV_P)
917{ 1557{
918 return loop_count; 1558 return loop_count;
919} 1559}
920 1560
1561unsigned int
1562ev_depth (EV_P)
1563{
1564 return loop_depth;
1565}
1566
1567void
1568ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1569{
1570 io_blocktime = interval;
1571}
1572
1573void
1574ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1575{
1576 timeout_blocktime = interval;
1577}
1578
1579void
1580ev_set_userdata (EV_P_ void *data)
1581{
1582 userdata = data;
1583}
1584
1585void *
1586ev_userdata (EV_P)
1587{
1588 return userdata;
1589}
1590
1591void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1592{
1593 invoke_cb = invoke_pending_cb;
1594}
1595
1596void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1597{
1598 release_cb = release;
1599 acquire_cb = acquire;
1600}
1601#endif
1602
1603/* initialise a loop structure, must be zero-initialised */
921static void noinline 1604static void noinline
922loop_init (EV_P_ unsigned int flags) 1605loop_init (EV_P_ unsigned int flags)
923{ 1606{
924 if (!backend) 1607 if (!backend)
925 { 1608 {
1609#if EV_USE_REALTIME
1610 if (!have_realtime)
1611 {
1612 struct timespec ts;
1613
1614 if (!clock_gettime (CLOCK_REALTIME, &ts))
1615 have_realtime = 1;
1616 }
1617#endif
1618
926#if EV_USE_MONOTONIC 1619#if EV_USE_MONOTONIC
1620 if (!have_monotonic)
927 { 1621 {
928 struct timespec ts; 1622 struct timespec ts;
1623
929 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1624 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
930 have_monotonic = 1; 1625 have_monotonic = 1;
931 } 1626 }
932#endif 1627#endif
933
934 ev_rt_now = ev_time ();
935 mn_now = get_clock ();
936 now_floor = mn_now;
937 rtmn_diff = ev_rt_now - mn_now;
938 1628
939 /* pid check not overridable via env */ 1629 /* pid check not overridable via env */
940#ifndef _WIN32 1630#ifndef _WIN32
941 if (flags & EVFLAG_FORKCHECK) 1631 if (flags & EVFLAG_FORKCHECK)
942 curpid = getpid (); 1632 curpid = getpid ();
945 if (!(flags & EVFLAG_NOENV) 1635 if (!(flags & EVFLAG_NOENV)
946 && !enable_secure () 1636 && !enable_secure ()
947 && getenv ("LIBEV_FLAGS")) 1637 && getenv ("LIBEV_FLAGS"))
948 flags = atoi (getenv ("LIBEV_FLAGS")); 1638 flags = atoi (getenv ("LIBEV_FLAGS"));
949 1639
1640 ev_rt_now = ev_time ();
1641 mn_now = get_clock ();
1642 now_floor = mn_now;
1643 rtmn_diff = ev_rt_now - mn_now;
1644#if EV_FEATURE_API
1645 invoke_cb = ev_invoke_pending;
1646#endif
1647
1648 io_blocktime = 0.;
1649 timeout_blocktime = 0.;
1650 backend = 0;
1651 backend_fd = -1;
1652 sig_pending = 0;
1653#if EV_ASYNC_ENABLE
1654 async_pending = 0;
1655#endif
1656#if EV_USE_INOTIFY
1657 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1658#endif
1659#if EV_USE_SIGNALFD
1660 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1661#endif
1662
950 if (!(flags & 0x0000ffffUL)) 1663 if (!(flags & 0x0000ffffU))
951 flags |= ev_recommended_backends (); 1664 flags |= ev_recommended_backends ();
952
953 backend = 0;
954 backend_fd = -1;
955#if EV_USE_INOTIFY
956 fs_fd = -2;
957#endif
958 1665
959#if EV_USE_PORT 1666#if EV_USE_PORT
960 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1667 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
961#endif 1668#endif
962#if EV_USE_KQUEUE 1669#if EV_USE_KQUEUE
970#endif 1677#endif
971#if EV_USE_SELECT 1678#if EV_USE_SELECT
972 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1679 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
973#endif 1680#endif
974 1681
1682 ev_prepare_init (&pending_w, pendingcb);
1683
1684#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
975 ev_init (&sigev, sigcb); 1685 ev_init (&pipe_w, pipecb);
976 ev_set_priority (&sigev, EV_MAXPRI); 1686 ev_set_priority (&pipe_w, EV_MAXPRI);
1687#endif
977 } 1688 }
978} 1689}
979 1690
1691/* free up a loop structure */
980static void noinline 1692static void noinline
981loop_destroy (EV_P) 1693loop_destroy (EV_P)
982{ 1694{
983 int i; 1695 int i;
1696
1697 if (ev_is_active (&pipe_w))
1698 {
1699 /*ev_ref (EV_A);*/
1700 /*ev_io_stop (EV_A_ &pipe_w);*/
1701
1702#if EV_USE_EVENTFD
1703 if (evfd >= 0)
1704 close (evfd);
1705#endif
1706
1707 if (evpipe [0] >= 0)
1708 {
1709 EV_WIN32_CLOSE_FD (evpipe [0]);
1710 EV_WIN32_CLOSE_FD (evpipe [1]);
1711 }
1712 }
1713
1714#if EV_USE_SIGNALFD
1715 if (ev_is_active (&sigfd_w))
1716 close (sigfd);
1717#endif
984 1718
985#if EV_USE_INOTIFY 1719#if EV_USE_INOTIFY
986 if (fs_fd >= 0) 1720 if (fs_fd >= 0)
987 close (fs_fd); 1721 close (fs_fd);
988#endif 1722#endif
1012#if EV_IDLE_ENABLE 1746#if EV_IDLE_ENABLE
1013 array_free (idle, [i]); 1747 array_free (idle, [i]);
1014#endif 1748#endif
1015 } 1749 }
1016 1750
1751 ev_free (anfds); anfds = 0; anfdmax = 0;
1752
1017 /* have to use the microsoft-never-gets-it-right macro */ 1753 /* have to use the microsoft-never-gets-it-right macro */
1754 array_free (rfeed, EMPTY);
1018 array_free (fdchange, EMPTY); 1755 array_free (fdchange, EMPTY);
1019 array_free (timer, EMPTY); 1756 array_free (timer, EMPTY);
1020#if EV_PERIODIC_ENABLE 1757#if EV_PERIODIC_ENABLE
1021 array_free (periodic, EMPTY); 1758 array_free (periodic, EMPTY);
1022#endif 1759#endif
1760#if EV_FORK_ENABLE
1761 array_free (fork, EMPTY);
1762#endif
1023 array_free (prepare, EMPTY); 1763 array_free (prepare, EMPTY);
1024 array_free (check, EMPTY); 1764 array_free (check, EMPTY);
1765#if EV_ASYNC_ENABLE
1766 array_free (async, EMPTY);
1767#endif
1025 1768
1026 backend = 0; 1769 backend = 0;
1027} 1770}
1028 1771
1772#if EV_USE_INOTIFY
1029void inline_size infy_fork (EV_P); 1773inline_size void infy_fork (EV_P);
1774#endif
1030 1775
1031void inline_size 1776inline_size void
1032loop_fork (EV_P) 1777loop_fork (EV_P)
1033{ 1778{
1034#if EV_USE_PORT 1779#if EV_USE_PORT
1035 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1780 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1036#endif 1781#endif
1042#endif 1787#endif
1043#if EV_USE_INOTIFY 1788#if EV_USE_INOTIFY
1044 infy_fork (EV_A); 1789 infy_fork (EV_A);
1045#endif 1790#endif
1046 1791
1047 if (ev_is_active (&sigev)) 1792 if (ev_is_active (&pipe_w))
1048 { 1793 {
1049 /* default loop */ 1794 /* this "locks" the handlers against writing to the pipe */
1795 /* while we modify the fd vars */
1796 sig_pending = 1;
1797#if EV_ASYNC_ENABLE
1798 async_pending = 1;
1799#endif
1050 1800
1051 ev_ref (EV_A); 1801 ev_ref (EV_A);
1052 ev_io_stop (EV_A_ &sigev); 1802 ev_io_stop (EV_A_ &pipe_w);
1053 close (sigpipe [0]);
1054 close (sigpipe [1]);
1055 1803
1056 while (pipe (sigpipe)) 1804#if EV_USE_EVENTFD
1057 syserr ("(libev) error creating pipe"); 1805 if (evfd >= 0)
1806 close (evfd);
1807#endif
1058 1808
1809 if (evpipe [0] >= 0)
1810 {
1811 EV_WIN32_CLOSE_FD (evpipe [0]);
1812 EV_WIN32_CLOSE_FD (evpipe [1]);
1813 }
1814
1815#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1059 siginit (EV_A); 1816 evpipe_init (EV_A);
1817 /* now iterate over everything, in case we missed something */
1818 pipecb (EV_A_ &pipe_w, EV_READ);
1819#endif
1060 } 1820 }
1061 1821
1062 postfork = 0; 1822 postfork = 0;
1063} 1823}
1064 1824
1065#if EV_MULTIPLICITY 1825#if EV_MULTIPLICITY
1826
1066struct ev_loop * 1827struct ev_loop *
1067ev_loop_new (unsigned int flags) 1828ev_loop_new (unsigned int flags)
1068{ 1829{
1069 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1830 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1070 1831
1071 memset (loop, 0, sizeof (struct ev_loop)); 1832 memset (EV_A, 0, sizeof (struct ev_loop));
1072
1073 loop_init (EV_A_ flags); 1833 loop_init (EV_A_ flags);
1074 1834
1075 if (ev_backend (EV_A)) 1835 if (ev_backend (EV_A))
1076 return loop; 1836 return EV_A;
1077 1837
1078 return 0; 1838 return 0;
1079} 1839}
1080 1840
1081void 1841void
1086} 1846}
1087 1847
1088void 1848void
1089ev_loop_fork (EV_P) 1849ev_loop_fork (EV_P)
1090{ 1850{
1091 postfork = 1; 1851 postfork = 1; /* must be in line with ev_default_fork */
1092} 1852}
1853#endif /* multiplicity */
1093 1854
1855#if EV_VERIFY
1856static void noinline
1857verify_watcher (EV_P_ W w)
1858{
1859 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1860
1861 if (w->pending)
1862 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1863}
1864
1865static void noinline
1866verify_heap (EV_P_ ANHE *heap, int N)
1867{
1868 int i;
1869
1870 for (i = HEAP0; i < N + HEAP0; ++i)
1871 {
1872 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1873 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1874 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1875
1876 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1877 }
1878}
1879
1880static void noinline
1881array_verify (EV_P_ W *ws, int cnt)
1882{
1883 while (cnt--)
1884 {
1885 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1886 verify_watcher (EV_A_ ws [cnt]);
1887 }
1888}
1889#endif
1890
1891#if EV_FEATURE_API
1892void
1893ev_verify (EV_P)
1894{
1895#if EV_VERIFY
1896 int i;
1897 WL w;
1898
1899 assert (activecnt >= -1);
1900
1901 assert (fdchangemax >= fdchangecnt);
1902 for (i = 0; i < fdchangecnt; ++i)
1903 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1904
1905 assert (anfdmax >= 0);
1906 for (i = 0; i < anfdmax; ++i)
1907 for (w = anfds [i].head; w; w = w->next)
1908 {
1909 verify_watcher (EV_A_ (W)w);
1910 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1911 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1912 }
1913
1914 assert (timermax >= timercnt);
1915 verify_heap (EV_A_ timers, timercnt);
1916
1917#if EV_PERIODIC_ENABLE
1918 assert (periodicmax >= periodiccnt);
1919 verify_heap (EV_A_ periodics, periodiccnt);
1920#endif
1921
1922 for (i = NUMPRI; i--; )
1923 {
1924 assert (pendingmax [i] >= pendingcnt [i]);
1925#if EV_IDLE_ENABLE
1926 assert (idleall >= 0);
1927 assert (idlemax [i] >= idlecnt [i]);
1928 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1929#endif
1930 }
1931
1932#if EV_FORK_ENABLE
1933 assert (forkmax >= forkcnt);
1934 array_verify (EV_A_ (W *)forks, forkcnt);
1935#endif
1936
1937#if EV_ASYNC_ENABLE
1938 assert (asyncmax >= asynccnt);
1939 array_verify (EV_A_ (W *)asyncs, asynccnt);
1940#endif
1941
1942#if EV_PREPARE_ENABLE
1943 assert (preparemax >= preparecnt);
1944 array_verify (EV_A_ (W *)prepares, preparecnt);
1945#endif
1946
1947#if EV_CHECK_ENABLE
1948 assert (checkmax >= checkcnt);
1949 array_verify (EV_A_ (W *)checks, checkcnt);
1950#endif
1951
1952# if 0
1953#if EV_CHILD_ENABLE
1954 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1955 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1956#endif
1957# endif
1958#endif
1959}
1094#endif 1960#endif
1095 1961
1096#if EV_MULTIPLICITY 1962#if EV_MULTIPLICITY
1097struct ev_loop * 1963struct ev_loop *
1098ev_default_loop_init (unsigned int flags) 1964ev_default_loop_init (unsigned int flags)
1099#else 1965#else
1100int 1966int
1101ev_default_loop (unsigned int flags) 1967ev_default_loop (unsigned int flags)
1102#endif 1968#endif
1103{ 1969{
1104 if (sigpipe [0] == sigpipe [1])
1105 if (pipe (sigpipe))
1106 return 0;
1107
1108 if (!ev_default_loop_ptr) 1970 if (!ev_default_loop_ptr)
1109 { 1971 {
1110#if EV_MULTIPLICITY 1972#if EV_MULTIPLICITY
1111 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1973 EV_P = ev_default_loop_ptr = &default_loop_struct;
1112#else 1974#else
1113 ev_default_loop_ptr = 1; 1975 ev_default_loop_ptr = 1;
1114#endif 1976#endif
1115 1977
1116 loop_init (EV_A_ flags); 1978 loop_init (EV_A_ flags);
1117 1979
1118 if (ev_backend (EV_A)) 1980 if (ev_backend (EV_A))
1119 { 1981 {
1120 siginit (EV_A); 1982#if EV_CHILD_ENABLE
1121
1122#ifndef _WIN32
1123 ev_signal_init (&childev, childcb, SIGCHLD); 1983 ev_signal_init (&childev, childcb, SIGCHLD);
1124 ev_set_priority (&childev, EV_MAXPRI); 1984 ev_set_priority (&childev, EV_MAXPRI);
1125 ev_signal_start (EV_A_ &childev); 1985 ev_signal_start (EV_A_ &childev);
1126 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1986 ev_unref (EV_A); /* child watcher should not keep loop alive */
1127#endif 1987#endif
1135 1995
1136void 1996void
1137ev_default_destroy (void) 1997ev_default_destroy (void)
1138{ 1998{
1139#if EV_MULTIPLICITY 1999#if EV_MULTIPLICITY
1140 struct ev_loop *loop = ev_default_loop_ptr; 2000 EV_P = ev_default_loop_ptr;
1141#endif 2001#endif
1142 2002
1143#ifndef _WIN32 2003 ev_default_loop_ptr = 0;
2004
2005#if EV_CHILD_ENABLE
1144 ev_ref (EV_A); /* child watcher */ 2006 ev_ref (EV_A); /* child watcher */
1145 ev_signal_stop (EV_A_ &childev); 2007 ev_signal_stop (EV_A_ &childev);
1146#endif 2008#endif
1147 2009
1148 ev_ref (EV_A); /* signal watcher */
1149 ev_io_stop (EV_A_ &sigev);
1150
1151 close (sigpipe [0]); sigpipe [0] = 0;
1152 close (sigpipe [1]); sigpipe [1] = 0;
1153
1154 loop_destroy (EV_A); 2010 loop_destroy (EV_A);
1155} 2011}
1156 2012
1157void 2013void
1158ev_default_fork (void) 2014ev_default_fork (void)
1159{ 2015{
1160#if EV_MULTIPLICITY 2016#if EV_MULTIPLICITY
1161 struct ev_loop *loop = ev_default_loop_ptr; 2017 EV_P = ev_default_loop_ptr;
1162#endif 2018#endif
1163 2019
1164 if (backend) 2020 postfork = 1; /* must be in line with ev_loop_fork */
1165 postfork = 1;
1166} 2021}
1167 2022
1168/*****************************************************************************/ 2023/*****************************************************************************/
1169 2024
1170void 2025void
1171ev_invoke (EV_P_ void *w, int revents) 2026ev_invoke (EV_P_ void *w, int revents)
1172{ 2027{
1173 EV_CB_INVOKE ((W)w, revents); 2028 EV_CB_INVOKE ((W)w, revents);
1174} 2029}
1175 2030
1176void inline_speed 2031unsigned int
1177call_pending (EV_P) 2032ev_pending_count (EV_P)
2033{
2034 int pri;
2035 unsigned int count = 0;
2036
2037 for (pri = NUMPRI; pri--; )
2038 count += pendingcnt [pri];
2039
2040 return count;
2041}
2042
2043void noinline
2044ev_invoke_pending (EV_P)
1178{ 2045{
1179 int pri; 2046 int pri;
1180 2047
1181 for (pri = NUMPRI; pri--; ) 2048 for (pri = NUMPRI; pri--; )
1182 while (pendingcnt [pri]) 2049 while (pendingcnt [pri])
1183 { 2050 {
1184 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2051 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1185 2052
1186 if (expect_true (p->w))
1187 {
1188 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2053 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2054 /* ^ this is no longer true, as pending_w could be here */
1189 2055
1190 p->w->pending = 0; 2056 p->w->pending = 0;
1191 EV_CB_INVOKE (p->w, p->events); 2057 EV_CB_INVOKE (p->w, p->events);
1192 } 2058 EV_FREQUENT_CHECK;
1193 } 2059 }
1194} 2060}
1195 2061
1196void inline_size
1197timers_reify (EV_P)
1198{
1199 while (timercnt && ((WT)timers [0])->at <= mn_now)
1200 {
1201 ev_timer *w = timers [0];
1202
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204
1205 /* first reschedule or stop timer */
1206 if (w->repeat)
1207 {
1208 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1209
1210 ((WT)w)->at += w->repeat;
1211 if (((WT)w)->at < mn_now)
1212 ((WT)w)->at = mn_now;
1213
1214 downheap ((WT *)timers, timercnt, 0);
1215 }
1216 else
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1220 }
1221}
1222
1223#if EV_PERIODIC_ENABLE
1224void inline_size
1225periodics_reify (EV_P)
1226{
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1228 {
1229 ev_periodic *w = periodics [0];
1230
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1232
1233 /* first reschedule or stop timer */
1234 if (w->reschedule_cb)
1235 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1238 downheap ((WT *)periodics, periodiccnt, 0);
1239 }
1240 else if (w->interval)
1241 {
1242 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1244 downheap ((WT *)periodics, periodiccnt, 0);
1245 }
1246 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1250 }
1251}
1252
1253static void noinline
1254periodics_reschedule (EV_P)
1255{
1256 int i;
1257
1258 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i)
1260 {
1261 ev_periodic *w = periodics [i];
1262
1263 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval)
1266 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1267 }
1268
1269 /* now rebuild the heap */
1270 for (i = periodiccnt >> 1; i--; )
1271 downheap ((WT *)periodics, periodiccnt, i);
1272}
1273#endif
1274
1275#if EV_IDLE_ENABLE 2062#if EV_IDLE_ENABLE
1276void inline_size 2063/* make idle watchers pending. this handles the "call-idle */
2064/* only when higher priorities are idle" logic */
2065inline_size void
1277idle_reify (EV_P) 2066idle_reify (EV_P)
1278{ 2067{
1279 if (expect_false (idleall)) 2068 if (expect_false (idleall))
1280 { 2069 {
1281 int pri; 2070 int pri;
1293 } 2082 }
1294 } 2083 }
1295} 2084}
1296#endif 2085#endif
1297 2086
1298int inline_size 2087/* make timers pending */
1299time_update_monotonic (EV_P) 2088inline_size void
2089timers_reify (EV_P)
1300{ 2090{
2091 EV_FREQUENT_CHECK;
2092
2093 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2094 {
2095 do
2096 {
2097 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2098
2099 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2100
2101 /* first reschedule or stop timer */
2102 if (w->repeat)
2103 {
2104 ev_at (w) += w->repeat;
2105 if (ev_at (w) < mn_now)
2106 ev_at (w) = mn_now;
2107
2108 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2109
2110 ANHE_at_cache (timers [HEAP0]);
2111 downheap (timers, timercnt, HEAP0);
2112 }
2113 else
2114 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2115
2116 EV_FREQUENT_CHECK;
2117 feed_reverse (EV_A_ (W)w);
2118 }
2119 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2120
2121 feed_reverse_done (EV_A_ EV_TIMER);
2122 }
2123}
2124
2125#if EV_PERIODIC_ENABLE
2126/* make periodics pending */
2127inline_size void
2128periodics_reify (EV_P)
2129{
2130 EV_FREQUENT_CHECK;
2131
2132 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2133 {
2134 int feed_count = 0;
2135
2136 do
2137 {
2138 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2139
2140 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2141
2142 /* first reschedule or stop timer */
2143 if (w->reschedule_cb)
2144 {
2145 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2146
2147 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2148
2149 ANHE_at_cache (periodics [HEAP0]);
2150 downheap (periodics, periodiccnt, HEAP0);
2151 }
2152 else if (w->interval)
2153 {
2154 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2155 /* if next trigger time is not sufficiently in the future, put it there */
2156 /* this might happen because of floating point inexactness */
2157 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2158 {
2159 ev_at (w) += w->interval;
2160
2161 /* if interval is unreasonably low we might still have a time in the past */
2162 /* so correct this. this will make the periodic very inexact, but the user */
2163 /* has effectively asked to get triggered more often than possible */
2164 if (ev_at (w) < ev_rt_now)
2165 ev_at (w) = ev_rt_now;
2166 }
2167
2168 ANHE_at_cache (periodics [HEAP0]);
2169 downheap (periodics, periodiccnt, HEAP0);
2170 }
2171 else
2172 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2173
2174 EV_FREQUENT_CHECK;
2175 feed_reverse (EV_A_ (W)w);
2176 }
2177 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2178
2179 feed_reverse_done (EV_A_ EV_PERIODIC);
2180 }
2181}
2182
2183/* simply recalculate all periodics */
2184/* TODO: maybe ensure that at least one event happens when jumping forward? */
2185static void noinline
2186periodics_reschedule (EV_P)
2187{
2188 int i;
2189
2190 /* adjust periodics after time jump */
2191 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2192 {
2193 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2194
2195 if (w->reschedule_cb)
2196 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2197 else if (w->interval)
2198 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2199
2200 ANHE_at_cache (periodics [i]);
2201 }
2202
2203 reheap (periodics, periodiccnt);
2204}
2205#endif
2206
2207/* adjust all timers by a given offset */
2208static void noinline
2209timers_reschedule (EV_P_ ev_tstamp adjust)
2210{
2211 int i;
2212
2213 for (i = 0; i < timercnt; ++i)
2214 {
2215 ANHE *he = timers + i + HEAP0;
2216 ANHE_w (*he)->at += adjust;
2217 ANHE_at_cache (*he);
2218 }
2219}
2220
2221/* fetch new monotonic and realtime times from the kernel */
2222/* also detect if there was a timejump, and act accordingly */
2223inline_speed void
2224time_update (EV_P_ ev_tstamp max_block)
2225{
2226#if EV_USE_MONOTONIC
2227 if (expect_true (have_monotonic))
2228 {
2229 int i;
2230 ev_tstamp odiff = rtmn_diff;
2231
1301 mn_now = get_clock (); 2232 mn_now = get_clock ();
1302 2233
2234 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2235 /* interpolate in the meantime */
1303 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2236 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1304 { 2237 {
1305 ev_rt_now = rtmn_diff + mn_now; 2238 ev_rt_now = rtmn_diff + mn_now;
1306 return 0; 2239 return;
1307 } 2240 }
1308 else 2241
1309 {
1310 now_floor = mn_now; 2242 now_floor = mn_now;
1311 ev_rt_now = ev_time (); 2243 ev_rt_now = ev_time ();
1312 return 1;
1313 }
1314}
1315 2244
1316void inline_size 2245 /* loop a few times, before making important decisions.
1317time_update (EV_P) 2246 * on the choice of "4": one iteration isn't enough,
1318{ 2247 * in case we get preempted during the calls to
1319 int i; 2248 * ev_time and get_clock. a second call is almost guaranteed
1320 2249 * to succeed in that case, though. and looping a few more times
1321#if EV_USE_MONOTONIC 2250 * doesn't hurt either as we only do this on time-jumps or
1322 if (expect_true (have_monotonic)) 2251 * in the unlikely event of having been preempted here.
1323 { 2252 */
1324 if (time_update_monotonic (EV_A)) 2253 for (i = 4; --i; )
1325 { 2254 {
1326 ev_tstamp odiff = rtmn_diff;
1327
1328 /* loop a few times, before making important decisions.
1329 * on the choice of "4": one iteration isn't enough,
1330 * in case we get preempted during the calls to
1331 * ev_time and get_clock. a second call is almost guaranteed
1332 * to succeed in that case, though. and looping a few more times
1333 * doesn't hurt either as we only do this on time-jumps or
1334 * in the unlikely event of having been preempted here.
1335 */
1336 for (i = 4; --i; )
1337 {
1338 rtmn_diff = ev_rt_now - mn_now; 2255 rtmn_diff = ev_rt_now - mn_now;
1339 2256
1340 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2257 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1341 return; /* all is well */ 2258 return; /* all is well */
1342 2259
1343 ev_rt_now = ev_time (); 2260 ev_rt_now = ev_time ();
1344 mn_now = get_clock (); 2261 mn_now = get_clock ();
1345 now_floor = mn_now; 2262 now_floor = mn_now;
1346 } 2263 }
1347 2264
2265 /* no timer adjustment, as the monotonic clock doesn't jump */
2266 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1348# if EV_PERIODIC_ENABLE 2267# if EV_PERIODIC_ENABLE
1349 periodics_reschedule (EV_A); 2268 periodics_reschedule (EV_A);
1350# endif 2269# endif
1351 /* no timer adjustment, as the monotonic clock doesn't jump */
1352 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1353 }
1354 } 2270 }
1355 else 2271 else
1356#endif 2272#endif
1357 { 2273 {
1358 ev_rt_now = ev_time (); 2274 ev_rt_now = ev_time ();
1359 2275
1360 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2276 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1361 { 2277 {
2278 /* adjust timers. this is easy, as the offset is the same for all of them */
2279 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1362#if EV_PERIODIC_ENABLE 2280#if EV_PERIODIC_ENABLE
1363 periodics_reschedule (EV_A); 2281 periodics_reschedule (EV_A);
1364#endif 2282#endif
1365
1366 /* adjust timers. this is easy, as the offset is the same for all of them */
1367 for (i = 0; i < timercnt; ++i)
1368 ((WT)timers [i])->at += ev_rt_now - mn_now;
1369 } 2283 }
1370 2284
1371 mn_now = ev_rt_now; 2285 mn_now = ev_rt_now;
1372 } 2286 }
1373} 2287}
1374 2288
1375void 2289void
1376ev_ref (EV_P)
1377{
1378 ++activecnt;
1379}
1380
1381void
1382ev_unref (EV_P)
1383{
1384 --activecnt;
1385}
1386
1387static int loop_done;
1388
1389void
1390ev_loop (EV_P_ int flags) 2290ev_loop (EV_P_ int flags)
1391{ 2291{
1392 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2292#if EV_FEATURE_API
1393 ? EVUNLOOP_ONE 2293 ++loop_depth;
1394 : EVUNLOOP_CANCEL; 2294#endif
1395 2295
2296 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2297
2298 loop_done = EVUNLOOP_CANCEL;
2299
1396 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2300 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1397 2301
1398 do 2302 do
1399 { 2303 {
2304#if EV_VERIFY >= 2
2305 ev_verify (EV_A);
2306#endif
2307
1400#ifndef _WIN32 2308#ifndef _WIN32
1401 if (expect_false (curpid)) /* penalise the forking check even more */ 2309 if (expect_false (curpid)) /* penalise the forking check even more */
1402 if (expect_false (getpid () != curpid)) 2310 if (expect_false (getpid () != curpid))
1403 { 2311 {
1404 curpid = getpid (); 2312 curpid = getpid ();
1410 /* we might have forked, so queue fork handlers */ 2318 /* we might have forked, so queue fork handlers */
1411 if (expect_false (postfork)) 2319 if (expect_false (postfork))
1412 if (forkcnt) 2320 if (forkcnt)
1413 { 2321 {
1414 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2322 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1415 call_pending (EV_A); 2323 EV_INVOKE_PENDING;
1416 } 2324 }
1417#endif 2325#endif
1418 2326
2327#if EV_PREPARE_ENABLE
1419 /* queue check watchers (and execute them) */ 2328 /* queue prepare watchers (and execute them) */
1420 if (expect_false (preparecnt)) 2329 if (expect_false (preparecnt))
1421 { 2330 {
1422 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2331 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1423 call_pending (EV_A); 2332 EV_INVOKE_PENDING;
1424 } 2333 }
2334#endif
1425 2335
1426 if (expect_false (!activecnt)) 2336 if (expect_false (loop_done))
1427 break; 2337 break;
1428 2338
1429 /* we might have forked, so reify kernel state if necessary */ 2339 /* we might have forked, so reify kernel state if necessary */
1430 if (expect_false (postfork)) 2340 if (expect_false (postfork))
1431 loop_fork (EV_A); 2341 loop_fork (EV_A);
1433 /* update fd-related kernel structures */ 2343 /* update fd-related kernel structures */
1434 fd_reify (EV_A); 2344 fd_reify (EV_A);
1435 2345
1436 /* calculate blocking time */ 2346 /* calculate blocking time */
1437 { 2347 {
1438 ev_tstamp block; 2348 ev_tstamp waittime = 0.;
2349 ev_tstamp sleeptime = 0.;
1439 2350
1440 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2351 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1441 block = 0.; /* do not block at all */
1442 else
1443 { 2352 {
2353 /* remember old timestamp for io_blocktime calculation */
2354 ev_tstamp prev_mn_now = mn_now;
2355
1444 /* update time to cancel out callback processing overhead */ 2356 /* update time to cancel out callback processing overhead */
1445#if EV_USE_MONOTONIC
1446 if (expect_true (have_monotonic))
1447 time_update_monotonic (EV_A); 2357 time_update (EV_A_ 1e100);
1448 else
1449#endif
1450 {
1451 ev_rt_now = ev_time ();
1452 mn_now = ev_rt_now;
1453 }
1454 2358
1455 block = MAX_BLOCKTIME; 2359 waittime = MAX_BLOCKTIME;
1456 2360
1457 if (timercnt) 2361 if (timercnt)
1458 { 2362 {
1459 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2363 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1460 if (block > to) block = to; 2364 if (waittime > to) waittime = to;
1461 } 2365 }
1462 2366
1463#if EV_PERIODIC_ENABLE 2367#if EV_PERIODIC_ENABLE
1464 if (periodiccnt) 2368 if (periodiccnt)
1465 { 2369 {
1466 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2370 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1467 if (block > to) block = to; 2371 if (waittime > to) waittime = to;
1468 } 2372 }
1469#endif 2373#endif
1470 2374
2375 /* don't let timeouts decrease the waittime below timeout_blocktime */
2376 if (expect_false (waittime < timeout_blocktime))
2377 waittime = timeout_blocktime;
2378
2379 /* extra check because io_blocktime is commonly 0 */
1471 if (expect_false (block < 0.)) block = 0.; 2380 if (expect_false (io_blocktime))
2381 {
2382 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2383
2384 if (sleeptime > waittime - backend_fudge)
2385 sleeptime = waittime - backend_fudge;
2386
2387 if (expect_true (sleeptime > 0.))
2388 {
2389 ev_sleep (sleeptime);
2390 waittime -= sleeptime;
2391 }
2392 }
1472 } 2393 }
1473 2394
2395#if EV_FEATURE_API
1474 ++loop_count; 2396 ++loop_count;
2397#endif
2398 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1475 backend_poll (EV_A_ block); 2399 backend_poll (EV_A_ waittime);
2400 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2401
2402 /* update ev_rt_now, do magic */
2403 time_update (EV_A_ waittime + sleeptime);
1476 } 2404 }
1477
1478 /* update ev_rt_now, do magic */
1479 time_update (EV_A);
1480 2405
1481 /* queue pending timers and reschedule them */ 2406 /* queue pending timers and reschedule them */
1482 timers_reify (EV_A); /* relative timers called last */ 2407 timers_reify (EV_A); /* relative timers called last */
1483#if EV_PERIODIC_ENABLE 2408#if EV_PERIODIC_ENABLE
1484 periodics_reify (EV_A); /* absolute timers called first */ 2409 periodics_reify (EV_A); /* absolute timers called first */
1487#if EV_IDLE_ENABLE 2412#if EV_IDLE_ENABLE
1488 /* queue idle watchers unless other events are pending */ 2413 /* queue idle watchers unless other events are pending */
1489 idle_reify (EV_A); 2414 idle_reify (EV_A);
1490#endif 2415#endif
1491 2416
2417#if EV_CHECK_ENABLE
1492 /* queue check watchers, to be executed first */ 2418 /* queue check watchers, to be executed first */
1493 if (expect_false (checkcnt)) 2419 if (expect_false (checkcnt))
1494 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2420 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2421#endif
1495 2422
1496 call_pending (EV_A); 2423 EV_INVOKE_PENDING;
1497
1498 } 2424 }
1499 while (expect_true (activecnt && !loop_done)); 2425 while (expect_true (
2426 activecnt
2427 && !loop_done
2428 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2429 ));
1500 2430
1501 if (loop_done == EVUNLOOP_ONE) 2431 if (loop_done == EVUNLOOP_ONE)
1502 loop_done = EVUNLOOP_CANCEL; 2432 loop_done = EVUNLOOP_CANCEL;
2433
2434#if EV_FEATURE_API
2435 --loop_depth;
2436#endif
1503} 2437}
1504 2438
1505void 2439void
1506ev_unloop (EV_P_ int how) 2440ev_unloop (EV_P_ int how)
1507{ 2441{
1508 loop_done = how; 2442 loop_done = how;
1509} 2443}
1510 2444
2445void
2446ev_ref (EV_P)
2447{
2448 ++activecnt;
2449}
2450
2451void
2452ev_unref (EV_P)
2453{
2454 --activecnt;
2455}
2456
2457void
2458ev_now_update (EV_P)
2459{
2460 time_update (EV_A_ 1e100);
2461}
2462
2463void
2464ev_suspend (EV_P)
2465{
2466 ev_now_update (EV_A);
2467}
2468
2469void
2470ev_resume (EV_P)
2471{
2472 ev_tstamp mn_prev = mn_now;
2473
2474 ev_now_update (EV_A);
2475 timers_reschedule (EV_A_ mn_now - mn_prev);
2476#if EV_PERIODIC_ENABLE
2477 /* TODO: really do this? */
2478 periodics_reschedule (EV_A);
2479#endif
2480}
2481
1511/*****************************************************************************/ 2482/*****************************************************************************/
2483/* singly-linked list management, used when the expected list length is short */
1512 2484
1513void inline_size 2485inline_size void
1514wlist_add (WL *head, WL elem) 2486wlist_add (WL *head, WL elem)
1515{ 2487{
1516 elem->next = *head; 2488 elem->next = *head;
1517 *head = elem; 2489 *head = elem;
1518} 2490}
1519 2491
1520void inline_size 2492inline_size void
1521wlist_del (WL *head, WL elem) 2493wlist_del (WL *head, WL elem)
1522{ 2494{
1523 while (*head) 2495 while (*head)
1524 { 2496 {
1525 if (*head == elem) 2497 if (expect_true (*head == elem))
1526 { 2498 {
1527 *head = elem->next; 2499 *head = elem->next;
1528 return; 2500 break;
1529 } 2501 }
1530 2502
1531 head = &(*head)->next; 2503 head = &(*head)->next;
1532 } 2504 }
1533} 2505}
1534 2506
1535void inline_speed 2507/* internal, faster, version of ev_clear_pending */
2508inline_speed void
1536clear_pending (EV_P_ W w) 2509clear_pending (EV_P_ W w)
1537{ 2510{
1538 if (w->pending) 2511 if (w->pending)
1539 { 2512 {
1540 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2513 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1541 w->pending = 0; 2514 w->pending = 0;
1542 } 2515 }
1543} 2516}
1544 2517
1545int 2518int
1546ev_clear_pending (EV_P_ void *w) 2519ev_clear_pending (EV_P_ void *w)
1547{ 2520{
1548 W w_ = (W)w; 2521 W w_ = (W)w;
1549 int pending = w_->pending; 2522 int pending = w_->pending;
1550 2523
1551 if (!pending) 2524 if (expect_true (pending))
2525 {
2526 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2527 p->w = (W)&pending_w;
2528 w_->pending = 0;
2529 return p->events;
2530 }
2531 else
1552 return 0; 2532 return 0;
1553
1554 w_->pending = 0;
1555 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1556 p->w = 0;
1557
1558 return p->events;
1559} 2533}
1560 2534
1561void inline_size 2535inline_size void
1562pri_adjust (EV_P_ W w) 2536pri_adjust (EV_P_ W w)
1563{ 2537{
1564 int pri = w->priority; 2538 int pri = ev_priority (w);
1565 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2539 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1566 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2540 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1567 w->priority = pri; 2541 ev_set_priority (w, pri);
1568} 2542}
1569 2543
1570void inline_speed 2544inline_speed void
1571ev_start (EV_P_ W w, int active) 2545ev_start (EV_P_ W w, int active)
1572{ 2546{
1573 pri_adjust (EV_A_ w); 2547 pri_adjust (EV_A_ w);
1574 w->active = active; 2548 w->active = active;
1575 ev_ref (EV_A); 2549 ev_ref (EV_A);
1576} 2550}
1577 2551
1578void inline_size 2552inline_size void
1579ev_stop (EV_P_ W w) 2553ev_stop (EV_P_ W w)
1580{ 2554{
1581 ev_unref (EV_A); 2555 ev_unref (EV_A);
1582 w->active = 0; 2556 w->active = 0;
1583} 2557}
1584 2558
1585/*****************************************************************************/ 2559/*****************************************************************************/
1586 2560
1587void 2561void noinline
1588ev_io_start (EV_P_ ev_io *w) 2562ev_io_start (EV_P_ ev_io *w)
1589{ 2563{
1590 int fd = w->fd; 2564 int fd = w->fd;
1591 2565
1592 if (expect_false (ev_is_active (w))) 2566 if (expect_false (ev_is_active (w)))
1593 return; 2567 return;
1594 2568
1595 assert (("ev_io_start called with negative fd", fd >= 0)); 2569 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2570 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2571
2572 EV_FREQUENT_CHECK;
1596 2573
1597 ev_start (EV_A_ (W)w, 1); 2574 ev_start (EV_A_ (W)w, 1);
1598 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2575 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1599 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2576 wlist_add (&anfds[fd].head, (WL)w);
1600 2577
1601 fd_change (EV_A_ fd); 2578 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1602} 2579 w->events &= ~EV__IOFDSET;
1603 2580
1604void 2581 EV_FREQUENT_CHECK;
2582}
2583
2584void noinline
1605ev_io_stop (EV_P_ ev_io *w) 2585ev_io_stop (EV_P_ ev_io *w)
1606{ 2586{
1607 clear_pending (EV_A_ (W)w); 2587 clear_pending (EV_A_ (W)w);
1608 if (expect_false (!ev_is_active (w))) 2588 if (expect_false (!ev_is_active (w)))
1609 return; 2589 return;
1610 2590
1611 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2591 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1612 2592
2593 EV_FREQUENT_CHECK;
2594
1613 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2595 wlist_del (&anfds[w->fd].head, (WL)w);
1614 ev_stop (EV_A_ (W)w); 2596 ev_stop (EV_A_ (W)w);
1615 2597
1616 fd_change (EV_A_ w->fd); 2598 fd_change (EV_A_ w->fd, 1);
1617}
1618 2599
1619void 2600 EV_FREQUENT_CHECK;
2601}
2602
2603void noinline
1620ev_timer_start (EV_P_ ev_timer *w) 2604ev_timer_start (EV_P_ ev_timer *w)
1621{ 2605{
1622 if (expect_false (ev_is_active (w))) 2606 if (expect_false (ev_is_active (w)))
1623 return; 2607 return;
1624 2608
1625 ((WT)w)->at += mn_now; 2609 ev_at (w) += mn_now;
1626 2610
1627 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2611 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1628 2612
2613 EV_FREQUENT_CHECK;
2614
2615 ++timercnt;
1629 ev_start (EV_A_ (W)w, ++timercnt); 2616 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1630 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2617 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1631 timers [timercnt - 1] = w; 2618 ANHE_w (timers [ev_active (w)]) = (WT)w;
1632 upheap ((WT *)timers, timercnt - 1); 2619 ANHE_at_cache (timers [ev_active (w)]);
2620 upheap (timers, ev_active (w));
1633 2621
2622 EV_FREQUENT_CHECK;
2623
1634 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2624 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1635} 2625}
1636 2626
1637void 2627void noinline
1638ev_timer_stop (EV_P_ ev_timer *w) 2628ev_timer_stop (EV_P_ ev_timer *w)
1639{ 2629{
1640 clear_pending (EV_A_ (W)w); 2630 clear_pending (EV_A_ (W)w);
1641 if (expect_false (!ev_is_active (w))) 2631 if (expect_false (!ev_is_active (w)))
1642 return; 2632 return;
1643 2633
1644 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2634 EV_FREQUENT_CHECK;
1645 2635
1646 { 2636 {
1647 int active = ((W)w)->active; 2637 int active = ev_active (w);
1648 2638
2639 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2640
2641 --timercnt;
2642
1649 if (expect_true (--active < --timercnt)) 2643 if (expect_true (active < timercnt + HEAP0))
1650 { 2644 {
1651 timers [active] = timers [timercnt]; 2645 timers [active] = timers [timercnt + HEAP0];
1652 adjustheap ((WT *)timers, timercnt, active); 2646 adjustheap (timers, timercnt, active);
1653 } 2647 }
1654 } 2648 }
1655 2649
1656 ((WT)w)->at -= mn_now; 2650 ev_at (w) -= mn_now;
1657 2651
1658 ev_stop (EV_A_ (W)w); 2652 ev_stop (EV_A_ (W)w);
1659}
1660 2653
1661void 2654 EV_FREQUENT_CHECK;
2655}
2656
2657void noinline
1662ev_timer_again (EV_P_ ev_timer *w) 2658ev_timer_again (EV_P_ ev_timer *w)
1663{ 2659{
2660 EV_FREQUENT_CHECK;
2661
1664 if (ev_is_active (w)) 2662 if (ev_is_active (w))
1665 { 2663 {
1666 if (w->repeat) 2664 if (w->repeat)
1667 { 2665 {
1668 ((WT)w)->at = mn_now + w->repeat; 2666 ev_at (w) = mn_now + w->repeat;
2667 ANHE_at_cache (timers [ev_active (w)]);
1669 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2668 adjustheap (timers, timercnt, ev_active (w));
1670 } 2669 }
1671 else 2670 else
1672 ev_timer_stop (EV_A_ w); 2671 ev_timer_stop (EV_A_ w);
1673 } 2672 }
1674 else if (w->repeat) 2673 else if (w->repeat)
1675 { 2674 {
1676 w->at = w->repeat; 2675 ev_at (w) = w->repeat;
1677 ev_timer_start (EV_A_ w); 2676 ev_timer_start (EV_A_ w);
1678 } 2677 }
2678
2679 EV_FREQUENT_CHECK;
2680}
2681
2682ev_tstamp
2683ev_timer_remaining (EV_P_ ev_timer *w)
2684{
2685 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1679} 2686}
1680 2687
1681#if EV_PERIODIC_ENABLE 2688#if EV_PERIODIC_ENABLE
1682void 2689void noinline
1683ev_periodic_start (EV_P_ ev_periodic *w) 2690ev_periodic_start (EV_P_ ev_periodic *w)
1684{ 2691{
1685 if (expect_false (ev_is_active (w))) 2692 if (expect_false (ev_is_active (w)))
1686 return; 2693 return;
1687 2694
1688 if (w->reschedule_cb) 2695 if (w->reschedule_cb)
1689 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2696 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1690 else if (w->interval) 2697 else if (w->interval)
1691 { 2698 {
1692 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2699 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1693 /* this formula differs from the one in periodic_reify because we do not always round up */ 2700 /* this formula differs from the one in periodic_reify because we do not always round up */
1694 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2701 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695 } 2702 }
2703 else
2704 ev_at (w) = w->offset;
1696 2705
2706 EV_FREQUENT_CHECK;
2707
2708 ++periodiccnt;
1697 ev_start (EV_A_ (W)w, ++periodiccnt); 2709 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1698 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2710 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1699 periodics [periodiccnt - 1] = w; 2711 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1700 upheap ((WT *)periodics, periodiccnt - 1); 2712 ANHE_at_cache (periodics [ev_active (w)]);
2713 upheap (periodics, ev_active (w));
1701 2714
2715 EV_FREQUENT_CHECK;
2716
1702 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2717 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1703} 2718}
1704 2719
1705void 2720void noinline
1706ev_periodic_stop (EV_P_ ev_periodic *w) 2721ev_periodic_stop (EV_P_ ev_periodic *w)
1707{ 2722{
1708 clear_pending (EV_A_ (W)w); 2723 clear_pending (EV_A_ (W)w);
1709 if (expect_false (!ev_is_active (w))) 2724 if (expect_false (!ev_is_active (w)))
1710 return; 2725 return;
1711 2726
1712 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2727 EV_FREQUENT_CHECK;
1713 2728
1714 { 2729 {
1715 int active = ((W)w)->active; 2730 int active = ev_active (w);
1716 2731
2732 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2733
2734 --periodiccnt;
2735
1717 if (expect_true (--active < --periodiccnt)) 2736 if (expect_true (active < periodiccnt + HEAP0))
1718 { 2737 {
1719 periodics [active] = periodics [periodiccnt]; 2738 periodics [active] = periodics [periodiccnt + HEAP0];
1720 adjustheap ((WT *)periodics, periodiccnt, active); 2739 adjustheap (periodics, periodiccnt, active);
1721 } 2740 }
1722 } 2741 }
1723 2742
1724 ev_stop (EV_A_ (W)w); 2743 ev_stop (EV_A_ (W)w);
1725}
1726 2744
1727void 2745 EV_FREQUENT_CHECK;
2746}
2747
2748void noinline
1728ev_periodic_again (EV_P_ ev_periodic *w) 2749ev_periodic_again (EV_P_ ev_periodic *w)
1729{ 2750{
1730 /* TODO: use adjustheap and recalculation */ 2751 /* TODO: use adjustheap and recalculation */
1731 ev_periodic_stop (EV_A_ w); 2752 ev_periodic_stop (EV_A_ w);
1732 ev_periodic_start (EV_A_ w); 2753 ev_periodic_start (EV_A_ w);
1735 2756
1736#ifndef SA_RESTART 2757#ifndef SA_RESTART
1737# define SA_RESTART 0 2758# define SA_RESTART 0
1738#endif 2759#endif
1739 2760
1740void 2761#if EV_SIGNAL_ENABLE
2762
2763void noinline
1741ev_signal_start (EV_P_ ev_signal *w) 2764ev_signal_start (EV_P_ ev_signal *w)
1742{ 2765{
1743#if EV_MULTIPLICITY
1744 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1745#endif
1746 if (expect_false (ev_is_active (w))) 2766 if (expect_false (ev_is_active (w)))
1747 return; 2767 return;
1748 2768
1749 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2769 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2770
2771#if EV_MULTIPLICITY
2772 assert (("libev: a signal must not be attached to two different loops",
2773 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2774
2775 signals [w->signum - 1].loop = EV_A;
2776#endif
2777
2778 EV_FREQUENT_CHECK;
2779
2780#if EV_USE_SIGNALFD
2781 if (sigfd == -2)
2782 {
2783 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2784 if (sigfd < 0 && errno == EINVAL)
2785 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2786
2787 if (sigfd >= 0)
2788 {
2789 fd_intern (sigfd); /* doing it twice will not hurt */
2790
2791 sigemptyset (&sigfd_set);
2792
2793 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2794 ev_set_priority (&sigfd_w, EV_MAXPRI);
2795 ev_io_start (EV_A_ &sigfd_w);
2796 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2797 }
2798 }
2799
2800 if (sigfd >= 0)
2801 {
2802 /* TODO: check .head */
2803 sigaddset (&sigfd_set, w->signum);
2804 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2805
2806 signalfd (sigfd, &sigfd_set, 0);
2807 }
2808#endif
1750 2809
1751 ev_start (EV_A_ (W)w, 1); 2810 ev_start (EV_A_ (W)w, 1);
1752 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1753 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2811 wlist_add (&signals [w->signum - 1].head, (WL)w);
1754 2812
1755 if (!((WL)w)->next) 2813 if (!((WL)w)->next)
2814# if EV_USE_SIGNALFD
2815 if (sigfd < 0) /*TODO*/
2816# endif
1756 { 2817 {
1757#if _WIN32 2818# ifdef _WIN32
2819 evpipe_init (EV_A);
2820
1758 signal (w->signum, sighandler); 2821 signal (w->signum, ev_sighandler);
1759#else 2822# else
1760 struct sigaction sa; 2823 struct sigaction sa;
2824
2825 evpipe_init (EV_A);
2826
1761 sa.sa_handler = sighandler; 2827 sa.sa_handler = ev_sighandler;
1762 sigfillset (&sa.sa_mask); 2828 sigfillset (&sa.sa_mask);
1763 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2829 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1764 sigaction (w->signum, &sa, 0); 2830 sigaction (w->signum, &sa, 0);
2831
2832 sigemptyset (&sa.sa_mask);
2833 sigaddset (&sa.sa_mask, w->signum);
2834 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1765#endif 2835#endif
1766 } 2836 }
1767}
1768 2837
1769void 2838 EV_FREQUENT_CHECK;
2839}
2840
2841void noinline
1770ev_signal_stop (EV_P_ ev_signal *w) 2842ev_signal_stop (EV_P_ ev_signal *w)
1771{ 2843{
1772 clear_pending (EV_A_ (W)w); 2844 clear_pending (EV_A_ (W)w);
1773 if (expect_false (!ev_is_active (w))) 2845 if (expect_false (!ev_is_active (w)))
1774 return; 2846 return;
1775 2847
2848 EV_FREQUENT_CHECK;
2849
1776 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2850 wlist_del (&signals [w->signum - 1].head, (WL)w);
1777 ev_stop (EV_A_ (W)w); 2851 ev_stop (EV_A_ (W)w);
1778 2852
1779 if (!signals [w->signum - 1].head) 2853 if (!signals [w->signum - 1].head)
2854 {
2855#if EV_MULTIPLICITY
2856 signals [w->signum - 1].loop = 0; /* unattach from signal */
2857#endif
2858#if EV_USE_SIGNALFD
2859 if (sigfd >= 0)
2860 {
2861 sigset_t ss;
2862
2863 sigemptyset (&ss);
2864 sigaddset (&ss, w->signum);
2865 sigdelset (&sigfd_set, w->signum);
2866
2867 signalfd (sigfd, &sigfd_set, 0);
2868 sigprocmask (SIG_UNBLOCK, &ss, 0);
2869 }
2870 else
2871#endif
1780 signal (w->signum, SIG_DFL); 2872 signal (w->signum, SIG_DFL);
2873 }
2874
2875 EV_FREQUENT_CHECK;
1781} 2876}
2877
2878#endif
2879
2880#if EV_CHILD_ENABLE
1782 2881
1783void 2882void
1784ev_child_start (EV_P_ ev_child *w) 2883ev_child_start (EV_P_ ev_child *w)
1785{ 2884{
1786#if EV_MULTIPLICITY 2885#if EV_MULTIPLICITY
1787 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2886 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1788#endif 2887#endif
1789 if (expect_false (ev_is_active (w))) 2888 if (expect_false (ev_is_active (w)))
1790 return; 2889 return;
1791 2890
2891 EV_FREQUENT_CHECK;
2892
1792 ev_start (EV_A_ (W)w, 1); 2893 ev_start (EV_A_ (W)w, 1);
1793 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2894 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2895
2896 EV_FREQUENT_CHECK;
1794} 2897}
1795 2898
1796void 2899void
1797ev_child_stop (EV_P_ ev_child *w) 2900ev_child_stop (EV_P_ ev_child *w)
1798{ 2901{
1799 clear_pending (EV_A_ (W)w); 2902 clear_pending (EV_A_ (W)w);
1800 if (expect_false (!ev_is_active (w))) 2903 if (expect_false (!ev_is_active (w)))
1801 return; 2904 return;
1802 2905
2906 EV_FREQUENT_CHECK;
2907
1803 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2908 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1804 ev_stop (EV_A_ (W)w); 2909 ev_stop (EV_A_ (W)w);
2910
2911 EV_FREQUENT_CHECK;
1805} 2912}
2913
2914#endif
1806 2915
1807#if EV_STAT_ENABLE 2916#if EV_STAT_ENABLE
1808 2917
1809# ifdef _WIN32 2918# ifdef _WIN32
1810# undef lstat 2919# undef lstat
1811# define lstat(a,b) _stati64 (a,b) 2920# define lstat(a,b) _stati64 (a,b)
1812# endif 2921# endif
1813 2922
1814#define DEF_STAT_INTERVAL 5.0074891 2923#define DEF_STAT_INTERVAL 5.0074891
2924#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1815#define MIN_STAT_INTERVAL 0.1074891 2925#define MIN_STAT_INTERVAL 0.1074891
1816 2926
1817static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2927static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1818 2928
1819#if EV_USE_INOTIFY 2929#if EV_USE_INOTIFY
1820# define EV_INOTIFY_BUFSIZE 8192 2930
2931/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2932# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1821 2933
1822static void noinline 2934static void noinline
1823infy_add (EV_P_ ev_stat *w) 2935infy_add (EV_P_ ev_stat *w)
1824{ 2936{
1825 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2937 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1826 2938
1827 if (w->wd < 0) 2939 if (w->wd >= 0)
2940 {
2941 struct statfs sfs;
2942
2943 /* now local changes will be tracked by inotify, but remote changes won't */
2944 /* unless the filesystem is known to be local, we therefore still poll */
2945 /* also do poll on <2.6.25, but with normal frequency */
2946
2947 if (!fs_2625)
2948 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2949 else if (!statfs (w->path, &sfs)
2950 && (sfs.f_type == 0x1373 /* devfs */
2951 || sfs.f_type == 0xEF53 /* ext2/3 */
2952 || sfs.f_type == 0x3153464a /* jfs */
2953 || sfs.f_type == 0x52654973 /* reiser3 */
2954 || sfs.f_type == 0x01021994 /* tempfs */
2955 || sfs.f_type == 0x58465342 /* xfs */))
2956 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2957 else
2958 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1828 { 2959 }
1829 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2960 else
2961 {
2962 /* can't use inotify, continue to stat */
2963 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1830 2964
1831 /* monitor some parent directory for speedup hints */ 2965 /* if path is not there, monitor some parent directory for speedup hints */
2966 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2967 /* but an efficiency issue only */
1832 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2968 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1833 { 2969 {
1834 char path [4096]; 2970 char path [4096];
1835 strcpy (path, w->path); 2971 strcpy (path, w->path);
1836 2972
1839 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2975 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1840 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2976 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1841 2977
1842 char *pend = strrchr (path, '/'); 2978 char *pend = strrchr (path, '/');
1843 2979
1844 if (!pend) 2980 if (!pend || pend == path)
1845 break; /* whoops, no '/', complain to your admin */ 2981 break;
1846 2982
1847 *pend = 0; 2983 *pend = 0;
1848 w->wd = inotify_add_watch (fs_fd, path, mask); 2984 w->wd = inotify_add_watch (fs_fd, path, mask);
1849 } 2985 }
1850 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2986 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1851 } 2987 }
1852 } 2988 }
1853 else
1854 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1855 2989
1856 if (w->wd >= 0) 2990 if (w->wd >= 0)
1857 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2991 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2992
2993 /* now re-arm timer, if required */
2994 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2995 ev_timer_again (EV_A_ &w->timer);
2996 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1858} 2997}
1859 2998
1860static void noinline 2999static void noinline
1861infy_del (EV_P_ ev_stat *w) 3000infy_del (EV_P_ ev_stat *w)
1862{ 3001{
1865 3004
1866 if (wd < 0) 3005 if (wd < 0)
1867 return; 3006 return;
1868 3007
1869 w->wd = -2; 3008 w->wd = -2;
1870 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3009 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1871 wlist_del (&fs_hash [slot].head, (WL)w); 3010 wlist_del (&fs_hash [slot].head, (WL)w);
1872 3011
1873 /* remove this watcher, if others are watching it, they will rearm */ 3012 /* remove this watcher, if others are watching it, they will rearm */
1874 inotify_rm_watch (fs_fd, wd); 3013 inotify_rm_watch (fs_fd, wd);
1875} 3014}
1876 3015
1877static void noinline 3016static void noinline
1878infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3017infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1879{ 3018{
1880 if (slot < 0) 3019 if (slot < 0)
1881 /* overflow, need to check for all hahs slots */ 3020 /* overflow, need to check for all hash slots */
1882 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3021 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1883 infy_wd (EV_A_ slot, wd, ev); 3022 infy_wd (EV_A_ slot, wd, ev);
1884 else 3023 else
1885 { 3024 {
1886 WL w_; 3025 WL w_;
1887 3026
1888 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3027 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1889 { 3028 {
1890 ev_stat *w = (ev_stat *)w_; 3029 ev_stat *w = (ev_stat *)w_;
1891 w_ = w_->next; /* lets us remove this watcher and all before it */ 3030 w_ = w_->next; /* lets us remove this watcher and all before it */
1892 3031
1893 if (w->wd == wd || wd == -1) 3032 if (w->wd == wd || wd == -1)
1894 { 3033 {
1895 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3034 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1896 { 3035 {
3036 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1897 w->wd = -1; 3037 w->wd = -1;
1898 infy_add (EV_A_ w); /* re-add, no matter what */ 3038 infy_add (EV_A_ w); /* re-add, no matter what */
1899 } 3039 }
1900 3040
1901 stat_timer_cb (EV_A_ &w->timer, 0); 3041 stat_timer_cb (EV_A_ &w->timer, 0);
1906 3046
1907static void 3047static void
1908infy_cb (EV_P_ ev_io *w, int revents) 3048infy_cb (EV_P_ ev_io *w, int revents)
1909{ 3049{
1910 char buf [EV_INOTIFY_BUFSIZE]; 3050 char buf [EV_INOTIFY_BUFSIZE];
1911 struct inotify_event *ev = (struct inotify_event *)buf;
1912 int ofs; 3051 int ofs;
1913 int len = read (fs_fd, buf, sizeof (buf)); 3052 int len = read (fs_fd, buf, sizeof (buf));
1914 3053
1915 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3054 for (ofs = 0; ofs < len; )
3055 {
3056 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1916 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3057 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3058 ofs += sizeof (struct inotify_event) + ev->len;
3059 }
1917} 3060}
1918 3061
1919void inline_size 3062inline_size unsigned int
3063ev_linux_version (void)
3064{
3065 struct utsname buf;
3066 unsigned int v;
3067 int i;
3068 char *p = buf.release;
3069
3070 if (uname (&buf))
3071 return 0;
3072
3073 for (i = 3+1; --i; )
3074 {
3075 unsigned int c = 0;
3076
3077 for (;;)
3078 {
3079 if (*p >= '0' && *p <= '9')
3080 c = c * 10 + *p++ - '0';
3081 else
3082 {
3083 p += *p == '.';
3084 break;
3085 }
3086 }
3087
3088 v = (v << 8) | c;
3089 }
3090
3091 return v;
3092}
3093
3094inline_size void
3095ev_check_2625 (EV_P)
3096{
3097 /* kernels < 2.6.25 are borked
3098 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3099 */
3100 if (ev_linux_version () < 0x020619)
3101 return;
3102
3103 fs_2625 = 1;
3104}
3105
3106inline_size int
3107infy_newfd (void)
3108{
3109#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3110 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3111 if (fd >= 0)
3112 return fd;
3113#endif
3114 return inotify_init ();
3115}
3116
3117inline_size void
1920infy_init (EV_P) 3118infy_init (EV_P)
1921{ 3119{
1922 if (fs_fd != -2) 3120 if (fs_fd != -2)
1923 return; 3121 return;
1924 3122
3123 fs_fd = -1;
3124
3125 ev_check_2625 (EV_A);
3126
1925 fs_fd = inotify_init (); 3127 fs_fd = infy_newfd ();
1926 3128
1927 if (fs_fd >= 0) 3129 if (fs_fd >= 0)
1928 { 3130 {
3131 fd_intern (fs_fd);
1929 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3132 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1930 ev_set_priority (&fs_w, EV_MAXPRI); 3133 ev_set_priority (&fs_w, EV_MAXPRI);
1931 ev_io_start (EV_A_ &fs_w); 3134 ev_io_start (EV_A_ &fs_w);
3135 ev_unref (EV_A);
1932 } 3136 }
1933} 3137}
1934 3138
1935void inline_size 3139inline_size void
1936infy_fork (EV_P) 3140infy_fork (EV_P)
1937{ 3141{
1938 int slot; 3142 int slot;
1939 3143
1940 if (fs_fd < 0) 3144 if (fs_fd < 0)
1941 return; 3145 return;
1942 3146
3147 ev_ref (EV_A);
3148 ev_io_stop (EV_A_ &fs_w);
1943 close (fs_fd); 3149 close (fs_fd);
1944 fs_fd = inotify_init (); 3150 fs_fd = infy_newfd ();
1945 3151
3152 if (fs_fd >= 0)
3153 {
3154 fd_intern (fs_fd);
3155 ev_io_set (&fs_w, fs_fd, EV_READ);
3156 ev_io_start (EV_A_ &fs_w);
3157 ev_unref (EV_A);
3158 }
3159
1946 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3160 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1947 { 3161 {
1948 WL w_ = fs_hash [slot].head; 3162 WL w_ = fs_hash [slot].head;
1949 fs_hash [slot].head = 0; 3163 fs_hash [slot].head = 0;
1950 3164
1951 while (w_) 3165 while (w_)
1956 w->wd = -1; 3170 w->wd = -1;
1957 3171
1958 if (fs_fd >= 0) 3172 if (fs_fd >= 0)
1959 infy_add (EV_A_ w); /* re-add, no matter what */ 3173 infy_add (EV_A_ w); /* re-add, no matter what */
1960 else 3174 else
3175 {
3176 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3177 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1961 ev_timer_start (EV_A_ &w->timer); 3178 ev_timer_again (EV_A_ &w->timer);
3179 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3180 }
1962 } 3181 }
1963
1964 } 3182 }
1965} 3183}
1966 3184
3185#endif
3186
3187#ifdef _WIN32
3188# define EV_LSTAT(p,b) _stati64 (p, b)
3189#else
3190# define EV_LSTAT(p,b) lstat (p, b)
1967#endif 3191#endif
1968 3192
1969void 3193void
1970ev_stat_stat (EV_P_ ev_stat *w) 3194ev_stat_stat (EV_P_ ev_stat *w)
1971{ 3195{
1978static void noinline 3202static void noinline
1979stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3203stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1980{ 3204{
1981 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3205 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1982 3206
1983 /* we copy this here each the time so that */ 3207 ev_statdata prev = w->attr;
1984 /* prev has the old value when the callback gets invoked */
1985 w->prev = w->attr;
1986 ev_stat_stat (EV_A_ w); 3208 ev_stat_stat (EV_A_ w);
1987 3209
1988 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3210 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1989 if ( 3211 if (
1990 w->prev.st_dev != w->attr.st_dev 3212 prev.st_dev != w->attr.st_dev
1991 || w->prev.st_ino != w->attr.st_ino 3213 || prev.st_ino != w->attr.st_ino
1992 || w->prev.st_mode != w->attr.st_mode 3214 || prev.st_mode != w->attr.st_mode
1993 || w->prev.st_nlink != w->attr.st_nlink 3215 || prev.st_nlink != w->attr.st_nlink
1994 || w->prev.st_uid != w->attr.st_uid 3216 || prev.st_uid != w->attr.st_uid
1995 || w->prev.st_gid != w->attr.st_gid 3217 || prev.st_gid != w->attr.st_gid
1996 || w->prev.st_rdev != w->attr.st_rdev 3218 || prev.st_rdev != w->attr.st_rdev
1997 || w->prev.st_size != w->attr.st_size 3219 || prev.st_size != w->attr.st_size
1998 || w->prev.st_atime != w->attr.st_atime 3220 || prev.st_atime != w->attr.st_atime
1999 || w->prev.st_mtime != w->attr.st_mtime 3221 || prev.st_mtime != w->attr.st_mtime
2000 || w->prev.st_ctime != w->attr.st_ctime 3222 || prev.st_ctime != w->attr.st_ctime
2001 ) { 3223 ) {
3224 /* we only update w->prev on actual differences */
3225 /* in case we test more often than invoke the callback, */
3226 /* to ensure that prev is always different to attr */
3227 w->prev = prev;
3228
2002 #if EV_USE_INOTIFY 3229 #if EV_USE_INOTIFY
3230 if (fs_fd >= 0)
3231 {
2003 infy_del (EV_A_ w); 3232 infy_del (EV_A_ w);
2004 infy_add (EV_A_ w); 3233 infy_add (EV_A_ w);
2005 ev_stat_stat (EV_A_ w); /* avoid race... */ 3234 ev_stat_stat (EV_A_ w); /* avoid race... */
3235 }
2006 #endif 3236 #endif
2007 3237
2008 ev_feed_event (EV_A_ w, EV_STAT); 3238 ev_feed_event (EV_A_ w, EV_STAT);
2009 } 3239 }
2010} 3240}
2013ev_stat_start (EV_P_ ev_stat *w) 3243ev_stat_start (EV_P_ ev_stat *w)
2014{ 3244{
2015 if (expect_false (ev_is_active (w))) 3245 if (expect_false (ev_is_active (w)))
2016 return; 3246 return;
2017 3247
2018 /* since we use memcmp, we need to clear any padding data etc. */
2019 memset (&w->prev, 0, sizeof (ev_statdata));
2020 memset (&w->attr, 0, sizeof (ev_statdata));
2021
2022 ev_stat_stat (EV_A_ w); 3248 ev_stat_stat (EV_A_ w);
2023 3249
3250 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2024 if (w->interval < MIN_STAT_INTERVAL) 3251 w->interval = MIN_STAT_INTERVAL;
2025 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2026 3252
2027 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3253 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2028 ev_set_priority (&w->timer, ev_priority (w)); 3254 ev_set_priority (&w->timer, ev_priority (w));
2029 3255
2030#if EV_USE_INOTIFY 3256#if EV_USE_INOTIFY
2031 infy_init (EV_A); 3257 infy_init (EV_A);
2032 3258
2033 if (fs_fd >= 0) 3259 if (fs_fd >= 0)
2034 infy_add (EV_A_ w); 3260 infy_add (EV_A_ w);
2035 else 3261 else
2036#endif 3262#endif
3263 {
2037 ev_timer_start (EV_A_ &w->timer); 3264 ev_timer_again (EV_A_ &w->timer);
3265 ev_unref (EV_A);
3266 }
2038 3267
2039 ev_start (EV_A_ (W)w, 1); 3268 ev_start (EV_A_ (W)w, 1);
3269
3270 EV_FREQUENT_CHECK;
2040} 3271}
2041 3272
2042void 3273void
2043ev_stat_stop (EV_P_ ev_stat *w) 3274ev_stat_stop (EV_P_ ev_stat *w)
2044{ 3275{
2045 clear_pending (EV_A_ (W)w); 3276 clear_pending (EV_A_ (W)w);
2046 if (expect_false (!ev_is_active (w))) 3277 if (expect_false (!ev_is_active (w)))
2047 return; 3278 return;
2048 3279
3280 EV_FREQUENT_CHECK;
3281
2049#if EV_USE_INOTIFY 3282#if EV_USE_INOTIFY
2050 infy_del (EV_A_ w); 3283 infy_del (EV_A_ w);
2051#endif 3284#endif
3285
3286 if (ev_is_active (&w->timer))
3287 {
3288 ev_ref (EV_A);
2052 ev_timer_stop (EV_A_ &w->timer); 3289 ev_timer_stop (EV_A_ &w->timer);
3290 }
2053 3291
2054 ev_stop (EV_A_ (W)w); 3292 ev_stop (EV_A_ (W)w);
3293
3294 EV_FREQUENT_CHECK;
2055} 3295}
2056#endif 3296#endif
2057 3297
2058#if EV_IDLE_ENABLE 3298#if EV_IDLE_ENABLE
2059void 3299void
2061{ 3301{
2062 if (expect_false (ev_is_active (w))) 3302 if (expect_false (ev_is_active (w)))
2063 return; 3303 return;
2064 3304
2065 pri_adjust (EV_A_ (W)w); 3305 pri_adjust (EV_A_ (W)w);
3306
3307 EV_FREQUENT_CHECK;
2066 3308
2067 { 3309 {
2068 int active = ++idlecnt [ABSPRI (w)]; 3310 int active = ++idlecnt [ABSPRI (w)];
2069 3311
2070 ++idleall; 3312 ++idleall;
2071 ev_start (EV_A_ (W)w, active); 3313 ev_start (EV_A_ (W)w, active);
2072 3314
2073 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3315 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2074 idles [ABSPRI (w)][active - 1] = w; 3316 idles [ABSPRI (w)][active - 1] = w;
2075 } 3317 }
3318
3319 EV_FREQUENT_CHECK;
2076} 3320}
2077 3321
2078void 3322void
2079ev_idle_stop (EV_P_ ev_idle *w) 3323ev_idle_stop (EV_P_ ev_idle *w)
2080{ 3324{
2081 clear_pending (EV_A_ (W)w); 3325 clear_pending (EV_A_ (W)w);
2082 if (expect_false (!ev_is_active (w))) 3326 if (expect_false (!ev_is_active (w)))
2083 return; 3327 return;
2084 3328
3329 EV_FREQUENT_CHECK;
3330
2085 { 3331 {
2086 int active = ((W)w)->active; 3332 int active = ev_active (w);
2087 3333
2088 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3334 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2089 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3335 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2090 3336
2091 ev_stop (EV_A_ (W)w); 3337 ev_stop (EV_A_ (W)w);
2092 --idleall; 3338 --idleall;
2093 } 3339 }
2094}
2095#endif
2096 3340
3341 EV_FREQUENT_CHECK;
3342}
3343#endif
3344
3345#if EV_PREPARE_ENABLE
2097void 3346void
2098ev_prepare_start (EV_P_ ev_prepare *w) 3347ev_prepare_start (EV_P_ ev_prepare *w)
2099{ 3348{
2100 if (expect_false (ev_is_active (w))) 3349 if (expect_false (ev_is_active (w)))
2101 return; 3350 return;
3351
3352 EV_FREQUENT_CHECK;
2102 3353
2103 ev_start (EV_A_ (W)w, ++preparecnt); 3354 ev_start (EV_A_ (W)w, ++preparecnt);
2104 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3355 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2105 prepares [preparecnt - 1] = w; 3356 prepares [preparecnt - 1] = w;
3357
3358 EV_FREQUENT_CHECK;
2106} 3359}
2107 3360
2108void 3361void
2109ev_prepare_stop (EV_P_ ev_prepare *w) 3362ev_prepare_stop (EV_P_ ev_prepare *w)
2110{ 3363{
2111 clear_pending (EV_A_ (W)w); 3364 clear_pending (EV_A_ (W)w);
2112 if (expect_false (!ev_is_active (w))) 3365 if (expect_false (!ev_is_active (w)))
2113 return; 3366 return;
2114 3367
3368 EV_FREQUENT_CHECK;
3369
2115 { 3370 {
2116 int active = ((W)w)->active; 3371 int active = ev_active (w);
3372
2117 prepares [active - 1] = prepares [--preparecnt]; 3373 prepares [active - 1] = prepares [--preparecnt];
2118 ((W)prepares [active - 1])->active = active; 3374 ev_active (prepares [active - 1]) = active;
2119 } 3375 }
2120 3376
2121 ev_stop (EV_A_ (W)w); 3377 ev_stop (EV_A_ (W)w);
2122}
2123 3378
3379 EV_FREQUENT_CHECK;
3380}
3381#endif
3382
3383#if EV_CHECK_ENABLE
2124void 3384void
2125ev_check_start (EV_P_ ev_check *w) 3385ev_check_start (EV_P_ ev_check *w)
2126{ 3386{
2127 if (expect_false (ev_is_active (w))) 3387 if (expect_false (ev_is_active (w)))
2128 return; 3388 return;
3389
3390 EV_FREQUENT_CHECK;
2129 3391
2130 ev_start (EV_A_ (W)w, ++checkcnt); 3392 ev_start (EV_A_ (W)w, ++checkcnt);
2131 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3393 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2132 checks [checkcnt - 1] = w; 3394 checks [checkcnt - 1] = w;
3395
3396 EV_FREQUENT_CHECK;
2133} 3397}
2134 3398
2135void 3399void
2136ev_check_stop (EV_P_ ev_check *w) 3400ev_check_stop (EV_P_ ev_check *w)
2137{ 3401{
2138 clear_pending (EV_A_ (W)w); 3402 clear_pending (EV_A_ (W)w);
2139 if (expect_false (!ev_is_active (w))) 3403 if (expect_false (!ev_is_active (w)))
2140 return; 3404 return;
2141 3405
3406 EV_FREQUENT_CHECK;
3407
2142 { 3408 {
2143 int active = ((W)w)->active; 3409 int active = ev_active (w);
3410
2144 checks [active - 1] = checks [--checkcnt]; 3411 checks [active - 1] = checks [--checkcnt];
2145 ((W)checks [active - 1])->active = active; 3412 ev_active (checks [active - 1]) = active;
2146 } 3413 }
2147 3414
2148 ev_stop (EV_A_ (W)w); 3415 ev_stop (EV_A_ (W)w);
3416
3417 EV_FREQUENT_CHECK;
2149} 3418}
3419#endif
2150 3420
2151#if EV_EMBED_ENABLE 3421#if EV_EMBED_ENABLE
2152void noinline 3422void noinline
2153ev_embed_sweep (EV_P_ ev_embed *w) 3423ev_embed_sweep (EV_P_ ev_embed *w)
2154{ 3424{
2155 ev_loop (w->loop, EVLOOP_NONBLOCK); 3425 ev_loop (w->other, EVLOOP_NONBLOCK);
2156} 3426}
2157 3427
2158static void 3428static void
2159embed_cb (EV_P_ ev_io *io, int revents) 3429embed_io_cb (EV_P_ ev_io *io, int revents)
2160{ 3430{
2161 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3431 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2162 3432
2163 if (ev_cb (w)) 3433 if (ev_cb (w))
2164 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3434 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2165 else 3435 else
2166 ev_embed_sweep (loop, w); 3436 ev_loop (w->other, EVLOOP_NONBLOCK);
2167} 3437}
3438
3439static void
3440embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3441{
3442 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3443
3444 {
3445 EV_P = w->other;
3446
3447 while (fdchangecnt)
3448 {
3449 fd_reify (EV_A);
3450 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3451 }
3452 }
3453}
3454
3455static void
3456embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3457{
3458 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3459
3460 ev_embed_stop (EV_A_ w);
3461
3462 {
3463 EV_P = w->other;
3464
3465 ev_loop_fork (EV_A);
3466 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3467 }
3468
3469 ev_embed_start (EV_A_ w);
3470}
3471
3472#if 0
3473static void
3474embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3475{
3476 ev_idle_stop (EV_A_ idle);
3477}
3478#endif
2168 3479
2169void 3480void
2170ev_embed_start (EV_P_ ev_embed *w) 3481ev_embed_start (EV_P_ ev_embed *w)
2171{ 3482{
2172 if (expect_false (ev_is_active (w))) 3483 if (expect_false (ev_is_active (w)))
2173 return; 3484 return;
2174 3485
2175 { 3486 {
2176 struct ev_loop *loop = w->loop; 3487 EV_P = w->other;
2177 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3488 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2178 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3489 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2179 } 3490 }
3491
3492 EV_FREQUENT_CHECK;
2180 3493
2181 ev_set_priority (&w->io, ev_priority (w)); 3494 ev_set_priority (&w->io, ev_priority (w));
2182 ev_io_start (EV_A_ &w->io); 3495 ev_io_start (EV_A_ &w->io);
2183 3496
3497 ev_prepare_init (&w->prepare, embed_prepare_cb);
3498 ev_set_priority (&w->prepare, EV_MINPRI);
3499 ev_prepare_start (EV_A_ &w->prepare);
3500
3501 ev_fork_init (&w->fork, embed_fork_cb);
3502 ev_fork_start (EV_A_ &w->fork);
3503
3504 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3505
2184 ev_start (EV_A_ (W)w, 1); 3506 ev_start (EV_A_ (W)w, 1);
3507
3508 EV_FREQUENT_CHECK;
2185} 3509}
2186 3510
2187void 3511void
2188ev_embed_stop (EV_P_ ev_embed *w) 3512ev_embed_stop (EV_P_ ev_embed *w)
2189{ 3513{
2190 clear_pending (EV_A_ (W)w); 3514 clear_pending (EV_A_ (W)w);
2191 if (expect_false (!ev_is_active (w))) 3515 if (expect_false (!ev_is_active (w)))
2192 return; 3516 return;
2193 3517
3518 EV_FREQUENT_CHECK;
3519
2194 ev_io_stop (EV_A_ &w->io); 3520 ev_io_stop (EV_A_ &w->io);
3521 ev_prepare_stop (EV_A_ &w->prepare);
3522 ev_fork_stop (EV_A_ &w->fork);
2195 3523
2196 ev_stop (EV_A_ (W)w); 3524 ev_stop (EV_A_ (W)w);
3525
3526 EV_FREQUENT_CHECK;
2197} 3527}
2198#endif 3528#endif
2199 3529
2200#if EV_FORK_ENABLE 3530#if EV_FORK_ENABLE
2201void 3531void
2202ev_fork_start (EV_P_ ev_fork *w) 3532ev_fork_start (EV_P_ ev_fork *w)
2203{ 3533{
2204 if (expect_false (ev_is_active (w))) 3534 if (expect_false (ev_is_active (w)))
2205 return; 3535 return;
3536
3537 EV_FREQUENT_CHECK;
2206 3538
2207 ev_start (EV_A_ (W)w, ++forkcnt); 3539 ev_start (EV_A_ (W)w, ++forkcnt);
2208 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3540 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2209 forks [forkcnt - 1] = w; 3541 forks [forkcnt - 1] = w;
3542
3543 EV_FREQUENT_CHECK;
2210} 3544}
2211 3545
2212void 3546void
2213ev_fork_stop (EV_P_ ev_fork *w) 3547ev_fork_stop (EV_P_ ev_fork *w)
2214{ 3548{
2215 clear_pending (EV_A_ (W)w); 3549 clear_pending (EV_A_ (W)w);
2216 if (expect_false (!ev_is_active (w))) 3550 if (expect_false (!ev_is_active (w)))
2217 return; 3551 return;
2218 3552
3553 EV_FREQUENT_CHECK;
3554
2219 { 3555 {
2220 int active = ((W)w)->active; 3556 int active = ev_active (w);
3557
2221 forks [active - 1] = forks [--forkcnt]; 3558 forks [active - 1] = forks [--forkcnt];
2222 ((W)forks [active - 1])->active = active; 3559 ev_active (forks [active - 1]) = active;
2223 } 3560 }
2224 3561
2225 ev_stop (EV_A_ (W)w); 3562 ev_stop (EV_A_ (W)w);
3563
3564 EV_FREQUENT_CHECK;
3565}
3566#endif
3567
3568#if EV_ASYNC_ENABLE
3569void
3570ev_async_start (EV_P_ ev_async *w)
3571{
3572 if (expect_false (ev_is_active (w)))
3573 return;
3574
3575 evpipe_init (EV_A);
3576
3577 EV_FREQUENT_CHECK;
3578
3579 ev_start (EV_A_ (W)w, ++asynccnt);
3580 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3581 asyncs [asynccnt - 1] = w;
3582
3583 EV_FREQUENT_CHECK;
3584}
3585
3586void
3587ev_async_stop (EV_P_ ev_async *w)
3588{
3589 clear_pending (EV_A_ (W)w);
3590 if (expect_false (!ev_is_active (w)))
3591 return;
3592
3593 EV_FREQUENT_CHECK;
3594
3595 {
3596 int active = ev_active (w);
3597
3598 asyncs [active - 1] = asyncs [--asynccnt];
3599 ev_active (asyncs [active - 1]) = active;
3600 }
3601
3602 ev_stop (EV_A_ (W)w);
3603
3604 EV_FREQUENT_CHECK;
3605}
3606
3607void
3608ev_async_send (EV_P_ ev_async *w)
3609{
3610 w->sent = 1;
3611 evpipe_write (EV_A_ &async_pending);
2226} 3612}
2227#endif 3613#endif
2228 3614
2229/*****************************************************************************/ 3615/*****************************************************************************/
2230 3616
2240once_cb (EV_P_ struct ev_once *once, int revents) 3626once_cb (EV_P_ struct ev_once *once, int revents)
2241{ 3627{
2242 void (*cb)(int revents, void *arg) = once->cb; 3628 void (*cb)(int revents, void *arg) = once->cb;
2243 void *arg = once->arg; 3629 void *arg = once->arg;
2244 3630
2245 ev_io_stop (EV_A_ &once->io); 3631 ev_io_stop (EV_A_ &once->io);
2246 ev_timer_stop (EV_A_ &once->to); 3632 ev_timer_stop (EV_A_ &once->to);
2247 ev_free (once); 3633 ev_free (once);
2248 3634
2249 cb (revents, arg); 3635 cb (revents, arg);
2250} 3636}
2251 3637
2252static void 3638static void
2253once_cb_io (EV_P_ ev_io *w, int revents) 3639once_cb_io (EV_P_ ev_io *w, int revents)
2254{ 3640{
2255 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3641 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3642
3643 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2256} 3644}
2257 3645
2258static void 3646static void
2259once_cb_to (EV_P_ ev_timer *w, int revents) 3647once_cb_to (EV_P_ ev_timer *w, int revents)
2260{ 3648{
2261 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3649 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3650
3651 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2262} 3652}
2263 3653
2264void 3654void
2265ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3655ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2266{ 3656{
2267 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3657 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2268 3658
2269 if (expect_false (!once)) 3659 if (expect_false (!once))
2270 { 3660 {
2271 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3661 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2272 return; 3662 return;
2273 } 3663 }
2274 3664
2275 once->cb = cb; 3665 once->cb = cb;
2276 once->arg = arg; 3666 once->arg = arg;
2288 ev_timer_set (&once->to, timeout, 0.); 3678 ev_timer_set (&once->to, timeout, 0.);
2289 ev_timer_start (EV_A_ &once->to); 3679 ev_timer_start (EV_A_ &once->to);
2290 } 3680 }
2291} 3681}
2292 3682
3683/*****************************************************************************/
3684
3685#if EV_WALK_ENABLE
3686void
3687ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3688{
3689 int i, j;
3690 ev_watcher_list *wl, *wn;
3691
3692 if (types & (EV_IO | EV_EMBED))
3693 for (i = 0; i < anfdmax; ++i)
3694 for (wl = anfds [i].head; wl; )
3695 {
3696 wn = wl->next;
3697
3698#if EV_EMBED_ENABLE
3699 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3700 {
3701 if (types & EV_EMBED)
3702 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3703 }
3704 else
3705#endif
3706#if EV_USE_INOTIFY
3707 if (ev_cb ((ev_io *)wl) == infy_cb)
3708 ;
3709 else
3710#endif
3711 if ((ev_io *)wl != &pipe_w)
3712 if (types & EV_IO)
3713 cb (EV_A_ EV_IO, wl);
3714
3715 wl = wn;
3716 }
3717
3718 if (types & (EV_TIMER | EV_STAT))
3719 for (i = timercnt + HEAP0; i-- > HEAP0; )
3720#if EV_STAT_ENABLE
3721 /*TODO: timer is not always active*/
3722 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3723 {
3724 if (types & EV_STAT)
3725 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3726 }
3727 else
3728#endif
3729 if (types & EV_TIMER)
3730 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3731
3732#if EV_PERIODIC_ENABLE
3733 if (types & EV_PERIODIC)
3734 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3735 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3736#endif
3737
3738#if EV_IDLE_ENABLE
3739 if (types & EV_IDLE)
3740 for (j = NUMPRI; i--; )
3741 for (i = idlecnt [j]; i--; )
3742 cb (EV_A_ EV_IDLE, idles [j][i]);
3743#endif
3744
3745#if EV_FORK_ENABLE
3746 if (types & EV_FORK)
3747 for (i = forkcnt; i--; )
3748 if (ev_cb (forks [i]) != embed_fork_cb)
3749 cb (EV_A_ EV_FORK, forks [i]);
3750#endif
3751
3752#if EV_ASYNC_ENABLE
3753 if (types & EV_ASYNC)
3754 for (i = asynccnt; i--; )
3755 cb (EV_A_ EV_ASYNC, asyncs [i]);
3756#endif
3757
3758#if EV_PREPARE_ENABLE
3759 if (types & EV_PREPARE)
3760 for (i = preparecnt; i--; )
3761# if EV_EMBED_ENABLE
3762 if (ev_cb (prepares [i]) != embed_prepare_cb)
3763# endif
3764 cb (EV_A_ EV_PREPARE, prepares [i]);
3765#endif
3766
3767#if EV_CHECK_ENABLE
3768 if (types & EV_CHECK)
3769 for (i = checkcnt; i--; )
3770 cb (EV_A_ EV_CHECK, checks [i]);
3771#endif
3772
3773#if EV_SIGNAL_ENABLE
3774 if (types & EV_SIGNAL)
3775 for (i = 0; i < EV_NSIG - 1; ++i)
3776 for (wl = signals [i].head; wl; )
3777 {
3778 wn = wl->next;
3779 cb (EV_A_ EV_SIGNAL, wl);
3780 wl = wn;
3781 }
3782#endif
3783
3784#if EV_CHILD_ENABLE
3785 if (types & EV_CHILD)
3786 for (i = (EV_PID_HASHSIZE); i--; )
3787 for (wl = childs [i]; wl; )
3788 {
3789 wn = wl->next;
3790 cb (EV_A_ EV_CHILD, wl);
3791 wl = wn;
3792 }
3793#endif
3794/* EV_STAT 0x00001000 /* stat data changed */
3795/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3796}
3797#endif
3798
3799#if EV_MULTIPLICITY
3800 #include "ev_wrap.h"
3801#endif
3802
2293#ifdef __cplusplus 3803#ifdef __cplusplus
2294} 3804}
2295#endif 3805#endif
2296 3806

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines