ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.169 by root, Sat Dec 8 14:27:39 2007 UTC vs.
Revision 1.467 by root, Fri May 16 15:15:39 2014 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012,2013 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
89# endif 127# endif
90 128
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
94# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
97# endif 136# endif
98 137
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
105# endif 145# endif
106 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
107#endif 154# endif
108 155
109#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
110#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
111#include <fcntl.h> 169#include <fcntl.h>
112#include <stddef.h> 170#include <stddef.h>
113 171
114#include <stdio.h> 172#include <stdio.h>
115 173
116#include <assert.h> 174#include <assert.h>
117#include <errno.h> 175#include <errno.h>
118#include <sys/types.h> 176#include <sys/types.h>
119#include <time.h> 177#include <time.h>
178#include <limits.h>
120 179
121#include <signal.h> 180#include <signal.h>
122 181
123#ifdef EV_H 182#ifdef EV_H
124# include EV_H 183# include EV_H
125#else 184#else
126# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
127#endif 197#endif
128 198
129#ifndef _WIN32 199#ifndef _WIN32
130# include <sys/time.h> 200# include <sys/time.h>
131# include <sys/wait.h> 201# include <sys/wait.h>
132# include <unistd.h> 202# include <unistd.h>
133#else 203#else
204# include <io.h>
134# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
135# include <windows.h> 207# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
138# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# define EV_NSIG (8 * sizeof (sigset_t) + 1)
247#endif
248
249#ifndef EV_USE_FLOOR
250# define EV_USE_FLOOR 0
251#endif
252
253#ifndef EV_USE_CLOCK_SYSCALL
254# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
255# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
256# else
257# define EV_USE_CLOCK_SYSCALL 0
139#endif 258# endif
140 259#endif
141/**/
142 260
143#ifndef EV_USE_MONOTONIC 261#ifndef EV_USE_MONOTONIC
262# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
263# define EV_USE_MONOTONIC EV_FEATURE_OS
264# else
144# define EV_USE_MONOTONIC 0 265# define EV_USE_MONOTONIC 0
266# endif
145#endif 267#endif
146 268
147#ifndef EV_USE_REALTIME 269#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 270# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
271#endif
272
273#ifndef EV_USE_NANOSLEEP
274# if _POSIX_C_SOURCE >= 199309L
275# define EV_USE_NANOSLEEP EV_FEATURE_OS
276# else
277# define EV_USE_NANOSLEEP 0
278# endif
149#endif 279#endif
150 280
151#ifndef EV_USE_SELECT 281#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 282# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 283#endif
154 284
155#ifndef EV_USE_POLL 285#ifndef EV_USE_POLL
156# ifdef _WIN32 286# ifdef _WIN32
157# define EV_USE_POLL 0 287# define EV_USE_POLL 0
158# else 288# else
159# define EV_USE_POLL 1 289# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 290# endif
161#endif 291#endif
162 292
163#ifndef EV_USE_EPOLL 293#ifndef EV_USE_EPOLL
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_EPOLL EV_FEATURE_BACKENDS
296# else
164# define EV_USE_EPOLL 0 297# define EV_USE_EPOLL 0
298# endif
165#endif 299#endif
166 300
167#ifndef EV_USE_KQUEUE 301#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 302# define EV_USE_KQUEUE 0
169#endif 303#endif
171#ifndef EV_USE_PORT 305#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 306# define EV_USE_PORT 0
173#endif 307#endif
174 308
175#ifndef EV_USE_INOTIFY 309#ifndef EV_USE_INOTIFY
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
311# define EV_USE_INOTIFY EV_FEATURE_OS
312# else
176# define EV_USE_INOTIFY 0 313# define EV_USE_INOTIFY 0
314# endif
177#endif 315#endif
178 316
179#ifndef EV_PID_HASHSIZE 317#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 318# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 319#endif
320
321#ifndef EV_INOTIFY_HASHSIZE
322# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
323#endif
324
325#ifndef EV_USE_EVENTFD
326# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
327# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 328# else
183# define EV_PID_HASHSIZE 16 329# define EV_USE_EVENTFD 0
184# endif 330# endif
185#endif 331#endif
186 332
187#ifndef EV_INOTIFY_HASHSIZE 333#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 334# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 335# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 336# else
191# define EV_INOTIFY_HASHSIZE 16 337# define EV_USE_SIGNALFD 0
192# endif 338# endif
193#endif 339#endif
194 340
195/**/ 341#if 0 /* debugging */
342# define EV_VERIFY 3
343# define EV_USE_4HEAP 1
344# define EV_HEAP_CACHE_AT 1
345#endif
346
347#ifndef EV_VERIFY
348# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
349#endif
350
351#ifndef EV_USE_4HEAP
352# define EV_USE_4HEAP EV_FEATURE_DATA
353#endif
354
355#ifndef EV_HEAP_CACHE_AT
356# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
357#endif
358
359#ifdef ANDROID
360/* supposedly, android doesn't typedef fd_mask */
361# undef EV_USE_SELECT
362# define EV_USE_SELECT 0
363/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
364# undef EV_USE_CLOCK_SYSCALL
365# define EV_USE_CLOCK_SYSCALL 0
366#endif
367
368/* aix's poll.h seems to cause lots of trouble */
369#ifdef _AIX
370/* AIX has a completely broken poll.h header */
371# undef EV_USE_POLL
372# define EV_USE_POLL 0
373#endif
374
375/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
376/* which makes programs even slower. might work on other unices, too. */
377#if EV_USE_CLOCK_SYSCALL
378# include <sys/syscall.h>
379# ifdef SYS_clock_gettime
380# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
381# undef EV_USE_MONOTONIC
382# define EV_USE_MONOTONIC 1
383# else
384# undef EV_USE_CLOCK_SYSCALL
385# define EV_USE_CLOCK_SYSCALL 0
386# endif
387#endif
388
389/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 390
197#ifndef CLOCK_MONOTONIC 391#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 392# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 393# define EV_USE_MONOTONIC 0
200#endif 394#endif
202#ifndef CLOCK_REALTIME 396#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 397# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 398# define EV_USE_REALTIME 0
205#endif 399#endif
206 400
207#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h>
209#endif
210
211#if !EV_STAT_ENABLE 401#if !EV_STAT_ENABLE
402# undef EV_USE_INOTIFY
212# define EV_USE_INOTIFY 0 403# define EV_USE_INOTIFY 0
213#endif 404#endif
214 405
406#if !EV_USE_NANOSLEEP
407/* hp-ux has it in sys/time.h, which we unconditionally include above */
408# if !defined _WIN32 && !defined __hpux
409# include <sys/select.h>
410# endif
411#endif
412
215#if EV_USE_INOTIFY 413#if EV_USE_INOTIFY
414# include <sys/statfs.h>
216# include <sys/inotify.h> 415# include <sys/inotify.h>
416/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
417# ifndef IN_DONT_FOLLOW
418# undef EV_USE_INOTIFY
419# define EV_USE_INOTIFY 0
420# endif
421#endif
422
423#if EV_USE_EVENTFD
424/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
425# include <stdint.h>
426# ifndef EFD_NONBLOCK
427# define EFD_NONBLOCK O_NONBLOCK
428# endif
429# ifndef EFD_CLOEXEC
430# ifdef O_CLOEXEC
431# define EFD_CLOEXEC O_CLOEXEC
432# else
433# define EFD_CLOEXEC 02000000
434# endif
435# endif
436EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
437#endif
438
439#if EV_USE_SIGNALFD
440/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
441# include <stdint.h>
442# ifndef SFD_NONBLOCK
443# define SFD_NONBLOCK O_NONBLOCK
444# endif
445# ifndef SFD_CLOEXEC
446# ifdef O_CLOEXEC
447# define SFD_CLOEXEC O_CLOEXEC
448# else
449# define SFD_CLOEXEC 02000000
450# endif
451# endif
452EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
453
454struct signalfd_siginfo
455{
456 uint32_t ssi_signo;
457 char pad[128 - sizeof (uint32_t)];
458};
217#endif 459#endif
218 460
219/**/ 461/**/
462
463#if EV_VERIFY >= 3
464# define EV_FREQUENT_CHECK ev_verify (EV_A)
465#else
466# define EV_FREQUENT_CHECK do { } while (0)
467#endif
468
469/*
470 * This is used to work around floating point rounding problems.
471 * This value is good at least till the year 4000.
472 */
473#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
474/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
220 475
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 476#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 477#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 478
479#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
480#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
481
482/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
483/* ECB.H BEGIN */
484/*
485 * libecb - http://software.schmorp.de/pkg/libecb
486 *
487 * Copyright (©) 2009-2014 Marc Alexander Lehmann <libecb@schmorp.de>
488 * Copyright (©) 2011 Emanuele Giaquinta
489 * All rights reserved.
490 *
491 * Redistribution and use in source and binary forms, with or without modifica-
492 * tion, are permitted provided that the following conditions are met:
493 *
494 * 1. Redistributions of source code must retain the above copyright notice,
495 * this list of conditions and the following disclaimer.
496 *
497 * 2. Redistributions in binary form must reproduce the above copyright
498 * notice, this list of conditions and the following disclaimer in the
499 * documentation and/or other materials provided with the distribution.
500 *
501 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
502 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
503 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
504 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
505 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
506 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
507 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
508 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
509 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
510 * OF THE POSSIBILITY OF SUCH DAMAGE.
511 *
512 * Alternatively, the contents of this file may be used under the terms of
513 * the GNU General Public License ("GPL") version 2 or any later version,
514 * in which case the provisions of the GPL are applicable instead of
515 * the above. If you wish to allow the use of your version of this file
516 * only under the terms of the GPL and not to allow others to use your
517 * version of this file under the BSD license, indicate your decision
518 * by deleting the provisions above and replace them with the notice
519 * and other provisions required by the GPL. If you do not delete the
520 * provisions above, a recipient may use your version of this file under
521 * either the BSD or the GPL.
522 */
523
524#ifndef ECB_H
525#define ECB_H
526
527/* 16 bits major, 16 bits minor */
528#define ECB_VERSION 0x00010003
529
530#ifdef _WIN32
531 typedef signed char int8_t;
532 typedef unsigned char uint8_t;
533 typedef signed short int16_t;
534 typedef unsigned short uint16_t;
535 typedef signed int int32_t;
536 typedef unsigned int uint32_t;
225#if __GNUC__ >= 3 537 #if __GNUC__
226# define expect(expr,value) __builtin_expect ((expr),(value)) 538 typedef signed long long int64_t;
227# define noinline __attribute__ ((noinline)) 539 typedef unsigned long long uint64_t;
540 #else /* _MSC_VER || __BORLANDC__ */
541 typedef signed __int64 int64_t;
542 typedef unsigned __int64 uint64_t;
543 #endif
544 #ifdef _WIN64
545 #define ECB_PTRSIZE 8
546 typedef uint64_t uintptr_t;
547 typedef int64_t intptr_t;
548 #else
549 #define ECB_PTRSIZE 4
550 typedef uint32_t uintptr_t;
551 typedef int32_t intptr_t;
552 #endif
228#else 553#else
229# define expect(expr,value) (expr) 554 #include <inttypes.h>
230# define noinline 555 #if UINTMAX_MAX > 0xffffffffU
231# if __STDC_VERSION__ < 199901L 556 #define ECB_PTRSIZE 8
232# define inline 557 #else
558 #define ECB_PTRSIZE 4
559 #endif
233# endif 560#endif
561
562/* work around x32 idiocy by defining proper macros */
563#if __amd64 || __x86_64 || _M_AMD64 || _M_X64
564 #if _ILP32
565 #define ECB_AMD64_X32 1
566 #else
567 #define ECB_AMD64 1
234#endif 568 #endif
569#endif
235 570
571/* many compilers define _GNUC_ to some versions but then only implement
572 * what their idiot authors think are the "more important" extensions,
573 * causing enormous grief in return for some better fake benchmark numbers.
574 * or so.
575 * we try to detect these and simply assume they are not gcc - if they have
576 * an issue with that they should have done it right in the first place.
577 */
578#ifndef ECB_GCC_VERSION
579 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
580 #define ECB_GCC_VERSION(major,minor) 0
581 #else
582 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
583 #endif
584#endif
585
586#define ECB_CPP (__cplusplus+0)
587#define ECB_CPP11 (__cplusplus >= 201103L)
588
589#if ECB_CPP
590 #define ECB_C 0
591 #define ECB_STDC_VERSION 0
592#else
593 #define ECB_C 1
594 #define ECB_STDC_VERSION __STDC_VERSION__
595#endif
596
597#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
598#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
599
600#if ECB_CPP
601 #define ECB_EXTERN_C extern "C"
602 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
603 #define ECB_EXTERN_C_END }
604#else
605 #define ECB_EXTERN_C extern
606 #define ECB_EXTERN_C_BEG
607 #define ECB_EXTERN_C_END
608#endif
609
610/*****************************************************************************/
611
612/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
613/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
614
615#if ECB_NO_THREADS
616 #define ECB_NO_SMP 1
617#endif
618
619#if ECB_NO_SMP
620 #define ECB_MEMORY_FENCE do { } while (0)
621#endif
622
623#ifndef ECB_MEMORY_FENCE
624 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
625 #if __i386 || __i386__
626 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
627 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
628 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
629 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
630 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
631 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
632 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
633 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
634 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
635 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
636 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
637 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
638 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
639 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
640 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
641 #elif __aarch64__
642 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
643 #elif (__sparc || __sparc__) && !__sparcv8
644 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
645 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
646 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
647 #elif defined __s390__ || defined __s390x__
648 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
649 #elif defined __mips__
650 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
651 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
652 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
653 #elif defined __alpha__
654 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
655 #elif defined __hppa__
656 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
657 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
658 #elif defined __ia64__
659 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
660 #elif defined __m68k__
661 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
662 #elif defined __m88k__
663 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
664 #elif defined __sh__
665 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
666 #endif
667 #endif
668#endif
669
670#ifndef ECB_MEMORY_FENCE
671 #if ECB_GCC_VERSION(4,7)
672 /* see comment below (stdatomic.h) about the C11 memory model. */
673 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
674 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
675 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
676
677 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
678 * without risking compile time errors with other compilers. We *could*
679 * define our own ecb_clang_has_feature, but I just can't be bothered to work
680 * around this shit time and again.
681 * #elif defined __clang && __has_feature (cxx_atomic)
682 * // see comment below (stdatomic.h) about the C11 memory model.
683 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
684 * #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
685 * #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
686 */
687
688 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
689 #define ECB_MEMORY_FENCE __sync_synchronize ()
690 #elif _MSC_VER >= 1500 /* VC++ 2008 */
691 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
692 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
693 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
694 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
695 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
696 #elif _MSC_VER >= 1400 /* VC++ 2005 */
697 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
698 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
699 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
700 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
701 #elif defined _WIN32
702 #include <WinNT.h>
703 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
704 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
705 #include <mbarrier.h>
706 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
707 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
708 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
709 #elif __xlC__
710 #define ECB_MEMORY_FENCE __sync ()
711 #endif
712#endif
713
714#ifndef ECB_MEMORY_FENCE
715 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
716 /* we assume that these memory fences work on all variables/all memory accesses, */
717 /* not just C11 atomics and atomic accesses */
718 #include <stdatomic.h>
719 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
720 /* any fence other than seq_cst, which isn't very efficient for us. */
721 /* Why that is, we don't know - either the C11 memory model is quite useless */
722 /* for most usages, or gcc and clang have a bug */
723 /* I *currently* lean towards the latter, and inefficiently implement */
724 /* all three of ecb's fences as a seq_cst fence */
725 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
726 /* for all __atomic_thread_fence's except seq_cst */
727 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
728 #endif
729#endif
730
731#ifndef ECB_MEMORY_FENCE
732 #if !ECB_AVOID_PTHREADS
733 /*
734 * if you get undefined symbol references to pthread_mutex_lock,
735 * or failure to find pthread.h, then you should implement
736 * the ECB_MEMORY_FENCE operations for your cpu/compiler
737 * OR provide pthread.h and link against the posix thread library
738 * of your system.
739 */
740 #include <pthread.h>
741 #define ECB_NEEDS_PTHREADS 1
742 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
743
744 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
745 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
746 #endif
747#endif
748
749#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
750 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
751#endif
752
753#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
754 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
755#endif
756
757/*****************************************************************************/
758
759#if __cplusplus
760 #define ecb_inline static inline
761#elif ECB_GCC_VERSION(2,5)
762 #define ecb_inline static __inline__
763#elif ECB_C99
764 #define ecb_inline static inline
765#else
766 #define ecb_inline static
767#endif
768
769#if ECB_GCC_VERSION(3,3)
770 #define ecb_restrict __restrict__
771#elif ECB_C99
772 #define ecb_restrict restrict
773#else
774 #define ecb_restrict
775#endif
776
777typedef int ecb_bool;
778
779#define ECB_CONCAT_(a, b) a ## b
780#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
781#define ECB_STRINGIFY_(a) # a
782#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
783
784#define ecb_function_ ecb_inline
785
786#if ECB_GCC_VERSION(3,1)
787 #define ecb_attribute(attrlist) __attribute__(attrlist)
788 #define ecb_is_constant(expr) __builtin_constant_p (expr)
789 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
790 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
791#else
792 #define ecb_attribute(attrlist)
793
794 /* possible C11 impl for integral types
795 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
796 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
797
798 #define ecb_is_constant(expr) 0
799 #define ecb_expect(expr,value) (expr)
800 #define ecb_prefetch(addr,rw,locality)
801#endif
802
803/* no emulation for ecb_decltype */
804#if ECB_GCC_VERSION(4,5)
805 #define ecb_decltype(x) __decltype(x)
806#elif ECB_GCC_VERSION(3,0)
807 #define ecb_decltype(x) __typeof(x)
808#endif
809
810#define ecb_noinline ecb_attribute ((__noinline__))
811#define ecb_unused ecb_attribute ((__unused__))
812#define ecb_const ecb_attribute ((__const__))
813#define ecb_pure ecb_attribute ((__pure__))
814
815#if ECB_C11
816 #define ecb_noreturn _Noreturn
817#else
818 #define ecb_noreturn ecb_attribute ((__noreturn__))
819#endif
820
821#if ECB_GCC_VERSION(4,3)
822 #define ecb_artificial ecb_attribute ((__artificial__))
823 #define ecb_hot ecb_attribute ((__hot__))
824 #define ecb_cold ecb_attribute ((__cold__))
825#else
826 #define ecb_artificial
827 #define ecb_hot
828 #define ecb_cold
829#endif
830
831/* put around conditional expressions if you are very sure that the */
832/* expression is mostly true or mostly false. note that these return */
833/* booleans, not the expression. */
236#define expect_false(expr) expect ((expr) != 0, 0) 834#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
237#define expect_true(expr) expect ((expr) != 0, 1) 835#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
836/* for compatibility to the rest of the world */
837#define ecb_likely(expr) ecb_expect_true (expr)
838#define ecb_unlikely(expr) ecb_expect_false (expr)
839
840/* count trailing zero bits and count # of one bits */
841#if ECB_GCC_VERSION(3,4)
842 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
843 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
844 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
845 #define ecb_ctz32(x) __builtin_ctz (x)
846 #define ecb_ctz64(x) __builtin_ctzll (x)
847 #define ecb_popcount32(x) __builtin_popcount (x)
848 /* no popcountll */
849#else
850 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
851 ecb_function_ int
852 ecb_ctz32 (uint32_t x)
853 {
854 int r = 0;
855
856 x &= ~x + 1; /* this isolates the lowest bit */
857
858#if ECB_branchless_on_i386
859 r += !!(x & 0xaaaaaaaa) << 0;
860 r += !!(x & 0xcccccccc) << 1;
861 r += !!(x & 0xf0f0f0f0) << 2;
862 r += !!(x & 0xff00ff00) << 3;
863 r += !!(x & 0xffff0000) << 4;
864#else
865 if (x & 0xaaaaaaaa) r += 1;
866 if (x & 0xcccccccc) r += 2;
867 if (x & 0xf0f0f0f0) r += 4;
868 if (x & 0xff00ff00) r += 8;
869 if (x & 0xffff0000) r += 16;
870#endif
871
872 return r;
873 }
874
875 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
876 ecb_function_ int
877 ecb_ctz64 (uint64_t x)
878 {
879 int shift = x & 0xffffffffU ? 0 : 32;
880 return ecb_ctz32 (x >> shift) + shift;
881 }
882
883 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
884 ecb_function_ int
885 ecb_popcount32 (uint32_t x)
886 {
887 x -= (x >> 1) & 0x55555555;
888 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
889 x = ((x >> 4) + x) & 0x0f0f0f0f;
890 x *= 0x01010101;
891
892 return x >> 24;
893 }
894
895 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
896 ecb_function_ int ecb_ld32 (uint32_t x)
897 {
898 int r = 0;
899
900 if (x >> 16) { x >>= 16; r += 16; }
901 if (x >> 8) { x >>= 8; r += 8; }
902 if (x >> 4) { x >>= 4; r += 4; }
903 if (x >> 2) { x >>= 2; r += 2; }
904 if (x >> 1) { r += 1; }
905
906 return r;
907 }
908
909 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
910 ecb_function_ int ecb_ld64 (uint64_t x)
911 {
912 int r = 0;
913
914 if (x >> 32) { x >>= 32; r += 32; }
915
916 return r + ecb_ld32 (x);
917 }
918#endif
919
920ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
921ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
922ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
923ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
924
925ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
926ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
927{
928 return ( (x * 0x0802U & 0x22110U)
929 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
930}
931
932ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
933ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
934{
935 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
936 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
937 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
938 x = ( x >> 8 ) | ( x << 8);
939
940 return x;
941}
942
943ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
944ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
945{
946 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
947 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
948 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
949 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
950 x = ( x >> 16 ) | ( x << 16);
951
952 return x;
953}
954
955/* popcount64 is only available on 64 bit cpus as gcc builtin */
956/* so for this version we are lazy */
957ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
958ecb_function_ int
959ecb_popcount64 (uint64_t x)
960{
961 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
962}
963
964ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
965ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
966ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
967ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
968ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
969ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
970ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
971ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
972
973ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
974ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
975ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
976ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
977ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
978ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
979ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
980ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
981
982#if ECB_GCC_VERSION(4,3)
983 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
984 #define ecb_bswap32(x) __builtin_bswap32 (x)
985 #define ecb_bswap64(x) __builtin_bswap64 (x)
986#else
987 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
988 ecb_function_ uint16_t
989 ecb_bswap16 (uint16_t x)
990 {
991 return ecb_rotl16 (x, 8);
992 }
993
994 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
995 ecb_function_ uint32_t
996 ecb_bswap32 (uint32_t x)
997 {
998 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
999 }
1000
1001 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
1002 ecb_function_ uint64_t
1003 ecb_bswap64 (uint64_t x)
1004 {
1005 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1006 }
1007#endif
1008
1009#if ECB_GCC_VERSION(4,5)
1010 #define ecb_unreachable() __builtin_unreachable ()
1011#else
1012 /* this seems to work fine, but gcc always emits a warning for it :/ */
1013 ecb_inline void ecb_unreachable (void) ecb_noreturn;
1014 ecb_inline void ecb_unreachable (void) { }
1015#endif
1016
1017/* try to tell the compiler that some condition is definitely true */
1018#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1019
1020ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
1021ecb_inline unsigned char
1022ecb_byteorder_helper (void)
1023{
1024 /* the union code still generates code under pressure in gcc, */
1025 /* but less than using pointers, and always seems to */
1026 /* successfully return a constant. */
1027 /* the reason why we have this horrible preprocessor mess */
1028 /* is to avoid it in all cases, at least on common architectures */
1029 /* or when using a recent enough gcc version (>= 4.6) */
1030#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
1031 return 0x44;
1032#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1033 return 0x44;
1034#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1035 return 0x11;
1036#else
1037 union
1038 {
1039 uint32_t i;
1040 uint8_t c;
1041 } u = { 0x11223344 };
1042 return u.c;
1043#endif
1044}
1045
1046ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1047ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1048ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1049ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1050
1051#if ECB_GCC_VERSION(3,0) || ECB_C99
1052 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1053#else
1054 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1055#endif
1056
1057#if __cplusplus
1058 template<typename T>
1059 static inline T ecb_div_rd (T val, T div)
1060 {
1061 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1062 }
1063 template<typename T>
1064 static inline T ecb_div_ru (T val, T div)
1065 {
1066 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1067 }
1068#else
1069 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1070 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1071#endif
1072
1073#if ecb_cplusplus_does_not_suck
1074 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1075 template<typename T, int N>
1076 static inline int ecb_array_length (const T (&arr)[N])
1077 {
1078 return N;
1079 }
1080#else
1081 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1082#endif
1083
1084/*******************************************************************************/
1085/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1086
1087/* basically, everything uses "ieee pure-endian" floating point numbers */
1088/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1089#if 0 \
1090 || __i386 || __i386__ \
1091 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1092 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1093 || defined __s390__ || defined __s390x__ \
1094 || defined __mips__ \
1095 || defined __alpha__ \
1096 || defined __hppa__ \
1097 || defined __ia64__ \
1098 || defined __m68k__ \
1099 || defined __m88k__ \
1100 || defined __sh__ \
1101 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64 \
1102 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1103 || defined __aarch64__
1104 #define ECB_STDFP 1
1105 #include <string.h> /* for memcpy */
1106#else
1107 #define ECB_STDFP 0
1108#endif
1109
1110#ifndef ECB_NO_LIBM
1111
1112 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1113
1114 /* only the oldest of old doesn't have this one. solaris. */
1115 #ifdef INFINITY
1116 #define ECB_INFINITY INFINITY
1117 #else
1118 #define ECB_INFINITY HUGE_VAL
1119 #endif
1120
1121 #ifdef NAN
1122 #define ECB_NAN NAN
1123 #else
1124 #define ECB_NAN ECB_INFINITY
1125 #endif
1126
1127 /* converts an ieee half/binary16 to a float */
1128 ecb_function_ float ecb_binary16_to_float (uint16_t x) ecb_const;
1129 ecb_function_ float
1130 ecb_binary16_to_float (uint16_t x)
1131 {
1132 int e = (x >> 10) & 0x1f;
1133 int m = x & 0x3ff;
1134 float r;
1135
1136 if (!e ) r = ldexpf (m , -24);
1137 else if (e != 31) r = ldexpf (m + 0x400, e - 25);
1138 else if (m ) r = ECB_NAN;
1139 else r = ECB_INFINITY;
1140
1141 return x & 0x8000 ? -r : r;
1142 }
1143
1144 /* convert a float to ieee single/binary32 */
1145 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1146 ecb_function_ uint32_t
1147 ecb_float_to_binary32 (float x)
1148 {
1149 uint32_t r;
1150
1151 #if ECB_STDFP
1152 memcpy (&r, &x, 4);
1153 #else
1154 /* slow emulation, works for anything but -0 */
1155 uint32_t m;
1156 int e;
1157
1158 if (x == 0e0f ) return 0x00000000U;
1159 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1160 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1161 if (x != x ) return 0x7fbfffffU;
1162
1163 m = frexpf (x, &e) * 0x1000000U;
1164
1165 r = m & 0x80000000U;
1166
1167 if (r)
1168 m = -m;
1169
1170 if (e <= -126)
1171 {
1172 m &= 0xffffffU;
1173 m >>= (-125 - e);
1174 e = -126;
1175 }
1176
1177 r |= (e + 126) << 23;
1178 r |= m & 0x7fffffU;
1179 #endif
1180
1181 return r;
1182 }
1183
1184 /* converts an ieee single/binary32 to a float */
1185 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1186 ecb_function_ float
1187 ecb_binary32_to_float (uint32_t x)
1188 {
1189 float r;
1190
1191 #if ECB_STDFP
1192 memcpy (&r, &x, 4);
1193 #else
1194 /* emulation, only works for normals and subnormals and +0 */
1195 int neg = x >> 31;
1196 int e = (x >> 23) & 0xffU;
1197
1198 x &= 0x7fffffU;
1199
1200 if (e)
1201 x |= 0x800000U;
1202 else
1203 e = 1;
1204
1205 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1206 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1207
1208 r = neg ? -r : r;
1209 #endif
1210
1211 return r;
1212 }
1213
1214 /* convert a double to ieee double/binary64 */
1215 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1216 ecb_function_ uint64_t
1217 ecb_double_to_binary64 (double x)
1218 {
1219 uint64_t r;
1220
1221 #if ECB_STDFP
1222 memcpy (&r, &x, 8);
1223 #else
1224 /* slow emulation, works for anything but -0 */
1225 uint64_t m;
1226 int e;
1227
1228 if (x == 0e0 ) return 0x0000000000000000U;
1229 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1230 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1231 if (x != x ) return 0X7ff7ffffffffffffU;
1232
1233 m = frexp (x, &e) * 0x20000000000000U;
1234
1235 r = m & 0x8000000000000000;;
1236
1237 if (r)
1238 m = -m;
1239
1240 if (e <= -1022)
1241 {
1242 m &= 0x1fffffffffffffU;
1243 m >>= (-1021 - e);
1244 e = -1022;
1245 }
1246
1247 r |= ((uint64_t)(e + 1022)) << 52;
1248 r |= m & 0xfffffffffffffU;
1249 #endif
1250
1251 return r;
1252 }
1253
1254 /* converts an ieee double/binary64 to a double */
1255 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1256 ecb_function_ double
1257 ecb_binary64_to_double (uint64_t x)
1258 {
1259 double r;
1260
1261 #if ECB_STDFP
1262 memcpy (&r, &x, 8);
1263 #else
1264 /* emulation, only works for normals and subnormals and +0 */
1265 int neg = x >> 63;
1266 int e = (x >> 52) & 0x7ffU;
1267
1268 x &= 0xfffffffffffffU;
1269
1270 if (e)
1271 x |= 0x10000000000000U;
1272 else
1273 e = 1;
1274
1275 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1276 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1277
1278 r = neg ? -r : r;
1279 #endif
1280
1281 return r;
1282 }
1283
1284#endif
1285
1286#endif
1287
1288/* ECB.H END */
1289
1290#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1291/* if your architecture doesn't need memory fences, e.g. because it is
1292 * single-cpu/core, or if you use libev in a project that doesn't use libev
1293 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1294 * libev, in which cases the memory fences become nops.
1295 * alternatively, you can remove this #error and link against libpthread,
1296 * which will then provide the memory fences.
1297 */
1298# error "memory fences not defined for your architecture, please report"
1299#endif
1300
1301#ifndef ECB_MEMORY_FENCE
1302# define ECB_MEMORY_FENCE do { } while (0)
1303# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1304# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1305#endif
1306
1307#define expect_false(cond) ecb_expect_false (cond)
1308#define expect_true(cond) ecb_expect_true (cond)
1309#define noinline ecb_noinline
1310
238#define inline_size static inline 1311#define inline_size ecb_inline
239 1312
240#if EV_MINIMAL 1313#if EV_FEATURE_CODE
1314# define inline_speed ecb_inline
1315#else
241# define inline_speed static noinline 1316# define inline_speed static noinline
1317#endif
1318
1319#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1320
1321#if EV_MINPRI == EV_MAXPRI
1322# define ABSPRI(w) (((W)w), 0)
242#else 1323#else
243# define inline_speed static inline
244#endif
245
246#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
247#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1324# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1325#endif
248 1326
249#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1327#define EMPTY /* required for microsofts broken pseudo-c compiler */
250#define EMPTY2(a,b) /* used to suppress some warnings */ 1328#define EMPTY2(a,b) /* used to suppress some warnings */
251 1329
252typedef ev_watcher *W; 1330typedef ev_watcher *W;
253typedef ev_watcher_list *WL; 1331typedef ev_watcher_list *WL;
254typedef ev_watcher_time *WT; 1332typedef ev_watcher_time *WT;
255 1333
1334#define ev_active(w) ((W)(w))->active
1335#define ev_at(w) ((WT)(w))->at
1336
1337#if EV_USE_REALTIME
1338/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1339/* giving it a reasonably high chance of working on typical architectures */
1340static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1341#endif
1342
1343#if EV_USE_MONOTONIC
256static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1345#endif
1346
1347#ifndef EV_FD_TO_WIN32_HANDLE
1348# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1349#endif
1350#ifndef EV_WIN32_HANDLE_TO_FD
1351# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1352#endif
1353#ifndef EV_WIN32_CLOSE_FD
1354# define EV_WIN32_CLOSE_FD(fd) close (fd)
1355#endif
257 1356
258#ifdef _WIN32 1357#ifdef _WIN32
259# include "ev_win32.c" 1358# include "ev_win32.c"
260#endif 1359#endif
261 1360
262/*****************************************************************************/ 1361/*****************************************************************************/
263 1362
1363/* define a suitable floor function (only used by periodics atm) */
1364
1365#if EV_USE_FLOOR
1366# include <math.h>
1367# define ev_floor(v) floor (v)
1368#else
1369
1370#include <float.h>
1371
1372/* a floor() replacement function, should be independent of ev_tstamp type */
1373static ev_tstamp noinline
1374ev_floor (ev_tstamp v)
1375{
1376 /* the choice of shift factor is not terribly important */
1377#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1378 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1379#else
1380 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1381#endif
1382
1383 /* argument too large for an unsigned long? */
1384 if (expect_false (v >= shift))
1385 {
1386 ev_tstamp f;
1387
1388 if (v == v - 1.)
1389 return v; /* very large number */
1390
1391 f = shift * ev_floor (v * (1. / shift));
1392 return f + ev_floor (v - f);
1393 }
1394
1395 /* special treatment for negative args? */
1396 if (expect_false (v < 0.))
1397 {
1398 ev_tstamp f = -ev_floor (-v);
1399
1400 return f - (f == v ? 0 : 1);
1401 }
1402
1403 /* fits into an unsigned long */
1404 return (unsigned long)v;
1405}
1406
1407#endif
1408
1409/*****************************************************************************/
1410
1411#ifdef __linux
1412# include <sys/utsname.h>
1413#endif
1414
1415static unsigned int noinline ecb_cold
1416ev_linux_version (void)
1417{
1418#ifdef __linux
1419 unsigned int v = 0;
1420 struct utsname buf;
1421 int i;
1422 char *p = buf.release;
1423
1424 if (uname (&buf))
1425 return 0;
1426
1427 for (i = 3+1; --i; )
1428 {
1429 unsigned int c = 0;
1430
1431 for (;;)
1432 {
1433 if (*p >= '0' && *p <= '9')
1434 c = c * 10 + *p++ - '0';
1435 else
1436 {
1437 p += *p == '.';
1438 break;
1439 }
1440 }
1441
1442 v = (v << 8) | c;
1443 }
1444
1445 return v;
1446#else
1447 return 0;
1448#endif
1449}
1450
1451/*****************************************************************************/
1452
1453#if EV_AVOID_STDIO
1454static void noinline ecb_cold
1455ev_printerr (const char *msg)
1456{
1457 write (STDERR_FILENO, msg, strlen (msg));
1458}
1459#endif
1460
264static void (*syserr_cb)(const char *msg); 1461static void (*syserr_cb)(const char *msg) EV_THROW;
265 1462
266void 1463void ecb_cold
267ev_set_syserr_cb (void (*cb)(const char *msg)) 1464ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
268{ 1465{
269 syserr_cb = cb; 1466 syserr_cb = cb;
270} 1467}
271 1468
272static void noinline 1469static void noinline ecb_cold
273syserr (const char *msg) 1470ev_syserr (const char *msg)
274{ 1471{
275 if (!msg) 1472 if (!msg)
276 msg = "(libev) system error"; 1473 msg = "(libev) system error";
277 1474
278 if (syserr_cb) 1475 if (syserr_cb)
279 syserr_cb (msg); 1476 syserr_cb (msg);
280 else 1477 else
281 { 1478 {
1479#if EV_AVOID_STDIO
1480 ev_printerr (msg);
1481 ev_printerr (": ");
1482 ev_printerr (strerror (errno));
1483 ev_printerr ("\n");
1484#else
282 perror (msg); 1485 perror (msg);
1486#endif
283 abort (); 1487 abort ();
284 } 1488 }
285} 1489}
286 1490
1491static void *
1492ev_realloc_emul (void *ptr, long size) EV_THROW
1493{
1494 /* some systems, notably openbsd and darwin, fail to properly
1495 * implement realloc (x, 0) (as required by both ansi c-89 and
1496 * the single unix specification, so work around them here.
1497 * recently, also (at least) fedora and debian started breaking it,
1498 * despite documenting it otherwise.
1499 */
1500
1501 if (size)
1502 return realloc (ptr, size);
1503
1504 free (ptr);
1505 return 0;
1506}
1507
287static void *(*alloc)(void *ptr, long size); 1508static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
288 1509
289void 1510void ecb_cold
290ev_set_allocator (void *(*cb)(void *ptr, long size)) 1511ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
291{ 1512{
292 alloc = cb; 1513 alloc = cb;
293} 1514}
294 1515
295inline_speed void * 1516inline_speed void *
296ev_realloc (void *ptr, long size) 1517ev_realloc (void *ptr, long size)
297{ 1518{
298 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1519 ptr = alloc (ptr, size);
299 1520
300 if (!ptr && size) 1521 if (!ptr && size)
301 { 1522 {
1523#if EV_AVOID_STDIO
1524 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1525#else
302 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1526 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1527#endif
303 abort (); 1528 abort ();
304 } 1529 }
305 1530
306 return ptr; 1531 return ptr;
307} 1532}
309#define ev_malloc(size) ev_realloc (0, (size)) 1534#define ev_malloc(size) ev_realloc (0, (size))
310#define ev_free(ptr) ev_realloc ((ptr), 0) 1535#define ev_free(ptr) ev_realloc ((ptr), 0)
311 1536
312/*****************************************************************************/ 1537/*****************************************************************************/
313 1538
1539/* set in reify when reification needed */
1540#define EV_ANFD_REIFY 1
1541
1542/* file descriptor info structure */
314typedef struct 1543typedef struct
315{ 1544{
316 WL head; 1545 WL head;
317 unsigned char events; 1546 unsigned char events; /* the events watched for */
1547 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1548 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
318 unsigned char reify; 1549 unsigned char unused;
1550#if EV_USE_EPOLL
1551 unsigned int egen; /* generation counter to counter epoll bugs */
1552#endif
319#if EV_SELECT_IS_WINSOCKET 1553#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
320 SOCKET handle; 1554 SOCKET handle;
321#endif 1555#endif
1556#if EV_USE_IOCP
1557 OVERLAPPED or, ow;
1558#endif
322} ANFD; 1559} ANFD;
323 1560
1561/* stores the pending event set for a given watcher */
324typedef struct 1562typedef struct
325{ 1563{
326 W w; 1564 W w;
327 int events; 1565 int events; /* the pending event set for the given watcher */
328} ANPENDING; 1566} ANPENDING;
329 1567
330#if EV_USE_INOTIFY 1568#if EV_USE_INOTIFY
1569/* hash table entry per inotify-id */
331typedef struct 1570typedef struct
332{ 1571{
333 WL head; 1572 WL head;
334} ANFS; 1573} ANFS;
1574#endif
1575
1576/* Heap Entry */
1577#if EV_HEAP_CACHE_AT
1578 /* a heap element */
1579 typedef struct {
1580 ev_tstamp at;
1581 WT w;
1582 } ANHE;
1583
1584 #define ANHE_w(he) (he).w /* access watcher, read-write */
1585 #define ANHE_at(he) (he).at /* access cached at, read-only */
1586 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1587#else
1588 /* a heap element */
1589 typedef WT ANHE;
1590
1591 #define ANHE_w(he) (he)
1592 #define ANHE_at(he) (he)->at
1593 #define ANHE_at_cache(he)
335#endif 1594#endif
336 1595
337#if EV_MULTIPLICITY 1596#if EV_MULTIPLICITY
338 1597
339 struct ev_loop 1598 struct ev_loop
345 #undef VAR 1604 #undef VAR
346 }; 1605 };
347 #include "ev_wrap.h" 1606 #include "ev_wrap.h"
348 1607
349 static struct ev_loop default_loop_struct; 1608 static struct ev_loop default_loop_struct;
350 struct ev_loop *ev_default_loop_ptr; 1609 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
351 1610
352#else 1611#else
353 1612
354 ev_tstamp ev_rt_now; 1613 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
355 #define VAR(name,decl) static decl; 1614 #define VAR(name,decl) static decl;
356 #include "ev_vars.h" 1615 #include "ev_vars.h"
357 #undef VAR 1616 #undef VAR
358 1617
359 static int ev_default_loop_ptr; 1618 static int ev_default_loop_ptr;
360 1619
361#endif 1620#endif
362 1621
1622#if EV_FEATURE_API
1623# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1624# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1625# define EV_INVOKE_PENDING invoke_cb (EV_A)
1626#else
1627# define EV_RELEASE_CB (void)0
1628# define EV_ACQUIRE_CB (void)0
1629# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1630#endif
1631
1632#define EVBREAK_RECURSE 0x80
1633
363/*****************************************************************************/ 1634/*****************************************************************************/
364 1635
1636#ifndef EV_HAVE_EV_TIME
365ev_tstamp 1637ev_tstamp
366ev_time (void) 1638ev_time (void) EV_THROW
367{ 1639{
368#if EV_USE_REALTIME 1640#if EV_USE_REALTIME
1641 if (expect_true (have_realtime))
1642 {
369 struct timespec ts; 1643 struct timespec ts;
370 clock_gettime (CLOCK_REALTIME, &ts); 1644 clock_gettime (CLOCK_REALTIME, &ts);
371 return ts.tv_sec + ts.tv_nsec * 1e-9; 1645 return ts.tv_sec + ts.tv_nsec * 1e-9;
372#else 1646 }
1647#endif
1648
373 struct timeval tv; 1649 struct timeval tv;
374 gettimeofday (&tv, 0); 1650 gettimeofday (&tv, 0);
375 return tv.tv_sec + tv.tv_usec * 1e-6; 1651 return tv.tv_sec + tv.tv_usec * 1e-6;
376#endif
377} 1652}
1653#endif
378 1654
379ev_tstamp inline_size 1655inline_size ev_tstamp
380get_clock (void) 1656get_clock (void)
381{ 1657{
382#if EV_USE_MONOTONIC 1658#if EV_USE_MONOTONIC
383 if (expect_true (have_monotonic)) 1659 if (expect_true (have_monotonic))
384 { 1660 {
391 return ev_time (); 1667 return ev_time ();
392} 1668}
393 1669
394#if EV_MULTIPLICITY 1670#if EV_MULTIPLICITY
395ev_tstamp 1671ev_tstamp
396ev_now (EV_P) 1672ev_now (EV_P) EV_THROW
397{ 1673{
398 return ev_rt_now; 1674 return ev_rt_now;
399} 1675}
400#endif 1676#endif
401 1677
402int inline_size 1678void
1679ev_sleep (ev_tstamp delay) EV_THROW
1680{
1681 if (delay > 0.)
1682 {
1683#if EV_USE_NANOSLEEP
1684 struct timespec ts;
1685
1686 EV_TS_SET (ts, delay);
1687 nanosleep (&ts, 0);
1688#elif defined _WIN32
1689 Sleep ((unsigned long)(delay * 1e3));
1690#else
1691 struct timeval tv;
1692
1693 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1694 /* something not guaranteed by newer posix versions, but guaranteed */
1695 /* by older ones */
1696 EV_TV_SET (tv, delay);
1697 select (0, 0, 0, 0, &tv);
1698#endif
1699 }
1700}
1701
1702/*****************************************************************************/
1703
1704#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1705
1706/* find a suitable new size for the given array, */
1707/* hopefully by rounding to a nice-to-malloc size */
1708inline_size int
403array_nextsize (int elem, int cur, int cnt) 1709array_nextsize (int elem, int cur, int cnt)
404{ 1710{
405 int ncur = cur + 1; 1711 int ncur = cur + 1;
406 1712
407 do 1713 do
408 ncur <<= 1; 1714 ncur <<= 1;
409 while (cnt > ncur); 1715 while (cnt > ncur);
410 1716
411 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1717 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
412 if (elem * ncur > 4096) 1718 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
413 { 1719 {
414 ncur *= elem; 1720 ncur *= elem;
415 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1721 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
416 ncur = ncur - sizeof (void *) * 4; 1722 ncur = ncur - sizeof (void *) * 4;
417 ncur /= elem; 1723 ncur /= elem;
418 } 1724 }
419 1725
420 return ncur; 1726 return ncur;
421} 1727}
422 1728
423inline_speed void * 1729static void * noinline ecb_cold
424array_realloc (int elem, void *base, int *cur, int cnt) 1730array_realloc (int elem, void *base, int *cur, int cnt)
425{ 1731{
426 *cur = array_nextsize (elem, *cur, cnt); 1732 *cur = array_nextsize (elem, *cur, cnt);
427 return ev_realloc (base, elem * *cur); 1733 return ev_realloc (base, elem * *cur);
428} 1734}
1735
1736#define array_init_zero(base,count) \
1737 memset ((void *)(base), 0, sizeof (*(base)) * (count))
429 1738
430#define array_needsize(type,base,cur,cnt,init) \ 1739#define array_needsize(type,base,cur,cnt,init) \
431 if (expect_false ((cnt) > (cur))) \ 1740 if (expect_false ((cnt) > (cur))) \
432 { \ 1741 { \
433 int ocur_ = (cur); \ 1742 int ecb_unused ocur_ = (cur); \
434 (base) = (type *)array_realloc \ 1743 (base) = (type *)array_realloc \
435 (sizeof (type), (base), &(cur), (cnt)); \ 1744 (sizeof (type), (base), &(cur), (cnt)); \
436 init ((base) + (ocur_), (cur) - ocur_); \ 1745 init ((base) + (ocur_), (cur) - ocur_); \
437 } 1746 }
438 1747
445 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1754 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
446 } 1755 }
447#endif 1756#endif
448 1757
449#define array_free(stem, idx) \ 1758#define array_free(stem, idx) \
450 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1759 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
451 1760
452/*****************************************************************************/ 1761/*****************************************************************************/
453 1762
1763/* dummy callback for pending events */
1764static void noinline
1765pendingcb (EV_P_ ev_prepare *w, int revents)
1766{
1767}
1768
454void noinline 1769void noinline
455ev_feed_event (EV_P_ void *w, int revents) 1770ev_feed_event (EV_P_ void *w, int revents) EV_THROW
456{ 1771{
457 W w_ = (W)w; 1772 W w_ = (W)w;
1773 int pri = ABSPRI (w_);
458 1774
459 if (expect_false (w_->pending)) 1775 if (expect_false (w_->pending))
1776 pendings [pri][w_->pending - 1].events |= revents;
1777 else
460 { 1778 {
1779 w_->pending = ++pendingcnt [pri];
1780 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
1781 pendings [pri][w_->pending - 1].w = w_;
461 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 1782 pendings [pri][w_->pending - 1].events = revents;
462 return;
463 } 1783 }
464 1784
465 w_->pending = ++pendingcnt [ABSPRI (w_)]; 1785 pendingpri = NUMPRI - 1;
466 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
467 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
468 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
469} 1786}
470 1787
471void inline_size 1788inline_speed void
1789feed_reverse (EV_P_ W w)
1790{
1791 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1792 rfeeds [rfeedcnt++] = w;
1793}
1794
1795inline_size void
1796feed_reverse_done (EV_P_ int revents)
1797{
1798 do
1799 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1800 while (rfeedcnt);
1801}
1802
1803inline_speed void
472queue_events (EV_P_ W *events, int eventcnt, int type) 1804queue_events (EV_P_ W *events, int eventcnt, int type)
473{ 1805{
474 int i; 1806 int i;
475 1807
476 for (i = 0; i < eventcnt; ++i) 1808 for (i = 0; i < eventcnt; ++i)
477 ev_feed_event (EV_A_ events [i], type); 1809 ev_feed_event (EV_A_ events [i], type);
478} 1810}
479 1811
480/*****************************************************************************/ 1812/*****************************************************************************/
481 1813
482void inline_size 1814inline_speed void
483anfds_init (ANFD *base, int count)
484{
485 while (count--)
486 {
487 base->head = 0;
488 base->events = EV_NONE;
489 base->reify = 0;
490
491 ++base;
492 }
493}
494
495void inline_speed
496fd_event (EV_P_ int fd, int revents) 1815fd_event_nocheck (EV_P_ int fd, int revents)
497{ 1816{
498 ANFD *anfd = anfds + fd; 1817 ANFD *anfd = anfds + fd;
499 ev_io *w; 1818 ev_io *w;
500 1819
501 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1820 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
505 if (ev) 1824 if (ev)
506 ev_feed_event (EV_A_ (W)w, ev); 1825 ev_feed_event (EV_A_ (W)w, ev);
507 } 1826 }
508} 1827}
509 1828
1829/* do not submit kernel events for fds that have reify set */
1830/* because that means they changed while we were polling for new events */
1831inline_speed void
1832fd_event (EV_P_ int fd, int revents)
1833{
1834 ANFD *anfd = anfds + fd;
1835
1836 if (expect_true (!anfd->reify))
1837 fd_event_nocheck (EV_A_ fd, revents);
1838}
1839
510void 1840void
511ev_feed_fd_event (EV_P_ int fd, int revents) 1841ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
512{ 1842{
513 if (fd >= 0 && fd < anfdmax) 1843 if (fd >= 0 && fd < anfdmax)
514 fd_event (EV_A_ fd, revents); 1844 fd_event_nocheck (EV_A_ fd, revents);
515} 1845}
516 1846
517void inline_size 1847/* make sure the external fd watch events are in-sync */
1848/* with the kernel/libev internal state */
1849inline_size void
518fd_reify (EV_P) 1850fd_reify (EV_P)
519{ 1851{
520 int i; 1852 int i;
1853
1854#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1855 for (i = 0; i < fdchangecnt; ++i)
1856 {
1857 int fd = fdchanges [i];
1858 ANFD *anfd = anfds + fd;
1859
1860 if (anfd->reify & EV__IOFDSET && anfd->head)
1861 {
1862 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1863
1864 if (handle != anfd->handle)
1865 {
1866 unsigned long arg;
1867
1868 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1869
1870 /* handle changed, but fd didn't - we need to do it in two steps */
1871 backend_modify (EV_A_ fd, anfd->events, 0);
1872 anfd->events = 0;
1873 anfd->handle = handle;
1874 }
1875 }
1876 }
1877#endif
521 1878
522 for (i = 0; i < fdchangecnt; ++i) 1879 for (i = 0; i < fdchangecnt; ++i)
523 { 1880 {
524 int fd = fdchanges [i]; 1881 int fd = fdchanges [i];
525 ANFD *anfd = anfds + fd; 1882 ANFD *anfd = anfds + fd;
526 ev_io *w; 1883 ev_io *w;
527 1884
528 int events = 0; 1885 unsigned char o_events = anfd->events;
1886 unsigned char o_reify = anfd->reify;
529 1887
530 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1888 anfd->reify = 0;
531 events |= w->events;
532 1889
533#if EV_SELECT_IS_WINSOCKET 1890 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
534 if (events)
535 { 1891 {
536 unsigned long argp; 1892 anfd->events = 0;
537 anfd->handle = _get_osfhandle (fd); 1893
538 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1894 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1895 anfd->events |= (unsigned char)w->events;
1896
1897 if (o_events != anfd->events)
1898 o_reify = EV__IOFDSET; /* actually |= */
539 } 1899 }
540#endif
541 1900
542 anfd->reify = 0; 1901 if (o_reify & EV__IOFDSET)
543
544 backend_modify (EV_A_ fd, anfd->events, events); 1902 backend_modify (EV_A_ fd, o_events, anfd->events);
545 anfd->events = events;
546 } 1903 }
547 1904
548 fdchangecnt = 0; 1905 fdchangecnt = 0;
549} 1906}
550 1907
551void inline_size 1908/* something about the given fd changed */
1909inline_size void
552fd_change (EV_P_ int fd) 1910fd_change (EV_P_ int fd, int flags)
553{ 1911{
554 if (expect_false (anfds [fd].reify)) 1912 unsigned char reify = anfds [fd].reify;
555 return;
556
557 anfds [fd].reify = 1; 1913 anfds [fd].reify |= flags;
558 1914
1915 if (expect_true (!reify))
1916 {
559 ++fdchangecnt; 1917 ++fdchangecnt;
560 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1918 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
561 fdchanges [fdchangecnt - 1] = fd; 1919 fdchanges [fdchangecnt - 1] = fd;
1920 }
562} 1921}
563 1922
564void inline_speed 1923/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1924inline_speed void ecb_cold
565fd_kill (EV_P_ int fd) 1925fd_kill (EV_P_ int fd)
566{ 1926{
567 ev_io *w; 1927 ev_io *w;
568 1928
569 while ((w = (ev_io *)anfds [fd].head)) 1929 while ((w = (ev_io *)anfds [fd].head))
571 ev_io_stop (EV_A_ w); 1931 ev_io_stop (EV_A_ w);
572 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1932 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
573 } 1933 }
574} 1934}
575 1935
576int inline_size 1936/* check whether the given fd is actually valid, for error recovery */
1937inline_size int ecb_cold
577fd_valid (int fd) 1938fd_valid (int fd)
578{ 1939{
579#ifdef _WIN32 1940#ifdef _WIN32
580 return _get_osfhandle (fd) != -1; 1941 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
581#else 1942#else
582 return fcntl (fd, F_GETFD) != -1; 1943 return fcntl (fd, F_GETFD) != -1;
583#endif 1944#endif
584} 1945}
585 1946
586/* called on EBADF to verify fds */ 1947/* called on EBADF to verify fds */
587static void noinline 1948static void noinline ecb_cold
588fd_ebadf (EV_P) 1949fd_ebadf (EV_P)
589{ 1950{
590 int fd; 1951 int fd;
591 1952
592 for (fd = 0; fd < anfdmax; ++fd) 1953 for (fd = 0; fd < anfdmax; ++fd)
593 if (anfds [fd].events) 1954 if (anfds [fd].events)
594 if (!fd_valid (fd) == -1 && errno == EBADF) 1955 if (!fd_valid (fd) && errno == EBADF)
595 fd_kill (EV_A_ fd); 1956 fd_kill (EV_A_ fd);
596} 1957}
597 1958
598/* called on ENOMEM in select/poll to kill some fds and retry */ 1959/* called on ENOMEM in select/poll to kill some fds and retry */
599static void noinline 1960static void noinline ecb_cold
600fd_enomem (EV_P) 1961fd_enomem (EV_P)
601{ 1962{
602 int fd; 1963 int fd;
603 1964
604 for (fd = anfdmax; fd--; ) 1965 for (fd = anfdmax; fd--; )
605 if (anfds [fd].events) 1966 if (anfds [fd].events)
606 { 1967 {
607 fd_kill (EV_A_ fd); 1968 fd_kill (EV_A_ fd);
608 return; 1969 break;
609 } 1970 }
610} 1971}
611 1972
612/* usually called after fork if backend needs to re-arm all fds from scratch */ 1973/* usually called after fork if backend needs to re-arm all fds from scratch */
613static void noinline 1974static void noinline
617 1978
618 for (fd = 0; fd < anfdmax; ++fd) 1979 for (fd = 0; fd < anfdmax; ++fd)
619 if (anfds [fd].events) 1980 if (anfds [fd].events)
620 { 1981 {
621 anfds [fd].events = 0; 1982 anfds [fd].events = 0;
622 fd_change (EV_A_ fd); 1983 anfds [fd].emask = 0;
1984 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
623 } 1985 }
624} 1986}
625 1987
626/*****************************************************************************/ 1988/* used to prepare libev internal fd's */
627 1989/* this is not fork-safe */
628void inline_speed 1990inline_speed void
629upheap (WT *heap, int k)
630{
631 WT w = heap [k];
632
633 while (k && heap [k >> 1]->at > w->at)
634 {
635 heap [k] = heap [k >> 1];
636 ((W)heap [k])->active = k + 1;
637 k >>= 1;
638 }
639
640 heap [k] = w;
641 ((W)heap [k])->active = k + 1;
642
643}
644
645void inline_speed
646downheap (WT *heap, int N, int k)
647{
648 WT w = heap [k];
649
650 while (k < (N >> 1))
651 {
652 int j = k << 1;
653
654 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
655 ++j;
656
657 if (w->at <= heap [j]->at)
658 break;
659
660 heap [k] = heap [j];
661 ((W)heap [k])->active = k + 1;
662 k = j;
663 }
664
665 heap [k] = w;
666 ((W)heap [k])->active = k + 1;
667}
668
669void inline_size
670adjustheap (WT *heap, int N, int k)
671{
672 upheap (heap, k);
673 downheap (heap, N, k);
674}
675
676/*****************************************************************************/
677
678typedef struct
679{
680 WL head;
681 sig_atomic_t volatile gotsig;
682} ANSIG;
683
684static ANSIG *signals;
685static int signalmax;
686
687static int sigpipe [2];
688static sig_atomic_t volatile gotsig;
689static ev_io sigev;
690
691void inline_size
692signals_init (ANSIG *base, int count)
693{
694 while (count--)
695 {
696 base->head = 0;
697 base->gotsig = 0;
698
699 ++base;
700 }
701}
702
703static void
704sighandler (int signum)
705{
706#if _WIN32
707 signal (signum, sighandler);
708#endif
709
710 signals [signum - 1].gotsig = 1;
711
712 if (!gotsig)
713 {
714 int old_errno = errno;
715 gotsig = 1;
716 write (sigpipe [1], &signum, 1);
717 errno = old_errno;
718 }
719}
720
721void noinline
722ev_feed_signal_event (EV_P_ int signum)
723{
724 WL w;
725
726#if EV_MULTIPLICITY
727 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
728#endif
729
730 --signum;
731
732 if (signum < 0 || signum >= signalmax)
733 return;
734
735 signals [signum].gotsig = 0;
736
737 for (w = signals [signum].head; w; w = w->next)
738 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
739}
740
741static void
742sigcb (EV_P_ ev_io *iow, int revents)
743{
744 int signum;
745
746 read (sigpipe [0], &revents, 1);
747 gotsig = 0;
748
749 for (signum = signalmax; signum--; )
750 if (signals [signum].gotsig)
751 ev_feed_signal_event (EV_A_ signum + 1);
752}
753
754void inline_size
755fd_intern (int fd) 1991fd_intern (int fd)
756{ 1992{
757#ifdef _WIN32 1993#ifdef _WIN32
758 int arg = 1; 1994 unsigned long arg = 1;
759 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1995 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
760#else 1996#else
761 fcntl (fd, F_SETFD, FD_CLOEXEC); 1997 fcntl (fd, F_SETFD, FD_CLOEXEC);
762 fcntl (fd, F_SETFL, O_NONBLOCK); 1998 fcntl (fd, F_SETFL, O_NONBLOCK);
763#endif 1999#endif
764} 2000}
765 2001
766static void noinline
767siginit (EV_P)
768{
769 fd_intern (sigpipe [0]);
770 fd_intern (sigpipe [1]);
771
772 ev_io_set (&sigev, sigpipe [0], EV_READ);
773 ev_io_start (EV_A_ &sigev);
774 ev_unref (EV_A); /* child watcher should not keep loop alive */
775}
776
777/*****************************************************************************/ 2002/*****************************************************************************/
778 2003
779static ev_child *childs [EV_PID_HASHSIZE]; 2004/*
2005 * the heap functions want a real array index. array index 0 is guaranteed to not
2006 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
2007 * the branching factor of the d-tree.
2008 */
780 2009
2010/*
2011 * at the moment we allow libev the luxury of two heaps,
2012 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
2013 * which is more cache-efficient.
2014 * the difference is about 5% with 50000+ watchers.
2015 */
2016#if EV_USE_4HEAP
2017
2018#define DHEAP 4
2019#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2020#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2021#define UPHEAP_DONE(p,k) ((p) == (k))
2022
2023/* away from the root */
2024inline_speed void
2025downheap (ANHE *heap, int N, int k)
2026{
2027 ANHE he = heap [k];
2028 ANHE *E = heap + N + HEAP0;
2029
2030 for (;;)
2031 {
2032 ev_tstamp minat;
2033 ANHE *minpos;
2034 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
2035
2036 /* find minimum child */
2037 if (expect_true (pos + DHEAP - 1 < E))
2038 {
2039 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2040 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2041 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2042 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2043 }
2044 else if (pos < E)
2045 {
2046 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2047 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2048 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2049 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2050 }
2051 else
2052 break;
2053
2054 if (ANHE_at (he) <= minat)
2055 break;
2056
2057 heap [k] = *minpos;
2058 ev_active (ANHE_w (*minpos)) = k;
2059
2060 k = minpos - heap;
2061 }
2062
2063 heap [k] = he;
2064 ev_active (ANHE_w (he)) = k;
2065}
2066
2067#else /* 4HEAP */
2068
2069#define HEAP0 1
2070#define HPARENT(k) ((k) >> 1)
2071#define UPHEAP_DONE(p,k) (!(p))
2072
2073/* away from the root */
2074inline_speed void
2075downheap (ANHE *heap, int N, int k)
2076{
2077 ANHE he = heap [k];
2078
2079 for (;;)
2080 {
2081 int c = k << 1;
2082
2083 if (c >= N + HEAP0)
2084 break;
2085
2086 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2087 ? 1 : 0;
2088
2089 if (ANHE_at (he) <= ANHE_at (heap [c]))
2090 break;
2091
2092 heap [k] = heap [c];
2093 ev_active (ANHE_w (heap [k])) = k;
2094
2095 k = c;
2096 }
2097
2098 heap [k] = he;
2099 ev_active (ANHE_w (he)) = k;
2100}
2101#endif
2102
2103/* towards the root */
2104inline_speed void
2105upheap (ANHE *heap, int k)
2106{
2107 ANHE he = heap [k];
2108
2109 for (;;)
2110 {
2111 int p = HPARENT (k);
2112
2113 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2114 break;
2115
2116 heap [k] = heap [p];
2117 ev_active (ANHE_w (heap [k])) = k;
2118 k = p;
2119 }
2120
2121 heap [k] = he;
2122 ev_active (ANHE_w (he)) = k;
2123}
2124
2125/* move an element suitably so it is in a correct place */
2126inline_size void
2127adjustheap (ANHE *heap, int N, int k)
2128{
2129 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2130 upheap (heap, k);
2131 else
2132 downheap (heap, N, k);
2133}
2134
2135/* rebuild the heap: this function is used only once and executed rarely */
2136inline_size void
2137reheap (ANHE *heap, int N)
2138{
2139 int i;
2140
2141 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2142 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2143 for (i = 0; i < N; ++i)
2144 upheap (heap, i + HEAP0);
2145}
2146
2147/*****************************************************************************/
2148
2149/* associate signal watchers to a signal signal */
2150typedef struct
2151{
2152 EV_ATOMIC_T pending;
2153#if EV_MULTIPLICITY
2154 EV_P;
2155#endif
2156 WL head;
2157} ANSIG;
2158
2159static ANSIG signals [EV_NSIG - 1];
2160
2161/*****************************************************************************/
2162
2163#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2164
2165static void noinline ecb_cold
2166evpipe_init (EV_P)
2167{
2168 if (!ev_is_active (&pipe_w))
2169 {
2170 int fds [2];
2171
2172# if EV_USE_EVENTFD
2173 fds [0] = -1;
2174 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2175 if (fds [1] < 0 && errno == EINVAL)
2176 fds [1] = eventfd (0, 0);
2177
2178 if (fds [1] < 0)
2179# endif
2180 {
2181 while (pipe (fds))
2182 ev_syserr ("(libev) error creating signal/async pipe");
2183
2184 fd_intern (fds [0]);
2185 }
2186
2187 evpipe [0] = fds [0];
2188
2189 if (evpipe [1] < 0)
2190 evpipe [1] = fds [1]; /* first call, set write fd */
2191 else
2192 {
2193 /* on subsequent calls, do not change evpipe [1] */
2194 /* so that evpipe_write can always rely on its value. */
2195 /* this branch does not do anything sensible on windows, */
2196 /* so must not be executed on windows */
2197
2198 dup2 (fds [1], evpipe [1]);
2199 close (fds [1]);
2200 }
2201
2202 fd_intern (evpipe [1]);
2203
2204 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2205 ev_io_start (EV_A_ &pipe_w);
2206 ev_unref (EV_A); /* watcher should not keep loop alive */
2207 }
2208}
2209
2210inline_speed void
2211evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2212{
2213 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2214
2215 if (expect_true (*flag))
2216 return;
2217
2218 *flag = 1;
2219 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2220
2221 pipe_write_skipped = 1;
2222
2223 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2224
2225 if (pipe_write_wanted)
2226 {
2227 int old_errno;
2228
2229 pipe_write_skipped = 0;
2230 ECB_MEMORY_FENCE_RELEASE;
2231
2232 old_errno = errno; /* save errno because write will clobber it */
2233
2234#if EV_USE_EVENTFD
2235 if (evpipe [0] < 0)
2236 {
2237 uint64_t counter = 1;
2238 write (evpipe [1], &counter, sizeof (uint64_t));
2239 }
2240 else
2241#endif
2242 {
781#ifndef _WIN32 2243#ifdef _WIN32
2244 WSABUF buf;
2245 DWORD sent;
2246 buf.buf = &buf;
2247 buf.len = 1;
2248 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2249#else
2250 write (evpipe [1], &(evpipe [1]), 1);
2251#endif
2252 }
2253
2254 errno = old_errno;
2255 }
2256}
2257
2258/* called whenever the libev signal pipe */
2259/* got some events (signal, async) */
2260static void
2261pipecb (EV_P_ ev_io *iow, int revents)
2262{
2263 int i;
2264
2265 if (revents & EV_READ)
2266 {
2267#if EV_USE_EVENTFD
2268 if (evpipe [0] < 0)
2269 {
2270 uint64_t counter;
2271 read (evpipe [1], &counter, sizeof (uint64_t));
2272 }
2273 else
2274#endif
2275 {
2276 char dummy[4];
2277#ifdef _WIN32
2278 WSABUF buf;
2279 DWORD recvd;
2280 DWORD flags = 0;
2281 buf.buf = dummy;
2282 buf.len = sizeof (dummy);
2283 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2284#else
2285 read (evpipe [0], &dummy, sizeof (dummy));
2286#endif
2287 }
2288 }
2289
2290 pipe_write_skipped = 0;
2291
2292 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2293
2294#if EV_SIGNAL_ENABLE
2295 if (sig_pending)
2296 {
2297 sig_pending = 0;
2298
2299 ECB_MEMORY_FENCE;
2300
2301 for (i = EV_NSIG - 1; i--; )
2302 if (expect_false (signals [i].pending))
2303 ev_feed_signal_event (EV_A_ i + 1);
2304 }
2305#endif
2306
2307#if EV_ASYNC_ENABLE
2308 if (async_pending)
2309 {
2310 async_pending = 0;
2311
2312 ECB_MEMORY_FENCE;
2313
2314 for (i = asynccnt; i--; )
2315 if (asyncs [i]->sent)
2316 {
2317 asyncs [i]->sent = 0;
2318 ECB_MEMORY_FENCE_RELEASE;
2319 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2320 }
2321 }
2322#endif
2323}
2324
2325/*****************************************************************************/
2326
2327void
2328ev_feed_signal (int signum) EV_THROW
2329{
2330#if EV_MULTIPLICITY
2331 EV_P;
2332 ECB_MEMORY_FENCE_ACQUIRE;
2333 EV_A = signals [signum - 1].loop;
2334
2335 if (!EV_A)
2336 return;
2337#endif
2338
2339 signals [signum - 1].pending = 1;
2340 evpipe_write (EV_A_ &sig_pending);
2341}
2342
2343static void
2344ev_sighandler (int signum)
2345{
2346#ifdef _WIN32
2347 signal (signum, ev_sighandler);
2348#endif
2349
2350 ev_feed_signal (signum);
2351}
2352
2353void noinline
2354ev_feed_signal_event (EV_P_ int signum) EV_THROW
2355{
2356 WL w;
2357
2358 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2359 return;
2360
2361 --signum;
2362
2363#if EV_MULTIPLICITY
2364 /* it is permissible to try to feed a signal to the wrong loop */
2365 /* or, likely more useful, feeding a signal nobody is waiting for */
2366
2367 if (expect_false (signals [signum].loop != EV_A))
2368 return;
2369#endif
2370
2371 signals [signum].pending = 0;
2372 ECB_MEMORY_FENCE_RELEASE;
2373
2374 for (w = signals [signum].head; w; w = w->next)
2375 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2376}
2377
2378#if EV_USE_SIGNALFD
2379static void
2380sigfdcb (EV_P_ ev_io *iow, int revents)
2381{
2382 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2383
2384 for (;;)
2385 {
2386 ssize_t res = read (sigfd, si, sizeof (si));
2387
2388 /* not ISO-C, as res might be -1, but works with SuS */
2389 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2390 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2391
2392 if (res < (ssize_t)sizeof (si))
2393 break;
2394 }
2395}
2396#endif
2397
2398#endif
2399
2400/*****************************************************************************/
2401
2402#if EV_CHILD_ENABLE
2403static WL childs [EV_PID_HASHSIZE];
782 2404
783static ev_signal childev; 2405static ev_signal childev;
784 2406
785void inline_speed 2407#ifndef WIFCONTINUED
2408# define WIFCONTINUED(status) 0
2409#endif
2410
2411/* handle a single child status event */
2412inline_speed void
786child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2413child_reap (EV_P_ int chain, int pid, int status)
787{ 2414{
788 ev_child *w; 2415 ev_child *w;
2416 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
789 2417
790 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2418 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2419 {
791 if (w->pid == pid || !w->pid) 2420 if ((w->pid == pid || !w->pid)
2421 && (!traced || (w->flags & 1)))
792 { 2422 {
793 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2423 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
794 w->rpid = pid; 2424 w->rpid = pid;
795 w->rstatus = status; 2425 w->rstatus = status;
796 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2426 ev_feed_event (EV_A_ (W)w, EV_CHILD);
797 } 2427 }
2428 }
798} 2429}
799 2430
800#ifndef WCONTINUED 2431#ifndef WCONTINUED
801# define WCONTINUED 0 2432# define WCONTINUED 0
802#endif 2433#endif
803 2434
2435/* called on sigchld etc., calls waitpid */
804static void 2436static void
805childcb (EV_P_ ev_signal *sw, int revents) 2437childcb (EV_P_ ev_signal *sw, int revents)
806{ 2438{
807 int pid, status; 2439 int pid, status;
808 2440
811 if (!WCONTINUED 2443 if (!WCONTINUED
812 || errno != EINVAL 2444 || errno != EINVAL
813 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2445 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
814 return; 2446 return;
815 2447
816 /* make sure we are called again until all childs have been reaped */ 2448 /* make sure we are called again until all children have been reaped */
817 /* we need to do it this way so that the callback gets called before we continue */ 2449 /* we need to do it this way so that the callback gets called before we continue */
818 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2450 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
819 2451
820 child_reap (EV_A_ sw, pid, pid, status); 2452 child_reap (EV_A_ pid, pid, status);
821 if (EV_PID_HASHSIZE > 1) 2453 if ((EV_PID_HASHSIZE) > 1)
822 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2454 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
823} 2455}
824 2456
825#endif 2457#endif
826 2458
827/*****************************************************************************/ 2459/*****************************************************************************/
828 2460
2461#if EV_USE_IOCP
2462# include "ev_iocp.c"
2463#endif
829#if EV_USE_PORT 2464#if EV_USE_PORT
830# include "ev_port.c" 2465# include "ev_port.c"
831#endif 2466#endif
832#if EV_USE_KQUEUE 2467#if EV_USE_KQUEUE
833# include "ev_kqueue.c" 2468# include "ev_kqueue.c"
840#endif 2475#endif
841#if EV_USE_SELECT 2476#if EV_USE_SELECT
842# include "ev_select.c" 2477# include "ev_select.c"
843#endif 2478#endif
844 2479
845int 2480int ecb_cold
846ev_version_major (void) 2481ev_version_major (void) EV_THROW
847{ 2482{
848 return EV_VERSION_MAJOR; 2483 return EV_VERSION_MAJOR;
849} 2484}
850 2485
851int 2486int ecb_cold
852ev_version_minor (void) 2487ev_version_minor (void) EV_THROW
853{ 2488{
854 return EV_VERSION_MINOR; 2489 return EV_VERSION_MINOR;
855} 2490}
856 2491
857/* return true if we are running with elevated privileges and should ignore env variables */ 2492/* return true if we are running with elevated privileges and should ignore env variables */
858int inline_size 2493int inline_size ecb_cold
859enable_secure (void) 2494enable_secure (void)
860{ 2495{
861#ifdef _WIN32 2496#ifdef _WIN32
862 return 0; 2497 return 0;
863#else 2498#else
864 return getuid () != geteuid () 2499 return getuid () != geteuid ()
865 || getgid () != getegid (); 2500 || getgid () != getegid ();
866#endif 2501#endif
867} 2502}
868 2503
869unsigned int 2504unsigned int ecb_cold
870ev_supported_backends (void) 2505ev_supported_backends (void) EV_THROW
871{ 2506{
872 unsigned int flags = 0; 2507 unsigned int flags = 0;
873 2508
874 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2509 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
875 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2510 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
878 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2513 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
879 2514
880 return flags; 2515 return flags;
881} 2516}
882 2517
883unsigned int 2518unsigned int ecb_cold
884ev_recommended_backends (void) 2519ev_recommended_backends (void) EV_THROW
885{ 2520{
886 unsigned int flags = ev_supported_backends (); 2521 unsigned int flags = ev_supported_backends ();
887 2522
888#ifndef __NetBSD__ 2523#ifndef __NetBSD__
889 /* kqueue is borked on everything but netbsd apparently */ 2524 /* kqueue is borked on everything but netbsd apparently */
890 /* it usually doesn't work correctly on anything but sockets and pipes */ 2525 /* it usually doesn't work correctly on anything but sockets and pipes */
891 flags &= ~EVBACKEND_KQUEUE; 2526 flags &= ~EVBACKEND_KQUEUE;
892#endif 2527#endif
893#ifdef __APPLE__ 2528#ifdef __APPLE__
894 // flags &= ~EVBACKEND_KQUEUE; for documentation 2529 /* only select works correctly on that "unix-certified" platform */
895 flags &= ~EVBACKEND_POLL; 2530 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2531 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2532#endif
2533#ifdef __FreeBSD__
2534 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
896#endif 2535#endif
897 2536
898 return flags; 2537 return flags;
899} 2538}
900 2539
2540unsigned int ecb_cold
2541ev_embeddable_backends (void) EV_THROW
2542{
2543 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2544
2545 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2546 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2547 flags &= ~EVBACKEND_EPOLL;
2548
2549 return flags;
2550}
2551
901unsigned int 2552unsigned int
902ev_embeddable_backends (void) 2553ev_backend (EV_P) EV_THROW
903{ 2554{
904 return EVBACKEND_EPOLL 2555 return backend;
905 | EVBACKEND_KQUEUE
906 | EVBACKEND_PORT;
907} 2556}
908 2557
2558#if EV_FEATURE_API
909unsigned int 2559unsigned int
910ev_backend (EV_P) 2560ev_iteration (EV_P) EV_THROW
911{ 2561{
912 return backend; 2562 return loop_count;
913} 2563}
914 2564
915unsigned int 2565unsigned int
916ev_loop_count (EV_P) 2566ev_depth (EV_P) EV_THROW
917{ 2567{
918 return loop_count; 2568 return loop_depth;
919} 2569}
920 2570
2571void
2572ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2573{
2574 io_blocktime = interval;
2575}
2576
2577void
2578ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2579{
2580 timeout_blocktime = interval;
2581}
2582
2583void
2584ev_set_userdata (EV_P_ void *data) EV_THROW
2585{
2586 userdata = data;
2587}
2588
2589void *
2590ev_userdata (EV_P) EV_THROW
2591{
2592 return userdata;
2593}
2594
2595void
2596ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_THROW
2597{
2598 invoke_cb = invoke_pending_cb;
2599}
2600
2601void
2602ev_set_loop_release_cb (EV_P_ ev_loop_callback_nothrow release, ev_loop_callback_nothrow acquire) EV_THROW
2603{
2604 release_cb = release;
2605 acquire_cb = acquire;
2606}
2607#endif
2608
2609/* initialise a loop structure, must be zero-initialised */
921static void noinline 2610static void noinline ecb_cold
922loop_init (EV_P_ unsigned int flags) 2611loop_init (EV_P_ unsigned int flags) EV_THROW
923{ 2612{
924 if (!backend) 2613 if (!backend)
925 { 2614 {
2615 origflags = flags;
2616
2617#if EV_USE_REALTIME
2618 if (!have_realtime)
2619 {
2620 struct timespec ts;
2621
2622 if (!clock_gettime (CLOCK_REALTIME, &ts))
2623 have_realtime = 1;
2624 }
2625#endif
2626
926#if EV_USE_MONOTONIC 2627#if EV_USE_MONOTONIC
2628 if (!have_monotonic)
927 { 2629 {
928 struct timespec ts; 2630 struct timespec ts;
2631
929 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2632 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
930 have_monotonic = 1; 2633 have_monotonic = 1;
931 } 2634 }
932#endif 2635#endif
933
934 ev_rt_now = ev_time ();
935 mn_now = get_clock ();
936 now_floor = mn_now;
937 rtmn_diff = ev_rt_now - mn_now;
938 2636
939 /* pid check not overridable via env */ 2637 /* pid check not overridable via env */
940#ifndef _WIN32 2638#ifndef _WIN32
941 if (flags & EVFLAG_FORKCHECK) 2639 if (flags & EVFLAG_FORKCHECK)
942 curpid = getpid (); 2640 curpid = getpid ();
945 if (!(flags & EVFLAG_NOENV) 2643 if (!(flags & EVFLAG_NOENV)
946 && !enable_secure () 2644 && !enable_secure ()
947 && getenv ("LIBEV_FLAGS")) 2645 && getenv ("LIBEV_FLAGS"))
948 flags = atoi (getenv ("LIBEV_FLAGS")); 2646 flags = atoi (getenv ("LIBEV_FLAGS"));
949 2647
950 if (!(flags & 0x0000ffffUL)) 2648 ev_rt_now = ev_time ();
2649 mn_now = get_clock ();
2650 now_floor = mn_now;
2651 rtmn_diff = ev_rt_now - mn_now;
2652#if EV_FEATURE_API
2653 invoke_cb = ev_invoke_pending;
2654#endif
2655
2656 io_blocktime = 0.;
2657 timeout_blocktime = 0.;
2658 backend = 0;
2659 backend_fd = -1;
2660 sig_pending = 0;
2661#if EV_ASYNC_ENABLE
2662 async_pending = 0;
2663#endif
2664 pipe_write_skipped = 0;
2665 pipe_write_wanted = 0;
2666 evpipe [0] = -1;
2667 evpipe [1] = -1;
2668#if EV_USE_INOTIFY
2669 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2670#endif
2671#if EV_USE_SIGNALFD
2672 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2673#endif
2674
2675 if (!(flags & EVBACKEND_MASK))
951 flags |= ev_recommended_backends (); 2676 flags |= ev_recommended_backends ();
952 2677
953 backend = 0;
954 backend_fd = -1;
955#if EV_USE_INOTIFY 2678#if EV_USE_IOCP
956 fs_fd = -2; 2679 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
957#endif 2680#endif
958
959#if EV_USE_PORT 2681#if EV_USE_PORT
960 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2682 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
961#endif 2683#endif
962#if EV_USE_KQUEUE 2684#if EV_USE_KQUEUE
963 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2685 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
970#endif 2692#endif
971#if EV_USE_SELECT 2693#if EV_USE_SELECT
972 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2694 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
973#endif 2695#endif
974 2696
2697 ev_prepare_init (&pending_w, pendingcb);
2698
2699#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
975 ev_init (&sigev, sigcb); 2700 ev_init (&pipe_w, pipecb);
976 ev_set_priority (&sigev, EV_MAXPRI); 2701 ev_set_priority (&pipe_w, EV_MAXPRI);
2702#endif
977 } 2703 }
978} 2704}
979 2705
980static void noinline 2706/* free up a loop structure */
2707void ecb_cold
981loop_destroy (EV_P) 2708ev_loop_destroy (EV_P)
982{ 2709{
983 int i; 2710 int i;
2711
2712#if EV_MULTIPLICITY
2713 /* mimic free (0) */
2714 if (!EV_A)
2715 return;
2716#endif
2717
2718#if EV_CLEANUP_ENABLE
2719 /* queue cleanup watchers (and execute them) */
2720 if (expect_false (cleanupcnt))
2721 {
2722 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2723 EV_INVOKE_PENDING;
2724 }
2725#endif
2726
2727#if EV_CHILD_ENABLE
2728 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2729 {
2730 ev_ref (EV_A); /* child watcher */
2731 ev_signal_stop (EV_A_ &childev);
2732 }
2733#endif
2734
2735 if (ev_is_active (&pipe_w))
2736 {
2737 /*ev_ref (EV_A);*/
2738 /*ev_io_stop (EV_A_ &pipe_w);*/
2739
2740 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2741 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2742 }
2743
2744#if EV_USE_SIGNALFD
2745 if (ev_is_active (&sigfd_w))
2746 close (sigfd);
2747#endif
984 2748
985#if EV_USE_INOTIFY 2749#if EV_USE_INOTIFY
986 if (fs_fd >= 0) 2750 if (fs_fd >= 0)
987 close (fs_fd); 2751 close (fs_fd);
988#endif 2752#endif
989 2753
990 if (backend_fd >= 0) 2754 if (backend_fd >= 0)
991 close (backend_fd); 2755 close (backend_fd);
992 2756
2757#if EV_USE_IOCP
2758 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2759#endif
993#if EV_USE_PORT 2760#if EV_USE_PORT
994 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2761 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
995#endif 2762#endif
996#if EV_USE_KQUEUE 2763#if EV_USE_KQUEUE
997 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2764 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1012#if EV_IDLE_ENABLE 2779#if EV_IDLE_ENABLE
1013 array_free (idle, [i]); 2780 array_free (idle, [i]);
1014#endif 2781#endif
1015 } 2782 }
1016 2783
2784 ev_free (anfds); anfds = 0; anfdmax = 0;
2785
1017 /* have to use the microsoft-never-gets-it-right macro */ 2786 /* have to use the microsoft-never-gets-it-right macro */
2787 array_free (rfeed, EMPTY);
1018 array_free (fdchange, EMPTY); 2788 array_free (fdchange, EMPTY);
1019 array_free (timer, EMPTY); 2789 array_free (timer, EMPTY);
1020#if EV_PERIODIC_ENABLE 2790#if EV_PERIODIC_ENABLE
1021 array_free (periodic, EMPTY); 2791 array_free (periodic, EMPTY);
1022#endif 2792#endif
2793#if EV_FORK_ENABLE
2794 array_free (fork, EMPTY);
2795#endif
2796#if EV_CLEANUP_ENABLE
2797 array_free (cleanup, EMPTY);
2798#endif
1023 array_free (prepare, EMPTY); 2799 array_free (prepare, EMPTY);
1024 array_free (check, EMPTY); 2800 array_free (check, EMPTY);
2801#if EV_ASYNC_ENABLE
2802 array_free (async, EMPTY);
2803#endif
1025 2804
1026 backend = 0; 2805 backend = 0;
1027}
1028 2806
2807#if EV_MULTIPLICITY
2808 if (ev_is_default_loop (EV_A))
2809#endif
2810 ev_default_loop_ptr = 0;
2811#if EV_MULTIPLICITY
2812 else
2813 ev_free (EV_A);
2814#endif
2815}
2816
2817#if EV_USE_INOTIFY
1029void inline_size infy_fork (EV_P); 2818inline_size void infy_fork (EV_P);
2819#endif
1030 2820
1031void inline_size 2821inline_size void
1032loop_fork (EV_P) 2822loop_fork (EV_P)
1033{ 2823{
1034#if EV_USE_PORT 2824#if EV_USE_PORT
1035 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2825 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1036#endif 2826#endif
1042#endif 2832#endif
1043#if EV_USE_INOTIFY 2833#if EV_USE_INOTIFY
1044 infy_fork (EV_A); 2834 infy_fork (EV_A);
1045#endif 2835#endif
1046 2836
2837#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1047 if (ev_is_active (&sigev)) 2838 if (ev_is_active (&pipe_w))
1048 { 2839 {
1049 /* default loop */ 2840 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1050 2841
1051 ev_ref (EV_A); 2842 ev_ref (EV_A);
1052 ev_io_stop (EV_A_ &sigev); 2843 ev_io_stop (EV_A_ &pipe_w);
1053 close (sigpipe [0]);
1054 close (sigpipe [1]);
1055 2844
1056 while (pipe (sigpipe)) 2845 if (evpipe [0] >= 0)
1057 syserr ("(libev) error creating pipe"); 2846 EV_WIN32_CLOSE_FD (evpipe [0]);
1058 2847
1059 siginit (EV_A); 2848 evpipe_init (EV_A);
2849 /* iterate over everything, in case we missed something before */
2850 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1060 } 2851 }
2852#endif
1061 2853
1062 postfork = 0; 2854 postfork = 0;
1063} 2855}
1064 2856
1065#if EV_MULTIPLICITY 2857#if EV_MULTIPLICITY
2858
1066struct ev_loop * 2859struct ev_loop * ecb_cold
1067ev_loop_new (unsigned int flags) 2860ev_loop_new (unsigned int flags) EV_THROW
1068{ 2861{
1069 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2862 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1070 2863
1071 memset (loop, 0, sizeof (struct ev_loop)); 2864 memset (EV_A, 0, sizeof (struct ev_loop));
1072
1073 loop_init (EV_A_ flags); 2865 loop_init (EV_A_ flags);
1074 2866
1075 if (ev_backend (EV_A)) 2867 if (ev_backend (EV_A))
1076 return loop; 2868 return EV_A;
1077 2869
2870 ev_free (EV_A);
1078 return 0; 2871 return 0;
1079} 2872}
1080 2873
1081void 2874#endif /* multiplicity */
1082ev_loop_destroy (EV_P)
1083{
1084 loop_destroy (EV_A);
1085 ev_free (loop);
1086}
1087 2875
1088void 2876#if EV_VERIFY
1089ev_loop_fork (EV_P) 2877static void noinline ecb_cold
2878verify_watcher (EV_P_ W w)
1090{ 2879{
1091 postfork = 1; 2880 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1092}
1093 2881
2882 if (w->pending)
2883 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2884}
2885
2886static void noinline ecb_cold
2887verify_heap (EV_P_ ANHE *heap, int N)
2888{
2889 int i;
2890
2891 for (i = HEAP0; i < N + HEAP0; ++i)
2892 {
2893 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2894 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2895 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2896
2897 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2898 }
2899}
2900
2901static void noinline ecb_cold
2902array_verify (EV_P_ W *ws, int cnt)
2903{
2904 while (cnt--)
2905 {
2906 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2907 verify_watcher (EV_A_ ws [cnt]);
2908 }
2909}
2910#endif
2911
2912#if EV_FEATURE_API
2913void ecb_cold
2914ev_verify (EV_P) EV_THROW
2915{
2916#if EV_VERIFY
2917 int i;
2918 WL w, w2;
2919
2920 assert (activecnt >= -1);
2921
2922 assert (fdchangemax >= fdchangecnt);
2923 for (i = 0; i < fdchangecnt; ++i)
2924 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2925
2926 assert (anfdmax >= 0);
2927 for (i = 0; i < anfdmax; ++i)
2928 {
2929 int j = 0;
2930
2931 for (w = w2 = anfds [i].head; w; w = w->next)
2932 {
2933 verify_watcher (EV_A_ (W)w);
2934
2935 if (j++ & 1)
2936 {
2937 assert (("libev: io watcher list contains a loop", w != w2));
2938 w2 = w2->next;
2939 }
2940
2941 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2942 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2943 }
2944 }
2945
2946 assert (timermax >= timercnt);
2947 verify_heap (EV_A_ timers, timercnt);
2948
2949#if EV_PERIODIC_ENABLE
2950 assert (periodicmax >= periodiccnt);
2951 verify_heap (EV_A_ periodics, periodiccnt);
2952#endif
2953
2954 for (i = NUMPRI; i--; )
2955 {
2956 assert (pendingmax [i] >= pendingcnt [i]);
2957#if EV_IDLE_ENABLE
2958 assert (idleall >= 0);
2959 assert (idlemax [i] >= idlecnt [i]);
2960 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2961#endif
2962 }
2963
2964#if EV_FORK_ENABLE
2965 assert (forkmax >= forkcnt);
2966 array_verify (EV_A_ (W *)forks, forkcnt);
2967#endif
2968
2969#if EV_CLEANUP_ENABLE
2970 assert (cleanupmax >= cleanupcnt);
2971 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2972#endif
2973
2974#if EV_ASYNC_ENABLE
2975 assert (asyncmax >= asynccnt);
2976 array_verify (EV_A_ (W *)asyncs, asynccnt);
2977#endif
2978
2979#if EV_PREPARE_ENABLE
2980 assert (preparemax >= preparecnt);
2981 array_verify (EV_A_ (W *)prepares, preparecnt);
2982#endif
2983
2984#if EV_CHECK_ENABLE
2985 assert (checkmax >= checkcnt);
2986 array_verify (EV_A_ (W *)checks, checkcnt);
2987#endif
2988
2989# if 0
2990#if EV_CHILD_ENABLE
2991 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2992 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2993#endif
2994# endif
2995#endif
2996}
1094#endif 2997#endif
1095 2998
1096#if EV_MULTIPLICITY 2999#if EV_MULTIPLICITY
1097struct ev_loop * 3000struct ev_loop * ecb_cold
1098ev_default_loop_init (unsigned int flags)
1099#else 3001#else
1100int 3002int
3003#endif
1101ev_default_loop (unsigned int flags) 3004ev_default_loop (unsigned int flags) EV_THROW
1102#endif
1103{ 3005{
1104 if (sigpipe [0] == sigpipe [1])
1105 if (pipe (sigpipe))
1106 return 0;
1107
1108 if (!ev_default_loop_ptr) 3006 if (!ev_default_loop_ptr)
1109 { 3007 {
1110#if EV_MULTIPLICITY 3008#if EV_MULTIPLICITY
1111 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3009 EV_P = ev_default_loop_ptr = &default_loop_struct;
1112#else 3010#else
1113 ev_default_loop_ptr = 1; 3011 ev_default_loop_ptr = 1;
1114#endif 3012#endif
1115 3013
1116 loop_init (EV_A_ flags); 3014 loop_init (EV_A_ flags);
1117 3015
1118 if (ev_backend (EV_A)) 3016 if (ev_backend (EV_A))
1119 { 3017 {
1120 siginit (EV_A); 3018#if EV_CHILD_ENABLE
1121
1122#ifndef _WIN32
1123 ev_signal_init (&childev, childcb, SIGCHLD); 3019 ev_signal_init (&childev, childcb, SIGCHLD);
1124 ev_set_priority (&childev, EV_MAXPRI); 3020 ev_set_priority (&childev, EV_MAXPRI);
1125 ev_signal_start (EV_A_ &childev); 3021 ev_signal_start (EV_A_ &childev);
1126 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3022 ev_unref (EV_A); /* child watcher should not keep loop alive */
1127#endif 3023#endif
1132 3028
1133 return ev_default_loop_ptr; 3029 return ev_default_loop_ptr;
1134} 3030}
1135 3031
1136void 3032void
1137ev_default_destroy (void) 3033ev_loop_fork (EV_P) EV_THROW
1138{ 3034{
1139#if EV_MULTIPLICITY
1140 struct ev_loop *loop = ev_default_loop_ptr;
1141#endif
1142
1143#ifndef _WIN32
1144 ev_ref (EV_A); /* child watcher */
1145 ev_signal_stop (EV_A_ &childev);
1146#endif
1147
1148 ev_ref (EV_A); /* signal watcher */
1149 ev_io_stop (EV_A_ &sigev);
1150
1151 close (sigpipe [0]); sigpipe [0] = 0;
1152 close (sigpipe [1]); sigpipe [1] = 0;
1153
1154 loop_destroy (EV_A);
1155}
1156
1157void
1158ev_default_fork (void)
1159{
1160#if EV_MULTIPLICITY
1161 struct ev_loop *loop = ev_default_loop_ptr;
1162#endif
1163
1164 if (backend)
1165 postfork = 1; 3035 postfork = 1;
1166} 3036}
1167 3037
1168/*****************************************************************************/ 3038/*****************************************************************************/
1169 3039
1170void 3040void
1171ev_invoke (EV_P_ void *w, int revents) 3041ev_invoke (EV_P_ void *w, int revents)
1172{ 3042{
1173 EV_CB_INVOKE ((W)w, revents); 3043 EV_CB_INVOKE ((W)w, revents);
1174} 3044}
1175 3045
1176void inline_speed 3046unsigned int
1177call_pending (EV_P) 3047ev_pending_count (EV_P) EV_THROW
1178{ 3048{
1179 int pri; 3049 int pri;
3050 unsigned int count = 0;
1180 3051
1181 for (pri = NUMPRI; pri--; ) 3052 for (pri = NUMPRI; pri--; )
3053 count += pendingcnt [pri];
3054
3055 return count;
3056}
3057
3058void noinline
3059ev_invoke_pending (EV_P)
3060{
3061 pendingpri = NUMPRI;
3062
3063 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
3064 {
3065 --pendingpri;
3066
1182 while (pendingcnt [pri]) 3067 while (pendingcnt [pendingpri])
1183 {
1184 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1185
1186 if (expect_true (p->w))
1187 {
1188 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1189
1190 p->w->pending = 0;
1191 EV_CB_INVOKE (p->w, p->events);
1192 }
1193 }
1194}
1195
1196void inline_size
1197timers_reify (EV_P)
1198{
1199 while (timercnt && ((WT)timers [0])->at <= mn_now)
1200 {
1201 ev_timer *w = timers [0];
1202
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204
1205 /* first reschedule or stop timer */
1206 if (w->repeat)
1207 { 3068 {
1208 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3069 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1209 3070
1210 ((WT)w)->at += w->repeat; 3071 p->w->pending = 0;
1211 if (((WT)w)->at < mn_now) 3072 EV_CB_INVOKE (p->w, p->events);
1212 ((WT)w)->at = mn_now; 3073 EV_FREQUENT_CHECK;
1213
1214 downheap ((WT *)timers, timercnt, 0);
1215 } 3074 }
1216 else
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1220 }
1221}
1222
1223#if EV_PERIODIC_ENABLE
1224void inline_size
1225periodics_reify (EV_P)
1226{
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1228 { 3075 }
1229 ev_periodic *w = periodics [0];
1230
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1232
1233 /* first reschedule or stop timer */
1234 if (w->reschedule_cb)
1235 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1238 downheap ((WT *)periodics, periodiccnt, 0);
1239 }
1240 else if (w->interval)
1241 {
1242 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1244 downheap ((WT *)periodics, periodiccnt, 0);
1245 }
1246 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1250 }
1251} 3076}
1252
1253static void noinline
1254periodics_reschedule (EV_P)
1255{
1256 int i;
1257
1258 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i)
1260 {
1261 ev_periodic *w = periodics [i];
1262
1263 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval)
1266 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1267 }
1268
1269 /* now rebuild the heap */
1270 for (i = periodiccnt >> 1; i--; )
1271 downheap ((WT *)periodics, periodiccnt, i);
1272}
1273#endif
1274 3077
1275#if EV_IDLE_ENABLE 3078#if EV_IDLE_ENABLE
1276void inline_size 3079/* make idle watchers pending. this handles the "call-idle */
3080/* only when higher priorities are idle" logic */
3081inline_size void
1277idle_reify (EV_P) 3082idle_reify (EV_P)
1278{ 3083{
1279 if (expect_false (idleall)) 3084 if (expect_false (idleall))
1280 { 3085 {
1281 int pri; 3086 int pri;
1293 } 3098 }
1294 } 3099 }
1295} 3100}
1296#endif 3101#endif
1297 3102
1298int inline_size 3103/* make timers pending */
1299time_update_monotonic (EV_P) 3104inline_size void
3105timers_reify (EV_P)
1300{ 3106{
3107 EV_FREQUENT_CHECK;
3108
3109 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3110 {
3111 do
3112 {
3113 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3114
3115 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3116
3117 /* first reschedule or stop timer */
3118 if (w->repeat)
3119 {
3120 ev_at (w) += w->repeat;
3121 if (ev_at (w) < mn_now)
3122 ev_at (w) = mn_now;
3123
3124 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3125
3126 ANHE_at_cache (timers [HEAP0]);
3127 downheap (timers, timercnt, HEAP0);
3128 }
3129 else
3130 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3131
3132 EV_FREQUENT_CHECK;
3133 feed_reverse (EV_A_ (W)w);
3134 }
3135 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3136
3137 feed_reverse_done (EV_A_ EV_TIMER);
3138 }
3139}
3140
3141#if EV_PERIODIC_ENABLE
3142
3143static void noinline
3144periodic_recalc (EV_P_ ev_periodic *w)
3145{
3146 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3147 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3148
3149 /* the above almost always errs on the low side */
3150 while (at <= ev_rt_now)
3151 {
3152 ev_tstamp nat = at + w->interval;
3153
3154 /* when resolution fails us, we use ev_rt_now */
3155 if (expect_false (nat == at))
3156 {
3157 at = ev_rt_now;
3158 break;
3159 }
3160
3161 at = nat;
3162 }
3163
3164 ev_at (w) = at;
3165}
3166
3167/* make periodics pending */
3168inline_size void
3169periodics_reify (EV_P)
3170{
3171 EV_FREQUENT_CHECK;
3172
3173 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3174 {
3175 do
3176 {
3177 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3178
3179 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3180
3181 /* first reschedule or stop timer */
3182 if (w->reschedule_cb)
3183 {
3184 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3185
3186 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3187
3188 ANHE_at_cache (periodics [HEAP0]);
3189 downheap (periodics, periodiccnt, HEAP0);
3190 }
3191 else if (w->interval)
3192 {
3193 periodic_recalc (EV_A_ w);
3194 ANHE_at_cache (periodics [HEAP0]);
3195 downheap (periodics, periodiccnt, HEAP0);
3196 }
3197 else
3198 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3199
3200 EV_FREQUENT_CHECK;
3201 feed_reverse (EV_A_ (W)w);
3202 }
3203 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3204
3205 feed_reverse_done (EV_A_ EV_PERIODIC);
3206 }
3207}
3208
3209/* simply recalculate all periodics */
3210/* TODO: maybe ensure that at least one event happens when jumping forward? */
3211static void noinline ecb_cold
3212periodics_reschedule (EV_P)
3213{
3214 int i;
3215
3216 /* adjust periodics after time jump */
3217 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3218 {
3219 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3220
3221 if (w->reschedule_cb)
3222 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3223 else if (w->interval)
3224 periodic_recalc (EV_A_ w);
3225
3226 ANHE_at_cache (periodics [i]);
3227 }
3228
3229 reheap (periodics, periodiccnt);
3230}
3231#endif
3232
3233/* adjust all timers by a given offset */
3234static void noinline ecb_cold
3235timers_reschedule (EV_P_ ev_tstamp adjust)
3236{
3237 int i;
3238
3239 for (i = 0; i < timercnt; ++i)
3240 {
3241 ANHE *he = timers + i + HEAP0;
3242 ANHE_w (*he)->at += adjust;
3243 ANHE_at_cache (*he);
3244 }
3245}
3246
3247/* fetch new monotonic and realtime times from the kernel */
3248/* also detect if there was a timejump, and act accordingly */
3249inline_speed void
3250time_update (EV_P_ ev_tstamp max_block)
3251{
3252#if EV_USE_MONOTONIC
3253 if (expect_true (have_monotonic))
3254 {
3255 int i;
3256 ev_tstamp odiff = rtmn_diff;
3257
1301 mn_now = get_clock (); 3258 mn_now = get_clock ();
1302 3259
3260 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3261 /* interpolate in the meantime */
1303 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3262 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1304 { 3263 {
1305 ev_rt_now = rtmn_diff + mn_now; 3264 ev_rt_now = rtmn_diff + mn_now;
1306 return 0; 3265 return;
1307 } 3266 }
1308 else 3267
1309 {
1310 now_floor = mn_now; 3268 now_floor = mn_now;
1311 ev_rt_now = ev_time (); 3269 ev_rt_now = ev_time ();
1312 return 1;
1313 }
1314}
1315 3270
1316void inline_size 3271 /* loop a few times, before making important decisions.
1317time_update (EV_P) 3272 * on the choice of "4": one iteration isn't enough,
1318{ 3273 * in case we get preempted during the calls to
1319 int i; 3274 * ev_time and get_clock. a second call is almost guaranteed
1320 3275 * to succeed in that case, though. and looping a few more times
1321#if EV_USE_MONOTONIC 3276 * doesn't hurt either as we only do this on time-jumps or
1322 if (expect_true (have_monotonic)) 3277 * in the unlikely event of having been preempted here.
1323 { 3278 */
1324 if (time_update_monotonic (EV_A)) 3279 for (i = 4; --i; )
1325 { 3280 {
1326 ev_tstamp odiff = rtmn_diff; 3281 ev_tstamp diff;
1327
1328 /* loop a few times, before making important decisions.
1329 * on the choice of "4": one iteration isn't enough,
1330 * in case we get preempted during the calls to
1331 * ev_time and get_clock. a second call is almost guaranteed
1332 * to succeed in that case, though. and looping a few more times
1333 * doesn't hurt either as we only do this on time-jumps or
1334 * in the unlikely event of having been preempted here.
1335 */
1336 for (i = 4; --i; )
1337 {
1338 rtmn_diff = ev_rt_now - mn_now; 3282 rtmn_diff = ev_rt_now - mn_now;
1339 3283
1340 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3284 diff = odiff - rtmn_diff;
3285
3286 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1341 return; /* all is well */ 3287 return; /* all is well */
1342 3288
1343 ev_rt_now = ev_time (); 3289 ev_rt_now = ev_time ();
1344 mn_now = get_clock (); 3290 mn_now = get_clock ();
1345 now_floor = mn_now; 3291 now_floor = mn_now;
1346 } 3292 }
1347 3293
3294 /* no timer adjustment, as the monotonic clock doesn't jump */
3295 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1348# if EV_PERIODIC_ENABLE 3296# if EV_PERIODIC_ENABLE
1349 periodics_reschedule (EV_A); 3297 periodics_reschedule (EV_A);
1350# endif 3298# endif
1351 /* no timer adjustment, as the monotonic clock doesn't jump */
1352 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1353 }
1354 } 3299 }
1355 else 3300 else
1356#endif 3301#endif
1357 { 3302 {
1358 ev_rt_now = ev_time (); 3303 ev_rt_now = ev_time ();
1359 3304
1360 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 3305 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1361 { 3306 {
3307 /* adjust timers. this is easy, as the offset is the same for all of them */
3308 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1362#if EV_PERIODIC_ENABLE 3309#if EV_PERIODIC_ENABLE
1363 periodics_reschedule (EV_A); 3310 periodics_reschedule (EV_A);
1364#endif 3311#endif
1365
1366 /* adjust timers. this is easy, as the offset is the same for all of them */
1367 for (i = 0; i < timercnt; ++i)
1368 ((WT)timers [i])->at += ev_rt_now - mn_now;
1369 } 3312 }
1370 3313
1371 mn_now = ev_rt_now; 3314 mn_now = ev_rt_now;
1372 } 3315 }
1373} 3316}
1374 3317
1375void 3318int
1376ev_ref (EV_P)
1377{
1378 ++activecnt;
1379}
1380
1381void
1382ev_unref (EV_P)
1383{
1384 --activecnt;
1385}
1386
1387static int loop_done;
1388
1389void
1390ev_loop (EV_P_ int flags) 3319ev_run (EV_P_ int flags)
1391{ 3320{
1392 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 3321#if EV_FEATURE_API
1393 ? EVUNLOOP_ONE 3322 ++loop_depth;
1394 : EVUNLOOP_CANCEL; 3323#endif
1395 3324
3325 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3326
3327 loop_done = EVBREAK_CANCEL;
3328
1396 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3329 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1397 3330
1398 do 3331 do
1399 { 3332 {
3333#if EV_VERIFY >= 2
3334 ev_verify (EV_A);
3335#endif
3336
1400#ifndef _WIN32 3337#ifndef _WIN32
1401 if (expect_false (curpid)) /* penalise the forking check even more */ 3338 if (expect_false (curpid)) /* penalise the forking check even more */
1402 if (expect_false (getpid () != curpid)) 3339 if (expect_false (getpid () != curpid))
1403 { 3340 {
1404 curpid = getpid (); 3341 curpid = getpid ();
1410 /* we might have forked, so queue fork handlers */ 3347 /* we might have forked, so queue fork handlers */
1411 if (expect_false (postfork)) 3348 if (expect_false (postfork))
1412 if (forkcnt) 3349 if (forkcnt)
1413 { 3350 {
1414 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3351 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1415 call_pending (EV_A); 3352 EV_INVOKE_PENDING;
1416 } 3353 }
1417#endif 3354#endif
1418 3355
3356#if EV_PREPARE_ENABLE
1419 /* queue check watchers (and execute them) */ 3357 /* queue prepare watchers (and execute them) */
1420 if (expect_false (preparecnt)) 3358 if (expect_false (preparecnt))
1421 { 3359 {
1422 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3360 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1423 call_pending (EV_A); 3361 EV_INVOKE_PENDING;
1424 } 3362 }
3363#endif
1425 3364
1426 if (expect_false (!activecnt)) 3365 if (expect_false (loop_done))
1427 break; 3366 break;
1428 3367
1429 /* we might have forked, so reify kernel state if necessary */ 3368 /* we might have forked, so reify kernel state if necessary */
1430 if (expect_false (postfork)) 3369 if (expect_false (postfork))
1431 loop_fork (EV_A); 3370 loop_fork (EV_A);
1433 /* update fd-related kernel structures */ 3372 /* update fd-related kernel structures */
1434 fd_reify (EV_A); 3373 fd_reify (EV_A);
1435 3374
1436 /* calculate blocking time */ 3375 /* calculate blocking time */
1437 { 3376 {
1438 ev_tstamp block; 3377 ev_tstamp waittime = 0.;
3378 ev_tstamp sleeptime = 0.;
1439 3379
1440 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 3380 /* remember old timestamp for io_blocktime calculation */
1441 block = 0.; /* do not block at all */ 3381 ev_tstamp prev_mn_now = mn_now;
1442 else 3382
3383 /* update time to cancel out callback processing overhead */
3384 time_update (EV_A_ 1e100);
3385
3386 /* from now on, we want a pipe-wake-up */
3387 pipe_write_wanted = 1;
3388
3389 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3390
3391 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1443 { 3392 {
1444 /* update time to cancel out callback processing overhead */
1445#if EV_USE_MONOTONIC
1446 if (expect_true (have_monotonic))
1447 time_update_monotonic (EV_A);
1448 else
1449#endif
1450 {
1451 ev_rt_now = ev_time ();
1452 mn_now = ev_rt_now;
1453 }
1454
1455 block = MAX_BLOCKTIME; 3393 waittime = MAX_BLOCKTIME;
1456 3394
1457 if (timercnt) 3395 if (timercnt)
1458 { 3396 {
1459 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3397 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1460 if (block > to) block = to; 3398 if (waittime > to) waittime = to;
1461 } 3399 }
1462 3400
1463#if EV_PERIODIC_ENABLE 3401#if EV_PERIODIC_ENABLE
1464 if (periodiccnt) 3402 if (periodiccnt)
1465 { 3403 {
1466 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3404 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1467 if (block > to) block = to; 3405 if (waittime > to) waittime = to;
1468 } 3406 }
1469#endif 3407#endif
1470 3408
3409 /* don't let timeouts decrease the waittime below timeout_blocktime */
3410 if (expect_false (waittime < timeout_blocktime))
3411 waittime = timeout_blocktime;
3412
3413 /* at this point, we NEED to wait, so we have to ensure */
3414 /* to pass a minimum nonzero value to the backend */
3415 if (expect_false (waittime < backend_mintime))
3416 waittime = backend_mintime;
3417
3418 /* extra check because io_blocktime is commonly 0 */
1471 if (expect_false (block < 0.)) block = 0.; 3419 if (expect_false (io_blocktime))
3420 {
3421 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3422
3423 if (sleeptime > waittime - backend_mintime)
3424 sleeptime = waittime - backend_mintime;
3425
3426 if (expect_true (sleeptime > 0.))
3427 {
3428 ev_sleep (sleeptime);
3429 waittime -= sleeptime;
3430 }
3431 }
1472 } 3432 }
1473 3433
3434#if EV_FEATURE_API
1474 ++loop_count; 3435 ++loop_count;
3436#endif
3437 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1475 backend_poll (EV_A_ block); 3438 backend_poll (EV_A_ waittime);
3439 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3440
3441 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3442
3443 ECB_MEMORY_FENCE_ACQUIRE;
3444 if (pipe_write_skipped)
3445 {
3446 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3447 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3448 }
3449
3450
3451 /* update ev_rt_now, do magic */
3452 time_update (EV_A_ waittime + sleeptime);
1476 } 3453 }
1477
1478 /* update ev_rt_now, do magic */
1479 time_update (EV_A);
1480 3454
1481 /* queue pending timers and reschedule them */ 3455 /* queue pending timers and reschedule them */
1482 timers_reify (EV_A); /* relative timers called last */ 3456 timers_reify (EV_A); /* relative timers called last */
1483#if EV_PERIODIC_ENABLE 3457#if EV_PERIODIC_ENABLE
1484 periodics_reify (EV_A); /* absolute timers called first */ 3458 periodics_reify (EV_A); /* absolute timers called first */
1487#if EV_IDLE_ENABLE 3461#if EV_IDLE_ENABLE
1488 /* queue idle watchers unless other events are pending */ 3462 /* queue idle watchers unless other events are pending */
1489 idle_reify (EV_A); 3463 idle_reify (EV_A);
1490#endif 3464#endif
1491 3465
3466#if EV_CHECK_ENABLE
1492 /* queue check watchers, to be executed first */ 3467 /* queue check watchers, to be executed first */
1493 if (expect_false (checkcnt)) 3468 if (expect_false (checkcnt))
1494 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3469 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3470#endif
1495 3471
1496 call_pending (EV_A); 3472 EV_INVOKE_PENDING;
1497
1498 } 3473 }
1499 while (expect_true (activecnt && !loop_done)); 3474 while (expect_true (
3475 activecnt
3476 && !loop_done
3477 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3478 ));
1500 3479
1501 if (loop_done == EVUNLOOP_ONE) 3480 if (loop_done == EVBREAK_ONE)
1502 loop_done = EVUNLOOP_CANCEL; 3481 loop_done = EVBREAK_CANCEL;
3482
3483#if EV_FEATURE_API
3484 --loop_depth;
3485#endif
3486
3487 return activecnt;
1503} 3488}
1504 3489
1505void 3490void
1506ev_unloop (EV_P_ int how) 3491ev_break (EV_P_ int how) EV_THROW
1507{ 3492{
1508 loop_done = how; 3493 loop_done = how;
1509} 3494}
1510 3495
3496void
3497ev_ref (EV_P) EV_THROW
3498{
3499 ++activecnt;
3500}
3501
3502void
3503ev_unref (EV_P) EV_THROW
3504{
3505 --activecnt;
3506}
3507
3508void
3509ev_now_update (EV_P) EV_THROW
3510{
3511 time_update (EV_A_ 1e100);
3512}
3513
3514void
3515ev_suspend (EV_P) EV_THROW
3516{
3517 ev_now_update (EV_A);
3518}
3519
3520void
3521ev_resume (EV_P) EV_THROW
3522{
3523 ev_tstamp mn_prev = mn_now;
3524
3525 ev_now_update (EV_A);
3526 timers_reschedule (EV_A_ mn_now - mn_prev);
3527#if EV_PERIODIC_ENABLE
3528 /* TODO: really do this? */
3529 periodics_reschedule (EV_A);
3530#endif
3531}
3532
1511/*****************************************************************************/ 3533/*****************************************************************************/
3534/* singly-linked list management, used when the expected list length is short */
1512 3535
1513void inline_size 3536inline_size void
1514wlist_add (WL *head, WL elem) 3537wlist_add (WL *head, WL elem)
1515{ 3538{
1516 elem->next = *head; 3539 elem->next = *head;
1517 *head = elem; 3540 *head = elem;
1518} 3541}
1519 3542
1520void inline_size 3543inline_size void
1521wlist_del (WL *head, WL elem) 3544wlist_del (WL *head, WL elem)
1522{ 3545{
1523 while (*head) 3546 while (*head)
1524 { 3547 {
1525 if (*head == elem) 3548 if (expect_true (*head == elem))
1526 { 3549 {
1527 *head = elem->next; 3550 *head = elem->next;
1528 return; 3551 break;
1529 } 3552 }
1530 3553
1531 head = &(*head)->next; 3554 head = &(*head)->next;
1532 } 3555 }
1533} 3556}
1534 3557
1535void inline_speed 3558/* internal, faster, version of ev_clear_pending */
3559inline_speed void
1536clear_pending (EV_P_ W w) 3560clear_pending (EV_P_ W w)
1537{ 3561{
1538 if (w->pending) 3562 if (w->pending)
1539 { 3563 {
1540 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3564 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1541 w->pending = 0; 3565 w->pending = 0;
1542 } 3566 }
1543} 3567}
1544 3568
1545int 3569int
1546ev_clear_pending (EV_P_ void *w) 3570ev_clear_pending (EV_P_ void *w) EV_THROW
1547{ 3571{
1548 W w_ = (W)w; 3572 W w_ = (W)w;
1549 int pending = w_->pending; 3573 int pending = w_->pending;
1550 3574
1551 if (!pending) 3575 if (expect_true (pending))
3576 {
3577 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3578 p->w = (W)&pending_w;
3579 w_->pending = 0;
3580 return p->events;
3581 }
3582 else
1552 return 0; 3583 return 0;
1553
1554 w_->pending = 0;
1555 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1556 p->w = 0;
1557
1558 return p->events;
1559} 3584}
1560 3585
1561void inline_size 3586inline_size void
1562pri_adjust (EV_P_ W w) 3587pri_adjust (EV_P_ W w)
1563{ 3588{
1564 int pri = w->priority; 3589 int pri = ev_priority (w);
1565 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3590 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1566 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3591 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1567 w->priority = pri; 3592 ev_set_priority (w, pri);
1568} 3593}
1569 3594
1570void inline_speed 3595inline_speed void
1571ev_start (EV_P_ W w, int active) 3596ev_start (EV_P_ W w, int active)
1572{ 3597{
1573 pri_adjust (EV_A_ w); 3598 pri_adjust (EV_A_ w);
1574 w->active = active; 3599 w->active = active;
1575 ev_ref (EV_A); 3600 ev_ref (EV_A);
1576} 3601}
1577 3602
1578void inline_size 3603inline_size void
1579ev_stop (EV_P_ W w) 3604ev_stop (EV_P_ W w)
1580{ 3605{
1581 ev_unref (EV_A); 3606 ev_unref (EV_A);
1582 w->active = 0; 3607 w->active = 0;
1583} 3608}
1584 3609
1585/*****************************************************************************/ 3610/*****************************************************************************/
1586 3611
1587void 3612void noinline
1588ev_io_start (EV_P_ ev_io *w) 3613ev_io_start (EV_P_ ev_io *w) EV_THROW
1589{ 3614{
1590 int fd = w->fd; 3615 int fd = w->fd;
1591 3616
1592 if (expect_false (ev_is_active (w))) 3617 if (expect_false (ev_is_active (w)))
1593 return; 3618 return;
1594 3619
1595 assert (("ev_io_start called with negative fd", fd >= 0)); 3620 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3621 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3622
3623 EV_FREQUENT_CHECK;
1596 3624
1597 ev_start (EV_A_ (W)w, 1); 3625 ev_start (EV_A_ (W)w, 1);
1598 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3626 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1599 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3627 wlist_add (&anfds[fd].head, (WL)w);
1600 3628
1601 fd_change (EV_A_ fd); 3629 /* common bug, apparently */
1602} 3630 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1603 3631
1604void 3632 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3633 w->events &= ~EV__IOFDSET;
3634
3635 EV_FREQUENT_CHECK;
3636}
3637
3638void noinline
1605ev_io_stop (EV_P_ ev_io *w) 3639ev_io_stop (EV_P_ ev_io *w) EV_THROW
1606{ 3640{
1607 clear_pending (EV_A_ (W)w); 3641 clear_pending (EV_A_ (W)w);
1608 if (expect_false (!ev_is_active (w))) 3642 if (expect_false (!ev_is_active (w)))
1609 return; 3643 return;
1610 3644
1611 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3645 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1612 3646
3647 EV_FREQUENT_CHECK;
3648
1613 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3649 wlist_del (&anfds[w->fd].head, (WL)w);
1614 ev_stop (EV_A_ (W)w); 3650 ev_stop (EV_A_ (W)w);
1615 3651
1616 fd_change (EV_A_ w->fd); 3652 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1617}
1618 3653
1619void 3654 EV_FREQUENT_CHECK;
3655}
3656
3657void noinline
1620ev_timer_start (EV_P_ ev_timer *w) 3658ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1621{ 3659{
1622 if (expect_false (ev_is_active (w))) 3660 if (expect_false (ev_is_active (w)))
1623 return; 3661 return;
1624 3662
1625 ((WT)w)->at += mn_now; 3663 ev_at (w) += mn_now;
1626 3664
1627 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3665 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1628 3666
3667 EV_FREQUENT_CHECK;
3668
3669 ++timercnt;
1629 ev_start (EV_A_ (W)w, ++timercnt); 3670 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1630 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 3671 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1631 timers [timercnt - 1] = w; 3672 ANHE_w (timers [ev_active (w)]) = (WT)w;
1632 upheap ((WT *)timers, timercnt - 1); 3673 ANHE_at_cache (timers [ev_active (w)]);
3674 upheap (timers, ev_active (w));
1633 3675
3676 EV_FREQUENT_CHECK;
3677
1634 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3678 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1635} 3679}
1636 3680
1637void 3681void noinline
1638ev_timer_stop (EV_P_ ev_timer *w) 3682ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1639{ 3683{
1640 clear_pending (EV_A_ (W)w); 3684 clear_pending (EV_A_ (W)w);
1641 if (expect_false (!ev_is_active (w))) 3685 if (expect_false (!ev_is_active (w)))
1642 return; 3686 return;
1643 3687
1644 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3688 EV_FREQUENT_CHECK;
1645 3689
1646 { 3690 {
1647 int active = ((W)w)->active; 3691 int active = ev_active (w);
1648 3692
3693 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3694
3695 --timercnt;
3696
1649 if (expect_true (--active < --timercnt)) 3697 if (expect_true (active < timercnt + HEAP0))
1650 { 3698 {
1651 timers [active] = timers [timercnt]; 3699 timers [active] = timers [timercnt + HEAP0];
1652 adjustheap ((WT *)timers, timercnt, active); 3700 adjustheap (timers, timercnt, active);
1653 } 3701 }
1654 } 3702 }
1655 3703
1656 ((WT)w)->at -= mn_now; 3704 ev_at (w) -= mn_now;
1657 3705
1658 ev_stop (EV_A_ (W)w); 3706 ev_stop (EV_A_ (W)w);
1659}
1660 3707
1661void 3708 EV_FREQUENT_CHECK;
3709}
3710
3711void noinline
1662ev_timer_again (EV_P_ ev_timer *w) 3712ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1663{ 3713{
3714 EV_FREQUENT_CHECK;
3715
3716 clear_pending (EV_A_ (W)w);
3717
1664 if (ev_is_active (w)) 3718 if (ev_is_active (w))
1665 { 3719 {
1666 if (w->repeat) 3720 if (w->repeat)
1667 { 3721 {
1668 ((WT)w)->at = mn_now + w->repeat; 3722 ev_at (w) = mn_now + w->repeat;
3723 ANHE_at_cache (timers [ev_active (w)]);
1669 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3724 adjustheap (timers, timercnt, ev_active (w));
1670 } 3725 }
1671 else 3726 else
1672 ev_timer_stop (EV_A_ w); 3727 ev_timer_stop (EV_A_ w);
1673 } 3728 }
1674 else if (w->repeat) 3729 else if (w->repeat)
1675 { 3730 {
1676 w->at = w->repeat; 3731 ev_at (w) = w->repeat;
1677 ev_timer_start (EV_A_ w); 3732 ev_timer_start (EV_A_ w);
1678 } 3733 }
3734
3735 EV_FREQUENT_CHECK;
3736}
3737
3738ev_tstamp
3739ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3740{
3741 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1679} 3742}
1680 3743
1681#if EV_PERIODIC_ENABLE 3744#if EV_PERIODIC_ENABLE
1682void 3745void noinline
1683ev_periodic_start (EV_P_ ev_periodic *w) 3746ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1684{ 3747{
1685 if (expect_false (ev_is_active (w))) 3748 if (expect_false (ev_is_active (w)))
1686 return; 3749 return;
1687 3750
1688 if (w->reschedule_cb) 3751 if (w->reschedule_cb)
1689 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3752 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1690 else if (w->interval) 3753 else if (w->interval)
1691 { 3754 {
1692 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3755 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1693 /* this formula differs from the one in periodic_reify because we do not always round up */ 3756 periodic_recalc (EV_A_ w);
1694 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1695 } 3757 }
3758 else
3759 ev_at (w) = w->offset;
1696 3760
3761 EV_FREQUENT_CHECK;
3762
3763 ++periodiccnt;
1697 ev_start (EV_A_ (W)w, ++periodiccnt); 3764 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1698 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 3765 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1699 periodics [periodiccnt - 1] = w; 3766 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1700 upheap ((WT *)periodics, periodiccnt - 1); 3767 ANHE_at_cache (periodics [ev_active (w)]);
3768 upheap (periodics, ev_active (w));
1701 3769
3770 EV_FREQUENT_CHECK;
3771
1702 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3772 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1703} 3773}
1704 3774
1705void 3775void noinline
1706ev_periodic_stop (EV_P_ ev_periodic *w) 3776ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1707{ 3777{
1708 clear_pending (EV_A_ (W)w); 3778 clear_pending (EV_A_ (W)w);
1709 if (expect_false (!ev_is_active (w))) 3779 if (expect_false (!ev_is_active (w)))
1710 return; 3780 return;
1711 3781
1712 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3782 EV_FREQUENT_CHECK;
1713 3783
1714 { 3784 {
1715 int active = ((W)w)->active; 3785 int active = ev_active (w);
1716 3786
3787 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3788
3789 --periodiccnt;
3790
1717 if (expect_true (--active < --periodiccnt)) 3791 if (expect_true (active < periodiccnt + HEAP0))
1718 { 3792 {
1719 periodics [active] = periodics [periodiccnt]; 3793 periodics [active] = periodics [periodiccnt + HEAP0];
1720 adjustheap ((WT *)periodics, periodiccnt, active); 3794 adjustheap (periodics, periodiccnt, active);
1721 } 3795 }
1722 } 3796 }
1723 3797
1724 ev_stop (EV_A_ (W)w); 3798 ev_stop (EV_A_ (W)w);
1725}
1726 3799
1727void 3800 EV_FREQUENT_CHECK;
3801}
3802
3803void noinline
1728ev_periodic_again (EV_P_ ev_periodic *w) 3804ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1729{ 3805{
1730 /* TODO: use adjustheap and recalculation */ 3806 /* TODO: use adjustheap and recalculation */
1731 ev_periodic_stop (EV_A_ w); 3807 ev_periodic_stop (EV_A_ w);
1732 ev_periodic_start (EV_A_ w); 3808 ev_periodic_start (EV_A_ w);
1733} 3809}
1735 3811
1736#ifndef SA_RESTART 3812#ifndef SA_RESTART
1737# define SA_RESTART 0 3813# define SA_RESTART 0
1738#endif 3814#endif
1739 3815
1740void 3816#if EV_SIGNAL_ENABLE
3817
3818void noinline
1741ev_signal_start (EV_P_ ev_signal *w) 3819ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1742{ 3820{
1743#if EV_MULTIPLICITY
1744 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1745#endif
1746 if (expect_false (ev_is_active (w))) 3821 if (expect_false (ev_is_active (w)))
1747 return; 3822 return;
1748 3823
1749 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3824 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3825
3826#if EV_MULTIPLICITY
3827 assert (("libev: a signal must not be attached to two different loops",
3828 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3829
3830 signals [w->signum - 1].loop = EV_A;
3831 ECB_MEMORY_FENCE_RELEASE;
3832#endif
3833
3834 EV_FREQUENT_CHECK;
3835
3836#if EV_USE_SIGNALFD
3837 if (sigfd == -2)
3838 {
3839 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3840 if (sigfd < 0 && errno == EINVAL)
3841 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3842
3843 if (sigfd >= 0)
3844 {
3845 fd_intern (sigfd); /* doing it twice will not hurt */
3846
3847 sigemptyset (&sigfd_set);
3848
3849 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3850 ev_set_priority (&sigfd_w, EV_MAXPRI);
3851 ev_io_start (EV_A_ &sigfd_w);
3852 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3853 }
3854 }
3855
3856 if (sigfd >= 0)
3857 {
3858 /* TODO: check .head */
3859 sigaddset (&sigfd_set, w->signum);
3860 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3861
3862 signalfd (sigfd, &sigfd_set, 0);
3863 }
3864#endif
1750 3865
1751 ev_start (EV_A_ (W)w, 1); 3866 ev_start (EV_A_ (W)w, 1);
1752 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1753 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 3867 wlist_add (&signals [w->signum - 1].head, (WL)w);
1754 3868
1755 if (!((WL)w)->next) 3869 if (!((WL)w)->next)
3870# if EV_USE_SIGNALFD
3871 if (sigfd < 0) /*TODO*/
3872# endif
1756 { 3873 {
1757#if _WIN32 3874# ifdef _WIN32
3875 evpipe_init (EV_A);
3876
1758 signal (w->signum, sighandler); 3877 signal (w->signum, ev_sighandler);
1759#else 3878# else
1760 struct sigaction sa; 3879 struct sigaction sa;
3880
3881 evpipe_init (EV_A);
3882
1761 sa.sa_handler = sighandler; 3883 sa.sa_handler = ev_sighandler;
1762 sigfillset (&sa.sa_mask); 3884 sigfillset (&sa.sa_mask);
1763 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3885 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1764 sigaction (w->signum, &sa, 0); 3886 sigaction (w->signum, &sa, 0);
3887
3888 if (origflags & EVFLAG_NOSIGMASK)
3889 {
3890 sigemptyset (&sa.sa_mask);
3891 sigaddset (&sa.sa_mask, w->signum);
3892 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3893 }
1765#endif 3894#endif
1766 } 3895 }
1767}
1768 3896
1769void 3897 EV_FREQUENT_CHECK;
3898}
3899
3900void noinline
1770ev_signal_stop (EV_P_ ev_signal *w) 3901ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1771{ 3902{
1772 clear_pending (EV_A_ (W)w); 3903 clear_pending (EV_A_ (W)w);
1773 if (expect_false (!ev_is_active (w))) 3904 if (expect_false (!ev_is_active (w)))
1774 return; 3905 return;
1775 3906
3907 EV_FREQUENT_CHECK;
3908
1776 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3909 wlist_del (&signals [w->signum - 1].head, (WL)w);
1777 ev_stop (EV_A_ (W)w); 3910 ev_stop (EV_A_ (W)w);
1778 3911
1779 if (!signals [w->signum - 1].head) 3912 if (!signals [w->signum - 1].head)
3913 {
3914#if EV_MULTIPLICITY
3915 signals [w->signum - 1].loop = 0; /* unattach from signal */
3916#endif
3917#if EV_USE_SIGNALFD
3918 if (sigfd >= 0)
3919 {
3920 sigset_t ss;
3921
3922 sigemptyset (&ss);
3923 sigaddset (&ss, w->signum);
3924 sigdelset (&sigfd_set, w->signum);
3925
3926 signalfd (sigfd, &sigfd_set, 0);
3927 sigprocmask (SIG_UNBLOCK, &ss, 0);
3928 }
3929 else
3930#endif
1780 signal (w->signum, SIG_DFL); 3931 signal (w->signum, SIG_DFL);
3932 }
3933
3934 EV_FREQUENT_CHECK;
1781} 3935}
3936
3937#endif
3938
3939#if EV_CHILD_ENABLE
1782 3940
1783void 3941void
1784ev_child_start (EV_P_ ev_child *w) 3942ev_child_start (EV_P_ ev_child *w) EV_THROW
1785{ 3943{
1786#if EV_MULTIPLICITY 3944#if EV_MULTIPLICITY
1787 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3945 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1788#endif 3946#endif
1789 if (expect_false (ev_is_active (w))) 3947 if (expect_false (ev_is_active (w)))
1790 return; 3948 return;
1791 3949
3950 EV_FREQUENT_CHECK;
3951
1792 ev_start (EV_A_ (W)w, 1); 3952 ev_start (EV_A_ (W)w, 1);
1793 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3953 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3954
3955 EV_FREQUENT_CHECK;
1794} 3956}
1795 3957
1796void 3958void
1797ev_child_stop (EV_P_ ev_child *w) 3959ev_child_stop (EV_P_ ev_child *w) EV_THROW
1798{ 3960{
1799 clear_pending (EV_A_ (W)w); 3961 clear_pending (EV_A_ (W)w);
1800 if (expect_false (!ev_is_active (w))) 3962 if (expect_false (!ev_is_active (w)))
1801 return; 3963 return;
1802 3964
3965 EV_FREQUENT_CHECK;
3966
1803 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3967 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1804 ev_stop (EV_A_ (W)w); 3968 ev_stop (EV_A_ (W)w);
3969
3970 EV_FREQUENT_CHECK;
1805} 3971}
3972
3973#endif
1806 3974
1807#if EV_STAT_ENABLE 3975#if EV_STAT_ENABLE
1808 3976
1809# ifdef _WIN32 3977# ifdef _WIN32
1810# undef lstat 3978# undef lstat
1811# define lstat(a,b) _stati64 (a,b) 3979# define lstat(a,b) _stati64 (a,b)
1812# endif 3980# endif
1813 3981
1814#define DEF_STAT_INTERVAL 5.0074891 3982#define DEF_STAT_INTERVAL 5.0074891
3983#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1815#define MIN_STAT_INTERVAL 0.1074891 3984#define MIN_STAT_INTERVAL 0.1074891
1816 3985
1817static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3986static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1818 3987
1819#if EV_USE_INOTIFY 3988#if EV_USE_INOTIFY
1820# define EV_INOTIFY_BUFSIZE 8192 3989
3990/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3991# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1821 3992
1822static void noinline 3993static void noinline
1823infy_add (EV_P_ ev_stat *w) 3994infy_add (EV_P_ ev_stat *w)
1824{ 3995{
1825 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3996 w->wd = inotify_add_watch (fs_fd, w->path,
3997 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3998 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3999 | IN_DONT_FOLLOW | IN_MASK_ADD);
1826 4000
1827 if (w->wd < 0) 4001 if (w->wd >= 0)
4002 {
4003 struct statfs sfs;
4004
4005 /* now local changes will be tracked by inotify, but remote changes won't */
4006 /* unless the filesystem is known to be local, we therefore still poll */
4007 /* also do poll on <2.6.25, but with normal frequency */
4008
4009 if (!fs_2625)
4010 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4011 else if (!statfs (w->path, &sfs)
4012 && (sfs.f_type == 0x1373 /* devfs */
4013 || sfs.f_type == 0x4006 /* fat */
4014 || sfs.f_type == 0x4d44 /* msdos */
4015 || sfs.f_type == 0xEF53 /* ext2/3 */
4016 || sfs.f_type == 0x72b6 /* jffs2 */
4017 || sfs.f_type == 0x858458f6 /* ramfs */
4018 || sfs.f_type == 0x5346544e /* ntfs */
4019 || sfs.f_type == 0x3153464a /* jfs */
4020 || sfs.f_type == 0x9123683e /* btrfs */
4021 || sfs.f_type == 0x52654973 /* reiser3 */
4022 || sfs.f_type == 0x01021994 /* tmpfs */
4023 || sfs.f_type == 0x58465342 /* xfs */))
4024 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4025 else
4026 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1828 { 4027 }
1829 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4028 else
4029 {
4030 /* can't use inotify, continue to stat */
4031 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1830 4032
1831 /* monitor some parent directory for speedup hints */ 4033 /* if path is not there, monitor some parent directory for speedup hints */
4034 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4035 /* but an efficiency issue only */
1832 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4036 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1833 { 4037 {
1834 char path [4096]; 4038 char path [4096];
1835 strcpy (path, w->path); 4039 strcpy (path, w->path);
1836 4040
1839 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4043 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1840 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4044 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1841 4045
1842 char *pend = strrchr (path, '/'); 4046 char *pend = strrchr (path, '/');
1843 4047
1844 if (!pend) 4048 if (!pend || pend == path)
1845 break; /* whoops, no '/', complain to your admin */ 4049 break;
1846 4050
1847 *pend = 0; 4051 *pend = 0;
1848 w->wd = inotify_add_watch (fs_fd, path, mask); 4052 w->wd = inotify_add_watch (fs_fd, path, mask);
1849 } 4053 }
1850 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4054 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1851 } 4055 }
1852 } 4056 }
1853 else
1854 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1855 4057
1856 if (w->wd >= 0) 4058 if (w->wd >= 0)
1857 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4059 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
4060
4061 /* now re-arm timer, if required */
4062 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4063 ev_timer_again (EV_A_ &w->timer);
4064 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1858} 4065}
1859 4066
1860static void noinline 4067static void noinline
1861infy_del (EV_P_ ev_stat *w) 4068infy_del (EV_P_ ev_stat *w)
1862{ 4069{
1865 4072
1866 if (wd < 0) 4073 if (wd < 0)
1867 return; 4074 return;
1868 4075
1869 w->wd = -2; 4076 w->wd = -2;
1870 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4077 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1871 wlist_del (&fs_hash [slot].head, (WL)w); 4078 wlist_del (&fs_hash [slot].head, (WL)w);
1872 4079
1873 /* remove this watcher, if others are watching it, they will rearm */ 4080 /* remove this watcher, if others are watching it, they will rearm */
1874 inotify_rm_watch (fs_fd, wd); 4081 inotify_rm_watch (fs_fd, wd);
1875} 4082}
1876 4083
1877static void noinline 4084static void noinline
1878infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4085infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1879{ 4086{
1880 if (slot < 0) 4087 if (slot < 0)
1881 /* overflow, need to check for all hahs slots */ 4088 /* overflow, need to check for all hash slots */
1882 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4089 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1883 infy_wd (EV_A_ slot, wd, ev); 4090 infy_wd (EV_A_ slot, wd, ev);
1884 else 4091 else
1885 { 4092 {
1886 WL w_; 4093 WL w_;
1887 4094
1888 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4095 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1889 { 4096 {
1890 ev_stat *w = (ev_stat *)w_; 4097 ev_stat *w = (ev_stat *)w_;
1891 w_ = w_->next; /* lets us remove this watcher and all before it */ 4098 w_ = w_->next; /* lets us remove this watcher and all before it */
1892 4099
1893 if (w->wd == wd || wd == -1) 4100 if (w->wd == wd || wd == -1)
1894 { 4101 {
1895 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4102 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1896 { 4103 {
4104 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1897 w->wd = -1; 4105 w->wd = -1;
1898 infy_add (EV_A_ w); /* re-add, no matter what */ 4106 infy_add (EV_A_ w); /* re-add, no matter what */
1899 } 4107 }
1900 4108
1901 stat_timer_cb (EV_A_ &w->timer, 0); 4109 stat_timer_cb (EV_A_ &w->timer, 0);
1906 4114
1907static void 4115static void
1908infy_cb (EV_P_ ev_io *w, int revents) 4116infy_cb (EV_P_ ev_io *w, int revents)
1909{ 4117{
1910 char buf [EV_INOTIFY_BUFSIZE]; 4118 char buf [EV_INOTIFY_BUFSIZE];
1911 struct inotify_event *ev = (struct inotify_event *)buf;
1912 int ofs; 4119 int ofs;
1913 int len = read (fs_fd, buf, sizeof (buf)); 4120 int len = read (fs_fd, buf, sizeof (buf));
1914 4121
1915 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4122 for (ofs = 0; ofs < len; )
4123 {
4124 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1916 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4125 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4126 ofs += sizeof (struct inotify_event) + ev->len;
4127 }
1917} 4128}
1918 4129
1919void inline_size 4130inline_size void ecb_cold
4131ev_check_2625 (EV_P)
4132{
4133 /* kernels < 2.6.25 are borked
4134 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4135 */
4136 if (ev_linux_version () < 0x020619)
4137 return;
4138
4139 fs_2625 = 1;
4140}
4141
4142inline_size int
4143infy_newfd (void)
4144{
4145#if defined IN_CLOEXEC && defined IN_NONBLOCK
4146 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4147 if (fd >= 0)
4148 return fd;
4149#endif
4150 return inotify_init ();
4151}
4152
4153inline_size void
1920infy_init (EV_P) 4154infy_init (EV_P)
1921{ 4155{
1922 if (fs_fd != -2) 4156 if (fs_fd != -2)
1923 return; 4157 return;
1924 4158
4159 fs_fd = -1;
4160
4161 ev_check_2625 (EV_A);
4162
1925 fs_fd = inotify_init (); 4163 fs_fd = infy_newfd ();
1926 4164
1927 if (fs_fd >= 0) 4165 if (fs_fd >= 0)
1928 { 4166 {
4167 fd_intern (fs_fd);
1929 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4168 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1930 ev_set_priority (&fs_w, EV_MAXPRI); 4169 ev_set_priority (&fs_w, EV_MAXPRI);
1931 ev_io_start (EV_A_ &fs_w); 4170 ev_io_start (EV_A_ &fs_w);
4171 ev_unref (EV_A);
1932 } 4172 }
1933} 4173}
1934 4174
1935void inline_size 4175inline_size void
1936infy_fork (EV_P) 4176infy_fork (EV_P)
1937{ 4177{
1938 int slot; 4178 int slot;
1939 4179
1940 if (fs_fd < 0) 4180 if (fs_fd < 0)
1941 return; 4181 return;
1942 4182
4183 ev_ref (EV_A);
4184 ev_io_stop (EV_A_ &fs_w);
1943 close (fs_fd); 4185 close (fs_fd);
1944 fs_fd = inotify_init (); 4186 fs_fd = infy_newfd ();
1945 4187
4188 if (fs_fd >= 0)
4189 {
4190 fd_intern (fs_fd);
4191 ev_io_set (&fs_w, fs_fd, EV_READ);
4192 ev_io_start (EV_A_ &fs_w);
4193 ev_unref (EV_A);
4194 }
4195
1946 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4196 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1947 { 4197 {
1948 WL w_ = fs_hash [slot].head; 4198 WL w_ = fs_hash [slot].head;
1949 fs_hash [slot].head = 0; 4199 fs_hash [slot].head = 0;
1950 4200
1951 while (w_) 4201 while (w_)
1956 w->wd = -1; 4206 w->wd = -1;
1957 4207
1958 if (fs_fd >= 0) 4208 if (fs_fd >= 0)
1959 infy_add (EV_A_ w); /* re-add, no matter what */ 4209 infy_add (EV_A_ w); /* re-add, no matter what */
1960 else 4210 else
4211 {
4212 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4213 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1961 ev_timer_start (EV_A_ &w->timer); 4214 ev_timer_again (EV_A_ &w->timer);
4215 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4216 }
1962 } 4217 }
1963
1964 } 4218 }
1965} 4219}
1966 4220
4221#endif
4222
4223#ifdef _WIN32
4224# define EV_LSTAT(p,b) _stati64 (p, b)
4225#else
4226# define EV_LSTAT(p,b) lstat (p, b)
1967#endif 4227#endif
1968 4228
1969void 4229void
1970ev_stat_stat (EV_P_ ev_stat *w) 4230ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
1971{ 4231{
1972 if (lstat (w->path, &w->attr) < 0) 4232 if (lstat (w->path, &w->attr) < 0)
1973 w->attr.st_nlink = 0; 4233 w->attr.st_nlink = 0;
1974 else if (!w->attr.st_nlink) 4234 else if (!w->attr.st_nlink)
1975 w->attr.st_nlink = 1; 4235 w->attr.st_nlink = 1;
1978static void noinline 4238static void noinline
1979stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4239stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1980{ 4240{
1981 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4241 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1982 4242
1983 /* we copy this here each the time so that */ 4243 ev_statdata prev = w->attr;
1984 /* prev has the old value when the callback gets invoked */
1985 w->prev = w->attr;
1986 ev_stat_stat (EV_A_ w); 4244 ev_stat_stat (EV_A_ w);
1987 4245
1988 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4246 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1989 if ( 4247 if (
1990 w->prev.st_dev != w->attr.st_dev 4248 prev.st_dev != w->attr.st_dev
1991 || w->prev.st_ino != w->attr.st_ino 4249 || prev.st_ino != w->attr.st_ino
1992 || w->prev.st_mode != w->attr.st_mode 4250 || prev.st_mode != w->attr.st_mode
1993 || w->prev.st_nlink != w->attr.st_nlink 4251 || prev.st_nlink != w->attr.st_nlink
1994 || w->prev.st_uid != w->attr.st_uid 4252 || prev.st_uid != w->attr.st_uid
1995 || w->prev.st_gid != w->attr.st_gid 4253 || prev.st_gid != w->attr.st_gid
1996 || w->prev.st_rdev != w->attr.st_rdev 4254 || prev.st_rdev != w->attr.st_rdev
1997 || w->prev.st_size != w->attr.st_size 4255 || prev.st_size != w->attr.st_size
1998 || w->prev.st_atime != w->attr.st_atime 4256 || prev.st_atime != w->attr.st_atime
1999 || w->prev.st_mtime != w->attr.st_mtime 4257 || prev.st_mtime != w->attr.st_mtime
2000 || w->prev.st_ctime != w->attr.st_ctime 4258 || prev.st_ctime != w->attr.st_ctime
2001 ) { 4259 ) {
4260 /* we only update w->prev on actual differences */
4261 /* in case we test more often than invoke the callback, */
4262 /* to ensure that prev is always different to attr */
4263 w->prev = prev;
4264
2002 #if EV_USE_INOTIFY 4265 #if EV_USE_INOTIFY
4266 if (fs_fd >= 0)
4267 {
2003 infy_del (EV_A_ w); 4268 infy_del (EV_A_ w);
2004 infy_add (EV_A_ w); 4269 infy_add (EV_A_ w);
2005 ev_stat_stat (EV_A_ w); /* avoid race... */ 4270 ev_stat_stat (EV_A_ w); /* avoid race... */
4271 }
2006 #endif 4272 #endif
2007 4273
2008 ev_feed_event (EV_A_ w, EV_STAT); 4274 ev_feed_event (EV_A_ w, EV_STAT);
2009 } 4275 }
2010} 4276}
2011 4277
2012void 4278void
2013ev_stat_start (EV_P_ ev_stat *w) 4279ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2014{ 4280{
2015 if (expect_false (ev_is_active (w))) 4281 if (expect_false (ev_is_active (w)))
2016 return; 4282 return;
2017 4283
2018 /* since we use memcmp, we need to clear any padding data etc. */
2019 memset (&w->prev, 0, sizeof (ev_statdata));
2020 memset (&w->attr, 0, sizeof (ev_statdata));
2021
2022 ev_stat_stat (EV_A_ w); 4284 ev_stat_stat (EV_A_ w);
2023 4285
4286 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2024 if (w->interval < MIN_STAT_INTERVAL) 4287 w->interval = MIN_STAT_INTERVAL;
2025 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2026 4288
2027 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4289 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2028 ev_set_priority (&w->timer, ev_priority (w)); 4290 ev_set_priority (&w->timer, ev_priority (w));
2029 4291
2030#if EV_USE_INOTIFY 4292#if EV_USE_INOTIFY
2031 infy_init (EV_A); 4293 infy_init (EV_A);
2032 4294
2033 if (fs_fd >= 0) 4295 if (fs_fd >= 0)
2034 infy_add (EV_A_ w); 4296 infy_add (EV_A_ w);
2035 else 4297 else
2036#endif 4298#endif
4299 {
2037 ev_timer_start (EV_A_ &w->timer); 4300 ev_timer_again (EV_A_ &w->timer);
4301 ev_unref (EV_A);
4302 }
2038 4303
2039 ev_start (EV_A_ (W)w, 1); 4304 ev_start (EV_A_ (W)w, 1);
4305
4306 EV_FREQUENT_CHECK;
2040} 4307}
2041 4308
2042void 4309void
2043ev_stat_stop (EV_P_ ev_stat *w) 4310ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2044{ 4311{
2045 clear_pending (EV_A_ (W)w); 4312 clear_pending (EV_A_ (W)w);
2046 if (expect_false (!ev_is_active (w))) 4313 if (expect_false (!ev_is_active (w)))
2047 return; 4314 return;
2048 4315
4316 EV_FREQUENT_CHECK;
4317
2049#if EV_USE_INOTIFY 4318#if EV_USE_INOTIFY
2050 infy_del (EV_A_ w); 4319 infy_del (EV_A_ w);
2051#endif 4320#endif
4321
4322 if (ev_is_active (&w->timer))
4323 {
4324 ev_ref (EV_A);
2052 ev_timer_stop (EV_A_ &w->timer); 4325 ev_timer_stop (EV_A_ &w->timer);
4326 }
2053 4327
2054 ev_stop (EV_A_ (W)w); 4328 ev_stop (EV_A_ (W)w);
4329
4330 EV_FREQUENT_CHECK;
2055} 4331}
2056#endif 4332#endif
2057 4333
2058#if EV_IDLE_ENABLE 4334#if EV_IDLE_ENABLE
2059void 4335void
2060ev_idle_start (EV_P_ ev_idle *w) 4336ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2061{ 4337{
2062 if (expect_false (ev_is_active (w))) 4338 if (expect_false (ev_is_active (w)))
2063 return; 4339 return;
2064 4340
2065 pri_adjust (EV_A_ (W)w); 4341 pri_adjust (EV_A_ (W)w);
4342
4343 EV_FREQUENT_CHECK;
2066 4344
2067 { 4345 {
2068 int active = ++idlecnt [ABSPRI (w)]; 4346 int active = ++idlecnt [ABSPRI (w)];
2069 4347
2070 ++idleall; 4348 ++idleall;
2071 ev_start (EV_A_ (W)w, active); 4349 ev_start (EV_A_ (W)w, active);
2072 4350
2073 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4351 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2074 idles [ABSPRI (w)][active - 1] = w; 4352 idles [ABSPRI (w)][active - 1] = w;
2075 } 4353 }
4354
4355 EV_FREQUENT_CHECK;
2076} 4356}
2077 4357
2078void 4358void
2079ev_idle_stop (EV_P_ ev_idle *w) 4359ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2080{ 4360{
2081 clear_pending (EV_A_ (W)w); 4361 clear_pending (EV_A_ (W)w);
2082 if (expect_false (!ev_is_active (w))) 4362 if (expect_false (!ev_is_active (w)))
2083 return; 4363 return;
2084 4364
4365 EV_FREQUENT_CHECK;
4366
2085 { 4367 {
2086 int active = ((W)w)->active; 4368 int active = ev_active (w);
2087 4369
2088 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4370 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2089 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4371 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2090 4372
2091 ev_stop (EV_A_ (W)w); 4373 ev_stop (EV_A_ (W)w);
2092 --idleall; 4374 --idleall;
2093 } 4375 }
2094}
2095#endif
2096 4376
4377 EV_FREQUENT_CHECK;
4378}
4379#endif
4380
4381#if EV_PREPARE_ENABLE
2097void 4382void
2098ev_prepare_start (EV_P_ ev_prepare *w) 4383ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2099{ 4384{
2100 if (expect_false (ev_is_active (w))) 4385 if (expect_false (ev_is_active (w)))
2101 return; 4386 return;
4387
4388 EV_FREQUENT_CHECK;
2102 4389
2103 ev_start (EV_A_ (W)w, ++preparecnt); 4390 ev_start (EV_A_ (W)w, ++preparecnt);
2104 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4391 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2105 prepares [preparecnt - 1] = w; 4392 prepares [preparecnt - 1] = w;
4393
4394 EV_FREQUENT_CHECK;
2106} 4395}
2107 4396
2108void 4397void
2109ev_prepare_stop (EV_P_ ev_prepare *w) 4398ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2110{ 4399{
2111 clear_pending (EV_A_ (W)w); 4400 clear_pending (EV_A_ (W)w);
2112 if (expect_false (!ev_is_active (w))) 4401 if (expect_false (!ev_is_active (w)))
2113 return; 4402 return;
2114 4403
4404 EV_FREQUENT_CHECK;
4405
2115 { 4406 {
2116 int active = ((W)w)->active; 4407 int active = ev_active (w);
4408
2117 prepares [active - 1] = prepares [--preparecnt]; 4409 prepares [active - 1] = prepares [--preparecnt];
2118 ((W)prepares [active - 1])->active = active; 4410 ev_active (prepares [active - 1]) = active;
2119 } 4411 }
2120 4412
2121 ev_stop (EV_A_ (W)w); 4413 ev_stop (EV_A_ (W)w);
2122}
2123 4414
4415 EV_FREQUENT_CHECK;
4416}
4417#endif
4418
4419#if EV_CHECK_ENABLE
2124void 4420void
2125ev_check_start (EV_P_ ev_check *w) 4421ev_check_start (EV_P_ ev_check *w) EV_THROW
2126{ 4422{
2127 if (expect_false (ev_is_active (w))) 4423 if (expect_false (ev_is_active (w)))
2128 return; 4424 return;
4425
4426 EV_FREQUENT_CHECK;
2129 4427
2130 ev_start (EV_A_ (W)w, ++checkcnt); 4428 ev_start (EV_A_ (W)w, ++checkcnt);
2131 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4429 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2132 checks [checkcnt - 1] = w; 4430 checks [checkcnt - 1] = w;
4431
4432 EV_FREQUENT_CHECK;
2133} 4433}
2134 4434
2135void 4435void
2136ev_check_stop (EV_P_ ev_check *w) 4436ev_check_stop (EV_P_ ev_check *w) EV_THROW
2137{ 4437{
2138 clear_pending (EV_A_ (W)w); 4438 clear_pending (EV_A_ (W)w);
2139 if (expect_false (!ev_is_active (w))) 4439 if (expect_false (!ev_is_active (w)))
2140 return; 4440 return;
2141 4441
4442 EV_FREQUENT_CHECK;
4443
2142 { 4444 {
2143 int active = ((W)w)->active; 4445 int active = ev_active (w);
4446
2144 checks [active - 1] = checks [--checkcnt]; 4447 checks [active - 1] = checks [--checkcnt];
2145 ((W)checks [active - 1])->active = active; 4448 ev_active (checks [active - 1]) = active;
2146 } 4449 }
2147 4450
2148 ev_stop (EV_A_ (W)w); 4451 ev_stop (EV_A_ (W)w);
4452
4453 EV_FREQUENT_CHECK;
2149} 4454}
4455#endif
2150 4456
2151#if EV_EMBED_ENABLE 4457#if EV_EMBED_ENABLE
2152void noinline 4458void noinline
2153ev_embed_sweep (EV_P_ ev_embed *w) 4459ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2154{ 4460{
2155 ev_loop (w->loop, EVLOOP_NONBLOCK); 4461 ev_run (w->other, EVRUN_NOWAIT);
2156} 4462}
2157 4463
2158static void 4464static void
2159embed_cb (EV_P_ ev_io *io, int revents) 4465embed_io_cb (EV_P_ ev_io *io, int revents)
2160{ 4466{
2161 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4467 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2162 4468
2163 if (ev_cb (w)) 4469 if (ev_cb (w))
2164 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4470 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2165 else 4471 else
2166 ev_embed_sweep (loop, w); 4472 ev_run (w->other, EVRUN_NOWAIT);
2167} 4473}
4474
4475static void
4476embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4477{
4478 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4479
4480 {
4481 EV_P = w->other;
4482
4483 while (fdchangecnt)
4484 {
4485 fd_reify (EV_A);
4486 ev_run (EV_A_ EVRUN_NOWAIT);
4487 }
4488 }
4489}
4490
4491static void
4492embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4493{
4494 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4495
4496 ev_embed_stop (EV_A_ w);
4497
4498 {
4499 EV_P = w->other;
4500
4501 ev_loop_fork (EV_A);
4502 ev_run (EV_A_ EVRUN_NOWAIT);
4503 }
4504
4505 ev_embed_start (EV_A_ w);
4506}
4507
4508#if 0
4509static void
4510embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4511{
4512 ev_idle_stop (EV_A_ idle);
4513}
4514#endif
2168 4515
2169void 4516void
2170ev_embed_start (EV_P_ ev_embed *w) 4517ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2171{ 4518{
2172 if (expect_false (ev_is_active (w))) 4519 if (expect_false (ev_is_active (w)))
2173 return; 4520 return;
2174 4521
2175 { 4522 {
2176 struct ev_loop *loop = w->loop; 4523 EV_P = w->other;
2177 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4524 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2178 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 4525 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2179 } 4526 }
4527
4528 EV_FREQUENT_CHECK;
2180 4529
2181 ev_set_priority (&w->io, ev_priority (w)); 4530 ev_set_priority (&w->io, ev_priority (w));
2182 ev_io_start (EV_A_ &w->io); 4531 ev_io_start (EV_A_ &w->io);
2183 4532
4533 ev_prepare_init (&w->prepare, embed_prepare_cb);
4534 ev_set_priority (&w->prepare, EV_MINPRI);
4535 ev_prepare_start (EV_A_ &w->prepare);
4536
4537 ev_fork_init (&w->fork, embed_fork_cb);
4538 ev_fork_start (EV_A_ &w->fork);
4539
4540 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4541
2184 ev_start (EV_A_ (W)w, 1); 4542 ev_start (EV_A_ (W)w, 1);
4543
4544 EV_FREQUENT_CHECK;
2185} 4545}
2186 4546
2187void 4547void
2188ev_embed_stop (EV_P_ ev_embed *w) 4548ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2189{ 4549{
2190 clear_pending (EV_A_ (W)w); 4550 clear_pending (EV_A_ (W)w);
2191 if (expect_false (!ev_is_active (w))) 4551 if (expect_false (!ev_is_active (w)))
2192 return; 4552 return;
2193 4553
4554 EV_FREQUENT_CHECK;
4555
2194 ev_io_stop (EV_A_ &w->io); 4556 ev_io_stop (EV_A_ &w->io);
4557 ev_prepare_stop (EV_A_ &w->prepare);
4558 ev_fork_stop (EV_A_ &w->fork);
2195 4559
2196 ev_stop (EV_A_ (W)w); 4560 ev_stop (EV_A_ (W)w);
4561
4562 EV_FREQUENT_CHECK;
2197} 4563}
2198#endif 4564#endif
2199 4565
2200#if EV_FORK_ENABLE 4566#if EV_FORK_ENABLE
2201void 4567void
2202ev_fork_start (EV_P_ ev_fork *w) 4568ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2203{ 4569{
2204 if (expect_false (ev_is_active (w))) 4570 if (expect_false (ev_is_active (w)))
2205 return; 4571 return;
4572
4573 EV_FREQUENT_CHECK;
2206 4574
2207 ev_start (EV_A_ (W)w, ++forkcnt); 4575 ev_start (EV_A_ (W)w, ++forkcnt);
2208 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4576 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2209 forks [forkcnt - 1] = w; 4577 forks [forkcnt - 1] = w;
4578
4579 EV_FREQUENT_CHECK;
2210} 4580}
2211 4581
2212void 4582void
2213ev_fork_stop (EV_P_ ev_fork *w) 4583ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2214{ 4584{
2215 clear_pending (EV_A_ (W)w); 4585 clear_pending (EV_A_ (W)w);
2216 if (expect_false (!ev_is_active (w))) 4586 if (expect_false (!ev_is_active (w)))
2217 return; 4587 return;
2218 4588
4589 EV_FREQUENT_CHECK;
4590
2219 { 4591 {
2220 int active = ((W)w)->active; 4592 int active = ev_active (w);
4593
2221 forks [active - 1] = forks [--forkcnt]; 4594 forks [active - 1] = forks [--forkcnt];
2222 ((W)forks [active - 1])->active = active; 4595 ev_active (forks [active - 1]) = active;
2223 } 4596 }
2224 4597
2225 ev_stop (EV_A_ (W)w); 4598 ev_stop (EV_A_ (W)w);
4599
4600 EV_FREQUENT_CHECK;
4601}
4602#endif
4603
4604#if EV_CLEANUP_ENABLE
4605void
4606ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4607{
4608 if (expect_false (ev_is_active (w)))
4609 return;
4610
4611 EV_FREQUENT_CHECK;
4612
4613 ev_start (EV_A_ (W)w, ++cleanupcnt);
4614 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4615 cleanups [cleanupcnt - 1] = w;
4616
4617 /* cleanup watchers should never keep a refcount on the loop */
4618 ev_unref (EV_A);
4619 EV_FREQUENT_CHECK;
4620}
4621
4622void
4623ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4624{
4625 clear_pending (EV_A_ (W)w);
4626 if (expect_false (!ev_is_active (w)))
4627 return;
4628
4629 EV_FREQUENT_CHECK;
4630 ev_ref (EV_A);
4631
4632 {
4633 int active = ev_active (w);
4634
4635 cleanups [active - 1] = cleanups [--cleanupcnt];
4636 ev_active (cleanups [active - 1]) = active;
4637 }
4638
4639 ev_stop (EV_A_ (W)w);
4640
4641 EV_FREQUENT_CHECK;
4642}
4643#endif
4644
4645#if EV_ASYNC_ENABLE
4646void
4647ev_async_start (EV_P_ ev_async *w) EV_THROW
4648{
4649 if (expect_false (ev_is_active (w)))
4650 return;
4651
4652 w->sent = 0;
4653
4654 evpipe_init (EV_A);
4655
4656 EV_FREQUENT_CHECK;
4657
4658 ev_start (EV_A_ (W)w, ++asynccnt);
4659 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4660 asyncs [asynccnt - 1] = w;
4661
4662 EV_FREQUENT_CHECK;
4663}
4664
4665void
4666ev_async_stop (EV_P_ ev_async *w) EV_THROW
4667{
4668 clear_pending (EV_A_ (W)w);
4669 if (expect_false (!ev_is_active (w)))
4670 return;
4671
4672 EV_FREQUENT_CHECK;
4673
4674 {
4675 int active = ev_active (w);
4676
4677 asyncs [active - 1] = asyncs [--asynccnt];
4678 ev_active (asyncs [active - 1]) = active;
4679 }
4680
4681 ev_stop (EV_A_ (W)w);
4682
4683 EV_FREQUENT_CHECK;
4684}
4685
4686void
4687ev_async_send (EV_P_ ev_async *w) EV_THROW
4688{
4689 w->sent = 1;
4690 evpipe_write (EV_A_ &async_pending);
2226} 4691}
2227#endif 4692#endif
2228 4693
2229/*****************************************************************************/ 4694/*****************************************************************************/
2230 4695
2240once_cb (EV_P_ struct ev_once *once, int revents) 4705once_cb (EV_P_ struct ev_once *once, int revents)
2241{ 4706{
2242 void (*cb)(int revents, void *arg) = once->cb; 4707 void (*cb)(int revents, void *arg) = once->cb;
2243 void *arg = once->arg; 4708 void *arg = once->arg;
2244 4709
2245 ev_io_stop (EV_A_ &once->io); 4710 ev_io_stop (EV_A_ &once->io);
2246 ev_timer_stop (EV_A_ &once->to); 4711 ev_timer_stop (EV_A_ &once->to);
2247 ev_free (once); 4712 ev_free (once);
2248 4713
2249 cb (revents, arg); 4714 cb (revents, arg);
2250} 4715}
2251 4716
2252static void 4717static void
2253once_cb_io (EV_P_ ev_io *w, int revents) 4718once_cb_io (EV_P_ ev_io *w, int revents)
2254{ 4719{
2255 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4720 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4721
4722 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2256} 4723}
2257 4724
2258static void 4725static void
2259once_cb_to (EV_P_ ev_timer *w, int revents) 4726once_cb_to (EV_P_ ev_timer *w, int revents)
2260{ 4727{
2261 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4728 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4729
4730 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2262} 4731}
2263 4732
2264void 4733void
2265ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4734ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2266{ 4735{
2267 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4736 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2268 4737
2269 if (expect_false (!once)) 4738 if (expect_false (!once))
2270 { 4739 {
2271 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4740 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2272 return; 4741 return;
2273 } 4742 }
2274 4743
2275 once->cb = cb; 4744 once->cb = cb;
2276 once->arg = arg; 4745 once->arg = arg;
2288 ev_timer_set (&once->to, timeout, 0.); 4757 ev_timer_set (&once->to, timeout, 0.);
2289 ev_timer_start (EV_A_ &once->to); 4758 ev_timer_start (EV_A_ &once->to);
2290 } 4759 }
2291} 4760}
2292 4761
2293#ifdef __cplusplus 4762/*****************************************************************************/
2294} 4763
4764#if EV_WALK_ENABLE
4765void ecb_cold
4766ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4767{
4768 int i, j;
4769 ev_watcher_list *wl, *wn;
4770
4771 if (types & (EV_IO | EV_EMBED))
4772 for (i = 0; i < anfdmax; ++i)
4773 for (wl = anfds [i].head; wl; )
4774 {
4775 wn = wl->next;
4776
4777#if EV_EMBED_ENABLE
4778 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4779 {
4780 if (types & EV_EMBED)
4781 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4782 }
4783 else
4784#endif
4785#if EV_USE_INOTIFY
4786 if (ev_cb ((ev_io *)wl) == infy_cb)
4787 ;
4788 else
4789#endif
4790 if ((ev_io *)wl != &pipe_w)
4791 if (types & EV_IO)
4792 cb (EV_A_ EV_IO, wl);
4793
4794 wl = wn;
4795 }
4796
4797 if (types & (EV_TIMER | EV_STAT))
4798 for (i = timercnt + HEAP0; i-- > HEAP0; )
4799#if EV_STAT_ENABLE
4800 /*TODO: timer is not always active*/
4801 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4802 {
4803 if (types & EV_STAT)
4804 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4805 }
4806 else
4807#endif
4808 if (types & EV_TIMER)
4809 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4810
4811#if EV_PERIODIC_ENABLE
4812 if (types & EV_PERIODIC)
4813 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4814 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4815#endif
4816
4817#if EV_IDLE_ENABLE
4818 if (types & EV_IDLE)
4819 for (j = NUMPRI; j--; )
4820 for (i = idlecnt [j]; i--; )
4821 cb (EV_A_ EV_IDLE, idles [j][i]);
4822#endif
4823
4824#if EV_FORK_ENABLE
4825 if (types & EV_FORK)
4826 for (i = forkcnt; i--; )
4827 if (ev_cb (forks [i]) != embed_fork_cb)
4828 cb (EV_A_ EV_FORK, forks [i]);
4829#endif
4830
4831#if EV_ASYNC_ENABLE
4832 if (types & EV_ASYNC)
4833 for (i = asynccnt; i--; )
4834 cb (EV_A_ EV_ASYNC, asyncs [i]);
4835#endif
4836
4837#if EV_PREPARE_ENABLE
4838 if (types & EV_PREPARE)
4839 for (i = preparecnt; i--; )
4840# if EV_EMBED_ENABLE
4841 if (ev_cb (prepares [i]) != embed_prepare_cb)
2295#endif 4842# endif
4843 cb (EV_A_ EV_PREPARE, prepares [i]);
4844#endif
2296 4845
4846#if EV_CHECK_ENABLE
4847 if (types & EV_CHECK)
4848 for (i = checkcnt; i--; )
4849 cb (EV_A_ EV_CHECK, checks [i]);
4850#endif
4851
4852#if EV_SIGNAL_ENABLE
4853 if (types & EV_SIGNAL)
4854 for (i = 0; i < EV_NSIG - 1; ++i)
4855 for (wl = signals [i].head; wl; )
4856 {
4857 wn = wl->next;
4858 cb (EV_A_ EV_SIGNAL, wl);
4859 wl = wn;
4860 }
4861#endif
4862
4863#if EV_CHILD_ENABLE
4864 if (types & EV_CHILD)
4865 for (i = (EV_PID_HASHSIZE); i--; )
4866 for (wl = childs [i]; wl; )
4867 {
4868 wn = wl->next;
4869 cb (EV_A_ EV_CHILD, wl);
4870 wl = wn;
4871 }
4872#endif
4873/* EV_STAT 0x00001000 /* stat data changed */
4874/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4875}
4876#endif
4877
4878#if EV_MULTIPLICITY
4879 #include "ev_wrap.h"
4880#endif
4881

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines