ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.170 by root, Sat Dec 8 22:11:14 2007 UTC vs.
Revision 1.367 by root, Tue Jan 11 02:15:58 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
43# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
46# endif 65# endif
47# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
49# endif 68# endif
50# else 69# else
51# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
53# endif 72# endif
54# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
56# endif 75# endif
57# endif 76# endif
58 77
78# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 79# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
65# endif 85# endif
66 86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 88# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 89# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
94# endif
95
96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
102# define EV_USE_POLL 0
73# endif 103# endif
74 104
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
78# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
81# endif 112# endif
82 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
89# endif 121# endif
90 122
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
94# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
97# endif 130# endif
98 131
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
105# endif 139# endif
106 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
107#endif 159#endif
108 160
109#include <math.h> 161#include <math.h>
110#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
111#include <fcntl.h> 164#include <fcntl.h>
112#include <stddef.h> 165#include <stddef.h>
113 166
114#include <stdio.h> 167#include <stdio.h>
115 168
116#include <assert.h> 169#include <assert.h>
117#include <errno.h> 170#include <errno.h>
118#include <sys/types.h> 171#include <sys/types.h>
119#include <time.h> 172#include <time.h>
173#include <limits.h>
120 174
121#include <signal.h> 175#include <signal.h>
122 176
123#ifdef EV_H 177#ifdef EV_H
124# include EV_H 178# include EV_H
125#else 179#else
126# include "ev.h" 180# include "ev.h"
127#endif 181#endif
182
183EV_CPP(extern "C" {)
128 184
129#ifndef _WIN32 185#ifndef _WIN32
130# include <sys/time.h> 186# include <sys/time.h>
131# include <sys/wait.h> 187# include <sys/wait.h>
132# include <unistd.h> 188# include <unistd.h>
133#else 189#else
190# include <io.h>
134# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 192# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
138# endif 195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
139#endif 242# endif
140 243#endif
141/**/
142 244
143#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
144# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
145#endif 251#endif
146 252
147#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
149#endif 263#endif
150 264
151#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 267#endif
154 268
155#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
156# ifdef _WIN32 270# ifdef _WIN32
157# define EV_USE_POLL 0 271# define EV_USE_POLL 0
158# else 272# else
159# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 274# endif
161#endif 275#endif
162 276
163#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
164# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
165#endif 283#endif
166 284
167#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
169#endif 287#endif
171#ifndef EV_USE_PORT 289#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 290# define EV_USE_PORT 0
173#endif 291#endif
174 292
175#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
176# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
298# endif
177#endif 299#endif
178 300
179#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 312# else
183# define EV_PID_HASHSIZE 16 313# define EV_USE_EVENTFD 0
184# endif 314# endif
185#endif 315#endif
186 316
187#ifndef EV_INOTIFY_HASHSIZE 317#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 319# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 320# else
191# define EV_INOTIFY_HASHSIZE 16 321# define EV_USE_SIGNALFD 0
192# endif 322# endif
193#endif 323#endif
194 324
195/**/ 325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
196 364
197#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
200#endif 368#endif
202#ifndef CLOCK_REALTIME 370#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 371# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 372# define EV_USE_REALTIME 0
205#endif 373#endif
206 374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
383# endif
384#endif
385
386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
394#endif
395
207#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 397# include <winsock.h>
209#endif 398#endif
210 399
211#if !EV_STAT_ENABLE 400#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
213#endif 405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
214 415
215#if EV_USE_INOTIFY 416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
216# include <sys/inotify.h> 418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
217#endif 436#endif
218 437
219/**/ 438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
445
446/*
447 * This is used to avoid floating point rounding problems.
448 * It is added to ev_rt_now when scheduling periodics
449 * to ensure progress, time-wise, even when rounding
450 * errors are against us.
451 * This value is good at least till the year 4000.
452 * Better solutions welcome.
453 */
454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 455
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
461
225#if __GNUC__ >= 3 462#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
227# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
228#else 465#else
229# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
230# define noinline 467# define noinline
231# if __STDC_VERSION__ < 199901L 468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
232# define inline 469# define inline
233# endif 470# endif
234#endif 471#endif
235 472
236#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
237#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
238#define inline_size static inline 475#define inline_size static inline
239 476
240#if EV_MINIMAL 477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
241# define inline_speed static noinline 480# define inline_speed static noinline
481#endif
482
483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
242#else 487#else
243# define inline_speed static inline
244#endif
245
246#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
247#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
248 490
249#define EMPTY /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
250#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
251 493
252typedef ev_watcher *W; 494typedef ev_watcher *W;
253typedef ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
254typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
255 497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
507#if EV_USE_MONOTONIC
256static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
519#endif
257 520
258#ifdef _WIN32 521#ifdef _WIN32
259# include "ev_win32.c" 522# include "ev_win32.c"
260#endif 523#endif
261 524
262/*****************************************************************************/ 525/*****************************************************************************/
263 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
264static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
265 578
266void 579void
267ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
268{ 581{
269 syserr_cb = cb; 582 syserr_cb = cb;
270} 583}
271 584
272static void noinline 585static void noinline
273syserr (const char *msg) 586ev_syserr (const char *msg)
274{ 587{
275 if (!msg) 588 if (!msg)
276 msg = "(libev) system error"; 589 msg = "(libev) system error";
277 590
278 if (syserr_cb) 591 if (syserr_cb)
279 syserr_cb (msg); 592 syserr_cb (msg);
280 else 593 else
281 { 594 {
595#if EV_AVOID_STDIO
596 ev_printerr (msg);
597 ev_printerr (": ");
598 ev_printerr (strerror (errno));
599 ev_printerr ("\n");
600#else
282 perror (msg); 601 perror (msg);
602#endif
283 abort (); 603 abort ();
284 } 604 }
285} 605}
286 606
607static void *
608ev_realloc_emul (void *ptr, long size)
609{
610#if __GLIBC__
611 return realloc (ptr, size);
612#else
613 /* some systems, notably openbsd and darwin, fail to properly
614 * implement realloc (x, 0) (as required by both ansi c-89 and
615 * the single unix specification, so work around them here.
616 */
617
618 if (size)
619 return realloc (ptr, size);
620
621 free (ptr);
622 return 0;
623#endif
624}
625
287static void *(*alloc)(void *ptr, long size); 626static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
288 627
289void 628void
290ev_set_allocator (void *(*cb)(void *ptr, long size)) 629ev_set_allocator (void *(*cb)(void *ptr, long size))
291{ 630{
292 alloc = cb; 631 alloc = cb;
293} 632}
294 633
295inline_speed void * 634inline_speed void *
296ev_realloc (void *ptr, long size) 635ev_realloc (void *ptr, long size)
297{ 636{
298 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 637 ptr = alloc (ptr, size);
299 638
300 if (!ptr && size) 639 if (!ptr && size)
301 { 640 {
641#if EV_AVOID_STDIO
642 ev_printerr ("(libev) memory allocation failed, aborting.\n");
643#else
302 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 644 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
645#endif
303 abort (); 646 abort ();
304 } 647 }
305 648
306 return ptr; 649 return ptr;
307} 650}
309#define ev_malloc(size) ev_realloc (0, (size)) 652#define ev_malloc(size) ev_realloc (0, (size))
310#define ev_free(ptr) ev_realloc ((ptr), 0) 653#define ev_free(ptr) ev_realloc ((ptr), 0)
311 654
312/*****************************************************************************/ 655/*****************************************************************************/
313 656
657/* set in reify when reification needed */
658#define EV_ANFD_REIFY 1
659
660/* file descriptor info structure */
314typedef struct 661typedef struct
315{ 662{
316 WL head; 663 WL head;
317 unsigned char events; 664 unsigned char events; /* the events watched for */
665 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
666 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
318 unsigned char reify; 667 unsigned char unused;
668#if EV_USE_EPOLL
669 unsigned int egen; /* generation counter to counter epoll bugs */
670#endif
319#if EV_SELECT_IS_WINSOCKET 671#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
320 SOCKET handle; 672 SOCKET handle;
321#endif 673#endif
674#if EV_USE_IOCP
675 OVERLAPPED or, ow;
676#endif
322} ANFD; 677} ANFD;
323 678
679/* stores the pending event set for a given watcher */
324typedef struct 680typedef struct
325{ 681{
326 W w; 682 W w;
327 int events; 683 int events; /* the pending event set for the given watcher */
328} ANPENDING; 684} ANPENDING;
329 685
330#if EV_USE_INOTIFY 686#if EV_USE_INOTIFY
687/* hash table entry per inotify-id */
331typedef struct 688typedef struct
332{ 689{
333 WL head; 690 WL head;
334} ANFS; 691} ANFS;
692#endif
693
694/* Heap Entry */
695#if EV_HEAP_CACHE_AT
696 /* a heap element */
697 typedef struct {
698 ev_tstamp at;
699 WT w;
700 } ANHE;
701
702 #define ANHE_w(he) (he).w /* access watcher, read-write */
703 #define ANHE_at(he) (he).at /* access cached at, read-only */
704 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
705#else
706 /* a heap element */
707 typedef WT ANHE;
708
709 #define ANHE_w(he) (he)
710 #define ANHE_at(he) (he)->at
711 #define ANHE_at_cache(he)
335#endif 712#endif
336 713
337#if EV_MULTIPLICITY 714#if EV_MULTIPLICITY
338 715
339 struct ev_loop 716 struct ev_loop
358 735
359 static int ev_default_loop_ptr; 736 static int ev_default_loop_ptr;
360 737
361#endif 738#endif
362 739
740#if EV_FEATURE_API
741# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
742# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
743# define EV_INVOKE_PENDING invoke_cb (EV_A)
744#else
745# define EV_RELEASE_CB (void)0
746# define EV_ACQUIRE_CB (void)0
747# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
748#endif
749
750#define EVBREAK_RECURSE 0x80
751
363/*****************************************************************************/ 752/*****************************************************************************/
364 753
754#ifndef EV_HAVE_EV_TIME
365ev_tstamp 755ev_tstamp
366ev_time (void) 756ev_time (void)
367{ 757{
368#if EV_USE_REALTIME 758#if EV_USE_REALTIME
759 if (expect_true (have_realtime))
760 {
369 struct timespec ts; 761 struct timespec ts;
370 clock_gettime (CLOCK_REALTIME, &ts); 762 clock_gettime (CLOCK_REALTIME, &ts);
371 return ts.tv_sec + ts.tv_nsec * 1e-9; 763 return ts.tv_sec + ts.tv_nsec * 1e-9;
372#else 764 }
765#endif
766
373 struct timeval tv; 767 struct timeval tv;
374 gettimeofday (&tv, 0); 768 gettimeofday (&tv, 0);
375 return tv.tv_sec + tv.tv_usec * 1e-6; 769 return tv.tv_sec + tv.tv_usec * 1e-6;
376#endif
377} 770}
771#endif
378 772
379ev_tstamp inline_size 773inline_size ev_tstamp
380get_clock (void) 774get_clock (void)
381{ 775{
382#if EV_USE_MONOTONIC 776#if EV_USE_MONOTONIC
383 if (expect_true (have_monotonic)) 777 if (expect_true (have_monotonic))
384 { 778 {
397{ 791{
398 return ev_rt_now; 792 return ev_rt_now;
399} 793}
400#endif 794#endif
401 795
402int inline_size 796void
797ev_sleep (ev_tstamp delay)
798{
799 if (delay > 0.)
800 {
801#if EV_USE_NANOSLEEP
802 struct timespec ts;
803
804 EV_TS_SET (ts, delay);
805 nanosleep (&ts, 0);
806#elif defined(_WIN32)
807 Sleep ((unsigned long)(delay * 1e3));
808#else
809 struct timeval tv;
810
811 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
812 /* something not guaranteed by newer posix versions, but guaranteed */
813 /* by older ones */
814 EV_TV_SET (tv, delay);
815 select (0, 0, 0, 0, &tv);
816#endif
817 }
818}
819
820/*****************************************************************************/
821
822#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
823
824/* find a suitable new size for the given array, */
825/* hopefully by rounding to a nice-to-malloc size */
826inline_size int
403array_nextsize (int elem, int cur, int cnt) 827array_nextsize (int elem, int cur, int cnt)
404{ 828{
405 int ncur = cur + 1; 829 int ncur = cur + 1;
406 830
407 do 831 do
408 ncur <<= 1; 832 ncur <<= 1;
409 while (cnt > ncur); 833 while (cnt > ncur);
410 834
411 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 835 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
412 if (elem * ncur > 4096) 836 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
413 { 837 {
414 ncur *= elem; 838 ncur *= elem;
415 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 839 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
416 ncur = ncur - sizeof (void *) * 4; 840 ncur = ncur - sizeof (void *) * 4;
417 ncur /= elem; 841 ncur /= elem;
418 } 842 }
419 843
420 return ncur; 844 return ncur;
421} 845}
422 846
423inline_speed void * 847static noinline void *
424array_realloc (int elem, void *base, int *cur, int cnt) 848array_realloc (int elem, void *base, int *cur, int cnt)
425{ 849{
426 *cur = array_nextsize (elem, *cur, cnt); 850 *cur = array_nextsize (elem, *cur, cnt);
427 return ev_realloc (base, elem * *cur); 851 return ev_realloc (base, elem * *cur);
428} 852}
853
854#define array_init_zero(base,count) \
855 memset ((void *)(base), 0, sizeof (*(base)) * (count))
429 856
430#define array_needsize(type,base,cur,cnt,init) \ 857#define array_needsize(type,base,cur,cnt,init) \
431 if (expect_false ((cnt) > (cur))) \ 858 if (expect_false ((cnt) > (cur))) \
432 { \ 859 { \
433 int ocur_ = (cur); \ 860 int ocur_ = (cur); \
445 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 872 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
446 } 873 }
447#endif 874#endif
448 875
449#define array_free(stem, idx) \ 876#define array_free(stem, idx) \
450 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 877 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
451 878
452/*****************************************************************************/ 879/*****************************************************************************/
880
881/* dummy callback for pending events */
882static void noinline
883pendingcb (EV_P_ ev_prepare *w, int revents)
884{
885}
453 886
454void noinline 887void noinline
455ev_feed_event (EV_P_ void *w, int revents) 888ev_feed_event (EV_P_ void *w, int revents)
456{ 889{
457 W w_ = (W)w; 890 W w_ = (W)w;
891 int pri = ABSPRI (w_);
458 892
459 if (expect_false (w_->pending)) 893 if (expect_false (w_->pending))
894 pendings [pri][w_->pending - 1].events |= revents;
895 else
460 { 896 {
897 w_->pending = ++pendingcnt [pri];
898 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
899 pendings [pri][w_->pending - 1].w = w_;
461 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 900 pendings [pri][w_->pending - 1].events = revents;
462 return;
463 } 901 }
464
465 w_->pending = ++pendingcnt [ABSPRI (w_)];
466 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
467 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
468 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
469} 902}
470 903
471void inline_size 904inline_speed void
905feed_reverse (EV_P_ W w)
906{
907 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
908 rfeeds [rfeedcnt++] = w;
909}
910
911inline_size void
912feed_reverse_done (EV_P_ int revents)
913{
914 do
915 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
916 while (rfeedcnt);
917}
918
919inline_speed void
472queue_events (EV_P_ W *events, int eventcnt, int type) 920queue_events (EV_P_ W *events, int eventcnt, int type)
473{ 921{
474 int i; 922 int i;
475 923
476 for (i = 0; i < eventcnt; ++i) 924 for (i = 0; i < eventcnt; ++i)
477 ev_feed_event (EV_A_ events [i], type); 925 ev_feed_event (EV_A_ events [i], type);
478} 926}
479 927
480/*****************************************************************************/ 928/*****************************************************************************/
481 929
482void inline_size 930inline_speed void
483anfds_init (ANFD *base, int count)
484{
485 while (count--)
486 {
487 base->head = 0;
488 base->events = EV_NONE;
489 base->reify = 0;
490
491 ++base;
492 }
493}
494
495void inline_speed
496fd_event (EV_P_ int fd, int revents) 931fd_event_nocheck (EV_P_ int fd, int revents)
497{ 932{
498 ANFD *anfd = anfds + fd; 933 ANFD *anfd = anfds + fd;
499 ev_io *w; 934 ev_io *w;
500 935
501 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 936 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
505 if (ev) 940 if (ev)
506 ev_feed_event (EV_A_ (W)w, ev); 941 ev_feed_event (EV_A_ (W)w, ev);
507 } 942 }
508} 943}
509 944
945/* do not submit kernel events for fds that have reify set */
946/* because that means they changed while we were polling for new events */
947inline_speed void
948fd_event (EV_P_ int fd, int revents)
949{
950 ANFD *anfd = anfds + fd;
951
952 if (expect_true (!anfd->reify))
953 fd_event_nocheck (EV_A_ fd, revents);
954}
955
510void 956void
511ev_feed_fd_event (EV_P_ int fd, int revents) 957ev_feed_fd_event (EV_P_ int fd, int revents)
512{ 958{
513 if (fd >= 0 && fd < anfdmax) 959 if (fd >= 0 && fd < anfdmax)
514 fd_event (EV_A_ fd, revents); 960 fd_event_nocheck (EV_A_ fd, revents);
515} 961}
516 962
517void inline_size 963/* make sure the external fd watch events are in-sync */
964/* with the kernel/libev internal state */
965inline_size void
518fd_reify (EV_P) 966fd_reify (EV_P)
519{ 967{
520 int i; 968 int i;
521 969
522 for (i = 0; i < fdchangecnt; ++i) 970 for (i = 0; i < fdchangecnt; ++i)
523 { 971 {
524 int fd = fdchanges [i]; 972 int fd = fdchanges [i];
525 ANFD *anfd = anfds + fd; 973 ANFD *anfd = anfds + fd;
526 ev_io *w; 974 ev_io *w;
527 975
528 int events = 0; 976 unsigned char o_events = anfd->events;
977 unsigned char o_reify = anfd->reify;
529 978
530 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 979 anfd->reify = 0;
531 events |= w->events;
532 980
533#if EV_SELECT_IS_WINSOCKET 981#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
534 if (events) 982 if (o_reify & EV__IOFDSET)
535 { 983 {
536 unsigned long argp; 984 unsigned long arg;
537 anfd->handle = _get_osfhandle (fd); 985 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
538 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 986 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
987 printf ("oi %d %x\n", fd, anfd->handle);//D
539 } 988 }
540#endif 989#endif
541 990
542 anfd->reify = 0; 991 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
992 {
993 anfd->events = 0;
543 994
995 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
996 anfd->events |= (unsigned char)w->events;
997
998 if (o_events != anfd->events)
999 o_reify = EV__IOFDSET; /* actually |= */
1000 }
1001
1002 if (o_reify & EV__IOFDSET)
544 backend_modify (EV_A_ fd, anfd->events, events); 1003 backend_modify (EV_A_ fd, o_events, anfd->events);
545 anfd->events = events;
546 } 1004 }
547 1005
548 fdchangecnt = 0; 1006 fdchangecnt = 0;
549} 1007}
550 1008
551void inline_size 1009/* something about the given fd changed */
1010inline_size void
552fd_change (EV_P_ int fd) 1011fd_change (EV_P_ int fd, int flags)
553{ 1012{
554 if (expect_false (anfds [fd].reify)) 1013 unsigned char reify = anfds [fd].reify;
555 return;
556
557 anfds [fd].reify = 1; 1014 anfds [fd].reify |= flags;
558 1015
1016 if (expect_true (!reify))
1017 {
559 ++fdchangecnt; 1018 ++fdchangecnt;
560 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1019 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
561 fdchanges [fdchangecnt - 1] = fd; 1020 fdchanges [fdchangecnt - 1] = fd;
1021 }
562} 1022}
563 1023
564void inline_speed 1024/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1025inline_speed void
565fd_kill (EV_P_ int fd) 1026fd_kill (EV_P_ int fd)
566{ 1027{
567 ev_io *w; 1028 ev_io *w;
568 1029
569 while ((w = (ev_io *)anfds [fd].head)) 1030 while ((w = (ev_io *)anfds [fd].head))
571 ev_io_stop (EV_A_ w); 1032 ev_io_stop (EV_A_ w);
572 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1033 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
573 } 1034 }
574} 1035}
575 1036
576int inline_size 1037/* check whether the given fd is actually valid, for error recovery */
1038inline_size int
577fd_valid (int fd) 1039fd_valid (int fd)
578{ 1040{
579#ifdef _WIN32 1041#ifdef _WIN32
580 return _get_osfhandle (fd) != -1; 1042 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
581#else 1043#else
582 return fcntl (fd, F_GETFD) != -1; 1044 return fcntl (fd, F_GETFD) != -1;
583#endif 1045#endif
584} 1046}
585 1047
589{ 1051{
590 int fd; 1052 int fd;
591 1053
592 for (fd = 0; fd < anfdmax; ++fd) 1054 for (fd = 0; fd < anfdmax; ++fd)
593 if (anfds [fd].events) 1055 if (anfds [fd].events)
594 if (!fd_valid (fd) == -1 && errno == EBADF) 1056 if (!fd_valid (fd) && errno == EBADF)
595 fd_kill (EV_A_ fd); 1057 fd_kill (EV_A_ fd);
596} 1058}
597 1059
598/* called on ENOMEM in select/poll to kill some fds and retry */ 1060/* called on ENOMEM in select/poll to kill some fds and retry */
599static void noinline 1061static void noinline
603 1065
604 for (fd = anfdmax; fd--; ) 1066 for (fd = anfdmax; fd--; )
605 if (anfds [fd].events) 1067 if (anfds [fd].events)
606 { 1068 {
607 fd_kill (EV_A_ fd); 1069 fd_kill (EV_A_ fd);
608 return; 1070 break;
609 } 1071 }
610} 1072}
611 1073
612/* usually called after fork if backend needs to re-arm all fds from scratch */ 1074/* usually called after fork if backend needs to re-arm all fds from scratch */
613static void noinline 1075static void noinline
617 1079
618 for (fd = 0; fd < anfdmax; ++fd) 1080 for (fd = 0; fd < anfdmax; ++fd)
619 if (anfds [fd].events) 1081 if (anfds [fd].events)
620 { 1082 {
621 anfds [fd].events = 0; 1083 anfds [fd].events = 0;
622 fd_change (EV_A_ fd); 1084 anfds [fd].emask = 0;
1085 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
623 } 1086 }
624} 1087}
625 1088
626/*****************************************************************************/ 1089/* used to prepare libev internal fd's */
627 1090/* this is not fork-safe */
628void inline_speed 1091inline_speed void
629upheap (WT *heap, int k)
630{
631 WT w = heap [k];
632
633 while (k && heap [k >> 1]->at > w->at)
634 {
635 heap [k] = heap [k >> 1];
636 ((W)heap [k])->active = k + 1;
637 k >>= 1;
638 }
639
640 heap [k] = w;
641 ((W)heap [k])->active = k + 1;
642
643}
644
645void inline_speed
646downheap (WT *heap, int N, int k)
647{
648 WT w = heap [k];
649
650 while (k < (N >> 1))
651 {
652 int j = k << 1;
653
654 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
655 ++j;
656
657 if (w->at <= heap [j]->at)
658 break;
659
660 heap [k] = heap [j];
661 ((W)heap [k])->active = k + 1;
662 k = j;
663 }
664
665 heap [k] = w;
666 ((W)heap [k])->active = k + 1;
667}
668
669void inline_size
670adjustheap (WT *heap, int N, int k)
671{
672 upheap (heap, k);
673 downheap (heap, N, k);
674}
675
676/*****************************************************************************/
677
678typedef struct
679{
680 WL head;
681 sig_atomic_t volatile gotsig;
682} ANSIG;
683
684static ANSIG *signals;
685static int signalmax;
686
687static int sigpipe [2];
688static sig_atomic_t volatile gotsig;
689static ev_io sigev;
690
691void inline_size
692signals_init (ANSIG *base, int count)
693{
694 while (count--)
695 {
696 base->head = 0;
697 base->gotsig = 0;
698
699 ++base;
700 }
701}
702
703static void
704sighandler (int signum)
705{
706#if _WIN32
707 signal (signum, sighandler);
708#endif
709
710 signals [signum - 1].gotsig = 1;
711
712 if (!gotsig)
713 {
714 int old_errno = errno;
715 gotsig = 1;
716 write (sigpipe [1], &signum, 1);
717 errno = old_errno;
718 }
719}
720
721void noinline
722ev_feed_signal_event (EV_P_ int signum)
723{
724 WL w;
725
726#if EV_MULTIPLICITY
727 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
728#endif
729
730 --signum;
731
732 if (signum < 0 || signum >= signalmax)
733 return;
734
735 signals [signum].gotsig = 0;
736
737 for (w = signals [signum].head; w; w = w->next)
738 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
739}
740
741static void
742sigcb (EV_P_ ev_io *iow, int revents)
743{
744 int signum;
745
746 read (sigpipe [0], &revents, 1);
747 gotsig = 0;
748
749 for (signum = signalmax; signum--; )
750 if (signals [signum].gotsig)
751 ev_feed_signal_event (EV_A_ signum + 1);
752}
753
754void inline_size
755fd_intern (int fd) 1092fd_intern (int fd)
756{ 1093{
757#ifdef _WIN32 1094#ifdef _WIN32
758 int arg = 1; 1095 unsigned long arg = 1;
759 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1096 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
760#else 1097#else
761 fcntl (fd, F_SETFD, FD_CLOEXEC); 1098 fcntl (fd, F_SETFD, FD_CLOEXEC);
762 fcntl (fd, F_SETFL, O_NONBLOCK); 1099 fcntl (fd, F_SETFL, O_NONBLOCK);
763#endif 1100#endif
764} 1101}
765 1102
1103/*****************************************************************************/
1104
1105/*
1106 * the heap functions want a real array index. array index 0 is guaranteed to not
1107 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1108 * the branching factor of the d-tree.
1109 */
1110
1111/*
1112 * at the moment we allow libev the luxury of two heaps,
1113 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1114 * which is more cache-efficient.
1115 * the difference is about 5% with 50000+ watchers.
1116 */
1117#if EV_USE_4HEAP
1118
1119#define DHEAP 4
1120#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1121#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1122#define UPHEAP_DONE(p,k) ((p) == (k))
1123
1124/* away from the root */
1125inline_speed void
1126downheap (ANHE *heap, int N, int k)
1127{
1128 ANHE he = heap [k];
1129 ANHE *E = heap + N + HEAP0;
1130
1131 for (;;)
1132 {
1133 ev_tstamp minat;
1134 ANHE *minpos;
1135 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1136
1137 /* find minimum child */
1138 if (expect_true (pos + DHEAP - 1 < E))
1139 {
1140 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1141 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1142 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1143 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1144 }
1145 else if (pos < E)
1146 {
1147 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1148 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1149 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1150 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1151 }
1152 else
1153 break;
1154
1155 if (ANHE_at (he) <= minat)
1156 break;
1157
1158 heap [k] = *minpos;
1159 ev_active (ANHE_w (*minpos)) = k;
1160
1161 k = minpos - heap;
1162 }
1163
1164 heap [k] = he;
1165 ev_active (ANHE_w (he)) = k;
1166}
1167
1168#else /* 4HEAP */
1169
1170#define HEAP0 1
1171#define HPARENT(k) ((k) >> 1)
1172#define UPHEAP_DONE(p,k) (!(p))
1173
1174/* away from the root */
1175inline_speed void
1176downheap (ANHE *heap, int N, int k)
1177{
1178 ANHE he = heap [k];
1179
1180 for (;;)
1181 {
1182 int c = k << 1;
1183
1184 if (c >= N + HEAP0)
1185 break;
1186
1187 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1188 ? 1 : 0;
1189
1190 if (ANHE_at (he) <= ANHE_at (heap [c]))
1191 break;
1192
1193 heap [k] = heap [c];
1194 ev_active (ANHE_w (heap [k])) = k;
1195
1196 k = c;
1197 }
1198
1199 heap [k] = he;
1200 ev_active (ANHE_w (he)) = k;
1201}
1202#endif
1203
1204/* towards the root */
1205inline_speed void
1206upheap (ANHE *heap, int k)
1207{
1208 ANHE he = heap [k];
1209
1210 for (;;)
1211 {
1212 int p = HPARENT (k);
1213
1214 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1215 break;
1216
1217 heap [k] = heap [p];
1218 ev_active (ANHE_w (heap [k])) = k;
1219 k = p;
1220 }
1221
1222 heap [k] = he;
1223 ev_active (ANHE_w (he)) = k;
1224}
1225
1226/* move an element suitably so it is in a correct place */
1227inline_size void
1228adjustheap (ANHE *heap, int N, int k)
1229{
1230 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1231 upheap (heap, k);
1232 else
1233 downheap (heap, N, k);
1234}
1235
1236/* rebuild the heap: this function is used only once and executed rarely */
1237inline_size void
1238reheap (ANHE *heap, int N)
1239{
1240 int i;
1241
1242 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1243 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1244 for (i = 0; i < N; ++i)
1245 upheap (heap, i + HEAP0);
1246}
1247
1248/*****************************************************************************/
1249
1250/* associate signal watchers to a signal signal */
1251typedef struct
1252{
1253 EV_ATOMIC_T pending;
1254#if EV_MULTIPLICITY
1255 EV_P;
1256#endif
1257 WL head;
1258} ANSIG;
1259
1260static ANSIG signals [EV_NSIG - 1];
1261
1262/*****************************************************************************/
1263
1264#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1265
766static void noinline 1266static void noinline
767siginit (EV_P) 1267evpipe_init (EV_P)
768{ 1268{
1269 if (!ev_is_active (&pipe_w))
1270 {
1271# if EV_USE_EVENTFD
1272 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1273 if (evfd < 0 && errno == EINVAL)
1274 evfd = eventfd (0, 0);
1275
1276 if (evfd >= 0)
1277 {
1278 evpipe [0] = -1;
1279 fd_intern (evfd); /* doing it twice doesn't hurt */
1280 ev_io_set (&pipe_w, evfd, EV_READ);
1281 }
1282 else
1283# endif
1284 {
1285 while (pipe (evpipe))
1286 ev_syserr ("(libev) error creating signal/async pipe");
1287
769 fd_intern (sigpipe [0]); 1288 fd_intern (evpipe [0]);
770 fd_intern (sigpipe [1]); 1289 fd_intern (evpipe [1]);
1290 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1291 }
771 1292
772 ev_io_set (&sigev, sigpipe [0], EV_READ);
773 ev_io_start (EV_A_ &sigev); 1293 ev_io_start (EV_A_ &pipe_w);
774 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1294 ev_unref (EV_A); /* watcher should not keep loop alive */
1295 }
1296}
1297
1298inline_size void
1299evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1300{
1301 if (!*flag)
1302 {
1303 int old_errno = errno; /* save errno because write might clobber it */
1304 char dummy;
1305
1306 *flag = 1;
1307
1308#if EV_USE_EVENTFD
1309 if (evfd >= 0)
1310 {
1311 uint64_t counter = 1;
1312 write (evfd, &counter, sizeof (uint64_t));
1313 }
1314 else
1315#endif
1316 /* win32 people keep sending patches that change this write() to send() */
1317 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1318 /* so when you think this write should be a send instead, please find out */
1319 /* where your send() is from - it's definitely not the microsoft send, and */
1320 /* tell me. thank you. */
1321 write (evpipe [1], &dummy, 1);
1322
1323 errno = old_errno;
1324 }
1325}
1326
1327/* called whenever the libev signal pipe */
1328/* got some events (signal, async) */
1329static void
1330pipecb (EV_P_ ev_io *iow, int revents)
1331{
1332 int i;
1333
1334#if EV_USE_EVENTFD
1335 if (evfd >= 0)
1336 {
1337 uint64_t counter;
1338 read (evfd, &counter, sizeof (uint64_t));
1339 }
1340 else
1341#endif
1342 {
1343 char dummy;
1344 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1345 read (evpipe [0], &dummy, 1);
1346 }
1347
1348 if (sig_pending)
1349 {
1350 sig_pending = 0;
1351
1352 for (i = EV_NSIG - 1; i--; )
1353 if (expect_false (signals [i].pending))
1354 ev_feed_signal_event (EV_A_ i + 1);
1355 }
1356
1357#if EV_ASYNC_ENABLE
1358 if (async_pending)
1359 {
1360 async_pending = 0;
1361
1362 for (i = asynccnt; i--; )
1363 if (asyncs [i]->sent)
1364 {
1365 asyncs [i]->sent = 0;
1366 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1367 }
1368 }
1369#endif
775} 1370}
776 1371
777/*****************************************************************************/ 1372/*****************************************************************************/
778 1373
779static ev_child *childs [EV_PID_HASHSIZE]; 1374void
1375ev_feed_signal (int signum)
1376{
1377#if EV_MULTIPLICITY
1378 EV_P = signals [signum - 1].loop;
780 1379
1380 if (!EV_A)
1381 return;
1382#endif
1383
1384 signals [signum - 1].pending = 1;
1385 evpipe_write (EV_A_ &sig_pending);
1386}
1387
1388static void
1389ev_sighandler (int signum)
1390{
781#ifndef _WIN32 1391#ifdef _WIN32
1392 signal (signum, ev_sighandler);
1393#endif
1394
1395 ev_feed_signal (signum);
1396}
1397
1398void noinline
1399ev_feed_signal_event (EV_P_ int signum)
1400{
1401 WL w;
1402
1403 if (expect_false (signum <= 0 || signum > EV_NSIG))
1404 return;
1405
1406 --signum;
1407
1408#if EV_MULTIPLICITY
1409 /* it is permissible to try to feed a signal to the wrong loop */
1410 /* or, likely more useful, feeding a signal nobody is waiting for */
1411
1412 if (expect_false (signals [signum].loop != EV_A))
1413 return;
1414#endif
1415
1416 signals [signum].pending = 0;
1417
1418 for (w = signals [signum].head; w; w = w->next)
1419 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1420}
1421
1422#if EV_USE_SIGNALFD
1423static void
1424sigfdcb (EV_P_ ev_io *iow, int revents)
1425{
1426 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1427
1428 for (;;)
1429 {
1430 ssize_t res = read (sigfd, si, sizeof (si));
1431
1432 /* not ISO-C, as res might be -1, but works with SuS */
1433 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1434 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1435
1436 if (res < (ssize_t)sizeof (si))
1437 break;
1438 }
1439}
1440#endif
1441
1442#endif
1443
1444/*****************************************************************************/
1445
1446#if EV_CHILD_ENABLE
1447static WL childs [EV_PID_HASHSIZE];
782 1448
783static ev_signal childev; 1449static ev_signal childev;
784 1450
785void inline_speed 1451#ifndef WIFCONTINUED
1452# define WIFCONTINUED(status) 0
1453#endif
1454
1455/* handle a single child status event */
1456inline_speed void
786child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1457child_reap (EV_P_ int chain, int pid, int status)
787{ 1458{
788 ev_child *w; 1459 ev_child *w;
1460 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
789 1461
790 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1462 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1463 {
791 if (w->pid == pid || !w->pid) 1464 if ((w->pid == pid || !w->pid)
1465 && (!traced || (w->flags & 1)))
792 { 1466 {
793 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1467 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
794 w->rpid = pid; 1468 w->rpid = pid;
795 w->rstatus = status; 1469 w->rstatus = status;
796 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1470 ev_feed_event (EV_A_ (W)w, EV_CHILD);
797 } 1471 }
1472 }
798} 1473}
799 1474
800#ifndef WCONTINUED 1475#ifndef WCONTINUED
801# define WCONTINUED 0 1476# define WCONTINUED 0
802#endif 1477#endif
803 1478
1479/* called on sigchld etc., calls waitpid */
804static void 1480static void
805childcb (EV_P_ ev_signal *sw, int revents) 1481childcb (EV_P_ ev_signal *sw, int revents)
806{ 1482{
807 int pid, status; 1483 int pid, status;
808 1484
811 if (!WCONTINUED 1487 if (!WCONTINUED
812 || errno != EINVAL 1488 || errno != EINVAL
813 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1489 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
814 return; 1490 return;
815 1491
816 /* make sure we are called again until all childs have been reaped */ 1492 /* make sure we are called again until all children have been reaped */
817 /* we need to do it this way so that the callback gets called before we continue */ 1493 /* we need to do it this way so that the callback gets called before we continue */
818 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1494 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
819 1495
820 child_reap (EV_A_ sw, pid, pid, status); 1496 child_reap (EV_A_ pid, pid, status);
821 if (EV_PID_HASHSIZE > 1) 1497 if ((EV_PID_HASHSIZE) > 1)
822 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1498 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
823} 1499}
824 1500
825#endif 1501#endif
826 1502
827/*****************************************************************************/ 1503/*****************************************************************************/
828 1504
1505#if EV_USE_IOCP
1506# include "ev_iocp.c"
1507#endif
829#if EV_USE_PORT 1508#if EV_USE_PORT
830# include "ev_port.c" 1509# include "ev_port.c"
831#endif 1510#endif
832#if EV_USE_KQUEUE 1511#if EV_USE_KQUEUE
833# include "ev_kqueue.c" 1512# include "ev_kqueue.c"
889 /* kqueue is borked on everything but netbsd apparently */ 1568 /* kqueue is borked on everything but netbsd apparently */
890 /* it usually doesn't work correctly on anything but sockets and pipes */ 1569 /* it usually doesn't work correctly on anything but sockets and pipes */
891 flags &= ~EVBACKEND_KQUEUE; 1570 flags &= ~EVBACKEND_KQUEUE;
892#endif 1571#endif
893#ifdef __APPLE__ 1572#ifdef __APPLE__
894 // flags &= ~EVBACKEND_KQUEUE; for documentation 1573 /* only select works correctly on that "unix-certified" platform */
895 flags &= ~EVBACKEND_POLL; 1574 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1575 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1576#endif
1577#ifdef __FreeBSD__
1578 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
896#endif 1579#endif
897 1580
898 return flags; 1581 return flags;
899} 1582}
900 1583
901unsigned int 1584unsigned int
902ev_embeddable_backends (void) 1585ev_embeddable_backends (void)
903{ 1586{
904 return EVBACKEND_EPOLL 1587 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
905 | EVBACKEND_KQUEUE 1588
906 | EVBACKEND_PORT; 1589 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1590 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1591 flags &= ~EVBACKEND_EPOLL;
1592
1593 return flags;
907} 1594}
908 1595
909unsigned int 1596unsigned int
910ev_backend (EV_P) 1597ev_backend (EV_P)
911{ 1598{
912 return backend; 1599 return backend;
913} 1600}
914 1601
1602#if EV_FEATURE_API
915unsigned int 1603unsigned int
916ev_loop_count (EV_P) 1604ev_iteration (EV_P)
917{ 1605{
918 return loop_count; 1606 return loop_count;
919} 1607}
920 1608
1609unsigned int
1610ev_depth (EV_P)
1611{
1612 return loop_depth;
1613}
1614
1615void
1616ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1617{
1618 io_blocktime = interval;
1619}
1620
1621void
1622ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1623{
1624 timeout_blocktime = interval;
1625}
1626
1627void
1628ev_set_userdata (EV_P_ void *data)
1629{
1630 userdata = data;
1631}
1632
1633void *
1634ev_userdata (EV_P)
1635{
1636 return userdata;
1637}
1638
1639void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1640{
1641 invoke_cb = invoke_pending_cb;
1642}
1643
1644void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1645{
1646 release_cb = release;
1647 acquire_cb = acquire;
1648}
1649#endif
1650
1651/* initialise a loop structure, must be zero-initialised */
921static void noinline 1652static void noinline
922loop_init (EV_P_ unsigned int flags) 1653loop_init (EV_P_ unsigned int flags)
923{ 1654{
924 if (!backend) 1655 if (!backend)
925 { 1656 {
1657 origflags = flags;
1658
1659#if EV_USE_REALTIME
1660 if (!have_realtime)
1661 {
1662 struct timespec ts;
1663
1664 if (!clock_gettime (CLOCK_REALTIME, &ts))
1665 have_realtime = 1;
1666 }
1667#endif
1668
926#if EV_USE_MONOTONIC 1669#if EV_USE_MONOTONIC
1670 if (!have_monotonic)
927 { 1671 {
928 struct timespec ts; 1672 struct timespec ts;
1673
929 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1674 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
930 have_monotonic = 1; 1675 have_monotonic = 1;
931 } 1676 }
932#endif 1677#endif
933
934 ev_rt_now = ev_time ();
935 mn_now = get_clock ();
936 now_floor = mn_now;
937 rtmn_diff = ev_rt_now - mn_now;
938 1678
939 /* pid check not overridable via env */ 1679 /* pid check not overridable via env */
940#ifndef _WIN32 1680#ifndef _WIN32
941 if (flags & EVFLAG_FORKCHECK) 1681 if (flags & EVFLAG_FORKCHECK)
942 curpid = getpid (); 1682 curpid = getpid ();
945 if (!(flags & EVFLAG_NOENV) 1685 if (!(flags & EVFLAG_NOENV)
946 && !enable_secure () 1686 && !enable_secure ()
947 && getenv ("LIBEV_FLAGS")) 1687 && getenv ("LIBEV_FLAGS"))
948 flags = atoi (getenv ("LIBEV_FLAGS")); 1688 flags = atoi (getenv ("LIBEV_FLAGS"));
949 1689
950 if (!(flags & 0x0000ffffUL)) 1690 ev_rt_now = ev_time ();
1691 mn_now = get_clock ();
1692 now_floor = mn_now;
1693 rtmn_diff = ev_rt_now - mn_now;
1694#if EV_FEATURE_API
1695 invoke_cb = ev_invoke_pending;
1696#endif
1697
1698 io_blocktime = 0.;
1699 timeout_blocktime = 0.;
1700 backend = 0;
1701 backend_fd = -1;
1702 sig_pending = 0;
1703#if EV_ASYNC_ENABLE
1704 async_pending = 0;
1705#endif
1706#if EV_USE_INOTIFY
1707 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1708#endif
1709#if EV_USE_SIGNALFD
1710 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1711#endif
1712
1713 if (!(flags & EVBACKEND_MASK))
951 flags |= ev_recommended_backends (); 1714 flags |= ev_recommended_backends ();
952 1715
953 backend = 0;
954 backend_fd = -1;
955#if EV_USE_INOTIFY 1716#if EV_USE_IOCP
956 fs_fd = -2; 1717 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
957#endif 1718#endif
958
959#if EV_USE_PORT 1719#if EV_USE_PORT
960 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1720 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
961#endif 1721#endif
962#if EV_USE_KQUEUE 1722#if EV_USE_KQUEUE
963 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1723 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
970#endif 1730#endif
971#if EV_USE_SELECT 1731#if EV_USE_SELECT
972 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1732 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
973#endif 1733#endif
974 1734
1735 ev_prepare_init (&pending_w, pendingcb);
1736
1737#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
975 ev_init (&sigev, sigcb); 1738 ev_init (&pipe_w, pipecb);
976 ev_set_priority (&sigev, EV_MAXPRI); 1739 ev_set_priority (&pipe_w, EV_MAXPRI);
1740#endif
977 } 1741 }
978} 1742}
979 1743
980static void noinline 1744/* free up a loop structure */
1745void
981loop_destroy (EV_P) 1746ev_loop_destroy (EV_P)
982{ 1747{
983 int i; 1748 int i;
1749
1750#if EV_MULTIPLICITY
1751 /* mimic free (0) */
1752 if (!EV_A)
1753 return;
1754#endif
1755
1756#if EV_CLEANUP_ENABLE
1757 /* queue cleanup watchers (and execute them) */
1758 if (expect_false (cleanupcnt))
1759 {
1760 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1761 EV_INVOKE_PENDING;
1762 }
1763#endif
1764
1765#if EV_CHILD_ENABLE
1766 if (ev_is_active (&childev))
1767 {
1768 ev_ref (EV_A); /* child watcher */
1769 ev_signal_stop (EV_A_ &childev);
1770 }
1771#endif
1772
1773 if (ev_is_active (&pipe_w))
1774 {
1775 /*ev_ref (EV_A);*/
1776 /*ev_io_stop (EV_A_ &pipe_w);*/
1777
1778#if EV_USE_EVENTFD
1779 if (evfd >= 0)
1780 close (evfd);
1781#endif
1782
1783 if (evpipe [0] >= 0)
1784 {
1785 EV_WIN32_CLOSE_FD (evpipe [0]);
1786 EV_WIN32_CLOSE_FD (evpipe [1]);
1787 }
1788 }
1789
1790#if EV_USE_SIGNALFD
1791 if (ev_is_active (&sigfd_w))
1792 close (sigfd);
1793#endif
984 1794
985#if EV_USE_INOTIFY 1795#if EV_USE_INOTIFY
986 if (fs_fd >= 0) 1796 if (fs_fd >= 0)
987 close (fs_fd); 1797 close (fs_fd);
988#endif 1798#endif
989 1799
990 if (backend_fd >= 0) 1800 if (backend_fd >= 0)
991 close (backend_fd); 1801 close (backend_fd);
992 1802
1803#if EV_USE_IOCP
1804 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1805#endif
993#if EV_USE_PORT 1806#if EV_USE_PORT
994 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1807 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
995#endif 1808#endif
996#if EV_USE_KQUEUE 1809#if EV_USE_KQUEUE
997 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1810 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1012#if EV_IDLE_ENABLE 1825#if EV_IDLE_ENABLE
1013 array_free (idle, [i]); 1826 array_free (idle, [i]);
1014#endif 1827#endif
1015 } 1828 }
1016 1829
1830 ev_free (anfds); anfds = 0; anfdmax = 0;
1831
1017 /* have to use the microsoft-never-gets-it-right macro */ 1832 /* have to use the microsoft-never-gets-it-right macro */
1833 array_free (rfeed, EMPTY);
1018 array_free (fdchange, EMPTY); 1834 array_free (fdchange, EMPTY);
1019 array_free (timer, EMPTY); 1835 array_free (timer, EMPTY);
1020#if EV_PERIODIC_ENABLE 1836#if EV_PERIODIC_ENABLE
1021 array_free (periodic, EMPTY); 1837 array_free (periodic, EMPTY);
1022#endif 1838#endif
1839#if EV_FORK_ENABLE
1840 array_free (fork, EMPTY);
1841#endif
1842#if EV_CLEANUP_ENABLE
1843 array_free (cleanup, EMPTY);
1844#endif
1023 array_free (prepare, EMPTY); 1845 array_free (prepare, EMPTY);
1024 array_free (check, EMPTY); 1846 array_free (check, EMPTY);
1847#if EV_ASYNC_ENABLE
1848 array_free (async, EMPTY);
1849#endif
1025 1850
1026 backend = 0; 1851 backend = 0;
1027}
1028 1852
1853#if EV_MULTIPLICITY
1854 if (ev_is_default_loop (EV_A))
1855#endif
1856 ev_default_loop_ptr = 0;
1857#if EV_MULTIPLICITY
1858 else
1859 ev_free (EV_A);
1860#endif
1861}
1862
1863#if EV_USE_INOTIFY
1029void inline_size infy_fork (EV_P); 1864inline_size void infy_fork (EV_P);
1865#endif
1030 1866
1031void inline_size 1867inline_size void
1032loop_fork (EV_P) 1868loop_fork (EV_P)
1033{ 1869{
1034#if EV_USE_PORT 1870#if EV_USE_PORT
1035 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1871 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1036#endif 1872#endif
1042#endif 1878#endif
1043#if EV_USE_INOTIFY 1879#if EV_USE_INOTIFY
1044 infy_fork (EV_A); 1880 infy_fork (EV_A);
1045#endif 1881#endif
1046 1882
1047 if (ev_is_active (&sigev)) 1883 if (ev_is_active (&pipe_w))
1048 { 1884 {
1049 /* default loop */ 1885 /* this "locks" the handlers against writing to the pipe */
1886 /* while we modify the fd vars */
1887 sig_pending = 1;
1888#if EV_ASYNC_ENABLE
1889 async_pending = 1;
1890#endif
1050 1891
1051 ev_ref (EV_A); 1892 ev_ref (EV_A);
1052 ev_io_stop (EV_A_ &sigev); 1893 ev_io_stop (EV_A_ &pipe_w);
1053 close (sigpipe [0]);
1054 close (sigpipe [1]);
1055 1894
1056 while (pipe (sigpipe)) 1895#if EV_USE_EVENTFD
1057 syserr ("(libev) error creating pipe"); 1896 if (evfd >= 0)
1897 close (evfd);
1898#endif
1058 1899
1900 if (evpipe [0] >= 0)
1901 {
1902 EV_WIN32_CLOSE_FD (evpipe [0]);
1903 EV_WIN32_CLOSE_FD (evpipe [1]);
1904 }
1905
1906#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1059 siginit (EV_A); 1907 evpipe_init (EV_A);
1908 /* now iterate over everything, in case we missed something */
1909 pipecb (EV_A_ &pipe_w, EV_READ);
1910#endif
1060 } 1911 }
1061 1912
1062 postfork = 0; 1913 postfork = 0;
1063} 1914}
1915
1916#if EV_MULTIPLICITY
1917
1918struct ev_loop *
1919ev_loop_new (unsigned int flags)
1920{
1921 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1922
1923 memset (EV_A, 0, sizeof (struct ev_loop));
1924 loop_init (EV_A_ flags);
1925
1926 if (ev_backend (EV_A))
1927 return EV_A;
1928
1929 ev_free (EV_A);
1930 return 0;
1931}
1932
1933#endif /* multiplicity */
1934
1935#if EV_VERIFY
1936static void noinline
1937verify_watcher (EV_P_ W w)
1938{
1939 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1940
1941 if (w->pending)
1942 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1943}
1944
1945static void noinline
1946verify_heap (EV_P_ ANHE *heap, int N)
1947{
1948 int i;
1949
1950 for (i = HEAP0; i < N + HEAP0; ++i)
1951 {
1952 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1953 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1954 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1955
1956 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1957 }
1958}
1959
1960static void noinline
1961array_verify (EV_P_ W *ws, int cnt)
1962{
1963 while (cnt--)
1964 {
1965 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1966 verify_watcher (EV_A_ ws [cnt]);
1967 }
1968}
1969#endif
1970
1971#if EV_FEATURE_API
1972void
1973ev_verify (EV_P)
1974{
1975#if EV_VERIFY
1976 int i;
1977 WL w;
1978
1979 assert (activecnt >= -1);
1980
1981 assert (fdchangemax >= fdchangecnt);
1982 for (i = 0; i < fdchangecnt; ++i)
1983 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1984
1985 assert (anfdmax >= 0);
1986 for (i = 0; i < anfdmax; ++i)
1987 for (w = anfds [i].head; w; w = w->next)
1988 {
1989 verify_watcher (EV_A_ (W)w);
1990 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1991 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1992 }
1993
1994 assert (timermax >= timercnt);
1995 verify_heap (EV_A_ timers, timercnt);
1996
1997#if EV_PERIODIC_ENABLE
1998 assert (periodicmax >= periodiccnt);
1999 verify_heap (EV_A_ periodics, periodiccnt);
2000#endif
2001
2002 for (i = NUMPRI; i--; )
2003 {
2004 assert (pendingmax [i] >= pendingcnt [i]);
2005#if EV_IDLE_ENABLE
2006 assert (idleall >= 0);
2007 assert (idlemax [i] >= idlecnt [i]);
2008 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2009#endif
2010 }
2011
2012#if EV_FORK_ENABLE
2013 assert (forkmax >= forkcnt);
2014 array_verify (EV_A_ (W *)forks, forkcnt);
2015#endif
2016
2017#if EV_CLEANUP_ENABLE
2018 assert (cleanupmax >= cleanupcnt);
2019 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2020#endif
2021
2022#if EV_ASYNC_ENABLE
2023 assert (asyncmax >= asynccnt);
2024 array_verify (EV_A_ (W *)asyncs, asynccnt);
2025#endif
2026
2027#if EV_PREPARE_ENABLE
2028 assert (preparemax >= preparecnt);
2029 array_verify (EV_A_ (W *)prepares, preparecnt);
2030#endif
2031
2032#if EV_CHECK_ENABLE
2033 assert (checkmax >= checkcnt);
2034 array_verify (EV_A_ (W *)checks, checkcnt);
2035#endif
2036
2037# if 0
2038#if EV_CHILD_ENABLE
2039 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2040 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2041#endif
2042# endif
2043#endif
2044}
2045#endif
1064 2046
1065#if EV_MULTIPLICITY 2047#if EV_MULTIPLICITY
1066struct ev_loop * 2048struct ev_loop *
1067ev_loop_new (unsigned int flags)
1068{
1069 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1070
1071 memset (loop, 0, sizeof (struct ev_loop));
1072
1073 loop_init (EV_A_ flags);
1074
1075 if (ev_backend (EV_A))
1076 return loop;
1077
1078 return 0;
1079}
1080
1081void
1082ev_loop_destroy (EV_P)
1083{
1084 loop_destroy (EV_A);
1085 ev_free (loop);
1086}
1087
1088void
1089ev_loop_fork (EV_P)
1090{
1091 postfork = 1;
1092}
1093
1094#endif
1095
1096#if EV_MULTIPLICITY
1097struct ev_loop *
1098ev_default_loop_init (unsigned int flags)
1099#else 2049#else
1100int 2050int
2051#endif
1101ev_default_loop (unsigned int flags) 2052ev_default_loop (unsigned int flags)
1102#endif
1103{ 2053{
1104 if (sigpipe [0] == sigpipe [1])
1105 if (pipe (sigpipe))
1106 return 0;
1107
1108 if (!ev_default_loop_ptr) 2054 if (!ev_default_loop_ptr)
1109 { 2055 {
1110#if EV_MULTIPLICITY 2056#if EV_MULTIPLICITY
1111 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2057 EV_P = ev_default_loop_ptr = &default_loop_struct;
1112#else 2058#else
1113 ev_default_loop_ptr = 1; 2059 ev_default_loop_ptr = 1;
1114#endif 2060#endif
1115 2061
1116 loop_init (EV_A_ flags); 2062 loop_init (EV_A_ flags);
1117 2063
1118 if (ev_backend (EV_A)) 2064 if (ev_backend (EV_A))
1119 { 2065 {
1120 siginit (EV_A); 2066#if EV_CHILD_ENABLE
1121
1122#ifndef _WIN32
1123 ev_signal_init (&childev, childcb, SIGCHLD); 2067 ev_signal_init (&childev, childcb, SIGCHLD);
1124 ev_set_priority (&childev, EV_MAXPRI); 2068 ev_set_priority (&childev, EV_MAXPRI);
1125 ev_signal_start (EV_A_ &childev); 2069 ev_signal_start (EV_A_ &childev);
1126 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2070 ev_unref (EV_A); /* child watcher should not keep loop alive */
1127#endif 2071#endif
1132 2076
1133 return ev_default_loop_ptr; 2077 return ev_default_loop_ptr;
1134} 2078}
1135 2079
1136void 2080void
1137ev_default_destroy (void) 2081ev_loop_fork (EV_P)
1138{ 2082{
1139#if EV_MULTIPLICITY 2083 postfork = 1; /* must be in line with ev_default_fork */
1140 struct ev_loop *loop = ev_default_loop_ptr;
1141#endif
1142
1143#ifndef _WIN32
1144 ev_ref (EV_A); /* child watcher */
1145 ev_signal_stop (EV_A_ &childev);
1146#endif
1147
1148 ev_ref (EV_A); /* signal watcher */
1149 ev_io_stop (EV_A_ &sigev);
1150
1151 close (sigpipe [0]); sigpipe [0] = 0;
1152 close (sigpipe [1]); sigpipe [1] = 0;
1153
1154 loop_destroy (EV_A);
1155}
1156
1157void
1158ev_default_fork (void)
1159{
1160#if EV_MULTIPLICITY
1161 struct ev_loop *loop = ev_default_loop_ptr;
1162#endif
1163
1164 if (backend)
1165 postfork = 1;
1166} 2084}
1167 2085
1168/*****************************************************************************/ 2086/*****************************************************************************/
1169 2087
1170void 2088void
1171ev_invoke (EV_P_ void *w, int revents) 2089ev_invoke (EV_P_ void *w, int revents)
1172{ 2090{
1173 EV_CB_INVOKE ((W)w, revents); 2091 EV_CB_INVOKE ((W)w, revents);
1174} 2092}
1175 2093
1176void inline_speed 2094unsigned int
1177call_pending (EV_P) 2095ev_pending_count (EV_P)
2096{
2097 int pri;
2098 unsigned int count = 0;
2099
2100 for (pri = NUMPRI; pri--; )
2101 count += pendingcnt [pri];
2102
2103 return count;
2104}
2105
2106void noinline
2107ev_invoke_pending (EV_P)
1178{ 2108{
1179 int pri; 2109 int pri;
1180 2110
1181 for (pri = NUMPRI; pri--; ) 2111 for (pri = NUMPRI; pri--; )
1182 while (pendingcnt [pri]) 2112 while (pendingcnt [pri])
1183 { 2113 {
1184 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2114 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1185 2115
1186 if (expect_true (p->w))
1187 {
1188 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1189
1190 p->w->pending = 0; 2116 p->w->pending = 0;
1191 EV_CB_INVOKE (p->w, p->events); 2117 EV_CB_INVOKE (p->w, p->events);
1192 } 2118 EV_FREQUENT_CHECK;
1193 } 2119 }
1194} 2120}
1195 2121
1196void inline_size
1197timers_reify (EV_P)
1198{
1199 while (timercnt && ((WT)timers [0])->at <= mn_now)
1200 {
1201 ev_timer *w = timers [0];
1202
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204
1205 /* first reschedule or stop timer */
1206 if (w->repeat)
1207 {
1208 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1209
1210 ((WT)w)->at += w->repeat;
1211 if (((WT)w)->at < mn_now)
1212 ((WT)w)->at = mn_now;
1213
1214 downheap ((WT *)timers, timercnt, 0);
1215 }
1216 else
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1220 }
1221}
1222
1223#if EV_PERIODIC_ENABLE
1224void inline_size
1225periodics_reify (EV_P)
1226{
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1228 {
1229 ev_periodic *w = periodics [0];
1230
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1232
1233 /* first reschedule or stop timer */
1234 if (w->reschedule_cb)
1235 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1238 downheap ((WT *)periodics, periodiccnt, 0);
1239 }
1240 else if (w->interval)
1241 {
1242 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1244 downheap ((WT *)periodics, periodiccnt, 0);
1245 }
1246 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1250 }
1251}
1252
1253static void noinline
1254periodics_reschedule (EV_P)
1255{
1256 int i;
1257
1258 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i)
1260 {
1261 ev_periodic *w = periodics [i];
1262
1263 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval)
1266 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1267 }
1268
1269 /* now rebuild the heap */
1270 for (i = periodiccnt >> 1; i--; )
1271 downheap ((WT *)periodics, periodiccnt, i);
1272}
1273#endif
1274
1275#if EV_IDLE_ENABLE 2122#if EV_IDLE_ENABLE
1276void inline_size 2123/* make idle watchers pending. this handles the "call-idle */
2124/* only when higher priorities are idle" logic */
2125inline_size void
1277idle_reify (EV_P) 2126idle_reify (EV_P)
1278{ 2127{
1279 if (expect_false (idleall)) 2128 if (expect_false (idleall))
1280 { 2129 {
1281 int pri; 2130 int pri;
1293 } 2142 }
1294 } 2143 }
1295} 2144}
1296#endif 2145#endif
1297 2146
1298int inline_size 2147/* make timers pending */
1299time_update_monotonic (EV_P) 2148inline_size void
2149timers_reify (EV_P)
1300{ 2150{
2151 EV_FREQUENT_CHECK;
2152
2153 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2154 {
2155 do
2156 {
2157 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2158
2159 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2160
2161 /* first reschedule or stop timer */
2162 if (w->repeat)
2163 {
2164 ev_at (w) += w->repeat;
2165 if (ev_at (w) < mn_now)
2166 ev_at (w) = mn_now;
2167
2168 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2169
2170 ANHE_at_cache (timers [HEAP0]);
2171 downheap (timers, timercnt, HEAP0);
2172 }
2173 else
2174 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2175
2176 EV_FREQUENT_CHECK;
2177 feed_reverse (EV_A_ (W)w);
2178 }
2179 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2180
2181 feed_reverse_done (EV_A_ EV_TIMER);
2182 }
2183}
2184
2185#if EV_PERIODIC_ENABLE
2186/* make periodics pending */
2187inline_size void
2188periodics_reify (EV_P)
2189{
2190 EV_FREQUENT_CHECK;
2191
2192 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2193 {
2194 int feed_count = 0;
2195
2196 do
2197 {
2198 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2199
2200 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2201
2202 /* first reschedule or stop timer */
2203 if (w->reschedule_cb)
2204 {
2205 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2206
2207 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2208
2209 ANHE_at_cache (periodics [HEAP0]);
2210 downheap (periodics, periodiccnt, HEAP0);
2211 }
2212 else if (w->interval)
2213 {
2214 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2215 /* if next trigger time is not sufficiently in the future, put it there */
2216 /* this might happen because of floating point inexactness */
2217 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2218 {
2219 ev_at (w) += w->interval;
2220
2221 /* if interval is unreasonably low we might still have a time in the past */
2222 /* so correct this. this will make the periodic very inexact, but the user */
2223 /* has effectively asked to get triggered more often than possible */
2224 if (ev_at (w) < ev_rt_now)
2225 ev_at (w) = ev_rt_now;
2226 }
2227
2228 ANHE_at_cache (periodics [HEAP0]);
2229 downheap (periodics, periodiccnt, HEAP0);
2230 }
2231 else
2232 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2233
2234 EV_FREQUENT_CHECK;
2235 feed_reverse (EV_A_ (W)w);
2236 }
2237 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2238
2239 feed_reverse_done (EV_A_ EV_PERIODIC);
2240 }
2241}
2242
2243/* simply recalculate all periodics */
2244/* TODO: maybe ensure that at least one event happens when jumping forward? */
2245static void noinline
2246periodics_reschedule (EV_P)
2247{
2248 int i;
2249
2250 /* adjust periodics after time jump */
2251 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2252 {
2253 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2254
2255 if (w->reschedule_cb)
2256 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2257 else if (w->interval)
2258 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2259
2260 ANHE_at_cache (periodics [i]);
2261 }
2262
2263 reheap (periodics, periodiccnt);
2264}
2265#endif
2266
2267/* adjust all timers by a given offset */
2268static void noinline
2269timers_reschedule (EV_P_ ev_tstamp adjust)
2270{
2271 int i;
2272
2273 for (i = 0; i < timercnt; ++i)
2274 {
2275 ANHE *he = timers + i + HEAP0;
2276 ANHE_w (*he)->at += adjust;
2277 ANHE_at_cache (*he);
2278 }
2279}
2280
2281/* fetch new monotonic and realtime times from the kernel */
2282/* also detect if there was a timejump, and act accordingly */
2283inline_speed void
2284time_update (EV_P_ ev_tstamp max_block)
2285{
2286#if EV_USE_MONOTONIC
2287 if (expect_true (have_monotonic))
2288 {
2289 int i;
2290 ev_tstamp odiff = rtmn_diff;
2291
1301 mn_now = get_clock (); 2292 mn_now = get_clock ();
1302 2293
2294 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2295 /* interpolate in the meantime */
1303 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2296 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1304 { 2297 {
1305 ev_rt_now = rtmn_diff + mn_now; 2298 ev_rt_now = rtmn_diff + mn_now;
1306 return 0; 2299 return;
1307 } 2300 }
1308 else 2301
1309 {
1310 now_floor = mn_now; 2302 now_floor = mn_now;
1311 ev_rt_now = ev_time (); 2303 ev_rt_now = ev_time ();
1312 return 1;
1313 }
1314}
1315 2304
1316void inline_size 2305 /* loop a few times, before making important decisions.
1317time_update (EV_P) 2306 * on the choice of "4": one iteration isn't enough,
1318{ 2307 * in case we get preempted during the calls to
1319 int i; 2308 * ev_time and get_clock. a second call is almost guaranteed
1320 2309 * to succeed in that case, though. and looping a few more times
1321#if EV_USE_MONOTONIC 2310 * doesn't hurt either as we only do this on time-jumps or
1322 if (expect_true (have_monotonic)) 2311 * in the unlikely event of having been preempted here.
1323 { 2312 */
1324 if (time_update_monotonic (EV_A)) 2313 for (i = 4; --i; )
1325 { 2314 {
1326 ev_tstamp odiff = rtmn_diff;
1327
1328 /* loop a few times, before making important decisions.
1329 * on the choice of "4": one iteration isn't enough,
1330 * in case we get preempted during the calls to
1331 * ev_time and get_clock. a second call is almost guaranteed
1332 * to succeed in that case, though. and looping a few more times
1333 * doesn't hurt either as we only do this on time-jumps or
1334 * in the unlikely event of having been preempted here.
1335 */
1336 for (i = 4; --i; )
1337 {
1338 rtmn_diff = ev_rt_now - mn_now; 2315 rtmn_diff = ev_rt_now - mn_now;
1339 2316
1340 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2317 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1341 return; /* all is well */ 2318 return; /* all is well */
1342 2319
1343 ev_rt_now = ev_time (); 2320 ev_rt_now = ev_time ();
1344 mn_now = get_clock (); 2321 mn_now = get_clock ();
1345 now_floor = mn_now; 2322 now_floor = mn_now;
1346 } 2323 }
1347 2324
2325 /* no timer adjustment, as the monotonic clock doesn't jump */
2326 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1348# if EV_PERIODIC_ENABLE 2327# if EV_PERIODIC_ENABLE
1349 periodics_reschedule (EV_A); 2328 periodics_reschedule (EV_A);
1350# endif 2329# endif
1351 /* no timer adjustment, as the monotonic clock doesn't jump */
1352 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1353 }
1354 } 2330 }
1355 else 2331 else
1356#endif 2332#endif
1357 { 2333 {
1358 ev_rt_now = ev_time (); 2334 ev_rt_now = ev_time ();
1359 2335
1360 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2336 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1361 { 2337 {
2338 /* adjust timers. this is easy, as the offset is the same for all of them */
2339 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1362#if EV_PERIODIC_ENABLE 2340#if EV_PERIODIC_ENABLE
1363 periodics_reschedule (EV_A); 2341 periodics_reschedule (EV_A);
1364#endif 2342#endif
1365
1366 /* adjust timers. this is easy, as the offset is the same for all of them */
1367 for (i = 0; i < timercnt; ++i)
1368 ((WT)timers [i])->at += ev_rt_now - mn_now;
1369 } 2343 }
1370 2344
1371 mn_now = ev_rt_now; 2345 mn_now = ev_rt_now;
1372 } 2346 }
1373} 2347}
1374 2348
1375void 2349void
1376ev_ref (EV_P)
1377{
1378 ++activecnt;
1379}
1380
1381void
1382ev_unref (EV_P)
1383{
1384 --activecnt;
1385}
1386
1387static int loop_done;
1388
1389void
1390ev_loop (EV_P_ int flags) 2350ev_run (EV_P_ int flags)
1391{ 2351{
1392 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2352#if EV_FEATURE_API
1393 ? EVUNLOOP_ONE 2353 ++loop_depth;
1394 : EVUNLOOP_CANCEL; 2354#endif
1395 2355
2356 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2357
2358 loop_done = EVBREAK_CANCEL;
2359
1396 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2360 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1397 2361
1398 do 2362 do
1399 { 2363 {
2364#if EV_VERIFY >= 2
2365 ev_verify (EV_A);
2366#endif
2367
1400#ifndef _WIN32 2368#ifndef _WIN32
1401 if (expect_false (curpid)) /* penalise the forking check even more */ 2369 if (expect_false (curpid)) /* penalise the forking check even more */
1402 if (expect_false (getpid () != curpid)) 2370 if (expect_false (getpid () != curpid))
1403 { 2371 {
1404 curpid = getpid (); 2372 curpid = getpid ();
1410 /* we might have forked, so queue fork handlers */ 2378 /* we might have forked, so queue fork handlers */
1411 if (expect_false (postfork)) 2379 if (expect_false (postfork))
1412 if (forkcnt) 2380 if (forkcnt)
1413 { 2381 {
1414 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2382 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1415 call_pending (EV_A); 2383 EV_INVOKE_PENDING;
1416 } 2384 }
1417#endif 2385#endif
1418 2386
2387#if EV_PREPARE_ENABLE
1419 /* queue prepare watchers (and execute them) */ 2388 /* queue prepare watchers (and execute them) */
1420 if (expect_false (preparecnt)) 2389 if (expect_false (preparecnt))
1421 { 2390 {
1422 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2391 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1423 call_pending (EV_A); 2392 EV_INVOKE_PENDING;
1424 } 2393 }
2394#endif
1425 2395
1426 if (expect_false (!activecnt)) 2396 if (expect_false (loop_done))
1427 break; 2397 break;
1428 2398
1429 /* we might have forked, so reify kernel state if necessary */ 2399 /* we might have forked, so reify kernel state if necessary */
1430 if (expect_false (postfork)) 2400 if (expect_false (postfork))
1431 loop_fork (EV_A); 2401 loop_fork (EV_A);
1433 /* update fd-related kernel structures */ 2403 /* update fd-related kernel structures */
1434 fd_reify (EV_A); 2404 fd_reify (EV_A);
1435 2405
1436 /* calculate blocking time */ 2406 /* calculate blocking time */
1437 { 2407 {
1438 ev_tstamp block; 2408 ev_tstamp waittime = 0.;
2409 ev_tstamp sleeptime = 0.;
1439 2410
2411 /* remember old timestamp for io_blocktime calculation */
2412 ev_tstamp prev_mn_now = mn_now;
2413
2414 /* update time to cancel out callback processing overhead */
2415 time_update (EV_A_ 1e100);
2416
1440 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2417 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1441 block = 0.; /* do not block at all */
1442 else
1443 { 2418 {
1444 /* update time to cancel out callback processing overhead */
1445#if EV_USE_MONOTONIC
1446 if (expect_true (have_monotonic))
1447 time_update_monotonic (EV_A);
1448 else
1449#endif
1450 {
1451 ev_rt_now = ev_time ();
1452 mn_now = ev_rt_now;
1453 }
1454
1455 block = MAX_BLOCKTIME; 2419 waittime = MAX_BLOCKTIME;
1456 2420
1457 if (timercnt) 2421 if (timercnt)
1458 { 2422 {
1459 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2423 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1460 if (block > to) block = to; 2424 if (waittime > to) waittime = to;
1461 } 2425 }
1462 2426
1463#if EV_PERIODIC_ENABLE 2427#if EV_PERIODIC_ENABLE
1464 if (periodiccnt) 2428 if (periodiccnt)
1465 { 2429 {
1466 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2430 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1467 if (block > to) block = to; 2431 if (waittime > to) waittime = to;
1468 } 2432 }
1469#endif 2433#endif
1470 2434
2435 /* don't let timeouts decrease the waittime below timeout_blocktime */
2436 if (expect_false (waittime < timeout_blocktime))
2437 waittime = timeout_blocktime;
2438
2439 /* extra check because io_blocktime is commonly 0 */
1471 if (expect_false (block < 0.)) block = 0.; 2440 if (expect_false (io_blocktime))
2441 {
2442 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2443
2444 if (sleeptime > waittime - backend_fudge)
2445 sleeptime = waittime - backend_fudge;
2446
2447 if (expect_true (sleeptime > 0.))
2448 {
2449 ev_sleep (sleeptime);
2450 waittime -= sleeptime;
2451 }
2452 }
1472 } 2453 }
1473 2454
2455#if EV_FEATURE_API
1474 ++loop_count; 2456 ++loop_count;
2457#endif
2458 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1475 backend_poll (EV_A_ block); 2459 backend_poll (EV_A_ waittime);
2460 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2461
2462 /* update ev_rt_now, do magic */
2463 time_update (EV_A_ waittime + sleeptime);
1476 } 2464 }
1477
1478 /* update ev_rt_now, do magic */
1479 time_update (EV_A);
1480 2465
1481 /* queue pending timers and reschedule them */ 2466 /* queue pending timers and reschedule them */
1482 timers_reify (EV_A); /* relative timers called last */ 2467 timers_reify (EV_A); /* relative timers called last */
1483#if EV_PERIODIC_ENABLE 2468#if EV_PERIODIC_ENABLE
1484 periodics_reify (EV_A); /* absolute timers called first */ 2469 periodics_reify (EV_A); /* absolute timers called first */
1487#if EV_IDLE_ENABLE 2472#if EV_IDLE_ENABLE
1488 /* queue idle watchers unless other events are pending */ 2473 /* queue idle watchers unless other events are pending */
1489 idle_reify (EV_A); 2474 idle_reify (EV_A);
1490#endif 2475#endif
1491 2476
2477#if EV_CHECK_ENABLE
1492 /* queue check watchers, to be executed first */ 2478 /* queue check watchers, to be executed first */
1493 if (expect_false (checkcnt)) 2479 if (expect_false (checkcnt))
1494 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2480 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2481#endif
1495 2482
1496 call_pending (EV_A); 2483 EV_INVOKE_PENDING;
1497
1498 } 2484 }
1499 while (expect_true (activecnt && !loop_done)); 2485 while (expect_true (
2486 activecnt
2487 && !loop_done
2488 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2489 ));
1500 2490
1501 if (loop_done == EVUNLOOP_ONE) 2491 if (loop_done == EVBREAK_ONE)
1502 loop_done = EVUNLOOP_CANCEL; 2492 loop_done = EVBREAK_CANCEL;
1503}
1504 2493
2494#if EV_FEATURE_API
2495 --loop_depth;
2496#endif
2497}
2498
1505void 2499void
1506ev_unloop (EV_P_ int how) 2500ev_break (EV_P_ int how)
1507{ 2501{
1508 loop_done = how; 2502 loop_done = how;
1509} 2503}
1510 2504
2505void
2506ev_ref (EV_P)
2507{
2508 ++activecnt;
2509}
2510
2511void
2512ev_unref (EV_P)
2513{
2514 --activecnt;
2515}
2516
2517void
2518ev_now_update (EV_P)
2519{
2520 time_update (EV_A_ 1e100);
2521}
2522
2523void
2524ev_suspend (EV_P)
2525{
2526 ev_now_update (EV_A);
2527}
2528
2529void
2530ev_resume (EV_P)
2531{
2532 ev_tstamp mn_prev = mn_now;
2533
2534 ev_now_update (EV_A);
2535 timers_reschedule (EV_A_ mn_now - mn_prev);
2536#if EV_PERIODIC_ENABLE
2537 /* TODO: really do this? */
2538 periodics_reschedule (EV_A);
2539#endif
2540}
2541
1511/*****************************************************************************/ 2542/*****************************************************************************/
2543/* singly-linked list management, used when the expected list length is short */
1512 2544
1513void inline_size 2545inline_size void
1514wlist_add (WL *head, WL elem) 2546wlist_add (WL *head, WL elem)
1515{ 2547{
1516 elem->next = *head; 2548 elem->next = *head;
1517 *head = elem; 2549 *head = elem;
1518} 2550}
1519 2551
1520void inline_size 2552inline_size void
1521wlist_del (WL *head, WL elem) 2553wlist_del (WL *head, WL elem)
1522{ 2554{
1523 while (*head) 2555 while (*head)
1524 { 2556 {
1525 if (*head == elem) 2557 if (expect_true (*head == elem))
1526 { 2558 {
1527 *head = elem->next; 2559 *head = elem->next;
1528 return; 2560 break;
1529 } 2561 }
1530 2562
1531 head = &(*head)->next; 2563 head = &(*head)->next;
1532 } 2564 }
1533} 2565}
1534 2566
1535void inline_speed 2567/* internal, faster, version of ev_clear_pending */
2568inline_speed void
1536clear_pending (EV_P_ W w) 2569clear_pending (EV_P_ W w)
1537{ 2570{
1538 if (w->pending) 2571 if (w->pending)
1539 { 2572 {
1540 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2573 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1541 w->pending = 0; 2574 w->pending = 0;
1542 } 2575 }
1543} 2576}
1544 2577
1545int 2578int
1546ev_clear_pending (EV_P_ void *w) 2579ev_clear_pending (EV_P_ void *w)
1547{ 2580{
1548 W w_ = (W)w; 2581 W w_ = (W)w;
1549 int pending = w_->pending; 2582 int pending = w_->pending;
1550 2583
1551 if (!pending) 2584 if (expect_true (pending))
2585 {
2586 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2587 p->w = (W)&pending_w;
2588 w_->pending = 0;
2589 return p->events;
2590 }
2591 else
1552 return 0; 2592 return 0;
1553
1554 w_->pending = 0;
1555 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1556 p->w = 0;
1557
1558 return p->events;
1559} 2593}
1560 2594
1561void inline_size 2595inline_size void
1562pri_adjust (EV_P_ W w) 2596pri_adjust (EV_P_ W w)
1563{ 2597{
1564 int pri = w->priority; 2598 int pri = ev_priority (w);
1565 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2599 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1566 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2600 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1567 w->priority = pri; 2601 ev_set_priority (w, pri);
1568} 2602}
1569 2603
1570void inline_speed 2604inline_speed void
1571ev_start (EV_P_ W w, int active) 2605ev_start (EV_P_ W w, int active)
1572{ 2606{
1573 pri_adjust (EV_A_ w); 2607 pri_adjust (EV_A_ w);
1574 w->active = active; 2608 w->active = active;
1575 ev_ref (EV_A); 2609 ev_ref (EV_A);
1576} 2610}
1577 2611
1578void inline_size 2612inline_size void
1579ev_stop (EV_P_ W w) 2613ev_stop (EV_P_ W w)
1580{ 2614{
1581 ev_unref (EV_A); 2615 ev_unref (EV_A);
1582 w->active = 0; 2616 w->active = 0;
1583} 2617}
1584 2618
1585/*****************************************************************************/ 2619/*****************************************************************************/
1586 2620
1587void 2621void noinline
1588ev_io_start (EV_P_ ev_io *w) 2622ev_io_start (EV_P_ ev_io *w)
1589{ 2623{
1590 int fd = w->fd; 2624 int fd = w->fd;
1591 2625
1592 if (expect_false (ev_is_active (w))) 2626 if (expect_false (ev_is_active (w)))
1593 return; 2627 return;
1594 2628
1595 assert (("ev_io_start called with negative fd", fd >= 0)); 2629 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2630 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2631
2632 EV_FREQUENT_CHECK;
1596 2633
1597 ev_start (EV_A_ (W)w, 1); 2634 ev_start (EV_A_ (W)w, 1);
1598 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2635 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1599 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2636 wlist_add (&anfds[fd].head, (WL)w);
1600 2637
1601 fd_change (EV_A_ fd); 2638 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1602} 2639 w->events &= ~EV__IOFDSET;
1603 2640
1604void 2641 EV_FREQUENT_CHECK;
2642}
2643
2644void noinline
1605ev_io_stop (EV_P_ ev_io *w) 2645ev_io_stop (EV_P_ ev_io *w)
1606{ 2646{
1607 clear_pending (EV_A_ (W)w); 2647 clear_pending (EV_A_ (W)w);
1608 if (expect_false (!ev_is_active (w))) 2648 if (expect_false (!ev_is_active (w)))
1609 return; 2649 return;
1610 2650
1611 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2651 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1612 2652
2653 EV_FREQUENT_CHECK;
2654
1613 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2655 wlist_del (&anfds[w->fd].head, (WL)w);
1614 ev_stop (EV_A_ (W)w); 2656 ev_stop (EV_A_ (W)w);
1615 2657
1616 fd_change (EV_A_ w->fd); 2658 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1617}
1618 2659
1619void 2660 EV_FREQUENT_CHECK;
2661}
2662
2663void noinline
1620ev_timer_start (EV_P_ ev_timer *w) 2664ev_timer_start (EV_P_ ev_timer *w)
1621{ 2665{
1622 if (expect_false (ev_is_active (w))) 2666 if (expect_false (ev_is_active (w)))
1623 return; 2667 return;
1624 2668
1625 ((WT)w)->at += mn_now; 2669 ev_at (w) += mn_now;
1626 2670
1627 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2671 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1628 2672
2673 EV_FREQUENT_CHECK;
2674
2675 ++timercnt;
1629 ev_start (EV_A_ (W)w, ++timercnt); 2676 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1630 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2677 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1631 timers [timercnt - 1] = w; 2678 ANHE_w (timers [ev_active (w)]) = (WT)w;
1632 upheap ((WT *)timers, timercnt - 1); 2679 ANHE_at_cache (timers [ev_active (w)]);
2680 upheap (timers, ev_active (w));
1633 2681
2682 EV_FREQUENT_CHECK;
2683
1634 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2684 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1635} 2685}
1636 2686
1637void 2687void noinline
1638ev_timer_stop (EV_P_ ev_timer *w) 2688ev_timer_stop (EV_P_ ev_timer *w)
1639{ 2689{
1640 clear_pending (EV_A_ (W)w); 2690 clear_pending (EV_A_ (W)w);
1641 if (expect_false (!ev_is_active (w))) 2691 if (expect_false (!ev_is_active (w)))
1642 return; 2692 return;
1643 2693
1644 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2694 EV_FREQUENT_CHECK;
1645 2695
1646 { 2696 {
1647 int active = ((W)w)->active; 2697 int active = ev_active (w);
1648 2698
2699 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2700
2701 --timercnt;
2702
1649 if (expect_true (--active < --timercnt)) 2703 if (expect_true (active < timercnt + HEAP0))
1650 { 2704 {
1651 timers [active] = timers [timercnt]; 2705 timers [active] = timers [timercnt + HEAP0];
1652 adjustheap ((WT *)timers, timercnt, active); 2706 adjustheap (timers, timercnt, active);
1653 } 2707 }
1654 } 2708 }
1655 2709
1656 ((WT)w)->at -= mn_now; 2710 ev_at (w) -= mn_now;
1657 2711
1658 ev_stop (EV_A_ (W)w); 2712 ev_stop (EV_A_ (W)w);
1659}
1660 2713
1661void 2714 EV_FREQUENT_CHECK;
2715}
2716
2717void noinline
1662ev_timer_again (EV_P_ ev_timer *w) 2718ev_timer_again (EV_P_ ev_timer *w)
1663{ 2719{
2720 EV_FREQUENT_CHECK;
2721
1664 if (ev_is_active (w)) 2722 if (ev_is_active (w))
1665 { 2723 {
1666 if (w->repeat) 2724 if (w->repeat)
1667 { 2725 {
1668 ((WT)w)->at = mn_now + w->repeat; 2726 ev_at (w) = mn_now + w->repeat;
2727 ANHE_at_cache (timers [ev_active (w)]);
1669 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2728 adjustheap (timers, timercnt, ev_active (w));
1670 } 2729 }
1671 else 2730 else
1672 ev_timer_stop (EV_A_ w); 2731 ev_timer_stop (EV_A_ w);
1673 } 2732 }
1674 else if (w->repeat) 2733 else if (w->repeat)
1675 { 2734 {
1676 w->at = w->repeat; 2735 ev_at (w) = w->repeat;
1677 ev_timer_start (EV_A_ w); 2736 ev_timer_start (EV_A_ w);
1678 } 2737 }
2738
2739 EV_FREQUENT_CHECK;
2740}
2741
2742ev_tstamp
2743ev_timer_remaining (EV_P_ ev_timer *w)
2744{
2745 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1679} 2746}
1680 2747
1681#if EV_PERIODIC_ENABLE 2748#if EV_PERIODIC_ENABLE
1682void 2749void noinline
1683ev_periodic_start (EV_P_ ev_periodic *w) 2750ev_periodic_start (EV_P_ ev_periodic *w)
1684{ 2751{
1685 if (expect_false (ev_is_active (w))) 2752 if (expect_false (ev_is_active (w)))
1686 return; 2753 return;
1687 2754
1688 if (w->reschedule_cb) 2755 if (w->reschedule_cb)
1689 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2756 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1690 else if (w->interval) 2757 else if (w->interval)
1691 { 2758 {
1692 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2759 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1693 /* this formula differs from the one in periodic_reify because we do not always round up */ 2760 /* this formula differs from the one in periodic_reify because we do not always round up */
1694 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2761 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695 } 2762 }
2763 else
2764 ev_at (w) = w->offset;
1696 2765
2766 EV_FREQUENT_CHECK;
2767
2768 ++periodiccnt;
1697 ev_start (EV_A_ (W)w, ++periodiccnt); 2769 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1698 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2770 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1699 periodics [periodiccnt - 1] = w; 2771 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1700 upheap ((WT *)periodics, periodiccnt - 1); 2772 ANHE_at_cache (periodics [ev_active (w)]);
2773 upheap (periodics, ev_active (w));
1701 2774
2775 EV_FREQUENT_CHECK;
2776
1702 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2777 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1703} 2778}
1704 2779
1705void 2780void noinline
1706ev_periodic_stop (EV_P_ ev_periodic *w) 2781ev_periodic_stop (EV_P_ ev_periodic *w)
1707{ 2782{
1708 clear_pending (EV_A_ (W)w); 2783 clear_pending (EV_A_ (W)w);
1709 if (expect_false (!ev_is_active (w))) 2784 if (expect_false (!ev_is_active (w)))
1710 return; 2785 return;
1711 2786
1712 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2787 EV_FREQUENT_CHECK;
1713 2788
1714 { 2789 {
1715 int active = ((W)w)->active; 2790 int active = ev_active (w);
1716 2791
2792 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2793
2794 --periodiccnt;
2795
1717 if (expect_true (--active < --periodiccnt)) 2796 if (expect_true (active < periodiccnt + HEAP0))
1718 { 2797 {
1719 periodics [active] = periodics [periodiccnt]; 2798 periodics [active] = periodics [periodiccnt + HEAP0];
1720 adjustheap ((WT *)periodics, periodiccnt, active); 2799 adjustheap (periodics, periodiccnt, active);
1721 } 2800 }
1722 } 2801 }
1723 2802
1724 ev_stop (EV_A_ (W)w); 2803 ev_stop (EV_A_ (W)w);
1725}
1726 2804
1727void 2805 EV_FREQUENT_CHECK;
2806}
2807
2808void noinline
1728ev_periodic_again (EV_P_ ev_periodic *w) 2809ev_periodic_again (EV_P_ ev_periodic *w)
1729{ 2810{
1730 /* TODO: use adjustheap and recalculation */ 2811 /* TODO: use adjustheap and recalculation */
1731 ev_periodic_stop (EV_A_ w); 2812 ev_periodic_stop (EV_A_ w);
1732 ev_periodic_start (EV_A_ w); 2813 ev_periodic_start (EV_A_ w);
1735 2816
1736#ifndef SA_RESTART 2817#ifndef SA_RESTART
1737# define SA_RESTART 0 2818# define SA_RESTART 0
1738#endif 2819#endif
1739 2820
1740void 2821#if EV_SIGNAL_ENABLE
2822
2823void noinline
1741ev_signal_start (EV_P_ ev_signal *w) 2824ev_signal_start (EV_P_ ev_signal *w)
1742{ 2825{
1743#if EV_MULTIPLICITY
1744 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1745#endif
1746 if (expect_false (ev_is_active (w))) 2826 if (expect_false (ev_is_active (w)))
1747 return; 2827 return;
1748 2828
1749 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2829 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2830
2831#if EV_MULTIPLICITY
2832 assert (("libev: a signal must not be attached to two different loops",
2833 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2834
2835 signals [w->signum - 1].loop = EV_A;
2836#endif
2837
2838 EV_FREQUENT_CHECK;
2839
2840#if EV_USE_SIGNALFD
2841 if (sigfd == -2)
2842 {
2843 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2844 if (sigfd < 0 && errno == EINVAL)
2845 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2846
2847 if (sigfd >= 0)
2848 {
2849 fd_intern (sigfd); /* doing it twice will not hurt */
2850
2851 sigemptyset (&sigfd_set);
2852
2853 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2854 ev_set_priority (&sigfd_w, EV_MAXPRI);
2855 ev_io_start (EV_A_ &sigfd_w);
2856 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2857 }
2858 }
2859
2860 if (sigfd >= 0)
2861 {
2862 /* TODO: check .head */
2863 sigaddset (&sigfd_set, w->signum);
2864 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2865
2866 signalfd (sigfd, &sigfd_set, 0);
2867 }
2868#endif
1750 2869
1751 ev_start (EV_A_ (W)w, 1); 2870 ev_start (EV_A_ (W)w, 1);
1752 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1753 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2871 wlist_add (&signals [w->signum - 1].head, (WL)w);
1754 2872
1755 if (!((WL)w)->next) 2873 if (!((WL)w)->next)
2874# if EV_USE_SIGNALFD
2875 if (sigfd < 0) /*TODO*/
2876# endif
1756 { 2877 {
1757#if _WIN32 2878# ifdef _WIN32
2879 evpipe_init (EV_A);
2880
1758 signal (w->signum, sighandler); 2881 signal (w->signum, ev_sighandler);
1759#else 2882# else
1760 struct sigaction sa; 2883 struct sigaction sa;
2884
2885 evpipe_init (EV_A);
2886
1761 sa.sa_handler = sighandler; 2887 sa.sa_handler = ev_sighandler;
1762 sigfillset (&sa.sa_mask); 2888 sigfillset (&sa.sa_mask);
1763 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2889 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1764 sigaction (w->signum, &sa, 0); 2890 sigaction (w->signum, &sa, 0);
2891
2892 if (origflags & EVFLAG_NOSIGMASK)
2893 {
2894 sigemptyset (&sa.sa_mask);
2895 sigaddset (&sa.sa_mask, w->signum);
2896 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2897 }
1765#endif 2898#endif
1766 } 2899 }
1767}
1768 2900
1769void 2901 EV_FREQUENT_CHECK;
2902}
2903
2904void noinline
1770ev_signal_stop (EV_P_ ev_signal *w) 2905ev_signal_stop (EV_P_ ev_signal *w)
1771{ 2906{
1772 clear_pending (EV_A_ (W)w); 2907 clear_pending (EV_A_ (W)w);
1773 if (expect_false (!ev_is_active (w))) 2908 if (expect_false (!ev_is_active (w)))
1774 return; 2909 return;
1775 2910
2911 EV_FREQUENT_CHECK;
2912
1776 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2913 wlist_del (&signals [w->signum - 1].head, (WL)w);
1777 ev_stop (EV_A_ (W)w); 2914 ev_stop (EV_A_ (W)w);
1778 2915
1779 if (!signals [w->signum - 1].head) 2916 if (!signals [w->signum - 1].head)
2917 {
2918#if EV_MULTIPLICITY
2919 signals [w->signum - 1].loop = 0; /* unattach from signal */
2920#endif
2921#if EV_USE_SIGNALFD
2922 if (sigfd >= 0)
2923 {
2924 sigset_t ss;
2925
2926 sigemptyset (&ss);
2927 sigaddset (&ss, w->signum);
2928 sigdelset (&sigfd_set, w->signum);
2929
2930 signalfd (sigfd, &sigfd_set, 0);
2931 sigprocmask (SIG_UNBLOCK, &ss, 0);
2932 }
2933 else
2934#endif
1780 signal (w->signum, SIG_DFL); 2935 signal (w->signum, SIG_DFL);
2936 }
2937
2938 EV_FREQUENT_CHECK;
1781} 2939}
2940
2941#endif
2942
2943#if EV_CHILD_ENABLE
1782 2944
1783void 2945void
1784ev_child_start (EV_P_ ev_child *w) 2946ev_child_start (EV_P_ ev_child *w)
1785{ 2947{
1786#if EV_MULTIPLICITY 2948#if EV_MULTIPLICITY
1787 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2949 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1788#endif 2950#endif
1789 if (expect_false (ev_is_active (w))) 2951 if (expect_false (ev_is_active (w)))
1790 return; 2952 return;
1791 2953
2954 EV_FREQUENT_CHECK;
2955
1792 ev_start (EV_A_ (W)w, 1); 2956 ev_start (EV_A_ (W)w, 1);
1793 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2957 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2958
2959 EV_FREQUENT_CHECK;
1794} 2960}
1795 2961
1796void 2962void
1797ev_child_stop (EV_P_ ev_child *w) 2963ev_child_stop (EV_P_ ev_child *w)
1798{ 2964{
1799 clear_pending (EV_A_ (W)w); 2965 clear_pending (EV_A_ (W)w);
1800 if (expect_false (!ev_is_active (w))) 2966 if (expect_false (!ev_is_active (w)))
1801 return; 2967 return;
1802 2968
2969 EV_FREQUENT_CHECK;
2970
1803 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2971 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1804 ev_stop (EV_A_ (W)w); 2972 ev_stop (EV_A_ (W)w);
2973
2974 EV_FREQUENT_CHECK;
1805} 2975}
2976
2977#endif
1806 2978
1807#if EV_STAT_ENABLE 2979#if EV_STAT_ENABLE
1808 2980
1809# ifdef _WIN32 2981# ifdef _WIN32
1810# undef lstat 2982# undef lstat
1811# define lstat(a,b) _stati64 (a,b) 2983# define lstat(a,b) _stati64 (a,b)
1812# endif 2984# endif
1813 2985
1814#define DEF_STAT_INTERVAL 5.0074891 2986#define DEF_STAT_INTERVAL 5.0074891
2987#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1815#define MIN_STAT_INTERVAL 0.1074891 2988#define MIN_STAT_INTERVAL 0.1074891
1816 2989
1817static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2990static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1818 2991
1819#if EV_USE_INOTIFY 2992#if EV_USE_INOTIFY
1820# define EV_INOTIFY_BUFSIZE 8192 2993
2994/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2995# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1821 2996
1822static void noinline 2997static void noinline
1823infy_add (EV_P_ ev_stat *w) 2998infy_add (EV_P_ ev_stat *w)
1824{ 2999{
1825 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3000 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1826 3001
1827 if (w->wd < 0) 3002 if (w->wd >= 0)
3003 {
3004 struct statfs sfs;
3005
3006 /* now local changes will be tracked by inotify, but remote changes won't */
3007 /* unless the filesystem is known to be local, we therefore still poll */
3008 /* also do poll on <2.6.25, but with normal frequency */
3009
3010 if (!fs_2625)
3011 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3012 else if (!statfs (w->path, &sfs)
3013 && (sfs.f_type == 0x1373 /* devfs */
3014 || sfs.f_type == 0xEF53 /* ext2/3 */
3015 || sfs.f_type == 0x3153464a /* jfs */
3016 || sfs.f_type == 0x52654973 /* reiser3 */
3017 || sfs.f_type == 0x01021994 /* tempfs */
3018 || sfs.f_type == 0x58465342 /* xfs */))
3019 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3020 else
3021 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1828 { 3022 }
1829 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3023 else
3024 {
3025 /* can't use inotify, continue to stat */
3026 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1830 3027
1831 /* monitor some parent directory for speedup hints */ 3028 /* if path is not there, monitor some parent directory for speedup hints */
3029 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3030 /* but an efficiency issue only */
1832 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3031 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1833 { 3032 {
1834 char path [4096]; 3033 char path [4096];
1835 strcpy (path, w->path); 3034 strcpy (path, w->path);
1836 3035
1839 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3038 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1840 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3039 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1841 3040
1842 char *pend = strrchr (path, '/'); 3041 char *pend = strrchr (path, '/');
1843 3042
1844 if (!pend) 3043 if (!pend || pend == path)
1845 break; /* whoops, no '/', complain to your admin */ 3044 break;
1846 3045
1847 *pend = 0; 3046 *pend = 0;
1848 w->wd = inotify_add_watch (fs_fd, path, mask); 3047 w->wd = inotify_add_watch (fs_fd, path, mask);
1849 } 3048 }
1850 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3049 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1851 } 3050 }
1852 } 3051 }
1853 else
1854 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1855 3052
1856 if (w->wd >= 0) 3053 if (w->wd >= 0)
1857 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3054 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3055
3056 /* now re-arm timer, if required */
3057 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3058 ev_timer_again (EV_A_ &w->timer);
3059 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1858} 3060}
1859 3061
1860static void noinline 3062static void noinline
1861infy_del (EV_P_ ev_stat *w) 3063infy_del (EV_P_ ev_stat *w)
1862{ 3064{
1865 3067
1866 if (wd < 0) 3068 if (wd < 0)
1867 return; 3069 return;
1868 3070
1869 w->wd = -2; 3071 w->wd = -2;
1870 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3072 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1871 wlist_del (&fs_hash [slot].head, (WL)w); 3073 wlist_del (&fs_hash [slot].head, (WL)w);
1872 3074
1873 /* remove this watcher, if others are watching it, they will rearm */ 3075 /* remove this watcher, if others are watching it, they will rearm */
1874 inotify_rm_watch (fs_fd, wd); 3076 inotify_rm_watch (fs_fd, wd);
1875} 3077}
1876 3078
1877static void noinline 3079static void noinline
1878infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3080infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1879{ 3081{
1880 if (slot < 0) 3082 if (slot < 0)
1881 /* overflow, need to check for all hahs slots */ 3083 /* overflow, need to check for all hash slots */
1882 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3084 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1883 infy_wd (EV_A_ slot, wd, ev); 3085 infy_wd (EV_A_ slot, wd, ev);
1884 else 3086 else
1885 { 3087 {
1886 WL w_; 3088 WL w_;
1887 3089
1888 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3090 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1889 { 3091 {
1890 ev_stat *w = (ev_stat *)w_; 3092 ev_stat *w = (ev_stat *)w_;
1891 w_ = w_->next; /* lets us remove this watcher and all before it */ 3093 w_ = w_->next; /* lets us remove this watcher and all before it */
1892 3094
1893 if (w->wd == wd || wd == -1) 3095 if (w->wd == wd || wd == -1)
1894 { 3096 {
1895 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3097 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1896 { 3098 {
3099 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1897 w->wd = -1; 3100 w->wd = -1;
1898 infy_add (EV_A_ w); /* re-add, no matter what */ 3101 infy_add (EV_A_ w); /* re-add, no matter what */
1899 } 3102 }
1900 3103
1901 stat_timer_cb (EV_A_ &w->timer, 0); 3104 stat_timer_cb (EV_A_ &w->timer, 0);
1906 3109
1907static void 3110static void
1908infy_cb (EV_P_ ev_io *w, int revents) 3111infy_cb (EV_P_ ev_io *w, int revents)
1909{ 3112{
1910 char buf [EV_INOTIFY_BUFSIZE]; 3113 char buf [EV_INOTIFY_BUFSIZE];
1911 struct inotify_event *ev = (struct inotify_event *)buf;
1912 int ofs; 3114 int ofs;
1913 int len = read (fs_fd, buf, sizeof (buf)); 3115 int len = read (fs_fd, buf, sizeof (buf));
1914 3116
1915 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3117 for (ofs = 0; ofs < len; )
3118 {
3119 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1916 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3120 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3121 ofs += sizeof (struct inotify_event) + ev->len;
3122 }
1917} 3123}
1918 3124
1919void inline_size 3125inline_size void
3126ev_check_2625 (EV_P)
3127{
3128 /* kernels < 2.6.25 are borked
3129 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3130 */
3131 if (ev_linux_version () < 0x020619)
3132 return;
3133
3134 fs_2625 = 1;
3135}
3136
3137inline_size int
3138infy_newfd (void)
3139{
3140#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3141 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3142 if (fd >= 0)
3143 return fd;
3144#endif
3145 return inotify_init ();
3146}
3147
3148inline_size void
1920infy_init (EV_P) 3149infy_init (EV_P)
1921{ 3150{
1922 if (fs_fd != -2) 3151 if (fs_fd != -2)
1923 return; 3152 return;
1924 3153
3154 fs_fd = -1;
3155
3156 ev_check_2625 (EV_A);
3157
1925 fs_fd = inotify_init (); 3158 fs_fd = infy_newfd ();
1926 3159
1927 if (fs_fd >= 0) 3160 if (fs_fd >= 0)
1928 { 3161 {
3162 fd_intern (fs_fd);
1929 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3163 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1930 ev_set_priority (&fs_w, EV_MAXPRI); 3164 ev_set_priority (&fs_w, EV_MAXPRI);
1931 ev_io_start (EV_A_ &fs_w); 3165 ev_io_start (EV_A_ &fs_w);
3166 ev_unref (EV_A);
1932 } 3167 }
1933} 3168}
1934 3169
1935void inline_size 3170inline_size void
1936infy_fork (EV_P) 3171infy_fork (EV_P)
1937{ 3172{
1938 int slot; 3173 int slot;
1939 3174
1940 if (fs_fd < 0) 3175 if (fs_fd < 0)
1941 return; 3176 return;
1942 3177
3178 ev_ref (EV_A);
3179 ev_io_stop (EV_A_ &fs_w);
1943 close (fs_fd); 3180 close (fs_fd);
1944 fs_fd = inotify_init (); 3181 fs_fd = infy_newfd ();
1945 3182
3183 if (fs_fd >= 0)
3184 {
3185 fd_intern (fs_fd);
3186 ev_io_set (&fs_w, fs_fd, EV_READ);
3187 ev_io_start (EV_A_ &fs_w);
3188 ev_unref (EV_A);
3189 }
3190
1946 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3191 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1947 { 3192 {
1948 WL w_ = fs_hash [slot].head; 3193 WL w_ = fs_hash [slot].head;
1949 fs_hash [slot].head = 0; 3194 fs_hash [slot].head = 0;
1950 3195
1951 while (w_) 3196 while (w_)
1956 w->wd = -1; 3201 w->wd = -1;
1957 3202
1958 if (fs_fd >= 0) 3203 if (fs_fd >= 0)
1959 infy_add (EV_A_ w); /* re-add, no matter what */ 3204 infy_add (EV_A_ w); /* re-add, no matter what */
1960 else 3205 else
3206 {
3207 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3208 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1961 ev_timer_start (EV_A_ &w->timer); 3209 ev_timer_again (EV_A_ &w->timer);
3210 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3211 }
1962 } 3212 }
1963
1964 } 3213 }
1965} 3214}
1966 3215
3216#endif
3217
3218#ifdef _WIN32
3219# define EV_LSTAT(p,b) _stati64 (p, b)
3220#else
3221# define EV_LSTAT(p,b) lstat (p, b)
1967#endif 3222#endif
1968 3223
1969void 3224void
1970ev_stat_stat (EV_P_ ev_stat *w) 3225ev_stat_stat (EV_P_ ev_stat *w)
1971{ 3226{
1978static void noinline 3233static void noinline
1979stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3234stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1980{ 3235{
1981 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3236 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1982 3237
1983 /* we copy this here each the time so that */ 3238 ev_statdata prev = w->attr;
1984 /* prev has the old value when the callback gets invoked */
1985 w->prev = w->attr;
1986 ev_stat_stat (EV_A_ w); 3239 ev_stat_stat (EV_A_ w);
1987 3240
1988 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3241 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1989 if ( 3242 if (
1990 w->prev.st_dev != w->attr.st_dev 3243 prev.st_dev != w->attr.st_dev
1991 || w->prev.st_ino != w->attr.st_ino 3244 || prev.st_ino != w->attr.st_ino
1992 || w->prev.st_mode != w->attr.st_mode 3245 || prev.st_mode != w->attr.st_mode
1993 || w->prev.st_nlink != w->attr.st_nlink 3246 || prev.st_nlink != w->attr.st_nlink
1994 || w->prev.st_uid != w->attr.st_uid 3247 || prev.st_uid != w->attr.st_uid
1995 || w->prev.st_gid != w->attr.st_gid 3248 || prev.st_gid != w->attr.st_gid
1996 || w->prev.st_rdev != w->attr.st_rdev 3249 || prev.st_rdev != w->attr.st_rdev
1997 || w->prev.st_size != w->attr.st_size 3250 || prev.st_size != w->attr.st_size
1998 || w->prev.st_atime != w->attr.st_atime 3251 || prev.st_atime != w->attr.st_atime
1999 || w->prev.st_mtime != w->attr.st_mtime 3252 || prev.st_mtime != w->attr.st_mtime
2000 || w->prev.st_ctime != w->attr.st_ctime 3253 || prev.st_ctime != w->attr.st_ctime
2001 ) { 3254 ) {
3255 /* we only update w->prev on actual differences */
3256 /* in case we test more often than invoke the callback, */
3257 /* to ensure that prev is always different to attr */
3258 w->prev = prev;
3259
2002 #if EV_USE_INOTIFY 3260 #if EV_USE_INOTIFY
3261 if (fs_fd >= 0)
3262 {
2003 infy_del (EV_A_ w); 3263 infy_del (EV_A_ w);
2004 infy_add (EV_A_ w); 3264 infy_add (EV_A_ w);
2005 ev_stat_stat (EV_A_ w); /* avoid race... */ 3265 ev_stat_stat (EV_A_ w); /* avoid race... */
3266 }
2006 #endif 3267 #endif
2007 3268
2008 ev_feed_event (EV_A_ w, EV_STAT); 3269 ev_feed_event (EV_A_ w, EV_STAT);
2009 } 3270 }
2010} 3271}
2013ev_stat_start (EV_P_ ev_stat *w) 3274ev_stat_start (EV_P_ ev_stat *w)
2014{ 3275{
2015 if (expect_false (ev_is_active (w))) 3276 if (expect_false (ev_is_active (w)))
2016 return; 3277 return;
2017 3278
2018 /* since we use memcmp, we need to clear any padding data etc. */
2019 memset (&w->prev, 0, sizeof (ev_statdata));
2020 memset (&w->attr, 0, sizeof (ev_statdata));
2021
2022 ev_stat_stat (EV_A_ w); 3279 ev_stat_stat (EV_A_ w);
2023 3280
3281 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2024 if (w->interval < MIN_STAT_INTERVAL) 3282 w->interval = MIN_STAT_INTERVAL;
2025 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2026 3283
2027 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3284 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2028 ev_set_priority (&w->timer, ev_priority (w)); 3285 ev_set_priority (&w->timer, ev_priority (w));
2029 3286
2030#if EV_USE_INOTIFY 3287#if EV_USE_INOTIFY
2031 infy_init (EV_A); 3288 infy_init (EV_A);
2032 3289
2033 if (fs_fd >= 0) 3290 if (fs_fd >= 0)
2034 infy_add (EV_A_ w); 3291 infy_add (EV_A_ w);
2035 else 3292 else
2036#endif 3293#endif
3294 {
2037 ev_timer_start (EV_A_ &w->timer); 3295 ev_timer_again (EV_A_ &w->timer);
3296 ev_unref (EV_A);
3297 }
2038 3298
2039 ev_start (EV_A_ (W)w, 1); 3299 ev_start (EV_A_ (W)w, 1);
3300
3301 EV_FREQUENT_CHECK;
2040} 3302}
2041 3303
2042void 3304void
2043ev_stat_stop (EV_P_ ev_stat *w) 3305ev_stat_stop (EV_P_ ev_stat *w)
2044{ 3306{
2045 clear_pending (EV_A_ (W)w); 3307 clear_pending (EV_A_ (W)w);
2046 if (expect_false (!ev_is_active (w))) 3308 if (expect_false (!ev_is_active (w)))
2047 return; 3309 return;
2048 3310
3311 EV_FREQUENT_CHECK;
3312
2049#if EV_USE_INOTIFY 3313#if EV_USE_INOTIFY
2050 infy_del (EV_A_ w); 3314 infy_del (EV_A_ w);
2051#endif 3315#endif
3316
3317 if (ev_is_active (&w->timer))
3318 {
3319 ev_ref (EV_A);
2052 ev_timer_stop (EV_A_ &w->timer); 3320 ev_timer_stop (EV_A_ &w->timer);
3321 }
2053 3322
2054 ev_stop (EV_A_ (W)w); 3323 ev_stop (EV_A_ (W)w);
3324
3325 EV_FREQUENT_CHECK;
2055} 3326}
2056#endif 3327#endif
2057 3328
2058#if EV_IDLE_ENABLE 3329#if EV_IDLE_ENABLE
2059void 3330void
2061{ 3332{
2062 if (expect_false (ev_is_active (w))) 3333 if (expect_false (ev_is_active (w)))
2063 return; 3334 return;
2064 3335
2065 pri_adjust (EV_A_ (W)w); 3336 pri_adjust (EV_A_ (W)w);
3337
3338 EV_FREQUENT_CHECK;
2066 3339
2067 { 3340 {
2068 int active = ++idlecnt [ABSPRI (w)]; 3341 int active = ++idlecnt [ABSPRI (w)];
2069 3342
2070 ++idleall; 3343 ++idleall;
2071 ev_start (EV_A_ (W)w, active); 3344 ev_start (EV_A_ (W)w, active);
2072 3345
2073 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3346 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2074 idles [ABSPRI (w)][active - 1] = w; 3347 idles [ABSPRI (w)][active - 1] = w;
2075 } 3348 }
3349
3350 EV_FREQUENT_CHECK;
2076} 3351}
2077 3352
2078void 3353void
2079ev_idle_stop (EV_P_ ev_idle *w) 3354ev_idle_stop (EV_P_ ev_idle *w)
2080{ 3355{
2081 clear_pending (EV_A_ (W)w); 3356 clear_pending (EV_A_ (W)w);
2082 if (expect_false (!ev_is_active (w))) 3357 if (expect_false (!ev_is_active (w)))
2083 return; 3358 return;
2084 3359
3360 EV_FREQUENT_CHECK;
3361
2085 { 3362 {
2086 int active = ((W)w)->active; 3363 int active = ev_active (w);
2087 3364
2088 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3365 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2089 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3366 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2090 3367
2091 ev_stop (EV_A_ (W)w); 3368 ev_stop (EV_A_ (W)w);
2092 --idleall; 3369 --idleall;
2093 } 3370 }
2094}
2095#endif
2096 3371
3372 EV_FREQUENT_CHECK;
3373}
3374#endif
3375
3376#if EV_PREPARE_ENABLE
2097void 3377void
2098ev_prepare_start (EV_P_ ev_prepare *w) 3378ev_prepare_start (EV_P_ ev_prepare *w)
2099{ 3379{
2100 if (expect_false (ev_is_active (w))) 3380 if (expect_false (ev_is_active (w)))
2101 return; 3381 return;
3382
3383 EV_FREQUENT_CHECK;
2102 3384
2103 ev_start (EV_A_ (W)w, ++preparecnt); 3385 ev_start (EV_A_ (W)w, ++preparecnt);
2104 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3386 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2105 prepares [preparecnt - 1] = w; 3387 prepares [preparecnt - 1] = w;
3388
3389 EV_FREQUENT_CHECK;
2106} 3390}
2107 3391
2108void 3392void
2109ev_prepare_stop (EV_P_ ev_prepare *w) 3393ev_prepare_stop (EV_P_ ev_prepare *w)
2110{ 3394{
2111 clear_pending (EV_A_ (W)w); 3395 clear_pending (EV_A_ (W)w);
2112 if (expect_false (!ev_is_active (w))) 3396 if (expect_false (!ev_is_active (w)))
2113 return; 3397 return;
2114 3398
3399 EV_FREQUENT_CHECK;
3400
2115 { 3401 {
2116 int active = ((W)w)->active; 3402 int active = ev_active (w);
3403
2117 prepares [active - 1] = prepares [--preparecnt]; 3404 prepares [active - 1] = prepares [--preparecnt];
2118 ((W)prepares [active - 1])->active = active; 3405 ev_active (prepares [active - 1]) = active;
2119 } 3406 }
2120 3407
2121 ev_stop (EV_A_ (W)w); 3408 ev_stop (EV_A_ (W)w);
2122}
2123 3409
3410 EV_FREQUENT_CHECK;
3411}
3412#endif
3413
3414#if EV_CHECK_ENABLE
2124void 3415void
2125ev_check_start (EV_P_ ev_check *w) 3416ev_check_start (EV_P_ ev_check *w)
2126{ 3417{
2127 if (expect_false (ev_is_active (w))) 3418 if (expect_false (ev_is_active (w)))
2128 return; 3419 return;
3420
3421 EV_FREQUENT_CHECK;
2129 3422
2130 ev_start (EV_A_ (W)w, ++checkcnt); 3423 ev_start (EV_A_ (W)w, ++checkcnt);
2131 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3424 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2132 checks [checkcnt - 1] = w; 3425 checks [checkcnt - 1] = w;
3426
3427 EV_FREQUENT_CHECK;
2133} 3428}
2134 3429
2135void 3430void
2136ev_check_stop (EV_P_ ev_check *w) 3431ev_check_stop (EV_P_ ev_check *w)
2137{ 3432{
2138 clear_pending (EV_A_ (W)w); 3433 clear_pending (EV_A_ (W)w);
2139 if (expect_false (!ev_is_active (w))) 3434 if (expect_false (!ev_is_active (w)))
2140 return; 3435 return;
2141 3436
3437 EV_FREQUENT_CHECK;
3438
2142 { 3439 {
2143 int active = ((W)w)->active; 3440 int active = ev_active (w);
3441
2144 checks [active - 1] = checks [--checkcnt]; 3442 checks [active - 1] = checks [--checkcnt];
2145 ((W)checks [active - 1])->active = active; 3443 ev_active (checks [active - 1]) = active;
2146 } 3444 }
2147 3445
2148 ev_stop (EV_A_ (W)w); 3446 ev_stop (EV_A_ (W)w);
3447
3448 EV_FREQUENT_CHECK;
2149} 3449}
3450#endif
2150 3451
2151#if EV_EMBED_ENABLE 3452#if EV_EMBED_ENABLE
2152void noinline 3453void noinline
2153ev_embed_sweep (EV_P_ ev_embed *w) 3454ev_embed_sweep (EV_P_ ev_embed *w)
2154{ 3455{
2155 ev_loop (w->loop, EVLOOP_NONBLOCK); 3456 ev_run (w->other, EVRUN_NOWAIT);
2156} 3457}
2157 3458
2158static void 3459static void
2159embed_cb (EV_P_ ev_io *io, int revents) 3460embed_io_cb (EV_P_ ev_io *io, int revents)
2160{ 3461{
2161 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3462 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2162 3463
2163 if (ev_cb (w)) 3464 if (ev_cb (w))
2164 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3465 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2165 else 3466 else
2166 ev_embed_sweep (loop, w); 3467 ev_run (w->other, EVRUN_NOWAIT);
2167} 3468}
3469
3470static void
3471embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3472{
3473 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3474
3475 {
3476 EV_P = w->other;
3477
3478 while (fdchangecnt)
3479 {
3480 fd_reify (EV_A);
3481 ev_run (EV_A_ EVRUN_NOWAIT);
3482 }
3483 }
3484}
3485
3486static void
3487embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3488{
3489 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3490
3491 ev_embed_stop (EV_A_ w);
3492
3493 {
3494 EV_P = w->other;
3495
3496 ev_loop_fork (EV_A);
3497 ev_run (EV_A_ EVRUN_NOWAIT);
3498 }
3499
3500 ev_embed_start (EV_A_ w);
3501}
3502
3503#if 0
3504static void
3505embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3506{
3507 ev_idle_stop (EV_A_ idle);
3508}
3509#endif
2168 3510
2169void 3511void
2170ev_embed_start (EV_P_ ev_embed *w) 3512ev_embed_start (EV_P_ ev_embed *w)
2171{ 3513{
2172 if (expect_false (ev_is_active (w))) 3514 if (expect_false (ev_is_active (w)))
2173 return; 3515 return;
2174 3516
2175 { 3517 {
2176 struct ev_loop *loop = w->loop; 3518 EV_P = w->other;
2177 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3519 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2178 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3520 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2179 } 3521 }
3522
3523 EV_FREQUENT_CHECK;
2180 3524
2181 ev_set_priority (&w->io, ev_priority (w)); 3525 ev_set_priority (&w->io, ev_priority (w));
2182 ev_io_start (EV_A_ &w->io); 3526 ev_io_start (EV_A_ &w->io);
2183 3527
3528 ev_prepare_init (&w->prepare, embed_prepare_cb);
3529 ev_set_priority (&w->prepare, EV_MINPRI);
3530 ev_prepare_start (EV_A_ &w->prepare);
3531
3532 ev_fork_init (&w->fork, embed_fork_cb);
3533 ev_fork_start (EV_A_ &w->fork);
3534
3535 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3536
2184 ev_start (EV_A_ (W)w, 1); 3537 ev_start (EV_A_ (W)w, 1);
3538
3539 EV_FREQUENT_CHECK;
2185} 3540}
2186 3541
2187void 3542void
2188ev_embed_stop (EV_P_ ev_embed *w) 3543ev_embed_stop (EV_P_ ev_embed *w)
2189{ 3544{
2190 clear_pending (EV_A_ (W)w); 3545 clear_pending (EV_A_ (W)w);
2191 if (expect_false (!ev_is_active (w))) 3546 if (expect_false (!ev_is_active (w)))
2192 return; 3547 return;
2193 3548
3549 EV_FREQUENT_CHECK;
3550
2194 ev_io_stop (EV_A_ &w->io); 3551 ev_io_stop (EV_A_ &w->io);
3552 ev_prepare_stop (EV_A_ &w->prepare);
3553 ev_fork_stop (EV_A_ &w->fork);
2195 3554
2196 ev_stop (EV_A_ (W)w); 3555 ev_stop (EV_A_ (W)w);
3556
3557 EV_FREQUENT_CHECK;
2197} 3558}
2198#endif 3559#endif
2199 3560
2200#if EV_FORK_ENABLE 3561#if EV_FORK_ENABLE
2201void 3562void
2202ev_fork_start (EV_P_ ev_fork *w) 3563ev_fork_start (EV_P_ ev_fork *w)
2203{ 3564{
2204 if (expect_false (ev_is_active (w))) 3565 if (expect_false (ev_is_active (w)))
2205 return; 3566 return;
3567
3568 EV_FREQUENT_CHECK;
2206 3569
2207 ev_start (EV_A_ (W)w, ++forkcnt); 3570 ev_start (EV_A_ (W)w, ++forkcnt);
2208 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3571 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2209 forks [forkcnt - 1] = w; 3572 forks [forkcnt - 1] = w;
3573
3574 EV_FREQUENT_CHECK;
2210} 3575}
2211 3576
2212void 3577void
2213ev_fork_stop (EV_P_ ev_fork *w) 3578ev_fork_stop (EV_P_ ev_fork *w)
2214{ 3579{
2215 clear_pending (EV_A_ (W)w); 3580 clear_pending (EV_A_ (W)w);
2216 if (expect_false (!ev_is_active (w))) 3581 if (expect_false (!ev_is_active (w)))
2217 return; 3582 return;
2218 3583
3584 EV_FREQUENT_CHECK;
3585
2219 { 3586 {
2220 int active = ((W)w)->active; 3587 int active = ev_active (w);
3588
2221 forks [active - 1] = forks [--forkcnt]; 3589 forks [active - 1] = forks [--forkcnt];
2222 ((W)forks [active - 1])->active = active; 3590 ev_active (forks [active - 1]) = active;
2223 } 3591 }
2224 3592
2225 ev_stop (EV_A_ (W)w); 3593 ev_stop (EV_A_ (W)w);
3594
3595 EV_FREQUENT_CHECK;
3596}
3597#endif
3598
3599#if EV_CLEANUP_ENABLE
3600void
3601ev_cleanup_start (EV_P_ ev_cleanup *w)
3602{
3603 if (expect_false (ev_is_active (w)))
3604 return;
3605
3606 EV_FREQUENT_CHECK;
3607
3608 ev_start (EV_A_ (W)w, ++cleanupcnt);
3609 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3610 cleanups [cleanupcnt - 1] = w;
3611
3612 /* cleanup watchers should never keep a refcount on the loop */
3613 ev_unref (EV_A);
3614 EV_FREQUENT_CHECK;
3615}
3616
3617void
3618ev_cleanup_stop (EV_P_ ev_cleanup *w)
3619{
3620 clear_pending (EV_A_ (W)w);
3621 if (expect_false (!ev_is_active (w)))
3622 return;
3623
3624 EV_FREQUENT_CHECK;
3625 ev_ref (EV_A);
3626
3627 {
3628 int active = ev_active (w);
3629
3630 cleanups [active - 1] = cleanups [--cleanupcnt];
3631 ev_active (cleanups [active - 1]) = active;
3632 }
3633
3634 ev_stop (EV_A_ (W)w);
3635
3636 EV_FREQUENT_CHECK;
3637}
3638#endif
3639
3640#if EV_ASYNC_ENABLE
3641void
3642ev_async_start (EV_P_ ev_async *w)
3643{
3644 if (expect_false (ev_is_active (w)))
3645 return;
3646
3647 w->sent = 0;
3648
3649 evpipe_init (EV_A);
3650
3651 EV_FREQUENT_CHECK;
3652
3653 ev_start (EV_A_ (W)w, ++asynccnt);
3654 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3655 asyncs [asynccnt - 1] = w;
3656
3657 EV_FREQUENT_CHECK;
3658}
3659
3660void
3661ev_async_stop (EV_P_ ev_async *w)
3662{
3663 clear_pending (EV_A_ (W)w);
3664 if (expect_false (!ev_is_active (w)))
3665 return;
3666
3667 EV_FREQUENT_CHECK;
3668
3669 {
3670 int active = ev_active (w);
3671
3672 asyncs [active - 1] = asyncs [--asynccnt];
3673 ev_active (asyncs [active - 1]) = active;
3674 }
3675
3676 ev_stop (EV_A_ (W)w);
3677
3678 EV_FREQUENT_CHECK;
3679}
3680
3681void
3682ev_async_send (EV_P_ ev_async *w)
3683{
3684 w->sent = 1;
3685 evpipe_write (EV_A_ &async_pending);
2226} 3686}
2227#endif 3687#endif
2228 3688
2229/*****************************************************************************/ 3689/*****************************************************************************/
2230 3690
2240once_cb (EV_P_ struct ev_once *once, int revents) 3700once_cb (EV_P_ struct ev_once *once, int revents)
2241{ 3701{
2242 void (*cb)(int revents, void *arg) = once->cb; 3702 void (*cb)(int revents, void *arg) = once->cb;
2243 void *arg = once->arg; 3703 void *arg = once->arg;
2244 3704
2245 ev_io_stop (EV_A_ &once->io); 3705 ev_io_stop (EV_A_ &once->io);
2246 ev_timer_stop (EV_A_ &once->to); 3706 ev_timer_stop (EV_A_ &once->to);
2247 ev_free (once); 3707 ev_free (once);
2248 3708
2249 cb (revents, arg); 3709 cb (revents, arg);
2250} 3710}
2251 3711
2252static void 3712static void
2253once_cb_io (EV_P_ ev_io *w, int revents) 3713once_cb_io (EV_P_ ev_io *w, int revents)
2254{ 3714{
2255 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3715 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3716
3717 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2256} 3718}
2257 3719
2258static void 3720static void
2259once_cb_to (EV_P_ ev_timer *w, int revents) 3721once_cb_to (EV_P_ ev_timer *w, int revents)
2260{ 3722{
2261 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3723 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3724
3725 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2262} 3726}
2263 3727
2264void 3728void
2265ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3729ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2266{ 3730{
2267 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3731 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2268 3732
2269 if (expect_false (!once)) 3733 if (expect_false (!once))
2270 { 3734 {
2271 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3735 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2272 return; 3736 return;
2273 } 3737 }
2274 3738
2275 once->cb = cb; 3739 once->cb = cb;
2276 once->arg = arg; 3740 once->arg = arg;
2288 ev_timer_set (&once->to, timeout, 0.); 3752 ev_timer_set (&once->to, timeout, 0.);
2289 ev_timer_start (EV_A_ &once->to); 3753 ev_timer_start (EV_A_ &once->to);
2290 } 3754 }
2291} 3755}
2292 3756
2293#ifdef __cplusplus 3757/*****************************************************************************/
2294} 3758
3759#if EV_WALK_ENABLE
3760void
3761ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3762{
3763 int i, j;
3764 ev_watcher_list *wl, *wn;
3765
3766 if (types & (EV_IO | EV_EMBED))
3767 for (i = 0; i < anfdmax; ++i)
3768 for (wl = anfds [i].head; wl; )
3769 {
3770 wn = wl->next;
3771
3772#if EV_EMBED_ENABLE
3773 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3774 {
3775 if (types & EV_EMBED)
3776 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3777 }
3778 else
3779#endif
3780#if EV_USE_INOTIFY
3781 if (ev_cb ((ev_io *)wl) == infy_cb)
3782 ;
3783 else
3784#endif
3785 if ((ev_io *)wl != &pipe_w)
3786 if (types & EV_IO)
3787 cb (EV_A_ EV_IO, wl);
3788
3789 wl = wn;
3790 }
3791
3792 if (types & (EV_TIMER | EV_STAT))
3793 for (i = timercnt + HEAP0; i-- > HEAP0; )
3794#if EV_STAT_ENABLE
3795 /*TODO: timer is not always active*/
3796 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3797 {
3798 if (types & EV_STAT)
3799 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3800 }
3801 else
3802#endif
3803 if (types & EV_TIMER)
3804 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3805
3806#if EV_PERIODIC_ENABLE
3807 if (types & EV_PERIODIC)
3808 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3809 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3810#endif
3811
3812#if EV_IDLE_ENABLE
3813 if (types & EV_IDLE)
3814 for (j = NUMPRI; i--; )
3815 for (i = idlecnt [j]; i--; )
3816 cb (EV_A_ EV_IDLE, idles [j][i]);
3817#endif
3818
3819#if EV_FORK_ENABLE
3820 if (types & EV_FORK)
3821 for (i = forkcnt; i--; )
3822 if (ev_cb (forks [i]) != embed_fork_cb)
3823 cb (EV_A_ EV_FORK, forks [i]);
3824#endif
3825
3826#if EV_ASYNC_ENABLE
3827 if (types & EV_ASYNC)
3828 for (i = asynccnt; i--; )
3829 cb (EV_A_ EV_ASYNC, asyncs [i]);
3830#endif
3831
3832#if EV_PREPARE_ENABLE
3833 if (types & EV_PREPARE)
3834 for (i = preparecnt; i--; )
3835# if EV_EMBED_ENABLE
3836 if (ev_cb (prepares [i]) != embed_prepare_cb)
2295#endif 3837# endif
3838 cb (EV_A_ EV_PREPARE, prepares [i]);
3839#endif
2296 3840
3841#if EV_CHECK_ENABLE
3842 if (types & EV_CHECK)
3843 for (i = checkcnt; i--; )
3844 cb (EV_A_ EV_CHECK, checks [i]);
3845#endif
3846
3847#if EV_SIGNAL_ENABLE
3848 if (types & EV_SIGNAL)
3849 for (i = 0; i < EV_NSIG - 1; ++i)
3850 for (wl = signals [i].head; wl; )
3851 {
3852 wn = wl->next;
3853 cb (EV_A_ EV_SIGNAL, wl);
3854 wl = wn;
3855 }
3856#endif
3857
3858#if EV_CHILD_ENABLE
3859 if (types & EV_CHILD)
3860 for (i = (EV_PID_HASHSIZE); i--; )
3861 for (wl = childs [i]; wl; )
3862 {
3863 wn = wl->next;
3864 cb (EV_A_ EV_CHILD, wl);
3865 wl = wn;
3866 }
3867#endif
3868/* EV_STAT 0x00001000 /* stat data changed */
3869/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3870}
3871#endif
3872
3873#if EV_MULTIPLICITY
3874 #include "ev_wrap.h"
3875#endif
3876
3877EV_CPP(})
3878

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines