ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.171 by root, Sun Dec 9 02:12:43 2007 UTC vs.
Revision 1.232 by root, Tue May 6 15:29:58 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 241
197#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
200#endif 245#endif
202#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
205#endif 250#endif
206 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
207#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 268# include <winsock.h>
209#endif 269#endif
210 270
211#if !EV_STAT_ENABLE 271#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
213#endif 276# endif
214 277int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 278# ifdef __cplusplus
216# include <sys/inotify.h> 279}
280# endif
217#endif 281#endif
218 282
219/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 294
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 298
225#if __GNUC__ >= 3 299#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
227# define noinline __attribute__ ((noinline)) 301# define noinline __attribute__ ((noinline))
228#else 302#else
229# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
230# define noinline 304# define noinline
231# if __STDC_VERSION__ < 199901L 305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
232# define inline 306# define inline
233# endif 307# endif
234#endif 308#endif
235 309
236#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
251 325
252typedef ev_watcher *W; 326typedef ev_watcher *W;
253typedef ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
254typedef ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
255 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
256static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
257 338
258#ifdef _WIN32 339#ifdef _WIN32
259# include "ev_win32.c" 340# include "ev_win32.c"
260#endif 341#endif
261 342
282 perror (msg); 363 perror (msg);
283 abort (); 364 abort ();
284 } 365 }
285} 366}
286 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
287static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
288 384
289void 385void
290ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
291{ 387{
292 alloc = cb; 388 alloc = cb;
293} 389}
294 390
295inline_speed void * 391inline_speed void *
296ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
297{ 393{
298 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
299 395
300 if (!ptr && size) 396 if (!ptr && size)
301 { 397 {
302 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
303 abort (); 399 abort ();
397{ 493{
398 return ev_rt_now; 494 return ev_rt_now;
399} 495}
400#endif 496#endif
401 497
498void
499ev_sleep (ev_tstamp delay)
500{
501 if (delay > 0.)
502 {
503#if EV_USE_NANOSLEEP
504 struct timespec ts;
505
506 ts.tv_sec = (time_t)delay;
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0);
510#elif defined(_WIN32)
511 Sleep ((unsigned long)(delay * 1e3));
512#else
513 struct timeval tv;
514
515 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517
518 select (0, 0, 0, 0, &tv);
519#endif
520 }
521}
522
523/*****************************************************************************/
524
525#define MALLOC_ROUND 4096 // prefer to allocate in chunks of this size, must be 2**n and >> 4 longs
526
402int inline_size 527int inline_size
403array_nextsize (int elem, int cur, int cnt) 528array_nextsize (int elem, int cur, int cnt)
404{ 529{
405 int ncur = cur + 1; 530 int ncur = cur + 1;
406 531
407 do 532 do
408 ncur <<= 1; 533 ncur <<= 1;
409 while (cnt > ncur); 534 while (cnt > ncur);
410 535
411 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 536 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
412 if (elem * ncur > 4096) 537 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
413 { 538 {
414 ncur *= elem; 539 ncur *= elem;
415 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 540 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
416 ncur = ncur - sizeof (void *) * 4; 541 ncur = ncur - sizeof (void *) * 4;
417 ncur /= elem; 542 ncur /= elem;
418 } 543 }
419 544
420 return ncur; 545 return ncur;
466 pendings [pri][w_->pending - 1].w = w_; 591 pendings [pri][w_->pending - 1].w = w_;
467 pendings [pri][w_->pending - 1].events = revents; 592 pendings [pri][w_->pending - 1].events = revents;
468 } 593 }
469} 594}
470 595
471void inline_size 596void inline_speed
472queue_events (EV_P_ W *events, int eventcnt, int type) 597queue_events (EV_P_ W *events, int eventcnt, int type)
473{ 598{
474 int i; 599 int i;
475 600
476 for (i = 0; i < eventcnt; ++i) 601 for (i = 0; i < eventcnt; ++i)
523 { 648 {
524 int fd = fdchanges [i]; 649 int fd = fdchanges [i];
525 ANFD *anfd = anfds + fd; 650 ANFD *anfd = anfds + fd;
526 ev_io *w; 651 ev_io *w;
527 652
528 int events = 0; 653 unsigned char events = 0;
529 654
530 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 655 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
531 events |= w->events; 656 events |= (unsigned char)w->events;
532 657
533#if EV_SELECT_IS_WINSOCKET 658#if EV_SELECT_IS_WINSOCKET
534 if (events) 659 if (events)
535 { 660 {
536 unsigned long argp; 661 unsigned long argp;
662 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else
537 anfd->handle = _get_osfhandle (fd); 665 anfd->handle = _get_osfhandle (fd);
666 #endif
538 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
539 } 668 }
540#endif 669#endif
541 670
671 {
672 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify;
674
542 anfd->reify = 0; 675 anfd->reify = 0;
543
544 backend_modify (EV_A_ fd, anfd->events, events);
545 anfd->events = events; 676 anfd->events = events;
677
678 if (o_events != events || o_reify & EV_IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events);
680 }
546 } 681 }
547 682
548 fdchangecnt = 0; 683 fdchangecnt = 0;
549} 684}
550 685
551void inline_size 686void inline_size
552fd_change (EV_P_ int fd) 687fd_change (EV_P_ int fd, int flags)
553{ 688{
554 if (expect_false (anfds [fd].reify)) 689 unsigned char reify = anfds [fd].reify;
555 return;
556
557 anfds [fd].reify = 1; 690 anfds [fd].reify |= flags;
558 691
692 if (expect_true (!reify))
693 {
559 ++fdchangecnt; 694 ++fdchangecnt;
560 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
561 fdchanges [fdchangecnt - 1] = fd; 696 fdchanges [fdchangecnt - 1] = fd;
697 }
562} 698}
563 699
564void inline_speed 700void inline_speed
565fd_kill (EV_P_ int fd) 701fd_kill (EV_P_ int fd)
566{ 702{
617 753
618 for (fd = 0; fd < anfdmax; ++fd) 754 for (fd = 0; fd < anfdmax; ++fd)
619 if (anfds [fd].events) 755 if (anfds [fd].events)
620 { 756 {
621 anfds [fd].events = 0; 757 anfds [fd].events = 0;
622 fd_change (EV_A_ fd); 758 fd_change (EV_A_ fd, EV_IOFDSET | 1);
623 } 759 }
624} 760}
625 761
626/*****************************************************************************/ 762/*****************************************************************************/
627 763
764/* towards the root */
628void inline_speed 765void inline_speed
629upheap (WT *heap, int k) 766upheap (WT *heap, int k)
630{ 767{
631 WT w = heap [k]; 768 WT w = heap [k];
632 769
633 while (k && heap [k >> 1]->at > w->at) 770 for (;;)
634 { 771 {
772 int p = k >> 1;
773
774 /* maybe we could use a dummy element at heap [0]? */
775 if (!p || heap [p]->at <= w->at)
776 break;
777
635 heap [k] = heap [k >> 1]; 778 heap [k] = heap [p];
636 ((W)heap [k])->active = k + 1; 779 ev_active (heap [k]) = k;
637 k >>= 1; 780 k = p;
638 } 781 }
639 782
640 heap [k] = w; 783 heap [k] = w;
641 ((W)heap [k])->active = k + 1; 784 ev_active (heap [k]) = k;
642
643} 785}
644 786
787/* away from the root */
645void inline_speed 788void inline_speed
646downheap (WT *heap, int N, int k) 789downheap (WT *heap, int N, int k)
647{ 790{
648 WT w = heap [k]; 791 WT w = heap [k];
649 792
650 while (k < (N >> 1)) 793 for (;;)
651 { 794 {
652 int j = k << 1; 795 int c = k << 1;
653 796
654 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 797 if (c > N)
655 ++j;
656
657 if (w->at <= heap [j]->at)
658 break; 798 break;
659 799
800 c += c < N && heap [c]->at > heap [c + 1]->at
801 ? 1 : 0;
802
803 if (w->at <= heap [c]->at)
804 break;
805
660 heap [k] = heap [j]; 806 heap [k] = heap [c];
661 ((W)heap [k])->active = k + 1; 807 ev_active (heap [k]) = k;
808
662 k = j; 809 k = c;
663 } 810 }
664 811
665 heap [k] = w; 812 heap [k] = w;
666 ((W)heap [k])->active = k + 1; 813 ev_active (heap [k]) = k;
667} 814}
668 815
669void inline_size 816void inline_size
670adjustheap (WT *heap, int N, int k) 817adjustheap (WT *heap, int N, int k)
671{ 818{
676/*****************************************************************************/ 823/*****************************************************************************/
677 824
678typedef struct 825typedef struct
679{ 826{
680 WL head; 827 WL head;
681 sig_atomic_t volatile gotsig; 828 EV_ATOMIC_T gotsig;
682} ANSIG; 829} ANSIG;
683 830
684static ANSIG *signals; 831static ANSIG *signals;
685static int signalmax; 832static int signalmax;
686 833
687static int sigpipe [2]; 834static EV_ATOMIC_T gotsig;
688static sig_atomic_t volatile gotsig;
689static ev_io sigev;
690 835
691void inline_size 836void inline_size
692signals_init (ANSIG *base, int count) 837signals_init (ANSIG *base, int count)
693{ 838{
694 while (count--) 839 while (count--)
698 843
699 ++base; 844 ++base;
700 } 845 }
701} 846}
702 847
703static void 848/*****************************************************************************/
704sighandler (int signum)
705{
706#if _WIN32
707 signal (signum, sighandler);
708#endif
709
710 signals [signum - 1].gotsig = 1;
711
712 if (!gotsig)
713 {
714 int old_errno = errno;
715 gotsig = 1;
716 write (sigpipe [1], &signum, 1);
717 errno = old_errno;
718 }
719}
720
721void noinline
722ev_feed_signal_event (EV_P_ int signum)
723{
724 WL w;
725
726#if EV_MULTIPLICITY
727 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
728#endif
729
730 --signum;
731
732 if (signum < 0 || signum >= signalmax)
733 return;
734
735 signals [signum].gotsig = 0;
736
737 for (w = signals [signum].head; w; w = w->next)
738 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
739}
740
741static void
742sigcb (EV_P_ ev_io *iow, int revents)
743{
744 int signum;
745
746 read (sigpipe [0], &revents, 1);
747 gotsig = 0;
748
749 for (signum = signalmax; signum--; )
750 if (signals [signum].gotsig)
751 ev_feed_signal_event (EV_A_ signum + 1);
752}
753 849
754void inline_speed 850void inline_speed
755fd_intern (int fd) 851fd_intern (int fd)
756{ 852{
757#ifdef _WIN32 853#ifdef _WIN32
762 fcntl (fd, F_SETFL, O_NONBLOCK); 858 fcntl (fd, F_SETFL, O_NONBLOCK);
763#endif 859#endif
764} 860}
765 861
766static void noinline 862static void noinline
767siginit (EV_P) 863evpipe_init (EV_P)
768{ 864{
865 if (!ev_is_active (&pipeev))
866 {
867#if EV_USE_EVENTFD
868 if ((evfd = eventfd (0, 0)) >= 0)
869 {
870 evpipe [0] = -1;
871 fd_intern (evfd);
872 ev_io_set (&pipeev, evfd, EV_READ);
873 }
874 else
875#endif
876 {
877 while (pipe (evpipe))
878 syserr ("(libev) error creating signal/async pipe");
879
769 fd_intern (sigpipe [0]); 880 fd_intern (evpipe [0]);
770 fd_intern (sigpipe [1]); 881 fd_intern (evpipe [1]);
882 ev_io_set (&pipeev, evpipe [0], EV_READ);
883 }
771 884
772 ev_io_set (&sigev, sigpipe [0], EV_READ);
773 ev_io_start (EV_A_ &sigev); 885 ev_io_start (EV_A_ &pipeev);
774 ev_unref (EV_A); /* child watcher should not keep loop alive */ 886 ev_unref (EV_A); /* watcher should not keep loop alive */
887 }
888}
889
890void inline_size
891evpipe_write (EV_P_ EV_ATOMIC_T *flag)
892{
893 if (!*flag)
894 {
895 int old_errno = errno; /* save errno because write might clobber it */
896
897 *flag = 1;
898
899#if EV_USE_EVENTFD
900 if (evfd >= 0)
901 {
902 uint64_t counter = 1;
903 write (evfd, &counter, sizeof (uint64_t));
904 }
905 else
906#endif
907 write (evpipe [1], &old_errno, 1);
908
909 errno = old_errno;
910 }
911}
912
913static void
914pipecb (EV_P_ ev_io *iow, int revents)
915{
916#if EV_USE_EVENTFD
917 if (evfd >= 0)
918 {
919 uint64_t counter;
920 read (evfd, &counter, sizeof (uint64_t));
921 }
922 else
923#endif
924 {
925 char dummy;
926 read (evpipe [0], &dummy, 1);
927 }
928
929 if (gotsig && ev_is_default_loop (EV_A))
930 {
931 int signum;
932 gotsig = 0;
933
934 for (signum = signalmax; signum--; )
935 if (signals [signum].gotsig)
936 ev_feed_signal_event (EV_A_ signum + 1);
937 }
938
939#if EV_ASYNC_ENABLE
940 if (gotasync)
941 {
942 int i;
943 gotasync = 0;
944
945 for (i = asynccnt; i--; )
946 if (asyncs [i]->sent)
947 {
948 asyncs [i]->sent = 0;
949 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
950 }
951 }
952#endif
775} 953}
776 954
777/*****************************************************************************/ 955/*****************************************************************************/
778 956
957static void
958ev_sighandler (int signum)
959{
960#if EV_MULTIPLICITY
961 struct ev_loop *loop = &default_loop_struct;
962#endif
963
964#if _WIN32
965 signal (signum, ev_sighandler);
966#endif
967
968 signals [signum - 1].gotsig = 1;
969 evpipe_write (EV_A_ &gotsig);
970}
971
972void noinline
973ev_feed_signal_event (EV_P_ int signum)
974{
975 WL w;
976
977#if EV_MULTIPLICITY
978 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
979#endif
980
981 --signum;
982
983 if (signum < 0 || signum >= signalmax)
984 return;
985
986 signals [signum].gotsig = 0;
987
988 for (w = signals [signum].head; w; w = w->next)
989 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
990}
991
992/*****************************************************************************/
993
779static ev_child *childs [EV_PID_HASHSIZE]; 994static WL childs [EV_PID_HASHSIZE];
780 995
781#ifndef _WIN32 996#ifndef _WIN32
782 997
783static ev_signal childev; 998static ev_signal childev;
784 999
1000#ifndef WIFCONTINUED
1001# define WIFCONTINUED(status) 0
1002#endif
1003
785void inline_speed 1004void inline_speed
786child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1005child_reap (EV_P_ int chain, int pid, int status)
787{ 1006{
788 ev_child *w; 1007 ev_child *w;
1008 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
789 1009
790 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1010 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1011 {
791 if (w->pid == pid || !w->pid) 1012 if ((w->pid == pid || !w->pid)
1013 && (!traced || (w->flags & 1)))
792 { 1014 {
793 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1015 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
794 w->rpid = pid; 1016 w->rpid = pid;
795 w->rstatus = status; 1017 w->rstatus = status;
796 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1018 ev_feed_event (EV_A_ (W)w, EV_CHILD);
797 } 1019 }
1020 }
798} 1021}
799 1022
800#ifndef WCONTINUED 1023#ifndef WCONTINUED
801# define WCONTINUED 0 1024# define WCONTINUED 0
802#endif 1025#endif
811 if (!WCONTINUED 1034 if (!WCONTINUED
812 || errno != EINVAL 1035 || errno != EINVAL
813 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1036 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
814 return; 1037 return;
815 1038
816 /* make sure we are called again until all childs have been reaped */ 1039 /* make sure we are called again until all children have been reaped */
817 /* we need to do it this way so that the callback gets called before we continue */ 1040 /* we need to do it this way so that the callback gets called before we continue */
818 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1041 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
819 1042
820 child_reap (EV_A_ sw, pid, pid, status); 1043 child_reap (EV_A_ pid, pid, status);
821 if (EV_PID_HASHSIZE > 1) 1044 if (EV_PID_HASHSIZE > 1)
822 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1045 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
823} 1046}
824 1047
825#endif 1048#endif
826 1049
827/*****************************************************************************/ 1050/*****************************************************************************/
899} 1122}
900 1123
901unsigned int 1124unsigned int
902ev_embeddable_backends (void) 1125ev_embeddable_backends (void)
903{ 1126{
904 return EVBACKEND_EPOLL 1127 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
905 | EVBACKEND_KQUEUE 1128
906 | EVBACKEND_PORT; 1129 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1130 /* please fix it and tell me how to detect the fix */
1131 flags &= ~EVBACKEND_EPOLL;
1132
1133 return flags;
907} 1134}
908 1135
909unsigned int 1136unsigned int
910ev_backend (EV_P) 1137ev_backend (EV_P)
911{ 1138{
914 1141
915unsigned int 1142unsigned int
916ev_loop_count (EV_P) 1143ev_loop_count (EV_P)
917{ 1144{
918 return loop_count; 1145 return loop_count;
1146}
1147
1148void
1149ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1150{
1151 io_blocktime = interval;
1152}
1153
1154void
1155ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1156{
1157 timeout_blocktime = interval;
919} 1158}
920 1159
921static void noinline 1160static void noinline
922loop_init (EV_P_ unsigned int flags) 1161loop_init (EV_P_ unsigned int flags)
923{ 1162{
929 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1168 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
930 have_monotonic = 1; 1169 have_monotonic = 1;
931 } 1170 }
932#endif 1171#endif
933 1172
934 ev_rt_now = ev_time (); 1173 ev_rt_now = ev_time ();
935 mn_now = get_clock (); 1174 mn_now = get_clock ();
936 now_floor = mn_now; 1175 now_floor = mn_now;
937 rtmn_diff = ev_rt_now - mn_now; 1176 rtmn_diff = ev_rt_now - mn_now;
1177
1178 io_blocktime = 0.;
1179 timeout_blocktime = 0.;
1180 backend = 0;
1181 backend_fd = -1;
1182 gotasync = 0;
1183#if EV_USE_INOTIFY
1184 fs_fd = -2;
1185#endif
938 1186
939 /* pid check not overridable via env */ 1187 /* pid check not overridable via env */
940#ifndef _WIN32 1188#ifndef _WIN32
941 if (flags & EVFLAG_FORKCHECK) 1189 if (flags & EVFLAG_FORKCHECK)
942 curpid = getpid (); 1190 curpid = getpid ();
945 if (!(flags & EVFLAG_NOENV) 1193 if (!(flags & EVFLAG_NOENV)
946 && !enable_secure () 1194 && !enable_secure ()
947 && getenv ("LIBEV_FLAGS")) 1195 && getenv ("LIBEV_FLAGS"))
948 flags = atoi (getenv ("LIBEV_FLAGS")); 1196 flags = atoi (getenv ("LIBEV_FLAGS"));
949 1197
950 if (!(flags & 0x0000ffffUL)) 1198 if (!(flags & 0x0000ffffU))
951 flags |= ev_recommended_backends (); 1199 flags |= ev_recommended_backends ();
952
953 backend = 0;
954 backend_fd = -1;
955#if EV_USE_INOTIFY
956 fs_fd = -2;
957#endif
958 1200
959#if EV_USE_PORT 1201#if EV_USE_PORT
960 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1202 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
961#endif 1203#endif
962#if EV_USE_KQUEUE 1204#if EV_USE_KQUEUE
970#endif 1212#endif
971#if EV_USE_SELECT 1213#if EV_USE_SELECT
972 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1214 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
973#endif 1215#endif
974 1216
975 ev_init (&sigev, sigcb); 1217 ev_init (&pipeev, pipecb);
976 ev_set_priority (&sigev, EV_MAXPRI); 1218 ev_set_priority (&pipeev, EV_MAXPRI);
977 } 1219 }
978} 1220}
979 1221
980static void noinline 1222static void noinline
981loop_destroy (EV_P) 1223loop_destroy (EV_P)
982{ 1224{
983 int i; 1225 int i;
1226
1227 if (ev_is_active (&pipeev))
1228 {
1229 ev_ref (EV_A); /* signal watcher */
1230 ev_io_stop (EV_A_ &pipeev);
1231
1232#if EV_USE_EVENTFD
1233 if (evfd >= 0)
1234 close (evfd);
1235#endif
1236
1237 if (evpipe [0] >= 0)
1238 {
1239 close (evpipe [0]);
1240 close (evpipe [1]);
1241 }
1242 }
984 1243
985#if EV_USE_INOTIFY 1244#if EV_USE_INOTIFY
986 if (fs_fd >= 0) 1245 if (fs_fd >= 0)
987 close (fs_fd); 1246 close (fs_fd);
988#endif 1247#endif
1011 array_free (pending, [i]); 1270 array_free (pending, [i]);
1012#if EV_IDLE_ENABLE 1271#if EV_IDLE_ENABLE
1013 array_free (idle, [i]); 1272 array_free (idle, [i]);
1014#endif 1273#endif
1015 } 1274 }
1275
1276 ev_free (anfds); anfdmax = 0;
1016 1277
1017 /* have to use the microsoft-never-gets-it-right macro */ 1278 /* have to use the microsoft-never-gets-it-right macro */
1018 array_free (fdchange, EMPTY); 1279 array_free (fdchange, EMPTY);
1019 array_free (timer, EMPTY); 1280 array_free (timer, EMPTY);
1020#if EV_PERIODIC_ENABLE 1281#if EV_PERIODIC_ENABLE
1021 array_free (periodic, EMPTY); 1282 array_free (periodic, EMPTY);
1022#endif 1283#endif
1284#if EV_FORK_ENABLE
1285 array_free (fork, EMPTY);
1286#endif
1023 array_free (prepare, EMPTY); 1287 array_free (prepare, EMPTY);
1024 array_free (check, EMPTY); 1288 array_free (check, EMPTY);
1289#if EV_ASYNC_ENABLE
1290 array_free (async, EMPTY);
1291#endif
1025 1292
1026 backend = 0; 1293 backend = 0;
1027} 1294}
1028 1295
1296#if EV_USE_INOTIFY
1029void inline_size infy_fork (EV_P); 1297void inline_size infy_fork (EV_P);
1298#endif
1030 1299
1031void inline_size 1300void inline_size
1032loop_fork (EV_P) 1301loop_fork (EV_P)
1033{ 1302{
1034#if EV_USE_PORT 1303#if EV_USE_PORT
1042#endif 1311#endif
1043#if EV_USE_INOTIFY 1312#if EV_USE_INOTIFY
1044 infy_fork (EV_A); 1313 infy_fork (EV_A);
1045#endif 1314#endif
1046 1315
1047 if (ev_is_active (&sigev)) 1316 if (ev_is_active (&pipeev))
1048 { 1317 {
1049 /* default loop */ 1318 /* this "locks" the handlers against writing to the pipe */
1319 /* while we modify the fd vars */
1320 gotsig = 1;
1321#if EV_ASYNC_ENABLE
1322 gotasync = 1;
1323#endif
1050 1324
1051 ev_ref (EV_A); 1325 ev_ref (EV_A);
1052 ev_io_stop (EV_A_ &sigev); 1326 ev_io_stop (EV_A_ &pipeev);
1327
1328#if EV_USE_EVENTFD
1329 if (evfd >= 0)
1330 close (evfd);
1331#endif
1332
1333 if (evpipe [0] >= 0)
1334 {
1053 close (sigpipe [0]); 1335 close (evpipe [0]);
1054 close (sigpipe [1]); 1336 close (evpipe [1]);
1337 }
1055 1338
1056 while (pipe (sigpipe))
1057 syserr ("(libev) error creating pipe");
1058
1059 siginit (EV_A); 1339 evpipe_init (EV_A);
1340 /* now iterate over everything, in case we missed something */
1341 pipecb (EV_A_ &pipeev, EV_READ);
1060 } 1342 }
1061 1343
1062 postfork = 0; 1344 postfork = 0;
1063} 1345}
1064 1346
1086} 1368}
1087 1369
1088void 1370void
1089ev_loop_fork (EV_P) 1371ev_loop_fork (EV_P)
1090{ 1372{
1091 postfork = 1; 1373 postfork = 1; /* must be in line with ev_default_fork */
1092} 1374}
1093 1375
1094#endif 1376#endif
1095 1377
1096#if EV_MULTIPLICITY 1378#if EV_MULTIPLICITY
1099#else 1381#else
1100int 1382int
1101ev_default_loop (unsigned int flags) 1383ev_default_loop (unsigned int flags)
1102#endif 1384#endif
1103{ 1385{
1104 if (sigpipe [0] == sigpipe [1])
1105 if (pipe (sigpipe))
1106 return 0;
1107
1108 if (!ev_default_loop_ptr) 1386 if (!ev_default_loop_ptr)
1109 { 1387 {
1110#if EV_MULTIPLICITY 1388#if EV_MULTIPLICITY
1111 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1389 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1112#else 1390#else
1115 1393
1116 loop_init (EV_A_ flags); 1394 loop_init (EV_A_ flags);
1117 1395
1118 if (ev_backend (EV_A)) 1396 if (ev_backend (EV_A))
1119 { 1397 {
1120 siginit (EV_A);
1121
1122#ifndef _WIN32 1398#ifndef _WIN32
1123 ev_signal_init (&childev, childcb, SIGCHLD); 1399 ev_signal_init (&childev, childcb, SIGCHLD);
1124 ev_set_priority (&childev, EV_MAXPRI); 1400 ev_set_priority (&childev, EV_MAXPRI);
1125 ev_signal_start (EV_A_ &childev); 1401 ev_signal_start (EV_A_ &childev);
1126 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1402 ev_unref (EV_A); /* child watcher should not keep loop alive */
1143#ifndef _WIN32 1419#ifndef _WIN32
1144 ev_ref (EV_A); /* child watcher */ 1420 ev_ref (EV_A); /* child watcher */
1145 ev_signal_stop (EV_A_ &childev); 1421 ev_signal_stop (EV_A_ &childev);
1146#endif 1422#endif
1147 1423
1148 ev_ref (EV_A); /* signal watcher */
1149 ev_io_stop (EV_A_ &sigev);
1150
1151 close (sigpipe [0]); sigpipe [0] = 0;
1152 close (sigpipe [1]); sigpipe [1] = 0;
1153
1154 loop_destroy (EV_A); 1424 loop_destroy (EV_A);
1155} 1425}
1156 1426
1157void 1427void
1158ev_default_fork (void) 1428ev_default_fork (void)
1160#if EV_MULTIPLICITY 1430#if EV_MULTIPLICITY
1161 struct ev_loop *loop = ev_default_loop_ptr; 1431 struct ev_loop *loop = ev_default_loop_ptr;
1162#endif 1432#endif
1163 1433
1164 if (backend) 1434 if (backend)
1165 postfork = 1; 1435 postfork = 1; /* must be in line with ev_loop_fork */
1166} 1436}
1167 1437
1168/*****************************************************************************/ 1438/*****************************************************************************/
1169 1439
1170void 1440void
1194} 1464}
1195 1465
1196void inline_size 1466void inline_size
1197timers_reify (EV_P) 1467timers_reify (EV_P)
1198{ 1468{
1199 while (timercnt && ((WT)timers [0])->at <= mn_now) 1469 while (timercnt && ev_at (timers [1]) <= mn_now)
1200 { 1470 {
1201 ev_timer *w = timers [0]; 1471 ev_timer *w = (ev_timer *)timers [1];
1202 1472
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1473 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204 1474
1205 /* first reschedule or stop timer */ 1475 /* first reschedule or stop timer */
1206 if (w->repeat) 1476 if (w->repeat)
1207 { 1477 {
1208 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1478 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1209 1479
1210 ((WT)w)->at += w->repeat; 1480 ev_at (w) += w->repeat;
1211 if (((WT)w)->at < mn_now) 1481 if (ev_at (w) < mn_now)
1212 ((WT)w)->at = mn_now; 1482 ev_at (w) = mn_now;
1213 1483
1214 downheap ((WT *)timers, timercnt, 0); 1484 downheap (timers, timercnt, 1);
1215 } 1485 }
1216 else 1486 else
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1487 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218 1488
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1489 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1222 1492
1223#if EV_PERIODIC_ENABLE 1493#if EV_PERIODIC_ENABLE
1224void inline_size 1494void inline_size
1225periodics_reify (EV_P) 1495periodics_reify (EV_P)
1226{ 1496{
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1497 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1228 { 1498 {
1229 ev_periodic *w = periodics [0]; 1499 ev_periodic *w = (ev_periodic *)periodics [1];
1230 1500
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1501 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1232 1502
1233 /* first reschedule or stop timer */ 1503 /* first reschedule or stop timer */
1234 if (w->reschedule_cb) 1504 if (w->reschedule_cb)
1235 { 1505 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1506 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1507 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1238 downheap ((WT *)periodics, periodiccnt, 0); 1508 downheap (periodics, periodiccnt, 1);
1239 } 1509 }
1240 else if (w->interval) 1510 else if (w->interval)
1241 { 1511 {
1242 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1512 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1513 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1514 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1244 downheap ((WT *)periodics, periodiccnt, 0); 1515 downheap (periodics, periodiccnt, 1);
1245 } 1516 }
1246 else 1517 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1518 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248 1519
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1520 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1254periodics_reschedule (EV_P) 1525periodics_reschedule (EV_P)
1255{ 1526{
1256 int i; 1527 int i;
1257 1528
1258 /* adjust periodics after time jump */ 1529 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i) 1530 for (i = 1; i <= periodiccnt; ++i)
1260 { 1531 {
1261 ev_periodic *w = periodics [i]; 1532 ev_periodic *w = (ev_periodic *)periodics [i];
1262 1533
1263 if (w->reschedule_cb) 1534 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1535 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval) 1536 else if (w->interval)
1266 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1537 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1267 } 1538 }
1268 1539
1269 /* now rebuild the heap */ 1540 /* now rebuild the heap */
1270 for (i = periodiccnt >> 1; i--; ) 1541 for (i = periodiccnt >> 1; i--; )
1271 downheap ((WT *)periodics, periodiccnt, i); 1542 downheap (periodics, periodiccnt, i);
1272} 1543}
1273#endif 1544#endif
1274 1545
1275#if EV_IDLE_ENABLE 1546#if EV_IDLE_ENABLE
1276void inline_size 1547void inline_size
1293 } 1564 }
1294 } 1565 }
1295} 1566}
1296#endif 1567#endif
1297 1568
1298int inline_size 1569void inline_speed
1299time_update_monotonic (EV_P) 1570time_update (EV_P_ ev_tstamp max_block)
1300{ 1571{
1572 int i;
1573
1574#if EV_USE_MONOTONIC
1575 if (expect_true (have_monotonic))
1576 {
1577 ev_tstamp odiff = rtmn_diff;
1578
1301 mn_now = get_clock (); 1579 mn_now = get_clock ();
1302 1580
1581 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1582 /* interpolate in the meantime */
1303 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1583 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1304 { 1584 {
1305 ev_rt_now = rtmn_diff + mn_now; 1585 ev_rt_now = rtmn_diff + mn_now;
1306 return 0; 1586 return;
1307 } 1587 }
1308 else 1588
1309 {
1310 now_floor = mn_now; 1589 now_floor = mn_now;
1311 ev_rt_now = ev_time (); 1590 ev_rt_now = ev_time ();
1312 return 1;
1313 }
1314}
1315 1591
1316void inline_size 1592 /* loop a few times, before making important decisions.
1317time_update (EV_P) 1593 * on the choice of "4": one iteration isn't enough,
1318{ 1594 * in case we get preempted during the calls to
1319 int i; 1595 * ev_time and get_clock. a second call is almost guaranteed
1320 1596 * to succeed in that case, though. and looping a few more times
1321#if EV_USE_MONOTONIC 1597 * doesn't hurt either as we only do this on time-jumps or
1322 if (expect_true (have_monotonic)) 1598 * in the unlikely event of having been preempted here.
1323 { 1599 */
1324 if (time_update_monotonic (EV_A)) 1600 for (i = 4; --i; )
1325 { 1601 {
1326 ev_tstamp odiff = rtmn_diff;
1327
1328 /* loop a few times, before making important decisions.
1329 * on the choice of "4": one iteration isn't enough,
1330 * in case we get preempted during the calls to
1331 * ev_time and get_clock. a second call is almost guaranteed
1332 * to succeed in that case, though. and looping a few more times
1333 * doesn't hurt either as we only do this on time-jumps or
1334 * in the unlikely event of having been preempted here.
1335 */
1336 for (i = 4; --i; )
1337 {
1338 rtmn_diff = ev_rt_now - mn_now; 1602 rtmn_diff = ev_rt_now - mn_now;
1339 1603
1340 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1604 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1341 return; /* all is well */ 1605 return; /* all is well */
1342 1606
1343 ev_rt_now = ev_time (); 1607 ev_rt_now = ev_time ();
1344 mn_now = get_clock (); 1608 mn_now = get_clock ();
1345 now_floor = mn_now; 1609 now_floor = mn_now;
1346 } 1610 }
1347 1611
1348# if EV_PERIODIC_ENABLE 1612# if EV_PERIODIC_ENABLE
1349 periodics_reschedule (EV_A); 1613 periodics_reschedule (EV_A);
1350# endif 1614# endif
1351 /* no timer adjustment, as the monotonic clock doesn't jump */ 1615 /* no timer adjustment, as the monotonic clock doesn't jump */
1352 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1616 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1353 }
1354 } 1617 }
1355 else 1618 else
1356#endif 1619#endif
1357 { 1620 {
1358 ev_rt_now = ev_time (); 1621 ev_rt_now = ev_time ();
1359 1622
1360 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1623 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1361 { 1624 {
1362#if EV_PERIODIC_ENABLE 1625#if EV_PERIODIC_ENABLE
1363 periodics_reschedule (EV_A); 1626 periodics_reschedule (EV_A);
1364#endif 1627#endif
1365
1366 /* adjust timers. this is easy, as the offset is the same for all of them */ 1628 /* adjust timers. this is easy, as the offset is the same for all of them */
1367 for (i = 0; i < timercnt; ++i) 1629 for (i = 1; i <= timercnt; ++i)
1368 ((WT)timers [i])->at += ev_rt_now - mn_now; 1630 ev_at (timers [i]) += ev_rt_now - mn_now;
1369 } 1631 }
1370 1632
1371 mn_now = ev_rt_now; 1633 mn_now = ev_rt_now;
1372 } 1634 }
1373} 1635}
1387static int loop_done; 1649static int loop_done;
1388 1650
1389void 1651void
1390ev_loop (EV_P_ int flags) 1652ev_loop (EV_P_ int flags)
1391{ 1653{
1392 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1654 loop_done = EVUNLOOP_CANCEL;
1393 ? EVUNLOOP_ONE
1394 : EVUNLOOP_CANCEL;
1395 1655
1396 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1656 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1397 1657
1398 do 1658 do
1399 { 1659 {
1433 /* update fd-related kernel structures */ 1693 /* update fd-related kernel structures */
1434 fd_reify (EV_A); 1694 fd_reify (EV_A);
1435 1695
1436 /* calculate blocking time */ 1696 /* calculate blocking time */
1437 { 1697 {
1438 ev_tstamp block; 1698 ev_tstamp waittime = 0.;
1699 ev_tstamp sleeptime = 0.;
1439 1700
1440 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1701 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1441 block = 0.; /* do not block at all */
1442 else
1443 { 1702 {
1444 /* update time to cancel out callback processing overhead */ 1703 /* update time to cancel out callback processing overhead */
1445#if EV_USE_MONOTONIC
1446 if (expect_true (have_monotonic))
1447 time_update_monotonic (EV_A); 1704 time_update (EV_A_ 1e100);
1448 else
1449#endif
1450 {
1451 ev_rt_now = ev_time ();
1452 mn_now = ev_rt_now;
1453 }
1454 1705
1455 block = MAX_BLOCKTIME; 1706 waittime = MAX_BLOCKTIME;
1456 1707
1457 if (timercnt) 1708 if (timercnt)
1458 { 1709 {
1459 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1710 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge;
1460 if (block > to) block = to; 1711 if (waittime > to) waittime = to;
1461 } 1712 }
1462 1713
1463#if EV_PERIODIC_ENABLE 1714#if EV_PERIODIC_ENABLE
1464 if (periodiccnt) 1715 if (periodiccnt)
1465 { 1716 {
1466 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1717 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge;
1467 if (block > to) block = to; 1718 if (waittime > to) waittime = to;
1468 } 1719 }
1469#endif 1720#endif
1470 1721
1471 if (expect_false (block < 0.)) block = 0.; 1722 if (expect_false (waittime < timeout_blocktime))
1723 waittime = timeout_blocktime;
1724
1725 sleeptime = waittime - backend_fudge;
1726
1727 if (expect_true (sleeptime > io_blocktime))
1728 sleeptime = io_blocktime;
1729
1730 if (sleeptime)
1731 {
1732 ev_sleep (sleeptime);
1733 waittime -= sleeptime;
1734 }
1472 } 1735 }
1473 1736
1474 ++loop_count; 1737 ++loop_count;
1475 backend_poll (EV_A_ block); 1738 backend_poll (EV_A_ waittime);
1739
1740 /* update ev_rt_now, do magic */
1741 time_update (EV_A_ waittime + sleeptime);
1476 } 1742 }
1477
1478 /* update ev_rt_now, do magic */
1479 time_update (EV_A);
1480 1743
1481 /* queue pending timers and reschedule them */ 1744 /* queue pending timers and reschedule them */
1482 timers_reify (EV_A); /* relative timers called last */ 1745 timers_reify (EV_A); /* relative timers called last */
1483#if EV_PERIODIC_ENABLE 1746#if EV_PERIODIC_ENABLE
1484 periodics_reify (EV_A); /* absolute timers called first */ 1747 periodics_reify (EV_A); /* absolute timers called first */
1492 /* queue check watchers, to be executed first */ 1755 /* queue check watchers, to be executed first */
1493 if (expect_false (checkcnt)) 1756 if (expect_false (checkcnt))
1494 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1757 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1495 1758
1496 call_pending (EV_A); 1759 call_pending (EV_A);
1497
1498 } 1760 }
1499 while (expect_true (activecnt && !loop_done)); 1761 while (expect_true (
1762 activecnt
1763 && !loop_done
1764 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1765 ));
1500 1766
1501 if (loop_done == EVUNLOOP_ONE) 1767 if (loop_done == EVUNLOOP_ONE)
1502 loop_done = EVUNLOOP_CANCEL; 1768 loop_done = EVUNLOOP_CANCEL;
1503} 1769}
1504 1770
1546ev_clear_pending (EV_P_ void *w) 1812ev_clear_pending (EV_P_ void *w)
1547{ 1813{
1548 W w_ = (W)w; 1814 W w_ = (W)w;
1549 int pending = w_->pending; 1815 int pending = w_->pending;
1550 1816
1551 if (!pending) 1817 if (expect_true (pending))
1818 {
1819 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1820 w_->pending = 0;
1821 p->w = 0;
1822 return p->events;
1823 }
1824 else
1552 return 0; 1825 return 0;
1553
1554 w_->pending = 0;
1555 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1556 p->w = 0;
1557
1558 return p->events;
1559} 1826}
1560 1827
1561void inline_size 1828void inline_size
1562pri_adjust (EV_P_ W w) 1829pri_adjust (EV_P_ W w)
1563{ 1830{
1594 1861
1595 assert (("ev_io_start called with negative fd", fd >= 0)); 1862 assert (("ev_io_start called with negative fd", fd >= 0));
1596 1863
1597 ev_start (EV_A_ (W)w, 1); 1864 ev_start (EV_A_ (W)w, 1);
1598 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1865 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1599 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1866 wlist_add (&anfds[fd].head, (WL)w);
1600 1867
1601 fd_change (EV_A_ fd); 1868 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1869 w->events &= ~EV_IOFDSET;
1602} 1870}
1603 1871
1604void noinline 1872void noinline
1605ev_io_stop (EV_P_ ev_io *w) 1873ev_io_stop (EV_P_ ev_io *w)
1606{ 1874{
1608 if (expect_false (!ev_is_active (w))) 1876 if (expect_false (!ev_is_active (w)))
1609 return; 1877 return;
1610 1878
1611 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1879 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1612 1880
1613 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1881 wlist_del (&anfds[w->fd].head, (WL)w);
1614 ev_stop (EV_A_ (W)w); 1882 ev_stop (EV_A_ (W)w);
1615 1883
1616 fd_change (EV_A_ w->fd); 1884 fd_change (EV_A_ w->fd, 1);
1617} 1885}
1618 1886
1619void noinline 1887void noinline
1620ev_timer_start (EV_P_ ev_timer *w) 1888ev_timer_start (EV_P_ ev_timer *w)
1621{ 1889{
1622 if (expect_false (ev_is_active (w))) 1890 if (expect_false (ev_is_active (w)))
1623 return; 1891 return;
1624 1892
1625 ((WT)w)->at += mn_now; 1893 ev_at (w) += mn_now;
1626 1894
1627 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1895 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1628 1896
1629 ev_start (EV_A_ (W)w, ++timercnt); 1897 ev_start (EV_A_ (W)w, ++timercnt);
1630 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1898 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2);
1631 timers [timercnt - 1] = w; 1899 timers [timercnt] = (WT)w;
1632 upheap ((WT *)timers, timercnt - 1); 1900 upheap (timers, timercnt);
1633 1901
1634 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1902 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1635} 1903}
1636 1904
1637void noinline 1905void noinline
1638ev_timer_stop (EV_P_ ev_timer *w) 1906ev_timer_stop (EV_P_ ev_timer *w)
1639{ 1907{
1640 clear_pending (EV_A_ (W)w); 1908 clear_pending (EV_A_ (W)w);
1641 if (expect_false (!ev_is_active (w))) 1909 if (expect_false (!ev_is_active (w)))
1642 return; 1910 return;
1643 1911
1644 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1645
1646 { 1912 {
1647 int active = ((W)w)->active; 1913 int active = ev_active (w);
1648 1914
1915 assert (("internal timer heap corruption", timers [active] == (WT)w));
1916
1649 if (expect_true (--active < --timercnt)) 1917 if (expect_true (active < timercnt))
1650 { 1918 {
1651 timers [active] = timers [timercnt]; 1919 timers [active] = timers [timercnt];
1652 adjustheap ((WT *)timers, timercnt, active); 1920 adjustheap (timers, timercnt, active);
1653 } 1921 }
1922
1923 --timercnt;
1654 } 1924 }
1655 1925
1656 ((WT)w)->at -= mn_now; 1926 ev_at (w) -= mn_now;
1657 1927
1658 ev_stop (EV_A_ (W)w); 1928 ev_stop (EV_A_ (W)w);
1659} 1929}
1660 1930
1661void noinline 1931void noinline
1663{ 1933{
1664 if (ev_is_active (w)) 1934 if (ev_is_active (w))
1665 { 1935 {
1666 if (w->repeat) 1936 if (w->repeat)
1667 { 1937 {
1668 ((WT)w)->at = mn_now + w->repeat; 1938 ev_at (w) = mn_now + w->repeat;
1669 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1939 adjustheap (timers, timercnt, ev_active (w));
1670 } 1940 }
1671 else 1941 else
1672 ev_timer_stop (EV_A_ w); 1942 ev_timer_stop (EV_A_ w);
1673 } 1943 }
1674 else if (w->repeat) 1944 else if (w->repeat)
1675 { 1945 {
1676 w->at = w->repeat; 1946 ev_at (w) = w->repeat;
1677 ev_timer_start (EV_A_ w); 1947 ev_timer_start (EV_A_ w);
1678 } 1948 }
1679} 1949}
1680 1950
1681#if EV_PERIODIC_ENABLE 1951#if EV_PERIODIC_ENABLE
1684{ 1954{
1685 if (expect_false (ev_is_active (w))) 1955 if (expect_false (ev_is_active (w)))
1686 return; 1956 return;
1687 1957
1688 if (w->reschedule_cb) 1958 if (w->reschedule_cb)
1689 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1959 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1690 else if (w->interval) 1960 else if (w->interval)
1691 { 1961 {
1692 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1962 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1693 /* this formula differs from the one in periodic_reify because we do not always round up */ 1963 /* this formula differs from the one in periodic_reify because we do not always round up */
1694 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1964 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695 } 1965 }
1966 else
1967 ev_at (w) = w->offset;
1696 1968
1697 ev_start (EV_A_ (W)w, ++periodiccnt); 1969 ev_start (EV_A_ (W)w, ++periodiccnt);
1698 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1970 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2);
1699 periodics [periodiccnt - 1] = w; 1971 periodics [periodiccnt] = (WT)w;
1700 upheap ((WT *)periodics, periodiccnt - 1); 1972 upheap (periodics, periodiccnt);
1701 1973
1702 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1974 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/
1703} 1975}
1704 1976
1705void noinline 1977void noinline
1706ev_periodic_stop (EV_P_ ev_periodic *w) 1978ev_periodic_stop (EV_P_ ev_periodic *w)
1707{ 1979{
1708 clear_pending (EV_A_ (W)w); 1980 clear_pending (EV_A_ (W)w);
1709 if (expect_false (!ev_is_active (w))) 1981 if (expect_false (!ev_is_active (w)))
1710 return; 1982 return;
1711 1983
1712 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1713
1714 { 1984 {
1715 int active = ((W)w)->active; 1985 int active = ev_active (w);
1716 1986
1987 assert (("internal periodic heap corruption", periodics [active] == (WT)w));
1988
1717 if (expect_true (--active < --periodiccnt)) 1989 if (expect_true (active < periodiccnt))
1718 { 1990 {
1719 periodics [active] = periodics [periodiccnt]; 1991 periodics [active] = periodics [periodiccnt];
1720 adjustheap ((WT *)periodics, periodiccnt, active); 1992 adjustheap (periodics, periodiccnt, active);
1721 } 1993 }
1994
1995 --periodiccnt;
1722 } 1996 }
1723 1997
1724 ev_stop (EV_A_ (W)w); 1998 ev_stop (EV_A_ (W)w);
1725} 1999}
1726 2000
1746 if (expect_false (ev_is_active (w))) 2020 if (expect_false (ev_is_active (w)))
1747 return; 2021 return;
1748 2022
1749 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2023 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1750 2024
2025 evpipe_init (EV_A);
2026
2027 {
2028#ifndef _WIN32
2029 sigset_t full, prev;
2030 sigfillset (&full);
2031 sigprocmask (SIG_SETMASK, &full, &prev);
2032#endif
2033
2034 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2035
2036#ifndef _WIN32
2037 sigprocmask (SIG_SETMASK, &prev, 0);
2038#endif
2039 }
2040
1751 ev_start (EV_A_ (W)w, 1); 2041 ev_start (EV_A_ (W)w, 1);
1752 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1753 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2042 wlist_add (&signals [w->signum - 1].head, (WL)w);
1754 2043
1755 if (!((WL)w)->next) 2044 if (!((WL)w)->next)
1756 { 2045 {
1757#if _WIN32 2046#if _WIN32
1758 signal (w->signum, sighandler); 2047 signal (w->signum, ev_sighandler);
1759#else 2048#else
1760 struct sigaction sa; 2049 struct sigaction sa;
1761 sa.sa_handler = sighandler; 2050 sa.sa_handler = ev_sighandler;
1762 sigfillset (&sa.sa_mask); 2051 sigfillset (&sa.sa_mask);
1763 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2052 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1764 sigaction (w->signum, &sa, 0); 2053 sigaction (w->signum, &sa, 0);
1765#endif 2054#endif
1766 } 2055 }
1771{ 2060{
1772 clear_pending (EV_A_ (W)w); 2061 clear_pending (EV_A_ (W)w);
1773 if (expect_false (!ev_is_active (w))) 2062 if (expect_false (!ev_is_active (w)))
1774 return; 2063 return;
1775 2064
1776 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2065 wlist_del (&signals [w->signum - 1].head, (WL)w);
1777 ev_stop (EV_A_ (W)w); 2066 ev_stop (EV_A_ (W)w);
1778 2067
1779 if (!signals [w->signum - 1].head) 2068 if (!signals [w->signum - 1].head)
1780 signal (w->signum, SIG_DFL); 2069 signal (w->signum, SIG_DFL);
1781} 2070}
1788#endif 2077#endif
1789 if (expect_false (ev_is_active (w))) 2078 if (expect_false (ev_is_active (w)))
1790 return; 2079 return;
1791 2080
1792 ev_start (EV_A_ (W)w, 1); 2081 ev_start (EV_A_ (W)w, 1);
1793 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2082 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1794} 2083}
1795 2084
1796void 2085void
1797ev_child_stop (EV_P_ ev_child *w) 2086ev_child_stop (EV_P_ ev_child *w)
1798{ 2087{
1799 clear_pending (EV_A_ (W)w); 2088 clear_pending (EV_A_ (W)w);
1800 if (expect_false (!ev_is_active (w))) 2089 if (expect_false (!ev_is_active (w)))
1801 return; 2090 return;
1802 2091
1803 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2092 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1804 ev_stop (EV_A_ (W)w); 2093 ev_stop (EV_A_ (W)w);
1805} 2094}
1806 2095
1807#if EV_STAT_ENABLE 2096#if EV_STAT_ENABLE
1808 2097
2081 clear_pending (EV_A_ (W)w); 2370 clear_pending (EV_A_ (W)w);
2082 if (expect_false (!ev_is_active (w))) 2371 if (expect_false (!ev_is_active (w)))
2083 return; 2372 return;
2084 2373
2085 { 2374 {
2086 int active = ((W)w)->active; 2375 int active = ev_active (w);
2087 2376
2088 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2377 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2089 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2378 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2090 2379
2091 ev_stop (EV_A_ (W)w); 2380 ev_stop (EV_A_ (W)w);
2092 --idleall; 2381 --idleall;
2093 } 2382 }
2094} 2383}
2111 clear_pending (EV_A_ (W)w); 2400 clear_pending (EV_A_ (W)w);
2112 if (expect_false (!ev_is_active (w))) 2401 if (expect_false (!ev_is_active (w)))
2113 return; 2402 return;
2114 2403
2115 { 2404 {
2116 int active = ((W)w)->active; 2405 int active = ev_active (w);
2406
2117 prepares [active - 1] = prepares [--preparecnt]; 2407 prepares [active - 1] = prepares [--preparecnt];
2118 ((W)prepares [active - 1])->active = active; 2408 ev_active (prepares [active - 1]) = active;
2119 } 2409 }
2120 2410
2121 ev_stop (EV_A_ (W)w); 2411 ev_stop (EV_A_ (W)w);
2122} 2412}
2123 2413
2138 clear_pending (EV_A_ (W)w); 2428 clear_pending (EV_A_ (W)w);
2139 if (expect_false (!ev_is_active (w))) 2429 if (expect_false (!ev_is_active (w)))
2140 return; 2430 return;
2141 2431
2142 { 2432 {
2143 int active = ((W)w)->active; 2433 int active = ev_active (w);
2434
2144 checks [active - 1] = checks [--checkcnt]; 2435 checks [active - 1] = checks [--checkcnt];
2145 ((W)checks [active - 1])->active = active; 2436 ev_active (checks [active - 1]) = active;
2146 } 2437 }
2147 2438
2148 ev_stop (EV_A_ (W)w); 2439 ev_stop (EV_A_ (W)w);
2149} 2440}
2150 2441
2151#if EV_EMBED_ENABLE 2442#if EV_EMBED_ENABLE
2152void noinline 2443void noinline
2153ev_embed_sweep (EV_P_ ev_embed *w) 2444ev_embed_sweep (EV_P_ ev_embed *w)
2154{ 2445{
2155 ev_loop (w->loop, EVLOOP_NONBLOCK); 2446 ev_loop (w->other, EVLOOP_NONBLOCK);
2156} 2447}
2157 2448
2158static void 2449static void
2159embed_cb (EV_P_ ev_io *io, int revents) 2450embed_io_cb (EV_P_ ev_io *io, int revents)
2160{ 2451{
2161 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2452 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2162 2453
2163 if (ev_cb (w)) 2454 if (ev_cb (w))
2164 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2455 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2165 else 2456 else
2166 ev_embed_sweep (loop, w); 2457 ev_loop (w->other, EVLOOP_NONBLOCK);
2167} 2458}
2459
2460static void
2461embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2462{
2463 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2464
2465 {
2466 struct ev_loop *loop = w->other;
2467
2468 while (fdchangecnt)
2469 {
2470 fd_reify (EV_A);
2471 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2472 }
2473 }
2474}
2475
2476#if 0
2477static void
2478embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2479{
2480 ev_idle_stop (EV_A_ idle);
2481}
2482#endif
2168 2483
2169void 2484void
2170ev_embed_start (EV_P_ ev_embed *w) 2485ev_embed_start (EV_P_ ev_embed *w)
2171{ 2486{
2172 if (expect_false (ev_is_active (w))) 2487 if (expect_false (ev_is_active (w)))
2173 return; 2488 return;
2174 2489
2175 { 2490 {
2176 struct ev_loop *loop = w->loop; 2491 struct ev_loop *loop = w->other;
2177 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2492 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2178 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2493 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2179 } 2494 }
2180 2495
2181 ev_set_priority (&w->io, ev_priority (w)); 2496 ev_set_priority (&w->io, ev_priority (w));
2182 ev_io_start (EV_A_ &w->io); 2497 ev_io_start (EV_A_ &w->io);
2183 2498
2499 ev_prepare_init (&w->prepare, embed_prepare_cb);
2500 ev_set_priority (&w->prepare, EV_MINPRI);
2501 ev_prepare_start (EV_A_ &w->prepare);
2502
2503 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2504
2184 ev_start (EV_A_ (W)w, 1); 2505 ev_start (EV_A_ (W)w, 1);
2185} 2506}
2186 2507
2187void 2508void
2188ev_embed_stop (EV_P_ ev_embed *w) 2509ev_embed_stop (EV_P_ ev_embed *w)
2190 clear_pending (EV_A_ (W)w); 2511 clear_pending (EV_A_ (W)w);
2191 if (expect_false (!ev_is_active (w))) 2512 if (expect_false (!ev_is_active (w)))
2192 return; 2513 return;
2193 2514
2194 ev_io_stop (EV_A_ &w->io); 2515 ev_io_stop (EV_A_ &w->io);
2516 ev_prepare_stop (EV_A_ &w->prepare);
2195 2517
2196 ev_stop (EV_A_ (W)w); 2518 ev_stop (EV_A_ (W)w);
2197} 2519}
2198#endif 2520#endif
2199 2521
2215 clear_pending (EV_A_ (W)w); 2537 clear_pending (EV_A_ (W)w);
2216 if (expect_false (!ev_is_active (w))) 2538 if (expect_false (!ev_is_active (w)))
2217 return; 2539 return;
2218 2540
2219 { 2541 {
2220 int active = ((W)w)->active; 2542 int active = ev_active (w);
2543
2221 forks [active - 1] = forks [--forkcnt]; 2544 forks [active - 1] = forks [--forkcnt];
2222 ((W)forks [active - 1])->active = active; 2545 ev_active (forks [active - 1]) = active;
2223 } 2546 }
2224 2547
2225 ev_stop (EV_A_ (W)w); 2548 ev_stop (EV_A_ (W)w);
2549}
2550#endif
2551
2552#if EV_ASYNC_ENABLE
2553void
2554ev_async_start (EV_P_ ev_async *w)
2555{
2556 if (expect_false (ev_is_active (w)))
2557 return;
2558
2559 evpipe_init (EV_A);
2560
2561 ev_start (EV_A_ (W)w, ++asynccnt);
2562 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2563 asyncs [asynccnt - 1] = w;
2564}
2565
2566void
2567ev_async_stop (EV_P_ ev_async *w)
2568{
2569 clear_pending (EV_A_ (W)w);
2570 if (expect_false (!ev_is_active (w)))
2571 return;
2572
2573 {
2574 int active = ev_active (w);
2575
2576 asyncs [active - 1] = asyncs [--asynccnt];
2577 ev_active (asyncs [active - 1]) = active;
2578 }
2579
2580 ev_stop (EV_A_ (W)w);
2581}
2582
2583void
2584ev_async_send (EV_P_ ev_async *w)
2585{
2586 w->sent = 1;
2587 evpipe_write (EV_A_ &gotasync);
2226} 2588}
2227#endif 2589#endif
2228 2590
2229/*****************************************************************************/ 2591/*****************************************************************************/
2230 2592
2288 ev_timer_set (&once->to, timeout, 0.); 2650 ev_timer_set (&once->to, timeout, 0.);
2289 ev_timer_start (EV_A_ &once->to); 2651 ev_timer_start (EV_A_ &once->to);
2290 } 2652 }
2291} 2653}
2292 2654
2655#if EV_MULTIPLICITY
2656 #include "ev_wrap.h"
2657#endif
2658
2293#ifdef __cplusplus 2659#ifdef __cplusplus
2294} 2660}
2295#endif 2661#endif
2296 2662

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines