ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.171 by root, Sun Dec 9 02:12:43 2007 UTC vs.
Revision 1.261 by root, Mon Sep 29 03:31:14 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
129#ifndef _WIN32 154#ifndef _WIN32
130# include <sys/time.h> 155# include <sys/time.h>
131# include <sys/wait.h> 156# include <sys/wait.h>
132# include <unistd.h> 157# include <unistd.h>
133#else 158#else
159# include <io.h>
134# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 161# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
138# endif 164# endif
139#endif 165#endif
140 166
141/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
142 168
143#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
144# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
145#endif 175#endif
146 176
147#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
149#endif 187#endif
150 188
151#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
153#endif 191#endif
159# define EV_USE_POLL 1 197# define EV_USE_POLL 1
160# endif 198# endif
161#endif 199#endif
162 200
163#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
164# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
165#endif 207#endif
166 208
167#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
169#endif 211#endif
171#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 214# define EV_USE_PORT 0
173#endif 215#endif
174 216
175#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
176# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
177#endif 223#endif
178 224
179#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 226# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
190# else 236# else
191# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
192# endif 238# endif
193#endif 239#endif
194 240
195/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 268
197#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
200#endif 272#endif
202#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
205#endif 277#endif
206 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/inotify.h>
292#endif
293
207#if EV_SELECT_IS_WINSOCKET 294#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 295# include <winsock.h>
209#endif 296#endif
210 297
211#if !EV_STAT_ENABLE 298#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 299/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
300# include <stdint.h>
301# ifdef __cplusplus
302extern "C" {
213#endif 303# endif
214 304int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 305# ifdef __cplusplus
216# include <sys/inotify.h> 306}
307# endif
217#endif 308#endif
218 309
219/**/ 310/**/
311
312#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
314#else
315# define EV_FREQUENT_CHECK do { } while (0)
316#endif
317
318/*
319 * This is used to avoid floating point rounding problems.
320 * It is added to ev_rt_now when scheduling periodics
321 * to ensure progress, time-wise, even when rounding
322 * errors are against us.
323 * This value is good at least till the year 4000.
324 * Better solutions welcome.
325 */
326#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 327
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 328#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 329#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 330/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 331
225#if __GNUC__ >= 3 332#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 333# define expect(expr,value) __builtin_expect ((expr),(value))
227# define noinline __attribute__ ((noinline)) 334# define noinline __attribute__ ((noinline))
228#else 335#else
229# define expect(expr,value) (expr) 336# define expect(expr,value) (expr)
230# define noinline 337# define noinline
231# if __STDC_VERSION__ < 199901L 338# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
232# define inline 339# define inline
233# endif 340# endif
234#endif 341#endif
235 342
236#define expect_false(expr) expect ((expr) != 0, 0) 343#define expect_false(expr) expect ((expr) != 0, 0)
251 358
252typedef ev_watcher *W; 359typedef ev_watcher *W;
253typedef ev_watcher_list *WL; 360typedef ev_watcher_list *WL;
254typedef ev_watcher_time *WT; 361typedef ev_watcher_time *WT;
255 362
363#define ev_active(w) ((W)(w))->active
364#define ev_at(w) ((WT)(w))->at
365
366#if EV_USE_MONOTONIC
367/* sig_atomic_t is used to avoid per-thread variables or locking but still */
368/* giving it a reasonably high chance of working on typical architetcures */
256static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 369static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
370#endif
257 371
258#ifdef _WIN32 372#ifdef _WIN32
259# include "ev_win32.c" 373# include "ev_win32.c"
260#endif 374#endif
261 375
282 perror (msg); 396 perror (msg);
283 abort (); 397 abort ();
284 } 398 }
285} 399}
286 400
401static void *
402ev_realloc_emul (void *ptr, long size)
403{
404 /* some systems, notably openbsd and darwin, fail to properly
405 * implement realloc (x, 0) (as required by both ansi c-98 and
406 * the single unix specification, so work around them here.
407 */
408
409 if (size)
410 return realloc (ptr, size);
411
412 free (ptr);
413 return 0;
414}
415
287static void *(*alloc)(void *ptr, long size); 416static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
288 417
289void 418void
290ev_set_allocator (void *(*cb)(void *ptr, long size)) 419ev_set_allocator (void *(*cb)(void *ptr, long size))
291{ 420{
292 alloc = cb; 421 alloc = cb;
293} 422}
294 423
295inline_speed void * 424inline_speed void *
296ev_realloc (void *ptr, long size) 425ev_realloc (void *ptr, long size)
297{ 426{
298 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 427 ptr = alloc (ptr, size);
299 428
300 if (!ptr && size) 429 if (!ptr && size)
301 { 430 {
302 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 431 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
303 abort (); 432 abort ();
326 W w; 455 W w;
327 int events; 456 int events;
328} ANPENDING; 457} ANPENDING;
329 458
330#if EV_USE_INOTIFY 459#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */
331typedef struct 461typedef struct
332{ 462{
333 WL head; 463 WL head;
334} ANFS; 464} ANFS;
465#endif
466
467/* Heap Entry */
468#if EV_HEAP_CACHE_AT
469 typedef struct {
470 ev_tstamp at;
471 WT w;
472 } ANHE;
473
474 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else
478 typedef WT ANHE;
479
480 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he)
335#endif 483#endif
336 484
337#if EV_MULTIPLICITY 485#if EV_MULTIPLICITY
338 486
339 struct ev_loop 487 struct ev_loop
397{ 545{
398 return ev_rt_now; 546 return ev_rt_now;
399} 547}
400#endif 548#endif
401 549
550void
551ev_sleep (ev_tstamp delay)
552{
553 if (delay > 0.)
554 {
555#if EV_USE_NANOSLEEP
556 struct timespec ts;
557
558 ts.tv_sec = (time_t)delay;
559 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
560
561 nanosleep (&ts, 0);
562#elif defined(_WIN32)
563 Sleep ((unsigned long)(delay * 1e3));
564#else
565 struct timeval tv;
566
567 tv.tv_sec = (time_t)delay;
568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
569
570 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
571 /* somehting nto guaranteed by newer posix versions, but guaranteed */
572 /* by older ones */
573 select (0, 0, 0, 0, &tv);
574#endif
575 }
576}
577
578/*****************************************************************************/
579
580#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
581
402int inline_size 582int inline_size
403array_nextsize (int elem, int cur, int cnt) 583array_nextsize (int elem, int cur, int cnt)
404{ 584{
405 int ncur = cur + 1; 585 int ncur = cur + 1;
406 586
407 do 587 do
408 ncur <<= 1; 588 ncur <<= 1;
409 while (cnt > ncur); 589 while (cnt > ncur);
410 590
411 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 591 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
412 if (elem * ncur > 4096) 592 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
413 { 593 {
414 ncur *= elem; 594 ncur *= elem;
415 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 595 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
416 ncur = ncur - sizeof (void *) * 4; 596 ncur = ncur - sizeof (void *) * 4;
417 ncur /= elem; 597 ncur /= elem;
418 } 598 }
419 599
420 return ncur; 600 return ncur;
466 pendings [pri][w_->pending - 1].w = w_; 646 pendings [pri][w_->pending - 1].w = w_;
467 pendings [pri][w_->pending - 1].events = revents; 647 pendings [pri][w_->pending - 1].events = revents;
468 } 648 }
469} 649}
470 650
471void inline_size 651void inline_speed
472queue_events (EV_P_ W *events, int eventcnt, int type) 652queue_events (EV_P_ W *events, int eventcnt, int type)
473{ 653{
474 int i; 654 int i;
475 655
476 for (i = 0; i < eventcnt; ++i) 656 for (i = 0; i < eventcnt; ++i)
523 { 703 {
524 int fd = fdchanges [i]; 704 int fd = fdchanges [i];
525 ANFD *anfd = anfds + fd; 705 ANFD *anfd = anfds + fd;
526 ev_io *w; 706 ev_io *w;
527 707
528 int events = 0; 708 unsigned char events = 0;
529 709
530 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 710 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
531 events |= w->events; 711 events |= (unsigned char)w->events;
532 712
533#if EV_SELECT_IS_WINSOCKET 713#if EV_SELECT_IS_WINSOCKET
534 if (events) 714 if (events)
535 { 715 {
536 unsigned long argp; 716 unsigned long arg;
717 #ifdef EV_FD_TO_WIN32_HANDLE
718 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
719 #else
537 anfd->handle = _get_osfhandle (fd); 720 anfd->handle = _get_osfhandle (fd);
721 #endif
538 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 722 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
539 } 723 }
540#endif 724#endif
541 725
726 {
727 unsigned char o_events = anfd->events;
728 unsigned char o_reify = anfd->reify;
729
542 anfd->reify = 0; 730 anfd->reify = 0;
543
544 backend_modify (EV_A_ fd, anfd->events, events);
545 anfd->events = events; 731 anfd->events = events;
732
733 if (o_events != events || o_reify & EV_IOFDSET)
734 backend_modify (EV_A_ fd, o_events, events);
735 }
546 } 736 }
547 737
548 fdchangecnt = 0; 738 fdchangecnt = 0;
549} 739}
550 740
551void inline_size 741void inline_size
552fd_change (EV_P_ int fd) 742fd_change (EV_P_ int fd, int flags)
553{ 743{
554 if (expect_false (anfds [fd].reify)) 744 unsigned char reify = anfds [fd].reify;
555 return;
556
557 anfds [fd].reify = 1; 745 anfds [fd].reify |= flags;
558 746
747 if (expect_true (!reify))
748 {
559 ++fdchangecnt; 749 ++fdchangecnt;
560 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 750 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
561 fdchanges [fdchangecnt - 1] = fd; 751 fdchanges [fdchangecnt - 1] = fd;
752 }
562} 753}
563 754
564void inline_speed 755void inline_speed
565fd_kill (EV_P_ int fd) 756fd_kill (EV_P_ int fd)
566{ 757{
589{ 780{
590 int fd; 781 int fd;
591 782
592 for (fd = 0; fd < anfdmax; ++fd) 783 for (fd = 0; fd < anfdmax; ++fd)
593 if (anfds [fd].events) 784 if (anfds [fd].events)
594 if (!fd_valid (fd) == -1 && errno == EBADF) 785 if (!fd_valid (fd) && errno == EBADF)
595 fd_kill (EV_A_ fd); 786 fd_kill (EV_A_ fd);
596} 787}
597 788
598/* called on ENOMEM in select/poll to kill some fds and retry */ 789/* called on ENOMEM in select/poll to kill some fds and retry */
599static void noinline 790static void noinline
617 808
618 for (fd = 0; fd < anfdmax; ++fd) 809 for (fd = 0; fd < anfdmax; ++fd)
619 if (anfds [fd].events) 810 if (anfds [fd].events)
620 { 811 {
621 anfds [fd].events = 0; 812 anfds [fd].events = 0;
622 fd_change (EV_A_ fd); 813 fd_change (EV_A_ fd, EV_IOFDSET | 1);
623 } 814 }
624} 815}
625 816
626/*****************************************************************************/ 817/*****************************************************************************/
627 818
819/*
820 * the heap functions want a real array index. array index 0 uis guaranteed to not
821 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
822 * the branching factor of the d-tree.
823 */
824
825/*
826 * at the moment we allow libev the luxury of two heaps,
827 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
828 * which is more cache-efficient.
829 * the difference is about 5% with 50000+ watchers.
830 */
831#if EV_USE_4HEAP
832
833#define DHEAP 4
834#define HEAP0 (DHEAP - 1) /* index of first element in heap */
835#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
836#define UPHEAP_DONE(p,k) ((p) == (k))
837
838/* away from the root */
628void inline_speed 839void inline_speed
629upheap (WT *heap, int k) 840downheap (ANHE *heap, int N, int k)
630{ 841{
631 WT w = heap [k]; 842 ANHE he = heap [k];
843 ANHE *E = heap + N + HEAP0;
632 844
633 while (k && heap [k >> 1]->at > w->at) 845 for (;;)
634 {
635 heap [k] = heap [k >> 1];
636 ((W)heap [k])->active = k + 1;
637 k >>= 1;
638 } 846 {
847 ev_tstamp minat;
848 ANHE *minpos;
849 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
639 850
851 /* find minimum child */
852 if (expect_true (pos + DHEAP - 1 < E))
853 {
854 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
855 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 }
859 else if (pos < E)
860 {
861 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
862 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
863 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
864 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
865 }
866 else
867 break;
868
869 if (ANHE_at (he) <= minat)
870 break;
871
872 heap [k] = *minpos;
873 ev_active (ANHE_w (*minpos)) = k;
874
875 k = minpos - heap;
876 }
877
640 heap [k] = w; 878 heap [k] = he;
641 ((W)heap [k])->active = k + 1; 879 ev_active (ANHE_w (he)) = k;
642
643} 880}
644 881
882#else /* 4HEAP */
883
884#define HEAP0 1
885#define HPARENT(k) ((k) >> 1)
886#define UPHEAP_DONE(p,k) (!(p))
887
888/* away from the root */
645void inline_speed 889void inline_speed
646downheap (WT *heap, int N, int k) 890downheap (ANHE *heap, int N, int k)
647{ 891{
648 WT w = heap [k]; 892 ANHE he = heap [k];
649 893
650 while (k < (N >> 1)) 894 for (;;)
651 { 895 {
652 int j = k << 1; 896 int c = k << 1;
653 897
654 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 898 if (c > N + HEAP0 - 1)
655 ++j;
656
657 if (w->at <= heap [j]->at)
658 break; 899 break;
659 900
901 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
902 ? 1 : 0;
903
904 if (ANHE_at (he) <= ANHE_at (heap [c]))
905 break;
906
660 heap [k] = heap [j]; 907 heap [k] = heap [c];
661 ((W)heap [k])->active = k + 1; 908 ev_active (ANHE_w (heap [k])) = k;
909
662 k = j; 910 k = c;
663 } 911 }
664 912
665 heap [k] = w; 913 heap [k] = he;
666 ((W)heap [k])->active = k + 1; 914 ev_active (ANHE_w (he)) = k;
915}
916#endif
917
918/* towards the root */
919void inline_speed
920upheap (ANHE *heap, int k)
921{
922 ANHE he = heap [k];
923
924 for (;;)
925 {
926 int p = HPARENT (k);
927
928 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
929 break;
930
931 heap [k] = heap [p];
932 ev_active (ANHE_w (heap [k])) = k;
933 k = p;
934 }
935
936 heap [k] = he;
937 ev_active (ANHE_w (he)) = k;
667} 938}
668 939
669void inline_size 940void inline_size
670adjustheap (WT *heap, int N, int k) 941adjustheap (ANHE *heap, int N, int k)
671{ 942{
943 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
672 upheap (heap, k); 944 upheap (heap, k);
945 else
673 downheap (heap, N, k); 946 downheap (heap, N, k);
947}
948
949/* rebuild the heap: this function is used only once and executed rarely */
950void inline_size
951reheap (ANHE *heap, int N)
952{
953 int i;
954
955 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
956 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
957 for (i = 0; i < N; ++i)
958 upheap (heap, i + HEAP0);
674} 959}
675 960
676/*****************************************************************************/ 961/*****************************************************************************/
677 962
678typedef struct 963typedef struct
679{ 964{
680 WL head; 965 WL head;
681 sig_atomic_t volatile gotsig; 966 EV_ATOMIC_T gotsig;
682} ANSIG; 967} ANSIG;
683 968
684static ANSIG *signals; 969static ANSIG *signals;
685static int signalmax; 970static int signalmax;
686 971
687static int sigpipe [2]; 972static EV_ATOMIC_T gotsig;
688static sig_atomic_t volatile gotsig;
689static ev_io sigev;
690 973
691void inline_size 974void inline_size
692signals_init (ANSIG *base, int count) 975signals_init (ANSIG *base, int count)
693{ 976{
694 while (count--) 977 while (count--)
698 981
699 ++base; 982 ++base;
700 } 983 }
701} 984}
702 985
703static void 986/*****************************************************************************/
704sighandler (int signum)
705{
706#if _WIN32
707 signal (signum, sighandler);
708#endif
709
710 signals [signum - 1].gotsig = 1;
711
712 if (!gotsig)
713 {
714 int old_errno = errno;
715 gotsig = 1;
716 write (sigpipe [1], &signum, 1);
717 errno = old_errno;
718 }
719}
720
721void noinline
722ev_feed_signal_event (EV_P_ int signum)
723{
724 WL w;
725
726#if EV_MULTIPLICITY
727 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
728#endif
729
730 --signum;
731
732 if (signum < 0 || signum >= signalmax)
733 return;
734
735 signals [signum].gotsig = 0;
736
737 for (w = signals [signum].head; w; w = w->next)
738 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
739}
740
741static void
742sigcb (EV_P_ ev_io *iow, int revents)
743{
744 int signum;
745
746 read (sigpipe [0], &revents, 1);
747 gotsig = 0;
748
749 for (signum = signalmax; signum--; )
750 if (signals [signum].gotsig)
751 ev_feed_signal_event (EV_A_ signum + 1);
752}
753 987
754void inline_speed 988void inline_speed
755fd_intern (int fd) 989fd_intern (int fd)
756{ 990{
757#ifdef _WIN32 991#ifdef _WIN32
758 int arg = 1; 992 unsigned long arg = 1;
759 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 993 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
760#else 994#else
761 fcntl (fd, F_SETFD, FD_CLOEXEC); 995 fcntl (fd, F_SETFD, FD_CLOEXEC);
762 fcntl (fd, F_SETFL, O_NONBLOCK); 996 fcntl (fd, F_SETFL, O_NONBLOCK);
763#endif 997#endif
764} 998}
765 999
766static void noinline 1000static void noinline
767siginit (EV_P) 1001evpipe_init (EV_P)
768{ 1002{
1003 if (!ev_is_active (&pipeev))
1004 {
1005#if EV_USE_EVENTFD
1006 if ((evfd = eventfd (0, 0)) >= 0)
1007 {
1008 evpipe [0] = -1;
1009 fd_intern (evfd);
1010 ev_io_set (&pipeev, evfd, EV_READ);
1011 }
1012 else
1013#endif
1014 {
1015 while (pipe (evpipe))
1016 syserr ("(libev) error creating signal/async pipe");
1017
769 fd_intern (sigpipe [0]); 1018 fd_intern (evpipe [0]);
770 fd_intern (sigpipe [1]); 1019 fd_intern (evpipe [1]);
1020 ev_io_set (&pipeev, evpipe [0], EV_READ);
1021 }
771 1022
772 ev_io_set (&sigev, sigpipe [0], EV_READ);
773 ev_io_start (EV_A_ &sigev); 1023 ev_io_start (EV_A_ &pipeev);
774 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1024 ev_unref (EV_A); /* watcher should not keep loop alive */
1025 }
1026}
1027
1028void inline_size
1029evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1030{
1031 if (!*flag)
1032 {
1033 int old_errno = errno; /* save errno because write might clobber it */
1034
1035 *flag = 1;
1036
1037#if EV_USE_EVENTFD
1038 if (evfd >= 0)
1039 {
1040 uint64_t counter = 1;
1041 write (evfd, &counter, sizeof (uint64_t));
1042 }
1043 else
1044#endif
1045 write (evpipe [1], &old_errno, 1);
1046
1047 errno = old_errno;
1048 }
1049}
1050
1051static void
1052pipecb (EV_P_ ev_io *iow, int revents)
1053{
1054#if EV_USE_EVENTFD
1055 if (evfd >= 0)
1056 {
1057 uint64_t counter;
1058 read (evfd, &counter, sizeof (uint64_t));
1059 }
1060 else
1061#endif
1062 {
1063 char dummy;
1064 read (evpipe [0], &dummy, 1);
1065 }
1066
1067 if (gotsig && ev_is_default_loop (EV_A))
1068 {
1069 int signum;
1070 gotsig = 0;
1071
1072 for (signum = signalmax; signum--; )
1073 if (signals [signum].gotsig)
1074 ev_feed_signal_event (EV_A_ signum + 1);
1075 }
1076
1077#if EV_ASYNC_ENABLE
1078 if (gotasync)
1079 {
1080 int i;
1081 gotasync = 0;
1082
1083 for (i = asynccnt; i--; )
1084 if (asyncs [i]->sent)
1085 {
1086 asyncs [i]->sent = 0;
1087 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1088 }
1089 }
1090#endif
775} 1091}
776 1092
777/*****************************************************************************/ 1093/*****************************************************************************/
778 1094
1095static void
1096ev_sighandler (int signum)
1097{
1098#if EV_MULTIPLICITY
1099 struct ev_loop *loop = &default_loop_struct;
1100#endif
1101
1102#if _WIN32
1103 signal (signum, ev_sighandler);
1104#endif
1105
1106 signals [signum - 1].gotsig = 1;
1107 evpipe_write (EV_A_ &gotsig);
1108}
1109
1110void noinline
1111ev_feed_signal_event (EV_P_ int signum)
1112{
1113 WL w;
1114
1115#if EV_MULTIPLICITY
1116 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1117#endif
1118
1119 --signum;
1120
1121 if (signum < 0 || signum >= signalmax)
1122 return;
1123
1124 signals [signum].gotsig = 0;
1125
1126 for (w = signals [signum].head; w; w = w->next)
1127 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1128}
1129
1130/*****************************************************************************/
1131
779static ev_child *childs [EV_PID_HASHSIZE]; 1132static WL childs [EV_PID_HASHSIZE];
780 1133
781#ifndef _WIN32 1134#ifndef _WIN32
782 1135
783static ev_signal childev; 1136static ev_signal childev;
784 1137
1138#ifndef WIFCONTINUED
1139# define WIFCONTINUED(status) 0
1140#endif
1141
785void inline_speed 1142void inline_speed
786child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1143child_reap (EV_P_ int chain, int pid, int status)
787{ 1144{
788 ev_child *w; 1145 ev_child *w;
1146 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
789 1147
790 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1148 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1149 {
791 if (w->pid == pid || !w->pid) 1150 if ((w->pid == pid || !w->pid)
1151 && (!traced || (w->flags & 1)))
792 { 1152 {
793 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1153 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
794 w->rpid = pid; 1154 w->rpid = pid;
795 w->rstatus = status; 1155 w->rstatus = status;
796 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1156 ev_feed_event (EV_A_ (W)w, EV_CHILD);
797 } 1157 }
1158 }
798} 1159}
799 1160
800#ifndef WCONTINUED 1161#ifndef WCONTINUED
801# define WCONTINUED 0 1162# define WCONTINUED 0
802#endif 1163#endif
811 if (!WCONTINUED 1172 if (!WCONTINUED
812 || errno != EINVAL 1173 || errno != EINVAL
813 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1174 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
814 return; 1175 return;
815 1176
816 /* make sure we are called again until all childs have been reaped */ 1177 /* make sure we are called again until all children have been reaped */
817 /* we need to do it this way so that the callback gets called before we continue */ 1178 /* we need to do it this way so that the callback gets called before we continue */
818 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1179 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
819 1180
820 child_reap (EV_A_ sw, pid, pid, status); 1181 child_reap (EV_A_ pid, pid, status);
821 if (EV_PID_HASHSIZE > 1) 1182 if (EV_PID_HASHSIZE > 1)
822 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1183 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
823} 1184}
824 1185
825#endif 1186#endif
826 1187
827/*****************************************************************************/ 1188/*****************************************************************************/
899} 1260}
900 1261
901unsigned int 1262unsigned int
902ev_embeddable_backends (void) 1263ev_embeddable_backends (void)
903{ 1264{
904 return EVBACKEND_EPOLL 1265 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
905 | EVBACKEND_KQUEUE 1266
906 | EVBACKEND_PORT; 1267 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1268 /* please fix it and tell me how to detect the fix */
1269 flags &= ~EVBACKEND_EPOLL;
1270
1271 return flags;
907} 1272}
908 1273
909unsigned int 1274unsigned int
910ev_backend (EV_P) 1275ev_backend (EV_P)
911{ 1276{
914 1279
915unsigned int 1280unsigned int
916ev_loop_count (EV_P) 1281ev_loop_count (EV_P)
917{ 1282{
918 return loop_count; 1283 return loop_count;
1284}
1285
1286void
1287ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1288{
1289 io_blocktime = interval;
1290}
1291
1292void
1293ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1294{
1295 timeout_blocktime = interval;
919} 1296}
920 1297
921static void noinline 1298static void noinline
922loop_init (EV_P_ unsigned int flags) 1299loop_init (EV_P_ unsigned int flags)
923{ 1300{
929 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1306 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
930 have_monotonic = 1; 1307 have_monotonic = 1;
931 } 1308 }
932#endif 1309#endif
933 1310
934 ev_rt_now = ev_time (); 1311 ev_rt_now = ev_time ();
935 mn_now = get_clock (); 1312 mn_now = get_clock ();
936 now_floor = mn_now; 1313 now_floor = mn_now;
937 rtmn_diff = ev_rt_now - mn_now; 1314 rtmn_diff = ev_rt_now - mn_now;
1315
1316 io_blocktime = 0.;
1317 timeout_blocktime = 0.;
1318 backend = 0;
1319 backend_fd = -1;
1320 gotasync = 0;
1321#if EV_USE_INOTIFY
1322 fs_fd = -2;
1323#endif
938 1324
939 /* pid check not overridable via env */ 1325 /* pid check not overridable via env */
940#ifndef _WIN32 1326#ifndef _WIN32
941 if (flags & EVFLAG_FORKCHECK) 1327 if (flags & EVFLAG_FORKCHECK)
942 curpid = getpid (); 1328 curpid = getpid ();
945 if (!(flags & EVFLAG_NOENV) 1331 if (!(flags & EVFLAG_NOENV)
946 && !enable_secure () 1332 && !enable_secure ()
947 && getenv ("LIBEV_FLAGS")) 1333 && getenv ("LIBEV_FLAGS"))
948 flags = atoi (getenv ("LIBEV_FLAGS")); 1334 flags = atoi (getenv ("LIBEV_FLAGS"));
949 1335
950 if (!(flags & 0x0000ffffUL)) 1336 if (!(flags & 0x0000ffffU))
951 flags |= ev_recommended_backends (); 1337 flags |= ev_recommended_backends ();
952
953 backend = 0;
954 backend_fd = -1;
955#if EV_USE_INOTIFY
956 fs_fd = -2;
957#endif
958 1338
959#if EV_USE_PORT 1339#if EV_USE_PORT
960 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
961#endif 1341#endif
962#if EV_USE_KQUEUE 1342#if EV_USE_KQUEUE
970#endif 1350#endif
971#if EV_USE_SELECT 1351#if EV_USE_SELECT
972 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1352 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
973#endif 1353#endif
974 1354
975 ev_init (&sigev, sigcb); 1355 ev_init (&pipeev, pipecb);
976 ev_set_priority (&sigev, EV_MAXPRI); 1356 ev_set_priority (&pipeev, EV_MAXPRI);
977 } 1357 }
978} 1358}
979 1359
980static void noinline 1360static void noinline
981loop_destroy (EV_P) 1361loop_destroy (EV_P)
982{ 1362{
983 int i; 1363 int i;
1364
1365 if (ev_is_active (&pipeev))
1366 {
1367 ev_ref (EV_A); /* signal watcher */
1368 ev_io_stop (EV_A_ &pipeev);
1369
1370#if EV_USE_EVENTFD
1371 if (evfd >= 0)
1372 close (evfd);
1373#endif
1374
1375 if (evpipe [0] >= 0)
1376 {
1377 close (evpipe [0]);
1378 close (evpipe [1]);
1379 }
1380 }
984 1381
985#if EV_USE_INOTIFY 1382#if EV_USE_INOTIFY
986 if (fs_fd >= 0) 1383 if (fs_fd >= 0)
987 close (fs_fd); 1384 close (fs_fd);
988#endif 1385#endif
1011 array_free (pending, [i]); 1408 array_free (pending, [i]);
1012#if EV_IDLE_ENABLE 1409#if EV_IDLE_ENABLE
1013 array_free (idle, [i]); 1410 array_free (idle, [i]);
1014#endif 1411#endif
1015 } 1412 }
1413
1414 ev_free (anfds); anfdmax = 0;
1016 1415
1017 /* have to use the microsoft-never-gets-it-right macro */ 1416 /* have to use the microsoft-never-gets-it-right macro */
1018 array_free (fdchange, EMPTY); 1417 array_free (fdchange, EMPTY);
1019 array_free (timer, EMPTY); 1418 array_free (timer, EMPTY);
1020#if EV_PERIODIC_ENABLE 1419#if EV_PERIODIC_ENABLE
1021 array_free (periodic, EMPTY); 1420 array_free (periodic, EMPTY);
1022#endif 1421#endif
1422#if EV_FORK_ENABLE
1423 array_free (fork, EMPTY);
1424#endif
1023 array_free (prepare, EMPTY); 1425 array_free (prepare, EMPTY);
1024 array_free (check, EMPTY); 1426 array_free (check, EMPTY);
1427#if EV_ASYNC_ENABLE
1428 array_free (async, EMPTY);
1429#endif
1025 1430
1026 backend = 0; 1431 backend = 0;
1027} 1432}
1028 1433
1434#if EV_USE_INOTIFY
1029void inline_size infy_fork (EV_P); 1435void inline_size infy_fork (EV_P);
1436#endif
1030 1437
1031void inline_size 1438void inline_size
1032loop_fork (EV_P) 1439loop_fork (EV_P)
1033{ 1440{
1034#if EV_USE_PORT 1441#if EV_USE_PORT
1042#endif 1449#endif
1043#if EV_USE_INOTIFY 1450#if EV_USE_INOTIFY
1044 infy_fork (EV_A); 1451 infy_fork (EV_A);
1045#endif 1452#endif
1046 1453
1047 if (ev_is_active (&sigev)) 1454 if (ev_is_active (&pipeev))
1048 { 1455 {
1049 /* default loop */ 1456 /* this "locks" the handlers against writing to the pipe */
1457 /* while we modify the fd vars */
1458 gotsig = 1;
1459#if EV_ASYNC_ENABLE
1460 gotasync = 1;
1461#endif
1050 1462
1051 ev_ref (EV_A); 1463 ev_ref (EV_A);
1052 ev_io_stop (EV_A_ &sigev); 1464 ev_io_stop (EV_A_ &pipeev);
1465
1466#if EV_USE_EVENTFD
1467 if (evfd >= 0)
1468 close (evfd);
1469#endif
1470
1471 if (evpipe [0] >= 0)
1472 {
1053 close (sigpipe [0]); 1473 close (evpipe [0]);
1054 close (sigpipe [1]); 1474 close (evpipe [1]);
1475 }
1055 1476
1056 while (pipe (sigpipe))
1057 syserr ("(libev) error creating pipe");
1058
1059 siginit (EV_A); 1477 evpipe_init (EV_A);
1478 /* now iterate over everything, in case we missed something */
1479 pipecb (EV_A_ &pipeev, EV_READ);
1060 } 1480 }
1061 1481
1062 postfork = 0; 1482 postfork = 0;
1063} 1483}
1064 1484
1065#if EV_MULTIPLICITY 1485#if EV_MULTIPLICITY
1486
1066struct ev_loop * 1487struct ev_loop *
1067ev_loop_new (unsigned int flags) 1488ev_loop_new (unsigned int flags)
1068{ 1489{
1069 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1490 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1070 1491
1086} 1507}
1087 1508
1088void 1509void
1089ev_loop_fork (EV_P) 1510ev_loop_fork (EV_P)
1090{ 1511{
1091 postfork = 1; 1512 postfork = 1; /* must be in line with ev_default_fork */
1092} 1513}
1093 1514
1515#if EV_VERIFY
1516static void noinline
1517verify_watcher (EV_P_ W w)
1518{
1519 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1520
1521 if (w->pending)
1522 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1523}
1524
1525static void noinline
1526verify_heap (EV_P_ ANHE *heap, int N)
1527{
1528 int i;
1529
1530 for (i = HEAP0; i < N + HEAP0; ++i)
1531 {
1532 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1533 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1534 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1535
1536 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1537 }
1538}
1539
1540static void noinline
1541array_verify (EV_P_ W *ws, int cnt)
1542{
1543 while (cnt--)
1544 {
1545 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1546 verify_watcher (EV_A_ ws [cnt]);
1547 }
1548}
1549#endif
1550
1551void
1552ev_loop_verify (EV_P)
1553{
1554#if EV_VERIFY
1555 int i;
1556 WL w;
1557
1558 assert (activecnt >= -1);
1559
1560 assert (fdchangemax >= fdchangecnt);
1561 for (i = 0; i < fdchangecnt; ++i)
1562 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1563
1564 assert (anfdmax >= 0);
1565 for (i = 0; i < anfdmax; ++i)
1566 for (w = anfds [i].head; w; w = w->next)
1567 {
1568 verify_watcher (EV_A_ (W)w);
1569 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1570 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1571 }
1572
1573 assert (timermax >= timercnt);
1574 verify_heap (EV_A_ timers, timercnt);
1575
1576#if EV_PERIODIC_ENABLE
1577 assert (periodicmax >= periodiccnt);
1578 verify_heap (EV_A_ periodics, periodiccnt);
1579#endif
1580
1581 for (i = NUMPRI; i--; )
1582 {
1583 assert (pendingmax [i] >= pendingcnt [i]);
1584#if EV_IDLE_ENABLE
1585 assert (idleall >= 0);
1586 assert (idlemax [i] >= idlecnt [i]);
1587 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1588#endif
1589 }
1590
1591#if EV_FORK_ENABLE
1592 assert (forkmax >= forkcnt);
1593 array_verify (EV_A_ (W *)forks, forkcnt);
1594#endif
1595
1596#if EV_ASYNC_ENABLE
1597 assert (asyncmax >= asynccnt);
1598 array_verify (EV_A_ (W *)asyncs, asynccnt);
1599#endif
1600
1601 assert (preparemax >= preparecnt);
1602 array_verify (EV_A_ (W *)prepares, preparecnt);
1603
1604 assert (checkmax >= checkcnt);
1605 array_verify (EV_A_ (W *)checks, checkcnt);
1606
1607# if 0
1608 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1609 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1094#endif 1610# endif
1611#endif
1612}
1613
1614#endif /* multiplicity */
1095 1615
1096#if EV_MULTIPLICITY 1616#if EV_MULTIPLICITY
1097struct ev_loop * 1617struct ev_loop *
1098ev_default_loop_init (unsigned int flags) 1618ev_default_loop_init (unsigned int flags)
1099#else 1619#else
1100int 1620int
1101ev_default_loop (unsigned int flags) 1621ev_default_loop (unsigned int flags)
1102#endif 1622#endif
1103{ 1623{
1104 if (sigpipe [0] == sigpipe [1])
1105 if (pipe (sigpipe))
1106 return 0;
1107
1108 if (!ev_default_loop_ptr) 1624 if (!ev_default_loop_ptr)
1109 { 1625 {
1110#if EV_MULTIPLICITY 1626#if EV_MULTIPLICITY
1111 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1627 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1112#else 1628#else
1115 1631
1116 loop_init (EV_A_ flags); 1632 loop_init (EV_A_ flags);
1117 1633
1118 if (ev_backend (EV_A)) 1634 if (ev_backend (EV_A))
1119 { 1635 {
1120 siginit (EV_A);
1121
1122#ifndef _WIN32 1636#ifndef _WIN32
1123 ev_signal_init (&childev, childcb, SIGCHLD); 1637 ev_signal_init (&childev, childcb, SIGCHLD);
1124 ev_set_priority (&childev, EV_MAXPRI); 1638 ev_set_priority (&childev, EV_MAXPRI);
1125 ev_signal_start (EV_A_ &childev); 1639 ev_signal_start (EV_A_ &childev);
1126 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1640 ev_unref (EV_A); /* child watcher should not keep loop alive */
1143#ifndef _WIN32 1657#ifndef _WIN32
1144 ev_ref (EV_A); /* child watcher */ 1658 ev_ref (EV_A); /* child watcher */
1145 ev_signal_stop (EV_A_ &childev); 1659 ev_signal_stop (EV_A_ &childev);
1146#endif 1660#endif
1147 1661
1148 ev_ref (EV_A); /* signal watcher */
1149 ev_io_stop (EV_A_ &sigev);
1150
1151 close (sigpipe [0]); sigpipe [0] = 0;
1152 close (sigpipe [1]); sigpipe [1] = 0;
1153
1154 loop_destroy (EV_A); 1662 loop_destroy (EV_A);
1155} 1663}
1156 1664
1157void 1665void
1158ev_default_fork (void) 1666ev_default_fork (void)
1160#if EV_MULTIPLICITY 1668#if EV_MULTIPLICITY
1161 struct ev_loop *loop = ev_default_loop_ptr; 1669 struct ev_loop *loop = ev_default_loop_ptr;
1162#endif 1670#endif
1163 1671
1164 if (backend) 1672 if (backend)
1165 postfork = 1; 1673 postfork = 1; /* must be in line with ev_loop_fork */
1166} 1674}
1167 1675
1168/*****************************************************************************/ 1676/*****************************************************************************/
1169 1677
1170void 1678void
1187 { 1695 {
1188 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1696 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1189 1697
1190 p->w->pending = 0; 1698 p->w->pending = 0;
1191 EV_CB_INVOKE (p->w, p->events); 1699 EV_CB_INVOKE (p->w, p->events);
1700 EV_FREQUENT_CHECK;
1192 } 1701 }
1193 } 1702 }
1194} 1703}
1195
1196void inline_size
1197timers_reify (EV_P)
1198{
1199 while (timercnt && ((WT)timers [0])->at <= mn_now)
1200 {
1201 ev_timer *w = timers [0];
1202
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204
1205 /* first reschedule or stop timer */
1206 if (w->repeat)
1207 {
1208 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1209
1210 ((WT)w)->at += w->repeat;
1211 if (((WT)w)->at < mn_now)
1212 ((WT)w)->at = mn_now;
1213
1214 downheap ((WT *)timers, timercnt, 0);
1215 }
1216 else
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1220 }
1221}
1222
1223#if EV_PERIODIC_ENABLE
1224void inline_size
1225periodics_reify (EV_P)
1226{
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1228 {
1229 ev_periodic *w = periodics [0];
1230
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1232
1233 /* first reschedule or stop timer */
1234 if (w->reschedule_cb)
1235 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1238 downheap ((WT *)periodics, periodiccnt, 0);
1239 }
1240 else if (w->interval)
1241 {
1242 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1244 downheap ((WT *)periodics, periodiccnt, 0);
1245 }
1246 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1250 }
1251}
1252
1253static void noinline
1254periodics_reschedule (EV_P)
1255{
1256 int i;
1257
1258 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i)
1260 {
1261 ev_periodic *w = periodics [i];
1262
1263 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval)
1266 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1267 }
1268
1269 /* now rebuild the heap */
1270 for (i = periodiccnt >> 1; i--; )
1271 downheap ((WT *)periodics, periodiccnt, i);
1272}
1273#endif
1274 1704
1275#if EV_IDLE_ENABLE 1705#if EV_IDLE_ENABLE
1276void inline_size 1706void inline_size
1277idle_reify (EV_P) 1707idle_reify (EV_P)
1278{ 1708{
1293 } 1723 }
1294 } 1724 }
1295} 1725}
1296#endif 1726#endif
1297 1727
1298int inline_size 1728void inline_size
1299time_update_monotonic (EV_P) 1729timers_reify (EV_P)
1300{ 1730{
1731 EV_FREQUENT_CHECK;
1732
1733 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1734 {
1735 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1736
1737 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1738
1739 /* first reschedule or stop timer */
1740 if (w->repeat)
1741 {
1742 ev_at (w) += w->repeat;
1743 if (ev_at (w) < mn_now)
1744 ev_at (w) = mn_now;
1745
1746 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1747
1748 ANHE_at_cache (timers [HEAP0]);
1749 downheap (timers, timercnt, HEAP0);
1750 }
1751 else
1752 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1753
1754 EV_FREQUENT_CHECK;
1755 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1756 }
1757}
1758
1759#if EV_PERIODIC_ENABLE
1760void inline_size
1761periodics_reify (EV_P)
1762{
1763 EV_FREQUENT_CHECK;
1764
1765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1766 {
1767 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1768
1769 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1770
1771 /* first reschedule or stop timer */
1772 if (w->reschedule_cb)
1773 {
1774 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1775
1776 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1777
1778 ANHE_at_cache (periodics [HEAP0]);
1779 downheap (periodics, periodiccnt, HEAP0);
1780 }
1781 else if (w->interval)
1782 {
1783 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1784 /* if next trigger time is not sufficiently in the future, put it there */
1785 /* this might happen because of floating point inexactness */
1786 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1787 {
1788 ev_at (w) += w->interval;
1789
1790 /* if interval is unreasonably low we might still have a time in the past */
1791 /* so correct this. this will make the periodic very inexact, but the user */
1792 /* has effectively asked to get triggered more often than possible */
1793 if (ev_at (w) < ev_rt_now)
1794 ev_at (w) = ev_rt_now;
1795 }
1796
1797 ANHE_at_cache (periodics [HEAP0]);
1798 downheap (periodics, periodiccnt, HEAP0);
1799 }
1800 else
1801 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1802
1803 EV_FREQUENT_CHECK;
1804 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1805 }
1806}
1807
1808static void noinline
1809periodics_reschedule (EV_P)
1810{
1811 int i;
1812
1813 /* adjust periodics after time jump */
1814 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1815 {
1816 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1817
1818 if (w->reschedule_cb)
1819 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1820 else if (w->interval)
1821 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1822
1823 ANHE_at_cache (periodics [i]);
1824 }
1825
1826 reheap (periodics, periodiccnt);
1827}
1828#endif
1829
1830void inline_speed
1831time_update (EV_P_ ev_tstamp max_block)
1832{
1833 int i;
1834
1835#if EV_USE_MONOTONIC
1836 if (expect_true (have_monotonic))
1837 {
1838 ev_tstamp odiff = rtmn_diff;
1839
1301 mn_now = get_clock (); 1840 mn_now = get_clock ();
1302 1841
1842 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1843 /* interpolate in the meantime */
1303 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1844 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1304 { 1845 {
1305 ev_rt_now = rtmn_diff + mn_now; 1846 ev_rt_now = rtmn_diff + mn_now;
1306 return 0; 1847 return;
1307 } 1848 }
1308 else 1849
1309 {
1310 now_floor = mn_now; 1850 now_floor = mn_now;
1311 ev_rt_now = ev_time (); 1851 ev_rt_now = ev_time ();
1312 return 1;
1313 }
1314}
1315 1852
1316void inline_size 1853 /* loop a few times, before making important decisions.
1317time_update (EV_P) 1854 * on the choice of "4": one iteration isn't enough,
1318{ 1855 * in case we get preempted during the calls to
1319 int i; 1856 * ev_time and get_clock. a second call is almost guaranteed
1320 1857 * to succeed in that case, though. and looping a few more times
1321#if EV_USE_MONOTONIC 1858 * doesn't hurt either as we only do this on time-jumps or
1322 if (expect_true (have_monotonic)) 1859 * in the unlikely event of having been preempted here.
1323 { 1860 */
1324 if (time_update_monotonic (EV_A)) 1861 for (i = 4; --i; )
1325 { 1862 {
1326 ev_tstamp odiff = rtmn_diff;
1327
1328 /* loop a few times, before making important decisions.
1329 * on the choice of "4": one iteration isn't enough,
1330 * in case we get preempted during the calls to
1331 * ev_time and get_clock. a second call is almost guaranteed
1332 * to succeed in that case, though. and looping a few more times
1333 * doesn't hurt either as we only do this on time-jumps or
1334 * in the unlikely event of having been preempted here.
1335 */
1336 for (i = 4; --i; )
1337 {
1338 rtmn_diff = ev_rt_now - mn_now; 1863 rtmn_diff = ev_rt_now - mn_now;
1339 1864
1340 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1865 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1341 return; /* all is well */ 1866 return; /* all is well */
1342 1867
1343 ev_rt_now = ev_time (); 1868 ev_rt_now = ev_time ();
1344 mn_now = get_clock (); 1869 mn_now = get_clock ();
1345 now_floor = mn_now; 1870 now_floor = mn_now;
1346 } 1871 }
1347 1872
1348# if EV_PERIODIC_ENABLE 1873# if EV_PERIODIC_ENABLE
1349 periodics_reschedule (EV_A); 1874 periodics_reschedule (EV_A);
1350# endif 1875# endif
1351 /* no timer adjustment, as the monotonic clock doesn't jump */ 1876 /* no timer adjustment, as the monotonic clock doesn't jump */
1352 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1877 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1353 }
1354 } 1878 }
1355 else 1879 else
1356#endif 1880#endif
1357 { 1881 {
1358 ev_rt_now = ev_time (); 1882 ev_rt_now = ev_time ();
1359 1883
1360 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1884 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1361 { 1885 {
1362#if EV_PERIODIC_ENABLE 1886#if EV_PERIODIC_ENABLE
1363 periodics_reschedule (EV_A); 1887 periodics_reschedule (EV_A);
1364#endif 1888#endif
1365
1366 /* adjust timers. this is easy, as the offset is the same for all of them */ 1889 /* adjust timers. this is easy, as the offset is the same for all of them */
1367 for (i = 0; i < timercnt; ++i) 1890 for (i = 0; i < timercnt; ++i)
1891 {
1892 ANHE *he = timers + i + HEAP0;
1368 ((WT)timers [i])->at += ev_rt_now - mn_now; 1893 ANHE_w (*he)->at += ev_rt_now - mn_now;
1894 ANHE_at_cache (*he);
1895 }
1369 } 1896 }
1370 1897
1371 mn_now = ev_rt_now; 1898 mn_now = ev_rt_now;
1372 } 1899 }
1373} 1900}
1382ev_unref (EV_P) 1909ev_unref (EV_P)
1383{ 1910{
1384 --activecnt; 1911 --activecnt;
1385} 1912}
1386 1913
1914void
1915ev_now_update (EV_P)
1916{
1917 time_update (EV_A_ 1e100);
1918}
1919
1387static int loop_done; 1920static int loop_done;
1388 1921
1389void 1922void
1390ev_loop (EV_P_ int flags) 1923ev_loop (EV_P_ int flags)
1391{ 1924{
1392 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1925 loop_done = EVUNLOOP_CANCEL;
1393 ? EVUNLOOP_ONE
1394 : EVUNLOOP_CANCEL;
1395 1926
1396 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1927 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1397 1928
1398 do 1929 do
1399 { 1930 {
1931#if EV_VERIFY >= 2
1932 ev_loop_verify (EV_A);
1933#endif
1934
1400#ifndef _WIN32 1935#ifndef _WIN32
1401 if (expect_false (curpid)) /* penalise the forking check even more */ 1936 if (expect_false (curpid)) /* penalise the forking check even more */
1402 if (expect_false (getpid () != curpid)) 1937 if (expect_false (getpid () != curpid))
1403 { 1938 {
1404 curpid = getpid (); 1939 curpid = getpid ();
1433 /* update fd-related kernel structures */ 1968 /* update fd-related kernel structures */
1434 fd_reify (EV_A); 1969 fd_reify (EV_A);
1435 1970
1436 /* calculate blocking time */ 1971 /* calculate blocking time */
1437 { 1972 {
1438 ev_tstamp block; 1973 ev_tstamp waittime = 0.;
1974 ev_tstamp sleeptime = 0.;
1439 1975
1440 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1976 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1441 block = 0.; /* do not block at all */
1442 else
1443 { 1977 {
1444 /* update time to cancel out callback processing overhead */ 1978 /* update time to cancel out callback processing overhead */
1445#if EV_USE_MONOTONIC
1446 if (expect_true (have_monotonic))
1447 time_update_monotonic (EV_A); 1979 time_update (EV_A_ 1e100);
1448 else
1449#endif
1450 {
1451 ev_rt_now = ev_time ();
1452 mn_now = ev_rt_now;
1453 }
1454 1980
1455 block = MAX_BLOCKTIME; 1981 waittime = MAX_BLOCKTIME;
1456 1982
1457 if (timercnt) 1983 if (timercnt)
1458 { 1984 {
1459 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1985 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1460 if (block > to) block = to; 1986 if (waittime > to) waittime = to;
1461 } 1987 }
1462 1988
1463#if EV_PERIODIC_ENABLE 1989#if EV_PERIODIC_ENABLE
1464 if (periodiccnt) 1990 if (periodiccnt)
1465 { 1991 {
1466 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1992 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1467 if (block > to) block = to; 1993 if (waittime > to) waittime = to;
1468 } 1994 }
1469#endif 1995#endif
1470 1996
1471 if (expect_false (block < 0.)) block = 0.; 1997 if (expect_false (waittime < timeout_blocktime))
1998 waittime = timeout_blocktime;
1999
2000 sleeptime = waittime - backend_fudge;
2001
2002 if (expect_true (sleeptime > io_blocktime))
2003 sleeptime = io_blocktime;
2004
2005 if (sleeptime)
2006 {
2007 ev_sleep (sleeptime);
2008 waittime -= sleeptime;
2009 }
1472 } 2010 }
1473 2011
1474 ++loop_count; 2012 ++loop_count;
1475 backend_poll (EV_A_ block); 2013 backend_poll (EV_A_ waittime);
2014
2015 /* update ev_rt_now, do magic */
2016 time_update (EV_A_ waittime + sleeptime);
1476 } 2017 }
1477
1478 /* update ev_rt_now, do magic */
1479 time_update (EV_A);
1480 2018
1481 /* queue pending timers and reschedule them */ 2019 /* queue pending timers and reschedule them */
1482 timers_reify (EV_A); /* relative timers called last */ 2020 timers_reify (EV_A); /* relative timers called last */
1483#if EV_PERIODIC_ENABLE 2021#if EV_PERIODIC_ENABLE
1484 periodics_reify (EV_A); /* absolute timers called first */ 2022 periodics_reify (EV_A); /* absolute timers called first */
1492 /* queue check watchers, to be executed first */ 2030 /* queue check watchers, to be executed first */
1493 if (expect_false (checkcnt)) 2031 if (expect_false (checkcnt))
1494 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2032 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1495 2033
1496 call_pending (EV_A); 2034 call_pending (EV_A);
1497
1498 } 2035 }
1499 while (expect_true (activecnt && !loop_done)); 2036 while (expect_true (
2037 activecnt
2038 && !loop_done
2039 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2040 ));
1500 2041
1501 if (loop_done == EVUNLOOP_ONE) 2042 if (loop_done == EVUNLOOP_ONE)
1502 loop_done = EVUNLOOP_CANCEL; 2043 loop_done = EVUNLOOP_CANCEL;
1503} 2044}
1504 2045
1546ev_clear_pending (EV_P_ void *w) 2087ev_clear_pending (EV_P_ void *w)
1547{ 2088{
1548 W w_ = (W)w; 2089 W w_ = (W)w;
1549 int pending = w_->pending; 2090 int pending = w_->pending;
1550 2091
1551 if (!pending) 2092 if (expect_true (pending))
2093 {
2094 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2095 w_->pending = 0;
2096 p->w = 0;
2097 return p->events;
2098 }
2099 else
1552 return 0; 2100 return 0;
1553
1554 w_->pending = 0;
1555 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1556 p->w = 0;
1557
1558 return p->events;
1559} 2101}
1560 2102
1561void inline_size 2103void inline_size
1562pri_adjust (EV_P_ W w) 2104pri_adjust (EV_P_ W w)
1563{ 2105{
1592 if (expect_false (ev_is_active (w))) 2134 if (expect_false (ev_is_active (w)))
1593 return; 2135 return;
1594 2136
1595 assert (("ev_io_start called with negative fd", fd >= 0)); 2137 assert (("ev_io_start called with negative fd", fd >= 0));
1596 2138
2139 EV_FREQUENT_CHECK;
2140
1597 ev_start (EV_A_ (W)w, 1); 2141 ev_start (EV_A_ (W)w, 1);
1598 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2142 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1599 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2143 wlist_add (&anfds[fd].head, (WL)w);
1600 2144
1601 fd_change (EV_A_ fd); 2145 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2146 w->events &= ~EV_IOFDSET;
2147
2148 EV_FREQUENT_CHECK;
1602} 2149}
1603 2150
1604void noinline 2151void noinline
1605ev_io_stop (EV_P_ ev_io *w) 2152ev_io_stop (EV_P_ ev_io *w)
1606{ 2153{
1607 clear_pending (EV_A_ (W)w); 2154 clear_pending (EV_A_ (W)w);
1608 if (expect_false (!ev_is_active (w))) 2155 if (expect_false (!ev_is_active (w)))
1609 return; 2156 return;
1610 2157
1611 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2158 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1612 2159
2160 EV_FREQUENT_CHECK;
2161
1613 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2162 wlist_del (&anfds[w->fd].head, (WL)w);
1614 ev_stop (EV_A_ (W)w); 2163 ev_stop (EV_A_ (W)w);
1615 2164
1616 fd_change (EV_A_ w->fd); 2165 fd_change (EV_A_ w->fd, 1);
2166
2167 EV_FREQUENT_CHECK;
1617} 2168}
1618 2169
1619void noinline 2170void noinline
1620ev_timer_start (EV_P_ ev_timer *w) 2171ev_timer_start (EV_P_ ev_timer *w)
1621{ 2172{
1622 if (expect_false (ev_is_active (w))) 2173 if (expect_false (ev_is_active (w)))
1623 return; 2174 return;
1624 2175
1625 ((WT)w)->at += mn_now; 2176 ev_at (w) += mn_now;
1626 2177
1627 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2178 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1628 2179
2180 EV_FREQUENT_CHECK;
2181
2182 ++timercnt;
1629 ev_start (EV_A_ (W)w, ++timercnt); 2183 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1630 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2184 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1631 timers [timercnt - 1] = w; 2185 ANHE_w (timers [ev_active (w)]) = (WT)w;
1632 upheap ((WT *)timers, timercnt - 1); 2186 ANHE_at_cache (timers [ev_active (w)]);
2187 upheap (timers, ev_active (w));
1633 2188
2189 EV_FREQUENT_CHECK;
2190
1634 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2191 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1635} 2192}
1636 2193
1637void noinline 2194void noinline
1638ev_timer_stop (EV_P_ ev_timer *w) 2195ev_timer_stop (EV_P_ ev_timer *w)
1639{ 2196{
1640 clear_pending (EV_A_ (W)w); 2197 clear_pending (EV_A_ (W)w);
1641 if (expect_false (!ev_is_active (w))) 2198 if (expect_false (!ev_is_active (w)))
1642 return; 2199 return;
1643 2200
1644 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2201 EV_FREQUENT_CHECK;
1645 2202
1646 { 2203 {
1647 int active = ((W)w)->active; 2204 int active = ev_active (w);
1648 2205
2206 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2207
2208 --timercnt;
2209
1649 if (expect_true (--active < --timercnt)) 2210 if (expect_true (active < timercnt + HEAP0))
1650 { 2211 {
1651 timers [active] = timers [timercnt]; 2212 timers [active] = timers [timercnt + HEAP0];
1652 adjustheap ((WT *)timers, timercnt, active); 2213 adjustheap (timers, timercnt, active);
1653 } 2214 }
1654 } 2215 }
1655 2216
1656 ((WT)w)->at -= mn_now; 2217 EV_FREQUENT_CHECK;
2218
2219 ev_at (w) -= mn_now;
1657 2220
1658 ev_stop (EV_A_ (W)w); 2221 ev_stop (EV_A_ (W)w);
1659} 2222}
1660 2223
1661void noinline 2224void noinline
1662ev_timer_again (EV_P_ ev_timer *w) 2225ev_timer_again (EV_P_ ev_timer *w)
1663{ 2226{
2227 EV_FREQUENT_CHECK;
2228
1664 if (ev_is_active (w)) 2229 if (ev_is_active (w))
1665 { 2230 {
1666 if (w->repeat) 2231 if (w->repeat)
1667 { 2232 {
1668 ((WT)w)->at = mn_now + w->repeat; 2233 ev_at (w) = mn_now + w->repeat;
2234 ANHE_at_cache (timers [ev_active (w)]);
1669 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2235 adjustheap (timers, timercnt, ev_active (w));
1670 } 2236 }
1671 else 2237 else
1672 ev_timer_stop (EV_A_ w); 2238 ev_timer_stop (EV_A_ w);
1673 } 2239 }
1674 else if (w->repeat) 2240 else if (w->repeat)
1675 { 2241 {
1676 w->at = w->repeat; 2242 ev_at (w) = w->repeat;
1677 ev_timer_start (EV_A_ w); 2243 ev_timer_start (EV_A_ w);
1678 } 2244 }
2245
2246 EV_FREQUENT_CHECK;
1679} 2247}
1680 2248
1681#if EV_PERIODIC_ENABLE 2249#if EV_PERIODIC_ENABLE
1682void noinline 2250void noinline
1683ev_periodic_start (EV_P_ ev_periodic *w) 2251ev_periodic_start (EV_P_ ev_periodic *w)
1684{ 2252{
1685 if (expect_false (ev_is_active (w))) 2253 if (expect_false (ev_is_active (w)))
1686 return; 2254 return;
1687 2255
1688 if (w->reschedule_cb) 2256 if (w->reschedule_cb)
1689 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2257 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1690 else if (w->interval) 2258 else if (w->interval)
1691 { 2259 {
1692 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2260 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1693 /* this formula differs from the one in periodic_reify because we do not always round up */ 2261 /* this formula differs from the one in periodic_reify because we do not always round up */
1694 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2262 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695 } 2263 }
2264 else
2265 ev_at (w) = w->offset;
1696 2266
2267 EV_FREQUENT_CHECK;
2268
2269 ++periodiccnt;
1697 ev_start (EV_A_ (W)w, ++periodiccnt); 2270 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1698 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2271 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1699 periodics [periodiccnt - 1] = w; 2272 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1700 upheap ((WT *)periodics, periodiccnt - 1); 2273 ANHE_at_cache (periodics [ev_active (w)]);
2274 upheap (periodics, ev_active (w));
1701 2275
2276 EV_FREQUENT_CHECK;
2277
1702 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2278 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1703} 2279}
1704 2280
1705void noinline 2281void noinline
1706ev_periodic_stop (EV_P_ ev_periodic *w) 2282ev_periodic_stop (EV_P_ ev_periodic *w)
1707{ 2283{
1708 clear_pending (EV_A_ (W)w); 2284 clear_pending (EV_A_ (W)w);
1709 if (expect_false (!ev_is_active (w))) 2285 if (expect_false (!ev_is_active (w)))
1710 return; 2286 return;
1711 2287
1712 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2288 EV_FREQUENT_CHECK;
1713 2289
1714 { 2290 {
1715 int active = ((W)w)->active; 2291 int active = ev_active (w);
1716 2292
2293 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2294
2295 --periodiccnt;
2296
1717 if (expect_true (--active < --periodiccnt)) 2297 if (expect_true (active < periodiccnt + HEAP0))
1718 { 2298 {
1719 periodics [active] = periodics [periodiccnt]; 2299 periodics [active] = periodics [periodiccnt + HEAP0];
1720 adjustheap ((WT *)periodics, periodiccnt, active); 2300 adjustheap (periodics, periodiccnt, active);
1721 } 2301 }
1722 } 2302 }
2303
2304 EV_FREQUENT_CHECK;
1723 2305
1724 ev_stop (EV_A_ (W)w); 2306 ev_stop (EV_A_ (W)w);
1725} 2307}
1726 2308
1727void noinline 2309void noinline
1746 if (expect_false (ev_is_active (w))) 2328 if (expect_false (ev_is_active (w)))
1747 return; 2329 return;
1748 2330
1749 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2331 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1750 2332
2333 evpipe_init (EV_A);
2334
2335 EV_FREQUENT_CHECK;
2336
2337 {
2338#ifndef _WIN32
2339 sigset_t full, prev;
2340 sigfillset (&full);
2341 sigprocmask (SIG_SETMASK, &full, &prev);
2342#endif
2343
2344 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2345
2346#ifndef _WIN32
2347 sigprocmask (SIG_SETMASK, &prev, 0);
2348#endif
2349 }
2350
1751 ev_start (EV_A_ (W)w, 1); 2351 ev_start (EV_A_ (W)w, 1);
1752 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1753 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2352 wlist_add (&signals [w->signum - 1].head, (WL)w);
1754 2353
1755 if (!((WL)w)->next) 2354 if (!((WL)w)->next)
1756 { 2355 {
1757#if _WIN32 2356#if _WIN32
1758 signal (w->signum, sighandler); 2357 signal (w->signum, ev_sighandler);
1759#else 2358#else
1760 struct sigaction sa; 2359 struct sigaction sa;
1761 sa.sa_handler = sighandler; 2360 sa.sa_handler = ev_sighandler;
1762 sigfillset (&sa.sa_mask); 2361 sigfillset (&sa.sa_mask);
1763 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2362 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1764 sigaction (w->signum, &sa, 0); 2363 sigaction (w->signum, &sa, 0);
1765#endif 2364#endif
1766 } 2365 }
2366
2367 EV_FREQUENT_CHECK;
1767} 2368}
1768 2369
1769void noinline 2370void noinline
1770ev_signal_stop (EV_P_ ev_signal *w) 2371ev_signal_stop (EV_P_ ev_signal *w)
1771{ 2372{
1772 clear_pending (EV_A_ (W)w); 2373 clear_pending (EV_A_ (W)w);
1773 if (expect_false (!ev_is_active (w))) 2374 if (expect_false (!ev_is_active (w)))
1774 return; 2375 return;
1775 2376
2377 EV_FREQUENT_CHECK;
2378
1776 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2379 wlist_del (&signals [w->signum - 1].head, (WL)w);
1777 ev_stop (EV_A_ (W)w); 2380 ev_stop (EV_A_ (W)w);
1778 2381
1779 if (!signals [w->signum - 1].head) 2382 if (!signals [w->signum - 1].head)
1780 signal (w->signum, SIG_DFL); 2383 signal (w->signum, SIG_DFL);
2384
2385 EV_FREQUENT_CHECK;
1781} 2386}
1782 2387
1783void 2388void
1784ev_child_start (EV_P_ ev_child *w) 2389ev_child_start (EV_P_ ev_child *w)
1785{ 2390{
1787 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2392 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1788#endif 2393#endif
1789 if (expect_false (ev_is_active (w))) 2394 if (expect_false (ev_is_active (w)))
1790 return; 2395 return;
1791 2396
2397 EV_FREQUENT_CHECK;
2398
1792 ev_start (EV_A_ (W)w, 1); 2399 ev_start (EV_A_ (W)w, 1);
1793 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2400 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2401
2402 EV_FREQUENT_CHECK;
1794} 2403}
1795 2404
1796void 2405void
1797ev_child_stop (EV_P_ ev_child *w) 2406ev_child_stop (EV_P_ ev_child *w)
1798{ 2407{
1799 clear_pending (EV_A_ (W)w); 2408 clear_pending (EV_A_ (W)w);
1800 if (expect_false (!ev_is_active (w))) 2409 if (expect_false (!ev_is_active (w)))
1801 return; 2410 return;
1802 2411
2412 EV_FREQUENT_CHECK;
2413
1803 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2414 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1804 ev_stop (EV_A_ (W)w); 2415 ev_stop (EV_A_ (W)w);
2416
2417 EV_FREQUENT_CHECK;
1805} 2418}
1806 2419
1807#if EV_STAT_ENABLE 2420#if EV_STAT_ENABLE
1808 2421
1809# ifdef _WIN32 2422# ifdef _WIN32
1827 if (w->wd < 0) 2440 if (w->wd < 0)
1828 { 2441 {
1829 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2442 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1830 2443
1831 /* monitor some parent directory for speedup hints */ 2444 /* monitor some parent directory for speedup hints */
2445 /* note that exceeding the hardcoded limit is not a correctness issue, */
2446 /* but an efficiency issue only */
1832 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2447 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1833 { 2448 {
1834 char path [4096]; 2449 char path [4096];
1835 strcpy (path, w->path); 2450 strcpy (path, w->path);
1836 2451
1962 } 2577 }
1963 2578
1964 } 2579 }
1965} 2580}
1966 2581
2582#endif
2583
2584#ifdef _WIN32
2585# define EV_LSTAT(p,b) _stati64 (p, b)
2586#else
2587# define EV_LSTAT(p,b) lstat (p, b)
1967#endif 2588#endif
1968 2589
1969void 2590void
1970ev_stat_stat (EV_P_ ev_stat *w) 2591ev_stat_stat (EV_P_ ev_stat *w)
1971{ 2592{
2035 else 2656 else
2036#endif 2657#endif
2037 ev_timer_start (EV_A_ &w->timer); 2658 ev_timer_start (EV_A_ &w->timer);
2038 2659
2039 ev_start (EV_A_ (W)w, 1); 2660 ev_start (EV_A_ (W)w, 1);
2661
2662 EV_FREQUENT_CHECK;
2040} 2663}
2041 2664
2042void 2665void
2043ev_stat_stop (EV_P_ ev_stat *w) 2666ev_stat_stop (EV_P_ ev_stat *w)
2044{ 2667{
2045 clear_pending (EV_A_ (W)w); 2668 clear_pending (EV_A_ (W)w);
2046 if (expect_false (!ev_is_active (w))) 2669 if (expect_false (!ev_is_active (w)))
2047 return; 2670 return;
2048 2671
2672 EV_FREQUENT_CHECK;
2673
2049#if EV_USE_INOTIFY 2674#if EV_USE_INOTIFY
2050 infy_del (EV_A_ w); 2675 infy_del (EV_A_ w);
2051#endif 2676#endif
2052 ev_timer_stop (EV_A_ &w->timer); 2677 ev_timer_stop (EV_A_ &w->timer);
2053 2678
2054 ev_stop (EV_A_ (W)w); 2679 ev_stop (EV_A_ (W)w);
2680
2681 EV_FREQUENT_CHECK;
2055} 2682}
2056#endif 2683#endif
2057 2684
2058#if EV_IDLE_ENABLE 2685#if EV_IDLE_ENABLE
2059void 2686void
2061{ 2688{
2062 if (expect_false (ev_is_active (w))) 2689 if (expect_false (ev_is_active (w)))
2063 return; 2690 return;
2064 2691
2065 pri_adjust (EV_A_ (W)w); 2692 pri_adjust (EV_A_ (W)w);
2693
2694 EV_FREQUENT_CHECK;
2066 2695
2067 { 2696 {
2068 int active = ++idlecnt [ABSPRI (w)]; 2697 int active = ++idlecnt [ABSPRI (w)];
2069 2698
2070 ++idleall; 2699 ++idleall;
2071 ev_start (EV_A_ (W)w, active); 2700 ev_start (EV_A_ (W)w, active);
2072 2701
2073 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2702 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2074 idles [ABSPRI (w)][active - 1] = w; 2703 idles [ABSPRI (w)][active - 1] = w;
2075 } 2704 }
2705
2706 EV_FREQUENT_CHECK;
2076} 2707}
2077 2708
2078void 2709void
2079ev_idle_stop (EV_P_ ev_idle *w) 2710ev_idle_stop (EV_P_ ev_idle *w)
2080{ 2711{
2081 clear_pending (EV_A_ (W)w); 2712 clear_pending (EV_A_ (W)w);
2082 if (expect_false (!ev_is_active (w))) 2713 if (expect_false (!ev_is_active (w)))
2083 return; 2714 return;
2084 2715
2716 EV_FREQUENT_CHECK;
2717
2085 { 2718 {
2086 int active = ((W)w)->active; 2719 int active = ev_active (w);
2087 2720
2088 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2721 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2089 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2722 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2090 2723
2091 ev_stop (EV_A_ (W)w); 2724 ev_stop (EV_A_ (W)w);
2092 --idleall; 2725 --idleall;
2093 } 2726 }
2727
2728 EV_FREQUENT_CHECK;
2094} 2729}
2095#endif 2730#endif
2096 2731
2097void 2732void
2098ev_prepare_start (EV_P_ ev_prepare *w) 2733ev_prepare_start (EV_P_ ev_prepare *w)
2099{ 2734{
2100 if (expect_false (ev_is_active (w))) 2735 if (expect_false (ev_is_active (w)))
2101 return; 2736 return;
2737
2738 EV_FREQUENT_CHECK;
2102 2739
2103 ev_start (EV_A_ (W)w, ++preparecnt); 2740 ev_start (EV_A_ (W)w, ++preparecnt);
2104 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2741 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2105 prepares [preparecnt - 1] = w; 2742 prepares [preparecnt - 1] = w;
2743
2744 EV_FREQUENT_CHECK;
2106} 2745}
2107 2746
2108void 2747void
2109ev_prepare_stop (EV_P_ ev_prepare *w) 2748ev_prepare_stop (EV_P_ ev_prepare *w)
2110{ 2749{
2111 clear_pending (EV_A_ (W)w); 2750 clear_pending (EV_A_ (W)w);
2112 if (expect_false (!ev_is_active (w))) 2751 if (expect_false (!ev_is_active (w)))
2113 return; 2752 return;
2114 2753
2754 EV_FREQUENT_CHECK;
2755
2115 { 2756 {
2116 int active = ((W)w)->active; 2757 int active = ev_active (w);
2758
2117 prepares [active - 1] = prepares [--preparecnt]; 2759 prepares [active - 1] = prepares [--preparecnt];
2118 ((W)prepares [active - 1])->active = active; 2760 ev_active (prepares [active - 1]) = active;
2119 } 2761 }
2120 2762
2121 ev_stop (EV_A_ (W)w); 2763 ev_stop (EV_A_ (W)w);
2764
2765 EV_FREQUENT_CHECK;
2122} 2766}
2123 2767
2124void 2768void
2125ev_check_start (EV_P_ ev_check *w) 2769ev_check_start (EV_P_ ev_check *w)
2126{ 2770{
2127 if (expect_false (ev_is_active (w))) 2771 if (expect_false (ev_is_active (w)))
2128 return; 2772 return;
2773
2774 EV_FREQUENT_CHECK;
2129 2775
2130 ev_start (EV_A_ (W)w, ++checkcnt); 2776 ev_start (EV_A_ (W)w, ++checkcnt);
2131 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2777 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2132 checks [checkcnt - 1] = w; 2778 checks [checkcnt - 1] = w;
2779
2780 EV_FREQUENT_CHECK;
2133} 2781}
2134 2782
2135void 2783void
2136ev_check_stop (EV_P_ ev_check *w) 2784ev_check_stop (EV_P_ ev_check *w)
2137{ 2785{
2138 clear_pending (EV_A_ (W)w); 2786 clear_pending (EV_A_ (W)w);
2139 if (expect_false (!ev_is_active (w))) 2787 if (expect_false (!ev_is_active (w)))
2140 return; 2788 return;
2141 2789
2790 EV_FREQUENT_CHECK;
2791
2142 { 2792 {
2143 int active = ((W)w)->active; 2793 int active = ev_active (w);
2794
2144 checks [active - 1] = checks [--checkcnt]; 2795 checks [active - 1] = checks [--checkcnt];
2145 ((W)checks [active - 1])->active = active; 2796 ev_active (checks [active - 1]) = active;
2146 } 2797 }
2147 2798
2148 ev_stop (EV_A_ (W)w); 2799 ev_stop (EV_A_ (W)w);
2800
2801 EV_FREQUENT_CHECK;
2149} 2802}
2150 2803
2151#if EV_EMBED_ENABLE 2804#if EV_EMBED_ENABLE
2152void noinline 2805void noinline
2153ev_embed_sweep (EV_P_ ev_embed *w) 2806ev_embed_sweep (EV_P_ ev_embed *w)
2154{ 2807{
2155 ev_loop (w->loop, EVLOOP_NONBLOCK); 2808 ev_loop (w->other, EVLOOP_NONBLOCK);
2156} 2809}
2157 2810
2158static void 2811static void
2159embed_cb (EV_P_ ev_io *io, int revents) 2812embed_io_cb (EV_P_ ev_io *io, int revents)
2160{ 2813{
2161 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2814 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2162 2815
2163 if (ev_cb (w)) 2816 if (ev_cb (w))
2164 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2817 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2165 else 2818 else
2166 ev_embed_sweep (loop, w); 2819 ev_loop (w->other, EVLOOP_NONBLOCK);
2167} 2820}
2821
2822static void
2823embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2824{
2825 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2826
2827 {
2828 struct ev_loop *loop = w->other;
2829
2830 while (fdchangecnt)
2831 {
2832 fd_reify (EV_A);
2833 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2834 }
2835 }
2836}
2837
2838static void
2839embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2840{
2841 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2842
2843 {
2844 struct ev_loop *loop = w->other;
2845
2846 ev_loop_fork (EV_A);
2847 }
2848}
2849
2850#if 0
2851static void
2852embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2853{
2854 ev_idle_stop (EV_A_ idle);
2855}
2856#endif
2168 2857
2169void 2858void
2170ev_embed_start (EV_P_ ev_embed *w) 2859ev_embed_start (EV_P_ ev_embed *w)
2171{ 2860{
2172 if (expect_false (ev_is_active (w))) 2861 if (expect_false (ev_is_active (w)))
2173 return; 2862 return;
2174 2863
2175 { 2864 {
2176 struct ev_loop *loop = w->loop; 2865 struct ev_loop *loop = w->other;
2177 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2866 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2178 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2867 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2179 } 2868 }
2869
2870 EV_FREQUENT_CHECK;
2180 2871
2181 ev_set_priority (&w->io, ev_priority (w)); 2872 ev_set_priority (&w->io, ev_priority (w));
2182 ev_io_start (EV_A_ &w->io); 2873 ev_io_start (EV_A_ &w->io);
2183 2874
2875 ev_prepare_init (&w->prepare, embed_prepare_cb);
2876 ev_set_priority (&w->prepare, EV_MINPRI);
2877 ev_prepare_start (EV_A_ &w->prepare);
2878
2879 ev_fork_init (&w->fork, embed_fork_cb);
2880 ev_fork_start (EV_A_ &w->fork);
2881
2882 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2883
2184 ev_start (EV_A_ (W)w, 1); 2884 ev_start (EV_A_ (W)w, 1);
2885
2886 EV_FREQUENT_CHECK;
2185} 2887}
2186 2888
2187void 2889void
2188ev_embed_stop (EV_P_ ev_embed *w) 2890ev_embed_stop (EV_P_ ev_embed *w)
2189{ 2891{
2190 clear_pending (EV_A_ (W)w); 2892 clear_pending (EV_A_ (W)w);
2191 if (expect_false (!ev_is_active (w))) 2893 if (expect_false (!ev_is_active (w)))
2192 return; 2894 return;
2193 2895
2896 EV_FREQUENT_CHECK;
2897
2194 ev_io_stop (EV_A_ &w->io); 2898 ev_io_stop (EV_A_ &w->io);
2899 ev_prepare_stop (EV_A_ &w->prepare);
2900 ev_fork_stop (EV_A_ &w->fork);
2195 2901
2196 ev_stop (EV_A_ (W)w); 2902 EV_FREQUENT_CHECK;
2197} 2903}
2198#endif 2904#endif
2199 2905
2200#if EV_FORK_ENABLE 2906#if EV_FORK_ENABLE
2201void 2907void
2202ev_fork_start (EV_P_ ev_fork *w) 2908ev_fork_start (EV_P_ ev_fork *w)
2203{ 2909{
2204 if (expect_false (ev_is_active (w))) 2910 if (expect_false (ev_is_active (w)))
2205 return; 2911 return;
2912
2913 EV_FREQUENT_CHECK;
2206 2914
2207 ev_start (EV_A_ (W)w, ++forkcnt); 2915 ev_start (EV_A_ (W)w, ++forkcnt);
2208 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2916 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2209 forks [forkcnt - 1] = w; 2917 forks [forkcnt - 1] = w;
2918
2919 EV_FREQUENT_CHECK;
2210} 2920}
2211 2921
2212void 2922void
2213ev_fork_stop (EV_P_ ev_fork *w) 2923ev_fork_stop (EV_P_ ev_fork *w)
2214{ 2924{
2215 clear_pending (EV_A_ (W)w); 2925 clear_pending (EV_A_ (W)w);
2216 if (expect_false (!ev_is_active (w))) 2926 if (expect_false (!ev_is_active (w)))
2217 return; 2927 return;
2218 2928
2929 EV_FREQUENT_CHECK;
2930
2219 { 2931 {
2220 int active = ((W)w)->active; 2932 int active = ev_active (w);
2933
2221 forks [active - 1] = forks [--forkcnt]; 2934 forks [active - 1] = forks [--forkcnt];
2222 ((W)forks [active - 1])->active = active; 2935 ev_active (forks [active - 1]) = active;
2223 } 2936 }
2224 2937
2225 ev_stop (EV_A_ (W)w); 2938 ev_stop (EV_A_ (W)w);
2939
2940 EV_FREQUENT_CHECK;
2941}
2942#endif
2943
2944#if EV_ASYNC_ENABLE
2945void
2946ev_async_start (EV_P_ ev_async *w)
2947{
2948 if (expect_false (ev_is_active (w)))
2949 return;
2950
2951 evpipe_init (EV_A);
2952
2953 EV_FREQUENT_CHECK;
2954
2955 ev_start (EV_A_ (W)w, ++asynccnt);
2956 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2957 asyncs [asynccnt - 1] = w;
2958
2959 EV_FREQUENT_CHECK;
2960}
2961
2962void
2963ev_async_stop (EV_P_ ev_async *w)
2964{
2965 clear_pending (EV_A_ (W)w);
2966 if (expect_false (!ev_is_active (w)))
2967 return;
2968
2969 EV_FREQUENT_CHECK;
2970
2971 {
2972 int active = ev_active (w);
2973
2974 asyncs [active - 1] = asyncs [--asynccnt];
2975 ev_active (asyncs [active - 1]) = active;
2976 }
2977
2978 ev_stop (EV_A_ (W)w);
2979
2980 EV_FREQUENT_CHECK;
2981}
2982
2983void
2984ev_async_send (EV_P_ ev_async *w)
2985{
2986 w->sent = 1;
2987 evpipe_write (EV_A_ &gotasync);
2226} 2988}
2227#endif 2989#endif
2228 2990
2229/*****************************************************************************/ 2991/*****************************************************************************/
2230 2992
2240once_cb (EV_P_ struct ev_once *once, int revents) 3002once_cb (EV_P_ struct ev_once *once, int revents)
2241{ 3003{
2242 void (*cb)(int revents, void *arg) = once->cb; 3004 void (*cb)(int revents, void *arg) = once->cb;
2243 void *arg = once->arg; 3005 void *arg = once->arg;
2244 3006
2245 ev_io_stop (EV_A_ &once->io); 3007 ev_io_stop (EV_A_ &once->io);
2246 ev_timer_stop (EV_A_ &once->to); 3008 ev_timer_stop (EV_A_ &once->to);
2247 ev_free (once); 3009 ev_free (once);
2248 3010
2249 cb (revents, arg); 3011 cb (revents, arg);
2250} 3012}
2288 ev_timer_set (&once->to, timeout, 0.); 3050 ev_timer_set (&once->to, timeout, 0.);
2289 ev_timer_start (EV_A_ &once->to); 3051 ev_timer_start (EV_A_ &once->to);
2290 } 3052 }
2291} 3053}
2292 3054
3055#if EV_MULTIPLICITY
3056 #include "ev_wrap.h"
3057#endif
3058
2293#ifdef __cplusplus 3059#ifdef __cplusplus
2294} 3060}
2295#endif 3061#endif
2296 3062

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines