ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.171 by root, Sun Dec 9 02:12:43 2007 UTC vs.
Revision 1.265 by root, Thu Oct 23 04:56:49 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
129#ifndef _WIN32 154#ifndef _WIN32
130# include <sys/time.h> 155# include <sys/time.h>
131# include <sys/wait.h> 156# include <sys/wait.h>
132# include <unistd.h> 157# include <unistd.h>
133#else 158#else
159# include <io.h>
134# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 161# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
138# endif 164# endif
139#endif 165#endif
140 166
141/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
142 168
143#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
144# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
145#endif 175#endif
146 176
147#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
149#endif 187#endif
150 188
151#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
153#endif 191#endif
159# define EV_USE_POLL 1 197# define EV_USE_POLL 1
160# endif 198# endif
161#endif 199#endif
162 200
163#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
164# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
165#endif 207#endif
166 208
167#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
169#endif 211#endif
171#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 214# define EV_USE_PORT 0
173#endif 215#endif
174 216
175#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
176# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
177#endif 223#endif
178 224
179#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 226# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
190# else 236# else
191# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
192# endif 238# endif
193#endif 239#endif
194 240
195/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 268
197#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
200#endif 272#endif
202#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
205#endif 277#endif
206 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0
297# endif
298#endif
299
207#if EV_SELECT_IS_WINSOCKET 300#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 301# include <winsock.h>
209#endif 302#endif
210 303
211#if !EV_STAT_ENABLE 304#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h>
307# ifdef __cplusplus
308extern "C" {
213#endif 309# endif
214 310int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 311# ifdef __cplusplus
216# include <sys/inotify.h> 312}
313# endif
217#endif 314#endif
218 315
219/**/ 316/**/
317
318#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
320#else
321# define EV_FREQUENT_CHECK do { } while (0)
322#endif
323
324/*
325 * This is used to avoid floating point rounding problems.
326 * It is added to ev_rt_now when scheduling periodics
327 * to ensure progress, time-wise, even when rounding
328 * errors are against us.
329 * This value is good at least till the year 4000.
330 * Better solutions welcome.
331 */
332#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 333
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 337
225#if __GNUC__ >= 3 338#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 339# define expect(expr,value) __builtin_expect ((expr),(value))
227# define noinline __attribute__ ((noinline)) 340# define noinline __attribute__ ((noinline))
228#else 341#else
229# define expect(expr,value) (expr) 342# define expect(expr,value) (expr)
230# define noinline 343# define noinline
231# if __STDC_VERSION__ < 199901L 344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
232# define inline 345# define inline
233# endif 346# endif
234#endif 347#endif
235 348
236#define expect_false(expr) expect ((expr) != 0, 0) 349#define expect_false(expr) expect ((expr) != 0, 0)
251 364
252typedef ev_watcher *W; 365typedef ev_watcher *W;
253typedef ev_watcher_list *WL; 366typedef ev_watcher_list *WL;
254typedef ev_watcher_time *WT; 367typedef ev_watcher_time *WT;
255 368
369#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at
371
372#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
256static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
376#endif
257 377
258#ifdef _WIN32 378#ifdef _WIN32
259# include "ev_win32.c" 379# include "ev_win32.c"
260#endif 380#endif
261 381
282 perror (msg); 402 perror (msg);
283 abort (); 403 abort ();
284 } 404 }
285} 405}
286 406
407static void *
408ev_realloc_emul (void *ptr, long size)
409{
410 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and
412 * the single unix specification, so work around them here.
413 */
414
415 if (size)
416 return realloc (ptr, size);
417
418 free (ptr);
419 return 0;
420}
421
287static void *(*alloc)(void *ptr, long size); 422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
288 423
289void 424void
290ev_set_allocator (void *(*cb)(void *ptr, long size)) 425ev_set_allocator (void *(*cb)(void *ptr, long size))
291{ 426{
292 alloc = cb; 427 alloc = cb;
293} 428}
294 429
295inline_speed void * 430inline_speed void *
296ev_realloc (void *ptr, long size) 431ev_realloc (void *ptr, long size)
297{ 432{
298 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 433 ptr = alloc (ptr, size);
299 434
300 if (!ptr && size) 435 if (!ptr && size)
301 { 436 {
302 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
303 abort (); 438 abort ();
314typedef struct 449typedef struct
315{ 450{
316 WL head; 451 WL head;
317 unsigned char events; 452 unsigned char events;
318 unsigned char reify; 453 unsigned char reify;
454 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
455 unsigned char unused; /* currently unused padding */
319#if EV_SELECT_IS_WINSOCKET 456#if EV_SELECT_IS_WINSOCKET
320 SOCKET handle; 457 SOCKET handle;
321#endif 458#endif
322} ANFD; 459} ANFD;
323 460
326 W w; 463 W w;
327 int events; 464 int events;
328} ANPENDING; 465} ANPENDING;
329 466
330#if EV_USE_INOTIFY 467#if EV_USE_INOTIFY
468/* hash table entry per inotify-id */
331typedef struct 469typedef struct
332{ 470{
333 WL head; 471 WL head;
334} ANFS; 472} ANFS;
473#endif
474
475/* Heap Entry */
476#if EV_HEAP_CACHE_AT
477 typedef struct {
478 ev_tstamp at;
479 WT w;
480 } ANHE;
481
482 #define ANHE_w(he) (he).w /* access watcher, read-write */
483 #define ANHE_at(he) (he).at /* access cached at, read-only */
484 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
485#else
486 typedef WT ANHE;
487
488 #define ANHE_w(he) (he)
489 #define ANHE_at(he) (he)->at
490 #define ANHE_at_cache(he)
335#endif 491#endif
336 492
337#if EV_MULTIPLICITY 493#if EV_MULTIPLICITY
338 494
339 struct ev_loop 495 struct ev_loop
397{ 553{
398 return ev_rt_now; 554 return ev_rt_now;
399} 555}
400#endif 556#endif
401 557
558void
559ev_sleep (ev_tstamp delay)
560{
561 if (delay > 0.)
562 {
563#if EV_USE_NANOSLEEP
564 struct timespec ts;
565
566 ts.tv_sec = (time_t)delay;
567 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
568
569 nanosleep (&ts, 0);
570#elif defined(_WIN32)
571 Sleep ((unsigned long)(delay * 1e3));
572#else
573 struct timeval tv;
574
575 tv.tv_sec = (time_t)delay;
576 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
577
578 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
579 /* somehting nto guaranteed by newer posix versions, but guaranteed */
580 /* by older ones */
581 select (0, 0, 0, 0, &tv);
582#endif
583 }
584}
585
586/*****************************************************************************/
587
588#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
589
402int inline_size 590int inline_size
403array_nextsize (int elem, int cur, int cnt) 591array_nextsize (int elem, int cur, int cnt)
404{ 592{
405 int ncur = cur + 1; 593 int ncur = cur + 1;
406 594
407 do 595 do
408 ncur <<= 1; 596 ncur <<= 1;
409 while (cnt > ncur); 597 while (cnt > ncur);
410 598
411 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 599 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
412 if (elem * ncur > 4096) 600 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
413 { 601 {
414 ncur *= elem; 602 ncur *= elem;
415 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 603 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
416 ncur = ncur - sizeof (void *) * 4; 604 ncur = ncur - sizeof (void *) * 4;
417 ncur /= elem; 605 ncur /= elem;
418 } 606 }
419 607
420 return ncur; 608 return ncur;
424array_realloc (int elem, void *base, int *cur, int cnt) 612array_realloc (int elem, void *base, int *cur, int cnt)
425{ 613{
426 *cur = array_nextsize (elem, *cur, cnt); 614 *cur = array_nextsize (elem, *cur, cnt);
427 return ev_realloc (base, elem * *cur); 615 return ev_realloc (base, elem * *cur);
428} 616}
617
618#define array_init_zero(base,count) \
619 memset ((void *)(base), 0, sizeof (*(base)) * (count))
429 620
430#define array_needsize(type,base,cur,cnt,init) \ 621#define array_needsize(type,base,cur,cnt,init) \
431 if (expect_false ((cnt) > (cur))) \ 622 if (expect_false ((cnt) > (cur))) \
432 { \ 623 { \
433 int ocur_ = (cur); \ 624 int ocur_ = (cur); \
466 pendings [pri][w_->pending - 1].w = w_; 657 pendings [pri][w_->pending - 1].w = w_;
467 pendings [pri][w_->pending - 1].events = revents; 658 pendings [pri][w_->pending - 1].events = revents;
468 } 659 }
469} 660}
470 661
471void inline_size 662void inline_speed
472queue_events (EV_P_ W *events, int eventcnt, int type) 663queue_events (EV_P_ W *events, int eventcnt, int type)
473{ 664{
474 int i; 665 int i;
475 666
476 for (i = 0; i < eventcnt; ++i) 667 for (i = 0; i < eventcnt; ++i)
477 ev_feed_event (EV_A_ events [i], type); 668 ev_feed_event (EV_A_ events [i], type);
478} 669}
479 670
480/*****************************************************************************/ 671/*****************************************************************************/
481
482void inline_size
483anfds_init (ANFD *base, int count)
484{
485 while (count--)
486 {
487 base->head = 0;
488 base->events = EV_NONE;
489 base->reify = 0;
490
491 ++base;
492 }
493}
494 672
495void inline_speed 673void inline_speed
496fd_event (EV_P_ int fd, int revents) 674fd_event (EV_P_ int fd, int revents)
497{ 675{
498 ANFD *anfd = anfds + fd; 676 ANFD *anfd = anfds + fd;
523 { 701 {
524 int fd = fdchanges [i]; 702 int fd = fdchanges [i];
525 ANFD *anfd = anfds + fd; 703 ANFD *anfd = anfds + fd;
526 ev_io *w; 704 ev_io *w;
527 705
528 int events = 0; 706 unsigned char events = 0;
529 707
530 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 708 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
531 events |= w->events; 709 events |= (unsigned char)w->events;
532 710
533#if EV_SELECT_IS_WINSOCKET 711#if EV_SELECT_IS_WINSOCKET
534 if (events) 712 if (events)
535 { 713 {
536 unsigned long argp; 714 unsigned long arg;
715 #ifdef EV_FD_TO_WIN32_HANDLE
716 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
717 #else
537 anfd->handle = _get_osfhandle (fd); 718 anfd->handle = _get_osfhandle (fd);
719 #endif
538 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 720 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
539 } 721 }
540#endif 722#endif
541 723
724 {
725 unsigned char o_events = anfd->events;
726 unsigned char o_reify = anfd->reify;
727
542 anfd->reify = 0; 728 anfd->reify = 0;
543
544 backend_modify (EV_A_ fd, anfd->events, events);
545 anfd->events = events; 729 anfd->events = events;
730
731 if (o_events != events || o_reify & EV_IOFDSET)
732 backend_modify (EV_A_ fd, o_events, events);
733 }
546 } 734 }
547 735
548 fdchangecnt = 0; 736 fdchangecnt = 0;
549} 737}
550 738
551void inline_size 739void inline_size
552fd_change (EV_P_ int fd) 740fd_change (EV_P_ int fd, int flags)
553{ 741{
554 if (expect_false (anfds [fd].reify)) 742 unsigned char reify = anfds [fd].reify;
555 return;
556
557 anfds [fd].reify = 1; 743 anfds [fd].reify |= flags;
558 744
745 if (expect_true (!reify))
746 {
559 ++fdchangecnt; 747 ++fdchangecnt;
560 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 748 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
561 fdchanges [fdchangecnt - 1] = fd; 749 fdchanges [fdchangecnt - 1] = fd;
750 }
562} 751}
563 752
564void inline_speed 753void inline_speed
565fd_kill (EV_P_ int fd) 754fd_kill (EV_P_ int fd)
566{ 755{
589{ 778{
590 int fd; 779 int fd;
591 780
592 for (fd = 0; fd < anfdmax; ++fd) 781 for (fd = 0; fd < anfdmax; ++fd)
593 if (anfds [fd].events) 782 if (anfds [fd].events)
594 if (!fd_valid (fd) == -1 && errno == EBADF) 783 if (!fd_valid (fd) && errno == EBADF)
595 fd_kill (EV_A_ fd); 784 fd_kill (EV_A_ fd);
596} 785}
597 786
598/* called on ENOMEM in select/poll to kill some fds and retry */ 787/* called on ENOMEM in select/poll to kill some fds and retry */
599static void noinline 788static void noinline
617 806
618 for (fd = 0; fd < anfdmax; ++fd) 807 for (fd = 0; fd < anfdmax; ++fd)
619 if (anfds [fd].events) 808 if (anfds [fd].events)
620 { 809 {
621 anfds [fd].events = 0; 810 anfds [fd].events = 0;
622 fd_change (EV_A_ fd); 811 fd_change (EV_A_ fd, EV_IOFDSET | 1);
623 } 812 }
624} 813}
625 814
626/*****************************************************************************/ 815/*****************************************************************************/
627 816
817/*
818 * the heap functions want a real array index. array index 0 uis guaranteed to not
819 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
820 * the branching factor of the d-tree.
821 */
822
823/*
824 * at the moment we allow libev the luxury of two heaps,
825 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
826 * which is more cache-efficient.
827 * the difference is about 5% with 50000+ watchers.
828 */
829#if EV_USE_4HEAP
830
831#define DHEAP 4
832#define HEAP0 (DHEAP - 1) /* index of first element in heap */
833#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
834#define UPHEAP_DONE(p,k) ((p) == (k))
835
836/* away from the root */
628void inline_speed 837void inline_speed
629upheap (WT *heap, int k) 838downheap (ANHE *heap, int N, int k)
630{ 839{
631 WT w = heap [k]; 840 ANHE he = heap [k];
841 ANHE *E = heap + N + HEAP0;
632 842
633 while (k && heap [k >> 1]->at > w->at) 843 for (;;)
634 {
635 heap [k] = heap [k >> 1];
636 ((W)heap [k])->active = k + 1;
637 k >>= 1;
638 } 844 {
845 ev_tstamp minat;
846 ANHE *minpos;
847 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
639 848
849 /* find minimum child */
850 if (expect_true (pos + DHEAP - 1 < E))
851 {
852 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
853 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
854 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
855 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
856 }
857 else if (pos < E)
858 {
859 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
860 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
861 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
862 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
863 }
864 else
865 break;
866
867 if (ANHE_at (he) <= minat)
868 break;
869
870 heap [k] = *minpos;
871 ev_active (ANHE_w (*minpos)) = k;
872
873 k = minpos - heap;
874 }
875
640 heap [k] = w; 876 heap [k] = he;
641 ((W)heap [k])->active = k + 1; 877 ev_active (ANHE_w (he)) = k;
642
643} 878}
644 879
880#else /* 4HEAP */
881
882#define HEAP0 1
883#define HPARENT(k) ((k) >> 1)
884#define UPHEAP_DONE(p,k) (!(p))
885
886/* away from the root */
645void inline_speed 887void inline_speed
646downheap (WT *heap, int N, int k) 888downheap (ANHE *heap, int N, int k)
647{ 889{
648 WT w = heap [k]; 890 ANHE he = heap [k];
649 891
650 while (k < (N >> 1)) 892 for (;;)
651 { 893 {
652 int j = k << 1; 894 int c = k << 1;
653 895
654 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 896 if (c > N + HEAP0 - 1)
655 ++j;
656
657 if (w->at <= heap [j]->at)
658 break; 897 break;
659 898
899 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
900 ? 1 : 0;
901
902 if (ANHE_at (he) <= ANHE_at (heap [c]))
903 break;
904
660 heap [k] = heap [j]; 905 heap [k] = heap [c];
661 ((W)heap [k])->active = k + 1; 906 ev_active (ANHE_w (heap [k])) = k;
907
662 k = j; 908 k = c;
663 } 909 }
664 910
665 heap [k] = w; 911 heap [k] = he;
666 ((W)heap [k])->active = k + 1; 912 ev_active (ANHE_w (he)) = k;
913}
914#endif
915
916/* towards the root */
917void inline_speed
918upheap (ANHE *heap, int k)
919{
920 ANHE he = heap [k];
921
922 for (;;)
923 {
924 int p = HPARENT (k);
925
926 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
927 break;
928
929 heap [k] = heap [p];
930 ev_active (ANHE_w (heap [k])) = k;
931 k = p;
932 }
933
934 heap [k] = he;
935 ev_active (ANHE_w (he)) = k;
667} 936}
668 937
669void inline_size 938void inline_size
670adjustheap (WT *heap, int N, int k) 939adjustheap (ANHE *heap, int N, int k)
671{ 940{
941 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
672 upheap (heap, k); 942 upheap (heap, k);
943 else
673 downheap (heap, N, k); 944 downheap (heap, N, k);
945}
946
947/* rebuild the heap: this function is used only once and executed rarely */
948void inline_size
949reheap (ANHE *heap, int N)
950{
951 int i;
952
953 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
954 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
955 for (i = 0; i < N; ++i)
956 upheap (heap, i + HEAP0);
674} 957}
675 958
676/*****************************************************************************/ 959/*****************************************************************************/
677 960
678typedef struct 961typedef struct
679{ 962{
680 WL head; 963 WL head;
681 sig_atomic_t volatile gotsig; 964 EV_ATOMIC_T gotsig;
682} ANSIG; 965} ANSIG;
683 966
684static ANSIG *signals; 967static ANSIG *signals;
685static int signalmax; 968static int signalmax;
686 969
687static int sigpipe [2]; 970static EV_ATOMIC_T gotsig;
688static sig_atomic_t volatile gotsig;
689static ev_io sigev;
690 971
691void inline_size 972/*****************************************************************************/
692signals_init (ANSIG *base, int count)
693{
694 while (count--)
695 {
696 base->head = 0;
697 base->gotsig = 0;
698
699 ++base;
700 }
701}
702
703static void
704sighandler (int signum)
705{
706#if _WIN32
707 signal (signum, sighandler);
708#endif
709
710 signals [signum - 1].gotsig = 1;
711
712 if (!gotsig)
713 {
714 int old_errno = errno;
715 gotsig = 1;
716 write (sigpipe [1], &signum, 1);
717 errno = old_errno;
718 }
719}
720
721void noinline
722ev_feed_signal_event (EV_P_ int signum)
723{
724 WL w;
725
726#if EV_MULTIPLICITY
727 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
728#endif
729
730 --signum;
731
732 if (signum < 0 || signum >= signalmax)
733 return;
734
735 signals [signum].gotsig = 0;
736
737 for (w = signals [signum].head; w; w = w->next)
738 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
739}
740
741static void
742sigcb (EV_P_ ev_io *iow, int revents)
743{
744 int signum;
745
746 read (sigpipe [0], &revents, 1);
747 gotsig = 0;
748
749 for (signum = signalmax; signum--; )
750 if (signals [signum].gotsig)
751 ev_feed_signal_event (EV_A_ signum + 1);
752}
753 973
754void inline_speed 974void inline_speed
755fd_intern (int fd) 975fd_intern (int fd)
756{ 976{
757#ifdef _WIN32 977#ifdef _WIN32
758 int arg = 1; 978 unsigned long arg = 1;
759 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 979 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
760#else 980#else
761 fcntl (fd, F_SETFD, FD_CLOEXEC); 981 fcntl (fd, F_SETFD, FD_CLOEXEC);
762 fcntl (fd, F_SETFL, O_NONBLOCK); 982 fcntl (fd, F_SETFL, O_NONBLOCK);
763#endif 983#endif
764} 984}
765 985
766static void noinline 986static void noinline
767siginit (EV_P) 987evpipe_init (EV_P)
768{ 988{
989 if (!ev_is_active (&pipeev))
990 {
991#if EV_USE_EVENTFD
992 if ((evfd = eventfd (0, 0)) >= 0)
993 {
994 evpipe [0] = -1;
995 fd_intern (evfd);
996 ev_io_set (&pipeev, evfd, EV_READ);
997 }
998 else
999#endif
1000 {
1001 while (pipe (evpipe))
1002 syserr ("(libev) error creating signal/async pipe");
1003
769 fd_intern (sigpipe [0]); 1004 fd_intern (evpipe [0]);
770 fd_intern (sigpipe [1]); 1005 fd_intern (evpipe [1]);
1006 ev_io_set (&pipeev, evpipe [0], EV_READ);
1007 }
771 1008
772 ev_io_set (&sigev, sigpipe [0], EV_READ);
773 ev_io_start (EV_A_ &sigev); 1009 ev_io_start (EV_A_ &pipeev);
774 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1010 ev_unref (EV_A); /* watcher should not keep loop alive */
1011 }
1012}
1013
1014void inline_size
1015evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1016{
1017 if (!*flag)
1018 {
1019 int old_errno = errno; /* save errno because write might clobber it */
1020
1021 *flag = 1;
1022
1023#if EV_USE_EVENTFD
1024 if (evfd >= 0)
1025 {
1026 uint64_t counter = 1;
1027 write (evfd, &counter, sizeof (uint64_t));
1028 }
1029 else
1030#endif
1031 write (evpipe [1], &old_errno, 1);
1032
1033 errno = old_errno;
1034 }
1035}
1036
1037static void
1038pipecb (EV_P_ ev_io *iow, int revents)
1039{
1040#if EV_USE_EVENTFD
1041 if (evfd >= 0)
1042 {
1043 uint64_t counter;
1044 read (evfd, &counter, sizeof (uint64_t));
1045 }
1046 else
1047#endif
1048 {
1049 char dummy;
1050 read (evpipe [0], &dummy, 1);
1051 }
1052
1053 if (gotsig && ev_is_default_loop (EV_A))
1054 {
1055 int signum;
1056 gotsig = 0;
1057
1058 for (signum = signalmax; signum--; )
1059 if (signals [signum].gotsig)
1060 ev_feed_signal_event (EV_A_ signum + 1);
1061 }
1062
1063#if EV_ASYNC_ENABLE
1064 if (gotasync)
1065 {
1066 int i;
1067 gotasync = 0;
1068
1069 for (i = asynccnt; i--; )
1070 if (asyncs [i]->sent)
1071 {
1072 asyncs [i]->sent = 0;
1073 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1074 }
1075 }
1076#endif
775} 1077}
776 1078
777/*****************************************************************************/ 1079/*****************************************************************************/
778 1080
1081static void
1082ev_sighandler (int signum)
1083{
1084#if EV_MULTIPLICITY
1085 struct ev_loop *loop = &default_loop_struct;
1086#endif
1087
1088#if _WIN32
1089 signal (signum, ev_sighandler);
1090#endif
1091
1092 signals [signum - 1].gotsig = 1;
1093 evpipe_write (EV_A_ &gotsig);
1094}
1095
1096void noinline
1097ev_feed_signal_event (EV_P_ int signum)
1098{
1099 WL w;
1100
1101#if EV_MULTIPLICITY
1102 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1103#endif
1104
1105 --signum;
1106
1107 if (signum < 0 || signum >= signalmax)
1108 return;
1109
1110 signals [signum].gotsig = 0;
1111
1112 for (w = signals [signum].head; w; w = w->next)
1113 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1114}
1115
1116/*****************************************************************************/
1117
779static ev_child *childs [EV_PID_HASHSIZE]; 1118static WL childs [EV_PID_HASHSIZE];
780 1119
781#ifndef _WIN32 1120#ifndef _WIN32
782 1121
783static ev_signal childev; 1122static ev_signal childev;
784 1123
1124#ifndef WIFCONTINUED
1125# define WIFCONTINUED(status) 0
1126#endif
1127
785void inline_speed 1128void inline_speed
786child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1129child_reap (EV_P_ int chain, int pid, int status)
787{ 1130{
788 ev_child *w; 1131 ev_child *w;
1132 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
789 1133
790 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1134 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1135 {
791 if (w->pid == pid || !w->pid) 1136 if ((w->pid == pid || !w->pid)
1137 && (!traced || (w->flags & 1)))
792 { 1138 {
793 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1139 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
794 w->rpid = pid; 1140 w->rpid = pid;
795 w->rstatus = status; 1141 w->rstatus = status;
796 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1142 ev_feed_event (EV_A_ (W)w, EV_CHILD);
797 } 1143 }
1144 }
798} 1145}
799 1146
800#ifndef WCONTINUED 1147#ifndef WCONTINUED
801# define WCONTINUED 0 1148# define WCONTINUED 0
802#endif 1149#endif
811 if (!WCONTINUED 1158 if (!WCONTINUED
812 || errno != EINVAL 1159 || errno != EINVAL
813 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1160 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
814 return; 1161 return;
815 1162
816 /* make sure we are called again until all childs have been reaped */ 1163 /* make sure we are called again until all children have been reaped */
817 /* we need to do it this way so that the callback gets called before we continue */ 1164 /* we need to do it this way so that the callback gets called before we continue */
818 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1165 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
819 1166
820 child_reap (EV_A_ sw, pid, pid, status); 1167 child_reap (EV_A_ pid, pid, status);
821 if (EV_PID_HASHSIZE > 1) 1168 if (EV_PID_HASHSIZE > 1)
822 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1169 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
823} 1170}
824 1171
825#endif 1172#endif
826 1173
827/*****************************************************************************/ 1174/*****************************************************************************/
899} 1246}
900 1247
901unsigned int 1248unsigned int
902ev_embeddable_backends (void) 1249ev_embeddable_backends (void)
903{ 1250{
904 return EVBACKEND_EPOLL 1251 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
905 | EVBACKEND_KQUEUE 1252
906 | EVBACKEND_PORT; 1253 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1254 /* please fix it and tell me how to detect the fix */
1255 flags &= ~EVBACKEND_EPOLL;
1256
1257 return flags;
907} 1258}
908 1259
909unsigned int 1260unsigned int
910ev_backend (EV_P) 1261ev_backend (EV_P)
911{ 1262{
914 1265
915unsigned int 1266unsigned int
916ev_loop_count (EV_P) 1267ev_loop_count (EV_P)
917{ 1268{
918 return loop_count; 1269 return loop_count;
1270}
1271
1272void
1273ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1274{
1275 io_blocktime = interval;
1276}
1277
1278void
1279ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1280{
1281 timeout_blocktime = interval;
919} 1282}
920 1283
921static void noinline 1284static void noinline
922loop_init (EV_P_ unsigned int flags) 1285loop_init (EV_P_ unsigned int flags)
923{ 1286{
929 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1292 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
930 have_monotonic = 1; 1293 have_monotonic = 1;
931 } 1294 }
932#endif 1295#endif
933 1296
934 ev_rt_now = ev_time (); 1297 ev_rt_now = ev_time ();
935 mn_now = get_clock (); 1298 mn_now = get_clock ();
936 now_floor = mn_now; 1299 now_floor = mn_now;
937 rtmn_diff = ev_rt_now - mn_now; 1300 rtmn_diff = ev_rt_now - mn_now;
1301
1302 io_blocktime = 0.;
1303 timeout_blocktime = 0.;
1304 backend = 0;
1305 backend_fd = -1;
1306 gotasync = 0;
1307#if EV_USE_INOTIFY
1308 fs_fd = -2;
1309#endif
938 1310
939 /* pid check not overridable via env */ 1311 /* pid check not overridable via env */
940#ifndef _WIN32 1312#ifndef _WIN32
941 if (flags & EVFLAG_FORKCHECK) 1313 if (flags & EVFLAG_FORKCHECK)
942 curpid = getpid (); 1314 curpid = getpid ();
945 if (!(flags & EVFLAG_NOENV) 1317 if (!(flags & EVFLAG_NOENV)
946 && !enable_secure () 1318 && !enable_secure ()
947 && getenv ("LIBEV_FLAGS")) 1319 && getenv ("LIBEV_FLAGS"))
948 flags = atoi (getenv ("LIBEV_FLAGS")); 1320 flags = atoi (getenv ("LIBEV_FLAGS"));
949 1321
950 if (!(flags & 0x0000ffffUL)) 1322 if (!(flags & 0x0000ffffU))
951 flags |= ev_recommended_backends (); 1323 flags |= ev_recommended_backends ();
952
953 backend = 0;
954 backend_fd = -1;
955#if EV_USE_INOTIFY
956 fs_fd = -2;
957#endif
958 1324
959#if EV_USE_PORT 1325#if EV_USE_PORT
960 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1326 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
961#endif 1327#endif
962#if EV_USE_KQUEUE 1328#if EV_USE_KQUEUE
970#endif 1336#endif
971#if EV_USE_SELECT 1337#if EV_USE_SELECT
972 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1338 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
973#endif 1339#endif
974 1340
975 ev_init (&sigev, sigcb); 1341 ev_init (&pipeev, pipecb);
976 ev_set_priority (&sigev, EV_MAXPRI); 1342 ev_set_priority (&pipeev, EV_MAXPRI);
977 } 1343 }
978} 1344}
979 1345
980static void noinline 1346static void noinline
981loop_destroy (EV_P) 1347loop_destroy (EV_P)
982{ 1348{
983 int i; 1349 int i;
1350
1351 if (ev_is_active (&pipeev))
1352 {
1353 ev_ref (EV_A); /* signal watcher */
1354 ev_io_stop (EV_A_ &pipeev);
1355
1356#if EV_USE_EVENTFD
1357 if (evfd >= 0)
1358 close (evfd);
1359#endif
1360
1361 if (evpipe [0] >= 0)
1362 {
1363 close (evpipe [0]);
1364 close (evpipe [1]);
1365 }
1366 }
984 1367
985#if EV_USE_INOTIFY 1368#if EV_USE_INOTIFY
986 if (fs_fd >= 0) 1369 if (fs_fd >= 0)
987 close (fs_fd); 1370 close (fs_fd);
988#endif 1371#endif
1011 array_free (pending, [i]); 1394 array_free (pending, [i]);
1012#if EV_IDLE_ENABLE 1395#if EV_IDLE_ENABLE
1013 array_free (idle, [i]); 1396 array_free (idle, [i]);
1014#endif 1397#endif
1015 } 1398 }
1399
1400 ev_free (anfds); anfdmax = 0;
1016 1401
1017 /* have to use the microsoft-never-gets-it-right macro */ 1402 /* have to use the microsoft-never-gets-it-right macro */
1018 array_free (fdchange, EMPTY); 1403 array_free (fdchange, EMPTY);
1019 array_free (timer, EMPTY); 1404 array_free (timer, EMPTY);
1020#if EV_PERIODIC_ENABLE 1405#if EV_PERIODIC_ENABLE
1021 array_free (periodic, EMPTY); 1406 array_free (periodic, EMPTY);
1022#endif 1407#endif
1408#if EV_FORK_ENABLE
1409 array_free (fork, EMPTY);
1410#endif
1023 array_free (prepare, EMPTY); 1411 array_free (prepare, EMPTY);
1024 array_free (check, EMPTY); 1412 array_free (check, EMPTY);
1413#if EV_ASYNC_ENABLE
1414 array_free (async, EMPTY);
1415#endif
1025 1416
1026 backend = 0; 1417 backend = 0;
1027} 1418}
1028 1419
1420#if EV_USE_INOTIFY
1029void inline_size infy_fork (EV_P); 1421void inline_size infy_fork (EV_P);
1422#endif
1030 1423
1031void inline_size 1424void inline_size
1032loop_fork (EV_P) 1425loop_fork (EV_P)
1033{ 1426{
1034#if EV_USE_PORT 1427#if EV_USE_PORT
1042#endif 1435#endif
1043#if EV_USE_INOTIFY 1436#if EV_USE_INOTIFY
1044 infy_fork (EV_A); 1437 infy_fork (EV_A);
1045#endif 1438#endif
1046 1439
1047 if (ev_is_active (&sigev)) 1440 if (ev_is_active (&pipeev))
1048 { 1441 {
1049 /* default loop */ 1442 /* this "locks" the handlers against writing to the pipe */
1443 /* while we modify the fd vars */
1444 gotsig = 1;
1445#if EV_ASYNC_ENABLE
1446 gotasync = 1;
1447#endif
1050 1448
1051 ev_ref (EV_A); 1449 ev_ref (EV_A);
1052 ev_io_stop (EV_A_ &sigev); 1450 ev_io_stop (EV_A_ &pipeev);
1451
1452#if EV_USE_EVENTFD
1453 if (evfd >= 0)
1454 close (evfd);
1455#endif
1456
1457 if (evpipe [0] >= 0)
1458 {
1053 close (sigpipe [0]); 1459 close (evpipe [0]);
1054 close (sigpipe [1]); 1460 close (evpipe [1]);
1461 }
1055 1462
1056 while (pipe (sigpipe))
1057 syserr ("(libev) error creating pipe");
1058
1059 siginit (EV_A); 1463 evpipe_init (EV_A);
1464 /* now iterate over everything, in case we missed something */
1465 pipecb (EV_A_ &pipeev, EV_READ);
1060 } 1466 }
1061 1467
1062 postfork = 0; 1468 postfork = 0;
1063} 1469}
1064 1470
1065#if EV_MULTIPLICITY 1471#if EV_MULTIPLICITY
1472
1066struct ev_loop * 1473struct ev_loop *
1067ev_loop_new (unsigned int flags) 1474ev_loop_new (unsigned int flags)
1068{ 1475{
1069 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1476 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1070 1477
1086} 1493}
1087 1494
1088void 1495void
1089ev_loop_fork (EV_P) 1496ev_loop_fork (EV_P)
1090{ 1497{
1091 postfork = 1; 1498 postfork = 1; /* must be in line with ev_default_fork */
1092} 1499}
1093 1500
1501#if EV_VERIFY
1502static void noinline
1503verify_watcher (EV_P_ W w)
1504{
1505 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1506
1507 if (w->pending)
1508 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1509}
1510
1511static void noinline
1512verify_heap (EV_P_ ANHE *heap, int N)
1513{
1514 int i;
1515
1516 for (i = HEAP0; i < N + HEAP0; ++i)
1517 {
1518 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1519 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1520 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1521
1522 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1523 }
1524}
1525
1526static void noinline
1527array_verify (EV_P_ W *ws, int cnt)
1528{
1529 while (cnt--)
1530 {
1531 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1532 verify_watcher (EV_A_ ws [cnt]);
1533 }
1534}
1535#endif
1536
1537void
1538ev_loop_verify (EV_P)
1539{
1540#if EV_VERIFY
1541 int i;
1542 WL w;
1543
1544 assert (activecnt >= -1);
1545
1546 assert (fdchangemax >= fdchangecnt);
1547 for (i = 0; i < fdchangecnt; ++i)
1548 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1549
1550 assert (anfdmax >= 0);
1551 for (i = 0; i < anfdmax; ++i)
1552 for (w = anfds [i].head; w; w = w->next)
1553 {
1554 verify_watcher (EV_A_ (W)w);
1555 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1556 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1557 }
1558
1559 assert (timermax >= timercnt);
1560 verify_heap (EV_A_ timers, timercnt);
1561
1562#if EV_PERIODIC_ENABLE
1563 assert (periodicmax >= periodiccnt);
1564 verify_heap (EV_A_ periodics, periodiccnt);
1565#endif
1566
1567 for (i = NUMPRI; i--; )
1568 {
1569 assert (pendingmax [i] >= pendingcnt [i]);
1570#if EV_IDLE_ENABLE
1571 assert (idleall >= 0);
1572 assert (idlemax [i] >= idlecnt [i]);
1573 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1574#endif
1575 }
1576
1577#if EV_FORK_ENABLE
1578 assert (forkmax >= forkcnt);
1579 array_verify (EV_A_ (W *)forks, forkcnt);
1580#endif
1581
1582#if EV_ASYNC_ENABLE
1583 assert (asyncmax >= asynccnt);
1584 array_verify (EV_A_ (W *)asyncs, asynccnt);
1585#endif
1586
1587 assert (preparemax >= preparecnt);
1588 array_verify (EV_A_ (W *)prepares, preparecnt);
1589
1590 assert (checkmax >= checkcnt);
1591 array_verify (EV_A_ (W *)checks, checkcnt);
1592
1593# if 0
1594 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1595 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1094#endif 1596# endif
1597#endif
1598}
1599
1600#endif /* multiplicity */
1095 1601
1096#if EV_MULTIPLICITY 1602#if EV_MULTIPLICITY
1097struct ev_loop * 1603struct ev_loop *
1098ev_default_loop_init (unsigned int flags) 1604ev_default_loop_init (unsigned int flags)
1099#else 1605#else
1100int 1606int
1101ev_default_loop (unsigned int flags) 1607ev_default_loop (unsigned int flags)
1102#endif 1608#endif
1103{ 1609{
1104 if (sigpipe [0] == sigpipe [1])
1105 if (pipe (sigpipe))
1106 return 0;
1107
1108 if (!ev_default_loop_ptr) 1610 if (!ev_default_loop_ptr)
1109 { 1611 {
1110#if EV_MULTIPLICITY 1612#if EV_MULTIPLICITY
1111 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1613 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1112#else 1614#else
1115 1617
1116 loop_init (EV_A_ flags); 1618 loop_init (EV_A_ flags);
1117 1619
1118 if (ev_backend (EV_A)) 1620 if (ev_backend (EV_A))
1119 { 1621 {
1120 siginit (EV_A);
1121
1122#ifndef _WIN32 1622#ifndef _WIN32
1123 ev_signal_init (&childev, childcb, SIGCHLD); 1623 ev_signal_init (&childev, childcb, SIGCHLD);
1124 ev_set_priority (&childev, EV_MAXPRI); 1624 ev_set_priority (&childev, EV_MAXPRI);
1125 ev_signal_start (EV_A_ &childev); 1625 ev_signal_start (EV_A_ &childev);
1126 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1626 ev_unref (EV_A); /* child watcher should not keep loop alive */
1143#ifndef _WIN32 1643#ifndef _WIN32
1144 ev_ref (EV_A); /* child watcher */ 1644 ev_ref (EV_A); /* child watcher */
1145 ev_signal_stop (EV_A_ &childev); 1645 ev_signal_stop (EV_A_ &childev);
1146#endif 1646#endif
1147 1647
1148 ev_ref (EV_A); /* signal watcher */
1149 ev_io_stop (EV_A_ &sigev);
1150
1151 close (sigpipe [0]); sigpipe [0] = 0;
1152 close (sigpipe [1]); sigpipe [1] = 0;
1153
1154 loop_destroy (EV_A); 1648 loop_destroy (EV_A);
1155} 1649}
1156 1650
1157void 1651void
1158ev_default_fork (void) 1652ev_default_fork (void)
1160#if EV_MULTIPLICITY 1654#if EV_MULTIPLICITY
1161 struct ev_loop *loop = ev_default_loop_ptr; 1655 struct ev_loop *loop = ev_default_loop_ptr;
1162#endif 1656#endif
1163 1657
1164 if (backend) 1658 if (backend)
1165 postfork = 1; 1659 postfork = 1; /* must be in line with ev_loop_fork */
1166} 1660}
1167 1661
1168/*****************************************************************************/ 1662/*****************************************************************************/
1169 1663
1170void 1664void
1187 { 1681 {
1188 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1682 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1189 1683
1190 p->w->pending = 0; 1684 p->w->pending = 0;
1191 EV_CB_INVOKE (p->w, p->events); 1685 EV_CB_INVOKE (p->w, p->events);
1686 EV_FREQUENT_CHECK;
1192 } 1687 }
1193 } 1688 }
1194} 1689}
1195
1196void inline_size
1197timers_reify (EV_P)
1198{
1199 while (timercnt && ((WT)timers [0])->at <= mn_now)
1200 {
1201 ev_timer *w = timers [0];
1202
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204
1205 /* first reschedule or stop timer */
1206 if (w->repeat)
1207 {
1208 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1209
1210 ((WT)w)->at += w->repeat;
1211 if (((WT)w)->at < mn_now)
1212 ((WT)w)->at = mn_now;
1213
1214 downheap ((WT *)timers, timercnt, 0);
1215 }
1216 else
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1220 }
1221}
1222
1223#if EV_PERIODIC_ENABLE
1224void inline_size
1225periodics_reify (EV_P)
1226{
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1228 {
1229 ev_periodic *w = periodics [0];
1230
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1232
1233 /* first reschedule or stop timer */
1234 if (w->reschedule_cb)
1235 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1238 downheap ((WT *)periodics, periodiccnt, 0);
1239 }
1240 else if (w->interval)
1241 {
1242 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1244 downheap ((WT *)periodics, periodiccnt, 0);
1245 }
1246 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1250 }
1251}
1252
1253static void noinline
1254periodics_reschedule (EV_P)
1255{
1256 int i;
1257
1258 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i)
1260 {
1261 ev_periodic *w = periodics [i];
1262
1263 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval)
1266 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1267 }
1268
1269 /* now rebuild the heap */
1270 for (i = periodiccnt >> 1; i--; )
1271 downheap ((WT *)periodics, periodiccnt, i);
1272}
1273#endif
1274 1690
1275#if EV_IDLE_ENABLE 1691#if EV_IDLE_ENABLE
1276void inline_size 1692void inline_size
1277idle_reify (EV_P) 1693idle_reify (EV_P)
1278{ 1694{
1293 } 1709 }
1294 } 1710 }
1295} 1711}
1296#endif 1712#endif
1297 1713
1298int inline_size 1714void inline_size
1299time_update_monotonic (EV_P) 1715timers_reify (EV_P)
1300{ 1716{
1717 EV_FREQUENT_CHECK;
1718
1719 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1720 {
1721 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1722
1723 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1724
1725 /* first reschedule or stop timer */
1726 if (w->repeat)
1727 {
1728 ev_at (w) += w->repeat;
1729 if (ev_at (w) < mn_now)
1730 ev_at (w) = mn_now;
1731
1732 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1733
1734 ANHE_at_cache (timers [HEAP0]);
1735 downheap (timers, timercnt, HEAP0);
1736 }
1737 else
1738 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1739
1740 EV_FREQUENT_CHECK;
1741 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1742 }
1743}
1744
1745#if EV_PERIODIC_ENABLE
1746void inline_size
1747periodics_reify (EV_P)
1748{
1749 EV_FREQUENT_CHECK;
1750
1751 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1752 {
1753 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1754
1755 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1756
1757 /* first reschedule or stop timer */
1758 if (w->reschedule_cb)
1759 {
1760 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1761
1762 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1763
1764 ANHE_at_cache (periodics [HEAP0]);
1765 downheap (periodics, periodiccnt, HEAP0);
1766 }
1767 else if (w->interval)
1768 {
1769 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1770 /* if next trigger time is not sufficiently in the future, put it there */
1771 /* this might happen because of floating point inexactness */
1772 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1773 {
1774 ev_at (w) += w->interval;
1775
1776 /* if interval is unreasonably low we might still have a time in the past */
1777 /* so correct this. this will make the periodic very inexact, but the user */
1778 /* has effectively asked to get triggered more often than possible */
1779 if (ev_at (w) < ev_rt_now)
1780 ev_at (w) = ev_rt_now;
1781 }
1782
1783 ANHE_at_cache (periodics [HEAP0]);
1784 downheap (periodics, periodiccnt, HEAP0);
1785 }
1786 else
1787 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1788
1789 EV_FREQUENT_CHECK;
1790 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1791 }
1792}
1793
1794static void noinline
1795periodics_reschedule (EV_P)
1796{
1797 int i;
1798
1799 /* adjust periodics after time jump */
1800 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1801 {
1802 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1803
1804 if (w->reschedule_cb)
1805 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1806 else if (w->interval)
1807 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1808
1809 ANHE_at_cache (periodics [i]);
1810 }
1811
1812 reheap (periodics, periodiccnt);
1813}
1814#endif
1815
1816void inline_speed
1817time_update (EV_P_ ev_tstamp max_block)
1818{
1819 int i;
1820
1821#if EV_USE_MONOTONIC
1822 if (expect_true (have_monotonic))
1823 {
1824 ev_tstamp odiff = rtmn_diff;
1825
1301 mn_now = get_clock (); 1826 mn_now = get_clock ();
1302 1827
1828 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1829 /* interpolate in the meantime */
1303 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1830 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1304 { 1831 {
1305 ev_rt_now = rtmn_diff + mn_now; 1832 ev_rt_now = rtmn_diff + mn_now;
1306 return 0; 1833 return;
1307 } 1834 }
1308 else 1835
1309 {
1310 now_floor = mn_now; 1836 now_floor = mn_now;
1311 ev_rt_now = ev_time (); 1837 ev_rt_now = ev_time ();
1312 return 1;
1313 }
1314}
1315 1838
1316void inline_size 1839 /* loop a few times, before making important decisions.
1317time_update (EV_P) 1840 * on the choice of "4": one iteration isn't enough,
1318{ 1841 * in case we get preempted during the calls to
1319 int i; 1842 * ev_time and get_clock. a second call is almost guaranteed
1320 1843 * to succeed in that case, though. and looping a few more times
1321#if EV_USE_MONOTONIC 1844 * doesn't hurt either as we only do this on time-jumps or
1322 if (expect_true (have_monotonic)) 1845 * in the unlikely event of having been preempted here.
1323 { 1846 */
1324 if (time_update_monotonic (EV_A)) 1847 for (i = 4; --i; )
1325 { 1848 {
1326 ev_tstamp odiff = rtmn_diff;
1327
1328 /* loop a few times, before making important decisions.
1329 * on the choice of "4": one iteration isn't enough,
1330 * in case we get preempted during the calls to
1331 * ev_time and get_clock. a second call is almost guaranteed
1332 * to succeed in that case, though. and looping a few more times
1333 * doesn't hurt either as we only do this on time-jumps or
1334 * in the unlikely event of having been preempted here.
1335 */
1336 for (i = 4; --i; )
1337 {
1338 rtmn_diff = ev_rt_now - mn_now; 1849 rtmn_diff = ev_rt_now - mn_now;
1339 1850
1340 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1851 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1341 return; /* all is well */ 1852 return; /* all is well */
1342 1853
1343 ev_rt_now = ev_time (); 1854 ev_rt_now = ev_time ();
1344 mn_now = get_clock (); 1855 mn_now = get_clock ();
1345 now_floor = mn_now; 1856 now_floor = mn_now;
1346 } 1857 }
1347 1858
1348# if EV_PERIODIC_ENABLE 1859# if EV_PERIODIC_ENABLE
1349 periodics_reschedule (EV_A); 1860 periodics_reschedule (EV_A);
1350# endif 1861# endif
1351 /* no timer adjustment, as the monotonic clock doesn't jump */ 1862 /* no timer adjustment, as the monotonic clock doesn't jump */
1352 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1863 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1353 }
1354 } 1864 }
1355 else 1865 else
1356#endif 1866#endif
1357 { 1867 {
1358 ev_rt_now = ev_time (); 1868 ev_rt_now = ev_time ();
1359 1869
1360 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1870 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1361 { 1871 {
1362#if EV_PERIODIC_ENABLE 1872#if EV_PERIODIC_ENABLE
1363 periodics_reschedule (EV_A); 1873 periodics_reschedule (EV_A);
1364#endif 1874#endif
1365
1366 /* adjust timers. this is easy, as the offset is the same for all of them */ 1875 /* adjust timers. this is easy, as the offset is the same for all of them */
1367 for (i = 0; i < timercnt; ++i) 1876 for (i = 0; i < timercnt; ++i)
1877 {
1878 ANHE *he = timers + i + HEAP0;
1368 ((WT)timers [i])->at += ev_rt_now - mn_now; 1879 ANHE_w (*he)->at += ev_rt_now - mn_now;
1880 ANHE_at_cache (*he);
1881 }
1369 } 1882 }
1370 1883
1371 mn_now = ev_rt_now; 1884 mn_now = ev_rt_now;
1372 } 1885 }
1373} 1886}
1382ev_unref (EV_P) 1895ev_unref (EV_P)
1383{ 1896{
1384 --activecnt; 1897 --activecnt;
1385} 1898}
1386 1899
1900void
1901ev_now_update (EV_P)
1902{
1903 time_update (EV_A_ 1e100);
1904}
1905
1387static int loop_done; 1906static int loop_done;
1388 1907
1389void 1908void
1390ev_loop (EV_P_ int flags) 1909ev_loop (EV_P_ int flags)
1391{ 1910{
1392 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1911 loop_done = EVUNLOOP_CANCEL;
1393 ? EVUNLOOP_ONE
1394 : EVUNLOOP_CANCEL;
1395 1912
1396 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1913 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1397 1914
1398 do 1915 do
1399 { 1916 {
1917#if EV_VERIFY >= 2
1918 ev_loop_verify (EV_A);
1919#endif
1920
1400#ifndef _WIN32 1921#ifndef _WIN32
1401 if (expect_false (curpid)) /* penalise the forking check even more */ 1922 if (expect_false (curpid)) /* penalise the forking check even more */
1402 if (expect_false (getpid () != curpid)) 1923 if (expect_false (getpid () != curpid))
1403 { 1924 {
1404 curpid = getpid (); 1925 curpid = getpid ();
1433 /* update fd-related kernel structures */ 1954 /* update fd-related kernel structures */
1434 fd_reify (EV_A); 1955 fd_reify (EV_A);
1435 1956
1436 /* calculate blocking time */ 1957 /* calculate blocking time */
1437 { 1958 {
1438 ev_tstamp block; 1959 ev_tstamp waittime = 0.;
1960 ev_tstamp sleeptime = 0.;
1439 1961
1440 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1962 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1441 block = 0.; /* do not block at all */
1442 else
1443 { 1963 {
1444 /* update time to cancel out callback processing overhead */ 1964 /* update time to cancel out callback processing overhead */
1445#if EV_USE_MONOTONIC
1446 if (expect_true (have_monotonic))
1447 time_update_monotonic (EV_A); 1965 time_update (EV_A_ 1e100);
1448 else
1449#endif
1450 {
1451 ev_rt_now = ev_time ();
1452 mn_now = ev_rt_now;
1453 }
1454 1966
1455 block = MAX_BLOCKTIME; 1967 waittime = MAX_BLOCKTIME;
1456 1968
1457 if (timercnt) 1969 if (timercnt)
1458 { 1970 {
1459 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1971 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1460 if (block > to) block = to; 1972 if (waittime > to) waittime = to;
1461 } 1973 }
1462 1974
1463#if EV_PERIODIC_ENABLE 1975#if EV_PERIODIC_ENABLE
1464 if (periodiccnt) 1976 if (periodiccnt)
1465 { 1977 {
1466 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1978 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1467 if (block > to) block = to; 1979 if (waittime > to) waittime = to;
1468 } 1980 }
1469#endif 1981#endif
1470 1982
1471 if (expect_false (block < 0.)) block = 0.; 1983 if (expect_false (waittime < timeout_blocktime))
1984 waittime = timeout_blocktime;
1985
1986 sleeptime = waittime - backend_fudge;
1987
1988 if (expect_true (sleeptime > io_blocktime))
1989 sleeptime = io_blocktime;
1990
1991 if (sleeptime)
1992 {
1993 ev_sleep (sleeptime);
1994 waittime -= sleeptime;
1995 }
1472 } 1996 }
1473 1997
1474 ++loop_count; 1998 ++loop_count;
1475 backend_poll (EV_A_ block); 1999 backend_poll (EV_A_ waittime);
2000
2001 /* update ev_rt_now, do magic */
2002 time_update (EV_A_ waittime + sleeptime);
1476 } 2003 }
1477
1478 /* update ev_rt_now, do magic */
1479 time_update (EV_A);
1480 2004
1481 /* queue pending timers and reschedule them */ 2005 /* queue pending timers and reschedule them */
1482 timers_reify (EV_A); /* relative timers called last */ 2006 timers_reify (EV_A); /* relative timers called last */
1483#if EV_PERIODIC_ENABLE 2007#if EV_PERIODIC_ENABLE
1484 periodics_reify (EV_A); /* absolute timers called first */ 2008 periodics_reify (EV_A); /* absolute timers called first */
1492 /* queue check watchers, to be executed first */ 2016 /* queue check watchers, to be executed first */
1493 if (expect_false (checkcnt)) 2017 if (expect_false (checkcnt))
1494 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2018 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1495 2019
1496 call_pending (EV_A); 2020 call_pending (EV_A);
1497
1498 } 2021 }
1499 while (expect_true (activecnt && !loop_done)); 2022 while (expect_true (
2023 activecnt
2024 && !loop_done
2025 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2026 ));
1500 2027
1501 if (loop_done == EVUNLOOP_ONE) 2028 if (loop_done == EVUNLOOP_ONE)
1502 loop_done = EVUNLOOP_CANCEL; 2029 loop_done = EVUNLOOP_CANCEL;
1503} 2030}
1504 2031
1546ev_clear_pending (EV_P_ void *w) 2073ev_clear_pending (EV_P_ void *w)
1547{ 2074{
1548 W w_ = (W)w; 2075 W w_ = (W)w;
1549 int pending = w_->pending; 2076 int pending = w_->pending;
1550 2077
1551 if (!pending) 2078 if (expect_true (pending))
2079 {
2080 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2081 w_->pending = 0;
2082 p->w = 0;
2083 return p->events;
2084 }
2085 else
1552 return 0; 2086 return 0;
1553
1554 w_->pending = 0;
1555 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1556 p->w = 0;
1557
1558 return p->events;
1559} 2087}
1560 2088
1561void inline_size 2089void inline_size
1562pri_adjust (EV_P_ W w) 2090pri_adjust (EV_P_ W w)
1563{ 2091{
1591 2119
1592 if (expect_false (ev_is_active (w))) 2120 if (expect_false (ev_is_active (w)))
1593 return; 2121 return;
1594 2122
1595 assert (("ev_io_start called with negative fd", fd >= 0)); 2123 assert (("ev_io_start called with negative fd", fd >= 0));
2124 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2125
2126 EV_FREQUENT_CHECK;
1596 2127
1597 ev_start (EV_A_ (W)w, 1); 2128 ev_start (EV_A_ (W)w, 1);
1598 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2129 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1599 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2130 wlist_add (&anfds[fd].head, (WL)w);
1600 2131
1601 fd_change (EV_A_ fd); 2132 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2133 w->events &= ~EV_IOFDSET;
2134
2135 EV_FREQUENT_CHECK;
1602} 2136}
1603 2137
1604void noinline 2138void noinline
1605ev_io_stop (EV_P_ ev_io *w) 2139ev_io_stop (EV_P_ ev_io *w)
1606{ 2140{
1607 clear_pending (EV_A_ (W)w); 2141 clear_pending (EV_A_ (W)w);
1608 if (expect_false (!ev_is_active (w))) 2142 if (expect_false (!ev_is_active (w)))
1609 return; 2143 return;
1610 2144
1611 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2145 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1612 2146
2147 EV_FREQUENT_CHECK;
2148
1613 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2149 wlist_del (&anfds[w->fd].head, (WL)w);
1614 ev_stop (EV_A_ (W)w); 2150 ev_stop (EV_A_ (W)w);
1615 2151
1616 fd_change (EV_A_ w->fd); 2152 fd_change (EV_A_ w->fd, 1);
2153
2154 EV_FREQUENT_CHECK;
1617} 2155}
1618 2156
1619void noinline 2157void noinline
1620ev_timer_start (EV_P_ ev_timer *w) 2158ev_timer_start (EV_P_ ev_timer *w)
1621{ 2159{
1622 if (expect_false (ev_is_active (w))) 2160 if (expect_false (ev_is_active (w)))
1623 return; 2161 return;
1624 2162
1625 ((WT)w)->at += mn_now; 2163 ev_at (w) += mn_now;
1626 2164
1627 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2165 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1628 2166
2167 EV_FREQUENT_CHECK;
2168
2169 ++timercnt;
1629 ev_start (EV_A_ (W)w, ++timercnt); 2170 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1630 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2171 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1631 timers [timercnt - 1] = w; 2172 ANHE_w (timers [ev_active (w)]) = (WT)w;
1632 upheap ((WT *)timers, timercnt - 1); 2173 ANHE_at_cache (timers [ev_active (w)]);
2174 upheap (timers, ev_active (w));
1633 2175
2176 EV_FREQUENT_CHECK;
2177
1634 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2178 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1635} 2179}
1636 2180
1637void noinline 2181void noinline
1638ev_timer_stop (EV_P_ ev_timer *w) 2182ev_timer_stop (EV_P_ ev_timer *w)
1639{ 2183{
1640 clear_pending (EV_A_ (W)w); 2184 clear_pending (EV_A_ (W)w);
1641 if (expect_false (!ev_is_active (w))) 2185 if (expect_false (!ev_is_active (w)))
1642 return; 2186 return;
1643 2187
1644 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2188 EV_FREQUENT_CHECK;
1645 2189
1646 { 2190 {
1647 int active = ((W)w)->active; 2191 int active = ev_active (w);
1648 2192
2193 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2194
2195 --timercnt;
2196
1649 if (expect_true (--active < --timercnt)) 2197 if (expect_true (active < timercnt + HEAP0))
1650 { 2198 {
1651 timers [active] = timers [timercnt]; 2199 timers [active] = timers [timercnt + HEAP0];
1652 adjustheap ((WT *)timers, timercnt, active); 2200 adjustheap (timers, timercnt, active);
1653 } 2201 }
1654 } 2202 }
1655 2203
1656 ((WT)w)->at -= mn_now; 2204 EV_FREQUENT_CHECK;
2205
2206 ev_at (w) -= mn_now;
1657 2207
1658 ev_stop (EV_A_ (W)w); 2208 ev_stop (EV_A_ (W)w);
1659} 2209}
1660 2210
1661void noinline 2211void noinline
1662ev_timer_again (EV_P_ ev_timer *w) 2212ev_timer_again (EV_P_ ev_timer *w)
1663{ 2213{
2214 EV_FREQUENT_CHECK;
2215
1664 if (ev_is_active (w)) 2216 if (ev_is_active (w))
1665 { 2217 {
1666 if (w->repeat) 2218 if (w->repeat)
1667 { 2219 {
1668 ((WT)w)->at = mn_now + w->repeat; 2220 ev_at (w) = mn_now + w->repeat;
2221 ANHE_at_cache (timers [ev_active (w)]);
1669 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2222 adjustheap (timers, timercnt, ev_active (w));
1670 } 2223 }
1671 else 2224 else
1672 ev_timer_stop (EV_A_ w); 2225 ev_timer_stop (EV_A_ w);
1673 } 2226 }
1674 else if (w->repeat) 2227 else if (w->repeat)
1675 { 2228 {
1676 w->at = w->repeat; 2229 ev_at (w) = w->repeat;
1677 ev_timer_start (EV_A_ w); 2230 ev_timer_start (EV_A_ w);
1678 } 2231 }
2232
2233 EV_FREQUENT_CHECK;
1679} 2234}
1680 2235
1681#if EV_PERIODIC_ENABLE 2236#if EV_PERIODIC_ENABLE
1682void noinline 2237void noinline
1683ev_periodic_start (EV_P_ ev_periodic *w) 2238ev_periodic_start (EV_P_ ev_periodic *w)
1684{ 2239{
1685 if (expect_false (ev_is_active (w))) 2240 if (expect_false (ev_is_active (w)))
1686 return; 2241 return;
1687 2242
1688 if (w->reschedule_cb) 2243 if (w->reschedule_cb)
1689 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2244 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1690 else if (w->interval) 2245 else if (w->interval)
1691 { 2246 {
1692 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2247 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1693 /* this formula differs from the one in periodic_reify because we do not always round up */ 2248 /* this formula differs from the one in periodic_reify because we do not always round up */
1694 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2249 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695 } 2250 }
2251 else
2252 ev_at (w) = w->offset;
1696 2253
2254 EV_FREQUENT_CHECK;
2255
2256 ++periodiccnt;
1697 ev_start (EV_A_ (W)w, ++periodiccnt); 2257 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1698 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2258 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1699 periodics [periodiccnt - 1] = w; 2259 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1700 upheap ((WT *)periodics, periodiccnt - 1); 2260 ANHE_at_cache (periodics [ev_active (w)]);
2261 upheap (periodics, ev_active (w));
1701 2262
2263 EV_FREQUENT_CHECK;
2264
1702 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2265 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1703} 2266}
1704 2267
1705void noinline 2268void noinline
1706ev_periodic_stop (EV_P_ ev_periodic *w) 2269ev_periodic_stop (EV_P_ ev_periodic *w)
1707{ 2270{
1708 clear_pending (EV_A_ (W)w); 2271 clear_pending (EV_A_ (W)w);
1709 if (expect_false (!ev_is_active (w))) 2272 if (expect_false (!ev_is_active (w)))
1710 return; 2273 return;
1711 2274
1712 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2275 EV_FREQUENT_CHECK;
1713 2276
1714 { 2277 {
1715 int active = ((W)w)->active; 2278 int active = ev_active (w);
1716 2279
2280 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2281
2282 --periodiccnt;
2283
1717 if (expect_true (--active < --periodiccnt)) 2284 if (expect_true (active < periodiccnt + HEAP0))
1718 { 2285 {
1719 periodics [active] = periodics [periodiccnt]; 2286 periodics [active] = periodics [periodiccnt + HEAP0];
1720 adjustheap ((WT *)periodics, periodiccnt, active); 2287 adjustheap (periodics, periodiccnt, active);
1721 } 2288 }
1722 } 2289 }
2290
2291 EV_FREQUENT_CHECK;
1723 2292
1724 ev_stop (EV_A_ (W)w); 2293 ev_stop (EV_A_ (W)w);
1725} 2294}
1726 2295
1727void noinline 2296void noinline
1746 if (expect_false (ev_is_active (w))) 2315 if (expect_false (ev_is_active (w)))
1747 return; 2316 return;
1748 2317
1749 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2318 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1750 2319
2320 evpipe_init (EV_A);
2321
2322 EV_FREQUENT_CHECK;
2323
2324 {
2325#ifndef _WIN32
2326 sigset_t full, prev;
2327 sigfillset (&full);
2328 sigprocmask (SIG_SETMASK, &full, &prev);
2329#endif
2330
2331 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2332
2333#ifndef _WIN32
2334 sigprocmask (SIG_SETMASK, &prev, 0);
2335#endif
2336 }
2337
1751 ev_start (EV_A_ (W)w, 1); 2338 ev_start (EV_A_ (W)w, 1);
1752 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1753 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2339 wlist_add (&signals [w->signum - 1].head, (WL)w);
1754 2340
1755 if (!((WL)w)->next) 2341 if (!((WL)w)->next)
1756 { 2342 {
1757#if _WIN32 2343#if _WIN32
1758 signal (w->signum, sighandler); 2344 signal (w->signum, ev_sighandler);
1759#else 2345#else
1760 struct sigaction sa; 2346 struct sigaction sa;
1761 sa.sa_handler = sighandler; 2347 sa.sa_handler = ev_sighandler;
1762 sigfillset (&sa.sa_mask); 2348 sigfillset (&sa.sa_mask);
1763 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2349 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1764 sigaction (w->signum, &sa, 0); 2350 sigaction (w->signum, &sa, 0);
1765#endif 2351#endif
1766 } 2352 }
2353
2354 EV_FREQUENT_CHECK;
1767} 2355}
1768 2356
1769void noinline 2357void noinline
1770ev_signal_stop (EV_P_ ev_signal *w) 2358ev_signal_stop (EV_P_ ev_signal *w)
1771{ 2359{
1772 clear_pending (EV_A_ (W)w); 2360 clear_pending (EV_A_ (W)w);
1773 if (expect_false (!ev_is_active (w))) 2361 if (expect_false (!ev_is_active (w)))
1774 return; 2362 return;
1775 2363
2364 EV_FREQUENT_CHECK;
2365
1776 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2366 wlist_del (&signals [w->signum - 1].head, (WL)w);
1777 ev_stop (EV_A_ (W)w); 2367 ev_stop (EV_A_ (W)w);
1778 2368
1779 if (!signals [w->signum - 1].head) 2369 if (!signals [w->signum - 1].head)
1780 signal (w->signum, SIG_DFL); 2370 signal (w->signum, SIG_DFL);
2371
2372 EV_FREQUENT_CHECK;
1781} 2373}
1782 2374
1783void 2375void
1784ev_child_start (EV_P_ ev_child *w) 2376ev_child_start (EV_P_ ev_child *w)
1785{ 2377{
1787 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2379 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1788#endif 2380#endif
1789 if (expect_false (ev_is_active (w))) 2381 if (expect_false (ev_is_active (w)))
1790 return; 2382 return;
1791 2383
2384 EV_FREQUENT_CHECK;
2385
1792 ev_start (EV_A_ (W)w, 1); 2386 ev_start (EV_A_ (W)w, 1);
1793 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2387 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2388
2389 EV_FREQUENT_CHECK;
1794} 2390}
1795 2391
1796void 2392void
1797ev_child_stop (EV_P_ ev_child *w) 2393ev_child_stop (EV_P_ ev_child *w)
1798{ 2394{
1799 clear_pending (EV_A_ (W)w); 2395 clear_pending (EV_A_ (W)w);
1800 if (expect_false (!ev_is_active (w))) 2396 if (expect_false (!ev_is_active (w)))
1801 return; 2397 return;
1802 2398
2399 EV_FREQUENT_CHECK;
2400
1803 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2401 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1804 ev_stop (EV_A_ (W)w); 2402 ev_stop (EV_A_ (W)w);
2403
2404 EV_FREQUENT_CHECK;
1805} 2405}
1806 2406
1807#if EV_STAT_ENABLE 2407#if EV_STAT_ENABLE
1808 2408
1809# ifdef _WIN32 2409# ifdef _WIN32
1827 if (w->wd < 0) 2427 if (w->wd < 0)
1828 { 2428 {
1829 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2429 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1830 2430
1831 /* monitor some parent directory for speedup hints */ 2431 /* monitor some parent directory for speedup hints */
2432 /* note that exceeding the hardcoded limit is not a correctness issue, */
2433 /* but an efficiency issue only */
1832 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2434 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1833 { 2435 {
1834 char path [4096]; 2436 char path [4096];
1835 strcpy (path, w->path); 2437 strcpy (path, w->path);
1836 2438
1876 2478
1877static void noinline 2479static void noinline
1878infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2480infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1879{ 2481{
1880 if (slot < 0) 2482 if (slot < 0)
1881 /* overflow, need to check for all hahs slots */ 2483 /* overflow, need to check for all hash slots */
1882 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2484 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1883 infy_wd (EV_A_ slot, wd, ev); 2485 infy_wd (EV_A_ slot, wd, ev);
1884 else 2486 else
1885 { 2487 {
1886 WL w_; 2488 WL w_;
1920infy_init (EV_P) 2522infy_init (EV_P)
1921{ 2523{
1922 if (fs_fd != -2) 2524 if (fs_fd != -2)
1923 return; 2525 return;
1924 2526
2527 /* kernels < 2.6.25 are borked
2528 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2529 */
2530 {
2531 struct utsname buf;
2532 int major, minor, micro;
2533
2534 fs_fd = -1;
2535
2536 if (uname (&buf))
2537 return;
2538
2539 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2540 return;
2541
2542 if (major < 2
2543 || (major == 2 && minor < 6)
2544 || (major == 2 && minor == 6 && micro < 25))
2545 return;
2546 }
2547
1925 fs_fd = inotify_init (); 2548 fs_fd = inotify_init ();
1926 2549
1927 if (fs_fd >= 0) 2550 if (fs_fd >= 0)
1928 { 2551 {
1929 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 2552 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1958 if (fs_fd >= 0) 2581 if (fs_fd >= 0)
1959 infy_add (EV_A_ w); /* re-add, no matter what */ 2582 infy_add (EV_A_ w); /* re-add, no matter what */
1960 else 2583 else
1961 ev_timer_start (EV_A_ &w->timer); 2584 ev_timer_start (EV_A_ &w->timer);
1962 } 2585 }
1963
1964 } 2586 }
1965} 2587}
1966 2588
2589#endif
2590
2591#ifdef _WIN32
2592# define EV_LSTAT(p,b) _stati64 (p, b)
2593#else
2594# define EV_LSTAT(p,b) lstat (p, b)
1967#endif 2595#endif
1968 2596
1969void 2597void
1970ev_stat_stat (EV_P_ ev_stat *w) 2598ev_stat_stat (EV_P_ ev_stat *w)
1971{ 2599{
1998 || w->prev.st_atime != w->attr.st_atime 2626 || w->prev.st_atime != w->attr.st_atime
1999 || w->prev.st_mtime != w->attr.st_mtime 2627 || w->prev.st_mtime != w->attr.st_mtime
2000 || w->prev.st_ctime != w->attr.st_ctime 2628 || w->prev.st_ctime != w->attr.st_ctime
2001 ) { 2629 ) {
2002 #if EV_USE_INOTIFY 2630 #if EV_USE_INOTIFY
2631 if (fs_fd >= 0)
2632 {
2003 infy_del (EV_A_ w); 2633 infy_del (EV_A_ w);
2004 infy_add (EV_A_ w); 2634 infy_add (EV_A_ w);
2005 ev_stat_stat (EV_A_ w); /* avoid race... */ 2635 ev_stat_stat (EV_A_ w); /* avoid race... */
2636 }
2006 #endif 2637 #endif
2007 2638
2008 ev_feed_event (EV_A_ w, EV_STAT); 2639 ev_feed_event (EV_A_ w, EV_STAT);
2009 } 2640 }
2010} 2641}
2035 else 2666 else
2036#endif 2667#endif
2037 ev_timer_start (EV_A_ &w->timer); 2668 ev_timer_start (EV_A_ &w->timer);
2038 2669
2039 ev_start (EV_A_ (W)w, 1); 2670 ev_start (EV_A_ (W)w, 1);
2671
2672 EV_FREQUENT_CHECK;
2040} 2673}
2041 2674
2042void 2675void
2043ev_stat_stop (EV_P_ ev_stat *w) 2676ev_stat_stop (EV_P_ ev_stat *w)
2044{ 2677{
2045 clear_pending (EV_A_ (W)w); 2678 clear_pending (EV_A_ (W)w);
2046 if (expect_false (!ev_is_active (w))) 2679 if (expect_false (!ev_is_active (w)))
2047 return; 2680 return;
2048 2681
2682 EV_FREQUENT_CHECK;
2683
2049#if EV_USE_INOTIFY 2684#if EV_USE_INOTIFY
2050 infy_del (EV_A_ w); 2685 infy_del (EV_A_ w);
2051#endif 2686#endif
2052 ev_timer_stop (EV_A_ &w->timer); 2687 ev_timer_stop (EV_A_ &w->timer);
2053 2688
2054 ev_stop (EV_A_ (W)w); 2689 ev_stop (EV_A_ (W)w);
2690
2691 EV_FREQUENT_CHECK;
2055} 2692}
2056#endif 2693#endif
2057 2694
2058#if EV_IDLE_ENABLE 2695#if EV_IDLE_ENABLE
2059void 2696void
2061{ 2698{
2062 if (expect_false (ev_is_active (w))) 2699 if (expect_false (ev_is_active (w)))
2063 return; 2700 return;
2064 2701
2065 pri_adjust (EV_A_ (W)w); 2702 pri_adjust (EV_A_ (W)w);
2703
2704 EV_FREQUENT_CHECK;
2066 2705
2067 { 2706 {
2068 int active = ++idlecnt [ABSPRI (w)]; 2707 int active = ++idlecnt [ABSPRI (w)];
2069 2708
2070 ++idleall; 2709 ++idleall;
2071 ev_start (EV_A_ (W)w, active); 2710 ev_start (EV_A_ (W)w, active);
2072 2711
2073 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2712 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2074 idles [ABSPRI (w)][active - 1] = w; 2713 idles [ABSPRI (w)][active - 1] = w;
2075 } 2714 }
2715
2716 EV_FREQUENT_CHECK;
2076} 2717}
2077 2718
2078void 2719void
2079ev_idle_stop (EV_P_ ev_idle *w) 2720ev_idle_stop (EV_P_ ev_idle *w)
2080{ 2721{
2081 clear_pending (EV_A_ (W)w); 2722 clear_pending (EV_A_ (W)w);
2082 if (expect_false (!ev_is_active (w))) 2723 if (expect_false (!ev_is_active (w)))
2083 return; 2724 return;
2084 2725
2726 EV_FREQUENT_CHECK;
2727
2085 { 2728 {
2086 int active = ((W)w)->active; 2729 int active = ev_active (w);
2087 2730
2088 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2731 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2089 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2732 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2090 2733
2091 ev_stop (EV_A_ (W)w); 2734 ev_stop (EV_A_ (W)w);
2092 --idleall; 2735 --idleall;
2093 } 2736 }
2737
2738 EV_FREQUENT_CHECK;
2094} 2739}
2095#endif 2740#endif
2096 2741
2097void 2742void
2098ev_prepare_start (EV_P_ ev_prepare *w) 2743ev_prepare_start (EV_P_ ev_prepare *w)
2099{ 2744{
2100 if (expect_false (ev_is_active (w))) 2745 if (expect_false (ev_is_active (w)))
2101 return; 2746 return;
2747
2748 EV_FREQUENT_CHECK;
2102 2749
2103 ev_start (EV_A_ (W)w, ++preparecnt); 2750 ev_start (EV_A_ (W)w, ++preparecnt);
2104 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2751 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2105 prepares [preparecnt - 1] = w; 2752 prepares [preparecnt - 1] = w;
2753
2754 EV_FREQUENT_CHECK;
2106} 2755}
2107 2756
2108void 2757void
2109ev_prepare_stop (EV_P_ ev_prepare *w) 2758ev_prepare_stop (EV_P_ ev_prepare *w)
2110{ 2759{
2111 clear_pending (EV_A_ (W)w); 2760 clear_pending (EV_A_ (W)w);
2112 if (expect_false (!ev_is_active (w))) 2761 if (expect_false (!ev_is_active (w)))
2113 return; 2762 return;
2114 2763
2764 EV_FREQUENT_CHECK;
2765
2115 { 2766 {
2116 int active = ((W)w)->active; 2767 int active = ev_active (w);
2768
2117 prepares [active - 1] = prepares [--preparecnt]; 2769 prepares [active - 1] = prepares [--preparecnt];
2118 ((W)prepares [active - 1])->active = active; 2770 ev_active (prepares [active - 1]) = active;
2119 } 2771 }
2120 2772
2121 ev_stop (EV_A_ (W)w); 2773 ev_stop (EV_A_ (W)w);
2774
2775 EV_FREQUENT_CHECK;
2122} 2776}
2123 2777
2124void 2778void
2125ev_check_start (EV_P_ ev_check *w) 2779ev_check_start (EV_P_ ev_check *w)
2126{ 2780{
2127 if (expect_false (ev_is_active (w))) 2781 if (expect_false (ev_is_active (w)))
2128 return; 2782 return;
2783
2784 EV_FREQUENT_CHECK;
2129 2785
2130 ev_start (EV_A_ (W)w, ++checkcnt); 2786 ev_start (EV_A_ (W)w, ++checkcnt);
2131 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2787 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2132 checks [checkcnt - 1] = w; 2788 checks [checkcnt - 1] = w;
2789
2790 EV_FREQUENT_CHECK;
2133} 2791}
2134 2792
2135void 2793void
2136ev_check_stop (EV_P_ ev_check *w) 2794ev_check_stop (EV_P_ ev_check *w)
2137{ 2795{
2138 clear_pending (EV_A_ (W)w); 2796 clear_pending (EV_A_ (W)w);
2139 if (expect_false (!ev_is_active (w))) 2797 if (expect_false (!ev_is_active (w)))
2140 return; 2798 return;
2141 2799
2800 EV_FREQUENT_CHECK;
2801
2142 { 2802 {
2143 int active = ((W)w)->active; 2803 int active = ev_active (w);
2804
2144 checks [active - 1] = checks [--checkcnt]; 2805 checks [active - 1] = checks [--checkcnt];
2145 ((W)checks [active - 1])->active = active; 2806 ev_active (checks [active - 1]) = active;
2146 } 2807 }
2147 2808
2148 ev_stop (EV_A_ (W)w); 2809 ev_stop (EV_A_ (W)w);
2810
2811 EV_FREQUENT_CHECK;
2149} 2812}
2150 2813
2151#if EV_EMBED_ENABLE 2814#if EV_EMBED_ENABLE
2152void noinline 2815void noinline
2153ev_embed_sweep (EV_P_ ev_embed *w) 2816ev_embed_sweep (EV_P_ ev_embed *w)
2154{ 2817{
2155 ev_loop (w->loop, EVLOOP_NONBLOCK); 2818 ev_loop (w->other, EVLOOP_NONBLOCK);
2156} 2819}
2157 2820
2158static void 2821static void
2159embed_cb (EV_P_ ev_io *io, int revents) 2822embed_io_cb (EV_P_ ev_io *io, int revents)
2160{ 2823{
2161 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2824 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2162 2825
2163 if (ev_cb (w)) 2826 if (ev_cb (w))
2164 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2827 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2165 else 2828 else
2166 ev_embed_sweep (loop, w); 2829 ev_loop (w->other, EVLOOP_NONBLOCK);
2167} 2830}
2831
2832static void
2833embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2834{
2835 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2836
2837 {
2838 struct ev_loop *loop = w->other;
2839
2840 while (fdchangecnt)
2841 {
2842 fd_reify (EV_A);
2843 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2844 }
2845 }
2846}
2847
2848static void
2849embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2850{
2851 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2852
2853 {
2854 struct ev_loop *loop = w->other;
2855
2856 ev_loop_fork (EV_A);
2857 }
2858}
2859
2860#if 0
2861static void
2862embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2863{
2864 ev_idle_stop (EV_A_ idle);
2865}
2866#endif
2168 2867
2169void 2868void
2170ev_embed_start (EV_P_ ev_embed *w) 2869ev_embed_start (EV_P_ ev_embed *w)
2171{ 2870{
2172 if (expect_false (ev_is_active (w))) 2871 if (expect_false (ev_is_active (w)))
2173 return; 2872 return;
2174 2873
2175 { 2874 {
2176 struct ev_loop *loop = w->loop; 2875 struct ev_loop *loop = w->other;
2177 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2876 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2178 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2877 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2179 } 2878 }
2879
2880 EV_FREQUENT_CHECK;
2180 2881
2181 ev_set_priority (&w->io, ev_priority (w)); 2882 ev_set_priority (&w->io, ev_priority (w));
2182 ev_io_start (EV_A_ &w->io); 2883 ev_io_start (EV_A_ &w->io);
2183 2884
2885 ev_prepare_init (&w->prepare, embed_prepare_cb);
2886 ev_set_priority (&w->prepare, EV_MINPRI);
2887 ev_prepare_start (EV_A_ &w->prepare);
2888
2889 ev_fork_init (&w->fork, embed_fork_cb);
2890 ev_fork_start (EV_A_ &w->fork);
2891
2892 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2893
2184 ev_start (EV_A_ (W)w, 1); 2894 ev_start (EV_A_ (W)w, 1);
2895
2896 EV_FREQUENT_CHECK;
2185} 2897}
2186 2898
2187void 2899void
2188ev_embed_stop (EV_P_ ev_embed *w) 2900ev_embed_stop (EV_P_ ev_embed *w)
2189{ 2901{
2190 clear_pending (EV_A_ (W)w); 2902 clear_pending (EV_A_ (W)w);
2191 if (expect_false (!ev_is_active (w))) 2903 if (expect_false (!ev_is_active (w)))
2192 return; 2904 return;
2193 2905
2906 EV_FREQUENT_CHECK;
2907
2194 ev_io_stop (EV_A_ &w->io); 2908 ev_io_stop (EV_A_ &w->io);
2909 ev_prepare_stop (EV_A_ &w->prepare);
2910 ev_fork_stop (EV_A_ &w->fork);
2195 2911
2196 ev_stop (EV_A_ (W)w); 2912 EV_FREQUENT_CHECK;
2197} 2913}
2198#endif 2914#endif
2199 2915
2200#if EV_FORK_ENABLE 2916#if EV_FORK_ENABLE
2201void 2917void
2202ev_fork_start (EV_P_ ev_fork *w) 2918ev_fork_start (EV_P_ ev_fork *w)
2203{ 2919{
2204 if (expect_false (ev_is_active (w))) 2920 if (expect_false (ev_is_active (w)))
2205 return; 2921 return;
2922
2923 EV_FREQUENT_CHECK;
2206 2924
2207 ev_start (EV_A_ (W)w, ++forkcnt); 2925 ev_start (EV_A_ (W)w, ++forkcnt);
2208 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2926 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2209 forks [forkcnt - 1] = w; 2927 forks [forkcnt - 1] = w;
2928
2929 EV_FREQUENT_CHECK;
2210} 2930}
2211 2931
2212void 2932void
2213ev_fork_stop (EV_P_ ev_fork *w) 2933ev_fork_stop (EV_P_ ev_fork *w)
2214{ 2934{
2215 clear_pending (EV_A_ (W)w); 2935 clear_pending (EV_A_ (W)w);
2216 if (expect_false (!ev_is_active (w))) 2936 if (expect_false (!ev_is_active (w)))
2217 return; 2937 return;
2218 2938
2939 EV_FREQUENT_CHECK;
2940
2219 { 2941 {
2220 int active = ((W)w)->active; 2942 int active = ev_active (w);
2943
2221 forks [active - 1] = forks [--forkcnt]; 2944 forks [active - 1] = forks [--forkcnt];
2222 ((W)forks [active - 1])->active = active; 2945 ev_active (forks [active - 1]) = active;
2223 } 2946 }
2224 2947
2225 ev_stop (EV_A_ (W)w); 2948 ev_stop (EV_A_ (W)w);
2949
2950 EV_FREQUENT_CHECK;
2951}
2952#endif
2953
2954#if EV_ASYNC_ENABLE
2955void
2956ev_async_start (EV_P_ ev_async *w)
2957{
2958 if (expect_false (ev_is_active (w)))
2959 return;
2960
2961 evpipe_init (EV_A);
2962
2963 EV_FREQUENT_CHECK;
2964
2965 ev_start (EV_A_ (W)w, ++asynccnt);
2966 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2967 asyncs [asynccnt - 1] = w;
2968
2969 EV_FREQUENT_CHECK;
2970}
2971
2972void
2973ev_async_stop (EV_P_ ev_async *w)
2974{
2975 clear_pending (EV_A_ (W)w);
2976 if (expect_false (!ev_is_active (w)))
2977 return;
2978
2979 EV_FREQUENT_CHECK;
2980
2981 {
2982 int active = ev_active (w);
2983
2984 asyncs [active - 1] = asyncs [--asynccnt];
2985 ev_active (asyncs [active - 1]) = active;
2986 }
2987
2988 ev_stop (EV_A_ (W)w);
2989
2990 EV_FREQUENT_CHECK;
2991}
2992
2993void
2994ev_async_send (EV_P_ ev_async *w)
2995{
2996 w->sent = 1;
2997 evpipe_write (EV_A_ &gotasync);
2226} 2998}
2227#endif 2999#endif
2228 3000
2229/*****************************************************************************/ 3001/*****************************************************************************/
2230 3002
2240once_cb (EV_P_ struct ev_once *once, int revents) 3012once_cb (EV_P_ struct ev_once *once, int revents)
2241{ 3013{
2242 void (*cb)(int revents, void *arg) = once->cb; 3014 void (*cb)(int revents, void *arg) = once->cb;
2243 void *arg = once->arg; 3015 void *arg = once->arg;
2244 3016
2245 ev_io_stop (EV_A_ &once->io); 3017 ev_io_stop (EV_A_ &once->io);
2246 ev_timer_stop (EV_A_ &once->to); 3018 ev_timer_stop (EV_A_ &once->to);
2247 ev_free (once); 3019 ev_free (once);
2248 3020
2249 cb (revents, arg); 3021 cb (revents, arg);
2250} 3022}
2251 3023
2252static void 3024static void
2253once_cb_io (EV_P_ ev_io *w, int revents) 3025once_cb_io (EV_P_ ev_io *w, int revents)
2254{ 3026{
2255 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3027 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3028
3029 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2256} 3030}
2257 3031
2258static void 3032static void
2259once_cb_to (EV_P_ ev_timer *w, int revents) 3033once_cb_to (EV_P_ ev_timer *w, int revents)
2260{ 3034{
2261 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3035 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3036
3037 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2262} 3038}
2263 3039
2264void 3040void
2265ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3041ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2266{ 3042{
2288 ev_timer_set (&once->to, timeout, 0.); 3064 ev_timer_set (&once->to, timeout, 0.);
2289 ev_timer_start (EV_A_ &once->to); 3065 ev_timer_start (EV_A_ &once->to);
2290 } 3066 }
2291} 3067}
2292 3068
3069#if EV_MULTIPLICITY
3070 #include "ev_wrap.h"
3071#endif
3072
2293#ifdef __cplusplus 3073#ifdef __cplusplus
2294} 3074}
2295#endif 3075#endif
2296 3076

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines