ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.171 by root, Sun Dec 9 02:12:43 2007 UTC vs.
Revision 1.306 by root, Sun Jul 19 06:35:25 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
56# endif 87# endif
57# endif 88# endif
58 89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
111#include <fcntl.h> 158#include <fcntl.h>
129#ifndef _WIN32 176#ifndef _WIN32
130# include <sys/time.h> 177# include <sys/time.h>
131# include <sys/wait.h> 178# include <sys/wait.h>
132# include <unistd.h> 179# include <unistd.h>
133#else 180#else
181# include <io.h>
134# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 183# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
138# endif 186# endif
139#endif 187#endif
140 188
141/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192/* one some platforms, NSIG is one too large. we do not bother */
193#if defined (EV_NSIG)
194/* use what's provided */
195#elif defined (NSIG)
196# define EV_NSIG (NSIG)
197#elif defined(_NSIG)
198# define EV_NSIG (_NSIG)
199#elif defined (SIGMAX)
200# define EV_NSIG (SIGMAX+1)
201#elif defined (SIG_MAX)
202# define EV_NSIG (SIG_MAX+1)
203#elif defined (_SIG_MAX)
204# define EV_NSIG (_SIG_MAX+1)
205#elif defined (MAXSIG)
206# define EV_NSIG (MAXSIG+1)
207#elif defined (MAX_SIG)
208# define EV_NSIG (MAX_SIG+1)
209#elif defined (SIGARRAYSIZE)
210# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
211#elif defined (_sys_nsig)
212# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
213#else
214# error "unable to find value for NSIG, please report"
215/* to make it compile regardless, just remove the above line */
216# define EV_NSIG 65
217#endif
218
219#ifndef EV_USE_CLOCK_SYSCALL
220# if __linux && __GLIBC__ >= 2
221# define EV_USE_CLOCK_SYSCALL 1
222# else
223# define EV_USE_CLOCK_SYSCALL 0
224# endif
225#endif
142 226
143#ifndef EV_USE_MONOTONIC 227#ifndef EV_USE_MONOTONIC
228# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
229# define EV_USE_MONOTONIC 1
230# else
144# define EV_USE_MONOTONIC 0 231# define EV_USE_MONOTONIC 0
232# endif
145#endif 233#endif
146 234
147#ifndef EV_USE_REALTIME 235#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 236# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
237#endif
238
239#ifndef EV_USE_NANOSLEEP
240# if _POSIX_C_SOURCE >= 199309L
241# define EV_USE_NANOSLEEP 1
242# else
243# define EV_USE_NANOSLEEP 0
244# endif
149#endif 245#endif
150 246
151#ifndef EV_USE_SELECT 247#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 248# define EV_USE_SELECT 1
153#endif 249#endif
159# define EV_USE_POLL 1 255# define EV_USE_POLL 1
160# endif 256# endif
161#endif 257#endif
162 258
163#ifndef EV_USE_EPOLL 259#ifndef EV_USE_EPOLL
260# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
261# define EV_USE_EPOLL 1
262# else
164# define EV_USE_EPOLL 0 263# define EV_USE_EPOLL 0
264# endif
165#endif 265#endif
166 266
167#ifndef EV_USE_KQUEUE 267#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 268# define EV_USE_KQUEUE 0
169#endif 269#endif
171#ifndef EV_USE_PORT 271#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 272# define EV_USE_PORT 0
173#endif 273#endif
174 274
175#ifndef EV_USE_INOTIFY 275#ifndef EV_USE_INOTIFY
276# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
277# define EV_USE_INOTIFY 1
278# else
176# define EV_USE_INOTIFY 0 279# define EV_USE_INOTIFY 0
280# endif
177#endif 281#endif
178 282
179#ifndef EV_PID_HASHSIZE 283#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 284# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 285# define EV_PID_HASHSIZE 1
190# else 294# else
191# define EV_INOTIFY_HASHSIZE 16 295# define EV_INOTIFY_HASHSIZE 16
192# endif 296# endif
193#endif 297#endif
194 298
195/**/ 299#ifndef EV_USE_EVENTFD
300# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
301# define EV_USE_EVENTFD 1
302# else
303# define EV_USE_EVENTFD 0
304# endif
305#endif
306
307#ifndef EV_USE_SIGNALFD
308# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
309# define EV_USE_SIGNALFD 1
310# else
311# define EV_USE_SIGNALFD 0
312# endif
313#endif
314
315#if 0 /* debugging */
316# define EV_VERIFY 3
317# define EV_USE_4HEAP 1
318# define EV_HEAP_CACHE_AT 1
319#endif
320
321#ifndef EV_VERIFY
322# define EV_VERIFY !EV_MINIMAL
323#endif
324
325#ifndef EV_USE_4HEAP
326# define EV_USE_4HEAP !EV_MINIMAL
327#endif
328
329#ifndef EV_HEAP_CACHE_AT
330# define EV_HEAP_CACHE_AT !EV_MINIMAL
331#endif
332
333/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
334/* which makes programs even slower. might work on other unices, too. */
335#if EV_USE_CLOCK_SYSCALL
336# include <syscall.h>
337# ifdef SYS_clock_gettime
338# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
339# undef EV_USE_MONOTONIC
340# define EV_USE_MONOTONIC 1
341# else
342# undef EV_USE_CLOCK_SYSCALL
343# define EV_USE_CLOCK_SYSCALL 0
344# endif
345#endif
346
347/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 348
197#ifndef CLOCK_MONOTONIC 349#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 350# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 351# define EV_USE_MONOTONIC 0
200#endif 352#endif
202#ifndef CLOCK_REALTIME 354#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 355# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 356# define EV_USE_REALTIME 0
205#endif 357#endif
206 358
359#if !EV_STAT_ENABLE
360# undef EV_USE_INOTIFY
361# define EV_USE_INOTIFY 0
362#endif
363
364#if !EV_USE_NANOSLEEP
365# ifndef _WIN32
366# include <sys/select.h>
367# endif
368#endif
369
370#if EV_USE_INOTIFY
371# include <sys/utsname.h>
372# include <sys/statfs.h>
373# include <sys/inotify.h>
374/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
375# ifndef IN_DONT_FOLLOW
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378# endif
379#endif
380
207#if EV_SELECT_IS_WINSOCKET 381#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 382# include <winsock.h>
209#endif 383#endif
210 384
211#if !EV_STAT_ENABLE 385#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 386/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
387# include <stdint.h>
388# ifndef EFD_NONBLOCK
389# define EFD_NONBLOCK O_NONBLOCK
213#endif 390# endif
391# ifndef EFD_CLOEXEC
392# define EFD_CLOEXEC O_CLOEXEC
393# endif
394# ifdef __cplusplus
395extern "C" {
396# endif
397int eventfd (unsigned int initval, int flags);
398# ifdef __cplusplus
399}
400# endif
401#endif
214 402
215#if EV_USE_INOTIFY 403#if EV_USE_SIGNALFD
216# include <sys/inotify.h> 404# include <sys/signalfd.h>
217#endif 405#endif
218 406
219/**/ 407/**/
408
409#if EV_VERIFY >= 3
410# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
411#else
412# define EV_FREQUENT_CHECK do { } while (0)
413#endif
414
415/*
416 * This is used to avoid floating point rounding problems.
417 * It is added to ev_rt_now when scheduling periodics
418 * to ensure progress, time-wise, even when rounding
419 * errors are against us.
420 * This value is good at least till the year 4000.
421 * Better solutions welcome.
422 */
423#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 424
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 425#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 426#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 427/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 428
225#if __GNUC__ >= 3 429#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 430# define expect(expr,value) __builtin_expect ((expr),(value))
227# define noinline __attribute__ ((noinline)) 431# define noinline __attribute__ ((noinline))
228#else 432#else
229# define expect(expr,value) (expr) 433# define expect(expr,value) (expr)
230# define noinline 434# define noinline
231# if __STDC_VERSION__ < 199901L 435# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
232# define inline 436# define inline
233# endif 437# endif
234#endif 438#endif
235 439
236#define expect_false(expr) expect ((expr) != 0, 0) 440#define expect_false(expr) expect ((expr) != 0, 0)
241# define inline_speed static noinline 445# define inline_speed static noinline
242#else 446#else
243# define inline_speed static inline 447# define inline_speed static inline
244#endif 448#endif
245 449
246#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 450#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
451
452#if EV_MINPRI == EV_MAXPRI
453# define ABSPRI(w) (((W)w), 0)
454#else
247#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 455# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
456#endif
248 457
249#define EMPTY /* required for microsofts broken pseudo-c compiler */ 458#define EMPTY /* required for microsofts broken pseudo-c compiler */
250#define EMPTY2(a,b) /* used to suppress some warnings */ 459#define EMPTY2(a,b) /* used to suppress some warnings */
251 460
252typedef ev_watcher *W; 461typedef ev_watcher *W;
253typedef ev_watcher_list *WL; 462typedef ev_watcher_list *WL;
254typedef ev_watcher_time *WT; 463typedef ev_watcher_time *WT;
255 464
465#define ev_active(w) ((W)(w))->active
466#define ev_at(w) ((WT)(w))->at
467
468#if EV_USE_REALTIME
469/* sig_atomic_t is used to avoid per-thread variables or locking but still */
470/* giving it a reasonably high chance of working on typical architetcures */
471static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
472#endif
473
474#if EV_USE_MONOTONIC
256static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 475static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
476#endif
257 477
258#ifdef _WIN32 478#ifdef _WIN32
259# include "ev_win32.c" 479# include "ev_win32.c"
260#endif 480#endif
261 481
268{ 488{
269 syserr_cb = cb; 489 syserr_cb = cb;
270} 490}
271 491
272static void noinline 492static void noinline
273syserr (const char *msg) 493ev_syserr (const char *msg)
274{ 494{
275 if (!msg) 495 if (!msg)
276 msg = "(libev) system error"; 496 msg = "(libev) system error";
277 497
278 if (syserr_cb) 498 if (syserr_cb)
282 perror (msg); 502 perror (msg);
283 abort (); 503 abort ();
284 } 504 }
285} 505}
286 506
507static void *
508ev_realloc_emul (void *ptr, long size)
509{
510 /* some systems, notably openbsd and darwin, fail to properly
511 * implement realloc (x, 0) (as required by both ansi c-98 and
512 * the single unix specification, so work around them here.
513 */
514
515 if (size)
516 return realloc (ptr, size);
517
518 free (ptr);
519 return 0;
520}
521
287static void *(*alloc)(void *ptr, long size); 522static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
288 523
289void 524void
290ev_set_allocator (void *(*cb)(void *ptr, long size)) 525ev_set_allocator (void *(*cb)(void *ptr, long size))
291{ 526{
292 alloc = cb; 527 alloc = cb;
293} 528}
294 529
295inline_speed void * 530inline_speed void *
296ev_realloc (void *ptr, long size) 531ev_realloc (void *ptr, long size)
297{ 532{
298 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 533 ptr = alloc (ptr, size);
299 534
300 if (!ptr && size) 535 if (!ptr && size)
301 { 536 {
302 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 537 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
303 abort (); 538 abort ();
309#define ev_malloc(size) ev_realloc (0, (size)) 544#define ev_malloc(size) ev_realloc (0, (size))
310#define ev_free(ptr) ev_realloc ((ptr), 0) 545#define ev_free(ptr) ev_realloc ((ptr), 0)
311 546
312/*****************************************************************************/ 547/*****************************************************************************/
313 548
549/* set in reify when reification needed */
550#define EV_ANFD_REIFY 1
551
552/* file descriptor info structure */
314typedef struct 553typedef struct
315{ 554{
316 WL head; 555 WL head;
317 unsigned char events; 556 unsigned char events; /* the events watched for */
557 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
558 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
318 unsigned char reify; 559 unsigned char unused;
560#if EV_USE_EPOLL
561 unsigned int egen; /* generation counter to counter epoll bugs */
562#endif
319#if EV_SELECT_IS_WINSOCKET 563#if EV_SELECT_IS_WINSOCKET
320 SOCKET handle; 564 SOCKET handle;
321#endif 565#endif
322} ANFD; 566} ANFD;
323 567
568/* stores the pending event set for a given watcher */
324typedef struct 569typedef struct
325{ 570{
326 W w; 571 W w;
327 int events; 572 int events; /* the pending event set for the given watcher */
328} ANPENDING; 573} ANPENDING;
329 574
330#if EV_USE_INOTIFY 575#if EV_USE_INOTIFY
576/* hash table entry per inotify-id */
331typedef struct 577typedef struct
332{ 578{
333 WL head; 579 WL head;
334} ANFS; 580} ANFS;
581#endif
582
583/* Heap Entry */
584#if EV_HEAP_CACHE_AT
585 /* a heap element */
586 typedef struct {
587 ev_tstamp at;
588 WT w;
589 } ANHE;
590
591 #define ANHE_w(he) (he).w /* access watcher, read-write */
592 #define ANHE_at(he) (he).at /* access cached at, read-only */
593 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
594#else
595 /* a heap element */
596 typedef WT ANHE;
597
598 #define ANHE_w(he) (he)
599 #define ANHE_at(he) (he)->at
600 #define ANHE_at_cache(he)
335#endif 601#endif
336 602
337#if EV_MULTIPLICITY 603#if EV_MULTIPLICITY
338 604
339 struct ev_loop 605 struct ev_loop
358 624
359 static int ev_default_loop_ptr; 625 static int ev_default_loop_ptr;
360 626
361#endif 627#endif
362 628
629#if EV_MINIMAL < 2
630# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
631# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
632# define EV_INVOKE_PENDING invoke_cb (EV_A)
633#else
634# define EV_RELEASE_CB (void)0
635# define EV_ACQUIRE_CB (void)0
636# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
637#endif
638
639#define EVUNLOOP_RECURSE 0x80
640
363/*****************************************************************************/ 641/*****************************************************************************/
364 642
643#ifndef EV_HAVE_EV_TIME
365ev_tstamp 644ev_tstamp
366ev_time (void) 645ev_time (void)
367{ 646{
368#if EV_USE_REALTIME 647#if EV_USE_REALTIME
648 if (expect_true (have_realtime))
649 {
369 struct timespec ts; 650 struct timespec ts;
370 clock_gettime (CLOCK_REALTIME, &ts); 651 clock_gettime (CLOCK_REALTIME, &ts);
371 return ts.tv_sec + ts.tv_nsec * 1e-9; 652 return ts.tv_sec + ts.tv_nsec * 1e-9;
372#else 653 }
654#endif
655
373 struct timeval tv; 656 struct timeval tv;
374 gettimeofday (&tv, 0); 657 gettimeofday (&tv, 0);
375 return tv.tv_sec + tv.tv_usec * 1e-6; 658 return tv.tv_sec + tv.tv_usec * 1e-6;
376#endif
377} 659}
660#endif
378 661
379ev_tstamp inline_size 662inline_size ev_tstamp
380get_clock (void) 663get_clock (void)
381{ 664{
382#if EV_USE_MONOTONIC 665#if EV_USE_MONOTONIC
383 if (expect_true (have_monotonic)) 666 if (expect_true (have_monotonic))
384 { 667 {
397{ 680{
398 return ev_rt_now; 681 return ev_rt_now;
399} 682}
400#endif 683#endif
401 684
402int inline_size 685void
686ev_sleep (ev_tstamp delay)
687{
688 if (delay > 0.)
689 {
690#if EV_USE_NANOSLEEP
691 struct timespec ts;
692
693 ts.tv_sec = (time_t)delay;
694 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
695
696 nanosleep (&ts, 0);
697#elif defined(_WIN32)
698 Sleep ((unsigned long)(delay * 1e3));
699#else
700 struct timeval tv;
701
702 tv.tv_sec = (time_t)delay;
703 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
704
705 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
706 /* something not guaranteed by newer posix versions, but guaranteed */
707 /* by older ones */
708 select (0, 0, 0, 0, &tv);
709#endif
710 }
711}
712
713/*****************************************************************************/
714
715#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
716
717/* find a suitable new size for the given array, */
718/* hopefully by rounding to a ncie-to-malloc size */
719inline_size int
403array_nextsize (int elem, int cur, int cnt) 720array_nextsize (int elem, int cur, int cnt)
404{ 721{
405 int ncur = cur + 1; 722 int ncur = cur + 1;
406 723
407 do 724 do
408 ncur <<= 1; 725 ncur <<= 1;
409 while (cnt > ncur); 726 while (cnt > ncur);
410 727
411 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 728 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
412 if (elem * ncur > 4096) 729 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
413 { 730 {
414 ncur *= elem; 731 ncur *= elem;
415 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 732 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
416 ncur = ncur - sizeof (void *) * 4; 733 ncur = ncur - sizeof (void *) * 4;
417 ncur /= elem; 734 ncur /= elem;
418 } 735 }
419 736
420 return ncur; 737 return ncur;
424array_realloc (int elem, void *base, int *cur, int cnt) 741array_realloc (int elem, void *base, int *cur, int cnt)
425{ 742{
426 *cur = array_nextsize (elem, *cur, cnt); 743 *cur = array_nextsize (elem, *cur, cnt);
427 return ev_realloc (base, elem * *cur); 744 return ev_realloc (base, elem * *cur);
428} 745}
746
747#define array_init_zero(base,count) \
748 memset ((void *)(base), 0, sizeof (*(base)) * (count))
429 749
430#define array_needsize(type,base,cur,cnt,init) \ 750#define array_needsize(type,base,cur,cnt,init) \
431 if (expect_false ((cnt) > (cur))) \ 751 if (expect_false ((cnt) > (cur))) \
432 { \ 752 { \
433 int ocur_ = (cur); \ 753 int ocur_ = (cur); \
445 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 765 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
446 } 766 }
447#endif 767#endif
448 768
449#define array_free(stem, idx) \ 769#define array_free(stem, idx) \
450 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 770 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
451 771
452/*****************************************************************************/ 772/*****************************************************************************/
773
774/* dummy callback for pending events */
775static void noinline
776pendingcb (EV_P_ ev_prepare *w, int revents)
777{
778}
453 779
454void noinline 780void noinline
455ev_feed_event (EV_P_ void *w, int revents) 781ev_feed_event (EV_P_ void *w, int revents)
456{ 782{
457 W w_ = (W)w; 783 W w_ = (W)w;
466 pendings [pri][w_->pending - 1].w = w_; 792 pendings [pri][w_->pending - 1].w = w_;
467 pendings [pri][w_->pending - 1].events = revents; 793 pendings [pri][w_->pending - 1].events = revents;
468 } 794 }
469} 795}
470 796
471void inline_size 797inline_speed void
798feed_reverse (EV_P_ W w)
799{
800 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
801 rfeeds [rfeedcnt++] = w;
802}
803
804inline_size void
805feed_reverse_done (EV_P_ int revents)
806{
807 do
808 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
809 while (rfeedcnt);
810}
811
812inline_speed void
472queue_events (EV_P_ W *events, int eventcnt, int type) 813queue_events (EV_P_ W *events, int eventcnt, int type)
473{ 814{
474 int i; 815 int i;
475 816
476 for (i = 0; i < eventcnt; ++i) 817 for (i = 0; i < eventcnt; ++i)
477 ev_feed_event (EV_A_ events [i], type); 818 ev_feed_event (EV_A_ events [i], type);
478} 819}
479 820
480/*****************************************************************************/ 821/*****************************************************************************/
481 822
482void inline_size 823inline_speed void
483anfds_init (ANFD *base, int count)
484{
485 while (count--)
486 {
487 base->head = 0;
488 base->events = EV_NONE;
489 base->reify = 0;
490
491 ++base;
492 }
493}
494
495void inline_speed
496fd_event (EV_P_ int fd, int revents) 824fd_event_nc (EV_P_ int fd, int revents)
497{ 825{
498 ANFD *anfd = anfds + fd; 826 ANFD *anfd = anfds + fd;
499 ev_io *w; 827 ev_io *w;
500 828
501 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 829 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
505 if (ev) 833 if (ev)
506 ev_feed_event (EV_A_ (W)w, ev); 834 ev_feed_event (EV_A_ (W)w, ev);
507 } 835 }
508} 836}
509 837
838/* do not submit kernel events for fds that have reify set */
839/* because that means they changed while we were polling for new events */
840inline_speed void
841fd_event (EV_P_ int fd, int revents)
842{
843 ANFD *anfd = anfds + fd;
844
845 if (expect_true (!anfd->reify))
846 fd_event_nc (EV_A_ fd, revents);
847}
848
510void 849void
511ev_feed_fd_event (EV_P_ int fd, int revents) 850ev_feed_fd_event (EV_P_ int fd, int revents)
512{ 851{
513 if (fd >= 0 && fd < anfdmax) 852 if (fd >= 0 && fd < anfdmax)
514 fd_event (EV_A_ fd, revents); 853 fd_event_nc (EV_A_ fd, revents);
515} 854}
516 855
517void inline_size 856/* make sure the external fd watch events are in-sync */
857/* with the kernel/libev internal state */
858inline_size void
518fd_reify (EV_P) 859fd_reify (EV_P)
519{ 860{
520 int i; 861 int i;
521 862
522 for (i = 0; i < fdchangecnt; ++i) 863 for (i = 0; i < fdchangecnt; ++i)
523 { 864 {
524 int fd = fdchanges [i]; 865 int fd = fdchanges [i];
525 ANFD *anfd = anfds + fd; 866 ANFD *anfd = anfds + fd;
526 ev_io *w; 867 ev_io *w;
527 868
528 int events = 0; 869 unsigned char events = 0;
529 870
530 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 871 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
531 events |= w->events; 872 events |= (unsigned char)w->events;
532 873
533#if EV_SELECT_IS_WINSOCKET 874#if EV_SELECT_IS_WINSOCKET
534 if (events) 875 if (events)
535 { 876 {
536 unsigned long argp; 877 unsigned long arg;
878 #ifdef EV_FD_TO_WIN32_HANDLE
879 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
880 #else
537 anfd->handle = _get_osfhandle (fd); 881 anfd->handle = _get_osfhandle (fd);
882 #endif
538 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 883 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
539 } 884 }
540#endif 885#endif
541 886
887 {
888 unsigned char o_events = anfd->events;
889 unsigned char o_reify = anfd->reify;
890
542 anfd->reify = 0; 891 anfd->reify = 0;
543
544 backend_modify (EV_A_ fd, anfd->events, events);
545 anfd->events = events; 892 anfd->events = events;
893
894 if (o_events != events || o_reify & EV__IOFDSET)
895 backend_modify (EV_A_ fd, o_events, events);
896 }
546 } 897 }
547 898
548 fdchangecnt = 0; 899 fdchangecnt = 0;
549} 900}
550 901
551void inline_size 902/* something about the given fd changed */
903inline_size void
552fd_change (EV_P_ int fd) 904fd_change (EV_P_ int fd, int flags)
553{ 905{
554 if (expect_false (anfds [fd].reify)) 906 unsigned char reify = anfds [fd].reify;
555 return;
556
557 anfds [fd].reify = 1; 907 anfds [fd].reify |= flags;
558 908
909 if (expect_true (!reify))
910 {
559 ++fdchangecnt; 911 ++fdchangecnt;
560 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 912 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
561 fdchanges [fdchangecnt - 1] = fd; 913 fdchanges [fdchangecnt - 1] = fd;
914 }
562} 915}
563 916
564void inline_speed 917/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
918inline_speed void
565fd_kill (EV_P_ int fd) 919fd_kill (EV_P_ int fd)
566{ 920{
567 ev_io *w; 921 ev_io *w;
568 922
569 while ((w = (ev_io *)anfds [fd].head)) 923 while ((w = (ev_io *)anfds [fd].head))
571 ev_io_stop (EV_A_ w); 925 ev_io_stop (EV_A_ w);
572 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 926 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
573 } 927 }
574} 928}
575 929
576int inline_size 930/* check whether the given fd is atcually valid, for error recovery */
931inline_size int
577fd_valid (int fd) 932fd_valid (int fd)
578{ 933{
579#ifdef _WIN32 934#ifdef _WIN32
580 return _get_osfhandle (fd) != -1; 935 return _get_osfhandle (fd) != -1;
581#else 936#else
589{ 944{
590 int fd; 945 int fd;
591 946
592 for (fd = 0; fd < anfdmax; ++fd) 947 for (fd = 0; fd < anfdmax; ++fd)
593 if (anfds [fd].events) 948 if (anfds [fd].events)
594 if (!fd_valid (fd) == -1 && errno == EBADF) 949 if (!fd_valid (fd) && errno == EBADF)
595 fd_kill (EV_A_ fd); 950 fd_kill (EV_A_ fd);
596} 951}
597 952
598/* called on ENOMEM in select/poll to kill some fds and retry */ 953/* called on ENOMEM in select/poll to kill some fds and retry */
599static void noinline 954static void noinline
617 972
618 for (fd = 0; fd < anfdmax; ++fd) 973 for (fd = 0; fd < anfdmax; ++fd)
619 if (anfds [fd].events) 974 if (anfds [fd].events)
620 { 975 {
621 anfds [fd].events = 0; 976 anfds [fd].events = 0;
622 fd_change (EV_A_ fd); 977 anfds [fd].emask = 0;
978 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
623 } 979 }
624} 980}
625 981
626/*****************************************************************************/ 982/*****************************************************************************/
627 983
628void inline_speed 984/*
629upheap (WT *heap, int k) 985 * the heap functions want a real array index. array index 0 uis guaranteed to not
630{ 986 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
631 WT w = heap [k]; 987 * the branching factor of the d-tree.
988 */
632 989
633 while (k && heap [k >> 1]->at > w->at) 990/*
634 { 991 * at the moment we allow libev the luxury of two heaps,
635 heap [k] = heap [k >> 1]; 992 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
636 ((W)heap [k])->active = k + 1; 993 * which is more cache-efficient.
637 k >>= 1; 994 * the difference is about 5% with 50000+ watchers.
638 } 995 */
996#if EV_USE_4HEAP
639 997
640 heap [k] = w; 998#define DHEAP 4
641 ((W)heap [k])->active = k + 1; 999#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1000#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1001#define UPHEAP_DONE(p,k) ((p) == (k))
642 1002
643} 1003/* away from the root */
644 1004inline_speed void
645void inline_speed
646downheap (WT *heap, int N, int k) 1005downheap (ANHE *heap, int N, int k)
647{ 1006{
648 WT w = heap [k]; 1007 ANHE he = heap [k];
1008 ANHE *E = heap + N + HEAP0;
649 1009
650 while (k < (N >> 1)) 1010 for (;;)
651 { 1011 {
652 int j = k << 1; 1012 ev_tstamp minat;
1013 ANHE *minpos;
1014 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
653 1015
654 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 1016 /* find minimum child */
1017 if (expect_true (pos + DHEAP - 1 < E))
655 ++j; 1018 {
656 1019 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
657 if (w->at <= heap [j]->at) 1020 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1021 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1022 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1023 }
1024 else if (pos < E)
1025 {
1026 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1027 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1028 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1029 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1030 }
1031 else
658 break; 1032 break;
659 1033
1034 if (ANHE_at (he) <= minat)
1035 break;
1036
1037 heap [k] = *minpos;
1038 ev_active (ANHE_w (*minpos)) = k;
1039
1040 k = minpos - heap;
1041 }
1042
1043 heap [k] = he;
1044 ev_active (ANHE_w (he)) = k;
1045}
1046
1047#else /* 4HEAP */
1048
1049#define HEAP0 1
1050#define HPARENT(k) ((k) >> 1)
1051#define UPHEAP_DONE(p,k) (!(p))
1052
1053/* away from the root */
1054inline_speed void
1055downheap (ANHE *heap, int N, int k)
1056{
1057 ANHE he = heap [k];
1058
1059 for (;;)
1060 {
1061 int c = k << 1;
1062
1063 if (c > N + HEAP0 - 1)
1064 break;
1065
1066 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1067 ? 1 : 0;
1068
1069 if (ANHE_at (he) <= ANHE_at (heap [c]))
1070 break;
1071
660 heap [k] = heap [j]; 1072 heap [k] = heap [c];
661 ((W)heap [k])->active = k + 1; 1073 ev_active (ANHE_w (heap [k])) = k;
1074
662 k = j; 1075 k = c;
663 } 1076 }
664 1077
665 heap [k] = w; 1078 heap [k] = he;
666 ((W)heap [k])->active = k + 1; 1079 ev_active (ANHE_w (he)) = k;
667} 1080}
1081#endif
668 1082
669void inline_size 1083/* towards the root */
1084inline_speed void
1085upheap (ANHE *heap, int k)
1086{
1087 ANHE he = heap [k];
1088
1089 for (;;)
1090 {
1091 int p = HPARENT (k);
1092
1093 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1094 break;
1095
1096 heap [k] = heap [p];
1097 ev_active (ANHE_w (heap [k])) = k;
1098 k = p;
1099 }
1100
1101 heap [k] = he;
1102 ev_active (ANHE_w (he)) = k;
1103}
1104
1105/* move an element suitably so it is in a correct place */
1106inline_size void
670adjustheap (WT *heap, int N, int k) 1107adjustheap (ANHE *heap, int N, int k)
671{ 1108{
1109 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
672 upheap (heap, k); 1110 upheap (heap, k);
1111 else
673 downheap (heap, N, k); 1112 downheap (heap, N, k);
1113}
1114
1115/* rebuild the heap: this function is used only once and executed rarely */
1116inline_size void
1117reheap (ANHE *heap, int N)
1118{
1119 int i;
1120
1121 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1122 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1123 for (i = 0; i < N; ++i)
1124 upheap (heap, i + HEAP0);
674} 1125}
675 1126
676/*****************************************************************************/ 1127/*****************************************************************************/
677 1128
1129/* associate signal watchers to a signal signal */
678typedef struct 1130typedef struct
679{ 1131{
1132#if EV_MULTIPLICITY
1133 EV_P;
1134#endif
680 WL head; 1135 WL head;
681 sig_atomic_t volatile gotsig; 1136 EV_ATOMIC_T gotsig;
682} ANSIG; 1137} ANSIG;
683 1138
684static ANSIG *signals; 1139static ANSIG signals [EV_NSIG - 1];
685static int signalmax; 1140static EV_ATOMIC_T gotsig;
686 1141
687static int sigpipe [2]; 1142/*****************************************************************************/
688static sig_atomic_t volatile gotsig;
689static ev_io sigev;
690 1143
691void inline_size 1144/* used to prepare libev internal fd's */
692signals_init (ANSIG *base, int count) 1145/* this is not fork-safe */
693{ 1146inline_speed void
694 while (count--)
695 {
696 base->head = 0;
697 base->gotsig = 0;
698
699 ++base;
700 }
701}
702
703static void
704sighandler (int signum)
705{
706#if _WIN32
707 signal (signum, sighandler);
708#endif
709
710 signals [signum - 1].gotsig = 1;
711
712 if (!gotsig)
713 {
714 int old_errno = errno;
715 gotsig = 1;
716 write (sigpipe [1], &signum, 1);
717 errno = old_errno;
718 }
719}
720
721void noinline
722ev_feed_signal_event (EV_P_ int signum)
723{
724 WL w;
725
726#if EV_MULTIPLICITY
727 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
728#endif
729
730 --signum;
731
732 if (signum < 0 || signum >= signalmax)
733 return;
734
735 signals [signum].gotsig = 0;
736
737 for (w = signals [signum].head; w; w = w->next)
738 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
739}
740
741static void
742sigcb (EV_P_ ev_io *iow, int revents)
743{
744 int signum;
745
746 read (sigpipe [0], &revents, 1);
747 gotsig = 0;
748
749 for (signum = signalmax; signum--; )
750 if (signals [signum].gotsig)
751 ev_feed_signal_event (EV_A_ signum + 1);
752}
753
754void inline_speed
755fd_intern (int fd) 1147fd_intern (int fd)
756{ 1148{
757#ifdef _WIN32 1149#ifdef _WIN32
758 int arg = 1; 1150 unsigned long arg = 1;
759 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1151 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
760#else 1152#else
761 fcntl (fd, F_SETFD, FD_CLOEXEC); 1153 fcntl (fd, F_SETFD, FD_CLOEXEC);
762 fcntl (fd, F_SETFL, O_NONBLOCK); 1154 fcntl (fd, F_SETFL, O_NONBLOCK);
763#endif 1155#endif
764} 1156}
765 1157
766static void noinline 1158static void noinline
767siginit (EV_P) 1159evpipe_init (EV_P)
768{ 1160{
1161 if (!ev_is_active (&pipe_w))
1162 {
1163#if EV_USE_EVENTFD
1164 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1165 if (evfd < 0 && errno == EINVAL)
1166 evfd = eventfd (0, 0);
1167
1168 if (evfd >= 0)
1169 {
1170 evpipe [0] = -1;
1171 fd_intern (evfd); /* doing it twice doesn't hurt */
1172 ev_io_set (&pipe_w, evfd, EV_READ);
1173 }
1174 else
1175#endif
1176 {
1177 while (pipe (evpipe))
1178 ev_syserr ("(libev) error creating signal/async pipe");
1179
769 fd_intern (sigpipe [0]); 1180 fd_intern (evpipe [0]);
770 fd_intern (sigpipe [1]); 1181 fd_intern (evpipe [1]);
1182 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1183 }
771 1184
772 ev_io_set (&sigev, sigpipe [0], EV_READ);
773 ev_io_start (EV_A_ &sigev); 1185 ev_io_start (EV_A_ &pipe_w);
774 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1186 ev_unref (EV_A); /* watcher should not keep loop alive */
1187 }
1188}
1189
1190inline_size void
1191evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1192{
1193 if (!*flag)
1194 {
1195 int old_errno = errno; /* save errno because write might clobber it */
1196
1197 *flag = 1;
1198
1199#if EV_USE_EVENTFD
1200 if (evfd >= 0)
1201 {
1202 uint64_t counter = 1;
1203 write (evfd, &counter, sizeof (uint64_t));
1204 }
1205 else
1206#endif
1207 write (evpipe [1], &old_errno, 1);
1208
1209 errno = old_errno;
1210 }
1211}
1212
1213/* called whenever the libev signal pipe */
1214/* got some events (signal, async) */
1215static void
1216pipecb (EV_P_ ev_io *iow, int revents)
1217{
1218#if EV_USE_EVENTFD
1219 if (evfd >= 0)
1220 {
1221 uint64_t counter;
1222 read (evfd, &counter, sizeof (uint64_t));
1223 }
1224 else
1225#endif
1226 {
1227 char dummy;
1228 read (evpipe [0], &dummy, 1);
1229 }
1230
1231 if (gotsig && ev_is_default_loop (EV_A))
1232 {
1233 int signum;
1234 gotsig = 0;
1235
1236 for (signum = EV_NSIG - 1; signum--; )
1237 if (signals [signum].gotsig)
1238 ev_feed_signal_event (EV_A_ signum + 1);
1239 }
1240
1241#if EV_ASYNC_ENABLE
1242 if (gotasync)
1243 {
1244 int i;
1245 gotasync = 0;
1246
1247 for (i = asynccnt; i--; )
1248 if (asyncs [i]->sent)
1249 {
1250 asyncs [i]->sent = 0;
1251 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1252 }
1253 }
1254#endif
775} 1255}
776 1256
777/*****************************************************************************/ 1257/*****************************************************************************/
778 1258
1259static void
1260ev_sighandler (int signum)
1261{
1262#if EV_MULTIPLICITY
1263 EV_P = signals [signum - 1].loop;
1264#endif
1265
1266#if _WIN32
1267 signal (signum, ev_sighandler);
1268#endif
1269
1270 signals [signum - 1].gotsig = 1;
1271 evpipe_write (EV_A_ &gotsig);
1272}
1273
1274void noinline
1275ev_feed_signal_event (EV_P_ int signum)
1276{
1277 WL w;
1278
1279#if EV_MULTIPLICITY
1280 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1281#endif
1282
1283 if (signum <= 0 || signum > EV_NSIG)
1284 return;
1285
1286 --signum;
1287
1288 signals [signum].gotsig = 0;
1289
1290 for (w = signals [signum].head; w; w = w->next)
1291 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1292}
1293
1294#if EV_USE_SIGNALFD
1295static void
1296sigfdcb (EV_P_ ev_io *iow, int revents)
1297{
1298 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1299
1300 for (;;)
1301 {
1302 ssize_t res = read (sigfd, si, sizeof (si));
1303
1304 /* not ISO-C, as res might be -1, but works with SuS */
1305 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1306 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1307
1308 if (res < (ssize_t)sizeof (si))
1309 break;
1310 }
1311}
1312#endif
1313
1314/*****************************************************************************/
1315
779static ev_child *childs [EV_PID_HASHSIZE]; 1316static WL childs [EV_PID_HASHSIZE];
780 1317
781#ifndef _WIN32 1318#ifndef _WIN32
782 1319
783static ev_signal childev; 1320static ev_signal childev;
784 1321
785void inline_speed 1322#ifndef WIFCONTINUED
1323# define WIFCONTINUED(status) 0
1324#endif
1325
1326/* handle a single child status event */
1327inline_speed void
786child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1328child_reap (EV_P_ int chain, int pid, int status)
787{ 1329{
788 ev_child *w; 1330 ev_child *w;
1331 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
789 1332
790 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1333 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1334 {
791 if (w->pid == pid || !w->pid) 1335 if ((w->pid == pid || !w->pid)
1336 && (!traced || (w->flags & 1)))
792 { 1337 {
793 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1338 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
794 w->rpid = pid; 1339 w->rpid = pid;
795 w->rstatus = status; 1340 w->rstatus = status;
796 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1341 ev_feed_event (EV_A_ (W)w, EV_CHILD);
797 } 1342 }
1343 }
798} 1344}
799 1345
800#ifndef WCONTINUED 1346#ifndef WCONTINUED
801# define WCONTINUED 0 1347# define WCONTINUED 0
802#endif 1348#endif
803 1349
1350/* called on sigchld etc., calls waitpid */
804static void 1351static void
805childcb (EV_P_ ev_signal *sw, int revents) 1352childcb (EV_P_ ev_signal *sw, int revents)
806{ 1353{
807 int pid, status; 1354 int pid, status;
808 1355
811 if (!WCONTINUED 1358 if (!WCONTINUED
812 || errno != EINVAL 1359 || errno != EINVAL
813 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1360 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
814 return; 1361 return;
815 1362
816 /* make sure we are called again until all childs have been reaped */ 1363 /* make sure we are called again until all children have been reaped */
817 /* we need to do it this way so that the callback gets called before we continue */ 1364 /* we need to do it this way so that the callback gets called before we continue */
818 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1365 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
819 1366
820 child_reap (EV_A_ sw, pid, pid, status); 1367 child_reap (EV_A_ pid, pid, status);
821 if (EV_PID_HASHSIZE > 1) 1368 if (EV_PID_HASHSIZE > 1)
822 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1369 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
823} 1370}
824 1371
825#endif 1372#endif
826 1373
827/*****************************************************************************/ 1374/*****************************************************************************/
889 /* kqueue is borked on everything but netbsd apparently */ 1436 /* kqueue is borked on everything but netbsd apparently */
890 /* it usually doesn't work correctly on anything but sockets and pipes */ 1437 /* it usually doesn't work correctly on anything but sockets and pipes */
891 flags &= ~EVBACKEND_KQUEUE; 1438 flags &= ~EVBACKEND_KQUEUE;
892#endif 1439#endif
893#ifdef __APPLE__ 1440#ifdef __APPLE__
894 // flags &= ~EVBACKEND_KQUEUE; for documentation 1441 /* only select works correctly on that "unix-certified" platform */
895 flags &= ~EVBACKEND_POLL; 1442 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1443 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
896#endif 1444#endif
897 1445
898 return flags; 1446 return flags;
899} 1447}
900 1448
901unsigned int 1449unsigned int
902ev_embeddable_backends (void) 1450ev_embeddable_backends (void)
903{ 1451{
904 return EVBACKEND_EPOLL 1452 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
905 | EVBACKEND_KQUEUE 1453
906 | EVBACKEND_PORT; 1454 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1455 /* please fix it and tell me how to detect the fix */
1456 flags &= ~EVBACKEND_EPOLL;
1457
1458 return flags;
907} 1459}
908 1460
909unsigned int 1461unsigned int
910ev_backend (EV_P) 1462ev_backend (EV_P)
911{ 1463{
912 return backend; 1464 return backend;
913} 1465}
914 1466
1467#if EV_MINIMAL < 2
915unsigned int 1468unsigned int
916ev_loop_count (EV_P) 1469ev_loop_count (EV_P)
917{ 1470{
918 return loop_count; 1471 return loop_count;
919} 1472}
920 1473
1474unsigned int
1475ev_loop_depth (EV_P)
1476{
1477 return loop_depth;
1478}
1479
1480void
1481ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1482{
1483 io_blocktime = interval;
1484}
1485
1486void
1487ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1488{
1489 timeout_blocktime = interval;
1490}
1491
1492void
1493ev_set_userdata (EV_P_ void *data)
1494{
1495 userdata = data;
1496}
1497
1498void *
1499ev_userdata (EV_P)
1500{
1501 return userdata;
1502}
1503
1504void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1505{
1506 invoke_cb = invoke_pending_cb;
1507}
1508
1509void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1510{
1511 release_cb = release;
1512 acquire_cb = acquire;
1513}
1514#endif
1515
1516/* initialise a loop structure, must be zero-initialised */
921static void noinline 1517static void noinline
922loop_init (EV_P_ unsigned int flags) 1518loop_init (EV_P_ unsigned int flags)
923{ 1519{
924 if (!backend) 1520 if (!backend)
925 { 1521 {
1522#if EV_USE_REALTIME
1523 if (!have_realtime)
1524 {
1525 struct timespec ts;
1526
1527 if (!clock_gettime (CLOCK_REALTIME, &ts))
1528 have_realtime = 1;
1529 }
1530#endif
1531
926#if EV_USE_MONOTONIC 1532#if EV_USE_MONOTONIC
1533 if (!have_monotonic)
927 { 1534 {
928 struct timespec ts; 1535 struct timespec ts;
1536
929 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1537 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
930 have_monotonic = 1; 1538 have_monotonic = 1;
931 } 1539 }
932#endif 1540#endif
933
934 ev_rt_now = ev_time ();
935 mn_now = get_clock ();
936 now_floor = mn_now;
937 rtmn_diff = ev_rt_now - mn_now;
938 1541
939 /* pid check not overridable via env */ 1542 /* pid check not overridable via env */
940#ifndef _WIN32 1543#ifndef _WIN32
941 if (flags & EVFLAG_FORKCHECK) 1544 if (flags & EVFLAG_FORKCHECK)
942 curpid = getpid (); 1545 curpid = getpid ();
945 if (!(flags & EVFLAG_NOENV) 1548 if (!(flags & EVFLAG_NOENV)
946 && !enable_secure () 1549 && !enable_secure ()
947 && getenv ("LIBEV_FLAGS")) 1550 && getenv ("LIBEV_FLAGS"))
948 flags = atoi (getenv ("LIBEV_FLAGS")); 1551 flags = atoi (getenv ("LIBEV_FLAGS"));
949 1552
1553 ev_rt_now = ev_time ();
1554 mn_now = get_clock ();
1555 now_floor = mn_now;
1556 rtmn_diff = ev_rt_now - mn_now;
1557#if EV_MINIMAL < 2
1558 invoke_cb = ev_invoke_pending;
1559#endif
1560
1561 io_blocktime = 0.;
1562 timeout_blocktime = 0.;
1563 backend = 0;
1564 backend_fd = -1;
1565 gotasync = 0;
1566#if EV_USE_INOTIFY
1567 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1568#endif
1569#if EV_USE_SIGNALFD
1570 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1571#endif
1572
950 if (!(flags & 0x0000ffffUL)) 1573 if (!(flags & 0x0000ffffU))
951 flags |= ev_recommended_backends (); 1574 flags |= ev_recommended_backends ();
952
953 backend = 0;
954 backend_fd = -1;
955#if EV_USE_INOTIFY
956 fs_fd = -2;
957#endif
958 1575
959#if EV_USE_PORT 1576#if EV_USE_PORT
960 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1577 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
961#endif 1578#endif
962#if EV_USE_KQUEUE 1579#if EV_USE_KQUEUE
970#endif 1587#endif
971#if EV_USE_SELECT 1588#if EV_USE_SELECT
972 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1589 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
973#endif 1590#endif
974 1591
1592 ev_prepare_init (&pending_w, pendingcb);
1593
975 ev_init (&sigev, sigcb); 1594 ev_init (&pipe_w, pipecb);
976 ev_set_priority (&sigev, EV_MAXPRI); 1595 ev_set_priority (&pipe_w, EV_MAXPRI);
977 } 1596 }
978} 1597}
979 1598
1599/* free up a loop structure */
980static void noinline 1600static void noinline
981loop_destroy (EV_P) 1601loop_destroy (EV_P)
982{ 1602{
983 int i; 1603 int i;
1604
1605 if (ev_is_active (&pipe_w))
1606 {
1607 /*ev_ref (EV_A);*/
1608 /*ev_io_stop (EV_A_ &pipe_w);*/
1609
1610#if EV_USE_EVENTFD
1611 if (evfd >= 0)
1612 close (evfd);
1613#endif
1614
1615 if (evpipe [0] >= 0)
1616 {
1617 close (evpipe [0]);
1618 close (evpipe [1]);
1619 }
1620 }
1621
1622#if EV_USE_SIGNALFD
1623 if (ev_is_active (&sigfd_w))
1624 {
1625 /*ev_ref (EV_A);*/
1626 /*ev_io_stop (EV_A_ &sigfd_w);*/
1627
1628 close (sigfd);
1629 }
1630#endif
984 1631
985#if EV_USE_INOTIFY 1632#if EV_USE_INOTIFY
986 if (fs_fd >= 0) 1633 if (fs_fd >= 0)
987 close (fs_fd); 1634 close (fs_fd);
988#endif 1635#endif
1012#if EV_IDLE_ENABLE 1659#if EV_IDLE_ENABLE
1013 array_free (idle, [i]); 1660 array_free (idle, [i]);
1014#endif 1661#endif
1015 } 1662 }
1016 1663
1664 ev_free (anfds); anfds = 0; anfdmax = 0;
1665
1017 /* have to use the microsoft-never-gets-it-right macro */ 1666 /* have to use the microsoft-never-gets-it-right macro */
1667 array_free (rfeed, EMPTY);
1018 array_free (fdchange, EMPTY); 1668 array_free (fdchange, EMPTY);
1019 array_free (timer, EMPTY); 1669 array_free (timer, EMPTY);
1020#if EV_PERIODIC_ENABLE 1670#if EV_PERIODIC_ENABLE
1021 array_free (periodic, EMPTY); 1671 array_free (periodic, EMPTY);
1022#endif 1672#endif
1673#if EV_FORK_ENABLE
1674 array_free (fork, EMPTY);
1675#endif
1023 array_free (prepare, EMPTY); 1676 array_free (prepare, EMPTY);
1024 array_free (check, EMPTY); 1677 array_free (check, EMPTY);
1678#if EV_ASYNC_ENABLE
1679 array_free (async, EMPTY);
1680#endif
1025 1681
1026 backend = 0; 1682 backend = 0;
1027} 1683}
1028 1684
1685#if EV_USE_INOTIFY
1029void inline_size infy_fork (EV_P); 1686inline_size void infy_fork (EV_P);
1687#endif
1030 1688
1031void inline_size 1689inline_size void
1032loop_fork (EV_P) 1690loop_fork (EV_P)
1033{ 1691{
1034#if EV_USE_PORT 1692#if EV_USE_PORT
1035 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1693 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1036#endif 1694#endif
1042#endif 1700#endif
1043#if EV_USE_INOTIFY 1701#if EV_USE_INOTIFY
1044 infy_fork (EV_A); 1702 infy_fork (EV_A);
1045#endif 1703#endif
1046 1704
1047 if (ev_is_active (&sigev)) 1705 if (ev_is_active (&pipe_w))
1048 { 1706 {
1049 /* default loop */ 1707 /* this "locks" the handlers against writing to the pipe */
1708 /* while we modify the fd vars */
1709 gotsig = 1;
1710#if EV_ASYNC_ENABLE
1711 gotasync = 1;
1712#endif
1050 1713
1051 ev_ref (EV_A); 1714 ev_ref (EV_A);
1052 ev_io_stop (EV_A_ &sigev); 1715 ev_io_stop (EV_A_ &pipe_w);
1716
1717#if EV_USE_EVENTFD
1718 if (evfd >= 0)
1719 close (evfd);
1720#endif
1721
1722 if (evpipe [0] >= 0)
1723 {
1053 close (sigpipe [0]); 1724 close (evpipe [0]);
1054 close (sigpipe [1]); 1725 close (evpipe [1]);
1726 }
1055 1727
1056 while (pipe (sigpipe))
1057 syserr ("(libev) error creating pipe");
1058
1059 siginit (EV_A); 1728 evpipe_init (EV_A);
1729 /* now iterate over everything, in case we missed something */
1730 pipecb (EV_A_ &pipe_w, EV_READ);
1060 } 1731 }
1061 1732
1062 postfork = 0; 1733 postfork = 0;
1063} 1734}
1064 1735
1065#if EV_MULTIPLICITY 1736#if EV_MULTIPLICITY
1737
1066struct ev_loop * 1738struct ev_loop *
1067ev_loop_new (unsigned int flags) 1739ev_loop_new (unsigned int flags)
1068{ 1740{
1069 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1741 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1070 1742
1071 memset (loop, 0, sizeof (struct ev_loop)); 1743 memset (EV_A, 0, sizeof (struct ev_loop));
1072
1073 loop_init (EV_A_ flags); 1744 loop_init (EV_A_ flags);
1074 1745
1075 if (ev_backend (EV_A)) 1746 if (ev_backend (EV_A))
1076 return loop; 1747 return EV_A;
1077 1748
1078 return 0; 1749 return 0;
1079} 1750}
1080 1751
1081void 1752void
1086} 1757}
1087 1758
1088void 1759void
1089ev_loop_fork (EV_P) 1760ev_loop_fork (EV_P)
1090{ 1761{
1091 postfork = 1; 1762 postfork = 1; /* must be in line with ev_default_fork */
1092} 1763}
1764#endif /* multiplicity */
1093 1765
1766#if EV_VERIFY
1767static void noinline
1768verify_watcher (EV_P_ W w)
1769{
1770 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1771
1772 if (w->pending)
1773 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1774}
1775
1776static void noinline
1777verify_heap (EV_P_ ANHE *heap, int N)
1778{
1779 int i;
1780
1781 for (i = HEAP0; i < N + HEAP0; ++i)
1782 {
1783 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1784 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1785 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1786
1787 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1788 }
1789}
1790
1791static void noinline
1792array_verify (EV_P_ W *ws, int cnt)
1793{
1794 while (cnt--)
1795 {
1796 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1797 verify_watcher (EV_A_ ws [cnt]);
1798 }
1799}
1800#endif
1801
1802#if EV_MINIMAL < 2
1803void
1804ev_loop_verify (EV_P)
1805{
1806#if EV_VERIFY
1807 int i;
1808 WL w;
1809
1810 assert (activecnt >= -1);
1811
1812 assert (fdchangemax >= fdchangecnt);
1813 for (i = 0; i < fdchangecnt; ++i)
1814 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1815
1816 assert (anfdmax >= 0);
1817 for (i = 0; i < anfdmax; ++i)
1818 for (w = anfds [i].head; w; w = w->next)
1819 {
1820 verify_watcher (EV_A_ (W)w);
1821 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1822 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1823 }
1824
1825 assert (timermax >= timercnt);
1826 verify_heap (EV_A_ timers, timercnt);
1827
1828#if EV_PERIODIC_ENABLE
1829 assert (periodicmax >= periodiccnt);
1830 verify_heap (EV_A_ periodics, periodiccnt);
1831#endif
1832
1833 for (i = NUMPRI; i--; )
1834 {
1835 assert (pendingmax [i] >= pendingcnt [i]);
1836#if EV_IDLE_ENABLE
1837 assert (idleall >= 0);
1838 assert (idlemax [i] >= idlecnt [i]);
1839 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1840#endif
1841 }
1842
1843#if EV_FORK_ENABLE
1844 assert (forkmax >= forkcnt);
1845 array_verify (EV_A_ (W *)forks, forkcnt);
1846#endif
1847
1848#if EV_ASYNC_ENABLE
1849 assert (asyncmax >= asynccnt);
1850 array_verify (EV_A_ (W *)asyncs, asynccnt);
1851#endif
1852
1853 assert (preparemax >= preparecnt);
1854 array_verify (EV_A_ (W *)prepares, preparecnt);
1855
1856 assert (checkmax >= checkcnt);
1857 array_verify (EV_A_ (W *)checks, checkcnt);
1858
1859# if 0
1860 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1861 for (signum = EV_NSIG; signum--; ) if (signals [signum].gotsig)
1862# endif
1863#endif
1864}
1094#endif 1865#endif
1095 1866
1096#if EV_MULTIPLICITY 1867#if EV_MULTIPLICITY
1097struct ev_loop * 1868struct ev_loop *
1098ev_default_loop_init (unsigned int flags) 1869ev_default_loop_init (unsigned int flags)
1099#else 1870#else
1100int 1871int
1101ev_default_loop (unsigned int flags) 1872ev_default_loop (unsigned int flags)
1102#endif 1873#endif
1103{ 1874{
1104 if (sigpipe [0] == sigpipe [1])
1105 if (pipe (sigpipe))
1106 return 0;
1107
1108 if (!ev_default_loop_ptr) 1875 if (!ev_default_loop_ptr)
1109 { 1876 {
1110#if EV_MULTIPLICITY 1877#if EV_MULTIPLICITY
1111 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1878 EV_P = ev_default_loop_ptr = &default_loop_struct;
1112#else 1879#else
1113 ev_default_loop_ptr = 1; 1880 ev_default_loop_ptr = 1;
1114#endif 1881#endif
1115 1882
1116 loop_init (EV_A_ flags); 1883 loop_init (EV_A_ flags);
1117 1884
1118 if (ev_backend (EV_A)) 1885 if (ev_backend (EV_A))
1119 { 1886 {
1120 siginit (EV_A);
1121
1122#ifndef _WIN32 1887#ifndef _WIN32
1123 ev_signal_init (&childev, childcb, SIGCHLD); 1888 ev_signal_init (&childev, childcb, SIGCHLD);
1124 ev_set_priority (&childev, EV_MAXPRI); 1889 ev_set_priority (&childev, EV_MAXPRI);
1125 ev_signal_start (EV_A_ &childev); 1890 ev_signal_start (EV_A_ &childev);
1126 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1891 ev_unref (EV_A); /* child watcher should not keep loop alive */
1135 1900
1136void 1901void
1137ev_default_destroy (void) 1902ev_default_destroy (void)
1138{ 1903{
1139#if EV_MULTIPLICITY 1904#if EV_MULTIPLICITY
1140 struct ev_loop *loop = ev_default_loop_ptr; 1905 EV_P = ev_default_loop_ptr;
1141#endif 1906#endif
1907
1908 ev_default_loop_ptr = 0;
1142 1909
1143#ifndef _WIN32 1910#ifndef _WIN32
1144 ev_ref (EV_A); /* child watcher */ 1911 ev_ref (EV_A); /* child watcher */
1145 ev_signal_stop (EV_A_ &childev); 1912 ev_signal_stop (EV_A_ &childev);
1146#endif 1913#endif
1147 1914
1148 ev_ref (EV_A); /* signal watcher */
1149 ev_io_stop (EV_A_ &sigev);
1150
1151 close (sigpipe [0]); sigpipe [0] = 0;
1152 close (sigpipe [1]); sigpipe [1] = 0;
1153
1154 loop_destroy (EV_A); 1915 loop_destroy (EV_A);
1155} 1916}
1156 1917
1157void 1918void
1158ev_default_fork (void) 1919ev_default_fork (void)
1159{ 1920{
1160#if EV_MULTIPLICITY 1921#if EV_MULTIPLICITY
1161 struct ev_loop *loop = ev_default_loop_ptr; 1922 EV_P = ev_default_loop_ptr;
1162#endif 1923#endif
1163 1924
1164 if (backend) 1925 postfork = 1; /* must be in line with ev_loop_fork */
1165 postfork = 1;
1166} 1926}
1167 1927
1168/*****************************************************************************/ 1928/*****************************************************************************/
1169 1929
1170void 1930void
1171ev_invoke (EV_P_ void *w, int revents) 1931ev_invoke (EV_P_ void *w, int revents)
1172{ 1932{
1173 EV_CB_INVOKE ((W)w, revents); 1933 EV_CB_INVOKE ((W)w, revents);
1174} 1934}
1175 1935
1176void inline_speed 1936unsigned int
1177call_pending (EV_P) 1937ev_pending_count (EV_P)
1938{
1939 int pri;
1940 unsigned int count = 0;
1941
1942 for (pri = NUMPRI; pri--; )
1943 count += pendingcnt [pri];
1944
1945 return count;
1946}
1947
1948void noinline
1949ev_invoke_pending (EV_P)
1178{ 1950{
1179 int pri; 1951 int pri;
1180 1952
1181 for (pri = NUMPRI; pri--; ) 1953 for (pri = NUMPRI; pri--; )
1182 while (pendingcnt [pri]) 1954 while (pendingcnt [pri])
1183 { 1955 {
1184 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1956 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1185 1957
1186 if (expect_true (p->w))
1187 {
1188 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1958 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1959 /* ^ this is no longer true, as pending_w could be here */
1189 1960
1190 p->w->pending = 0; 1961 p->w->pending = 0;
1191 EV_CB_INVOKE (p->w, p->events); 1962 EV_CB_INVOKE (p->w, p->events);
1192 } 1963 EV_FREQUENT_CHECK;
1193 } 1964 }
1194} 1965}
1195 1966
1196void inline_size
1197timers_reify (EV_P)
1198{
1199 while (timercnt && ((WT)timers [0])->at <= mn_now)
1200 {
1201 ev_timer *w = timers [0];
1202
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204
1205 /* first reschedule or stop timer */
1206 if (w->repeat)
1207 {
1208 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1209
1210 ((WT)w)->at += w->repeat;
1211 if (((WT)w)->at < mn_now)
1212 ((WT)w)->at = mn_now;
1213
1214 downheap ((WT *)timers, timercnt, 0);
1215 }
1216 else
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1220 }
1221}
1222
1223#if EV_PERIODIC_ENABLE
1224void inline_size
1225periodics_reify (EV_P)
1226{
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1228 {
1229 ev_periodic *w = periodics [0];
1230
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1232
1233 /* first reschedule or stop timer */
1234 if (w->reschedule_cb)
1235 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1238 downheap ((WT *)periodics, periodiccnt, 0);
1239 }
1240 else if (w->interval)
1241 {
1242 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1244 downheap ((WT *)periodics, periodiccnt, 0);
1245 }
1246 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1250 }
1251}
1252
1253static void noinline
1254periodics_reschedule (EV_P)
1255{
1256 int i;
1257
1258 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i)
1260 {
1261 ev_periodic *w = periodics [i];
1262
1263 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval)
1266 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1267 }
1268
1269 /* now rebuild the heap */
1270 for (i = periodiccnt >> 1; i--; )
1271 downheap ((WT *)periodics, periodiccnt, i);
1272}
1273#endif
1274
1275#if EV_IDLE_ENABLE 1967#if EV_IDLE_ENABLE
1276void inline_size 1968/* make idle watchers pending. this handles the "call-idle */
1969/* only when higher priorities are idle" logic */
1970inline_size void
1277idle_reify (EV_P) 1971idle_reify (EV_P)
1278{ 1972{
1279 if (expect_false (idleall)) 1973 if (expect_false (idleall))
1280 { 1974 {
1281 int pri; 1975 int pri;
1293 } 1987 }
1294 } 1988 }
1295} 1989}
1296#endif 1990#endif
1297 1991
1298int inline_size 1992/* make timers pending */
1299time_update_monotonic (EV_P) 1993inline_size void
1994timers_reify (EV_P)
1300{ 1995{
1996 EV_FREQUENT_CHECK;
1997
1998 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1999 {
2000 do
2001 {
2002 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2003
2004 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2005
2006 /* first reschedule or stop timer */
2007 if (w->repeat)
2008 {
2009 ev_at (w) += w->repeat;
2010 if (ev_at (w) < mn_now)
2011 ev_at (w) = mn_now;
2012
2013 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2014
2015 ANHE_at_cache (timers [HEAP0]);
2016 downheap (timers, timercnt, HEAP0);
2017 }
2018 else
2019 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2020
2021 EV_FREQUENT_CHECK;
2022 feed_reverse (EV_A_ (W)w);
2023 }
2024 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2025
2026 feed_reverse_done (EV_A_ EV_TIMEOUT);
2027 }
2028}
2029
2030#if EV_PERIODIC_ENABLE
2031/* make periodics pending */
2032inline_size void
2033periodics_reify (EV_P)
2034{
2035 EV_FREQUENT_CHECK;
2036
2037 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2038 {
2039 int feed_count = 0;
2040
2041 do
2042 {
2043 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2044
2045 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2046
2047 /* first reschedule or stop timer */
2048 if (w->reschedule_cb)
2049 {
2050 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2051
2052 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2053
2054 ANHE_at_cache (periodics [HEAP0]);
2055 downheap (periodics, periodiccnt, HEAP0);
2056 }
2057 else if (w->interval)
2058 {
2059 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2060 /* if next trigger time is not sufficiently in the future, put it there */
2061 /* this might happen because of floating point inexactness */
2062 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2063 {
2064 ev_at (w) += w->interval;
2065
2066 /* if interval is unreasonably low we might still have a time in the past */
2067 /* so correct this. this will make the periodic very inexact, but the user */
2068 /* has effectively asked to get triggered more often than possible */
2069 if (ev_at (w) < ev_rt_now)
2070 ev_at (w) = ev_rt_now;
2071 }
2072
2073 ANHE_at_cache (periodics [HEAP0]);
2074 downheap (periodics, periodiccnt, HEAP0);
2075 }
2076 else
2077 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2078
2079 EV_FREQUENT_CHECK;
2080 feed_reverse (EV_A_ (W)w);
2081 }
2082 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2083
2084 feed_reverse_done (EV_A_ EV_PERIODIC);
2085 }
2086}
2087
2088/* simply recalculate all periodics */
2089/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2090static void noinline
2091periodics_reschedule (EV_P)
2092{
2093 int i;
2094
2095 /* adjust periodics after time jump */
2096 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2097 {
2098 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2099
2100 if (w->reschedule_cb)
2101 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2102 else if (w->interval)
2103 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2104
2105 ANHE_at_cache (periodics [i]);
2106 }
2107
2108 reheap (periodics, periodiccnt);
2109}
2110#endif
2111
2112/* adjust all timers by a given offset */
2113static void noinline
2114timers_reschedule (EV_P_ ev_tstamp adjust)
2115{
2116 int i;
2117
2118 for (i = 0; i < timercnt; ++i)
2119 {
2120 ANHE *he = timers + i + HEAP0;
2121 ANHE_w (*he)->at += adjust;
2122 ANHE_at_cache (*he);
2123 }
2124}
2125
2126/* fetch new monotonic and realtime times from the kernel */
2127/* also detetc if there was a timejump, and act accordingly */
2128inline_speed void
2129time_update (EV_P_ ev_tstamp max_block)
2130{
2131#if EV_USE_MONOTONIC
2132 if (expect_true (have_monotonic))
2133 {
2134 int i;
2135 ev_tstamp odiff = rtmn_diff;
2136
1301 mn_now = get_clock (); 2137 mn_now = get_clock ();
1302 2138
2139 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2140 /* interpolate in the meantime */
1303 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2141 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1304 { 2142 {
1305 ev_rt_now = rtmn_diff + mn_now; 2143 ev_rt_now = rtmn_diff + mn_now;
1306 return 0; 2144 return;
1307 } 2145 }
1308 else 2146
1309 {
1310 now_floor = mn_now; 2147 now_floor = mn_now;
1311 ev_rt_now = ev_time (); 2148 ev_rt_now = ev_time ();
1312 return 1;
1313 }
1314}
1315 2149
1316void inline_size 2150 /* loop a few times, before making important decisions.
1317time_update (EV_P) 2151 * on the choice of "4": one iteration isn't enough,
1318{ 2152 * in case we get preempted during the calls to
1319 int i; 2153 * ev_time and get_clock. a second call is almost guaranteed
1320 2154 * to succeed in that case, though. and looping a few more times
1321#if EV_USE_MONOTONIC 2155 * doesn't hurt either as we only do this on time-jumps or
1322 if (expect_true (have_monotonic)) 2156 * in the unlikely event of having been preempted here.
1323 { 2157 */
1324 if (time_update_monotonic (EV_A)) 2158 for (i = 4; --i; )
1325 { 2159 {
1326 ev_tstamp odiff = rtmn_diff;
1327
1328 /* loop a few times, before making important decisions.
1329 * on the choice of "4": one iteration isn't enough,
1330 * in case we get preempted during the calls to
1331 * ev_time and get_clock. a second call is almost guaranteed
1332 * to succeed in that case, though. and looping a few more times
1333 * doesn't hurt either as we only do this on time-jumps or
1334 * in the unlikely event of having been preempted here.
1335 */
1336 for (i = 4; --i; )
1337 {
1338 rtmn_diff = ev_rt_now - mn_now; 2160 rtmn_diff = ev_rt_now - mn_now;
1339 2161
1340 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2162 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1341 return; /* all is well */ 2163 return; /* all is well */
1342 2164
1343 ev_rt_now = ev_time (); 2165 ev_rt_now = ev_time ();
1344 mn_now = get_clock (); 2166 mn_now = get_clock ();
1345 now_floor = mn_now; 2167 now_floor = mn_now;
1346 } 2168 }
1347 2169
2170 /* no timer adjustment, as the monotonic clock doesn't jump */
2171 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1348# if EV_PERIODIC_ENABLE 2172# if EV_PERIODIC_ENABLE
1349 periodics_reschedule (EV_A); 2173 periodics_reschedule (EV_A);
1350# endif 2174# endif
1351 /* no timer adjustment, as the monotonic clock doesn't jump */
1352 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1353 }
1354 } 2175 }
1355 else 2176 else
1356#endif 2177#endif
1357 { 2178 {
1358 ev_rt_now = ev_time (); 2179 ev_rt_now = ev_time ();
1359 2180
1360 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2181 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1361 { 2182 {
2183 /* adjust timers. this is easy, as the offset is the same for all of them */
2184 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1362#if EV_PERIODIC_ENABLE 2185#if EV_PERIODIC_ENABLE
1363 periodics_reschedule (EV_A); 2186 periodics_reschedule (EV_A);
1364#endif 2187#endif
1365
1366 /* adjust timers. this is easy, as the offset is the same for all of them */
1367 for (i = 0; i < timercnt; ++i)
1368 ((WT)timers [i])->at += ev_rt_now - mn_now;
1369 } 2188 }
1370 2189
1371 mn_now = ev_rt_now; 2190 mn_now = ev_rt_now;
1372 } 2191 }
1373} 2192}
1374 2193
1375void 2194void
1376ev_ref (EV_P)
1377{
1378 ++activecnt;
1379}
1380
1381void
1382ev_unref (EV_P)
1383{
1384 --activecnt;
1385}
1386
1387static int loop_done;
1388
1389void
1390ev_loop (EV_P_ int flags) 2195ev_loop (EV_P_ int flags)
1391{ 2196{
1392 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2197#if EV_MINIMAL < 2
1393 ? EVUNLOOP_ONE 2198 ++loop_depth;
1394 : EVUNLOOP_CANCEL; 2199#endif
1395 2200
2201 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2202
2203 loop_done = EVUNLOOP_CANCEL;
2204
1396 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2205 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1397 2206
1398 do 2207 do
1399 { 2208 {
2209#if EV_VERIFY >= 2
2210 ev_loop_verify (EV_A);
2211#endif
2212
1400#ifndef _WIN32 2213#ifndef _WIN32
1401 if (expect_false (curpid)) /* penalise the forking check even more */ 2214 if (expect_false (curpid)) /* penalise the forking check even more */
1402 if (expect_false (getpid () != curpid)) 2215 if (expect_false (getpid () != curpid))
1403 { 2216 {
1404 curpid = getpid (); 2217 curpid = getpid ();
1410 /* we might have forked, so queue fork handlers */ 2223 /* we might have forked, so queue fork handlers */
1411 if (expect_false (postfork)) 2224 if (expect_false (postfork))
1412 if (forkcnt) 2225 if (forkcnt)
1413 { 2226 {
1414 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2227 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1415 call_pending (EV_A); 2228 EV_INVOKE_PENDING;
1416 } 2229 }
1417#endif 2230#endif
1418 2231
1419 /* queue prepare watchers (and execute them) */ 2232 /* queue prepare watchers (and execute them) */
1420 if (expect_false (preparecnt)) 2233 if (expect_false (preparecnt))
1421 { 2234 {
1422 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2235 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1423 call_pending (EV_A); 2236 EV_INVOKE_PENDING;
1424 } 2237 }
1425 2238
1426 if (expect_false (!activecnt)) 2239 if (expect_false (loop_done))
1427 break; 2240 break;
1428 2241
1429 /* we might have forked, so reify kernel state if necessary */ 2242 /* we might have forked, so reify kernel state if necessary */
1430 if (expect_false (postfork)) 2243 if (expect_false (postfork))
1431 loop_fork (EV_A); 2244 loop_fork (EV_A);
1433 /* update fd-related kernel structures */ 2246 /* update fd-related kernel structures */
1434 fd_reify (EV_A); 2247 fd_reify (EV_A);
1435 2248
1436 /* calculate blocking time */ 2249 /* calculate blocking time */
1437 { 2250 {
1438 ev_tstamp block; 2251 ev_tstamp waittime = 0.;
2252 ev_tstamp sleeptime = 0.;
1439 2253
1440 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2254 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1441 block = 0.; /* do not block at all */
1442 else
1443 { 2255 {
2256 /* remember old timestamp for io_blocktime calculation */
2257 ev_tstamp prev_mn_now = mn_now;
2258
1444 /* update time to cancel out callback processing overhead */ 2259 /* update time to cancel out callback processing overhead */
1445#if EV_USE_MONOTONIC
1446 if (expect_true (have_monotonic))
1447 time_update_monotonic (EV_A); 2260 time_update (EV_A_ 1e100);
1448 else
1449#endif
1450 {
1451 ev_rt_now = ev_time ();
1452 mn_now = ev_rt_now;
1453 }
1454 2261
1455 block = MAX_BLOCKTIME; 2262 waittime = MAX_BLOCKTIME;
1456 2263
1457 if (timercnt) 2264 if (timercnt)
1458 { 2265 {
1459 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2266 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1460 if (block > to) block = to; 2267 if (waittime > to) waittime = to;
1461 } 2268 }
1462 2269
1463#if EV_PERIODIC_ENABLE 2270#if EV_PERIODIC_ENABLE
1464 if (periodiccnt) 2271 if (periodiccnt)
1465 { 2272 {
1466 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2273 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1467 if (block > to) block = to; 2274 if (waittime > to) waittime = to;
1468 } 2275 }
1469#endif 2276#endif
1470 2277
2278 /* don't let timeouts decrease the waittime below timeout_blocktime */
2279 if (expect_false (waittime < timeout_blocktime))
2280 waittime = timeout_blocktime;
2281
2282 /* extra check because io_blocktime is commonly 0 */
1471 if (expect_false (block < 0.)) block = 0.; 2283 if (expect_false (io_blocktime))
2284 {
2285 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2286
2287 if (sleeptime > waittime - backend_fudge)
2288 sleeptime = waittime - backend_fudge;
2289
2290 if (expect_true (sleeptime > 0.))
2291 {
2292 ev_sleep (sleeptime);
2293 waittime -= sleeptime;
2294 }
2295 }
1472 } 2296 }
1473 2297
2298#if EV_MINIMAL < 2
1474 ++loop_count; 2299 ++loop_count;
2300#endif
2301 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1475 backend_poll (EV_A_ block); 2302 backend_poll (EV_A_ waittime);
2303 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2304
2305 /* update ev_rt_now, do magic */
2306 time_update (EV_A_ waittime + sleeptime);
1476 } 2307 }
1477
1478 /* update ev_rt_now, do magic */
1479 time_update (EV_A);
1480 2308
1481 /* queue pending timers and reschedule them */ 2309 /* queue pending timers and reschedule them */
1482 timers_reify (EV_A); /* relative timers called last */ 2310 timers_reify (EV_A); /* relative timers called last */
1483#if EV_PERIODIC_ENABLE 2311#if EV_PERIODIC_ENABLE
1484 periodics_reify (EV_A); /* absolute timers called first */ 2312 periodics_reify (EV_A); /* absolute timers called first */
1491 2319
1492 /* queue check watchers, to be executed first */ 2320 /* queue check watchers, to be executed first */
1493 if (expect_false (checkcnt)) 2321 if (expect_false (checkcnt))
1494 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2322 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1495 2323
1496 call_pending (EV_A); 2324 EV_INVOKE_PENDING;
1497
1498 } 2325 }
1499 while (expect_true (activecnt && !loop_done)); 2326 while (expect_true (
2327 activecnt
2328 && !loop_done
2329 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2330 ));
1500 2331
1501 if (loop_done == EVUNLOOP_ONE) 2332 if (loop_done == EVUNLOOP_ONE)
1502 loop_done = EVUNLOOP_CANCEL; 2333 loop_done = EVUNLOOP_CANCEL;
2334
2335#if EV_MINIMAL < 2
2336 --loop_depth;
2337#endif
1503} 2338}
1504 2339
1505void 2340void
1506ev_unloop (EV_P_ int how) 2341ev_unloop (EV_P_ int how)
1507{ 2342{
1508 loop_done = how; 2343 loop_done = how;
1509} 2344}
1510 2345
2346void
2347ev_ref (EV_P)
2348{
2349 ++activecnt;
2350}
2351
2352void
2353ev_unref (EV_P)
2354{
2355 --activecnt;
2356}
2357
2358void
2359ev_now_update (EV_P)
2360{
2361 time_update (EV_A_ 1e100);
2362}
2363
2364void
2365ev_suspend (EV_P)
2366{
2367 ev_now_update (EV_A);
2368}
2369
2370void
2371ev_resume (EV_P)
2372{
2373 ev_tstamp mn_prev = mn_now;
2374
2375 ev_now_update (EV_A);
2376 timers_reschedule (EV_A_ mn_now - mn_prev);
2377#if EV_PERIODIC_ENABLE
2378 /* TODO: really do this? */
2379 periodics_reschedule (EV_A);
2380#endif
2381}
2382
1511/*****************************************************************************/ 2383/*****************************************************************************/
2384/* singly-linked list management, used when the expected list length is short */
1512 2385
1513void inline_size 2386inline_size void
1514wlist_add (WL *head, WL elem) 2387wlist_add (WL *head, WL elem)
1515{ 2388{
1516 elem->next = *head; 2389 elem->next = *head;
1517 *head = elem; 2390 *head = elem;
1518} 2391}
1519 2392
1520void inline_size 2393inline_size void
1521wlist_del (WL *head, WL elem) 2394wlist_del (WL *head, WL elem)
1522{ 2395{
1523 while (*head) 2396 while (*head)
1524 { 2397 {
1525 if (*head == elem) 2398 if (*head == elem)
1530 2403
1531 head = &(*head)->next; 2404 head = &(*head)->next;
1532 } 2405 }
1533} 2406}
1534 2407
1535void inline_speed 2408/* internal, faster, version of ev_clear_pending */
2409inline_speed void
1536clear_pending (EV_P_ W w) 2410clear_pending (EV_P_ W w)
1537{ 2411{
1538 if (w->pending) 2412 if (w->pending)
1539 { 2413 {
1540 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2414 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1541 w->pending = 0; 2415 w->pending = 0;
1542 } 2416 }
1543} 2417}
1544 2418
1545int 2419int
1546ev_clear_pending (EV_P_ void *w) 2420ev_clear_pending (EV_P_ void *w)
1547{ 2421{
1548 W w_ = (W)w; 2422 W w_ = (W)w;
1549 int pending = w_->pending; 2423 int pending = w_->pending;
1550 2424
1551 if (!pending) 2425 if (expect_true (pending))
2426 {
2427 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2428 p->w = (W)&pending_w;
2429 w_->pending = 0;
2430 return p->events;
2431 }
2432 else
1552 return 0; 2433 return 0;
1553
1554 w_->pending = 0;
1555 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1556 p->w = 0;
1557
1558 return p->events;
1559} 2434}
1560 2435
1561void inline_size 2436inline_size void
1562pri_adjust (EV_P_ W w) 2437pri_adjust (EV_P_ W w)
1563{ 2438{
1564 int pri = w->priority; 2439 int pri = ev_priority (w);
1565 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2440 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1566 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2441 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1567 w->priority = pri; 2442 ev_set_priority (w, pri);
1568} 2443}
1569 2444
1570void inline_speed 2445inline_speed void
1571ev_start (EV_P_ W w, int active) 2446ev_start (EV_P_ W w, int active)
1572{ 2447{
1573 pri_adjust (EV_A_ w); 2448 pri_adjust (EV_A_ w);
1574 w->active = active; 2449 w->active = active;
1575 ev_ref (EV_A); 2450 ev_ref (EV_A);
1576} 2451}
1577 2452
1578void inline_size 2453inline_size void
1579ev_stop (EV_P_ W w) 2454ev_stop (EV_P_ W w)
1580{ 2455{
1581 ev_unref (EV_A); 2456 ev_unref (EV_A);
1582 w->active = 0; 2457 w->active = 0;
1583} 2458}
1590 int fd = w->fd; 2465 int fd = w->fd;
1591 2466
1592 if (expect_false (ev_is_active (w))) 2467 if (expect_false (ev_is_active (w)))
1593 return; 2468 return;
1594 2469
1595 assert (("ev_io_start called with negative fd", fd >= 0)); 2470 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2471 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2472
2473 EV_FREQUENT_CHECK;
1596 2474
1597 ev_start (EV_A_ (W)w, 1); 2475 ev_start (EV_A_ (W)w, 1);
1598 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2476 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1599 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2477 wlist_add (&anfds[fd].head, (WL)w);
1600 2478
1601 fd_change (EV_A_ fd); 2479 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2480 w->events &= ~EV__IOFDSET;
2481
2482 EV_FREQUENT_CHECK;
1602} 2483}
1603 2484
1604void noinline 2485void noinline
1605ev_io_stop (EV_P_ ev_io *w) 2486ev_io_stop (EV_P_ ev_io *w)
1606{ 2487{
1607 clear_pending (EV_A_ (W)w); 2488 clear_pending (EV_A_ (W)w);
1608 if (expect_false (!ev_is_active (w))) 2489 if (expect_false (!ev_is_active (w)))
1609 return; 2490 return;
1610 2491
1611 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2492 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1612 2493
2494 EV_FREQUENT_CHECK;
2495
1613 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2496 wlist_del (&anfds[w->fd].head, (WL)w);
1614 ev_stop (EV_A_ (W)w); 2497 ev_stop (EV_A_ (W)w);
1615 2498
1616 fd_change (EV_A_ w->fd); 2499 fd_change (EV_A_ w->fd, 1);
2500
2501 EV_FREQUENT_CHECK;
1617} 2502}
1618 2503
1619void noinline 2504void noinline
1620ev_timer_start (EV_P_ ev_timer *w) 2505ev_timer_start (EV_P_ ev_timer *w)
1621{ 2506{
1622 if (expect_false (ev_is_active (w))) 2507 if (expect_false (ev_is_active (w)))
1623 return; 2508 return;
1624 2509
1625 ((WT)w)->at += mn_now; 2510 ev_at (w) += mn_now;
1626 2511
1627 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2512 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1628 2513
2514 EV_FREQUENT_CHECK;
2515
2516 ++timercnt;
1629 ev_start (EV_A_ (W)w, ++timercnt); 2517 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1630 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2518 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1631 timers [timercnt - 1] = w; 2519 ANHE_w (timers [ev_active (w)]) = (WT)w;
1632 upheap ((WT *)timers, timercnt - 1); 2520 ANHE_at_cache (timers [ev_active (w)]);
2521 upheap (timers, ev_active (w));
1633 2522
2523 EV_FREQUENT_CHECK;
2524
1634 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2525 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1635} 2526}
1636 2527
1637void noinline 2528void noinline
1638ev_timer_stop (EV_P_ ev_timer *w) 2529ev_timer_stop (EV_P_ ev_timer *w)
1639{ 2530{
1640 clear_pending (EV_A_ (W)w); 2531 clear_pending (EV_A_ (W)w);
1641 if (expect_false (!ev_is_active (w))) 2532 if (expect_false (!ev_is_active (w)))
1642 return; 2533 return;
1643 2534
1644 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2535 EV_FREQUENT_CHECK;
1645 2536
1646 { 2537 {
1647 int active = ((W)w)->active; 2538 int active = ev_active (w);
1648 2539
2540 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2541
2542 --timercnt;
2543
1649 if (expect_true (--active < --timercnt)) 2544 if (expect_true (active < timercnt + HEAP0))
1650 { 2545 {
1651 timers [active] = timers [timercnt]; 2546 timers [active] = timers [timercnt + HEAP0];
1652 adjustheap ((WT *)timers, timercnt, active); 2547 adjustheap (timers, timercnt, active);
1653 } 2548 }
1654 } 2549 }
1655 2550
1656 ((WT)w)->at -= mn_now; 2551 EV_FREQUENT_CHECK;
2552
2553 ev_at (w) -= mn_now;
1657 2554
1658 ev_stop (EV_A_ (W)w); 2555 ev_stop (EV_A_ (W)w);
1659} 2556}
1660 2557
1661void noinline 2558void noinline
1662ev_timer_again (EV_P_ ev_timer *w) 2559ev_timer_again (EV_P_ ev_timer *w)
1663{ 2560{
2561 EV_FREQUENT_CHECK;
2562
1664 if (ev_is_active (w)) 2563 if (ev_is_active (w))
1665 { 2564 {
1666 if (w->repeat) 2565 if (w->repeat)
1667 { 2566 {
1668 ((WT)w)->at = mn_now + w->repeat; 2567 ev_at (w) = mn_now + w->repeat;
2568 ANHE_at_cache (timers [ev_active (w)]);
1669 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2569 adjustheap (timers, timercnt, ev_active (w));
1670 } 2570 }
1671 else 2571 else
1672 ev_timer_stop (EV_A_ w); 2572 ev_timer_stop (EV_A_ w);
1673 } 2573 }
1674 else if (w->repeat) 2574 else if (w->repeat)
1675 { 2575 {
1676 w->at = w->repeat; 2576 ev_at (w) = w->repeat;
1677 ev_timer_start (EV_A_ w); 2577 ev_timer_start (EV_A_ w);
1678 } 2578 }
2579
2580 EV_FREQUENT_CHECK;
2581}
2582
2583ev_tstamp
2584ev_timer_remaining (EV_P_ ev_timer *w)
2585{
2586 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1679} 2587}
1680 2588
1681#if EV_PERIODIC_ENABLE 2589#if EV_PERIODIC_ENABLE
1682void noinline 2590void noinline
1683ev_periodic_start (EV_P_ ev_periodic *w) 2591ev_periodic_start (EV_P_ ev_periodic *w)
1684{ 2592{
1685 if (expect_false (ev_is_active (w))) 2593 if (expect_false (ev_is_active (w)))
1686 return; 2594 return;
1687 2595
1688 if (w->reschedule_cb) 2596 if (w->reschedule_cb)
1689 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2597 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1690 else if (w->interval) 2598 else if (w->interval)
1691 { 2599 {
1692 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2600 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1693 /* this formula differs from the one in periodic_reify because we do not always round up */ 2601 /* this formula differs from the one in periodic_reify because we do not always round up */
1694 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 2602 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695 } 2603 }
2604 else
2605 ev_at (w) = w->offset;
1696 2606
2607 EV_FREQUENT_CHECK;
2608
2609 ++periodiccnt;
1697 ev_start (EV_A_ (W)w, ++periodiccnt); 2610 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1698 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2611 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1699 periodics [periodiccnt - 1] = w; 2612 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1700 upheap ((WT *)periodics, periodiccnt - 1); 2613 ANHE_at_cache (periodics [ev_active (w)]);
2614 upheap (periodics, ev_active (w));
1701 2615
2616 EV_FREQUENT_CHECK;
2617
1702 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2618 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1703} 2619}
1704 2620
1705void noinline 2621void noinline
1706ev_periodic_stop (EV_P_ ev_periodic *w) 2622ev_periodic_stop (EV_P_ ev_periodic *w)
1707{ 2623{
1708 clear_pending (EV_A_ (W)w); 2624 clear_pending (EV_A_ (W)w);
1709 if (expect_false (!ev_is_active (w))) 2625 if (expect_false (!ev_is_active (w)))
1710 return; 2626 return;
1711 2627
1712 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2628 EV_FREQUENT_CHECK;
1713 2629
1714 { 2630 {
1715 int active = ((W)w)->active; 2631 int active = ev_active (w);
1716 2632
2633 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2634
2635 --periodiccnt;
2636
1717 if (expect_true (--active < --periodiccnt)) 2637 if (expect_true (active < periodiccnt + HEAP0))
1718 { 2638 {
1719 periodics [active] = periodics [periodiccnt]; 2639 periodics [active] = periodics [periodiccnt + HEAP0];
1720 adjustheap ((WT *)periodics, periodiccnt, active); 2640 adjustheap (periodics, periodiccnt, active);
1721 } 2641 }
1722 } 2642 }
2643
2644 EV_FREQUENT_CHECK;
1723 2645
1724 ev_stop (EV_A_ (W)w); 2646 ev_stop (EV_A_ (W)w);
1725} 2647}
1726 2648
1727void noinline 2649void noinline
1738#endif 2660#endif
1739 2661
1740void noinline 2662void noinline
1741ev_signal_start (EV_P_ ev_signal *w) 2663ev_signal_start (EV_P_ ev_signal *w)
1742{ 2664{
1743#if EV_MULTIPLICITY
1744 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1745#endif
1746 if (expect_false (ev_is_active (w))) 2665 if (expect_false (ev_is_active (w)))
1747 return; 2666 return;
1748 2667
1749 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2668 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2669
2670#if EV_MULTIPLICITY
2671 assert (("libev: tried to attach to a signal from two different loops",
2672 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2673
2674 signals [w->signum - 1].loop = EV_A;
2675#endif
2676
2677 EV_FREQUENT_CHECK;
2678
2679#if EV_USE_SIGNALFD
2680 if (sigfd == -2)
2681 {
2682 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2683 if (sigfd < 0 && errno == EINVAL)
2684 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2685
2686 if (sigfd >= 0)
2687 {
2688 fd_intern (sigfd); /* doing it twice will not hurt */
2689
2690 sigemptyset (&sigfd_set);
2691
2692 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2693 ev_set_priority (&sigfd_w, EV_MAXPRI);
2694 ev_io_start (EV_A_ &sigfd_w);
2695 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2696 }
2697 }
2698
2699 if (sigfd >= 0)
2700 {
2701 /* TODO: check .head */
2702 sigaddset (&sigfd_set, w->signum);
2703 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2704
2705 signalfd (sigfd, &sigfd_set, 0);
2706 }
2707#endif
1750 2708
1751 ev_start (EV_A_ (W)w, 1); 2709 ev_start (EV_A_ (W)w, 1);
1752 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1753 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2710 wlist_add (&signals [w->signum - 1].head, (WL)w);
1754 2711
1755 if (!((WL)w)->next) 2712 if (!((WL)w)->next)
2713# if EV_USE_SIGNALFD
2714 if (sigfd < 0) /*TODO*/
2715# endif
1756 { 2716 {
1757#if _WIN32 2717# if _WIN32
1758 signal (w->signum, sighandler); 2718 signal (w->signum, ev_sighandler);
1759#else 2719# else
1760 struct sigaction sa; 2720 struct sigaction sa;
2721
2722 evpipe_init (EV_A);
2723
1761 sa.sa_handler = sighandler; 2724 sa.sa_handler = ev_sighandler;
1762 sigfillset (&sa.sa_mask); 2725 sigfillset (&sa.sa_mask);
1763 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2726 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1764 sigaction (w->signum, &sa, 0); 2727 sigaction (w->signum, &sa, 0);
2728
2729 sigemptyset (&sa.sa_mask);
2730 sigaddset (&sa.sa_mask, w->signum);
2731 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1765#endif 2732#endif
1766 } 2733 }
2734
2735 EV_FREQUENT_CHECK;
1767} 2736}
1768 2737
1769void noinline 2738void noinline
1770ev_signal_stop (EV_P_ ev_signal *w) 2739ev_signal_stop (EV_P_ ev_signal *w)
1771{ 2740{
1772 clear_pending (EV_A_ (W)w); 2741 clear_pending (EV_A_ (W)w);
1773 if (expect_false (!ev_is_active (w))) 2742 if (expect_false (!ev_is_active (w)))
1774 return; 2743 return;
1775 2744
2745 EV_FREQUENT_CHECK;
2746
1776 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2747 wlist_del (&signals [w->signum - 1].head, (WL)w);
1777 ev_stop (EV_A_ (W)w); 2748 ev_stop (EV_A_ (W)w);
1778 2749
1779 if (!signals [w->signum - 1].head) 2750 if (!signals [w->signum - 1].head)
2751 {
2752 #if EV_MULTIPLICITY
2753 signals [w->signum - 1].loop = 0; /* unattach from signal */
2754 #endif
2755 #if EV_USE_SIGNALFD
2756 if (sigfd >= 0)
2757 {
2758 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2759 sigdelset (&sigfd_set, w->signum);
2760 signalfd (sigfd, &sigfd_set, 0);
2761 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2762 /*TODO: maybe unblock signal? */
2763 }
2764 else
2765 #endif
1780 signal (w->signum, SIG_DFL); 2766 signal (w->signum, SIG_DFL);
2767 }
2768
2769 EV_FREQUENT_CHECK;
1781} 2770}
1782 2771
1783void 2772void
1784ev_child_start (EV_P_ ev_child *w) 2773ev_child_start (EV_P_ ev_child *w)
1785{ 2774{
1786#if EV_MULTIPLICITY 2775#if EV_MULTIPLICITY
1787 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2776 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1788#endif 2777#endif
1789 if (expect_false (ev_is_active (w))) 2778 if (expect_false (ev_is_active (w)))
1790 return; 2779 return;
1791 2780
2781 EV_FREQUENT_CHECK;
2782
1792 ev_start (EV_A_ (W)w, 1); 2783 ev_start (EV_A_ (W)w, 1);
1793 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2784 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2785
2786 EV_FREQUENT_CHECK;
1794} 2787}
1795 2788
1796void 2789void
1797ev_child_stop (EV_P_ ev_child *w) 2790ev_child_stop (EV_P_ ev_child *w)
1798{ 2791{
1799 clear_pending (EV_A_ (W)w); 2792 clear_pending (EV_A_ (W)w);
1800 if (expect_false (!ev_is_active (w))) 2793 if (expect_false (!ev_is_active (w)))
1801 return; 2794 return;
1802 2795
2796 EV_FREQUENT_CHECK;
2797
1803 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2798 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1804 ev_stop (EV_A_ (W)w); 2799 ev_stop (EV_A_ (W)w);
2800
2801 EV_FREQUENT_CHECK;
1805} 2802}
1806 2803
1807#if EV_STAT_ENABLE 2804#if EV_STAT_ENABLE
1808 2805
1809# ifdef _WIN32 2806# ifdef _WIN32
1810# undef lstat 2807# undef lstat
1811# define lstat(a,b) _stati64 (a,b) 2808# define lstat(a,b) _stati64 (a,b)
1812# endif 2809# endif
1813 2810
1814#define DEF_STAT_INTERVAL 5.0074891 2811#define DEF_STAT_INTERVAL 5.0074891
2812#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1815#define MIN_STAT_INTERVAL 0.1074891 2813#define MIN_STAT_INTERVAL 0.1074891
1816 2814
1817static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2815static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1818 2816
1819#if EV_USE_INOTIFY 2817#if EV_USE_INOTIFY
1820# define EV_INOTIFY_BUFSIZE 8192 2818# define EV_INOTIFY_BUFSIZE 8192
1824{ 2822{
1825 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2823 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1826 2824
1827 if (w->wd < 0) 2825 if (w->wd < 0)
1828 { 2826 {
2827 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1829 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2828 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1830 2829
1831 /* monitor some parent directory for speedup hints */ 2830 /* monitor some parent directory for speedup hints */
2831 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2832 /* but an efficiency issue only */
1832 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2833 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1833 { 2834 {
1834 char path [4096]; 2835 char path [4096];
1835 strcpy (path, w->path); 2836 strcpy (path, w->path);
1836 2837
1839 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2840 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1840 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2841 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1841 2842
1842 char *pend = strrchr (path, '/'); 2843 char *pend = strrchr (path, '/');
1843 2844
1844 if (!pend) 2845 if (!pend || pend == path)
1845 break; /* whoops, no '/', complain to your admin */ 2846 break;
1846 2847
1847 *pend = 0; 2848 *pend = 0;
1848 w->wd = inotify_add_watch (fs_fd, path, mask); 2849 w->wd = inotify_add_watch (fs_fd, path, mask);
1849 } 2850 }
1850 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2851 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1851 } 2852 }
1852 } 2853 }
1853 else
1854 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1855 2854
1856 if (w->wd >= 0) 2855 if (w->wd >= 0)
2856 {
1857 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2857 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2858
2859 /* now local changes will be tracked by inotify, but remote changes won't */
2860 /* unless the filesystem it known to be local, we therefore still poll */
2861 /* also do poll on <2.6.25, but with normal frequency */
2862 struct statfs sfs;
2863
2864 if (fs_2625 && !statfs (w->path, &sfs))
2865 if (sfs.f_type == 0x1373 /* devfs */
2866 || sfs.f_type == 0xEF53 /* ext2/3 */
2867 || sfs.f_type == 0x3153464a /* jfs */
2868 || sfs.f_type == 0x52654973 /* reiser3 */
2869 || sfs.f_type == 0x01021994 /* tempfs */
2870 || sfs.f_type == 0x58465342 /* xfs */)
2871 return;
2872
2873 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2874 ev_timer_again (EV_A_ &w->timer);
2875 }
1858} 2876}
1859 2877
1860static void noinline 2878static void noinline
1861infy_del (EV_P_ ev_stat *w) 2879infy_del (EV_P_ ev_stat *w)
1862{ 2880{
1876 2894
1877static void noinline 2895static void noinline
1878infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2896infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1879{ 2897{
1880 if (slot < 0) 2898 if (slot < 0)
1881 /* overflow, need to check for all hahs slots */ 2899 /* overflow, need to check for all hash slots */
1882 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2900 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1883 infy_wd (EV_A_ slot, wd, ev); 2901 infy_wd (EV_A_ slot, wd, ev);
1884 else 2902 else
1885 { 2903 {
1886 WL w_; 2904 WL w_;
1892 2910
1893 if (w->wd == wd || wd == -1) 2911 if (w->wd == wd || wd == -1)
1894 { 2912 {
1895 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2913 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1896 { 2914 {
2915 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1897 w->wd = -1; 2916 w->wd = -1;
1898 infy_add (EV_A_ w); /* re-add, no matter what */ 2917 infy_add (EV_A_ w); /* re-add, no matter what */
1899 } 2918 }
1900 2919
1901 stat_timer_cb (EV_A_ &w->timer, 0); 2920 stat_timer_cb (EV_A_ &w->timer, 0);
1914 2933
1915 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2934 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1916 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2935 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1917} 2936}
1918 2937
1919void inline_size 2938inline_size void
2939check_2625 (EV_P)
2940{
2941 /* kernels < 2.6.25 are borked
2942 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2943 */
2944 struct utsname buf;
2945 int major, minor, micro;
2946
2947 if (uname (&buf))
2948 return;
2949
2950 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2951 return;
2952
2953 if (major < 2
2954 || (major == 2 && minor < 6)
2955 || (major == 2 && minor == 6 && micro < 25))
2956 return;
2957
2958 fs_2625 = 1;
2959}
2960
2961inline_size void
1920infy_init (EV_P) 2962infy_init (EV_P)
1921{ 2963{
1922 if (fs_fd != -2) 2964 if (fs_fd != -2)
1923 return; 2965 return;
2966
2967 fs_fd = -1;
2968
2969 check_2625 (EV_A);
1924 2970
1925 fs_fd = inotify_init (); 2971 fs_fd = inotify_init ();
1926 2972
1927 if (fs_fd >= 0) 2973 if (fs_fd >= 0)
1928 { 2974 {
1930 ev_set_priority (&fs_w, EV_MAXPRI); 2976 ev_set_priority (&fs_w, EV_MAXPRI);
1931 ev_io_start (EV_A_ &fs_w); 2977 ev_io_start (EV_A_ &fs_w);
1932 } 2978 }
1933} 2979}
1934 2980
1935void inline_size 2981inline_size void
1936infy_fork (EV_P) 2982infy_fork (EV_P)
1937{ 2983{
1938 int slot; 2984 int slot;
1939 2985
1940 if (fs_fd < 0) 2986 if (fs_fd < 0)
1956 w->wd = -1; 3002 w->wd = -1;
1957 3003
1958 if (fs_fd >= 0) 3004 if (fs_fd >= 0)
1959 infy_add (EV_A_ w); /* re-add, no matter what */ 3005 infy_add (EV_A_ w); /* re-add, no matter what */
1960 else 3006 else
1961 ev_timer_start (EV_A_ &w->timer); 3007 ev_timer_again (EV_A_ &w->timer);
1962 } 3008 }
1963
1964 } 3009 }
1965} 3010}
1966 3011
3012#endif
3013
3014#ifdef _WIN32
3015# define EV_LSTAT(p,b) _stati64 (p, b)
3016#else
3017# define EV_LSTAT(p,b) lstat (p, b)
1967#endif 3018#endif
1968 3019
1969void 3020void
1970ev_stat_stat (EV_P_ ev_stat *w) 3021ev_stat_stat (EV_P_ ev_stat *w)
1971{ 3022{
1998 || w->prev.st_atime != w->attr.st_atime 3049 || w->prev.st_atime != w->attr.st_atime
1999 || w->prev.st_mtime != w->attr.st_mtime 3050 || w->prev.st_mtime != w->attr.st_mtime
2000 || w->prev.st_ctime != w->attr.st_ctime 3051 || w->prev.st_ctime != w->attr.st_ctime
2001 ) { 3052 ) {
2002 #if EV_USE_INOTIFY 3053 #if EV_USE_INOTIFY
3054 if (fs_fd >= 0)
3055 {
2003 infy_del (EV_A_ w); 3056 infy_del (EV_A_ w);
2004 infy_add (EV_A_ w); 3057 infy_add (EV_A_ w);
2005 ev_stat_stat (EV_A_ w); /* avoid race... */ 3058 ev_stat_stat (EV_A_ w); /* avoid race... */
3059 }
2006 #endif 3060 #endif
2007 3061
2008 ev_feed_event (EV_A_ w, EV_STAT); 3062 ev_feed_event (EV_A_ w, EV_STAT);
2009 } 3063 }
2010} 3064}
2013ev_stat_start (EV_P_ ev_stat *w) 3067ev_stat_start (EV_P_ ev_stat *w)
2014{ 3068{
2015 if (expect_false (ev_is_active (w))) 3069 if (expect_false (ev_is_active (w)))
2016 return; 3070 return;
2017 3071
2018 /* since we use memcmp, we need to clear any padding data etc. */
2019 memset (&w->prev, 0, sizeof (ev_statdata));
2020 memset (&w->attr, 0, sizeof (ev_statdata));
2021
2022 ev_stat_stat (EV_A_ w); 3072 ev_stat_stat (EV_A_ w);
2023 3073
3074 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2024 if (w->interval < MIN_STAT_INTERVAL) 3075 w->interval = MIN_STAT_INTERVAL;
2025 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2026 3076
2027 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3077 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2028 ev_set_priority (&w->timer, ev_priority (w)); 3078 ev_set_priority (&w->timer, ev_priority (w));
2029 3079
2030#if EV_USE_INOTIFY 3080#if EV_USE_INOTIFY
2031 infy_init (EV_A); 3081 infy_init (EV_A);
2032 3082
2033 if (fs_fd >= 0) 3083 if (fs_fd >= 0)
2034 infy_add (EV_A_ w); 3084 infy_add (EV_A_ w);
2035 else 3085 else
2036#endif 3086#endif
2037 ev_timer_start (EV_A_ &w->timer); 3087 ev_timer_again (EV_A_ &w->timer);
2038 3088
2039 ev_start (EV_A_ (W)w, 1); 3089 ev_start (EV_A_ (W)w, 1);
3090
3091 EV_FREQUENT_CHECK;
2040} 3092}
2041 3093
2042void 3094void
2043ev_stat_stop (EV_P_ ev_stat *w) 3095ev_stat_stop (EV_P_ ev_stat *w)
2044{ 3096{
2045 clear_pending (EV_A_ (W)w); 3097 clear_pending (EV_A_ (W)w);
2046 if (expect_false (!ev_is_active (w))) 3098 if (expect_false (!ev_is_active (w)))
2047 return; 3099 return;
2048 3100
3101 EV_FREQUENT_CHECK;
3102
2049#if EV_USE_INOTIFY 3103#if EV_USE_INOTIFY
2050 infy_del (EV_A_ w); 3104 infy_del (EV_A_ w);
2051#endif 3105#endif
2052 ev_timer_stop (EV_A_ &w->timer); 3106 ev_timer_stop (EV_A_ &w->timer);
2053 3107
2054 ev_stop (EV_A_ (W)w); 3108 ev_stop (EV_A_ (W)w);
3109
3110 EV_FREQUENT_CHECK;
2055} 3111}
2056#endif 3112#endif
2057 3113
2058#if EV_IDLE_ENABLE 3114#if EV_IDLE_ENABLE
2059void 3115void
2061{ 3117{
2062 if (expect_false (ev_is_active (w))) 3118 if (expect_false (ev_is_active (w)))
2063 return; 3119 return;
2064 3120
2065 pri_adjust (EV_A_ (W)w); 3121 pri_adjust (EV_A_ (W)w);
3122
3123 EV_FREQUENT_CHECK;
2066 3124
2067 { 3125 {
2068 int active = ++idlecnt [ABSPRI (w)]; 3126 int active = ++idlecnt [ABSPRI (w)];
2069 3127
2070 ++idleall; 3128 ++idleall;
2071 ev_start (EV_A_ (W)w, active); 3129 ev_start (EV_A_ (W)w, active);
2072 3130
2073 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3131 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2074 idles [ABSPRI (w)][active - 1] = w; 3132 idles [ABSPRI (w)][active - 1] = w;
2075 } 3133 }
3134
3135 EV_FREQUENT_CHECK;
2076} 3136}
2077 3137
2078void 3138void
2079ev_idle_stop (EV_P_ ev_idle *w) 3139ev_idle_stop (EV_P_ ev_idle *w)
2080{ 3140{
2081 clear_pending (EV_A_ (W)w); 3141 clear_pending (EV_A_ (W)w);
2082 if (expect_false (!ev_is_active (w))) 3142 if (expect_false (!ev_is_active (w)))
2083 return; 3143 return;
2084 3144
3145 EV_FREQUENT_CHECK;
3146
2085 { 3147 {
2086 int active = ((W)w)->active; 3148 int active = ev_active (w);
2087 3149
2088 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3150 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2089 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3151 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2090 3152
2091 ev_stop (EV_A_ (W)w); 3153 ev_stop (EV_A_ (W)w);
2092 --idleall; 3154 --idleall;
2093 } 3155 }
3156
3157 EV_FREQUENT_CHECK;
2094} 3158}
2095#endif 3159#endif
2096 3160
2097void 3161void
2098ev_prepare_start (EV_P_ ev_prepare *w) 3162ev_prepare_start (EV_P_ ev_prepare *w)
2099{ 3163{
2100 if (expect_false (ev_is_active (w))) 3164 if (expect_false (ev_is_active (w)))
2101 return; 3165 return;
3166
3167 EV_FREQUENT_CHECK;
2102 3168
2103 ev_start (EV_A_ (W)w, ++preparecnt); 3169 ev_start (EV_A_ (W)w, ++preparecnt);
2104 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3170 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2105 prepares [preparecnt - 1] = w; 3171 prepares [preparecnt - 1] = w;
3172
3173 EV_FREQUENT_CHECK;
2106} 3174}
2107 3175
2108void 3176void
2109ev_prepare_stop (EV_P_ ev_prepare *w) 3177ev_prepare_stop (EV_P_ ev_prepare *w)
2110{ 3178{
2111 clear_pending (EV_A_ (W)w); 3179 clear_pending (EV_A_ (W)w);
2112 if (expect_false (!ev_is_active (w))) 3180 if (expect_false (!ev_is_active (w)))
2113 return; 3181 return;
2114 3182
3183 EV_FREQUENT_CHECK;
3184
2115 { 3185 {
2116 int active = ((W)w)->active; 3186 int active = ev_active (w);
3187
2117 prepares [active - 1] = prepares [--preparecnt]; 3188 prepares [active - 1] = prepares [--preparecnt];
2118 ((W)prepares [active - 1])->active = active; 3189 ev_active (prepares [active - 1]) = active;
2119 } 3190 }
2120 3191
2121 ev_stop (EV_A_ (W)w); 3192 ev_stop (EV_A_ (W)w);
3193
3194 EV_FREQUENT_CHECK;
2122} 3195}
2123 3196
2124void 3197void
2125ev_check_start (EV_P_ ev_check *w) 3198ev_check_start (EV_P_ ev_check *w)
2126{ 3199{
2127 if (expect_false (ev_is_active (w))) 3200 if (expect_false (ev_is_active (w)))
2128 return; 3201 return;
3202
3203 EV_FREQUENT_CHECK;
2129 3204
2130 ev_start (EV_A_ (W)w, ++checkcnt); 3205 ev_start (EV_A_ (W)w, ++checkcnt);
2131 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3206 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2132 checks [checkcnt - 1] = w; 3207 checks [checkcnt - 1] = w;
3208
3209 EV_FREQUENT_CHECK;
2133} 3210}
2134 3211
2135void 3212void
2136ev_check_stop (EV_P_ ev_check *w) 3213ev_check_stop (EV_P_ ev_check *w)
2137{ 3214{
2138 clear_pending (EV_A_ (W)w); 3215 clear_pending (EV_A_ (W)w);
2139 if (expect_false (!ev_is_active (w))) 3216 if (expect_false (!ev_is_active (w)))
2140 return; 3217 return;
2141 3218
3219 EV_FREQUENT_CHECK;
3220
2142 { 3221 {
2143 int active = ((W)w)->active; 3222 int active = ev_active (w);
3223
2144 checks [active - 1] = checks [--checkcnt]; 3224 checks [active - 1] = checks [--checkcnt];
2145 ((W)checks [active - 1])->active = active; 3225 ev_active (checks [active - 1]) = active;
2146 } 3226 }
2147 3227
2148 ev_stop (EV_A_ (W)w); 3228 ev_stop (EV_A_ (W)w);
3229
3230 EV_FREQUENT_CHECK;
2149} 3231}
2150 3232
2151#if EV_EMBED_ENABLE 3233#if EV_EMBED_ENABLE
2152void noinline 3234void noinline
2153ev_embed_sweep (EV_P_ ev_embed *w) 3235ev_embed_sweep (EV_P_ ev_embed *w)
2154{ 3236{
2155 ev_loop (w->loop, EVLOOP_NONBLOCK); 3237 ev_loop (w->other, EVLOOP_NONBLOCK);
2156} 3238}
2157 3239
2158static void 3240static void
2159embed_cb (EV_P_ ev_io *io, int revents) 3241embed_io_cb (EV_P_ ev_io *io, int revents)
2160{ 3242{
2161 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3243 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2162 3244
2163 if (ev_cb (w)) 3245 if (ev_cb (w))
2164 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3246 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2165 else 3247 else
2166 ev_embed_sweep (loop, w); 3248 ev_loop (w->other, EVLOOP_NONBLOCK);
2167} 3249}
3250
3251static void
3252embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3253{
3254 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3255
3256 {
3257 EV_P = w->other;
3258
3259 while (fdchangecnt)
3260 {
3261 fd_reify (EV_A);
3262 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3263 }
3264 }
3265}
3266
3267static void
3268embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3269{
3270 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3271
3272 ev_embed_stop (EV_A_ w);
3273
3274 {
3275 EV_P = w->other;
3276
3277 ev_loop_fork (EV_A);
3278 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3279 }
3280
3281 ev_embed_start (EV_A_ w);
3282}
3283
3284#if 0
3285static void
3286embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3287{
3288 ev_idle_stop (EV_A_ idle);
3289}
3290#endif
2168 3291
2169void 3292void
2170ev_embed_start (EV_P_ ev_embed *w) 3293ev_embed_start (EV_P_ ev_embed *w)
2171{ 3294{
2172 if (expect_false (ev_is_active (w))) 3295 if (expect_false (ev_is_active (w)))
2173 return; 3296 return;
2174 3297
2175 { 3298 {
2176 struct ev_loop *loop = w->loop; 3299 EV_P = w->other;
2177 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3300 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2178 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3301 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2179 } 3302 }
3303
3304 EV_FREQUENT_CHECK;
2180 3305
2181 ev_set_priority (&w->io, ev_priority (w)); 3306 ev_set_priority (&w->io, ev_priority (w));
2182 ev_io_start (EV_A_ &w->io); 3307 ev_io_start (EV_A_ &w->io);
2183 3308
3309 ev_prepare_init (&w->prepare, embed_prepare_cb);
3310 ev_set_priority (&w->prepare, EV_MINPRI);
3311 ev_prepare_start (EV_A_ &w->prepare);
3312
3313 ev_fork_init (&w->fork, embed_fork_cb);
3314 ev_fork_start (EV_A_ &w->fork);
3315
3316 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3317
2184 ev_start (EV_A_ (W)w, 1); 3318 ev_start (EV_A_ (W)w, 1);
3319
3320 EV_FREQUENT_CHECK;
2185} 3321}
2186 3322
2187void 3323void
2188ev_embed_stop (EV_P_ ev_embed *w) 3324ev_embed_stop (EV_P_ ev_embed *w)
2189{ 3325{
2190 clear_pending (EV_A_ (W)w); 3326 clear_pending (EV_A_ (W)w);
2191 if (expect_false (!ev_is_active (w))) 3327 if (expect_false (!ev_is_active (w)))
2192 return; 3328 return;
2193 3329
3330 EV_FREQUENT_CHECK;
3331
2194 ev_io_stop (EV_A_ &w->io); 3332 ev_io_stop (EV_A_ &w->io);
3333 ev_prepare_stop (EV_A_ &w->prepare);
3334 ev_fork_stop (EV_A_ &w->fork);
2195 3335
2196 ev_stop (EV_A_ (W)w); 3336 EV_FREQUENT_CHECK;
2197} 3337}
2198#endif 3338#endif
2199 3339
2200#if EV_FORK_ENABLE 3340#if EV_FORK_ENABLE
2201void 3341void
2202ev_fork_start (EV_P_ ev_fork *w) 3342ev_fork_start (EV_P_ ev_fork *w)
2203{ 3343{
2204 if (expect_false (ev_is_active (w))) 3344 if (expect_false (ev_is_active (w)))
2205 return; 3345 return;
3346
3347 EV_FREQUENT_CHECK;
2206 3348
2207 ev_start (EV_A_ (W)w, ++forkcnt); 3349 ev_start (EV_A_ (W)w, ++forkcnt);
2208 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3350 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2209 forks [forkcnt - 1] = w; 3351 forks [forkcnt - 1] = w;
3352
3353 EV_FREQUENT_CHECK;
2210} 3354}
2211 3355
2212void 3356void
2213ev_fork_stop (EV_P_ ev_fork *w) 3357ev_fork_stop (EV_P_ ev_fork *w)
2214{ 3358{
2215 clear_pending (EV_A_ (W)w); 3359 clear_pending (EV_A_ (W)w);
2216 if (expect_false (!ev_is_active (w))) 3360 if (expect_false (!ev_is_active (w)))
2217 return; 3361 return;
2218 3362
3363 EV_FREQUENT_CHECK;
3364
2219 { 3365 {
2220 int active = ((W)w)->active; 3366 int active = ev_active (w);
3367
2221 forks [active - 1] = forks [--forkcnt]; 3368 forks [active - 1] = forks [--forkcnt];
2222 ((W)forks [active - 1])->active = active; 3369 ev_active (forks [active - 1]) = active;
2223 } 3370 }
2224 3371
2225 ev_stop (EV_A_ (W)w); 3372 ev_stop (EV_A_ (W)w);
3373
3374 EV_FREQUENT_CHECK;
3375}
3376#endif
3377
3378#if EV_ASYNC_ENABLE
3379void
3380ev_async_start (EV_P_ ev_async *w)
3381{
3382 if (expect_false (ev_is_active (w)))
3383 return;
3384
3385 evpipe_init (EV_A);
3386
3387 EV_FREQUENT_CHECK;
3388
3389 ev_start (EV_A_ (W)w, ++asynccnt);
3390 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3391 asyncs [asynccnt - 1] = w;
3392
3393 EV_FREQUENT_CHECK;
3394}
3395
3396void
3397ev_async_stop (EV_P_ ev_async *w)
3398{
3399 clear_pending (EV_A_ (W)w);
3400 if (expect_false (!ev_is_active (w)))
3401 return;
3402
3403 EV_FREQUENT_CHECK;
3404
3405 {
3406 int active = ev_active (w);
3407
3408 asyncs [active - 1] = asyncs [--asynccnt];
3409 ev_active (asyncs [active - 1]) = active;
3410 }
3411
3412 ev_stop (EV_A_ (W)w);
3413
3414 EV_FREQUENT_CHECK;
3415}
3416
3417void
3418ev_async_send (EV_P_ ev_async *w)
3419{
3420 w->sent = 1;
3421 evpipe_write (EV_A_ &gotasync);
2226} 3422}
2227#endif 3423#endif
2228 3424
2229/*****************************************************************************/ 3425/*****************************************************************************/
2230 3426
2240once_cb (EV_P_ struct ev_once *once, int revents) 3436once_cb (EV_P_ struct ev_once *once, int revents)
2241{ 3437{
2242 void (*cb)(int revents, void *arg) = once->cb; 3438 void (*cb)(int revents, void *arg) = once->cb;
2243 void *arg = once->arg; 3439 void *arg = once->arg;
2244 3440
2245 ev_io_stop (EV_A_ &once->io); 3441 ev_io_stop (EV_A_ &once->io);
2246 ev_timer_stop (EV_A_ &once->to); 3442 ev_timer_stop (EV_A_ &once->to);
2247 ev_free (once); 3443 ev_free (once);
2248 3444
2249 cb (revents, arg); 3445 cb (revents, arg);
2250} 3446}
2251 3447
2252static void 3448static void
2253once_cb_io (EV_P_ ev_io *w, int revents) 3449once_cb_io (EV_P_ ev_io *w, int revents)
2254{ 3450{
2255 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3451 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3452
3453 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2256} 3454}
2257 3455
2258static void 3456static void
2259once_cb_to (EV_P_ ev_timer *w, int revents) 3457once_cb_to (EV_P_ ev_timer *w, int revents)
2260{ 3458{
2261 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3459 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3460
3461 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2262} 3462}
2263 3463
2264void 3464void
2265ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3465ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2266{ 3466{
2288 ev_timer_set (&once->to, timeout, 0.); 3488 ev_timer_set (&once->to, timeout, 0.);
2289 ev_timer_start (EV_A_ &once->to); 3489 ev_timer_start (EV_A_ &once->to);
2290 } 3490 }
2291} 3491}
2292 3492
3493/*****************************************************************************/
3494
3495#if EV_WALK_ENABLE
3496void
3497ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3498{
3499 int i, j;
3500 ev_watcher_list *wl, *wn;
3501
3502 if (types & (EV_IO | EV_EMBED))
3503 for (i = 0; i < anfdmax; ++i)
3504 for (wl = anfds [i].head; wl; )
3505 {
3506 wn = wl->next;
3507
3508#if EV_EMBED_ENABLE
3509 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3510 {
3511 if (types & EV_EMBED)
3512 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3513 }
3514 else
3515#endif
3516#if EV_USE_INOTIFY
3517 if (ev_cb ((ev_io *)wl) == infy_cb)
3518 ;
3519 else
3520#endif
3521 if ((ev_io *)wl != &pipe_w)
3522 if (types & EV_IO)
3523 cb (EV_A_ EV_IO, wl);
3524
3525 wl = wn;
3526 }
3527
3528 if (types & (EV_TIMER | EV_STAT))
3529 for (i = timercnt + HEAP0; i-- > HEAP0; )
3530#if EV_STAT_ENABLE
3531 /*TODO: timer is not always active*/
3532 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3533 {
3534 if (types & EV_STAT)
3535 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3536 }
3537 else
3538#endif
3539 if (types & EV_TIMER)
3540 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3541
3542#if EV_PERIODIC_ENABLE
3543 if (types & EV_PERIODIC)
3544 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3545 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3546#endif
3547
3548#if EV_IDLE_ENABLE
3549 if (types & EV_IDLE)
3550 for (j = NUMPRI; i--; )
3551 for (i = idlecnt [j]; i--; )
3552 cb (EV_A_ EV_IDLE, idles [j][i]);
3553#endif
3554
3555#if EV_FORK_ENABLE
3556 if (types & EV_FORK)
3557 for (i = forkcnt; i--; )
3558 if (ev_cb (forks [i]) != embed_fork_cb)
3559 cb (EV_A_ EV_FORK, forks [i]);
3560#endif
3561
3562#if EV_ASYNC_ENABLE
3563 if (types & EV_ASYNC)
3564 for (i = asynccnt; i--; )
3565 cb (EV_A_ EV_ASYNC, asyncs [i]);
3566#endif
3567
3568 if (types & EV_PREPARE)
3569 for (i = preparecnt; i--; )
3570#if EV_EMBED_ENABLE
3571 if (ev_cb (prepares [i]) != embed_prepare_cb)
3572#endif
3573 cb (EV_A_ EV_PREPARE, prepares [i]);
3574
3575 if (types & EV_CHECK)
3576 for (i = checkcnt; i--; )
3577 cb (EV_A_ EV_CHECK, checks [i]);
3578
3579 if (types & EV_SIGNAL)
3580 for (i = 0; i < EV_NSIG - 1; ++i)
3581 for (wl = signals [i].head; wl; )
3582 {
3583 wn = wl->next;
3584 cb (EV_A_ EV_SIGNAL, wl);
3585 wl = wn;
3586 }
3587
3588 if (types & EV_CHILD)
3589 for (i = EV_PID_HASHSIZE; i--; )
3590 for (wl = childs [i]; wl; )
3591 {
3592 wn = wl->next;
3593 cb (EV_A_ EV_CHILD, wl);
3594 wl = wn;
3595 }
3596/* EV_STAT 0x00001000 /* stat data changed */
3597/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3598}
3599#endif
3600
3601#if EV_MULTIPLICITY
3602 #include "ev_wrap.h"
3603#endif
3604
2293#ifdef __cplusplus 3605#ifdef __cplusplus
2294} 3606}
2295#endif 3607#endif
2296 3608

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines