ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.171 by root, Sun Dec 9 02:12:43 2007 UTC vs.
Revision 1.488 by root, Fri Dec 21 06:57:09 2018 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007-2018 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52# endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
89# endif 127# endif
90 128
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
94# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
97# endif 136# endif
98 137
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
105# endif 145# endif
106 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
107#endif 154# endif
108 155
109#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
167/* OS X, in its infinite idiocy, actually HARDCODES
168 * a limit of 1024 into their select. Where people have brains,
169 * OS X engineers apparently have a vacuum. Or maybe they were
170 * ordered to have a vacuum, or they do anything for money.
171 * This might help. Or not.
172 * Note that this must be defined early, as other include files
173 * will rely on this define as well.
174 */
175#define _DARWIN_UNLIMITED_SELECT 1
176
110#include <stdlib.h> 177#include <stdlib.h>
178#include <string.h>
111#include <fcntl.h> 179#include <fcntl.h>
112#include <stddef.h> 180#include <stddef.h>
113 181
114#include <stdio.h> 182#include <stdio.h>
115 183
116#include <assert.h> 184#include <assert.h>
117#include <errno.h> 185#include <errno.h>
118#include <sys/types.h> 186#include <sys/types.h>
119#include <time.h> 187#include <time.h>
188#include <limits.h>
120 189
121#include <signal.h> 190#include <signal.h>
122 191
123#ifdef EV_H 192#ifdef EV_H
124# include EV_H 193# include EV_H
125#else 194#else
126# include "ev.h" 195# include "ev.h"
196#endif
197
198#if EV_NO_THREADS
199# undef EV_NO_SMP
200# define EV_NO_SMP 1
201# undef ECB_NO_THREADS
202# define ECB_NO_THREADS 1
203#endif
204#if EV_NO_SMP
205# undef EV_NO_SMP
206# define ECB_NO_SMP 1
127#endif 207#endif
128 208
129#ifndef _WIN32 209#ifndef _WIN32
130# include <sys/time.h> 210# include <sys/time.h>
131# include <sys/wait.h> 211# include <sys/wait.h>
132# include <unistd.h> 212# include <unistd.h>
133#else 213#else
214# include <io.h>
134# define WIN32_LEAN_AND_MEAN 215# define WIN32_LEAN_AND_MEAN
216# include <winsock2.h>
135# include <windows.h> 217# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 218# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 219# define EV_SELECT_IS_WINSOCKET 1
138# endif 220# endif
221# undef EV_AVOID_STDIO
222#endif
223
224/* this block tries to deduce configuration from header-defined symbols and defaults */
225
226/* try to deduce the maximum number of signals on this platform */
227#if defined EV_NSIG
228/* use what's provided */
229#elif defined NSIG
230# define EV_NSIG (NSIG)
231#elif defined _NSIG
232# define EV_NSIG (_NSIG)
233#elif defined SIGMAX
234# define EV_NSIG (SIGMAX+1)
235#elif defined SIG_MAX
236# define EV_NSIG (SIG_MAX+1)
237#elif defined _SIG_MAX
238# define EV_NSIG (_SIG_MAX+1)
239#elif defined MAXSIG
240# define EV_NSIG (MAXSIG+1)
241#elif defined MAX_SIG
242# define EV_NSIG (MAX_SIG+1)
243#elif defined SIGARRAYSIZE
244# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
245#elif defined _sys_nsig
246# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
247#else
248# define EV_NSIG (8 * sizeof (sigset_t) + 1)
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ == 2 && __GLIBC_MINOR__ < 17
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
139#endif 260# endif
261#endif
140 262
141/**/ 263#if !(_POSIX_TIMERS > 0)
264# ifndef EV_USE_MONOTONIC
265# define EV_USE_MONOTONIC 0
266# endif
267# ifndef EV_USE_REALTIME
268# define EV_USE_REALTIME 0
269# endif
270#endif
142 271
143#ifndef EV_USE_MONOTONIC 272#ifndef EV_USE_MONOTONIC
273# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
274# define EV_USE_MONOTONIC EV_FEATURE_OS
275# else
144# define EV_USE_MONOTONIC 0 276# define EV_USE_MONOTONIC 0
277# endif
145#endif 278#endif
146 279
147#ifndef EV_USE_REALTIME 280#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 281# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
282#endif
283
284#ifndef EV_USE_NANOSLEEP
285# if _POSIX_C_SOURCE >= 199309L
286# define EV_USE_NANOSLEEP EV_FEATURE_OS
287# else
288# define EV_USE_NANOSLEEP 0
289# endif
149#endif 290#endif
150 291
151#ifndef EV_USE_SELECT 292#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 293# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 294#endif
154 295
155#ifndef EV_USE_POLL 296#ifndef EV_USE_POLL
156# ifdef _WIN32 297# ifdef _WIN32
157# define EV_USE_POLL 0 298# define EV_USE_POLL 0
158# else 299# else
159# define EV_USE_POLL 1 300# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 301# endif
161#endif 302#endif
162 303
163#ifndef EV_USE_EPOLL 304#ifndef EV_USE_EPOLL
305# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
306# define EV_USE_EPOLL EV_FEATURE_BACKENDS
307# else
164# define EV_USE_EPOLL 0 308# define EV_USE_EPOLL 0
309# endif
165#endif 310#endif
166 311
167#ifndef EV_USE_KQUEUE 312#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 313# define EV_USE_KQUEUE 0
169#endif 314#endif
171#ifndef EV_USE_PORT 316#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 317# define EV_USE_PORT 0
173#endif 318#endif
174 319
175#ifndef EV_USE_INOTIFY 320#ifndef EV_USE_INOTIFY
321# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
322# define EV_USE_INOTIFY EV_FEATURE_OS
323# else
176# define EV_USE_INOTIFY 0 324# define EV_USE_INOTIFY 0
325# endif
177#endif 326#endif
178 327
179#ifndef EV_PID_HASHSIZE 328#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 329# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 330#endif
331
332#ifndef EV_INOTIFY_HASHSIZE
333# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
334#endif
335
336#ifndef EV_USE_EVENTFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 339# else
183# define EV_PID_HASHSIZE 16 340# define EV_USE_EVENTFD 0
184# endif 341# endif
185#endif 342#endif
186 343
187#ifndef EV_INOTIFY_HASHSIZE 344#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 345# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 346# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 347# else
191# define EV_INOTIFY_HASHSIZE 16 348# define EV_USE_SIGNALFD 0
192# endif 349# endif
193#endif 350#endif
194 351
195/**/ 352#if 0 /* debugging */
353# define EV_VERIFY 3
354# define EV_USE_4HEAP 1
355# define EV_HEAP_CACHE_AT 1
356#endif
357
358#ifndef EV_VERIFY
359# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
360#endif
361
362#ifndef EV_USE_4HEAP
363# define EV_USE_4HEAP EV_FEATURE_DATA
364#endif
365
366#ifndef EV_HEAP_CACHE_AT
367# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
368#endif
369
370#ifdef __ANDROID__
371/* supposedly, android doesn't typedef fd_mask */
372# undef EV_USE_SELECT
373# define EV_USE_SELECT 0
374/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
375# undef EV_USE_CLOCK_SYSCALL
376# define EV_USE_CLOCK_SYSCALL 0
377#endif
378
379/* aix's poll.h seems to cause lots of trouble */
380#ifdef _AIX
381/* AIX has a completely broken poll.h header */
382# undef EV_USE_POLL
383# define EV_USE_POLL 0
384#endif
385
386/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
387/* which makes programs even slower. might work on other unices, too. */
388#if EV_USE_CLOCK_SYSCALL
389# include <sys/syscall.h>
390# ifdef SYS_clock_gettime
391# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
392# undef EV_USE_MONOTONIC
393# define EV_USE_MONOTONIC 1
394# else
395# undef EV_USE_CLOCK_SYSCALL
396# define EV_USE_CLOCK_SYSCALL 0
397# endif
398#endif
399
400/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 401
197#ifndef CLOCK_MONOTONIC 402#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 403# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 404# define EV_USE_MONOTONIC 0
200#endif 405#endif
202#ifndef CLOCK_REALTIME 407#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 408# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 409# define EV_USE_REALTIME 0
205#endif 410#endif
206 411
207#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h>
209#endif
210
211#if !EV_STAT_ENABLE 412#if !EV_STAT_ENABLE
413# undef EV_USE_INOTIFY
212# define EV_USE_INOTIFY 0 414# define EV_USE_INOTIFY 0
213#endif 415#endif
214 416
417#if !EV_USE_NANOSLEEP
418/* hp-ux has it in sys/time.h, which we unconditionally include above */
419# if !defined _WIN32 && !defined __hpux
420# include <sys/select.h>
421# endif
422#endif
423
215#if EV_USE_INOTIFY 424#if EV_USE_INOTIFY
425# include <sys/statfs.h>
216# include <sys/inotify.h> 426# include <sys/inotify.h>
427/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
428# ifndef IN_DONT_FOLLOW
429# undef EV_USE_INOTIFY
430# define EV_USE_INOTIFY 0
431# endif
432#endif
433
434#if EV_USE_EVENTFD
435/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
436# include <stdint.h>
437# ifndef EFD_NONBLOCK
438# define EFD_NONBLOCK O_NONBLOCK
439# endif
440# ifndef EFD_CLOEXEC
441# ifdef O_CLOEXEC
442# define EFD_CLOEXEC O_CLOEXEC
443# else
444# define EFD_CLOEXEC 02000000
445# endif
446# endif
447EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
448#endif
449
450#if EV_USE_SIGNALFD
451/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
452# include <stdint.h>
453# ifndef SFD_NONBLOCK
454# define SFD_NONBLOCK O_NONBLOCK
455# endif
456# ifndef SFD_CLOEXEC
457# ifdef O_CLOEXEC
458# define SFD_CLOEXEC O_CLOEXEC
459# else
460# define SFD_CLOEXEC 02000000
461# endif
462# endif
463EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
464
465struct signalfd_siginfo
466{
467 uint32_t ssi_signo;
468 char pad[128 - sizeof (uint32_t)];
469};
217#endif 470#endif
218 471
219/**/ 472/**/
473
474#if EV_VERIFY >= 3
475# define EV_FREQUENT_CHECK ev_verify (EV_A)
476#else
477# define EV_FREQUENT_CHECK do { } while (0)
478#endif
479
480/*
481 * This is used to work around floating point rounding problems.
482 * This value is good at least till the year 4000.
483 */
484#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
485/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
220 486
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 487#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 488#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 489
490#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
491#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
492
493/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
494/* ECB.H BEGIN */
495/*
496 * libecb - http://software.schmorp.de/pkg/libecb
497 *
498 * Copyright (©) 2009-2015 Marc Alexander Lehmann <libecb@schmorp.de>
499 * Copyright (©) 2011 Emanuele Giaquinta
500 * All rights reserved.
501 *
502 * Redistribution and use in source and binary forms, with or without modifica-
503 * tion, are permitted provided that the following conditions are met:
504 *
505 * 1. Redistributions of source code must retain the above copyright notice,
506 * this list of conditions and the following disclaimer.
507 *
508 * 2. Redistributions in binary form must reproduce the above copyright
509 * notice, this list of conditions and the following disclaimer in the
510 * documentation and/or other materials provided with the distribution.
511 *
512 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
513 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
514 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
515 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
516 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
517 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
518 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
519 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
520 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
521 * OF THE POSSIBILITY OF SUCH DAMAGE.
522 *
523 * Alternatively, the contents of this file may be used under the terms of
524 * the GNU General Public License ("GPL") version 2 or any later version,
525 * in which case the provisions of the GPL are applicable instead of
526 * the above. If you wish to allow the use of your version of this file
527 * only under the terms of the GPL and not to allow others to use your
528 * version of this file under the BSD license, indicate your decision
529 * by deleting the provisions above and replace them with the notice
530 * and other provisions required by the GPL. If you do not delete the
531 * provisions above, a recipient may use your version of this file under
532 * either the BSD or the GPL.
533 */
534
535#ifndef ECB_H
536#define ECB_H
537
538/* 16 bits major, 16 bits minor */
539#define ECB_VERSION 0x00010005
540
541#ifdef _WIN32
542 typedef signed char int8_t;
543 typedef unsigned char uint8_t;
544 typedef signed short int16_t;
545 typedef unsigned short uint16_t;
546 typedef signed int int32_t;
547 typedef unsigned int uint32_t;
225#if __GNUC__ >= 3 548 #if __GNUC__
549 typedef signed long long int64_t;
550 typedef unsigned long long uint64_t;
551 #else /* _MSC_VER || __BORLANDC__ */
552 typedef signed __int64 int64_t;
553 typedef unsigned __int64 uint64_t;
554 #endif
555 #ifdef _WIN64
556 #define ECB_PTRSIZE 8
557 typedef uint64_t uintptr_t;
558 typedef int64_t intptr_t;
559 #else
560 #define ECB_PTRSIZE 4
561 typedef uint32_t uintptr_t;
562 typedef int32_t intptr_t;
563 #endif
564#else
565 #include <inttypes.h>
566 #if (defined INTPTR_MAX ? INTPTR_MAX : ULONG_MAX) > 0xffffffffU
567 #define ECB_PTRSIZE 8
568 #else
569 #define ECB_PTRSIZE 4
570 #endif
571#endif
572
573#define ECB_GCC_AMD64 (__amd64 || __amd64__ || __x86_64 || __x86_64__)
574#define ECB_MSVC_AMD64 (_M_AMD64 || _M_X64)
575
576/* work around x32 idiocy by defining proper macros */
577#if ECB_GCC_AMD64 || ECB_MSVC_AMD64
578 #if _ILP32
579 #define ECB_AMD64_X32 1
580 #else
581 #define ECB_AMD64 1
582 #endif
583#endif
584
585/* many compilers define _GNUC_ to some versions but then only implement
586 * what their idiot authors think are the "more important" extensions,
587 * causing enormous grief in return for some better fake benchmark numbers.
588 * or so.
589 * we try to detect these and simply assume they are not gcc - if they have
590 * an issue with that they should have done it right in the first place.
591 */
592#if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
593 #define ECB_GCC_VERSION(major,minor) 0
594#else
595 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
596#endif
597
598#define ECB_CLANG_VERSION(major,minor) (__clang_major__ > (major) || (__clang_major__ == (major) && __clang_minor__ >= (minor)))
599
600#if __clang__ && defined __has_builtin
601 #define ECB_CLANG_BUILTIN(x) __has_builtin (x)
602#else
603 #define ECB_CLANG_BUILTIN(x) 0
604#endif
605
606#if __clang__ && defined __has_extension
607 #define ECB_CLANG_EXTENSION(x) __has_extension (x)
608#else
609 #define ECB_CLANG_EXTENSION(x) 0
610#endif
611
612#define ECB_CPP (__cplusplus+0)
613#define ECB_CPP11 (__cplusplus >= 201103L)
614#define ECB_CPP14 (__cplusplus >= 201402L)
615#define ECB_CPP17 (__cplusplus >= 201703L)
616
617#if ECB_CPP
618 #define ECB_C 0
619 #define ECB_STDC_VERSION 0
620#else
621 #define ECB_C 1
622 #define ECB_STDC_VERSION __STDC_VERSION__
623#endif
624
625#define ECB_C99 (ECB_STDC_VERSION >= 199901L)
626#define ECB_C11 (ECB_STDC_VERSION >= 201112L)
627#define ECB_C17 (ECB_STDC_VERSION >= 201710L)
628
629#if ECB_CPP
630 #define ECB_EXTERN_C extern "C"
631 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
632 #define ECB_EXTERN_C_END }
633#else
634 #define ECB_EXTERN_C extern
635 #define ECB_EXTERN_C_BEG
636 #define ECB_EXTERN_C_END
637#endif
638
639/*****************************************************************************/
640
641/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
642/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
643
644#if ECB_NO_THREADS
645 #define ECB_NO_SMP 1
646#endif
647
648#if ECB_NO_SMP
649 #define ECB_MEMORY_FENCE do { } while (0)
650#endif
651
652/* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/compiler_ref/compiler_builtins.html */
653#if __xlC__ && ECB_CPP
654 #include <builtins.h>
655#endif
656
657#if 1400 <= _MSC_VER
658 #include <intrin.h> /* fence functions _ReadBarrier, also bit search functions _BitScanReverse */
659#endif
660
661#ifndef ECB_MEMORY_FENCE
662 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
663 #if __i386 || __i386__
664 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
665 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
666 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
667 #elif ECB_GCC_AMD64
668 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
669 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
670 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("" : : : "memory")
671 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
672 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
673 #elif defined __ARM_ARCH_2__ \
674 || defined __ARM_ARCH_3__ || defined __ARM_ARCH_3M__ \
675 || defined __ARM_ARCH_4__ || defined __ARM_ARCH_4T__ \
676 || defined __ARM_ARCH_5__ || defined __ARM_ARCH_5E__ \
677 || defined __ARM_ARCH_5T__ || defined __ARM_ARCH_5TE__ \
678 || defined __ARM_ARCH_5TEJ__
679 /* should not need any, unless running old code on newer cpu - arm doesn't support that */
680 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
681 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__ \
682 || defined __ARM_ARCH_6T2__
683 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
684 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
685 || defined __ARM_ARCH_7R__ || defined __ARM_ARCH_7M__
686 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
687 #elif __aarch64__
688 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb ish" : : : "memory")
689 #elif (__sparc || __sparc__) && !(__sparc_v8__ || defined __sparcv8)
690 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
691 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
692 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
693 #elif defined __s390__ || defined __s390x__
694 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
695 #elif defined __mips__
696 /* GNU/Linux emulates sync on mips1 architectures, so we force its use */
697 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
698 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
699 #elif defined __alpha__
700 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
701 #elif defined __hppa__
702 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
703 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
704 #elif defined __ia64__
705 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
706 #elif defined __m68k__
707 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
708 #elif defined __m88k__
709 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
710 #elif defined __sh__
711 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
712 #endif
713 #endif
714#endif
715
716#ifndef ECB_MEMORY_FENCE
717 #if ECB_GCC_VERSION(4,7)
718 /* see comment below (stdatomic.h) about the C11 memory model. */
719 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
720 #define ECB_MEMORY_FENCE_ACQUIRE __atomic_thread_fence (__ATOMIC_ACQUIRE)
721 #define ECB_MEMORY_FENCE_RELEASE __atomic_thread_fence (__ATOMIC_RELEASE)
722
723 #elif ECB_CLANG_EXTENSION(c_atomic)
724 /* see comment below (stdatomic.h) about the C11 memory model. */
725 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
726 #define ECB_MEMORY_FENCE_ACQUIRE __c11_atomic_thread_fence (__ATOMIC_ACQUIRE)
727 #define ECB_MEMORY_FENCE_RELEASE __c11_atomic_thread_fence (__ATOMIC_RELEASE)
728
729 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
730 #define ECB_MEMORY_FENCE __sync_synchronize ()
731 #elif _MSC_VER >= 1500 /* VC++ 2008 */
732 /* apparently, microsoft broke all the memory barrier stuff in Visual Studio 2008... */
733 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
734 #define ECB_MEMORY_FENCE _ReadWriteBarrier (); MemoryBarrier()
735 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier (); MemoryBarrier() /* according to msdn, _ReadBarrier is not a load fence */
736 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier (); MemoryBarrier()
737 #elif _MSC_VER >= 1400 /* VC++ 2005 */
738 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
739 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
740 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
741 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
742 #elif defined _WIN32
743 #include <WinNT.h>
744 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
745 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
746 #include <mbarrier.h>
747 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
748 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
749 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
750 #elif __xlC__
751 #define ECB_MEMORY_FENCE __sync ()
752 #endif
753#endif
754
755#ifndef ECB_MEMORY_FENCE
756 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
757 /* we assume that these memory fences work on all variables/all memory accesses, */
758 /* not just C11 atomics and atomic accesses */
759 #include <stdatomic.h>
760 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
761 /* any fence other than seq_cst, which isn't very efficient for us. */
762 /* Why that is, we don't know - either the C11 memory model is quite useless */
763 /* for most usages, or gcc and clang have a bug */
764 /* I *currently* lean towards the latter, and inefficiently implement */
765 /* all three of ecb's fences as a seq_cst fence */
766 /* Update, gcc-4.8 generates mfence for all c++ fences, but nothing */
767 /* for all __atomic_thread_fence's except seq_cst */
768 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
769 #endif
770#endif
771
772#ifndef ECB_MEMORY_FENCE
773 #if !ECB_AVOID_PTHREADS
774 /*
775 * if you get undefined symbol references to pthread_mutex_lock,
776 * or failure to find pthread.h, then you should implement
777 * the ECB_MEMORY_FENCE operations for your cpu/compiler
778 * OR provide pthread.h and link against the posix thread library
779 * of your system.
780 */
781 #include <pthread.h>
782 #define ECB_NEEDS_PTHREADS 1
783 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
784
785 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
786 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
787 #endif
788#endif
789
790#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
791 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
792#endif
793
794#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
795 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
796#endif
797
798/*****************************************************************************/
799
800#if ECB_CPP
801 #define ecb_inline static inline
802#elif ECB_GCC_VERSION(2,5)
803 #define ecb_inline static __inline__
804#elif ECB_C99
805 #define ecb_inline static inline
806#else
807 #define ecb_inline static
808#endif
809
810#if ECB_GCC_VERSION(3,3)
811 #define ecb_restrict __restrict__
812#elif ECB_C99
813 #define ecb_restrict restrict
814#else
815 #define ecb_restrict
816#endif
817
818typedef int ecb_bool;
819
820#define ECB_CONCAT_(a, b) a ## b
821#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
822#define ECB_STRINGIFY_(a) # a
823#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
824#define ECB_STRINGIFY_EXPR(expr) ((expr), ECB_STRINGIFY_ (expr))
825
826#define ecb_function_ ecb_inline
827
828#if ECB_GCC_VERSION(3,1) || ECB_CLANG_VERSION(2,8)
829 #define ecb_attribute(attrlist) __attribute__ (attrlist)
830#else
831 #define ecb_attribute(attrlist)
832#endif
833
834#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_constant_p)
835 #define ecb_is_constant(expr) __builtin_constant_p (expr)
836#else
837 /* possible C11 impl for integral types
838 typedef struct ecb_is_constant_struct ecb_is_constant_struct;
839 #define ecb_is_constant(expr) _Generic ((1 ? (struct ecb_is_constant_struct *)0 : (void *)((expr) - (expr)), ecb_is_constant_struct *: 0, default: 1)) */
840
841 #define ecb_is_constant(expr) 0
842#endif
843
844#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_expect)
226# define expect(expr,value) __builtin_expect ((expr),(value)) 845 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
227# define noinline __attribute__ ((noinline))
228#else 846#else
229# define expect(expr,value) (expr) 847 #define ecb_expect(expr,value) (expr)
230# define noinline
231# if __STDC_VERSION__ < 199901L
232# define inline
233# endif 848#endif
234#endif
235 849
850#if ECB_GCC_VERSION(3,1) || ECB_CLANG_BUILTIN(__builtin_prefetch)
851 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
852#else
853 #define ecb_prefetch(addr,rw,locality)
854#endif
855
856/* no emulation for ecb_decltype */
857#if ECB_CPP11
858 // older implementations might have problems with decltype(x)::type, work around it
859 template<class T> struct ecb_decltype_t { typedef T type; };
860 #define ecb_decltype(x) ecb_decltype_t<decltype (x)>::type
861#elif ECB_GCC_VERSION(3,0) || ECB_CLANG_VERSION(2,8)
862 #define ecb_decltype(x) __typeof__ (x)
863#endif
864
865#if _MSC_VER >= 1300
866 #define ecb_deprecated __declspec (deprecated)
867#else
868 #define ecb_deprecated ecb_attribute ((__deprecated__))
869#endif
870
871#if _MSC_VER >= 1500
872 #define ecb_deprecated_message(msg) __declspec (deprecated (msg))
873#elif ECB_GCC_VERSION(4,5)
874 #define ecb_deprecated_message(msg) ecb_attribute ((__deprecated__ (msg))
875#else
876 #define ecb_deprecated_message(msg) ecb_deprecated
877#endif
878
879#if _MSC_VER >= 1400
880 #define ecb_noinline __declspec (noinline)
881#else
882 #define ecb_noinline ecb_attribute ((__noinline__))
883#endif
884
885#define ecb_unused ecb_attribute ((__unused__))
886#define ecb_const ecb_attribute ((__const__))
887#define ecb_pure ecb_attribute ((__pure__))
888
889#if ECB_C11 || __IBMC_NORETURN
890 /* http://www-01.ibm.com/support/knowledgecenter/SSGH3R_13.1.0/com.ibm.xlcpp131.aix.doc/language_ref/noreturn.html */
891 #define ecb_noreturn _Noreturn
892#elif ECB_CPP11
893 #define ecb_noreturn [[noreturn]]
894#elif _MSC_VER >= 1200
895 /* http://msdn.microsoft.com/en-us/library/k6ktzx3s.aspx */
896 #define ecb_noreturn __declspec (noreturn)
897#else
898 #define ecb_noreturn ecb_attribute ((__noreturn__))
899#endif
900
901#if ECB_GCC_VERSION(4,3)
902 #define ecb_artificial ecb_attribute ((__artificial__))
903 #define ecb_hot ecb_attribute ((__hot__))
904 #define ecb_cold ecb_attribute ((__cold__))
905#else
906 #define ecb_artificial
907 #define ecb_hot
908 #define ecb_cold
909#endif
910
911/* put around conditional expressions if you are very sure that the */
912/* expression is mostly true or mostly false. note that these return */
913/* booleans, not the expression. */
236#define expect_false(expr) expect ((expr) != 0, 0) 914#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
237#define expect_true(expr) expect ((expr) != 0, 1) 915#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
916/* for compatibility to the rest of the world */
917#define ecb_likely(expr) ecb_expect_true (expr)
918#define ecb_unlikely(expr) ecb_expect_false (expr)
919
920/* count trailing zero bits and count # of one bits */
921#if ECB_GCC_VERSION(3,4) \
922 || (ECB_CLANG_BUILTIN(__builtin_clz) && ECB_CLANG_BUILTIN(__builtin_clzll) \
923 && ECB_CLANG_BUILTIN(__builtin_ctz) && ECB_CLANG_BUILTIN(__builtin_ctzll) \
924 && ECB_CLANG_BUILTIN(__builtin_popcount))
925 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
926 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
927 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
928 #define ecb_ctz32(x) __builtin_ctz (x)
929 #define ecb_ctz64(x) __builtin_ctzll (x)
930 #define ecb_popcount32(x) __builtin_popcount (x)
931 /* no popcountll */
932#else
933 ecb_function_ ecb_const int ecb_ctz32 (uint32_t x);
934 ecb_function_ ecb_const int
935 ecb_ctz32 (uint32_t x)
936 {
937#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
938 unsigned long r;
939 _BitScanForward (&r, x);
940 return (int)r;
941#else
942 int r = 0;
943
944 x &= ~x + 1; /* this isolates the lowest bit */
945
946#if ECB_branchless_on_i386
947 r += !!(x & 0xaaaaaaaa) << 0;
948 r += !!(x & 0xcccccccc) << 1;
949 r += !!(x & 0xf0f0f0f0) << 2;
950 r += !!(x & 0xff00ff00) << 3;
951 r += !!(x & 0xffff0000) << 4;
952#else
953 if (x & 0xaaaaaaaa) r += 1;
954 if (x & 0xcccccccc) r += 2;
955 if (x & 0xf0f0f0f0) r += 4;
956 if (x & 0xff00ff00) r += 8;
957 if (x & 0xffff0000) r += 16;
958#endif
959
960 return r;
961#endif
962 }
963
964 ecb_function_ ecb_const int ecb_ctz64 (uint64_t x);
965 ecb_function_ ecb_const int
966 ecb_ctz64 (uint64_t x)
967 {
968#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
969 unsigned long r;
970 _BitScanForward64 (&r, x);
971 return (int)r;
972#else
973 int shift = x & 0xffffffff ? 0 : 32;
974 return ecb_ctz32 (x >> shift) + shift;
975#endif
976 }
977
978 ecb_function_ ecb_const int ecb_popcount32 (uint32_t x);
979 ecb_function_ ecb_const int
980 ecb_popcount32 (uint32_t x)
981 {
982 x -= (x >> 1) & 0x55555555;
983 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
984 x = ((x >> 4) + x) & 0x0f0f0f0f;
985 x *= 0x01010101;
986
987 return x >> 24;
988 }
989
990 ecb_function_ ecb_const int ecb_ld32 (uint32_t x);
991 ecb_function_ ecb_const int ecb_ld32 (uint32_t x)
992 {
993#if 1400 <= _MSC_VER && (_M_IX86 || _M_X64 || _M_IA64 || _M_ARM)
994 unsigned long r;
995 _BitScanReverse (&r, x);
996 return (int)r;
997#else
998 int r = 0;
999
1000 if (x >> 16) { x >>= 16; r += 16; }
1001 if (x >> 8) { x >>= 8; r += 8; }
1002 if (x >> 4) { x >>= 4; r += 4; }
1003 if (x >> 2) { x >>= 2; r += 2; }
1004 if (x >> 1) { r += 1; }
1005
1006 return r;
1007#endif
1008 }
1009
1010 ecb_function_ ecb_const int ecb_ld64 (uint64_t x);
1011 ecb_function_ ecb_const int ecb_ld64 (uint64_t x)
1012 {
1013#if 1400 <= _MSC_VER && (_M_X64 || _M_IA64 || _M_ARM)
1014 unsigned long r;
1015 _BitScanReverse64 (&r, x);
1016 return (int)r;
1017#else
1018 int r = 0;
1019
1020 if (x >> 32) { x >>= 32; r += 32; }
1021
1022 return r + ecb_ld32 (x);
1023#endif
1024 }
1025#endif
1026
1027ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x);
1028ecb_function_ ecb_const ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
1029ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x);
1030ecb_function_ ecb_const ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
1031
1032ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x);
1033ecb_function_ ecb_const uint8_t ecb_bitrev8 (uint8_t x)
1034{
1035 return ( (x * 0x0802U & 0x22110U)
1036 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
1037}
1038
1039ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x);
1040ecb_function_ ecb_const uint16_t ecb_bitrev16 (uint16_t x)
1041{
1042 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
1043 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
1044 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
1045 x = ( x >> 8 ) | ( x << 8);
1046
1047 return x;
1048}
1049
1050ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x);
1051ecb_function_ ecb_const uint32_t ecb_bitrev32 (uint32_t x)
1052{
1053 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
1054 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
1055 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
1056 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
1057 x = ( x >> 16 ) | ( x << 16);
1058
1059 return x;
1060}
1061
1062/* popcount64 is only available on 64 bit cpus as gcc builtin */
1063/* so for this version we are lazy */
1064ecb_function_ ecb_const int ecb_popcount64 (uint64_t x);
1065ecb_function_ ecb_const int
1066ecb_popcount64 (uint64_t x)
1067{
1068 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
1069}
1070
1071ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count);
1072ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count);
1073ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count);
1074ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count);
1075ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count);
1076ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count);
1077ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count);
1078ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count);
1079
1080ecb_inline ecb_const uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
1081ecb_inline ecb_const uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
1082ecb_inline ecb_const uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
1083ecb_inline ecb_const uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
1084ecb_inline ecb_const uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
1085ecb_inline ecb_const uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
1086ecb_inline ecb_const uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
1087ecb_inline ecb_const uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
1088
1089#if ECB_GCC_VERSION(4,3) || (ECB_CLANG_BUILTIN(__builtin_bswap32) && ECB_CLANG_BUILTIN(__builtin_bswap64))
1090 #if ECB_GCC_VERSION(4,8) || ECB_CLANG_BUILTIN(__builtin_bswap16)
1091 #define ecb_bswap16(x) __builtin_bswap16 (x)
1092 #else
1093 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
1094 #endif
1095 #define ecb_bswap32(x) __builtin_bswap32 (x)
1096 #define ecb_bswap64(x) __builtin_bswap64 (x)
1097#elif _MSC_VER
1098 #include <stdlib.h>
1099 #define ecb_bswap16(x) ((uint16_t)_byteswap_ushort ((uint16_t)(x)))
1100 #define ecb_bswap32(x) ((uint32_t)_byteswap_ulong ((uint32_t)(x)))
1101 #define ecb_bswap64(x) ((uint64_t)_byteswap_uint64 ((uint64_t)(x)))
1102#else
1103 ecb_function_ ecb_const uint16_t ecb_bswap16 (uint16_t x);
1104 ecb_function_ ecb_const uint16_t
1105 ecb_bswap16 (uint16_t x)
1106 {
1107 return ecb_rotl16 (x, 8);
1108 }
1109
1110 ecb_function_ ecb_const uint32_t ecb_bswap32 (uint32_t x);
1111 ecb_function_ ecb_const uint32_t
1112 ecb_bswap32 (uint32_t x)
1113 {
1114 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
1115 }
1116
1117 ecb_function_ ecb_const uint64_t ecb_bswap64 (uint64_t x);
1118 ecb_function_ ecb_const uint64_t
1119 ecb_bswap64 (uint64_t x)
1120 {
1121 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
1122 }
1123#endif
1124
1125#if ECB_GCC_VERSION(4,5) || ECB_CLANG_BUILTIN(__builtin_unreachable)
1126 #define ecb_unreachable() __builtin_unreachable ()
1127#else
1128 /* this seems to work fine, but gcc always emits a warning for it :/ */
1129 ecb_inline ecb_noreturn void ecb_unreachable (void);
1130 ecb_inline ecb_noreturn void ecb_unreachable (void) { }
1131#endif
1132
1133/* try to tell the compiler that some condition is definitely true */
1134#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
1135
1136ecb_inline ecb_const uint32_t ecb_byteorder_helper (void);
1137ecb_inline ecb_const uint32_t
1138ecb_byteorder_helper (void)
1139{
1140 /* the union code still generates code under pressure in gcc, */
1141 /* but less than using pointers, and always seems to */
1142 /* successfully return a constant. */
1143 /* the reason why we have this horrible preprocessor mess */
1144 /* is to avoid it in all cases, at least on common architectures */
1145 /* or when using a recent enough gcc version (>= 4.6) */
1146#if (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__) \
1147 || ((__i386 || __i386__ || _M_IX86 || ECB_GCC_AMD64 || ECB_MSVC_AMD64) && !__VOS__)
1148 #define ECB_LITTLE_ENDIAN 1
1149 return 0x44332211;
1150#elif (defined __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) \
1151 || ((__AARCH64EB__ || __MIPSEB__ || __ARMEB__) && !__VOS__)
1152 #define ECB_BIG_ENDIAN 1
1153 return 0x11223344;
1154#else
1155 union
1156 {
1157 uint8_t c[4];
1158 uint32_t u;
1159 } u = { 0x11, 0x22, 0x33, 0x44 };
1160 return u.u;
1161#endif
1162}
1163
1164ecb_inline ecb_const ecb_bool ecb_big_endian (void);
1165ecb_inline ecb_const ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11223344; }
1166ecb_inline ecb_const ecb_bool ecb_little_endian (void);
1167ecb_inline ecb_const ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44332211; }
1168
1169#if ECB_GCC_VERSION(3,0) || ECB_C99
1170 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1171#else
1172 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1173#endif
1174
1175#if ECB_CPP
1176 template<typename T>
1177 static inline T ecb_div_rd (T val, T div)
1178 {
1179 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1180 }
1181 template<typename T>
1182 static inline T ecb_div_ru (T val, T div)
1183 {
1184 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1185 }
1186#else
1187 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1188 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1189#endif
1190
1191#if ecb_cplusplus_does_not_suck
1192 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1193 template<typename T, int N>
1194 static inline int ecb_array_length (const T (&arr)[N])
1195 {
1196 return N;
1197 }
1198#else
1199 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1200#endif
1201
1202ecb_function_ ecb_const uint32_t ecb_binary16_to_binary32 (uint32_t x);
1203ecb_function_ ecb_const uint32_t
1204ecb_binary16_to_binary32 (uint32_t x)
1205{
1206 unsigned int s = (x & 0x8000) << (31 - 15);
1207 int e = (x >> 10) & 0x001f;
1208 unsigned int m = x & 0x03ff;
1209
1210 if (ecb_expect_false (e == 31))
1211 /* infinity or NaN */
1212 e = 255 - (127 - 15);
1213 else if (ecb_expect_false (!e))
1214 {
1215 if (ecb_expect_true (!m))
1216 /* zero, handled by code below by forcing e to 0 */
1217 e = 0 - (127 - 15);
1218 else
1219 {
1220 /* subnormal, renormalise */
1221 unsigned int s = 10 - ecb_ld32 (m);
1222
1223 m = (m << s) & 0x3ff; /* mask implicit bit */
1224 e -= s - 1;
1225 }
1226 }
1227
1228 /* e and m now are normalised, or zero, (or inf or nan) */
1229 e += 127 - 15;
1230
1231 return s | (e << 23) | (m << (23 - 10));
1232}
1233
1234ecb_function_ ecb_const uint16_t ecb_binary32_to_binary16 (uint32_t x);
1235ecb_function_ ecb_const uint16_t
1236ecb_binary32_to_binary16 (uint32_t x)
1237{
1238 unsigned int s = (x >> 16) & 0x00008000; /* sign bit, the easy part */
1239 unsigned int e = ((x >> 23) & 0x000000ff) - (127 - 15); /* the desired exponent */
1240 unsigned int m = x & 0x007fffff;
1241
1242 x &= 0x7fffffff;
1243
1244 /* if it's within range of binary16 normals, use fast path */
1245 if (ecb_expect_true (0x38800000 <= x && x <= 0x477fefff))
1246 {
1247 /* mantissa round-to-even */
1248 m += 0x00000fff + ((m >> (23 - 10)) & 1);
1249
1250 /* handle overflow */
1251 if (ecb_expect_false (m >= 0x00800000))
1252 {
1253 m >>= 1;
1254 e += 1;
1255 }
1256
1257 return s | (e << 10) | (m >> (23 - 10));
1258 }
1259
1260 /* handle large numbers and infinity */
1261 if (ecb_expect_true (0x477fefff < x && x <= 0x7f800000))
1262 return s | 0x7c00;
1263
1264 /* handle zero, subnormals and small numbers */
1265 if (ecb_expect_true (x < 0x38800000))
1266 {
1267 /* zero */
1268 if (ecb_expect_true (!x))
1269 return s;
1270
1271 /* handle subnormals */
1272
1273 /* too small, will be zero */
1274 if (e < (14 - 24)) /* might not be sharp, but is good enough */
1275 return s;
1276
1277 m |= 0x00800000; /* make implicit bit explicit */
1278
1279 /* very tricky - we need to round to the nearest e (+10) bit value */
1280 {
1281 unsigned int bits = 14 - e;
1282 unsigned int half = (1 << (bits - 1)) - 1;
1283 unsigned int even = (m >> bits) & 1;
1284
1285 /* if this overflows, we will end up with a normalised number */
1286 m = (m + half + even) >> bits;
1287 }
1288
1289 return s | m;
1290 }
1291
1292 /* handle NaNs, preserve leftmost nan bits, but make sure we don't turn them into infinities */
1293 m >>= 13;
1294
1295 return s | 0x7c00 | m | !m;
1296}
1297
1298/*******************************************************************************/
1299/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1300
1301/* basically, everything uses "ieee pure-endian" floating point numbers */
1302/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1303#if 0 \
1304 || __i386 || __i386__ \
1305 || ECB_GCC_AMD64 \
1306 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1307 || defined __s390__ || defined __s390x__ \
1308 || defined __mips__ \
1309 || defined __alpha__ \
1310 || defined __hppa__ \
1311 || defined __ia64__ \
1312 || defined __m68k__ \
1313 || defined __m88k__ \
1314 || defined __sh__ \
1315 || defined _M_IX86 || defined ECB_MSVC_AMD64 || defined _M_IA64 \
1316 || (defined __arm__ && (defined __ARM_EABI__ || defined __EABI__ || defined __VFP_FP__ || defined _WIN32_WCE || defined __ANDROID__)) \
1317 || defined __aarch64__
1318 #define ECB_STDFP 1
1319 #include <string.h> /* for memcpy */
1320#else
1321 #define ECB_STDFP 0
1322#endif
1323
1324#ifndef ECB_NO_LIBM
1325
1326 #include <math.h> /* for frexp*, ldexp*, INFINITY, NAN */
1327
1328 /* only the oldest of old doesn't have this one. solaris. */
1329 #ifdef INFINITY
1330 #define ECB_INFINITY INFINITY
1331 #else
1332 #define ECB_INFINITY HUGE_VAL
1333 #endif
1334
1335 #ifdef NAN
1336 #define ECB_NAN NAN
1337 #else
1338 #define ECB_NAN ECB_INFINITY
1339 #endif
1340
1341 #if ECB_C99 || _XOPEN_VERSION >= 600 || _POSIX_VERSION >= 200112L
1342 #define ecb_ldexpf(x,e) ldexpf ((x), (e))
1343 #define ecb_frexpf(x,e) frexpf ((x), (e))
1344 #else
1345 #define ecb_ldexpf(x,e) (float) ldexp ((double) (x), (e))
1346 #define ecb_frexpf(x,e) (float) frexp ((double) (x), (e))
1347 #endif
1348
1349 /* convert a float to ieee single/binary32 */
1350 ecb_function_ ecb_const uint32_t ecb_float_to_binary32 (float x);
1351 ecb_function_ ecb_const uint32_t
1352 ecb_float_to_binary32 (float x)
1353 {
1354 uint32_t r;
1355
1356 #if ECB_STDFP
1357 memcpy (&r, &x, 4);
1358 #else
1359 /* slow emulation, works for anything but -0 */
1360 uint32_t m;
1361 int e;
1362
1363 if (x == 0e0f ) return 0x00000000U;
1364 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1365 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1366 if (x != x ) return 0x7fbfffffU;
1367
1368 m = ecb_frexpf (x, &e) * 0x1000000U;
1369
1370 r = m & 0x80000000U;
1371
1372 if (r)
1373 m = -m;
1374
1375 if (e <= -126)
1376 {
1377 m &= 0xffffffU;
1378 m >>= (-125 - e);
1379 e = -126;
1380 }
1381
1382 r |= (e + 126) << 23;
1383 r |= m & 0x7fffffU;
1384 #endif
1385
1386 return r;
1387 }
1388
1389 /* converts an ieee single/binary32 to a float */
1390 ecb_function_ ecb_const float ecb_binary32_to_float (uint32_t x);
1391 ecb_function_ ecb_const float
1392 ecb_binary32_to_float (uint32_t x)
1393 {
1394 float r;
1395
1396 #if ECB_STDFP
1397 memcpy (&r, &x, 4);
1398 #else
1399 /* emulation, only works for normals and subnormals and +0 */
1400 int neg = x >> 31;
1401 int e = (x >> 23) & 0xffU;
1402
1403 x &= 0x7fffffU;
1404
1405 if (e)
1406 x |= 0x800000U;
1407 else
1408 e = 1;
1409
1410 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1411 r = ecb_ldexpf (x * (0.5f / 0x800000U), e - 126);
1412
1413 r = neg ? -r : r;
1414 #endif
1415
1416 return r;
1417 }
1418
1419 /* convert a double to ieee double/binary64 */
1420 ecb_function_ ecb_const uint64_t ecb_double_to_binary64 (double x);
1421 ecb_function_ ecb_const uint64_t
1422 ecb_double_to_binary64 (double x)
1423 {
1424 uint64_t r;
1425
1426 #if ECB_STDFP
1427 memcpy (&r, &x, 8);
1428 #else
1429 /* slow emulation, works for anything but -0 */
1430 uint64_t m;
1431 int e;
1432
1433 if (x == 0e0 ) return 0x0000000000000000U;
1434 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1435 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1436 if (x != x ) return 0X7ff7ffffffffffffU;
1437
1438 m = frexp (x, &e) * 0x20000000000000U;
1439
1440 r = m & 0x8000000000000000;;
1441
1442 if (r)
1443 m = -m;
1444
1445 if (e <= -1022)
1446 {
1447 m &= 0x1fffffffffffffU;
1448 m >>= (-1021 - e);
1449 e = -1022;
1450 }
1451
1452 r |= ((uint64_t)(e + 1022)) << 52;
1453 r |= m & 0xfffffffffffffU;
1454 #endif
1455
1456 return r;
1457 }
1458
1459 /* converts an ieee double/binary64 to a double */
1460 ecb_function_ ecb_const double ecb_binary64_to_double (uint64_t x);
1461 ecb_function_ ecb_const double
1462 ecb_binary64_to_double (uint64_t x)
1463 {
1464 double r;
1465
1466 #if ECB_STDFP
1467 memcpy (&r, &x, 8);
1468 #else
1469 /* emulation, only works for normals and subnormals and +0 */
1470 int neg = x >> 63;
1471 int e = (x >> 52) & 0x7ffU;
1472
1473 x &= 0xfffffffffffffU;
1474
1475 if (e)
1476 x |= 0x10000000000000U;
1477 else
1478 e = 1;
1479
1480 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1481 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1482
1483 r = neg ? -r : r;
1484 #endif
1485
1486 return r;
1487 }
1488
1489 /* convert a float to ieee half/binary16 */
1490 ecb_function_ ecb_const uint16_t ecb_float_to_binary16 (float x);
1491 ecb_function_ ecb_const uint16_t
1492 ecb_float_to_binary16 (float x)
1493 {
1494 return ecb_binary32_to_binary16 (ecb_float_to_binary32 (x));
1495 }
1496
1497 /* convert an ieee half/binary16 to float */
1498 ecb_function_ ecb_const float ecb_binary16_to_float (uint16_t x);
1499 ecb_function_ ecb_const float
1500 ecb_binary16_to_float (uint16_t x)
1501 {
1502 return ecb_binary32_to_float (ecb_binary16_to_binary32 (x));
1503 }
1504
1505#endif
1506
1507#endif
1508
1509/* ECB.H END */
1510
1511#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1512/* if your architecture doesn't need memory fences, e.g. because it is
1513 * single-cpu/core, or if you use libev in a project that doesn't use libev
1514 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1515 * libev, in which cases the memory fences become nops.
1516 * alternatively, you can remove this #error and link against libpthread,
1517 * which will then provide the memory fences.
1518 */
1519# error "memory fences not defined for your architecture, please report"
1520#endif
1521
1522#ifndef ECB_MEMORY_FENCE
1523# define ECB_MEMORY_FENCE do { } while (0)
1524# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1525# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1526#endif
1527
1528#define expect_false(cond) ecb_expect_false (cond)
1529#define expect_true(cond) ecb_expect_true (cond)
1530#define noinline ecb_noinline
1531
238#define inline_size static inline 1532#define inline_size ecb_inline
239 1533
240#if EV_MINIMAL 1534#if EV_FEATURE_CODE
241# define inline_speed static noinline
242#else
243# define inline_speed static inline 1535# define inline_speed ecb_inline
1536#else
1537# define inline_speed noinline static
244#endif 1538#endif
245 1539
246#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 1540#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1541
1542#if EV_MINPRI == EV_MAXPRI
1543# define ABSPRI(w) (((W)w), 0)
1544#else
247#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1545# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1546#endif
248 1547
249#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1548#define EMPTY /* required for microsofts broken pseudo-c compiler */
250#define EMPTY2(a,b) /* used to suppress some warnings */ 1549#define EMPTY2(a,b) /* used to suppress some warnings */
251 1550
252typedef ev_watcher *W; 1551typedef ev_watcher *W;
253typedef ev_watcher_list *WL; 1552typedef ev_watcher_list *WL;
254typedef ev_watcher_time *WT; 1553typedef ev_watcher_time *WT;
255 1554
1555#define ev_active(w) ((W)(w))->active
1556#define ev_at(w) ((WT)(w))->at
1557
1558#if EV_USE_REALTIME
1559/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1560/* giving it a reasonably high chance of working on typical architectures */
1561static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1562#endif
1563
1564#if EV_USE_MONOTONIC
256static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1565static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1566#endif
1567
1568#ifndef EV_FD_TO_WIN32_HANDLE
1569# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1570#endif
1571#ifndef EV_WIN32_HANDLE_TO_FD
1572# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1573#endif
1574#ifndef EV_WIN32_CLOSE_FD
1575# define EV_WIN32_CLOSE_FD(fd) close (fd)
1576#endif
257 1577
258#ifdef _WIN32 1578#ifdef _WIN32
259# include "ev_win32.c" 1579# include "ev_win32.c"
260#endif 1580#endif
261 1581
262/*****************************************************************************/ 1582/*****************************************************************************/
263 1583
1584/* define a suitable floor function (only used by periodics atm) */
1585
1586#if EV_USE_FLOOR
1587# include <math.h>
1588# define ev_floor(v) floor (v)
1589#else
1590
1591#include <float.h>
1592
1593/* a floor() replacement function, should be independent of ev_tstamp type */
1594noinline
1595static ev_tstamp
1596ev_floor (ev_tstamp v)
1597{
1598 /* the choice of shift factor is not terribly important */
1599#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1600 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1601#else
1602 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1603#endif
1604
1605 /* argument too large for an unsigned long? */
1606 if (expect_false (v >= shift))
1607 {
1608 ev_tstamp f;
1609
1610 if (v == v - 1.)
1611 return v; /* very large number */
1612
1613 f = shift * ev_floor (v * (1. / shift));
1614 return f + ev_floor (v - f);
1615 }
1616
1617 /* special treatment for negative args? */
1618 if (expect_false (v < 0.))
1619 {
1620 ev_tstamp f = -ev_floor (-v);
1621
1622 return f - (f == v ? 0 : 1);
1623 }
1624
1625 /* fits into an unsigned long */
1626 return (unsigned long)v;
1627}
1628
1629#endif
1630
1631/*****************************************************************************/
1632
1633#ifdef __linux
1634# include <sys/utsname.h>
1635#endif
1636
1637noinline ecb_cold
1638static unsigned int
1639ev_linux_version (void)
1640{
1641#ifdef __linux
1642 unsigned int v = 0;
1643 struct utsname buf;
1644 int i;
1645 char *p = buf.release;
1646
1647 if (uname (&buf))
1648 return 0;
1649
1650 for (i = 3+1; --i; )
1651 {
1652 unsigned int c = 0;
1653
1654 for (;;)
1655 {
1656 if (*p >= '0' && *p <= '9')
1657 c = c * 10 + *p++ - '0';
1658 else
1659 {
1660 p += *p == '.';
1661 break;
1662 }
1663 }
1664
1665 v = (v << 8) | c;
1666 }
1667
1668 return v;
1669#else
1670 return 0;
1671#endif
1672}
1673
1674/*****************************************************************************/
1675
1676#if EV_AVOID_STDIO
1677noinline ecb_cold
1678static void
1679ev_printerr (const char *msg)
1680{
1681 write (STDERR_FILENO, msg, strlen (msg));
1682}
1683#endif
1684
264static void (*syserr_cb)(const char *msg); 1685static void (*syserr_cb)(const char *msg) EV_NOEXCEPT;
265 1686
1687ecb_cold
266void 1688void
267ev_set_syserr_cb (void (*cb)(const char *msg)) 1689ev_set_syserr_cb (void (*cb)(const char *msg) EV_NOEXCEPT) EV_NOEXCEPT
268{ 1690{
269 syserr_cb = cb; 1691 syserr_cb = cb;
270} 1692}
271 1693
272static void noinline 1694noinline ecb_cold
1695static void
273syserr (const char *msg) 1696ev_syserr (const char *msg)
274{ 1697{
275 if (!msg) 1698 if (!msg)
276 msg = "(libev) system error"; 1699 msg = "(libev) system error";
277 1700
278 if (syserr_cb) 1701 if (syserr_cb)
279 syserr_cb (msg); 1702 syserr_cb (msg);
280 else 1703 else
281 { 1704 {
1705#if EV_AVOID_STDIO
1706 ev_printerr (msg);
1707 ev_printerr (": ");
1708 ev_printerr (strerror (errno));
1709 ev_printerr ("\n");
1710#else
282 perror (msg); 1711 perror (msg);
1712#endif
283 abort (); 1713 abort ();
284 } 1714 }
285} 1715}
286 1716
287static void *(*alloc)(void *ptr, long size); 1717static void *
1718ev_realloc_emul (void *ptr, long size) EV_NOEXCEPT
1719{
1720 /* some systems, notably openbsd and darwin, fail to properly
1721 * implement realloc (x, 0) (as required by both ansi c-89 and
1722 * the single unix specification, so work around them here.
1723 * recently, also (at least) fedora and debian started breaking it,
1724 * despite documenting it otherwise.
1725 */
288 1726
1727 if (size)
1728 return realloc (ptr, size);
1729
1730 free (ptr);
1731 return 0;
1732}
1733
1734static void *(*alloc)(void *ptr, long size) EV_NOEXCEPT = ev_realloc_emul;
1735
1736ecb_cold
289void 1737void
290ev_set_allocator (void *(*cb)(void *ptr, long size)) 1738ev_set_allocator (void *(*cb)(void *ptr, long size) EV_NOEXCEPT) EV_NOEXCEPT
291{ 1739{
292 alloc = cb; 1740 alloc = cb;
293} 1741}
294 1742
295inline_speed void * 1743inline_speed void *
296ev_realloc (void *ptr, long size) 1744ev_realloc (void *ptr, long size)
297{ 1745{
298 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1746 ptr = alloc (ptr, size);
299 1747
300 if (!ptr && size) 1748 if (!ptr && size)
301 { 1749 {
1750#if EV_AVOID_STDIO
1751 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1752#else
302 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1753 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1754#endif
303 abort (); 1755 abort ();
304 } 1756 }
305 1757
306 return ptr; 1758 return ptr;
307} 1759}
309#define ev_malloc(size) ev_realloc (0, (size)) 1761#define ev_malloc(size) ev_realloc (0, (size))
310#define ev_free(ptr) ev_realloc ((ptr), 0) 1762#define ev_free(ptr) ev_realloc ((ptr), 0)
311 1763
312/*****************************************************************************/ 1764/*****************************************************************************/
313 1765
1766/* set in reify when reification needed */
1767#define EV_ANFD_REIFY 1
1768
1769/* file descriptor info structure */
314typedef struct 1770typedef struct
315{ 1771{
316 WL head; 1772 WL head;
317 unsigned char events; 1773 unsigned char events; /* the events watched for */
1774 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1775 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
318 unsigned char reify; 1776 unsigned char unused;
1777#if EV_USE_EPOLL
1778 unsigned int egen; /* generation counter to counter epoll bugs */
1779#endif
319#if EV_SELECT_IS_WINSOCKET 1780#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
320 SOCKET handle; 1781 SOCKET handle;
321#endif 1782#endif
1783#if EV_USE_IOCP
1784 OVERLAPPED or, ow;
1785#endif
322} ANFD; 1786} ANFD;
323 1787
1788/* stores the pending event set for a given watcher */
324typedef struct 1789typedef struct
325{ 1790{
326 W w; 1791 W w;
327 int events; 1792 int events; /* the pending event set for the given watcher */
328} ANPENDING; 1793} ANPENDING;
329 1794
330#if EV_USE_INOTIFY 1795#if EV_USE_INOTIFY
1796/* hash table entry per inotify-id */
331typedef struct 1797typedef struct
332{ 1798{
333 WL head; 1799 WL head;
334} ANFS; 1800} ANFS;
1801#endif
1802
1803/* Heap Entry */
1804#if EV_HEAP_CACHE_AT
1805 /* a heap element */
1806 typedef struct {
1807 ev_tstamp at;
1808 WT w;
1809 } ANHE;
1810
1811 #define ANHE_w(he) (he).w /* access watcher, read-write */
1812 #define ANHE_at(he) (he).at /* access cached at, read-only */
1813 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1814#else
1815 /* a heap element */
1816 typedef WT ANHE;
1817
1818 #define ANHE_w(he) (he)
1819 #define ANHE_at(he) (he)->at
1820 #define ANHE_at_cache(he)
335#endif 1821#endif
336 1822
337#if EV_MULTIPLICITY 1823#if EV_MULTIPLICITY
338 1824
339 struct ev_loop 1825 struct ev_loop
345 #undef VAR 1831 #undef VAR
346 }; 1832 };
347 #include "ev_wrap.h" 1833 #include "ev_wrap.h"
348 1834
349 static struct ev_loop default_loop_struct; 1835 static struct ev_loop default_loop_struct;
350 struct ev_loop *ev_default_loop_ptr; 1836 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
351 1837
352#else 1838#else
353 1839
354 ev_tstamp ev_rt_now; 1840 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
355 #define VAR(name,decl) static decl; 1841 #define VAR(name,decl) static decl;
356 #include "ev_vars.h" 1842 #include "ev_vars.h"
357 #undef VAR 1843 #undef VAR
358 1844
359 static int ev_default_loop_ptr; 1845 static int ev_default_loop_ptr;
360 1846
361#endif 1847#endif
362 1848
1849#if EV_FEATURE_API
1850# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1851# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1852# define EV_INVOKE_PENDING invoke_cb (EV_A)
1853#else
1854# define EV_RELEASE_CB (void)0
1855# define EV_ACQUIRE_CB (void)0
1856# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1857#endif
1858
1859#define EVBREAK_RECURSE 0x80
1860
363/*****************************************************************************/ 1861/*****************************************************************************/
364 1862
1863#ifndef EV_HAVE_EV_TIME
365ev_tstamp 1864ev_tstamp
366ev_time (void) 1865ev_time (void) EV_NOEXCEPT
367{ 1866{
368#if EV_USE_REALTIME 1867#if EV_USE_REALTIME
1868 if (expect_true (have_realtime))
1869 {
369 struct timespec ts; 1870 struct timespec ts;
370 clock_gettime (CLOCK_REALTIME, &ts); 1871 clock_gettime (CLOCK_REALTIME, &ts);
371 return ts.tv_sec + ts.tv_nsec * 1e-9; 1872 return ts.tv_sec + ts.tv_nsec * 1e-9;
372#else 1873 }
1874#endif
1875
373 struct timeval tv; 1876 struct timeval tv;
374 gettimeofday (&tv, 0); 1877 gettimeofday (&tv, 0);
375 return tv.tv_sec + tv.tv_usec * 1e-6; 1878 return tv.tv_sec + tv.tv_usec * 1e-6;
376#endif
377} 1879}
1880#endif
378 1881
379ev_tstamp inline_size 1882inline_size ev_tstamp
380get_clock (void) 1883get_clock (void)
381{ 1884{
382#if EV_USE_MONOTONIC 1885#if EV_USE_MONOTONIC
383 if (expect_true (have_monotonic)) 1886 if (expect_true (have_monotonic))
384 { 1887 {
391 return ev_time (); 1894 return ev_time ();
392} 1895}
393 1896
394#if EV_MULTIPLICITY 1897#if EV_MULTIPLICITY
395ev_tstamp 1898ev_tstamp
396ev_now (EV_P) 1899ev_now (EV_P) EV_NOEXCEPT
397{ 1900{
398 return ev_rt_now; 1901 return ev_rt_now;
399} 1902}
400#endif 1903#endif
401 1904
402int inline_size 1905void
1906ev_sleep (ev_tstamp delay) EV_NOEXCEPT
1907{
1908 if (delay > 0.)
1909 {
1910#if EV_USE_NANOSLEEP
1911 struct timespec ts;
1912
1913 EV_TS_SET (ts, delay);
1914 nanosleep (&ts, 0);
1915#elif defined _WIN32
1916 /* maybe this should round up, as ms is very low resolution */
1917 /* compared to select (µs) or nanosleep (ns) */
1918 Sleep ((unsigned long)(delay * 1e3));
1919#else
1920 struct timeval tv;
1921
1922 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1923 /* something not guaranteed by newer posix versions, but guaranteed */
1924 /* by older ones */
1925 EV_TV_SET (tv, delay);
1926 select (0, 0, 0, 0, &tv);
1927#endif
1928 }
1929}
1930
1931/*****************************************************************************/
1932
1933#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1934
1935/* find a suitable new size for the given array, */
1936/* hopefully by rounding to a nice-to-malloc size */
1937inline_size int
403array_nextsize (int elem, int cur, int cnt) 1938array_nextsize (int elem, int cur, int cnt)
404{ 1939{
405 int ncur = cur + 1; 1940 int ncur = cur + 1;
406 1941
407 do 1942 do
408 ncur <<= 1; 1943 ncur <<= 1;
409 while (cnt > ncur); 1944 while (cnt > ncur);
410 1945
411 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1946 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
412 if (elem * ncur > 4096) 1947 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
413 { 1948 {
414 ncur *= elem; 1949 ncur *= elem;
415 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1950 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
416 ncur = ncur - sizeof (void *) * 4; 1951 ncur = ncur - sizeof (void *) * 4;
417 ncur /= elem; 1952 ncur /= elem;
418 } 1953 }
419 1954
420 return ncur; 1955 return ncur;
421} 1956}
422 1957
423static noinline void * 1958noinline ecb_cold
1959static void *
424array_realloc (int elem, void *base, int *cur, int cnt) 1960array_realloc (int elem, void *base, int *cur, int cnt)
425{ 1961{
426 *cur = array_nextsize (elem, *cur, cnt); 1962 *cur = array_nextsize (elem, *cur, cnt);
427 return ev_realloc (base, elem * *cur); 1963 return ev_realloc (base, elem * *cur);
428} 1964}
1965
1966#define array_init_zero(base,count) \
1967 memset ((void *)(base), 0, sizeof (*(base)) * (count))
429 1968
430#define array_needsize(type,base,cur,cnt,init) \ 1969#define array_needsize(type,base,cur,cnt,init) \
431 if (expect_false ((cnt) > (cur))) \ 1970 if (expect_false ((cnt) > (cur))) \
432 { \ 1971 { \
433 int ocur_ = (cur); \ 1972 ecb_unused int ocur_ = (cur); \
434 (base) = (type *)array_realloc \ 1973 (base) = (type *)array_realloc \
435 (sizeof (type), (base), &(cur), (cnt)); \ 1974 (sizeof (type), (base), &(cur), (cnt)); \
436 init ((base) + (ocur_), (cur) - ocur_); \ 1975 init ((base) + (ocur_), (cur) - ocur_); \
437 } 1976 }
438 1977
445 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1984 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
446 } 1985 }
447#endif 1986#endif
448 1987
449#define array_free(stem, idx) \ 1988#define array_free(stem, idx) \
450 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1989 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
451 1990
452/*****************************************************************************/ 1991/*****************************************************************************/
453 1992
1993/* dummy callback for pending events */
454void noinline 1994noinline
1995static void
1996pendingcb (EV_P_ ev_prepare *w, int revents)
1997{
1998}
1999
2000noinline
2001void
455ev_feed_event (EV_P_ void *w, int revents) 2002ev_feed_event (EV_P_ void *w, int revents) EV_NOEXCEPT
456{ 2003{
457 W w_ = (W)w; 2004 W w_ = (W)w;
458 int pri = ABSPRI (w_); 2005 int pri = ABSPRI (w_);
459 2006
460 if (expect_false (w_->pending)) 2007 if (expect_false (w_->pending))
464 w_->pending = ++pendingcnt [pri]; 2011 w_->pending = ++pendingcnt [pri];
465 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 2012 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
466 pendings [pri][w_->pending - 1].w = w_; 2013 pendings [pri][w_->pending - 1].w = w_;
467 pendings [pri][w_->pending - 1].events = revents; 2014 pendings [pri][w_->pending - 1].events = revents;
468 } 2015 }
469}
470 2016
471void inline_size 2017 pendingpri = NUMPRI - 1;
2018}
2019
2020inline_speed void
2021feed_reverse (EV_P_ W w)
2022{
2023 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
2024 rfeeds [rfeedcnt++] = w;
2025}
2026
2027inline_size void
2028feed_reverse_done (EV_P_ int revents)
2029{
2030 do
2031 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
2032 while (rfeedcnt);
2033}
2034
2035inline_speed void
472queue_events (EV_P_ W *events, int eventcnt, int type) 2036queue_events (EV_P_ W *events, int eventcnt, int type)
473{ 2037{
474 int i; 2038 int i;
475 2039
476 for (i = 0; i < eventcnt; ++i) 2040 for (i = 0; i < eventcnt; ++i)
477 ev_feed_event (EV_A_ events [i], type); 2041 ev_feed_event (EV_A_ events [i], type);
478} 2042}
479 2043
480/*****************************************************************************/ 2044/*****************************************************************************/
481 2045
482void inline_size 2046inline_speed void
483anfds_init (ANFD *base, int count)
484{
485 while (count--)
486 {
487 base->head = 0;
488 base->events = EV_NONE;
489 base->reify = 0;
490
491 ++base;
492 }
493}
494
495void inline_speed
496fd_event (EV_P_ int fd, int revents) 2047fd_event_nocheck (EV_P_ int fd, int revents)
497{ 2048{
498 ANFD *anfd = anfds + fd; 2049 ANFD *anfd = anfds + fd;
499 ev_io *w; 2050 ev_io *w;
500 2051
501 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2052 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
505 if (ev) 2056 if (ev)
506 ev_feed_event (EV_A_ (W)w, ev); 2057 ev_feed_event (EV_A_ (W)w, ev);
507 } 2058 }
508} 2059}
509 2060
510void 2061/* do not submit kernel events for fds that have reify set */
2062/* because that means they changed while we were polling for new events */
2063inline_speed void
511ev_feed_fd_event (EV_P_ int fd, int revents) 2064fd_event (EV_P_ int fd, int revents)
2065{
2066 ANFD *anfd = anfds + fd;
2067
2068 if (expect_true (!anfd->reify))
2069 fd_event_nocheck (EV_A_ fd, revents);
2070}
2071
2072void
2073ev_feed_fd_event (EV_P_ int fd, int revents) EV_NOEXCEPT
512{ 2074{
513 if (fd >= 0 && fd < anfdmax) 2075 if (fd >= 0 && fd < anfdmax)
514 fd_event (EV_A_ fd, revents); 2076 fd_event_nocheck (EV_A_ fd, revents);
515} 2077}
516 2078
517void inline_size 2079/* make sure the external fd watch events are in-sync */
2080/* with the kernel/libev internal state */
2081inline_size void
518fd_reify (EV_P) 2082fd_reify (EV_P)
519{ 2083{
520 int i; 2084 int i;
2085
2086#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
2087 for (i = 0; i < fdchangecnt; ++i)
2088 {
2089 int fd = fdchanges [i];
2090 ANFD *anfd = anfds + fd;
2091
2092 if (anfd->reify & EV__IOFDSET && anfd->head)
2093 {
2094 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
2095
2096 if (handle != anfd->handle)
2097 {
2098 unsigned long arg;
2099
2100 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
2101
2102 /* handle changed, but fd didn't - we need to do it in two steps */
2103 backend_modify (EV_A_ fd, anfd->events, 0);
2104 anfd->events = 0;
2105 anfd->handle = handle;
2106 }
2107 }
2108 }
2109#endif
521 2110
522 for (i = 0; i < fdchangecnt; ++i) 2111 for (i = 0; i < fdchangecnt; ++i)
523 { 2112 {
524 int fd = fdchanges [i]; 2113 int fd = fdchanges [i];
525 ANFD *anfd = anfds + fd; 2114 ANFD *anfd = anfds + fd;
526 ev_io *w; 2115 ev_io *w;
527 2116
528 int events = 0; 2117 unsigned char o_events = anfd->events;
2118 unsigned char o_reify = anfd->reify;
529 2119
530 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 2120 anfd->reify = 0;
531 events |= w->events;
532 2121
533#if EV_SELECT_IS_WINSOCKET 2122 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
534 if (events)
535 { 2123 {
536 unsigned long argp; 2124 anfd->events = 0;
537 anfd->handle = _get_osfhandle (fd); 2125
538 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 2126 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
2127 anfd->events |= (unsigned char)w->events;
2128
2129 if (o_events != anfd->events)
2130 o_reify = EV__IOFDSET; /* actually |= */
539 } 2131 }
540#endif
541 2132
542 anfd->reify = 0; 2133 if (o_reify & EV__IOFDSET)
543
544 backend_modify (EV_A_ fd, anfd->events, events); 2134 backend_modify (EV_A_ fd, o_events, anfd->events);
545 anfd->events = events;
546 } 2135 }
547 2136
548 fdchangecnt = 0; 2137 fdchangecnt = 0;
549} 2138}
550 2139
2140/* something about the given fd changed */
551void inline_size 2141inline_size
2142void
552fd_change (EV_P_ int fd) 2143fd_change (EV_P_ int fd, int flags)
553{ 2144{
554 if (expect_false (anfds [fd].reify)) 2145 unsigned char reify = anfds [fd].reify;
555 return;
556
557 anfds [fd].reify = 1; 2146 anfds [fd].reify |= flags;
558 2147
2148 if (expect_true (!reify))
2149 {
559 ++fdchangecnt; 2150 ++fdchangecnt;
560 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 2151 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
561 fdchanges [fdchangecnt - 1] = fd; 2152 fdchanges [fdchangecnt - 1] = fd;
2153 }
562} 2154}
563 2155
564void inline_speed 2156/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
2157inline_speed ecb_cold void
565fd_kill (EV_P_ int fd) 2158fd_kill (EV_P_ int fd)
566{ 2159{
567 ev_io *w; 2160 ev_io *w;
568 2161
569 while ((w = (ev_io *)anfds [fd].head)) 2162 while ((w = (ev_io *)anfds [fd].head))
571 ev_io_stop (EV_A_ w); 2164 ev_io_stop (EV_A_ w);
572 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 2165 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
573 } 2166 }
574} 2167}
575 2168
576int inline_size 2169/* check whether the given fd is actually valid, for error recovery */
2170inline_size ecb_cold int
577fd_valid (int fd) 2171fd_valid (int fd)
578{ 2172{
579#ifdef _WIN32 2173#ifdef _WIN32
580 return _get_osfhandle (fd) != -1; 2174 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
581#else 2175#else
582 return fcntl (fd, F_GETFD) != -1; 2176 return fcntl (fd, F_GETFD) != -1;
583#endif 2177#endif
584} 2178}
585 2179
586/* called on EBADF to verify fds */ 2180/* called on EBADF to verify fds */
587static void noinline 2181noinline ecb_cold
2182static void
588fd_ebadf (EV_P) 2183fd_ebadf (EV_P)
589{ 2184{
590 int fd; 2185 int fd;
591 2186
592 for (fd = 0; fd < anfdmax; ++fd) 2187 for (fd = 0; fd < anfdmax; ++fd)
593 if (anfds [fd].events) 2188 if (anfds [fd].events)
594 if (!fd_valid (fd) == -1 && errno == EBADF) 2189 if (!fd_valid (fd) && errno == EBADF)
595 fd_kill (EV_A_ fd); 2190 fd_kill (EV_A_ fd);
596} 2191}
597 2192
598/* called on ENOMEM in select/poll to kill some fds and retry */ 2193/* called on ENOMEM in select/poll to kill some fds and retry */
599static void noinline 2194noinline ecb_cold
2195static void
600fd_enomem (EV_P) 2196fd_enomem (EV_P)
601{ 2197{
602 int fd; 2198 int fd;
603 2199
604 for (fd = anfdmax; fd--; ) 2200 for (fd = anfdmax; fd--; )
605 if (anfds [fd].events) 2201 if (anfds [fd].events)
606 { 2202 {
607 fd_kill (EV_A_ fd); 2203 fd_kill (EV_A_ fd);
608 return; 2204 break;
609 } 2205 }
610} 2206}
611 2207
612/* usually called after fork if backend needs to re-arm all fds from scratch */ 2208/* usually called after fork if backend needs to re-arm all fds from scratch */
613static void noinline 2209noinline
2210static void
614fd_rearm_all (EV_P) 2211fd_rearm_all (EV_P)
615{ 2212{
616 int fd; 2213 int fd;
617 2214
618 for (fd = 0; fd < anfdmax; ++fd) 2215 for (fd = 0; fd < anfdmax; ++fd)
619 if (anfds [fd].events) 2216 if (anfds [fd].events)
620 { 2217 {
621 anfds [fd].events = 0; 2218 anfds [fd].events = 0;
622 fd_change (EV_A_ fd); 2219 anfds [fd].emask = 0;
2220 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
623 } 2221 }
624} 2222}
625 2223
2224/* used to prepare libev internal fd's */
2225/* this is not fork-safe */
2226inline_speed void
2227fd_intern (int fd)
2228{
2229#ifdef _WIN32
2230 unsigned long arg = 1;
2231 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
2232#else
2233 fcntl (fd, F_SETFD, FD_CLOEXEC);
2234 fcntl (fd, F_SETFL, O_NONBLOCK);
2235#endif
2236}
2237
626/*****************************************************************************/ 2238/*****************************************************************************/
627 2239
628void inline_speed 2240/*
629upheap (WT *heap, int k) 2241 * the heap functions want a real array index. array index 0 is guaranteed to not
630{ 2242 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
631 WT w = heap [k]; 2243 * the branching factor of the d-tree.
2244 */
632 2245
633 while (k && heap [k >> 1]->at > w->at) 2246/*
634 { 2247 * at the moment we allow libev the luxury of two heaps,
635 heap [k] = heap [k >> 1]; 2248 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
636 ((W)heap [k])->active = k + 1; 2249 * which is more cache-efficient.
637 k >>= 1; 2250 * the difference is about 5% with 50000+ watchers.
638 } 2251 */
2252#if EV_USE_4HEAP
639 2253
640 heap [k] = w; 2254#define DHEAP 4
641 ((W)heap [k])->active = k + 1; 2255#define HEAP0 (DHEAP - 1) /* index of first element in heap */
2256#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
2257#define UPHEAP_DONE(p,k) ((p) == (k))
642 2258
643} 2259/* away from the root */
644 2260inline_speed void
645void inline_speed
646downheap (WT *heap, int N, int k) 2261downheap (ANHE *heap, int N, int k)
647{ 2262{
648 WT w = heap [k]; 2263 ANHE he = heap [k];
2264 ANHE *E = heap + N + HEAP0;
649 2265
650 while (k < (N >> 1)) 2266 for (;;)
651 { 2267 {
652 int j = k << 1; 2268 ev_tstamp minat;
2269 ANHE *minpos;
2270 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
653 2271
654 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 2272 /* find minimum child */
2273 if (expect_true (pos + DHEAP - 1 < E))
655 ++j; 2274 {
656 2275 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
657 if (w->at <= heap [j]->at) 2276 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2277 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2278 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2279 }
2280 else if (pos < E)
2281 {
2282 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
2283 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
2284 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
2285 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
2286 }
2287 else
658 break; 2288 break;
659 2289
2290 if (ANHE_at (he) <= minat)
2291 break;
2292
2293 heap [k] = *minpos;
2294 ev_active (ANHE_w (*minpos)) = k;
2295
2296 k = minpos - heap;
2297 }
2298
2299 heap [k] = he;
2300 ev_active (ANHE_w (he)) = k;
2301}
2302
2303#else /* 4HEAP */
2304
2305#define HEAP0 1
2306#define HPARENT(k) ((k) >> 1)
2307#define UPHEAP_DONE(p,k) (!(p))
2308
2309/* away from the root */
2310inline_speed void
2311downheap (ANHE *heap, int N, int k)
2312{
2313 ANHE he = heap [k];
2314
2315 for (;;)
2316 {
2317 int c = k << 1;
2318
2319 if (c >= N + HEAP0)
2320 break;
2321
2322 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2323 ? 1 : 0;
2324
2325 if (ANHE_at (he) <= ANHE_at (heap [c]))
2326 break;
2327
660 heap [k] = heap [j]; 2328 heap [k] = heap [c];
661 ((W)heap [k])->active = k + 1; 2329 ev_active (ANHE_w (heap [k])) = k;
2330
662 k = j; 2331 k = c;
663 } 2332 }
664 2333
665 heap [k] = w; 2334 heap [k] = he;
666 ((W)heap [k])->active = k + 1; 2335 ev_active (ANHE_w (he)) = k;
667} 2336}
2337#endif
668 2338
669void inline_size 2339/* towards the root */
2340inline_speed void
2341upheap (ANHE *heap, int k)
2342{
2343 ANHE he = heap [k];
2344
2345 for (;;)
2346 {
2347 int p = HPARENT (k);
2348
2349 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2350 break;
2351
2352 heap [k] = heap [p];
2353 ev_active (ANHE_w (heap [k])) = k;
2354 k = p;
2355 }
2356
2357 heap [k] = he;
2358 ev_active (ANHE_w (he)) = k;
2359}
2360
2361/* move an element suitably so it is in a correct place */
2362inline_size void
670adjustheap (WT *heap, int N, int k) 2363adjustheap (ANHE *heap, int N, int k)
671{ 2364{
2365 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
672 upheap (heap, k); 2366 upheap (heap, k);
2367 else
673 downheap (heap, N, k); 2368 downheap (heap, N, k);
2369}
2370
2371/* rebuild the heap: this function is used only once and executed rarely */
2372inline_size void
2373reheap (ANHE *heap, int N)
2374{
2375 int i;
2376
2377 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2378 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2379 for (i = 0; i < N; ++i)
2380 upheap (heap, i + HEAP0);
674} 2381}
675 2382
676/*****************************************************************************/ 2383/*****************************************************************************/
677 2384
2385/* associate signal watchers to a signal signal */
678typedef struct 2386typedef struct
679{ 2387{
2388 EV_ATOMIC_T pending;
2389#if EV_MULTIPLICITY
2390 EV_P;
2391#endif
680 WL head; 2392 WL head;
681 sig_atomic_t volatile gotsig;
682} ANSIG; 2393} ANSIG;
683 2394
684static ANSIG *signals; 2395static ANSIG signals [EV_NSIG - 1];
685static int signalmax;
686 2396
687static int sigpipe [2]; 2397/*****************************************************************************/
688static sig_atomic_t volatile gotsig;
689static ev_io sigev;
690 2398
691void inline_size 2399#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
692signals_init (ANSIG *base, int count)
693{
694 while (count--)
695 {
696 base->head = 0;
697 base->gotsig = 0;
698 2400
699 ++base; 2401noinline ecb_cold
700 }
701}
702
703static void 2402static void
704sighandler (int signum) 2403evpipe_init (EV_P)
705{ 2404{
706#if _WIN32 2405 if (!ev_is_active (&pipe_w))
707 signal (signum, sighandler); 2406 {
2407 int fds [2];
2408
2409# if EV_USE_EVENTFD
2410 fds [0] = -1;
2411 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2412 if (fds [1] < 0 && errno == EINVAL)
2413 fds [1] = eventfd (0, 0);
2414
2415 if (fds [1] < 0)
708#endif 2416# endif
2417 {
2418 while (pipe (fds))
2419 ev_syserr ("(libev) error creating signal/async pipe");
709 2420
710 signals [signum - 1].gotsig = 1; 2421 fd_intern (fds [0]);
2422 }
711 2423
712 if (!gotsig) 2424 evpipe [0] = fds [0];
2425
2426 if (evpipe [1] < 0)
2427 evpipe [1] = fds [1]; /* first call, set write fd */
2428 else
2429 {
2430 /* on subsequent calls, do not change evpipe [1] */
2431 /* so that evpipe_write can always rely on its value. */
2432 /* this branch does not do anything sensible on windows, */
2433 /* so must not be executed on windows */
2434
2435 dup2 (fds [1], evpipe [1]);
2436 close (fds [1]);
2437 }
2438
2439 fd_intern (evpipe [1]);
2440
2441 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2442 ev_io_start (EV_A_ &pipe_w);
2443 ev_unref (EV_A); /* watcher should not keep loop alive */
713 { 2444 }
2445}
2446
2447inline_speed void
2448evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2449{
2450 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2451
2452 if (expect_true (*flag))
2453 return;
2454
2455 *flag = 1;
2456 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2457
2458 pipe_write_skipped = 1;
2459
2460 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2461
2462 if (pipe_write_wanted)
2463 {
714 int old_errno = errno; 2464 int old_errno;
715 gotsig = 1; 2465
716 write (sigpipe [1], &signum, 1); 2466 pipe_write_skipped = 0;
2467 ECB_MEMORY_FENCE_RELEASE;
2468
2469 old_errno = errno; /* save errno because write will clobber it */
2470
2471#if EV_USE_EVENTFD
2472 if (evpipe [0] < 0)
2473 {
2474 uint64_t counter = 1;
2475 write (evpipe [1], &counter, sizeof (uint64_t));
2476 }
2477 else
2478#endif
2479 {
2480#ifdef _WIN32
2481 WSABUF buf;
2482 DWORD sent;
2483 buf.buf = (char *)&buf;
2484 buf.len = 1;
2485 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2486#else
2487 write (evpipe [1], &(evpipe [1]), 1);
2488#endif
2489 }
2490
717 errno = old_errno; 2491 errno = old_errno;
718 } 2492 }
719} 2493}
720 2494
2495/* called whenever the libev signal pipe */
2496/* got some events (signal, async) */
2497static void
2498pipecb (EV_P_ ev_io *iow, int revents)
2499{
2500 int i;
2501
2502 if (revents & EV_READ)
2503 {
2504#if EV_USE_EVENTFD
2505 if (evpipe [0] < 0)
2506 {
2507 uint64_t counter;
2508 read (evpipe [1], &counter, sizeof (uint64_t));
2509 }
2510 else
2511#endif
2512 {
2513 char dummy[4];
2514#ifdef _WIN32
2515 WSABUF buf;
2516 DWORD recvd;
2517 DWORD flags = 0;
2518 buf.buf = dummy;
2519 buf.len = sizeof (dummy);
2520 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2521#else
2522 read (evpipe [0], &dummy, sizeof (dummy));
2523#endif
2524 }
2525 }
2526
2527 pipe_write_skipped = 0;
2528
2529 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2530
2531#if EV_SIGNAL_ENABLE
2532 if (sig_pending)
2533 {
2534 sig_pending = 0;
2535
2536 ECB_MEMORY_FENCE;
2537
2538 for (i = EV_NSIG - 1; i--; )
2539 if (expect_false (signals [i].pending))
2540 ev_feed_signal_event (EV_A_ i + 1);
2541 }
2542#endif
2543
2544#if EV_ASYNC_ENABLE
2545 if (async_pending)
2546 {
2547 async_pending = 0;
2548
2549 ECB_MEMORY_FENCE;
2550
2551 for (i = asynccnt; i--; )
2552 if (asyncs [i]->sent)
2553 {
2554 asyncs [i]->sent = 0;
2555 ECB_MEMORY_FENCE_RELEASE;
2556 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2557 }
2558 }
2559#endif
2560}
2561
2562/*****************************************************************************/
2563
2564void
2565ev_feed_signal (int signum) EV_NOEXCEPT
2566{
2567#if EV_MULTIPLICITY
2568 EV_P;
2569 ECB_MEMORY_FENCE_ACQUIRE;
2570 EV_A = signals [signum - 1].loop;
2571
2572 if (!EV_A)
2573 return;
2574#endif
2575
2576 signals [signum - 1].pending = 1;
2577 evpipe_write (EV_A_ &sig_pending);
2578}
2579
2580static void
2581ev_sighandler (int signum)
2582{
2583#ifdef _WIN32
2584 signal (signum, ev_sighandler);
2585#endif
2586
2587 ev_feed_signal (signum);
2588}
2589
721void noinline 2590noinline
2591void
722ev_feed_signal_event (EV_P_ int signum) 2592ev_feed_signal_event (EV_P_ int signum) EV_NOEXCEPT
723{ 2593{
724 WL w; 2594 WL w;
725 2595
2596 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2597 return;
2598
2599 --signum;
2600
726#if EV_MULTIPLICITY 2601#if EV_MULTIPLICITY
727 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 2602 /* it is permissible to try to feed a signal to the wrong loop */
728#endif 2603 /* or, likely more useful, feeding a signal nobody is waiting for */
729 2604
730 --signum; 2605 if (expect_false (signals [signum].loop != EV_A))
731
732 if (signum < 0 || signum >= signalmax)
733 return; 2606 return;
2607#endif
734 2608
735 signals [signum].gotsig = 0; 2609 signals [signum].pending = 0;
2610 ECB_MEMORY_FENCE_RELEASE;
736 2611
737 for (w = signals [signum].head; w; w = w->next) 2612 for (w = signals [signum].head; w; w = w->next)
738 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2613 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
739} 2614}
740 2615
2616#if EV_USE_SIGNALFD
741static void 2617static void
742sigcb (EV_P_ ev_io *iow, int revents) 2618sigfdcb (EV_P_ ev_io *iow, int revents)
743{ 2619{
744 int signum; 2620 struct signalfd_siginfo si[2], *sip; /* these structs are big */
745 2621
746 read (sigpipe [0], &revents, 1); 2622 for (;;)
747 gotsig = 0; 2623 {
2624 ssize_t res = read (sigfd, si, sizeof (si));
748 2625
749 for (signum = signalmax; signum--; ) 2626 /* not ISO-C, as res might be -1, but works with SuS */
750 if (signals [signum].gotsig) 2627 for (sip = si; (char *)sip < (char *)si + res; ++sip)
751 ev_feed_signal_event (EV_A_ signum + 1); 2628 ev_feed_signal_event (EV_A_ sip->ssi_signo);
752}
753 2629
754void inline_speed 2630 if (res < (ssize_t)sizeof (si))
755fd_intern (int fd) 2631 break;
756{ 2632 }
757#ifdef _WIN32
758 int arg = 1;
759 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
760#else
761 fcntl (fd, F_SETFD, FD_CLOEXEC);
762 fcntl (fd, F_SETFL, O_NONBLOCK);
763#endif
764} 2633}
2634#endif
765 2635
766static void noinline 2636#endif
767siginit (EV_P)
768{
769 fd_intern (sigpipe [0]);
770 fd_intern (sigpipe [1]);
771
772 ev_io_set (&sigev, sigpipe [0], EV_READ);
773 ev_io_start (EV_A_ &sigev);
774 ev_unref (EV_A); /* child watcher should not keep loop alive */
775}
776 2637
777/*****************************************************************************/ 2638/*****************************************************************************/
778 2639
2640#if EV_CHILD_ENABLE
779static ev_child *childs [EV_PID_HASHSIZE]; 2641static WL childs [EV_PID_HASHSIZE];
780
781#ifndef _WIN32
782 2642
783static ev_signal childev; 2643static ev_signal childev;
784 2644
785void inline_speed 2645#ifndef WIFCONTINUED
2646# define WIFCONTINUED(status) 0
2647#endif
2648
2649/* handle a single child status event */
2650inline_speed void
786child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2651child_reap (EV_P_ int chain, int pid, int status)
787{ 2652{
788 ev_child *w; 2653 ev_child *w;
2654 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
789 2655
790 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2656 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2657 {
791 if (w->pid == pid || !w->pid) 2658 if ((w->pid == pid || !w->pid)
2659 && (!traced || (w->flags & 1)))
792 { 2660 {
793 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2661 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
794 w->rpid = pid; 2662 w->rpid = pid;
795 w->rstatus = status; 2663 w->rstatus = status;
796 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2664 ev_feed_event (EV_A_ (W)w, EV_CHILD);
797 } 2665 }
2666 }
798} 2667}
799 2668
800#ifndef WCONTINUED 2669#ifndef WCONTINUED
801# define WCONTINUED 0 2670# define WCONTINUED 0
802#endif 2671#endif
803 2672
2673/* called on sigchld etc., calls waitpid */
804static void 2674static void
805childcb (EV_P_ ev_signal *sw, int revents) 2675childcb (EV_P_ ev_signal *sw, int revents)
806{ 2676{
807 int pid, status; 2677 int pid, status;
808 2678
811 if (!WCONTINUED 2681 if (!WCONTINUED
812 || errno != EINVAL 2682 || errno != EINVAL
813 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2683 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
814 return; 2684 return;
815 2685
816 /* make sure we are called again until all childs have been reaped */ 2686 /* make sure we are called again until all children have been reaped */
817 /* we need to do it this way so that the callback gets called before we continue */ 2687 /* we need to do it this way so that the callback gets called before we continue */
818 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2688 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
819 2689
820 child_reap (EV_A_ sw, pid, pid, status); 2690 child_reap (EV_A_ pid, pid, status);
821 if (EV_PID_HASHSIZE > 1) 2691 if ((EV_PID_HASHSIZE) > 1)
822 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2692 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
823} 2693}
824 2694
825#endif 2695#endif
826 2696
827/*****************************************************************************/ 2697/*****************************************************************************/
828 2698
2699#if EV_USE_IOCP
2700# include "ev_iocp.c"
2701#endif
829#if EV_USE_PORT 2702#if EV_USE_PORT
830# include "ev_port.c" 2703# include "ev_port.c"
831#endif 2704#endif
832#if EV_USE_KQUEUE 2705#if EV_USE_KQUEUE
833# include "ev_kqueue.c" 2706# include "ev_kqueue.c"
840#endif 2713#endif
841#if EV_USE_SELECT 2714#if EV_USE_SELECT
842# include "ev_select.c" 2715# include "ev_select.c"
843#endif 2716#endif
844 2717
845int 2718ecb_cold int
846ev_version_major (void) 2719ev_version_major (void) EV_NOEXCEPT
847{ 2720{
848 return EV_VERSION_MAJOR; 2721 return EV_VERSION_MAJOR;
849} 2722}
850 2723
851int 2724ecb_cold int
852ev_version_minor (void) 2725ev_version_minor (void) EV_NOEXCEPT
853{ 2726{
854 return EV_VERSION_MINOR; 2727 return EV_VERSION_MINOR;
855} 2728}
856 2729
857/* return true if we are running with elevated privileges and should ignore env variables */ 2730/* return true if we are running with elevated privileges and should ignore env variables */
858int inline_size 2731inline_size ecb_cold int
859enable_secure (void) 2732enable_secure (void)
860{ 2733{
861#ifdef _WIN32 2734#ifdef _WIN32
862 return 0; 2735 return 0;
863#else 2736#else
864 return getuid () != geteuid () 2737 return getuid () != geteuid ()
865 || getgid () != getegid (); 2738 || getgid () != getegid ();
866#endif 2739#endif
867} 2740}
868 2741
2742ecb_cold
869unsigned int 2743unsigned int
870ev_supported_backends (void) 2744ev_supported_backends (void) EV_NOEXCEPT
871{ 2745{
872 unsigned int flags = 0; 2746 unsigned int flags = 0;
873 2747
874 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2748 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
875 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2749 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
878 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2752 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
879 2753
880 return flags; 2754 return flags;
881} 2755}
882 2756
2757ecb_cold
883unsigned int 2758unsigned int
884ev_recommended_backends (void) 2759ev_recommended_backends (void) EV_NOEXCEPT
885{ 2760{
886 unsigned int flags = ev_supported_backends (); 2761 unsigned int flags = ev_supported_backends ();
887 2762
888#ifndef __NetBSD__ 2763#ifndef __NetBSD__
889 /* kqueue is borked on everything but netbsd apparently */ 2764 /* kqueue is borked on everything but netbsd apparently */
890 /* it usually doesn't work correctly on anything but sockets and pipes */ 2765 /* it usually doesn't work correctly on anything but sockets and pipes */
891 flags &= ~EVBACKEND_KQUEUE; 2766 flags &= ~EVBACKEND_KQUEUE;
892#endif 2767#endif
893#ifdef __APPLE__ 2768#ifdef __APPLE__
894 // flags &= ~EVBACKEND_KQUEUE; for documentation 2769 /* only select works correctly on that "unix-certified" platform */
895 flags &= ~EVBACKEND_POLL; 2770 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2771 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2772#endif
2773#ifdef __FreeBSD__
2774 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
896#endif 2775#endif
897 2776
898 return flags; 2777 return flags;
899} 2778}
900 2779
2780ecb_cold
901unsigned int 2781unsigned int
902ev_embeddable_backends (void) 2782ev_embeddable_backends (void) EV_NOEXCEPT
903{ 2783{
904 return EVBACKEND_EPOLL 2784 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
905 | EVBACKEND_KQUEUE 2785
906 | EVBACKEND_PORT; 2786 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2787 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2788 flags &= ~EVBACKEND_EPOLL;
2789
2790 return flags;
907} 2791}
908 2792
909unsigned int 2793unsigned int
910ev_backend (EV_P) 2794ev_backend (EV_P) EV_NOEXCEPT
911{ 2795{
912 return backend; 2796 return backend;
913} 2797}
914 2798
2799#if EV_FEATURE_API
915unsigned int 2800unsigned int
916ev_loop_count (EV_P) 2801ev_iteration (EV_P) EV_NOEXCEPT
917{ 2802{
918 return loop_count; 2803 return loop_count;
919} 2804}
920 2805
921static void noinline 2806unsigned int
2807ev_depth (EV_P) EV_NOEXCEPT
2808{
2809 return loop_depth;
2810}
2811
2812void
2813ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2814{
2815 io_blocktime = interval;
2816}
2817
2818void
2819ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_NOEXCEPT
2820{
2821 timeout_blocktime = interval;
2822}
2823
2824void
2825ev_set_userdata (EV_P_ void *data) EV_NOEXCEPT
2826{
2827 userdata = data;
2828}
2829
2830void *
2831ev_userdata (EV_P) EV_NOEXCEPT
2832{
2833 return userdata;
2834}
2835
2836void
2837ev_set_invoke_pending_cb (EV_P_ ev_loop_callback invoke_pending_cb) EV_NOEXCEPT
2838{
2839 invoke_cb = invoke_pending_cb;
2840}
2841
2842void
2843ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_NOEXCEPT, void (*acquire)(EV_P) EV_NOEXCEPT) EV_NOEXCEPT
2844{
2845 release_cb = release;
2846 acquire_cb = acquire;
2847}
2848#endif
2849
2850/* initialise a loop structure, must be zero-initialised */
2851noinline ecb_cold
2852static void
922loop_init (EV_P_ unsigned int flags) 2853loop_init (EV_P_ unsigned int flags) EV_NOEXCEPT
923{ 2854{
924 if (!backend) 2855 if (!backend)
925 { 2856 {
2857 origflags = flags;
2858
2859#if EV_USE_REALTIME
2860 if (!have_realtime)
2861 {
2862 struct timespec ts;
2863
2864 if (!clock_gettime (CLOCK_REALTIME, &ts))
2865 have_realtime = 1;
2866 }
2867#endif
2868
926#if EV_USE_MONOTONIC 2869#if EV_USE_MONOTONIC
2870 if (!have_monotonic)
927 { 2871 {
928 struct timespec ts; 2872 struct timespec ts;
2873
929 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2874 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
930 have_monotonic = 1; 2875 have_monotonic = 1;
931 } 2876 }
932#endif 2877#endif
933
934 ev_rt_now = ev_time ();
935 mn_now = get_clock ();
936 now_floor = mn_now;
937 rtmn_diff = ev_rt_now - mn_now;
938 2878
939 /* pid check not overridable via env */ 2879 /* pid check not overridable via env */
940#ifndef _WIN32 2880#ifndef _WIN32
941 if (flags & EVFLAG_FORKCHECK) 2881 if (flags & EVFLAG_FORKCHECK)
942 curpid = getpid (); 2882 curpid = getpid ();
945 if (!(flags & EVFLAG_NOENV) 2885 if (!(flags & EVFLAG_NOENV)
946 && !enable_secure () 2886 && !enable_secure ()
947 && getenv ("LIBEV_FLAGS")) 2887 && getenv ("LIBEV_FLAGS"))
948 flags = atoi (getenv ("LIBEV_FLAGS")); 2888 flags = atoi (getenv ("LIBEV_FLAGS"));
949 2889
950 if (!(flags & 0x0000ffffUL)) 2890 ev_rt_now = ev_time ();
2891 mn_now = get_clock ();
2892 now_floor = mn_now;
2893 rtmn_diff = ev_rt_now - mn_now;
2894#if EV_FEATURE_API
2895 invoke_cb = ev_invoke_pending;
2896#endif
2897
2898 io_blocktime = 0.;
2899 timeout_blocktime = 0.;
2900 backend = 0;
2901 backend_fd = -1;
2902 sig_pending = 0;
2903#if EV_ASYNC_ENABLE
2904 async_pending = 0;
2905#endif
2906 pipe_write_skipped = 0;
2907 pipe_write_wanted = 0;
2908 evpipe [0] = -1;
2909 evpipe [1] = -1;
2910#if EV_USE_INOTIFY
2911 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2912#endif
2913#if EV_USE_SIGNALFD
2914 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2915#endif
2916
2917 if (!(flags & EVBACKEND_MASK))
951 flags |= ev_recommended_backends (); 2918 flags |= ev_recommended_backends ();
952 2919
953 backend = 0;
954 backend_fd = -1;
955#if EV_USE_INOTIFY 2920#if EV_USE_IOCP
956 fs_fd = -2; 2921 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
957#endif 2922#endif
958
959#if EV_USE_PORT 2923#if EV_USE_PORT
960 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2924 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
961#endif 2925#endif
962#if EV_USE_KQUEUE 2926#if EV_USE_KQUEUE
963 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2927 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
970#endif 2934#endif
971#if EV_USE_SELECT 2935#if EV_USE_SELECT
972 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2936 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
973#endif 2937#endif
974 2938
2939 ev_prepare_init (&pending_w, pendingcb);
2940
2941#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
975 ev_init (&sigev, sigcb); 2942 ev_init (&pipe_w, pipecb);
976 ev_set_priority (&sigev, EV_MAXPRI); 2943 ev_set_priority (&pipe_w, EV_MAXPRI);
2944#endif
977 } 2945 }
978} 2946}
979 2947
980static void noinline 2948/* free up a loop structure */
2949ecb_cold
2950void
981loop_destroy (EV_P) 2951ev_loop_destroy (EV_P)
982{ 2952{
983 int i; 2953 int i;
2954
2955#if EV_MULTIPLICITY
2956 /* mimic free (0) */
2957 if (!EV_A)
2958 return;
2959#endif
2960
2961#if EV_CLEANUP_ENABLE
2962 /* queue cleanup watchers (and execute them) */
2963 if (expect_false (cleanupcnt))
2964 {
2965 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2966 EV_INVOKE_PENDING;
2967 }
2968#endif
2969
2970#if EV_CHILD_ENABLE
2971 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2972 {
2973 ev_ref (EV_A); /* child watcher */
2974 ev_signal_stop (EV_A_ &childev);
2975 }
2976#endif
2977
2978 if (ev_is_active (&pipe_w))
2979 {
2980 /*ev_ref (EV_A);*/
2981 /*ev_io_stop (EV_A_ &pipe_w);*/
2982
2983 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2984 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2985 }
2986
2987#if EV_USE_SIGNALFD
2988 if (ev_is_active (&sigfd_w))
2989 close (sigfd);
2990#endif
984 2991
985#if EV_USE_INOTIFY 2992#if EV_USE_INOTIFY
986 if (fs_fd >= 0) 2993 if (fs_fd >= 0)
987 close (fs_fd); 2994 close (fs_fd);
988#endif 2995#endif
989 2996
990 if (backend_fd >= 0) 2997 if (backend_fd >= 0)
991 close (backend_fd); 2998 close (backend_fd);
992 2999
3000#if EV_USE_IOCP
3001 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
3002#endif
993#if EV_USE_PORT 3003#if EV_USE_PORT
994 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 3004 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
995#endif 3005#endif
996#if EV_USE_KQUEUE 3006#if EV_USE_KQUEUE
997 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 3007 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1012#if EV_IDLE_ENABLE 3022#if EV_IDLE_ENABLE
1013 array_free (idle, [i]); 3023 array_free (idle, [i]);
1014#endif 3024#endif
1015 } 3025 }
1016 3026
3027 ev_free (anfds); anfds = 0; anfdmax = 0;
3028
1017 /* have to use the microsoft-never-gets-it-right macro */ 3029 /* have to use the microsoft-never-gets-it-right macro */
3030 array_free (rfeed, EMPTY);
1018 array_free (fdchange, EMPTY); 3031 array_free (fdchange, EMPTY);
1019 array_free (timer, EMPTY); 3032 array_free (timer, EMPTY);
1020#if EV_PERIODIC_ENABLE 3033#if EV_PERIODIC_ENABLE
1021 array_free (periodic, EMPTY); 3034 array_free (periodic, EMPTY);
1022#endif 3035#endif
3036#if EV_FORK_ENABLE
3037 array_free (fork, EMPTY);
3038#endif
3039#if EV_CLEANUP_ENABLE
3040 array_free (cleanup, EMPTY);
3041#endif
1023 array_free (prepare, EMPTY); 3042 array_free (prepare, EMPTY);
1024 array_free (check, EMPTY); 3043 array_free (check, EMPTY);
3044#if EV_ASYNC_ENABLE
3045 array_free (async, EMPTY);
3046#endif
1025 3047
1026 backend = 0; 3048 backend = 0;
1027}
1028 3049
3050#if EV_MULTIPLICITY
3051 if (ev_is_default_loop (EV_A))
3052#endif
3053 ev_default_loop_ptr = 0;
3054#if EV_MULTIPLICITY
3055 else
3056 ev_free (EV_A);
3057#endif
3058}
3059
3060#if EV_USE_INOTIFY
1029void inline_size infy_fork (EV_P); 3061inline_size void infy_fork (EV_P);
3062#endif
1030 3063
1031void inline_size 3064inline_size void
1032loop_fork (EV_P) 3065loop_fork (EV_P)
1033{ 3066{
1034#if EV_USE_PORT 3067#if EV_USE_PORT
1035 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 3068 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1036#endif 3069#endif
1042#endif 3075#endif
1043#if EV_USE_INOTIFY 3076#if EV_USE_INOTIFY
1044 infy_fork (EV_A); 3077 infy_fork (EV_A);
1045#endif 3078#endif
1046 3079
1047 if (ev_is_active (&sigev)) 3080#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
3081 if (ev_is_active (&pipe_w) && postfork != 2)
1048 { 3082 {
1049 /* default loop */ 3083 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1050 3084
1051 ev_ref (EV_A); 3085 ev_ref (EV_A);
1052 ev_io_stop (EV_A_ &sigev); 3086 ev_io_stop (EV_A_ &pipe_w);
1053 close (sigpipe [0]);
1054 close (sigpipe [1]);
1055 3087
1056 while (pipe (sigpipe)) 3088 if (evpipe [0] >= 0)
1057 syserr ("(libev) error creating pipe"); 3089 EV_WIN32_CLOSE_FD (evpipe [0]);
1058 3090
1059 siginit (EV_A); 3091 evpipe_init (EV_A);
3092 /* iterate over everything, in case we missed something before */
3093 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1060 } 3094 }
3095#endif
1061 3096
1062 postfork = 0; 3097 postfork = 0;
1063} 3098}
1064 3099
1065#if EV_MULTIPLICITY 3100#if EV_MULTIPLICITY
3101
3102ecb_cold
1066struct ev_loop * 3103struct ev_loop *
1067ev_loop_new (unsigned int flags) 3104ev_loop_new (unsigned int flags) EV_NOEXCEPT
1068{ 3105{
1069 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 3106 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1070 3107
1071 memset (loop, 0, sizeof (struct ev_loop)); 3108 memset (EV_A, 0, sizeof (struct ev_loop));
1072
1073 loop_init (EV_A_ flags); 3109 loop_init (EV_A_ flags);
1074 3110
1075 if (ev_backend (EV_A)) 3111 if (ev_backend (EV_A))
1076 return loop; 3112 return EV_A;
1077 3113
3114 ev_free (EV_A);
1078 return 0; 3115 return 0;
1079} 3116}
1080 3117
1081void 3118#endif /* multiplicity */
1082ev_loop_destroy (EV_P)
1083{
1084 loop_destroy (EV_A);
1085 ev_free (loop);
1086}
1087 3119
1088void 3120#if EV_VERIFY
1089ev_loop_fork (EV_P) 3121noinline ecb_cold
3122static void
3123verify_watcher (EV_P_ W w)
1090{ 3124{
1091 postfork = 1; 3125 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1092}
1093 3126
3127 if (w->pending)
3128 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
3129}
3130
3131noinline ecb_cold
3132static void
3133verify_heap (EV_P_ ANHE *heap, int N)
3134{
3135 int i;
3136
3137 for (i = HEAP0; i < N + HEAP0; ++i)
3138 {
3139 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
3140 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
3141 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
3142
3143 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
3144 }
3145}
3146
3147noinline ecb_cold
3148static void
3149array_verify (EV_P_ W *ws, int cnt)
3150{
3151 while (cnt--)
3152 {
3153 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
3154 verify_watcher (EV_A_ ws [cnt]);
3155 }
3156}
3157#endif
3158
3159#if EV_FEATURE_API
3160void ecb_cold
3161ev_verify (EV_P) EV_NOEXCEPT
3162{
3163#if EV_VERIFY
3164 int i;
3165 WL w, w2;
3166
3167 assert (activecnt >= -1);
3168
3169 assert (fdchangemax >= fdchangecnt);
3170 for (i = 0; i < fdchangecnt; ++i)
3171 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
3172
3173 assert (anfdmax >= 0);
3174 for (i = 0; i < anfdmax; ++i)
3175 {
3176 int j = 0;
3177
3178 for (w = w2 = anfds [i].head; w; w = w->next)
3179 {
3180 verify_watcher (EV_A_ (W)w);
3181
3182 if (j++ & 1)
3183 {
3184 assert (("libev: io watcher list contains a loop", w != w2));
3185 w2 = w2->next;
3186 }
3187
3188 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
3189 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
3190 }
3191 }
3192
3193 assert (timermax >= timercnt);
3194 verify_heap (EV_A_ timers, timercnt);
3195
3196#if EV_PERIODIC_ENABLE
3197 assert (periodicmax >= periodiccnt);
3198 verify_heap (EV_A_ periodics, periodiccnt);
3199#endif
3200
3201 for (i = NUMPRI; i--; )
3202 {
3203 assert (pendingmax [i] >= pendingcnt [i]);
3204#if EV_IDLE_ENABLE
3205 assert (idleall >= 0);
3206 assert (idlemax [i] >= idlecnt [i]);
3207 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
3208#endif
3209 }
3210
3211#if EV_FORK_ENABLE
3212 assert (forkmax >= forkcnt);
3213 array_verify (EV_A_ (W *)forks, forkcnt);
3214#endif
3215
3216#if EV_CLEANUP_ENABLE
3217 assert (cleanupmax >= cleanupcnt);
3218 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
3219#endif
3220
3221#if EV_ASYNC_ENABLE
3222 assert (asyncmax >= asynccnt);
3223 array_verify (EV_A_ (W *)asyncs, asynccnt);
3224#endif
3225
3226#if EV_PREPARE_ENABLE
3227 assert (preparemax >= preparecnt);
3228 array_verify (EV_A_ (W *)prepares, preparecnt);
3229#endif
3230
3231#if EV_CHECK_ENABLE
3232 assert (checkmax >= checkcnt);
3233 array_verify (EV_A_ (W *)checks, checkcnt);
3234#endif
3235
3236# if 0
3237#if EV_CHILD_ENABLE
3238 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
3239 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
3240#endif
3241# endif
3242#endif
3243}
1094#endif 3244#endif
1095 3245
1096#if EV_MULTIPLICITY 3246#if EV_MULTIPLICITY
3247ecb_cold
1097struct ev_loop * 3248struct ev_loop *
1098ev_default_loop_init (unsigned int flags)
1099#else 3249#else
1100int 3250int
3251#endif
1101ev_default_loop (unsigned int flags) 3252ev_default_loop (unsigned int flags) EV_NOEXCEPT
1102#endif
1103{ 3253{
1104 if (sigpipe [0] == sigpipe [1])
1105 if (pipe (sigpipe))
1106 return 0;
1107
1108 if (!ev_default_loop_ptr) 3254 if (!ev_default_loop_ptr)
1109 { 3255 {
1110#if EV_MULTIPLICITY 3256#if EV_MULTIPLICITY
1111 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 3257 EV_P = ev_default_loop_ptr = &default_loop_struct;
1112#else 3258#else
1113 ev_default_loop_ptr = 1; 3259 ev_default_loop_ptr = 1;
1114#endif 3260#endif
1115 3261
1116 loop_init (EV_A_ flags); 3262 loop_init (EV_A_ flags);
1117 3263
1118 if (ev_backend (EV_A)) 3264 if (ev_backend (EV_A))
1119 { 3265 {
1120 siginit (EV_A); 3266#if EV_CHILD_ENABLE
1121
1122#ifndef _WIN32
1123 ev_signal_init (&childev, childcb, SIGCHLD); 3267 ev_signal_init (&childev, childcb, SIGCHLD);
1124 ev_set_priority (&childev, EV_MAXPRI); 3268 ev_set_priority (&childev, EV_MAXPRI);
1125 ev_signal_start (EV_A_ &childev); 3269 ev_signal_start (EV_A_ &childev);
1126 ev_unref (EV_A); /* child watcher should not keep loop alive */ 3270 ev_unref (EV_A); /* child watcher should not keep loop alive */
1127#endif 3271#endif
1132 3276
1133 return ev_default_loop_ptr; 3277 return ev_default_loop_ptr;
1134} 3278}
1135 3279
1136void 3280void
1137ev_default_destroy (void) 3281ev_loop_fork (EV_P) EV_NOEXCEPT
1138{ 3282{
1139#if EV_MULTIPLICITY
1140 struct ev_loop *loop = ev_default_loop_ptr;
1141#endif
1142
1143#ifndef _WIN32
1144 ev_ref (EV_A); /* child watcher */
1145 ev_signal_stop (EV_A_ &childev);
1146#endif
1147
1148 ev_ref (EV_A); /* signal watcher */
1149 ev_io_stop (EV_A_ &sigev);
1150
1151 close (sigpipe [0]); sigpipe [0] = 0;
1152 close (sigpipe [1]); sigpipe [1] = 0;
1153
1154 loop_destroy (EV_A);
1155}
1156
1157void
1158ev_default_fork (void)
1159{
1160#if EV_MULTIPLICITY
1161 struct ev_loop *loop = ev_default_loop_ptr;
1162#endif
1163
1164 if (backend)
1165 postfork = 1; 3283 postfork = 1;
1166} 3284}
1167 3285
1168/*****************************************************************************/ 3286/*****************************************************************************/
1169 3287
1170void 3288void
1171ev_invoke (EV_P_ void *w, int revents) 3289ev_invoke (EV_P_ void *w, int revents)
1172{ 3290{
1173 EV_CB_INVOKE ((W)w, revents); 3291 EV_CB_INVOKE ((W)w, revents);
1174} 3292}
1175 3293
1176void inline_speed 3294unsigned int
1177call_pending (EV_P) 3295ev_pending_count (EV_P) EV_NOEXCEPT
1178{ 3296{
1179 int pri; 3297 int pri;
3298 unsigned int count = 0;
1180 3299
1181 for (pri = NUMPRI; pri--; ) 3300 for (pri = NUMPRI; pri--; )
3301 count += pendingcnt [pri];
3302
3303 return count;
3304}
3305
3306noinline
3307void
3308ev_invoke_pending (EV_P)
3309{
3310 pendingpri = NUMPRI;
3311
3312 do
3313 {
3314 --pendingpri;
3315
3316 /* pendingpri possibly gets modified in the inner loop */
1182 while (pendingcnt [pri]) 3317 while (pendingcnt [pendingpri])
1183 {
1184 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1185
1186 if (expect_true (p->w))
1187 {
1188 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1189
1190 p->w->pending = 0;
1191 EV_CB_INVOKE (p->w, p->events);
1192 }
1193 }
1194}
1195
1196void inline_size
1197timers_reify (EV_P)
1198{
1199 while (timercnt && ((WT)timers [0])->at <= mn_now)
1200 {
1201 ev_timer *w = timers [0];
1202
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204
1205 /* first reschedule or stop timer */
1206 if (w->repeat)
1207 { 3318 {
1208 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3319 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1209 3320
1210 ((WT)w)->at += w->repeat; 3321 p->w->pending = 0;
1211 if (((WT)w)->at < mn_now) 3322 EV_CB_INVOKE (p->w, p->events);
1212 ((WT)w)->at = mn_now; 3323 EV_FREQUENT_CHECK;
1213
1214 downheap ((WT *)timers, timercnt, 0);
1215 } 3324 }
1216 else
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1220 }
1221}
1222
1223#if EV_PERIODIC_ENABLE
1224void inline_size
1225periodics_reify (EV_P)
1226{
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1228 { 3325 }
1229 ev_periodic *w = periodics [0]; 3326 while (pendingpri);
1230
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1232
1233 /* first reschedule or stop timer */
1234 if (w->reschedule_cb)
1235 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1238 downheap ((WT *)periodics, periodiccnt, 0);
1239 }
1240 else if (w->interval)
1241 {
1242 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1244 downheap ((WT *)periodics, periodiccnt, 0);
1245 }
1246 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1250 }
1251} 3327}
1252
1253static void noinline
1254periodics_reschedule (EV_P)
1255{
1256 int i;
1257
1258 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i)
1260 {
1261 ev_periodic *w = periodics [i];
1262
1263 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval)
1266 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1267 }
1268
1269 /* now rebuild the heap */
1270 for (i = periodiccnt >> 1; i--; )
1271 downheap ((WT *)periodics, periodiccnt, i);
1272}
1273#endif
1274 3328
1275#if EV_IDLE_ENABLE 3329#if EV_IDLE_ENABLE
1276void inline_size 3330/* make idle watchers pending. this handles the "call-idle */
3331/* only when higher priorities are idle" logic */
3332inline_size void
1277idle_reify (EV_P) 3333idle_reify (EV_P)
1278{ 3334{
1279 if (expect_false (idleall)) 3335 if (expect_false (idleall))
1280 { 3336 {
1281 int pri; 3337 int pri;
1293 } 3349 }
1294 } 3350 }
1295} 3351}
1296#endif 3352#endif
1297 3353
1298int inline_size 3354/* make timers pending */
1299time_update_monotonic (EV_P) 3355inline_size void
3356timers_reify (EV_P)
1300{ 3357{
3358 EV_FREQUENT_CHECK;
3359
3360 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3361 {
3362 do
3363 {
3364 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3365
3366 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3367
3368 /* first reschedule or stop timer */
3369 if (w->repeat)
3370 {
3371 ev_at (w) += w->repeat;
3372 if (ev_at (w) < mn_now)
3373 ev_at (w) = mn_now;
3374
3375 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3376
3377 ANHE_at_cache (timers [HEAP0]);
3378 downheap (timers, timercnt, HEAP0);
3379 }
3380 else
3381 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3382
3383 EV_FREQUENT_CHECK;
3384 feed_reverse (EV_A_ (W)w);
3385 }
3386 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3387
3388 feed_reverse_done (EV_A_ EV_TIMER);
3389 }
3390}
3391
3392#if EV_PERIODIC_ENABLE
3393
3394noinline
3395static void
3396periodic_recalc (EV_P_ ev_periodic *w)
3397{
3398 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3399 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3400
3401 /* the above almost always errs on the low side */
3402 while (at <= ev_rt_now)
3403 {
3404 ev_tstamp nat = at + w->interval;
3405
3406 /* when resolution fails us, we use ev_rt_now */
3407 if (expect_false (nat == at))
3408 {
3409 at = ev_rt_now;
3410 break;
3411 }
3412
3413 at = nat;
3414 }
3415
3416 ev_at (w) = at;
3417}
3418
3419/* make periodics pending */
3420inline_size void
3421periodics_reify (EV_P)
3422{
3423 EV_FREQUENT_CHECK;
3424
3425 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3426 {
3427 do
3428 {
3429 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3430
3431 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3432
3433 /* first reschedule or stop timer */
3434 if (w->reschedule_cb)
3435 {
3436 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3437
3438 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3439
3440 ANHE_at_cache (periodics [HEAP0]);
3441 downheap (periodics, periodiccnt, HEAP0);
3442 }
3443 else if (w->interval)
3444 {
3445 periodic_recalc (EV_A_ w);
3446 ANHE_at_cache (periodics [HEAP0]);
3447 downheap (periodics, periodiccnt, HEAP0);
3448 }
3449 else
3450 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3451
3452 EV_FREQUENT_CHECK;
3453 feed_reverse (EV_A_ (W)w);
3454 }
3455 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3456
3457 feed_reverse_done (EV_A_ EV_PERIODIC);
3458 }
3459}
3460
3461/* simply recalculate all periodics */
3462/* TODO: maybe ensure that at least one event happens when jumping forward? */
3463noinline ecb_cold
3464static void
3465periodics_reschedule (EV_P)
3466{
3467 int i;
3468
3469 /* adjust periodics after time jump */
3470 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3471 {
3472 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3473
3474 if (w->reschedule_cb)
3475 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3476 else if (w->interval)
3477 periodic_recalc (EV_A_ w);
3478
3479 ANHE_at_cache (periodics [i]);
3480 }
3481
3482 reheap (periodics, periodiccnt);
3483}
3484#endif
3485
3486/* adjust all timers by a given offset */
3487noinline ecb_cold
3488static void
3489timers_reschedule (EV_P_ ev_tstamp adjust)
3490{
3491 int i;
3492
3493 for (i = 0; i < timercnt; ++i)
3494 {
3495 ANHE *he = timers + i + HEAP0;
3496 ANHE_w (*he)->at += adjust;
3497 ANHE_at_cache (*he);
3498 }
3499}
3500
3501/* fetch new monotonic and realtime times from the kernel */
3502/* also detect if there was a timejump, and act accordingly */
3503inline_speed void
3504time_update (EV_P_ ev_tstamp max_block)
3505{
3506#if EV_USE_MONOTONIC
3507 if (expect_true (have_monotonic))
3508 {
3509 int i;
3510 ev_tstamp odiff = rtmn_diff;
3511
1301 mn_now = get_clock (); 3512 mn_now = get_clock ();
1302 3513
3514 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3515 /* interpolate in the meantime */
1303 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3516 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1304 { 3517 {
1305 ev_rt_now = rtmn_diff + mn_now; 3518 ev_rt_now = rtmn_diff + mn_now;
1306 return 0; 3519 return;
1307 } 3520 }
1308 else 3521
1309 {
1310 now_floor = mn_now; 3522 now_floor = mn_now;
1311 ev_rt_now = ev_time (); 3523 ev_rt_now = ev_time ();
1312 return 1;
1313 }
1314}
1315 3524
1316void inline_size 3525 /* loop a few times, before making important decisions.
1317time_update (EV_P) 3526 * on the choice of "4": one iteration isn't enough,
1318{ 3527 * in case we get preempted during the calls to
1319 int i; 3528 * ev_time and get_clock. a second call is almost guaranteed
1320 3529 * to succeed in that case, though. and looping a few more times
1321#if EV_USE_MONOTONIC 3530 * doesn't hurt either as we only do this on time-jumps or
1322 if (expect_true (have_monotonic)) 3531 * in the unlikely event of having been preempted here.
1323 { 3532 */
1324 if (time_update_monotonic (EV_A)) 3533 for (i = 4; --i; )
1325 { 3534 {
1326 ev_tstamp odiff = rtmn_diff; 3535 ev_tstamp diff;
1327
1328 /* loop a few times, before making important decisions.
1329 * on the choice of "4": one iteration isn't enough,
1330 * in case we get preempted during the calls to
1331 * ev_time and get_clock. a second call is almost guaranteed
1332 * to succeed in that case, though. and looping a few more times
1333 * doesn't hurt either as we only do this on time-jumps or
1334 * in the unlikely event of having been preempted here.
1335 */
1336 for (i = 4; --i; )
1337 {
1338 rtmn_diff = ev_rt_now - mn_now; 3536 rtmn_diff = ev_rt_now - mn_now;
1339 3537
1340 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3538 diff = odiff - rtmn_diff;
3539
3540 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1341 return; /* all is well */ 3541 return; /* all is well */
1342 3542
1343 ev_rt_now = ev_time (); 3543 ev_rt_now = ev_time ();
1344 mn_now = get_clock (); 3544 mn_now = get_clock ();
1345 now_floor = mn_now; 3545 now_floor = mn_now;
1346 } 3546 }
1347 3547
3548 /* no timer adjustment, as the monotonic clock doesn't jump */
3549 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1348# if EV_PERIODIC_ENABLE 3550# if EV_PERIODIC_ENABLE
1349 periodics_reschedule (EV_A); 3551 periodics_reschedule (EV_A);
1350# endif 3552# endif
1351 /* no timer adjustment, as the monotonic clock doesn't jump */
1352 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1353 }
1354 } 3553 }
1355 else 3554 else
1356#endif 3555#endif
1357 { 3556 {
1358 ev_rt_now = ev_time (); 3557 ev_rt_now = ev_time ();
1359 3558
1360 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 3559 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1361 { 3560 {
3561 /* adjust timers. this is easy, as the offset is the same for all of them */
3562 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1362#if EV_PERIODIC_ENABLE 3563#if EV_PERIODIC_ENABLE
1363 periodics_reschedule (EV_A); 3564 periodics_reschedule (EV_A);
1364#endif 3565#endif
1365
1366 /* adjust timers. this is easy, as the offset is the same for all of them */
1367 for (i = 0; i < timercnt; ++i)
1368 ((WT)timers [i])->at += ev_rt_now - mn_now;
1369 } 3566 }
1370 3567
1371 mn_now = ev_rt_now; 3568 mn_now = ev_rt_now;
1372 } 3569 }
1373} 3570}
1374 3571
1375void 3572int
1376ev_ref (EV_P)
1377{
1378 ++activecnt;
1379}
1380
1381void
1382ev_unref (EV_P)
1383{
1384 --activecnt;
1385}
1386
1387static int loop_done;
1388
1389void
1390ev_loop (EV_P_ int flags) 3573ev_run (EV_P_ int flags)
1391{ 3574{
1392 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 3575#if EV_FEATURE_API
1393 ? EVUNLOOP_ONE 3576 ++loop_depth;
1394 : EVUNLOOP_CANCEL; 3577#endif
1395 3578
3579 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3580
3581 loop_done = EVBREAK_CANCEL;
3582
1396 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3583 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1397 3584
1398 do 3585 do
1399 { 3586 {
3587#if EV_VERIFY >= 2
3588 ev_verify (EV_A);
3589#endif
3590
1400#ifndef _WIN32 3591#ifndef _WIN32
1401 if (expect_false (curpid)) /* penalise the forking check even more */ 3592 if (expect_false (curpid)) /* penalise the forking check even more */
1402 if (expect_false (getpid () != curpid)) 3593 if (expect_false (getpid () != curpid))
1403 { 3594 {
1404 curpid = getpid (); 3595 curpid = getpid ();
1410 /* we might have forked, so queue fork handlers */ 3601 /* we might have forked, so queue fork handlers */
1411 if (expect_false (postfork)) 3602 if (expect_false (postfork))
1412 if (forkcnt) 3603 if (forkcnt)
1413 { 3604 {
1414 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3605 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1415 call_pending (EV_A); 3606 EV_INVOKE_PENDING;
1416 } 3607 }
1417#endif 3608#endif
1418 3609
3610#if EV_PREPARE_ENABLE
1419 /* queue prepare watchers (and execute them) */ 3611 /* queue prepare watchers (and execute them) */
1420 if (expect_false (preparecnt)) 3612 if (expect_false (preparecnt))
1421 { 3613 {
1422 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3614 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1423 call_pending (EV_A); 3615 EV_INVOKE_PENDING;
1424 } 3616 }
3617#endif
1425 3618
1426 if (expect_false (!activecnt)) 3619 if (expect_false (loop_done))
1427 break; 3620 break;
1428 3621
1429 /* we might have forked, so reify kernel state if necessary */ 3622 /* we might have forked, so reify kernel state if necessary */
1430 if (expect_false (postfork)) 3623 if (expect_false (postfork))
1431 loop_fork (EV_A); 3624 loop_fork (EV_A);
1433 /* update fd-related kernel structures */ 3626 /* update fd-related kernel structures */
1434 fd_reify (EV_A); 3627 fd_reify (EV_A);
1435 3628
1436 /* calculate blocking time */ 3629 /* calculate blocking time */
1437 { 3630 {
1438 ev_tstamp block; 3631 ev_tstamp waittime = 0.;
3632 ev_tstamp sleeptime = 0.;
1439 3633
1440 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 3634 /* remember old timestamp for io_blocktime calculation */
1441 block = 0.; /* do not block at all */ 3635 ev_tstamp prev_mn_now = mn_now;
1442 else 3636
3637 /* update time to cancel out callback processing overhead */
3638 time_update (EV_A_ 1e100);
3639
3640 /* from now on, we want a pipe-wake-up */
3641 pipe_write_wanted = 1;
3642
3643 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3644
3645 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1443 { 3646 {
1444 /* update time to cancel out callback processing overhead */
1445#if EV_USE_MONOTONIC
1446 if (expect_true (have_monotonic))
1447 time_update_monotonic (EV_A);
1448 else
1449#endif
1450 {
1451 ev_rt_now = ev_time ();
1452 mn_now = ev_rt_now;
1453 }
1454
1455 block = MAX_BLOCKTIME; 3647 waittime = MAX_BLOCKTIME;
1456 3648
1457 if (timercnt) 3649 if (timercnt)
1458 { 3650 {
1459 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3651 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1460 if (block > to) block = to; 3652 if (waittime > to) waittime = to;
1461 } 3653 }
1462 3654
1463#if EV_PERIODIC_ENABLE 3655#if EV_PERIODIC_ENABLE
1464 if (periodiccnt) 3656 if (periodiccnt)
1465 { 3657 {
1466 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3658 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1467 if (block > to) block = to; 3659 if (waittime > to) waittime = to;
1468 } 3660 }
1469#endif 3661#endif
1470 3662
3663 /* don't let timeouts decrease the waittime below timeout_blocktime */
3664 if (expect_false (waittime < timeout_blocktime))
3665 waittime = timeout_blocktime;
3666
3667 /* at this point, we NEED to wait, so we have to ensure */
3668 /* to pass a minimum nonzero value to the backend */
3669 if (expect_false (waittime < backend_mintime))
3670 waittime = backend_mintime;
3671
3672 /* extra check because io_blocktime is commonly 0 */
1471 if (expect_false (block < 0.)) block = 0.; 3673 if (expect_false (io_blocktime))
3674 {
3675 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3676
3677 if (sleeptime > waittime - backend_mintime)
3678 sleeptime = waittime - backend_mintime;
3679
3680 if (expect_true (sleeptime > 0.))
3681 {
3682 ev_sleep (sleeptime);
3683 waittime -= sleeptime;
3684 }
3685 }
1472 } 3686 }
1473 3687
3688#if EV_FEATURE_API
1474 ++loop_count; 3689 ++loop_count;
3690#endif
3691 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1475 backend_poll (EV_A_ block); 3692 backend_poll (EV_A_ waittime);
3693 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3694
3695 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3696
3697 ECB_MEMORY_FENCE_ACQUIRE;
3698 if (pipe_write_skipped)
3699 {
3700 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3701 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3702 }
3703
3704
3705 /* update ev_rt_now, do magic */
3706 time_update (EV_A_ waittime + sleeptime);
1476 } 3707 }
1477
1478 /* update ev_rt_now, do magic */
1479 time_update (EV_A);
1480 3708
1481 /* queue pending timers and reschedule them */ 3709 /* queue pending timers and reschedule them */
1482 timers_reify (EV_A); /* relative timers called last */ 3710 timers_reify (EV_A); /* relative timers called last */
1483#if EV_PERIODIC_ENABLE 3711#if EV_PERIODIC_ENABLE
1484 periodics_reify (EV_A); /* absolute timers called first */ 3712 periodics_reify (EV_A); /* absolute timers called first */
1487#if EV_IDLE_ENABLE 3715#if EV_IDLE_ENABLE
1488 /* queue idle watchers unless other events are pending */ 3716 /* queue idle watchers unless other events are pending */
1489 idle_reify (EV_A); 3717 idle_reify (EV_A);
1490#endif 3718#endif
1491 3719
3720#if EV_CHECK_ENABLE
1492 /* queue check watchers, to be executed first */ 3721 /* queue check watchers, to be executed first */
1493 if (expect_false (checkcnt)) 3722 if (expect_false (checkcnt))
1494 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3723 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3724#endif
1495 3725
1496 call_pending (EV_A); 3726 EV_INVOKE_PENDING;
1497
1498 } 3727 }
1499 while (expect_true (activecnt && !loop_done)); 3728 while (expect_true (
3729 activecnt
3730 && !loop_done
3731 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3732 ));
1500 3733
1501 if (loop_done == EVUNLOOP_ONE) 3734 if (loop_done == EVBREAK_ONE)
1502 loop_done = EVUNLOOP_CANCEL; 3735 loop_done = EVBREAK_CANCEL;
1503}
1504 3736
3737#if EV_FEATURE_API
3738 --loop_depth;
3739#endif
3740
3741 return activecnt;
3742}
3743
1505void 3744void
1506ev_unloop (EV_P_ int how) 3745ev_break (EV_P_ int how) EV_NOEXCEPT
1507{ 3746{
1508 loop_done = how; 3747 loop_done = how;
1509} 3748}
1510 3749
3750void
3751ev_ref (EV_P) EV_NOEXCEPT
3752{
3753 ++activecnt;
3754}
3755
3756void
3757ev_unref (EV_P) EV_NOEXCEPT
3758{
3759 --activecnt;
3760}
3761
3762void
3763ev_now_update (EV_P) EV_NOEXCEPT
3764{
3765 time_update (EV_A_ 1e100);
3766}
3767
3768void
3769ev_suspend (EV_P) EV_NOEXCEPT
3770{
3771 ev_now_update (EV_A);
3772}
3773
3774void
3775ev_resume (EV_P) EV_NOEXCEPT
3776{
3777 ev_tstamp mn_prev = mn_now;
3778
3779 ev_now_update (EV_A);
3780 timers_reschedule (EV_A_ mn_now - mn_prev);
3781#if EV_PERIODIC_ENABLE
3782 /* TODO: really do this? */
3783 periodics_reschedule (EV_A);
3784#endif
3785}
3786
1511/*****************************************************************************/ 3787/*****************************************************************************/
3788/* singly-linked list management, used when the expected list length is short */
1512 3789
1513void inline_size 3790inline_size void
1514wlist_add (WL *head, WL elem) 3791wlist_add (WL *head, WL elem)
1515{ 3792{
1516 elem->next = *head; 3793 elem->next = *head;
1517 *head = elem; 3794 *head = elem;
1518} 3795}
1519 3796
1520void inline_size 3797inline_size void
1521wlist_del (WL *head, WL elem) 3798wlist_del (WL *head, WL elem)
1522{ 3799{
1523 while (*head) 3800 while (*head)
1524 { 3801 {
1525 if (*head == elem) 3802 if (expect_true (*head == elem))
1526 { 3803 {
1527 *head = elem->next; 3804 *head = elem->next;
1528 return; 3805 break;
1529 } 3806 }
1530 3807
1531 head = &(*head)->next; 3808 head = &(*head)->next;
1532 } 3809 }
1533} 3810}
1534 3811
1535void inline_speed 3812/* internal, faster, version of ev_clear_pending */
3813inline_speed void
1536clear_pending (EV_P_ W w) 3814clear_pending (EV_P_ W w)
1537{ 3815{
1538 if (w->pending) 3816 if (w->pending)
1539 { 3817 {
1540 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3818 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1541 w->pending = 0; 3819 w->pending = 0;
1542 } 3820 }
1543} 3821}
1544 3822
1545int 3823int
1546ev_clear_pending (EV_P_ void *w) 3824ev_clear_pending (EV_P_ void *w) EV_NOEXCEPT
1547{ 3825{
1548 W w_ = (W)w; 3826 W w_ = (W)w;
1549 int pending = w_->pending; 3827 int pending = w_->pending;
1550 3828
1551 if (!pending) 3829 if (expect_true (pending))
3830 {
3831 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3832 p->w = (W)&pending_w;
3833 w_->pending = 0;
3834 return p->events;
3835 }
3836 else
1552 return 0; 3837 return 0;
1553
1554 w_->pending = 0;
1555 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1556 p->w = 0;
1557
1558 return p->events;
1559} 3838}
1560 3839
1561void inline_size 3840inline_size void
1562pri_adjust (EV_P_ W w) 3841pri_adjust (EV_P_ W w)
1563{ 3842{
1564 int pri = w->priority; 3843 int pri = ev_priority (w);
1565 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3844 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1566 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3845 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1567 w->priority = pri; 3846 ev_set_priority (w, pri);
1568} 3847}
1569 3848
1570void inline_speed 3849inline_speed void
1571ev_start (EV_P_ W w, int active) 3850ev_start (EV_P_ W w, int active)
1572{ 3851{
1573 pri_adjust (EV_A_ w); 3852 pri_adjust (EV_A_ w);
1574 w->active = active; 3853 w->active = active;
1575 ev_ref (EV_A); 3854 ev_ref (EV_A);
1576} 3855}
1577 3856
1578void inline_size 3857inline_size void
1579ev_stop (EV_P_ W w) 3858ev_stop (EV_P_ W w)
1580{ 3859{
1581 ev_unref (EV_A); 3860 ev_unref (EV_A);
1582 w->active = 0; 3861 w->active = 0;
1583} 3862}
1584 3863
1585/*****************************************************************************/ 3864/*****************************************************************************/
1586 3865
1587void noinline 3866noinline
3867void
1588ev_io_start (EV_P_ ev_io *w) 3868ev_io_start (EV_P_ ev_io *w) EV_NOEXCEPT
1589{ 3869{
1590 int fd = w->fd; 3870 int fd = w->fd;
1591 3871
1592 if (expect_false (ev_is_active (w))) 3872 if (expect_false (ev_is_active (w)))
1593 return; 3873 return;
1594 3874
1595 assert (("ev_io_start called with negative fd", fd >= 0)); 3875 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3876 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3877
3878 EV_FREQUENT_CHECK;
1596 3879
1597 ev_start (EV_A_ (W)w, 1); 3880 ev_start (EV_A_ (W)w, 1);
1598 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3881 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1599 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3882 wlist_add (&anfds[fd].head, (WL)w);
1600 3883
1601 fd_change (EV_A_ fd); 3884 /* common bug, apparently */
1602} 3885 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
1603 3886
3887 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3888 w->events &= ~EV__IOFDSET;
3889
3890 EV_FREQUENT_CHECK;
3891}
3892
1604void noinline 3893noinline
3894void
1605ev_io_stop (EV_P_ ev_io *w) 3895ev_io_stop (EV_P_ ev_io *w) EV_NOEXCEPT
1606{ 3896{
1607 clear_pending (EV_A_ (W)w); 3897 clear_pending (EV_A_ (W)w);
1608 if (expect_false (!ev_is_active (w))) 3898 if (expect_false (!ev_is_active (w)))
1609 return; 3899 return;
1610 3900
1611 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3901 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1612 3902
3903 EV_FREQUENT_CHECK;
3904
1613 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3905 wlist_del (&anfds[w->fd].head, (WL)w);
1614 ev_stop (EV_A_ (W)w); 3906 ev_stop (EV_A_ (W)w);
1615 3907
1616 fd_change (EV_A_ w->fd); 3908 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
1617}
1618 3909
3910 EV_FREQUENT_CHECK;
3911}
3912
1619void noinline 3913noinline
3914void
1620ev_timer_start (EV_P_ ev_timer *w) 3915ev_timer_start (EV_P_ ev_timer *w) EV_NOEXCEPT
1621{ 3916{
1622 if (expect_false (ev_is_active (w))) 3917 if (expect_false (ev_is_active (w)))
1623 return; 3918 return;
1624 3919
1625 ((WT)w)->at += mn_now; 3920 ev_at (w) += mn_now;
1626 3921
1627 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3922 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1628 3923
3924 EV_FREQUENT_CHECK;
3925
3926 ++timercnt;
1629 ev_start (EV_A_ (W)w, ++timercnt); 3927 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1630 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 3928 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1631 timers [timercnt - 1] = w; 3929 ANHE_w (timers [ev_active (w)]) = (WT)w;
1632 upheap ((WT *)timers, timercnt - 1); 3930 ANHE_at_cache (timers [ev_active (w)]);
3931 upheap (timers, ev_active (w));
1633 3932
3933 EV_FREQUENT_CHECK;
3934
1634 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3935 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1635} 3936}
1636 3937
1637void noinline 3938noinline
3939void
1638ev_timer_stop (EV_P_ ev_timer *w) 3940ev_timer_stop (EV_P_ ev_timer *w) EV_NOEXCEPT
1639{ 3941{
1640 clear_pending (EV_A_ (W)w); 3942 clear_pending (EV_A_ (W)w);
1641 if (expect_false (!ev_is_active (w))) 3943 if (expect_false (!ev_is_active (w)))
1642 return; 3944 return;
1643 3945
1644 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3946 EV_FREQUENT_CHECK;
1645 3947
1646 { 3948 {
1647 int active = ((W)w)->active; 3949 int active = ev_active (w);
1648 3950
3951 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3952
3953 --timercnt;
3954
1649 if (expect_true (--active < --timercnt)) 3955 if (expect_true (active < timercnt + HEAP0))
1650 { 3956 {
1651 timers [active] = timers [timercnt]; 3957 timers [active] = timers [timercnt + HEAP0];
1652 adjustheap ((WT *)timers, timercnt, active); 3958 adjustheap (timers, timercnt, active);
1653 } 3959 }
1654 } 3960 }
1655 3961
1656 ((WT)w)->at -= mn_now; 3962 ev_at (w) -= mn_now;
1657 3963
1658 ev_stop (EV_A_ (W)w); 3964 ev_stop (EV_A_ (W)w);
1659}
1660 3965
3966 EV_FREQUENT_CHECK;
3967}
3968
1661void noinline 3969noinline
3970void
1662ev_timer_again (EV_P_ ev_timer *w) 3971ev_timer_again (EV_P_ ev_timer *w) EV_NOEXCEPT
1663{ 3972{
3973 EV_FREQUENT_CHECK;
3974
3975 clear_pending (EV_A_ (W)w);
3976
1664 if (ev_is_active (w)) 3977 if (ev_is_active (w))
1665 { 3978 {
1666 if (w->repeat) 3979 if (w->repeat)
1667 { 3980 {
1668 ((WT)w)->at = mn_now + w->repeat; 3981 ev_at (w) = mn_now + w->repeat;
3982 ANHE_at_cache (timers [ev_active (w)]);
1669 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3983 adjustheap (timers, timercnt, ev_active (w));
1670 } 3984 }
1671 else 3985 else
1672 ev_timer_stop (EV_A_ w); 3986 ev_timer_stop (EV_A_ w);
1673 } 3987 }
1674 else if (w->repeat) 3988 else if (w->repeat)
1675 { 3989 {
1676 w->at = w->repeat; 3990 ev_at (w) = w->repeat;
1677 ev_timer_start (EV_A_ w); 3991 ev_timer_start (EV_A_ w);
1678 } 3992 }
3993
3994 EV_FREQUENT_CHECK;
3995}
3996
3997ev_tstamp
3998ev_timer_remaining (EV_P_ ev_timer *w) EV_NOEXCEPT
3999{
4000 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1679} 4001}
1680 4002
1681#if EV_PERIODIC_ENABLE 4003#if EV_PERIODIC_ENABLE
1682void noinline 4004noinline
4005void
1683ev_periodic_start (EV_P_ ev_periodic *w) 4006ev_periodic_start (EV_P_ ev_periodic *w) EV_NOEXCEPT
1684{ 4007{
1685 if (expect_false (ev_is_active (w))) 4008 if (expect_false (ev_is_active (w)))
1686 return; 4009 return;
1687 4010
1688 if (w->reschedule_cb) 4011 if (w->reschedule_cb)
1689 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 4012 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1690 else if (w->interval) 4013 else if (w->interval)
1691 { 4014 {
1692 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 4015 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1693 /* this formula differs from the one in periodic_reify because we do not always round up */ 4016 periodic_recalc (EV_A_ w);
1694 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1695 } 4017 }
4018 else
4019 ev_at (w) = w->offset;
1696 4020
4021 EV_FREQUENT_CHECK;
4022
4023 ++periodiccnt;
1697 ev_start (EV_A_ (W)w, ++periodiccnt); 4024 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1698 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 4025 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1699 periodics [periodiccnt - 1] = w; 4026 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1700 upheap ((WT *)periodics, periodiccnt - 1); 4027 ANHE_at_cache (periodics [ev_active (w)]);
4028 upheap (periodics, ev_active (w));
1701 4029
4030 EV_FREQUENT_CHECK;
4031
1702 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 4032 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1703} 4033}
1704 4034
1705void noinline 4035noinline
4036void
1706ev_periodic_stop (EV_P_ ev_periodic *w) 4037ev_periodic_stop (EV_P_ ev_periodic *w) EV_NOEXCEPT
1707{ 4038{
1708 clear_pending (EV_A_ (W)w); 4039 clear_pending (EV_A_ (W)w);
1709 if (expect_false (!ev_is_active (w))) 4040 if (expect_false (!ev_is_active (w)))
1710 return; 4041 return;
1711 4042
1712 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 4043 EV_FREQUENT_CHECK;
1713 4044
1714 { 4045 {
1715 int active = ((W)w)->active; 4046 int active = ev_active (w);
1716 4047
4048 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
4049
4050 --periodiccnt;
4051
1717 if (expect_true (--active < --periodiccnt)) 4052 if (expect_true (active < periodiccnt + HEAP0))
1718 { 4053 {
1719 periodics [active] = periodics [periodiccnt]; 4054 periodics [active] = periodics [periodiccnt + HEAP0];
1720 adjustheap ((WT *)periodics, periodiccnt, active); 4055 adjustheap (periodics, periodiccnt, active);
1721 } 4056 }
1722 } 4057 }
1723 4058
1724 ev_stop (EV_A_ (W)w); 4059 ev_stop (EV_A_ (W)w);
1725}
1726 4060
4061 EV_FREQUENT_CHECK;
4062}
4063
1727void noinline 4064noinline
4065void
1728ev_periodic_again (EV_P_ ev_periodic *w) 4066ev_periodic_again (EV_P_ ev_periodic *w) EV_NOEXCEPT
1729{ 4067{
1730 /* TODO: use adjustheap and recalculation */ 4068 /* TODO: use adjustheap and recalculation */
1731 ev_periodic_stop (EV_A_ w); 4069 ev_periodic_stop (EV_A_ w);
1732 ev_periodic_start (EV_A_ w); 4070 ev_periodic_start (EV_A_ w);
1733} 4071}
1735 4073
1736#ifndef SA_RESTART 4074#ifndef SA_RESTART
1737# define SA_RESTART 0 4075# define SA_RESTART 0
1738#endif 4076#endif
1739 4077
4078#if EV_SIGNAL_ENABLE
4079
1740void noinline 4080noinline
4081void
1741ev_signal_start (EV_P_ ev_signal *w) 4082ev_signal_start (EV_P_ ev_signal *w) EV_NOEXCEPT
1742{ 4083{
1743#if EV_MULTIPLICITY
1744 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1745#endif
1746 if (expect_false (ev_is_active (w))) 4084 if (expect_false (ev_is_active (w)))
1747 return; 4085 return;
1748 4086
1749 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 4087 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
4088
4089#if EV_MULTIPLICITY
4090 assert (("libev: a signal must not be attached to two different loops",
4091 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
4092
4093 signals [w->signum - 1].loop = EV_A;
4094 ECB_MEMORY_FENCE_RELEASE;
4095#endif
4096
4097 EV_FREQUENT_CHECK;
4098
4099#if EV_USE_SIGNALFD
4100 if (sigfd == -2)
4101 {
4102 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
4103 if (sigfd < 0 && errno == EINVAL)
4104 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
4105
4106 if (sigfd >= 0)
4107 {
4108 fd_intern (sigfd); /* doing it twice will not hurt */
4109
4110 sigemptyset (&sigfd_set);
4111
4112 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
4113 ev_set_priority (&sigfd_w, EV_MAXPRI);
4114 ev_io_start (EV_A_ &sigfd_w);
4115 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
4116 }
4117 }
4118
4119 if (sigfd >= 0)
4120 {
4121 /* TODO: check .head */
4122 sigaddset (&sigfd_set, w->signum);
4123 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
4124
4125 signalfd (sigfd, &sigfd_set, 0);
4126 }
4127#endif
1750 4128
1751 ev_start (EV_A_ (W)w, 1); 4129 ev_start (EV_A_ (W)w, 1);
1752 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1753 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 4130 wlist_add (&signals [w->signum - 1].head, (WL)w);
1754 4131
1755 if (!((WL)w)->next) 4132 if (!((WL)w)->next)
4133# if EV_USE_SIGNALFD
4134 if (sigfd < 0) /*TODO*/
4135# endif
1756 { 4136 {
1757#if _WIN32 4137# ifdef _WIN32
4138 evpipe_init (EV_A);
4139
1758 signal (w->signum, sighandler); 4140 signal (w->signum, ev_sighandler);
1759#else 4141# else
1760 struct sigaction sa; 4142 struct sigaction sa;
4143
4144 evpipe_init (EV_A);
4145
1761 sa.sa_handler = sighandler; 4146 sa.sa_handler = ev_sighandler;
1762 sigfillset (&sa.sa_mask); 4147 sigfillset (&sa.sa_mask);
1763 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 4148 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1764 sigaction (w->signum, &sa, 0); 4149 sigaction (w->signum, &sa, 0);
4150
4151 if (origflags & EVFLAG_NOSIGMASK)
4152 {
4153 sigemptyset (&sa.sa_mask);
4154 sigaddset (&sa.sa_mask, w->signum);
4155 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
4156 }
1765#endif 4157#endif
1766 } 4158 }
1767}
1768 4159
4160 EV_FREQUENT_CHECK;
4161}
4162
1769void noinline 4163noinline
4164void
1770ev_signal_stop (EV_P_ ev_signal *w) 4165ev_signal_stop (EV_P_ ev_signal *w) EV_NOEXCEPT
1771{ 4166{
1772 clear_pending (EV_A_ (W)w); 4167 clear_pending (EV_A_ (W)w);
1773 if (expect_false (!ev_is_active (w))) 4168 if (expect_false (!ev_is_active (w)))
1774 return; 4169 return;
1775 4170
4171 EV_FREQUENT_CHECK;
4172
1776 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 4173 wlist_del (&signals [w->signum - 1].head, (WL)w);
1777 ev_stop (EV_A_ (W)w); 4174 ev_stop (EV_A_ (W)w);
1778 4175
1779 if (!signals [w->signum - 1].head) 4176 if (!signals [w->signum - 1].head)
1780 signal (w->signum, SIG_DFL); 4177 {
1781}
1782
1783void
1784ev_child_start (EV_P_ ev_child *w)
1785{
1786#if EV_MULTIPLICITY 4178#if EV_MULTIPLICITY
4179 signals [w->signum - 1].loop = 0; /* unattach from signal */
4180#endif
4181#if EV_USE_SIGNALFD
4182 if (sigfd >= 0)
4183 {
4184 sigset_t ss;
4185
4186 sigemptyset (&ss);
4187 sigaddset (&ss, w->signum);
4188 sigdelset (&sigfd_set, w->signum);
4189
4190 signalfd (sigfd, &sigfd_set, 0);
4191 sigprocmask (SIG_UNBLOCK, &ss, 0);
4192 }
4193 else
4194#endif
4195 signal (w->signum, SIG_DFL);
4196 }
4197
4198 EV_FREQUENT_CHECK;
4199}
4200
4201#endif
4202
4203#if EV_CHILD_ENABLE
4204
4205void
4206ev_child_start (EV_P_ ev_child *w) EV_NOEXCEPT
4207{
4208#if EV_MULTIPLICITY
1787 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 4209 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1788#endif 4210#endif
1789 if (expect_false (ev_is_active (w))) 4211 if (expect_false (ev_is_active (w)))
1790 return; 4212 return;
1791 4213
4214 EV_FREQUENT_CHECK;
4215
1792 ev_start (EV_A_ (W)w, 1); 4216 ev_start (EV_A_ (W)w, 1);
1793 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4217 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1794}
1795 4218
4219 EV_FREQUENT_CHECK;
4220}
4221
1796void 4222void
1797ev_child_stop (EV_P_ ev_child *w) 4223ev_child_stop (EV_P_ ev_child *w) EV_NOEXCEPT
1798{ 4224{
1799 clear_pending (EV_A_ (W)w); 4225 clear_pending (EV_A_ (W)w);
1800 if (expect_false (!ev_is_active (w))) 4226 if (expect_false (!ev_is_active (w)))
1801 return; 4227 return;
1802 4228
4229 EV_FREQUENT_CHECK;
4230
1803 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 4231 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1804 ev_stop (EV_A_ (W)w); 4232 ev_stop (EV_A_ (W)w);
4233
4234 EV_FREQUENT_CHECK;
1805} 4235}
4236
4237#endif
1806 4238
1807#if EV_STAT_ENABLE 4239#if EV_STAT_ENABLE
1808 4240
1809# ifdef _WIN32 4241# ifdef _WIN32
1810# undef lstat 4242# undef lstat
1811# define lstat(a,b) _stati64 (a,b) 4243# define lstat(a,b) _stati64 (a,b)
1812# endif 4244# endif
1813 4245
1814#define DEF_STAT_INTERVAL 5.0074891 4246#define DEF_STAT_INTERVAL 5.0074891
4247#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1815#define MIN_STAT_INTERVAL 0.1074891 4248#define MIN_STAT_INTERVAL 0.1074891
1816 4249
1817static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 4250noinline static void stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1818 4251
1819#if EV_USE_INOTIFY 4252#if EV_USE_INOTIFY
1820# define EV_INOTIFY_BUFSIZE 8192
1821 4253
1822static void noinline 4254/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
4255# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
4256
4257noinline
4258static void
1823infy_add (EV_P_ ev_stat *w) 4259infy_add (EV_P_ ev_stat *w)
1824{ 4260{
1825 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 4261 w->wd = inotify_add_watch (fs_fd, w->path,
4262 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
4263 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
4264 | IN_DONT_FOLLOW | IN_MASK_ADD);
1826 4265
1827 if (w->wd < 0) 4266 if (w->wd >= 0)
4267 {
4268 struct statfs sfs;
4269
4270 /* now local changes will be tracked by inotify, but remote changes won't */
4271 /* unless the filesystem is known to be local, we therefore still poll */
4272 /* also do poll on <2.6.25, but with normal frequency */
4273
4274 if (!fs_2625)
4275 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4276 else if (!statfs (w->path, &sfs)
4277 && (sfs.f_type == 0x1373 /* devfs */
4278 || sfs.f_type == 0x4006 /* fat */
4279 || sfs.f_type == 0x4d44 /* msdos */
4280 || sfs.f_type == 0xEF53 /* ext2/3 */
4281 || sfs.f_type == 0x72b6 /* jffs2 */
4282 || sfs.f_type == 0x858458f6 /* ramfs */
4283 || sfs.f_type == 0x5346544e /* ntfs */
4284 || sfs.f_type == 0x3153464a /* jfs */
4285 || sfs.f_type == 0x9123683e /* btrfs */
4286 || sfs.f_type == 0x52654973 /* reiser3 */
4287 || sfs.f_type == 0x01021994 /* tmpfs */
4288 || sfs.f_type == 0x58465342 /* xfs */))
4289 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
4290 else
4291 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1828 { 4292 }
1829 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 4293 else
4294 {
4295 /* can't use inotify, continue to stat */
4296 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1830 4297
1831 /* monitor some parent directory for speedup hints */ 4298 /* if path is not there, monitor some parent directory for speedup hints */
4299 /* note that exceeding the hardcoded path limit is not a correctness issue, */
4300 /* but an efficiency issue only */
1832 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 4301 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1833 { 4302 {
1834 char path [4096]; 4303 char path [4096];
1835 strcpy (path, w->path); 4304 strcpy (path, w->path);
1836 4305
1839 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 4308 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1840 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 4309 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1841 4310
1842 char *pend = strrchr (path, '/'); 4311 char *pend = strrchr (path, '/');
1843 4312
1844 if (!pend) 4313 if (!pend || pend == path)
1845 break; /* whoops, no '/', complain to your admin */ 4314 break;
1846 4315
1847 *pend = 0; 4316 *pend = 0;
1848 w->wd = inotify_add_watch (fs_fd, path, mask); 4317 w->wd = inotify_add_watch (fs_fd, path, mask);
1849 } 4318 }
1850 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 4319 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1851 } 4320 }
1852 } 4321 }
1853 else
1854 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1855 4322
1856 if (w->wd >= 0) 4323 if (w->wd >= 0)
1857 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 4324 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1858}
1859 4325
1860static void noinline 4326 /* now re-arm timer, if required */
4327 if (ev_is_active (&w->timer)) ev_ref (EV_A);
4328 ev_timer_again (EV_A_ &w->timer);
4329 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4330}
4331
4332noinline
4333static void
1861infy_del (EV_P_ ev_stat *w) 4334infy_del (EV_P_ ev_stat *w)
1862{ 4335{
1863 int slot; 4336 int slot;
1864 int wd = w->wd; 4337 int wd = w->wd;
1865 4338
1866 if (wd < 0) 4339 if (wd < 0)
1867 return; 4340 return;
1868 4341
1869 w->wd = -2; 4342 w->wd = -2;
1870 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4343 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1871 wlist_del (&fs_hash [slot].head, (WL)w); 4344 wlist_del (&fs_hash [slot].head, (WL)w);
1872 4345
1873 /* remove this watcher, if others are watching it, they will rearm */ 4346 /* remove this watcher, if others are watching it, they will rearm */
1874 inotify_rm_watch (fs_fd, wd); 4347 inotify_rm_watch (fs_fd, wd);
1875} 4348}
1876 4349
1877static void noinline 4350noinline
4351static void
1878infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4352infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1879{ 4353{
1880 if (slot < 0) 4354 if (slot < 0)
1881 /* overflow, need to check for all hahs slots */ 4355 /* overflow, need to check for all hash slots */
1882 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4356 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1883 infy_wd (EV_A_ slot, wd, ev); 4357 infy_wd (EV_A_ slot, wd, ev);
1884 else 4358 else
1885 { 4359 {
1886 WL w_; 4360 WL w_;
1887 4361
1888 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4362 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1889 { 4363 {
1890 ev_stat *w = (ev_stat *)w_; 4364 ev_stat *w = (ev_stat *)w_;
1891 w_ = w_->next; /* lets us remove this watcher and all before it */ 4365 w_ = w_->next; /* lets us remove this watcher and all before it */
1892 4366
1893 if (w->wd == wd || wd == -1) 4367 if (w->wd == wd || wd == -1)
1894 { 4368 {
1895 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4369 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1896 { 4370 {
4371 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1897 w->wd = -1; 4372 w->wd = -1;
1898 infy_add (EV_A_ w); /* re-add, no matter what */ 4373 infy_add (EV_A_ w); /* re-add, no matter what */
1899 } 4374 }
1900 4375
1901 stat_timer_cb (EV_A_ &w->timer, 0); 4376 stat_timer_cb (EV_A_ &w->timer, 0);
1906 4381
1907static void 4382static void
1908infy_cb (EV_P_ ev_io *w, int revents) 4383infy_cb (EV_P_ ev_io *w, int revents)
1909{ 4384{
1910 char buf [EV_INOTIFY_BUFSIZE]; 4385 char buf [EV_INOTIFY_BUFSIZE];
1911 struct inotify_event *ev = (struct inotify_event *)buf;
1912 int ofs; 4386 int ofs;
1913 int len = read (fs_fd, buf, sizeof (buf)); 4387 int len = read (fs_fd, buf, sizeof (buf));
1914 4388
1915 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4389 for (ofs = 0; ofs < len; )
4390 {
4391 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1916 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4392 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4393 ofs += sizeof (struct inotify_event) + ev->len;
4394 }
1917} 4395}
1918 4396
1919void inline_size 4397inline_size ecb_cold
4398void
4399ev_check_2625 (EV_P)
4400{
4401 /* kernels < 2.6.25 are borked
4402 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4403 */
4404 if (ev_linux_version () < 0x020619)
4405 return;
4406
4407 fs_2625 = 1;
4408}
4409
4410inline_size int
4411infy_newfd (void)
4412{
4413#if defined IN_CLOEXEC && defined IN_NONBLOCK
4414 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4415 if (fd >= 0)
4416 return fd;
4417#endif
4418 return inotify_init ();
4419}
4420
4421inline_size void
1920infy_init (EV_P) 4422infy_init (EV_P)
1921{ 4423{
1922 if (fs_fd != -2) 4424 if (fs_fd != -2)
1923 return; 4425 return;
1924 4426
4427 fs_fd = -1;
4428
4429 ev_check_2625 (EV_A);
4430
1925 fs_fd = inotify_init (); 4431 fs_fd = infy_newfd ();
1926 4432
1927 if (fs_fd >= 0) 4433 if (fs_fd >= 0)
1928 { 4434 {
4435 fd_intern (fs_fd);
1929 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4436 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1930 ev_set_priority (&fs_w, EV_MAXPRI); 4437 ev_set_priority (&fs_w, EV_MAXPRI);
1931 ev_io_start (EV_A_ &fs_w); 4438 ev_io_start (EV_A_ &fs_w);
4439 ev_unref (EV_A);
1932 } 4440 }
1933} 4441}
1934 4442
1935void inline_size 4443inline_size void
1936infy_fork (EV_P) 4444infy_fork (EV_P)
1937{ 4445{
1938 int slot; 4446 int slot;
1939 4447
1940 if (fs_fd < 0) 4448 if (fs_fd < 0)
1941 return; 4449 return;
1942 4450
4451 ev_ref (EV_A);
4452 ev_io_stop (EV_A_ &fs_w);
1943 close (fs_fd); 4453 close (fs_fd);
1944 fs_fd = inotify_init (); 4454 fs_fd = infy_newfd ();
1945 4455
4456 if (fs_fd >= 0)
4457 {
4458 fd_intern (fs_fd);
4459 ev_io_set (&fs_w, fs_fd, EV_READ);
4460 ev_io_start (EV_A_ &fs_w);
4461 ev_unref (EV_A);
4462 }
4463
1946 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4464 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1947 { 4465 {
1948 WL w_ = fs_hash [slot].head; 4466 WL w_ = fs_hash [slot].head;
1949 fs_hash [slot].head = 0; 4467 fs_hash [slot].head = 0;
1950 4468
1951 while (w_) 4469 while (w_)
1956 w->wd = -1; 4474 w->wd = -1;
1957 4475
1958 if (fs_fd >= 0) 4476 if (fs_fd >= 0)
1959 infy_add (EV_A_ w); /* re-add, no matter what */ 4477 infy_add (EV_A_ w); /* re-add, no matter what */
1960 else 4478 else
4479 {
4480 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4481 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1961 ev_timer_start (EV_A_ &w->timer); 4482 ev_timer_again (EV_A_ &w->timer);
4483 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4484 }
1962 } 4485 }
1963
1964 } 4486 }
1965} 4487}
1966 4488
1967#endif 4489#endif
1968 4490
4491#ifdef _WIN32
4492# define EV_LSTAT(p,b) _stati64 (p, b)
4493#else
4494# define EV_LSTAT(p,b) lstat (p, b)
4495#endif
4496
1969void 4497void
1970ev_stat_stat (EV_P_ ev_stat *w) 4498ev_stat_stat (EV_P_ ev_stat *w) EV_NOEXCEPT
1971{ 4499{
1972 if (lstat (w->path, &w->attr) < 0) 4500 if (lstat (w->path, &w->attr) < 0)
1973 w->attr.st_nlink = 0; 4501 w->attr.st_nlink = 0;
1974 else if (!w->attr.st_nlink) 4502 else if (!w->attr.st_nlink)
1975 w->attr.st_nlink = 1; 4503 w->attr.st_nlink = 1;
1976} 4504}
1977 4505
1978static void noinline 4506noinline
4507static void
1979stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4508stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1980{ 4509{
1981 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4510 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1982 4511
1983 /* we copy this here each the time so that */ 4512 ev_statdata prev = w->attr;
1984 /* prev has the old value when the callback gets invoked */
1985 w->prev = w->attr;
1986 ev_stat_stat (EV_A_ w); 4513 ev_stat_stat (EV_A_ w);
1987 4514
1988 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4515 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1989 if ( 4516 if (
1990 w->prev.st_dev != w->attr.st_dev 4517 prev.st_dev != w->attr.st_dev
1991 || w->prev.st_ino != w->attr.st_ino 4518 || prev.st_ino != w->attr.st_ino
1992 || w->prev.st_mode != w->attr.st_mode 4519 || prev.st_mode != w->attr.st_mode
1993 || w->prev.st_nlink != w->attr.st_nlink 4520 || prev.st_nlink != w->attr.st_nlink
1994 || w->prev.st_uid != w->attr.st_uid 4521 || prev.st_uid != w->attr.st_uid
1995 || w->prev.st_gid != w->attr.st_gid 4522 || prev.st_gid != w->attr.st_gid
1996 || w->prev.st_rdev != w->attr.st_rdev 4523 || prev.st_rdev != w->attr.st_rdev
1997 || w->prev.st_size != w->attr.st_size 4524 || prev.st_size != w->attr.st_size
1998 || w->prev.st_atime != w->attr.st_atime 4525 || prev.st_atime != w->attr.st_atime
1999 || w->prev.st_mtime != w->attr.st_mtime 4526 || prev.st_mtime != w->attr.st_mtime
2000 || w->prev.st_ctime != w->attr.st_ctime 4527 || prev.st_ctime != w->attr.st_ctime
2001 ) { 4528 ) {
4529 /* we only update w->prev on actual differences */
4530 /* in case we test more often than invoke the callback, */
4531 /* to ensure that prev is always different to attr */
4532 w->prev = prev;
4533
2002 #if EV_USE_INOTIFY 4534 #if EV_USE_INOTIFY
4535 if (fs_fd >= 0)
4536 {
2003 infy_del (EV_A_ w); 4537 infy_del (EV_A_ w);
2004 infy_add (EV_A_ w); 4538 infy_add (EV_A_ w);
2005 ev_stat_stat (EV_A_ w); /* avoid race... */ 4539 ev_stat_stat (EV_A_ w); /* avoid race... */
4540 }
2006 #endif 4541 #endif
2007 4542
2008 ev_feed_event (EV_A_ w, EV_STAT); 4543 ev_feed_event (EV_A_ w, EV_STAT);
2009 } 4544 }
2010} 4545}
2011 4546
2012void 4547void
2013ev_stat_start (EV_P_ ev_stat *w) 4548ev_stat_start (EV_P_ ev_stat *w) EV_NOEXCEPT
2014{ 4549{
2015 if (expect_false (ev_is_active (w))) 4550 if (expect_false (ev_is_active (w)))
2016 return; 4551 return;
2017 4552
2018 /* since we use memcmp, we need to clear any padding data etc. */
2019 memset (&w->prev, 0, sizeof (ev_statdata));
2020 memset (&w->attr, 0, sizeof (ev_statdata));
2021
2022 ev_stat_stat (EV_A_ w); 4553 ev_stat_stat (EV_A_ w);
2023 4554
4555 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2024 if (w->interval < MIN_STAT_INTERVAL) 4556 w->interval = MIN_STAT_INTERVAL;
2025 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2026 4557
2027 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4558 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2028 ev_set_priority (&w->timer, ev_priority (w)); 4559 ev_set_priority (&w->timer, ev_priority (w));
2029 4560
2030#if EV_USE_INOTIFY 4561#if EV_USE_INOTIFY
2031 infy_init (EV_A); 4562 infy_init (EV_A);
2032 4563
2033 if (fs_fd >= 0) 4564 if (fs_fd >= 0)
2034 infy_add (EV_A_ w); 4565 infy_add (EV_A_ w);
2035 else 4566 else
2036#endif 4567#endif
4568 {
2037 ev_timer_start (EV_A_ &w->timer); 4569 ev_timer_again (EV_A_ &w->timer);
4570 ev_unref (EV_A);
4571 }
2038 4572
2039 ev_start (EV_A_ (W)w, 1); 4573 ev_start (EV_A_ (W)w, 1);
2040}
2041 4574
4575 EV_FREQUENT_CHECK;
4576}
4577
2042void 4578void
2043ev_stat_stop (EV_P_ ev_stat *w) 4579ev_stat_stop (EV_P_ ev_stat *w) EV_NOEXCEPT
2044{ 4580{
2045 clear_pending (EV_A_ (W)w); 4581 clear_pending (EV_A_ (W)w);
2046 if (expect_false (!ev_is_active (w))) 4582 if (expect_false (!ev_is_active (w)))
2047 return; 4583 return;
2048 4584
4585 EV_FREQUENT_CHECK;
4586
2049#if EV_USE_INOTIFY 4587#if EV_USE_INOTIFY
2050 infy_del (EV_A_ w); 4588 infy_del (EV_A_ w);
2051#endif 4589#endif
4590
4591 if (ev_is_active (&w->timer))
4592 {
4593 ev_ref (EV_A);
2052 ev_timer_stop (EV_A_ &w->timer); 4594 ev_timer_stop (EV_A_ &w->timer);
4595 }
2053 4596
2054 ev_stop (EV_A_ (W)w); 4597 ev_stop (EV_A_ (W)w);
4598
4599 EV_FREQUENT_CHECK;
2055} 4600}
2056#endif 4601#endif
2057 4602
2058#if EV_IDLE_ENABLE 4603#if EV_IDLE_ENABLE
2059void 4604void
2060ev_idle_start (EV_P_ ev_idle *w) 4605ev_idle_start (EV_P_ ev_idle *w) EV_NOEXCEPT
2061{ 4606{
2062 if (expect_false (ev_is_active (w))) 4607 if (expect_false (ev_is_active (w)))
2063 return; 4608 return;
2064 4609
2065 pri_adjust (EV_A_ (W)w); 4610 pri_adjust (EV_A_ (W)w);
4611
4612 EV_FREQUENT_CHECK;
2066 4613
2067 { 4614 {
2068 int active = ++idlecnt [ABSPRI (w)]; 4615 int active = ++idlecnt [ABSPRI (w)];
2069 4616
2070 ++idleall; 4617 ++idleall;
2071 ev_start (EV_A_ (W)w, active); 4618 ev_start (EV_A_ (W)w, active);
2072 4619
2073 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4620 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2074 idles [ABSPRI (w)][active - 1] = w; 4621 idles [ABSPRI (w)][active - 1] = w;
2075 } 4622 }
2076}
2077 4623
4624 EV_FREQUENT_CHECK;
4625}
4626
2078void 4627void
2079ev_idle_stop (EV_P_ ev_idle *w) 4628ev_idle_stop (EV_P_ ev_idle *w) EV_NOEXCEPT
2080{ 4629{
2081 clear_pending (EV_A_ (W)w); 4630 clear_pending (EV_A_ (W)w);
2082 if (expect_false (!ev_is_active (w))) 4631 if (expect_false (!ev_is_active (w)))
2083 return; 4632 return;
2084 4633
4634 EV_FREQUENT_CHECK;
4635
2085 { 4636 {
2086 int active = ((W)w)->active; 4637 int active = ev_active (w);
2087 4638
2088 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4639 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2089 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4640 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2090 4641
2091 ev_stop (EV_A_ (W)w); 4642 ev_stop (EV_A_ (W)w);
2092 --idleall; 4643 --idleall;
2093 } 4644 }
2094}
2095#endif
2096 4645
4646 EV_FREQUENT_CHECK;
4647}
4648#endif
4649
4650#if EV_PREPARE_ENABLE
2097void 4651void
2098ev_prepare_start (EV_P_ ev_prepare *w) 4652ev_prepare_start (EV_P_ ev_prepare *w) EV_NOEXCEPT
2099{ 4653{
2100 if (expect_false (ev_is_active (w))) 4654 if (expect_false (ev_is_active (w)))
2101 return; 4655 return;
4656
4657 EV_FREQUENT_CHECK;
2102 4658
2103 ev_start (EV_A_ (W)w, ++preparecnt); 4659 ev_start (EV_A_ (W)w, ++preparecnt);
2104 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4660 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2105 prepares [preparecnt - 1] = w; 4661 prepares [preparecnt - 1] = w;
2106}
2107 4662
4663 EV_FREQUENT_CHECK;
4664}
4665
2108void 4666void
2109ev_prepare_stop (EV_P_ ev_prepare *w) 4667ev_prepare_stop (EV_P_ ev_prepare *w) EV_NOEXCEPT
2110{ 4668{
2111 clear_pending (EV_A_ (W)w); 4669 clear_pending (EV_A_ (W)w);
2112 if (expect_false (!ev_is_active (w))) 4670 if (expect_false (!ev_is_active (w)))
2113 return; 4671 return;
2114 4672
4673 EV_FREQUENT_CHECK;
4674
2115 { 4675 {
2116 int active = ((W)w)->active; 4676 int active = ev_active (w);
4677
2117 prepares [active - 1] = prepares [--preparecnt]; 4678 prepares [active - 1] = prepares [--preparecnt];
2118 ((W)prepares [active - 1])->active = active; 4679 ev_active (prepares [active - 1]) = active;
2119 } 4680 }
2120 4681
2121 ev_stop (EV_A_ (W)w); 4682 ev_stop (EV_A_ (W)w);
2122}
2123 4683
4684 EV_FREQUENT_CHECK;
4685}
4686#endif
4687
4688#if EV_CHECK_ENABLE
2124void 4689void
2125ev_check_start (EV_P_ ev_check *w) 4690ev_check_start (EV_P_ ev_check *w) EV_NOEXCEPT
2126{ 4691{
2127 if (expect_false (ev_is_active (w))) 4692 if (expect_false (ev_is_active (w)))
2128 return; 4693 return;
4694
4695 EV_FREQUENT_CHECK;
2129 4696
2130 ev_start (EV_A_ (W)w, ++checkcnt); 4697 ev_start (EV_A_ (W)w, ++checkcnt);
2131 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4698 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2132 checks [checkcnt - 1] = w; 4699 checks [checkcnt - 1] = w;
2133}
2134 4700
4701 EV_FREQUENT_CHECK;
4702}
4703
2135void 4704void
2136ev_check_stop (EV_P_ ev_check *w) 4705ev_check_stop (EV_P_ ev_check *w) EV_NOEXCEPT
2137{ 4706{
2138 clear_pending (EV_A_ (W)w); 4707 clear_pending (EV_A_ (W)w);
2139 if (expect_false (!ev_is_active (w))) 4708 if (expect_false (!ev_is_active (w)))
2140 return; 4709 return;
2141 4710
4711 EV_FREQUENT_CHECK;
4712
2142 { 4713 {
2143 int active = ((W)w)->active; 4714 int active = ev_active (w);
4715
2144 checks [active - 1] = checks [--checkcnt]; 4716 checks [active - 1] = checks [--checkcnt];
2145 ((W)checks [active - 1])->active = active; 4717 ev_active (checks [active - 1]) = active;
2146 } 4718 }
2147 4719
2148 ev_stop (EV_A_ (W)w); 4720 ev_stop (EV_A_ (W)w);
4721
4722 EV_FREQUENT_CHECK;
2149} 4723}
4724#endif
2150 4725
2151#if EV_EMBED_ENABLE 4726#if EV_EMBED_ENABLE
2152void noinline 4727noinline
4728void
2153ev_embed_sweep (EV_P_ ev_embed *w) 4729ev_embed_sweep (EV_P_ ev_embed *w) EV_NOEXCEPT
2154{ 4730{
2155 ev_loop (w->loop, EVLOOP_NONBLOCK); 4731 ev_run (w->other, EVRUN_NOWAIT);
2156} 4732}
2157 4733
2158static void 4734static void
2159embed_cb (EV_P_ ev_io *io, int revents) 4735embed_io_cb (EV_P_ ev_io *io, int revents)
2160{ 4736{
2161 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4737 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2162 4738
2163 if (ev_cb (w)) 4739 if (ev_cb (w))
2164 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4740 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2165 else 4741 else
2166 ev_embed_sweep (loop, w); 4742 ev_run (w->other, EVRUN_NOWAIT);
2167} 4743}
2168 4744
4745static void
4746embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4747{
4748 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4749
4750 {
4751 EV_P = w->other;
4752
4753 while (fdchangecnt)
4754 {
4755 fd_reify (EV_A);
4756 ev_run (EV_A_ EVRUN_NOWAIT);
4757 }
4758 }
4759}
4760
4761static void
4762embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4763{
4764 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4765
4766 ev_embed_stop (EV_A_ w);
4767
4768 {
4769 EV_P = w->other;
4770
4771 ev_loop_fork (EV_A);
4772 ev_run (EV_A_ EVRUN_NOWAIT);
4773 }
4774
4775 ev_embed_start (EV_A_ w);
4776}
4777
4778#if 0
4779static void
4780embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4781{
4782 ev_idle_stop (EV_A_ idle);
4783}
4784#endif
4785
2169void 4786void
2170ev_embed_start (EV_P_ ev_embed *w) 4787ev_embed_start (EV_P_ ev_embed *w) EV_NOEXCEPT
2171{ 4788{
2172 if (expect_false (ev_is_active (w))) 4789 if (expect_false (ev_is_active (w)))
2173 return; 4790 return;
2174 4791
2175 { 4792 {
2176 struct ev_loop *loop = w->loop; 4793 EV_P = w->other;
2177 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4794 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2178 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 4795 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2179 } 4796 }
4797
4798 EV_FREQUENT_CHECK;
2180 4799
2181 ev_set_priority (&w->io, ev_priority (w)); 4800 ev_set_priority (&w->io, ev_priority (w));
2182 ev_io_start (EV_A_ &w->io); 4801 ev_io_start (EV_A_ &w->io);
2183 4802
4803 ev_prepare_init (&w->prepare, embed_prepare_cb);
4804 ev_set_priority (&w->prepare, EV_MINPRI);
4805 ev_prepare_start (EV_A_ &w->prepare);
4806
4807 ev_fork_init (&w->fork, embed_fork_cb);
4808 ev_fork_start (EV_A_ &w->fork);
4809
4810 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4811
2184 ev_start (EV_A_ (W)w, 1); 4812 ev_start (EV_A_ (W)w, 1);
2185}
2186 4813
4814 EV_FREQUENT_CHECK;
4815}
4816
2187void 4817void
2188ev_embed_stop (EV_P_ ev_embed *w) 4818ev_embed_stop (EV_P_ ev_embed *w) EV_NOEXCEPT
2189{ 4819{
2190 clear_pending (EV_A_ (W)w); 4820 clear_pending (EV_A_ (W)w);
2191 if (expect_false (!ev_is_active (w))) 4821 if (expect_false (!ev_is_active (w)))
2192 return; 4822 return;
2193 4823
4824 EV_FREQUENT_CHECK;
4825
2194 ev_io_stop (EV_A_ &w->io); 4826 ev_io_stop (EV_A_ &w->io);
4827 ev_prepare_stop (EV_A_ &w->prepare);
4828 ev_fork_stop (EV_A_ &w->fork);
2195 4829
2196 ev_stop (EV_A_ (W)w); 4830 ev_stop (EV_A_ (W)w);
4831
4832 EV_FREQUENT_CHECK;
2197} 4833}
2198#endif 4834#endif
2199 4835
2200#if EV_FORK_ENABLE 4836#if EV_FORK_ENABLE
2201void 4837void
2202ev_fork_start (EV_P_ ev_fork *w) 4838ev_fork_start (EV_P_ ev_fork *w) EV_NOEXCEPT
2203{ 4839{
2204 if (expect_false (ev_is_active (w))) 4840 if (expect_false (ev_is_active (w)))
2205 return; 4841 return;
4842
4843 EV_FREQUENT_CHECK;
2206 4844
2207 ev_start (EV_A_ (W)w, ++forkcnt); 4845 ev_start (EV_A_ (W)w, ++forkcnt);
2208 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4846 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2209 forks [forkcnt - 1] = w; 4847 forks [forkcnt - 1] = w;
2210}
2211 4848
4849 EV_FREQUENT_CHECK;
4850}
4851
2212void 4852void
2213ev_fork_stop (EV_P_ ev_fork *w) 4853ev_fork_stop (EV_P_ ev_fork *w) EV_NOEXCEPT
2214{ 4854{
2215 clear_pending (EV_A_ (W)w); 4855 clear_pending (EV_A_ (W)w);
2216 if (expect_false (!ev_is_active (w))) 4856 if (expect_false (!ev_is_active (w)))
2217 return; 4857 return;
2218 4858
4859 EV_FREQUENT_CHECK;
4860
2219 { 4861 {
2220 int active = ((W)w)->active; 4862 int active = ev_active (w);
4863
2221 forks [active - 1] = forks [--forkcnt]; 4864 forks [active - 1] = forks [--forkcnt];
2222 ((W)forks [active - 1])->active = active; 4865 ev_active (forks [active - 1]) = active;
2223 } 4866 }
2224 4867
2225 ev_stop (EV_A_ (W)w); 4868 ev_stop (EV_A_ (W)w);
4869
4870 EV_FREQUENT_CHECK;
4871}
4872#endif
4873
4874#if EV_CLEANUP_ENABLE
4875void
4876ev_cleanup_start (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4877{
4878 if (expect_false (ev_is_active (w)))
4879 return;
4880
4881 EV_FREQUENT_CHECK;
4882
4883 ev_start (EV_A_ (W)w, ++cleanupcnt);
4884 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4885 cleanups [cleanupcnt - 1] = w;
4886
4887 /* cleanup watchers should never keep a refcount on the loop */
4888 ev_unref (EV_A);
4889 EV_FREQUENT_CHECK;
4890}
4891
4892void
4893ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_NOEXCEPT
4894{
4895 clear_pending (EV_A_ (W)w);
4896 if (expect_false (!ev_is_active (w)))
4897 return;
4898
4899 EV_FREQUENT_CHECK;
4900 ev_ref (EV_A);
4901
4902 {
4903 int active = ev_active (w);
4904
4905 cleanups [active - 1] = cleanups [--cleanupcnt];
4906 ev_active (cleanups [active - 1]) = active;
4907 }
4908
4909 ev_stop (EV_A_ (W)w);
4910
4911 EV_FREQUENT_CHECK;
4912}
4913#endif
4914
4915#if EV_ASYNC_ENABLE
4916void
4917ev_async_start (EV_P_ ev_async *w) EV_NOEXCEPT
4918{
4919 if (expect_false (ev_is_active (w)))
4920 return;
4921
4922 w->sent = 0;
4923
4924 evpipe_init (EV_A);
4925
4926 EV_FREQUENT_CHECK;
4927
4928 ev_start (EV_A_ (W)w, ++asynccnt);
4929 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4930 asyncs [asynccnt - 1] = w;
4931
4932 EV_FREQUENT_CHECK;
4933}
4934
4935void
4936ev_async_stop (EV_P_ ev_async *w) EV_NOEXCEPT
4937{
4938 clear_pending (EV_A_ (W)w);
4939 if (expect_false (!ev_is_active (w)))
4940 return;
4941
4942 EV_FREQUENT_CHECK;
4943
4944 {
4945 int active = ev_active (w);
4946
4947 asyncs [active - 1] = asyncs [--asynccnt];
4948 ev_active (asyncs [active - 1]) = active;
4949 }
4950
4951 ev_stop (EV_A_ (W)w);
4952
4953 EV_FREQUENT_CHECK;
4954}
4955
4956void
4957ev_async_send (EV_P_ ev_async *w) EV_NOEXCEPT
4958{
4959 w->sent = 1;
4960 evpipe_write (EV_A_ &async_pending);
2226} 4961}
2227#endif 4962#endif
2228 4963
2229/*****************************************************************************/ 4964/*****************************************************************************/
2230 4965
2240once_cb (EV_P_ struct ev_once *once, int revents) 4975once_cb (EV_P_ struct ev_once *once, int revents)
2241{ 4976{
2242 void (*cb)(int revents, void *arg) = once->cb; 4977 void (*cb)(int revents, void *arg) = once->cb;
2243 void *arg = once->arg; 4978 void *arg = once->arg;
2244 4979
2245 ev_io_stop (EV_A_ &once->io); 4980 ev_io_stop (EV_A_ &once->io);
2246 ev_timer_stop (EV_A_ &once->to); 4981 ev_timer_stop (EV_A_ &once->to);
2247 ev_free (once); 4982 ev_free (once);
2248 4983
2249 cb (revents, arg); 4984 cb (revents, arg);
2250} 4985}
2251 4986
2252static void 4987static void
2253once_cb_io (EV_P_ ev_io *w, int revents) 4988once_cb_io (EV_P_ ev_io *w, int revents)
2254{ 4989{
2255 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4990 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4991
4992 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2256} 4993}
2257 4994
2258static void 4995static void
2259once_cb_to (EV_P_ ev_timer *w, int revents) 4996once_cb_to (EV_P_ ev_timer *w, int revents)
2260{ 4997{
2261 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4998 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
2262}
2263 4999
5000 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
5001}
5002
2264void 5003void
2265ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 5004ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_NOEXCEPT
2266{ 5005{
2267 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 5006 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2268 5007
2269 if (expect_false (!once)) 5008 if (expect_false (!once))
2270 { 5009 {
2271 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 5010 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2272 return; 5011 return;
2273 } 5012 }
2274 5013
2275 once->cb = cb; 5014 once->cb = cb;
2276 once->arg = arg; 5015 once->arg = arg;
2288 ev_timer_set (&once->to, timeout, 0.); 5027 ev_timer_set (&once->to, timeout, 0.);
2289 ev_timer_start (EV_A_ &once->to); 5028 ev_timer_start (EV_A_ &once->to);
2290 } 5029 }
2291} 5030}
2292 5031
2293#ifdef __cplusplus 5032/*****************************************************************************/
2294} 5033
5034#if EV_WALK_ENABLE
5035ecb_cold
5036void
5037ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_NOEXCEPT
5038{
5039 int i, j;
5040 ev_watcher_list *wl, *wn;
5041
5042 if (types & (EV_IO | EV_EMBED))
5043 for (i = 0; i < anfdmax; ++i)
5044 for (wl = anfds [i].head; wl; )
5045 {
5046 wn = wl->next;
5047
5048#if EV_EMBED_ENABLE
5049 if (ev_cb ((ev_io *)wl) == embed_io_cb)
5050 {
5051 if (types & EV_EMBED)
5052 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
5053 }
5054 else
5055#endif
5056#if EV_USE_INOTIFY
5057 if (ev_cb ((ev_io *)wl) == infy_cb)
5058 ;
5059 else
5060#endif
5061 if ((ev_io *)wl != &pipe_w)
5062 if (types & EV_IO)
5063 cb (EV_A_ EV_IO, wl);
5064
5065 wl = wn;
5066 }
5067
5068 if (types & (EV_TIMER | EV_STAT))
5069 for (i = timercnt + HEAP0; i-- > HEAP0; )
5070#if EV_STAT_ENABLE
5071 /*TODO: timer is not always active*/
5072 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
5073 {
5074 if (types & EV_STAT)
5075 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
5076 }
5077 else
5078#endif
5079 if (types & EV_TIMER)
5080 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
5081
5082#if EV_PERIODIC_ENABLE
5083 if (types & EV_PERIODIC)
5084 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
5085 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
5086#endif
5087
5088#if EV_IDLE_ENABLE
5089 if (types & EV_IDLE)
5090 for (j = NUMPRI; j--; )
5091 for (i = idlecnt [j]; i--; )
5092 cb (EV_A_ EV_IDLE, idles [j][i]);
5093#endif
5094
5095#if EV_FORK_ENABLE
5096 if (types & EV_FORK)
5097 for (i = forkcnt; i--; )
5098 if (ev_cb (forks [i]) != embed_fork_cb)
5099 cb (EV_A_ EV_FORK, forks [i]);
5100#endif
5101
5102#if EV_ASYNC_ENABLE
5103 if (types & EV_ASYNC)
5104 for (i = asynccnt; i--; )
5105 cb (EV_A_ EV_ASYNC, asyncs [i]);
5106#endif
5107
5108#if EV_PREPARE_ENABLE
5109 if (types & EV_PREPARE)
5110 for (i = preparecnt; i--; )
5111# if EV_EMBED_ENABLE
5112 if (ev_cb (prepares [i]) != embed_prepare_cb)
2295#endif 5113# endif
5114 cb (EV_A_ EV_PREPARE, prepares [i]);
5115#endif
2296 5116
5117#if EV_CHECK_ENABLE
5118 if (types & EV_CHECK)
5119 for (i = checkcnt; i--; )
5120 cb (EV_A_ EV_CHECK, checks [i]);
5121#endif
5122
5123#if EV_SIGNAL_ENABLE
5124 if (types & EV_SIGNAL)
5125 for (i = 0; i < EV_NSIG - 1; ++i)
5126 for (wl = signals [i].head; wl; )
5127 {
5128 wn = wl->next;
5129 cb (EV_A_ EV_SIGNAL, wl);
5130 wl = wn;
5131 }
5132#endif
5133
5134#if EV_CHILD_ENABLE
5135 if (types & EV_CHILD)
5136 for (i = (EV_PID_HASHSIZE); i--; )
5137 for (wl = childs [i]; wl; )
5138 {
5139 wn = wl->next;
5140 cb (EV_A_ EV_CHILD, wl);
5141 wl = wn;
5142 }
5143#endif
5144/* EV_STAT 0x00001000 /* stat data changed */
5145/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
5146}
5147#endif
5148
5149#if EV_MULTIPLICITY
5150 #include "ev_wrap.h"
5151#endif
5152

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines