ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.173 by root, Sun Dec 9 19:42:57 2007 UTC vs.
Revision 1.241 by root, Fri May 9 13:57:00 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 241
197#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
200#endif 245#endif
202#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
205#endif 250#endif
206 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
207#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 268# include <winsock.h>
209#endif 269#endif
210 270
211#if !EV_STAT_ENABLE 271#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
213#endif 276# endif
214 277int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 278# ifdef __cplusplus
216# include <sys/inotify.h> 279}
280# endif
217#endif 281#endif
218 282
219/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 294
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 298
225#if __GNUC__ >= 3 299#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
227# define noinline __attribute__ ((noinline)) 301# define noinline __attribute__ ((noinline))
228#else 302#else
229# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
230# define noinline 304# define noinline
231# if __STDC_VERSION__ < 199901L 305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
232# define inline 306# define inline
233# endif 307# endif
234#endif 308#endif
235 309
236#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
251 325
252typedef ev_watcher *W; 326typedef ev_watcher *W;
253typedef ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
254typedef ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
255 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
256static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
257 338
258#ifdef _WIN32 339#ifdef _WIN32
259# include "ev_win32.c" 340# include "ev_win32.c"
260#endif 341#endif
261 342
282 perror (msg); 363 perror (msg);
283 abort (); 364 abort ();
284 } 365 }
285} 366}
286 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
287static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
288 384
289void 385void
290ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
291{ 387{
292 alloc = cb; 388 alloc = cb;
293} 389}
294 390
295inline_speed void * 391inline_speed void *
296ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
297{ 393{
298 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
299 395
300 if (!ptr && size) 396 if (!ptr && size)
301 { 397 {
302 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
303 abort (); 399 abort ();
326 W w; 422 W w;
327 int events; 423 int events;
328} ANPENDING; 424} ANPENDING;
329 425
330#if EV_USE_INOTIFY 426#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */
331typedef struct 428typedef struct
332{ 429{
333 WL head; 430 WL head;
334} ANFS; 431} ANFS;
432#endif
433
434/* Heap Entry */
435#if EV_HEAP_CACHE_AT
436 typedef struct {
437 WT w;
438 ev_tstamp at;
439 } ANHE;
440
441 #define ANHE_w(he) (he) /* access watcher, read-write */
442 #define ANHE_at(he) (he)->at /* acces cahced at, read-only */
443 #define ANHE_at_set(he) (he)->at = (he)->w->at /* update at from watcher */
444#else
445 typedef WT ANHE;
446
447 #define ANHE_w(he) (he)
448 #define ANHE_at(he) (he)->at
449 #define ANHE_at_set(he)
335#endif 450#endif
336 451
337#if EV_MULTIPLICITY 452#if EV_MULTIPLICITY
338 453
339 struct ev_loop 454 struct ev_loop
397{ 512{
398 return ev_rt_now; 513 return ev_rt_now;
399} 514}
400#endif 515#endif
401 516
517void
518ev_sleep (ev_tstamp delay)
519{
520 if (delay > 0.)
521 {
522#if EV_USE_NANOSLEEP
523 struct timespec ts;
524
525 ts.tv_sec = (time_t)delay;
526 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
527
528 nanosleep (&ts, 0);
529#elif defined(_WIN32)
530 Sleep ((unsigned long)(delay * 1e3));
531#else
532 struct timeval tv;
533
534 tv.tv_sec = (time_t)delay;
535 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
536
537 select (0, 0, 0, 0, &tv);
538#endif
539 }
540}
541
542/*****************************************************************************/
543
544#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
545
402int inline_size 546int inline_size
403array_nextsize (int elem, int cur, int cnt) 547array_nextsize (int elem, int cur, int cnt)
404{ 548{
405 int ncur = cur + 1; 549 int ncur = cur + 1;
406 550
407 do 551 do
408 ncur <<= 1; 552 ncur <<= 1;
409 while (cnt > ncur); 553 while (cnt > ncur);
410 554
411 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 555 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
412 if (elem * ncur > 4096) 556 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
413 { 557 {
414 ncur *= elem; 558 ncur *= elem;
415 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 559 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
416 ncur = ncur - sizeof (void *) * 4; 560 ncur = ncur - sizeof (void *) * 4;
417 ncur /= elem; 561 ncur /= elem;
418 } 562 }
419 563
420 return ncur; 564 return ncur;
466 pendings [pri][w_->pending - 1].w = w_; 610 pendings [pri][w_->pending - 1].w = w_;
467 pendings [pri][w_->pending - 1].events = revents; 611 pendings [pri][w_->pending - 1].events = revents;
468 } 612 }
469} 613}
470 614
471void inline_size 615void inline_speed
472queue_events (EV_P_ W *events, int eventcnt, int type) 616queue_events (EV_P_ W *events, int eventcnt, int type)
473{ 617{
474 int i; 618 int i;
475 619
476 for (i = 0; i < eventcnt; ++i) 620 for (i = 0; i < eventcnt; ++i)
523 { 667 {
524 int fd = fdchanges [i]; 668 int fd = fdchanges [i];
525 ANFD *anfd = anfds + fd; 669 ANFD *anfd = anfds + fd;
526 ev_io *w; 670 ev_io *w;
527 671
528 int events = 0; 672 unsigned char events = 0;
529 673
530 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 674 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
531 events |= w->events; 675 events |= (unsigned char)w->events;
532 676
533#if EV_SELECT_IS_WINSOCKET 677#if EV_SELECT_IS_WINSOCKET
534 if (events) 678 if (events)
535 { 679 {
536 unsigned long argp; 680 unsigned long argp;
681 #ifdef EV_FD_TO_WIN32_HANDLE
682 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
683 #else
537 anfd->handle = _get_osfhandle (fd); 684 anfd->handle = _get_osfhandle (fd);
685 #endif
538 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 686 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
539 } 687 }
540#endif 688#endif
541 689
690 {
691 unsigned char o_events = anfd->events;
692 unsigned char o_reify = anfd->reify;
693
542 anfd->reify = 0; 694 anfd->reify = 0;
543
544 backend_modify (EV_A_ fd, anfd->events, events);
545 anfd->events = events; 695 anfd->events = events;
696
697 if (o_events != events || o_reify & EV_IOFDSET)
698 backend_modify (EV_A_ fd, o_events, events);
699 }
546 } 700 }
547 701
548 fdchangecnt = 0; 702 fdchangecnt = 0;
549} 703}
550 704
551void inline_size 705void inline_size
552fd_change (EV_P_ int fd) 706fd_change (EV_P_ int fd, int flags)
553{ 707{
554 if (expect_false (anfds [fd].reify)) 708 unsigned char reify = anfds [fd].reify;
555 return;
556
557 anfds [fd].reify = 1; 709 anfds [fd].reify |= flags;
558 710
711 if (expect_true (!reify))
712 {
559 ++fdchangecnt; 713 ++fdchangecnt;
560 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 714 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
561 fdchanges [fdchangecnt - 1] = fd; 715 fdchanges [fdchangecnt - 1] = fd;
716 }
562} 717}
563 718
564void inline_speed 719void inline_speed
565fd_kill (EV_P_ int fd) 720fd_kill (EV_P_ int fd)
566{ 721{
617 772
618 for (fd = 0; fd < anfdmax; ++fd) 773 for (fd = 0; fd < anfdmax; ++fd)
619 if (anfds [fd].events) 774 if (anfds [fd].events)
620 { 775 {
621 anfds [fd].events = 0; 776 anfds [fd].events = 0;
622 fd_change (EV_A_ fd); 777 fd_change (EV_A_ fd, EV_IOFDSET | 1);
623 } 778 }
624} 779}
625 780
626/*****************************************************************************/ 781/*****************************************************************************/
627 782
783/*
784 * the heap functions want a real array index. array index 0 uis guaranteed to not
785 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
786 * the branching factor of the d-tree.
787 */
788
789/*
790 * at the moment we allow libev the luxury of two heaps,
791 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
792 * which is more cache-efficient.
793 * the difference is about 5% with 50000+ watchers.
794 */
795#define EV_USE_4HEAP !EV_MINIMAL
796#if EV_USE_4HEAP
797
798#define DHEAP 4
799#define HEAP0 (DHEAP - 1) /* index of first element in heap */
800
801/* towards the root */
628void inline_speed 802void inline_speed
629upheap (WT *heap, int k) 803upheap (ANHE *heap, int k)
630{ 804{
631 WT w = heap [k]; 805 ANHE he = heap [k];
632 806
633 while (k && heap [k >> 1]->at > w->at) 807 for (;;)
634 { 808 {
809 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
810
811 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
812 break;
813
635 heap [k] = heap [k >> 1]; 814 heap [k] = heap [p];
636 ((W)heap [k])->active = k + 1; 815 ev_active (ANHE_w (heap [k])) = k;
637 k >>= 1; 816 k = p;
817 }
818
819 ev_active (ANHE_w (he)) = k;
820 heap [k] = he;
821}
822
823/* away from the root */
824void inline_speed
825downheap (ANHE *heap, int N, int k)
826{
827 ANHE he = heap [k];
828 ANHE *E = heap + N + HEAP0;
829
830 for (;;)
831 {
832 ev_tstamp minat;
833 ANHE *minpos;
834 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
835
836 // find minimum child
837 if (expect_true (pos + DHEAP - 1 < E))
838 {
839 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
840 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
843 }
844 else if (pos < E)
845 {
846 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 }
851 else
852 break;
853
854 if (ANHE_at (he) <= minat)
855 break;
856
857 ev_active (ANHE_w (*minpos)) = k;
858 heap [k] = *minpos;
859
860 k = minpos - heap;
861 }
862
863 ev_active (ANHE_w (he)) = k;
864 heap [k] = he;
865}
866
867#else // 4HEAP
868
869#define HEAP0 1
870
871/* towards the root */
872void inline_speed
873upheap (ANHE *heap, int k)
874{
875 ANHE he = heap [k];
876
877 for (;;)
878 {
879 int p = k >> 1;
880
881 /* maybe we could use a dummy element at heap [0]? */
882 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
883 break;
884
885 heap [k] = heap [p];
886 ev_active (ANHE_w (heap [k])) = k;
887 k = p;
638 } 888 }
639 889
640 heap [k] = w; 890 heap [k] = w;
641 ((W)heap [k])->active = k + 1; 891 ev_active (ANHE_w (heap [k])) = k;
642
643} 892}
644 893
894/* away from the root */
645void inline_speed 895void inline_speed
646downheap (WT *heap, int N, int k) 896downheap (ANHE *heap, int N, int k)
647{ 897{
648 WT w = heap [k]; 898 ANHE he = heap [k];
649 899
650 while (k < (N >> 1)) 900 for (;;)
651 { 901 {
652 int j = k << 1; 902 int c = k << 1;
653 903
654 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 904 if (c > N)
655 ++j;
656
657 if (w->at <= heap [j]->at)
658 break; 905 break;
659 906
907 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
908 ? 1 : 0;
909
910 if (w->at <= ANHE_at (heap [c]))
911 break;
912
660 heap [k] = heap [j]; 913 heap [k] = heap [c];
661 ((W)heap [k])->active = k + 1; 914 ev_active (ANHE_w (heap [k])) = k;
915
662 k = j; 916 k = c;
663 } 917 }
664 918
665 heap [k] = w; 919 heap [k] = he;
666 ((W)heap [k])->active = k + 1; 920 ev_active (ANHE_w (he)) = k;
667} 921}
922#endif
668 923
669void inline_size 924void inline_size
670adjustheap (WT *heap, int N, int k) 925adjustheap (ANHE *heap, int N, int k)
671{ 926{
672 upheap (heap, k); 927 upheap (heap, k);
673 downheap (heap, N, k); 928 downheap (heap, N, k);
674} 929}
675 930
676/*****************************************************************************/ 931/*****************************************************************************/
677 932
678typedef struct 933typedef struct
679{ 934{
680 WL head; 935 WL head;
681 sig_atomic_t volatile gotsig; 936 EV_ATOMIC_T gotsig;
682} ANSIG; 937} ANSIG;
683 938
684static ANSIG *signals; 939static ANSIG *signals;
685static int signalmax; 940static int signalmax;
686 941
687static int sigpipe [2]; 942static EV_ATOMIC_T gotsig;
688static sig_atomic_t volatile gotsig;
689static ev_io sigev;
690 943
691void inline_size 944void inline_size
692signals_init (ANSIG *base, int count) 945signals_init (ANSIG *base, int count)
693{ 946{
694 while (count--) 947 while (count--)
698 951
699 ++base; 952 ++base;
700 } 953 }
701} 954}
702 955
703static void 956/*****************************************************************************/
704sighandler (int signum)
705{
706#if _WIN32
707 signal (signum, sighandler);
708#endif
709
710 signals [signum - 1].gotsig = 1;
711
712 if (!gotsig)
713 {
714 int old_errno = errno;
715 gotsig = 1;
716 write (sigpipe [1], &signum, 1);
717 errno = old_errno;
718 }
719}
720
721void noinline
722ev_feed_signal_event (EV_P_ int signum)
723{
724 WL w;
725
726#if EV_MULTIPLICITY
727 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
728#endif
729
730 --signum;
731
732 if (signum < 0 || signum >= signalmax)
733 return;
734
735 signals [signum].gotsig = 0;
736
737 for (w = signals [signum].head; w; w = w->next)
738 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
739}
740
741static void
742sigcb (EV_P_ ev_io *iow, int revents)
743{
744 int signum;
745
746 read (sigpipe [0], &revents, 1);
747 gotsig = 0;
748
749 for (signum = signalmax; signum--; )
750 if (signals [signum].gotsig)
751 ev_feed_signal_event (EV_A_ signum + 1);
752}
753 957
754void inline_speed 958void inline_speed
755fd_intern (int fd) 959fd_intern (int fd)
756{ 960{
757#ifdef _WIN32 961#ifdef _WIN32
762 fcntl (fd, F_SETFL, O_NONBLOCK); 966 fcntl (fd, F_SETFL, O_NONBLOCK);
763#endif 967#endif
764} 968}
765 969
766static void noinline 970static void noinline
767siginit (EV_P) 971evpipe_init (EV_P)
768{ 972{
973 if (!ev_is_active (&pipeev))
974 {
975#if EV_USE_EVENTFD
976 if ((evfd = eventfd (0, 0)) >= 0)
977 {
978 evpipe [0] = -1;
979 fd_intern (evfd);
980 ev_io_set (&pipeev, evfd, EV_READ);
981 }
982 else
983#endif
984 {
985 while (pipe (evpipe))
986 syserr ("(libev) error creating signal/async pipe");
987
769 fd_intern (sigpipe [0]); 988 fd_intern (evpipe [0]);
770 fd_intern (sigpipe [1]); 989 fd_intern (evpipe [1]);
990 ev_io_set (&pipeev, evpipe [0], EV_READ);
991 }
771 992
772 ev_io_set (&sigev, sigpipe [0], EV_READ);
773 ev_io_start (EV_A_ &sigev); 993 ev_io_start (EV_A_ &pipeev);
774 ev_unref (EV_A); /* child watcher should not keep loop alive */ 994 ev_unref (EV_A); /* watcher should not keep loop alive */
995 }
996}
997
998void inline_size
999evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1000{
1001 if (!*flag)
1002 {
1003 int old_errno = errno; /* save errno because write might clobber it */
1004
1005 *flag = 1;
1006
1007#if EV_USE_EVENTFD
1008 if (evfd >= 0)
1009 {
1010 uint64_t counter = 1;
1011 write (evfd, &counter, sizeof (uint64_t));
1012 }
1013 else
1014#endif
1015 write (evpipe [1], &old_errno, 1);
1016
1017 errno = old_errno;
1018 }
1019}
1020
1021static void
1022pipecb (EV_P_ ev_io *iow, int revents)
1023{
1024#if EV_USE_EVENTFD
1025 if (evfd >= 0)
1026 {
1027 uint64_t counter;
1028 read (evfd, &counter, sizeof (uint64_t));
1029 }
1030 else
1031#endif
1032 {
1033 char dummy;
1034 read (evpipe [0], &dummy, 1);
1035 }
1036
1037 if (gotsig && ev_is_default_loop (EV_A))
1038 {
1039 int signum;
1040 gotsig = 0;
1041
1042 for (signum = signalmax; signum--; )
1043 if (signals [signum].gotsig)
1044 ev_feed_signal_event (EV_A_ signum + 1);
1045 }
1046
1047#if EV_ASYNC_ENABLE
1048 if (gotasync)
1049 {
1050 int i;
1051 gotasync = 0;
1052
1053 for (i = asynccnt; i--; )
1054 if (asyncs [i]->sent)
1055 {
1056 asyncs [i]->sent = 0;
1057 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1058 }
1059 }
1060#endif
775} 1061}
776 1062
777/*****************************************************************************/ 1063/*****************************************************************************/
778 1064
1065static void
1066ev_sighandler (int signum)
1067{
1068#if EV_MULTIPLICITY
1069 struct ev_loop *loop = &default_loop_struct;
1070#endif
1071
1072#if _WIN32
1073 signal (signum, ev_sighandler);
1074#endif
1075
1076 signals [signum - 1].gotsig = 1;
1077 evpipe_write (EV_A_ &gotsig);
1078}
1079
1080void noinline
1081ev_feed_signal_event (EV_P_ int signum)
1082{
1083 WL w;
1084
1085#if EV_MULTIPLICITY
1086 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1087#endif
1088
1089 --signum;
1090
1091 if (signum < 0 || signum >= signalmax)
1092 return;
1093
1094 signals [signum].gotsig = 0;
1095
1096 for (w = signals [signum].head; w; w = w->next)
1097 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1098}
1099
1100/*****************************************************************************/
1101
779static ev_child *childs [EV_PID_HASHSIZE]; 1102static WL childs [EV_PID_HASHSIZE];
780 1103
781#ifndef _WIN32 1104#ifndef _WIN32
782 1105
783static ev_signal childev; 1106static ev_signal childev;
784 1107
1108#ifndef WIFCONTINUED
1109# define WIFCONTINUED(status) 0
1110#endif
1111
785void inline_speed 1112void inline_speed
786child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1113child_reap (EV_P_ int chain, int pid, int status)
787{ 1114{
788 ev_child *w; 1115 ev_child *w;
1116 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
789 1117
790 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1118 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1119 {
791 if (w->pid == pid || !w->pid) 1120 if ((w->pid == pid || !w->pid)
1121 && (!traced || (w->flags & 1)))
792 { 1122 {
793 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1123 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
794 w->rpid = pid; 1124 w->rpid = pid;
795 w->rstatus = status; 1125 w->rstatus = status;
796 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1126 ev_feed_event (EV_A_ (W)w, EV_CHILD);
797 } 1127 }
1128 }
798} 1129}
799 1130
800#ifndef WCONTINUED 1131#ifndef WCONTINUED
801# define WCONTINUED 0 1132# define WCONTINUED 0
802#endif 1133#endif
811 if (!WCONTINUED 1142 if (!WCONTINUED
812 || errno != EINVAL 1143 || errno != EINVAL
813 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1144 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
814 return; 1145 return;
815 1146
816 /* make sure we are called again until all childs have been reaped */ 1147 /* make sure we are called again until all children have been reaped */
817 /* we need to do it this way so that the callback gets called before we continue */ 1148 /* we need to do it this way so that the callback gets called before we continue */
818 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1149 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
819 1150
820 child_reap (EV_A_ sw, pid, pid, status); 1151 child_reap (EV_A_ pid, pid, status);
821 if (EV_PID_HASHSIZE > 1) 1152 if (EV_PID_HASHSIZE > 1)
822 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1153 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
823} 1154}
824 1155
825#endif 1156#endif
826 1157
827/*****************************************************************************/ 1158/*****************************************************************************/
899} 1230}
900 1231
901unsigned int 1232unsigned int
902ev_embeddable_backends (void) 1233ev_embeddable_backends (void)
903{ 1234{
904 return EVBACKEND_EPOLL 1235 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
905 | EVBACKEND_KQUEUE 1236
906 | EVBACKEND_PORT; 1237 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1238 /* please fix it and tell me how to detect the fix */
1239 flags &= ~EVBACKEND_EPOLL;
1240
1241 return flags;
907} 1242}
908 1243
909unsigned int 1244unsigned int
910ev_backend (EV_P) 1245ev_backend (EV_P)
911{ 1246{
914 1249
915unsigned int 1250unsigned int
916ev_loop_count (EV_P) 1251ev_loop_count (EV_P)
917{ 1252{
918 return loop_count; 1253 return loop_count;
1254}
1255
1256void
1257ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1258{
1259 io_blocktime = interval;
1260}
1261
1262void
1263ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1264{
1265 timeout_blocktime = interval;
919} 1266}
920 1267
921static void noinline 1268static void noinline
922loop_init (EV_P_ unsigned int flags) 1269loop_init (EV_P_ unsigned int flags)
923{ 1270{
929 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1276 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
930 have_monotonic = 1; 1277 have_monotonic = 1;
931 } 1278 }
932#endif 1279#endif
933 1280
934 ev_rt_now = ev_time (); 1281 ev_rt_now = ev_time ();
935 mn_now = get_clock (); 1282 mn_now = get_clock ();
936 now_floor = mn_now; 1283 now_floor = mn_now;
937 rtmn_diff = ev_rt_now - mn_now; 1284 rtmn_diff = ev_rt_now - mn_now;
1285
1286 io_blocktime = 0.;
1287 timeout_blocktime = 0.;
1288 backend = 0;
1289 backend_fd = -1;
1290 gotasync = 0;
1291#if EV_USE_INOTIFY
1292 fs_fd = -2;
1293#endif
938 1294
939 /* pid check not overridable via env */ 1295 /* pid check not overridable via env */
940#ifndef _WIN32 1296#ifndef _WIN32
941 if (flags & EVFLAG_FORKCHECK) 1297 if (flags & EVFLAG_FORKCHECK)
942 curpid = getpid (); 1298 curpid = getpid ();
945 if (!(flags & EVFLAG_NOENV) 1301 if (!(flags & EVFLAG_NOENV)
946 && !enable_secure () 1302 && !enable_secure ()
947 && getenv ("LIBEV_FLAGS")) 1303 && getenv ("LIBEV_FLAGS"))
948 flags = atoi (getenv ("LIBEV_FLAGS")); 1304 flags = atoi (getenv ("LIBEV_FLAGS"));
949 1305
950 if (!(flags & 0x0000ffffUL)) 1306 if (!(flags & 0x0000ffffU))
951 flags |= ev_recommended_backends (); 1307 flags |= ev_recommended_backends ();
952
953 backend = 0;
954 backend_fd = -1;
955#if EV_USE_INOTIFY
956 fs_fd = -2;
957#endif
958 1308
959#if EV_USE_PORT 1309#if EV_USE_PORT
960 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1310 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
961#endif 1311#endif
962#if EV_USE_KQUEUE 1312#if EV_USE_KQUEUE
970#endif 1320#endif
971#if EV_USE_SELECT 1321#if EV_USE_SELECT
972 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1322 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
973#endif 1323#endif
974 1324
975 ev_init (&sigev, sigcb); 1325 ev_init (&pipeev, pipecb);
976 ev_set_priority (&sigev, EV_MAXPRI); 1326 ev_set_priority (&pipeev, EV_MAXPRI);
977 } 1327 }
978} 1328}
979 1329
980static void noinline 1330static void noinline
981loop_destroy (EV_P) 1331loop_destroy (EV_P)
982{ 1332{
983 int i; 1333 int i;
1334
1335 if (ev_is_active (&pipeev))
1336 {
1337 ev_ref (EV_A); /* signal watcher */
1338 ev_io_stop (EV_A_ &pipeev);
1339
1340#if EV_USE_EVENTFD
1341 if (evfd >= 0)
1342 close (evfd);
1343#endif
1344
1345 if (evpipe [0] >= 0)
1346 {
1347 close (evpipe [0]);
1348 close (evpipe [1]);
1349 }
1350 }
984 1351
985#if EV_USE_INOTIFY 1352#if EV_USE_INOTIFY
986 if (fs_fd >= 0) 1353 if (fs_fd >= 0)
987 close (fs_fd); 1354 close (fs_fd);
988#endif 1355#endif
1011 array_free (pending, [i]); 1378 array_free (pending, [i]);
1012#if EV_IDLE_ENABLE 1379#if EV_IDLE_ENABLE
1013 array_free (idle, [i]); 1380 array_free (idle, [i]);
1014#endif 1381#endif
1015 } 1382 }
1383
1384 ev_free (anfds); anfdmax = 0;
1016 1385
1017 /* have to use the microsoft-never-gets-it-right macro */ 1386 /* have to use the microsoft-never-gets-it-right macro */
1018 array_free (fdchange, EMPTY); 1387 array_free (fdchange, EMPTY);
1019 array_free (timer, EMPTY); 1388 array_free (timer, EMPTY);
1020#if EV_PERIODIC_ENABLE 1389#if EV_PERIODIC_ENABLE
1021 array_free (periodic, EMPTY); 1390 array_free (periodic, EMPTY);
1022#endif 1391#endif
1392#if EV_FORK_ENABLE
1393 array_free (fork, EMPTY);
1394#endif
1023 array_free (prepare, EMPTY); 1395 array_free (prepare, EMPTY);
1024 array_free (check, EMPTY); 1396 array_free (check, EMPTY);
1397#if EV_ASYNC_ENABLE
1398 array_free (async, EMPTY);
1399#endif
1025 1400
1026 backend = 0; 1401 backend = 0;
1027} 1402}
1028 1403
1404#if EV_USE_INOTIFY
1029void inline_size infy_fork (EV_P); 1405void inline_size infy_fork (EV_P);
1406#endif
1030 1407
1031void inline_size 1408void inline_size
1032loop_fork (EV_P) 1409loop_fork (EV_P)
1033{ 1410{
1034#if EV_USE_PORT 1411#if EV_USE_PORT
1042#endif 1419#endif
1043#if EV_USE_INOTIFY 1420#if EV_USE_INOTIFY
1044 infy_fork (EV_A); 1421 infy_fork (EV_A);
1045#endif 1422#endif
1046 1423
1047 if (ev_is_active (&sigev)) 1424 if (ev_is_active (&pipeev))
1048 { 1425 {
1049 /* default loop */ 1426 /* this "locks" the handlers against writing to the pipe */
1427 /* while we modify the fd vars */
1428 gotsig = 1;
1429#if EV_ASYNC_ENABLE
1430 gotasync = 1;
1431#endif
1050 1432
1051 ev_ref (EV_A); 1433 ev_ref (EV_A);
1052 ev_io_stop (EV_A_ &sigev); 1434 ev_io_stop (EV_A_ &pipeev);
1435
1436#if EV_USE_EVENTFD
1437 if (evfd >= 0)
1438 close (evfd);
1439#endif
1440
1441 if (evpipe [0] >= 0)
1442 {
1053 close (sigpipe [0]); 1443 close (evpipe [0]);
1054 close (sigpipe [1]); 1444 close (evpipe [1]);
1445 }
1055 1446
1056 while (pipe (sigpipe))
1057 syserr ("(libev) error creating pipe");
1058
1059 siginit (EV_A); 1447 evpipe_init (EV_A);
1448 /* now iterate over everything, in case we missed something */
1449 pipecb (EV_A_ &pipeev, EV_READ);
1060 } 1450 }
1061 1451
1062 postfork = 0; 1452 postfork = 0;
1063} 1453}
1064 1454
1086} 1476}
1087 1477
1088void 1478void
1089ev_loop_fork (EV_P) 1479ev_loop_fork (EV_P)
1090{ 1480{
1091 postfork = 1; 1481 postfork = 1; /* must be in line with ev_default_fork */
1092} 1482}
1093
1094#endif 1483#endif
1095 1484
1096#if EV_MULTIPLICITY 1485#if EV_MULTIPLICITY
1097struct ev_loop * 1486struct ev_loop *
1098ev_default_loop_init (unsigned int flags) 1487ev_default_loop_init (unsigned int flags)
1099#else 1488#else
1100int 1489int
1101ev_default_loop (unsigned int flags) 1490ev_default_loop (unsigned int flags)
1102#endif 1491#endif
1103{ 1492{
1104 if (sigpipe [0] == sigpipe [1])
1105 if (pipe (sigpipe))
1106 return 0;
1107
1108 if (!ev_default_loop_ptr) 1493 if (!ev_default_loop_ptr)
1109 { 1494 {
1110#if EV_MULTIPLICITY 1495#if EV_MULTIPLICITY
1111 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1496 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1112#else 1497#else
1115 1500
1116 loop_init (EV_A_ flags); 1501 loop_init (EV_A_ flags);
1117 1502
1118 if (ev_backend (EV_A)) 1503 if (ev_backend (EV_A))
1119 { 1504 {
1120 siginit (EV_A);
1121
1122#ifndef _WIN32 1505#ifndef _WIN32
1123 ev_signal_init (&childev, childcb, SIGCHLD); 1506 ev_signal_init (&childev, childcb, SIGCHLD);
1124 ev_set_priority (&childev, EV_MAXPRI); 1507 ev_set_priority (&childev, EV_MAXPRI);
1125 ev_signal_start (EV_A_ &childev); 1508 ev_signal_start (EV_A_ &childev);
1126 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1509 ev_unref (EV_A); /* child watcher should not keep loop alive */
1143#ifndef _WIN32 1526#ifndef _WIN32
1144 ev_ref (EV_A); /* child watcher */ 1527 ev_ref (EV_A); /* child watcher */
1145 ev_signal_stop (EV_A_ &childev); 1528 ev_signal_stop (EV_A_ &childev);
1146#endif 1529#endif
1147 1530
1148 ev_ref (EV_A); /* signal watcher */
1149 ev_io_stop (EV_A_ &sigev);
1150
1151 close (sigpipe [0]); sigpipe [0] = 0;
1152 close (sigpipe [1]); sigpipe [1] = 0;
1153
1154 loop_destroy (EV_A); 1531 loop_destroy (EV_A);
1155} 1532}
1156 1533
1157void 1534void
1158ev_default_fork (void) 1535ev_default_fork (void)
1160#if EV_MULTIPLICITY 1537#if EV_MULTIPLICITY
1161 struct ev_loop *loop = ev_default_loop_ptr; 1538 struct ev_loop *loop = ev_default_loop_ptr;
1162#endif 1539#endif
1163 1540
1164 if (backend) 1541 if (backend)
1165 postfork = 1; 1542 postfork = 1; /* must be in line with ev_loop_fork */
1166} 1543}
1167 1544
1168/*****************************************************************************/ 1545/*****************************************************************************/
1169 1546
1170void 1547void
1190 p->w->pending = 0; 1567 p->w->pending = 0;
1191 EV_CB_INVOKE (p->w, p->events); 1568 EV_CB_INVOKE (p->w, p->events);
1192 } 1569 }
1193 } 1570 }
1194} 1571}
1195
1196void inline_size
1197timers_reify (EV_P)
1198{
1199 while (timercnt && ((WT)timers [0])->at <= mn_now)
1200 {
1201 ev_timer *w = timers [0];
1202
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204
1205 /* first reschedule or stop timer */
1206 if (w->repeat)
1207 {
1208 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1209
1210 ((WT)w)->at += w->repeat;
1211 if (((WT)w)->at < mn_now)
1212 ((WT)w)->at = mn_now;
1213
1214 downheap ((WT *)timers, timercnt, 0);
1215 }
1216 else
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1220 }
1221}
1222
1223#if EV_PERIODIC_ENABLE
1224void inline_size
1225periodics_reify (EV_P)
1226{
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1228 {
1229 ev_periodic *w = periodics [0];
1230
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1232
1233 /* first reschedule or stop timer */
1234 if (w->reschedule_cb)
1235 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1238 downheap ((WT *)periodics, periodiccnt, 0);
1239 }
1240 else if (w->interval)
1241 {
1242 ((WT)w)->at = w->offset + floor ((ev_rt_now - w->offset) / w->interval + 1.) * w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1244 downheap ((WT *)periodics, periodiccnt, 0);
1245 }
1246 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1250 }
1251}
1252
1253static void noinline
1254periodics_reschedule (EV_P)
1255{
1256 int i;
1257
1258 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i)
1260 {
1261 ev_periodic *w = periodics [i];
1262
1263 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval)
1266 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1267 }
1268
1269 /* now rebuild the heap */
1270 for (i = periodiccnt >> 1; i--; )
1271 downheap ((WT *)periodics, periodiccnt, i);
1272}
1273#endif
1274 1572
1275#if EV_IDLE_ENABLE 1573#if EV_IDLE_ENABLE
1276void inline_size 1574void inline_size
1277idle_reify (EV_P) 1575idle_reify (EV_P)
1278{ 1576{
1293 } 1591 }
1294 } 1592 }
1295} 1593}
1296#endif 1594#endif
1297 1595
1298int inline_size 1596void inline_size
1299time_update_monotonic (EV_P) 1597timers_reify (EV_P)
1300{ 1598{
1599 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now)
1600 {
1601 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1602
1603 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1604
1605 /* first reschedule or stop timer */
1606 if (w->repeat)
1607 {
1608 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1609
1610 ev_at (w) += w->repeat;
1611 if (ev_at (w) < mn_now)
1612 ev_at (w) = mn_now;
1613
1614 downheap (timers, timercnt, HEAP0);
1615 }
1616 else
1617 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1618
1619 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1620 }
1621}
1622
1623#if EV_PERIODIC_ENABLE
1624void inline_size
1625periodics_reify (EV_P)
1626{
1627 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now)
1628 {
1629 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1630
1631 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1632
1633 /* first reschedule or stop timer */
1634 if (w->reschedule_cb)
1635 {
1636 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1637 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1638 downheap (periodics, periodiccnt, 1);
1639 }
1640 else if (w->interval)
1641 {
1642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1643 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1644 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1645 downheap (periodics, periodiccnt, HEAP0);
1646 }
1647 else
1648 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1649
1650 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1651 }
1652}
1653
1654static void noinline
1655periodics_reschedule (EV_P)
1656{
1657 int i;
1658
1659 /* adjust periodics after time jump */
1660 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1661 {
1662 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1663
1664 if (w->reschedule_cb)
1665 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1666 else if (w->interval)
1667 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1668 }
1669
1670 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */
1671 for (i = periodiccnt >> 1; --i; )
1672 downheap (periodics, periodiccnt, i + HEAP0);
1673}
1674#endif
1675
1676void inline_speed
1677time_update (EV_P_ ev_tstamp max_block)
1678{
1679 int i;
1680
1681#if EV_USE_MONOTONIC
1682 if (expect_true (have_monotonic))
1683 {
1684 ev_tstamp odiff = rtmn_diff;
1685
1301 mn_now = get_clock (); 1686 mn_now = get_clock ();
1302 1687
1688 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1689 /* interpolate in the meantime */
1303 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1690 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1304 { 1691 {
1305 ev_rt_now = rtmn_diff + mn_now; 1692 ev_rt_now = rtmn_diff + mn_now;
1306 return 0; 1693 return;
1307 } 1694 }
1308 else 1695
1309 {
1310 now_floor = mn_now; 1696 now_floor = mn_now;
1311 ev_rt_now = ev_time (); 1697 ev_rt_now = ev_time ();
1312 return 1;
1313 }
1314}
1315 1698
1316void inline_size 1699 /* loop a few times, before making important decisions.
1317time_update (EV_P) 1700 * on the choice of "4": one iteration isn't enough,
1318{ 1701 * in case we get preempted during the calls to
1319 int i; 1702 * ev_time and get_clock. a second call is almost guaranteed
1320 1703 * to succeed in that case, though. and looping a few more times
1321#if EV_USE_MONOTONIC 1704 * doesn't hurt either as we only do this on time-jumps or
1322 if (expect_true (have_monotonic)) 1705 * in the unlikely event of having been preempted here.
1323 { 1706 */
1324 if (time_update_monotonic (EV_A)) 1707 for (i = 4; --i; )
1325 { 1708 {
1326 ev_tstamp odiff = rtmn_diff;
1327
1328 /* loop a few times, before making important decisions.
1329 * on the choice of "4": one iteration isn't enough,
1330 * in case we get preempted during the calls to
1331 * ev_time and get_clock. a second call is almost guaranteed
1332 * to succeed in that case, though. and looping a few more times
1333 * doesn't hurt either as we only do this on time-jumps or
1334 * in the unlikely event of having been preempted here.
1335 */
1336 for (i = 4; --i; )
1337 {
1338 rtmn_diff = ev_rt_now - mn_now; 1709 rtmn_diff = ev_rt_now - mn_now;
1339 1710
1340 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1711 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1341 return; /* all is well */ 1712 return; /* all is well */
1342 1713
1343 ev_rt_now = ev_time (); 1714 ev_rt_now = ev_time ();
1344 mn_now = get_clock (); 1715 mn_now = get_clock ();
1345 now_floor = mn_now; 1716 now_floor = mn_now;
1346 } 1717 }
1347 1718
1348# if EV_PERIODIC_ENABLE 1719# if EV_PERIODIC_ENABLE
1349 periodics_reschedule (EV_A); 1720 periodics_reschedule (EV_A);
1350# endif 1721# endif
1351 /* no timer adjustment, as the monotonic clock doesn't jump */ 1722 /* no timer adjustment, as the monotonic clock doesn't jump */
1352 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1723 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1353 }
1354 } 1724 }
1355 else 1725 else
1356#endif 1726#endif
1357 { 1727 {
1358 ev_rt_now = ev_time (); 1728 ev_rt_now = ev_time ();
1359 1729
1360 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1730 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1361 { 1731 {
1362#if EV_PERIODIC_ENABLE 1732#if EV_PERIODIC_ENABLE
1363 periodics_reschedule (EV_A); 1733 periodics_reschedule (EV_A);
1364#endif 1734#endif
1365
1366 /* adjust timers. this is easy, as the offset is the same for all of them */ 1735 /* adjust timers. this is easy, as the offset is the same for all of them */
1367 for (i = 0; i < timercnt; ++i) 1736 for (i = 0; i < timercnt; ++i)
1737 {
1738 ANHE *he = timers + i + HEAP0;
1368 ((WT)timers [i])->at += ev_rt_now - mn_now; 1739 ANHE_w (*he)->at += ev_rt_now - mn_now;
1740 ANHE_at_set (*he);
1741 }
1369 } 1742 }
1370 1743
1371 mn_now = ev_rt_now; 1744 mn_now = ev_rt_now;
1372 } 1745 }
1373} 1746}
1387static int loop_done; 1760static int loop_done;
1388 1761
1389void 1762void
1390ev_loop (EV_P_ int flags) 1763ev_loop (EV_P_ int flags)
1391{ 1764{
1392 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1765 loop_done = EVUNLOOP_CANCEL;
1393 ? EVUNLOOP_ONE
1394 : EVUNLOOP_CANCEL;
1395 1766
1396 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1767 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1397 1768
1398 do 1769 do
1399 { 1770 {
1433 /* update fd-related kernel structures */ 1804 /* update fd-related kernel structures */
1434 fd_reify (EV_A); 1805 fd_reify (EV_A);
1435 1806
1436 /* calculate blocking time */ 1807 /* calculate blocking time */
1437 { 1808 {
1438 ev_tstamp block; 1809 ev_tstamp waittime = 0.;
1810 ev_tstamp sleeptime = 0.;
1439 1811
1440 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1812 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1441 block = 0.; /* do not block at all */
1442 else
1443 { 1813 {
1444 /* update time to cancel out callback processing overhead */ 1814 /* update time to cancel out callback processing overhead */
1445#if EV_USE_MONOTONIC
1446 if (expect_true (have_monotonic))
1447 time_update_monotonic (EV_A); 1815 time_update (EV_A_ 1e100);
1448 else
1449#endif
1450 {
1451 ev_rt_now = ev_time ();
1452 mn_now = ev_rt_now;
1453 }
1454 1816
1455 block = MAX_BLOCKTIME; 1817 waittime = MAX_BLOCKTIME;
1456 1818
1457 if (timercnt) 1819 if (timercnt)
1458 { 1820 {
1459 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1821 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1460 if (block > to) block = to; 1822 if (waittime > to) waittime = to;
1461 } 1823 }
1462 1824
1463#if EV_PERIODIC_ENABLE 1825#if EV_PERIODIC_ENABLE
1464 if (periodiccnt) 1826 if (periodiccnt)
1465 { 1827 {
1466 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1828 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1467 if (block > to) block = to; 1829 if (waittime > to) waittime = to;
1468 } 1830 }
1469#endif 1831#endif
1470 1832
1471 if (expect_false (block < 0.)) block = 0.; 1833 if (expect_false (waittime < timeout_blocktime))
1834 waittime = timeout_blocktime;
1835
1836 sleeptime = waittime - backend_fudge;
1837
1838 if (expect_true (sleeptime > io_blocktime))
1839 sleeptime = io_blocktime;
1840
1841 if (sleeptime)
1842 {
1843 ev_sleep (sleeptime);
1844 waittime -= sleeptime;
1845 }
1472 } 1846 }
1473 1847
1474 ++loop_count; 1848 ++loop_count;
1475 backend_poll (EV_A_ block); 1849 backend_poll (EV_A_ waittime);
1850
1851 /* update ev_rt_now, do magic */
1852 time_update (EV_A_ waittime + sleeptime);
1476 } 1853 }
1477
1478 /* update ev_rt_now, do magic */
1479 time_update (EV_A);
1480 1854
1481 /* queue pending timers and reschedule them */ 1855 /* queue pending timers and reschedule them */
1482 timers_reify (EV_A); /* relative timers called last */ 1856 timers_reify (EV_A); /* relative timers called last */
1483#if EV_PERIODIC_ENABLE 1857#if EV_PERIODIC_ENABLE
1484 periodics_reify (EV_A); /* absolute timers called first */ 1858 periodics_reify (EV_A); /* absolute timers called first */
1492 /* queue check watchers, to be executed first */ 1866 /* queue check watchers, to be executed first */
1493 if (expect_false (checkcnt)) 1867 if (expect_false (checkcnt))
1494 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1868 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1495 1869
1496 call_pending (EV_A); 1870 call_pending (EV_A);
1497
1498 } 1871 }
1499 while (expect_true (activecnt && !loop_done)); 1872 while (expect_true (
1873 activecnt
1874 && !loop_done
1875 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1876 ));
1500 1877
1501 if (loop_done == EVUNLOOP_ONE) 1878 if (loop_done == EVUNLOOP_ONE)
1502 loop_done = EVUNLOOP_CANCEL; 1879 loop_done = EVUNLOOP_CANCEL;
1503} 1880}
1504 1881
1595 1972
1596 assert (("ev_io_start called with negative fd", fd >= 0)); 1973 assert (("ev_io_start called with negative fd", fd >= 0));
1597 1974
1598 ev_start (EV_A_ (W)w, 1); 1975 ev_start (EV_A_ (W)w, 1);
1599 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1976 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1600 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1977 wlist_add (&anfds[fd].head, (WL)w);
1601 1978
1602 fd_change (EV_A_ fd); 1979 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1980 w->events &= ~EV_IOFDSET;
1603} 1981}
1604 1982
1605void noinline 1983void noinline
1606ev_io_stop (EV_P_ ev_io *w) 1984ev_io_stop (EV_P_ ev_io *w)
1607{ 1985{
1609 if (expect_false (!ev_is_active (w))) 1987 if (expect_false (!ev_is_active (w)))
1610 return; 1988 return;
1611 1989
1612 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1990 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1613 1991
1614 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1992 wlist_del (&anfds[w->fd].head, (WL)w);
1615 ev_stop (EV_A_ (W)w); 1993 ev_stop (EV_A_ (W)w);
1616 1994
1617 fd_change (EV_A_ w->fd); 1995 fd_change (EV_A_ w->fd, 1);
1618} 1996}
1619 1997
1620void noinline 1998void noinline
1621ev_timer_start (EV_P_ ev_timer *w) 1999ev_timer_start (EV_P_ ev_timer *w)
1622{ 2000{
1623 if (expect_false (ev_is_active (w))) 2001 if (expect_false (ev_is_active (w)))
1624 return; 2002 return;
1625 2003
1626 ((WT)w)->at += mn_now; 2004 ev_at (w) += mn_now;
1627 2005
1628 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2006 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1629 2007
1630 ev_start (EV_A_ (W)w, ++timercnt); 2008 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1631 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2009 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1632 timers [timercnt - 1] = w; 2010 ANHE_w (timers [ev_active (w)]) = (WT)w;
1633 upheap ((WT *)timers, timercnt - 1); 2011 ANHE_at_set (timers [ev_active (w)]);
2012 upheap (timers, ev_active (w));
1634 2013
1635 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2014 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1636} 2015}
1637 2016
1638void noinline 2017void noinline
1639ev_timer_stop (EV_P_ ev_timer *w) 2018ev_timer_stop (EV_P_ ev_timer *w)
1640{ 2019{
1641 clear_pending (EV_A_ (W)w); 2020 clear_pending (EV_A_ (W)w);
1642 if (expect_false (!ev_is_active (w))) 2021 if (expect_false (!ev_is_active (w)))
1643 return; 2022 return;
1644 2023
1645 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1646
1647 { 2024 {
1648 int active = ((W)w)->active; 2025 int active = ev_active (w);
1649 2026
2027 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2028
1650 if (expect_true (--active < --timercnt)) 2029 if (expect_true (active < timercnt + HEAP0 - 1))
1651 { 2030 {
1652 timers [active] = timers [timercnt]; 2031 timers [active] = timers [timercnt + HEAP0 - 1];
1653 adjustheap ((WT *)timers, timercnt, active); 2032 adjustheap (timers, timercnt, active);
1654 } 2033 }
2034
2035 --timercnt;
1655 } 2036 }
1656 2037
1657 ((WT)w)->at -= mn_now; 2038 ev_at (w) -= mn_now;
1658 2039
1659 ev_stop (EV_A_ (W)w); 2040 ev_stop (EV_A_ (W)w);
1660} 2041}
1661 2042
1662void noinline 2043void noinline
1664{ 2045{
1665 if (ev_is_active (w)) 2046 if (ev_is_active (w))
1666 { 2047 {
1667 if (w->repeat) 2048 if (w->repeat)
1668 { 2049 {
1669 ((WT)w)->at = mn_now + w->repeat; 2050 ev_at (w) = mn_now + w->repeat;
2051 ANHE_at_set (timers [ev_active (w)]);
1670 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2052 adjustheap (timers, timercnt, ev_active (w));
1671 } 2053 }
1672 else 2054 else
1673 ev_timer_stop (EV_A_ w); 2055 ev_timer_stop (EV_A_ w);
1674 } 2056 }
1675 else if (w->repeat) 2057 else if (w->repeat)
1676 { 2058 {
1677 w->at = w->repeat; 2059 ev_at (w) = w->repeat;
1678 ev_timer_start (EV_A_ w); 2060 ev_timer_start (EV_A_ w);
1679 } 2061 }
1680} 2062}
1681 2063
1682#if EV_PERIODIC_ENABLE 2064#if EV_PERIODIC_ENABLE
1685{ 2067{
1686 if (expect_false (ev_is_active (w))) 2068 if (expect_false (ev_is_active (w)))
1687 return; 2069 return;
1688 2070
1689 if (w->reschedule_cb) 2071 if (w->reschedule_cb)
1690 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2072 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1691 else if (w->interval) 2073 else if (w->interval)
1692 { 2074 {
1693 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2075 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1694 /* this formula differs from the one in periodic_reify because we do not always round up */ 2076 /* this formula differs from the one in periodic_reify because we do not always round up */
1695 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2077 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1696 } 2078 }
1697 else 2079 else
1698 ((WT)w)->at = w->offset; 2080 ev_at (w) = w->offset;
1699 2081
1700 ev_start (EV_A_ (W)w, ++periodiccnt); 2082 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1701 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2083 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1702 periodics [periodiccnt - 1] = w; 2084 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1703 upheap ((WT *)periodics, periodiccnt - 1); 2085 upheap (periodics, ev_active (w));
1704 2086
1705 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2087 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1706} 2088}
1707 2089
1708void noinline 2090void noinline
1709ev_periodic_stop (EV_P_ ev_periodic *w) 2091ev_periodic_stop (EV_P_ ev_periodic *w)
1710{ 2092{
1711 clear_pending (EV_A_ (W)w); 2093 clear_pending (EV_A_ (W)w);
1712 if (expect_false (!ev_is_active (w))) 2094 if (expect_false (!ev_is_active (w)))
1713 return; 2095 return;
1714 2096
1715 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1716
1717 { 2097 {
1718 int active = ((W)w)->active; 2098 int active = ev_active (w);
1719 2099
2100 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2101
1720 if (expect_true (--active < --periodiccnt)) 2102 if (expect_true (active < periodiccnt + HEAP0 - 1))
1721 { 2103 {
1722 periodics [active] = periodics [periodiccnt]; 2104 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1723 adjustheap ((WT *)periodics, periodiccnt, active); 2105 adjustheap (periodics, periodiccnt, active);
1724 } 2106 }
2107
2108 --periodiccnt;
1725 } 2109 }
1726 2110
1727 ev_stop (EV_A_ (W)w); 2111 ev_stop (EV_A_ (W)w);
1728} 2112}
1729 2113
1749 if (expect_false (ev_is_active (w))) 2133 if (expect_false (ev_is_active (w)))
1750 return; 2134 return;
1751 2135
1752 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2136 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1753 2137
2138 evpipe_init (EV_A);
2139
2140 {
2141#ifndef _WIN32
2142 sigset_t full, prev;
2143 sigfillset (&full);
2144 sigprocmask (SIG_SETMASK, &full, &prev);
2145#endif
2146
2147 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2148
2149#ifndef _WIN32
2150 sigprocmask (SIG_SETMASK, &prev, 0);
2151#endif
2152 }
2153
1754 ev_start (EV_A_ (W)w, 1); 2154 ev_start (EV_A_ (W)w, 1);
1755 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1756 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2155 wlist_add (&signals [w->signum - 1].head, (WL)w);
1757 2156
1758 if (!((WL)w)->next) 2157 if (!((WL)w)->next)
1759 { 2158 {
1760#if _WIN32 2159#if _WIN32
1761 signal (w->signum, sighandler); 2160 signal (w->signum, ev_sighandler);
1762#else 2161#else
1763 struct sigaction sa; 2162 struct sigaction sa;
1764 sa.sa_handler = sighandler; 2163 sa.sa_handler = ev_sighandler;
1765 sigfillset (&sa.sa_mask); 2164 sigfillset (&sa.sa_mask);
1766 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2165 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1767 sigaction (w->signum, &sa, 0); 2166 sigaction (w->signum, &sa, 0);
1768#endif 2167#endif
1769 } 2168 }
1774{ 2173{
1775 clear_pending (EV_A_ (W)w); 2174 clear_pending (EV_A_ (W)w);
1776 if (expect_false (!ev_is_active (w))) 2175 if (expect_false (!ev_is_active (w)))
1777 return; 2176 return;
1778 2177
1779 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2178 wlist_del (&signals [w->signum - 1].head, (WL)w);
1780 ev_stop (EV_A_ (W)w); 2179 ev_stop (EV_A_ (W)w);
1781 2180
1782 if (!signals [w->signum - 1].head) 2181 if (!signals [w->signum - 1].head)
1783 signal (w->signum, SIG_DFL); 2182 signal (w->signum, SIG_DFL);
1784} 2183}
1791#endif 2190#endif
1792 if (expect_false (ev_is_active (w))) 2191 if (expect_false (ev_is_active (w)))
1793 return; 2192 return;
1794 2193
1795 ev_start (EV_A_ (W)w, 1); 2194 ev_start (EV_A_ (W)w, 1);
1796 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2195 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1797} 2196}
1798 2197
1799void 2198void
1800ev_child_stop (EV_P_ ev_child *w) 2199ev_child_stop (EV_P_ ev_child *w)
1801{ 2200{
1802 clear_pending (EV_A_ (W)w); 2201 clear_pending (EV_A_ (W)w);
1803 if (expect_false (!ev_is_active (w))) 2202 if (expect_false (!ev_is_active (w)))
1804 return; 2203 return;
1805 2204
1806 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2205 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1807 ev_stop (EV_A_ (W)w); 2206 ev_stop (EV_A_ (W)w);
1808} 2207}
1809 2208
1810#if EV_STAT_ENABLE 2209#if EV_STAT_ENABLE
1811 2210
1830 if (w->wd < 0) 2229 if (w->wd < 0)
1831 { 2230 {
1832 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2231 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1833 2232
1834 /* monitor some parent directory for speedup hints */ 2233 /* monitor some parent directory for speedup hints */
2234 /* note that exceeding the hardcoded limit is not a correctness issue, */
2235 /* but an efficiency issue only */
1835 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2236 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1836 { 2237 {
1837 char path [4096]; 2238 char path [4096];
1838 strcpy (path, w->path); 2239 strcpy (path, w->path);
1839 2240
2084 clear_pending (EV_A_ (W)w); 2485 clear_pending (EV_A_ (W)w);
2085 if (expect_false (!ev_is_active (w))) 2486 if (expect_false (!ev_is_active (w)))
2086 return; 2487 return;
2087 2488
2088 { 2489 {
2089 int active = ((W)w)->active; 2490 int active = ev_active (w);
2090 2491
2091 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2492 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2092 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2493 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2093 2494
2094 ev_stop (EV_A_ (W)w); 2495 ev_stop (EV_A_ (W)w);
2095 --idleall; 2496 --idleall;
2096 } 2497 }
2097} 2498}
2114 clear_pending (EV_A_ (W)w); 2515 clear_pending (EV_A_ (W)w);
2115 if (expect_false (!ev_is_active (w))) 2516 if (expect_false (!ev_is_active (w)))
2116 return; 2517 return;
2117 2518
2118 { 2519 {
2119 int active = ((W)w)->active; 2520 int active = ev_active (w);
2521
2120 prepares [active - 1] = prepares [--preparecnt]; 2522 prepares [active - 1] = prepares [--preparecnt];
2121 ((W)prepares [active - 1])->active = active; 2523 ev_active (prepares [active - 1]) = active;
2122 } 2524 }
2123 2525
2124 ev_stop (EV_A_ (W)w); 2526 ev_stop (EV_A_ (W)w);
2125} 2527}
2126 2528
2141 clear_pending (EV_A_ (W)w); 2543 clear_pending (EV_A_ (W)w);
2142 if (expect_false (!ev_is_active (w))) 2544 if (expect_false (!ev_is_active (w)))
2143 return; 2545 return;
2144 2546
2145 { 2547 {
2146 int active = ((W)w)->active; 2548 int active = ev_active (w);
2549
2147 checks [active - 1] = checks [--checkcnt]; 2550 checks [active - 1] = checks [--checkcnt];
2148 ((W)checks [active - 1])->active = active; 2551 ev_active (checks [active - 1]) = active;
2149 } 2552 }
2150 2553
2151 ev_stop (EV_A_ (W)w); 2554 ev_stop (EV_A_ (W)w);
2152} 2555}
2153 2556
2154#if EV_EMBED_ENABLE 2557#if EV_EMBED_ENABLE
2155void noinline 2558void noinline
2156ev_embed_sweep (EV_P_ ev_embed *w) 2559ev_embed_sweep (EV_P_ ev_embed *w)
2157{ 2560{
2158 ev_loop (w->loop, EVLOOP_NONBLOCK); 2561 ev_loop (w->other, EVLOOP_NONBLOCK);
2159} 2562}
2160 2563
2161static void 2564static void
2162embed_cb (EV_P_ ev_io *io, int revents) 2565embed_io_cb (EV_P_ ev_io *io, int revents)
2163{ 2566{
2164 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2567 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2165 2568
2166 if (ev_cb (w)) 2569 if (ev_cb (w))
2167 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2570 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2168 else 2571 else
2169 ev_embed_sweep (loop, w); 2572 ev_loop (w->other, EVLOOP_NONBLOCK);
2170} 2573}
2574
2575static void
2576embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2577{
2578 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2579
2580 {
2581 struct ev_loop *loop = w->other;
2582
2583 while (fdchangecnt)
2584 {
2585 fd_reify (EV_A);
2586 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2587 }
2588 }
2589}
2590
2591#if 0
2592static void
2593embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2594{
2595 ev_idle_stop (EV_A_ idle);
2596}
2597#endif
2171 2598
2172void 2599void
2173ev_embed_start (EV_P_ ev_embed *w) 2600ev_embed_start (EV_P_ ev_embed *w)
2174{ 2601{
2175 if (expect_false (ev_is_active (w))) 2602 if (expect_false (ev_is_active (w)))
2176 return; 2603 return;
2177 2604
2178 { 2605 {
2179 struct ev_loop *loop = w->loop; 2606 struct ev_loop *loop = w->other;
2180 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2607 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2181 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2608 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2182 } 2609 }
2183 2610
2184 ev_set_priority (&w->io, ev_priority (w)); 2611 ev_set_priority (&w->io, ev_priority (w));
2185 ev_io_start (EV_A_ &w->io); 2612 ev_io_start (EV_A_ &w->io);
2613
2614 ev_prepare_init (&w->prepare, embed_prepare_cb);
2615 ev_set_priority (&w->prepare, EV_MINPRI);
2616 ev_prepare_start (EV_A_ &w->prepare);
2617
2618 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2186 2619
2187 ev_start (EV_A_ (W)w, 1); 2620 ev_start (EV_A_ (W)w, 1);
2188} 2621}
2189 2622
2190void 2623void
2193 clear_pending (EV_A_ (W)w); 2626 clear_pending (EV_A_ (W)w);
2194 if (expect_false (!ev_is_active (w))) 2627 if (expect_false (!ev_is_active (w)))
2195 return; 2628 return;
2196 2629
2197 ev_io_stop (EV_A_ &w->io); 2630 ev_io_stop (EV_A_ &w->io);
2631 ev_prepare_stop (EV_A_ &w->prepare);
2198 2632
2199 ev_stop (EV_A_ (W)w); 2633 ev_stop (EV_A_ (W)w);
2200} 2634}
2201#endif 2635#endif
2202 2636
2218 clear_pending (EV_A_ (W)w); 2652 clear_pending (EV_A_ (W)w);
2219 if (expect_false (!ev_is_active (w))) 2653 if (expect_false (!ev_is_active (w)))
2220 return; 2654 return;
2221 2655
2222 { 2656 {
2223 int active = ((W)w)->active; 2657 int active = ev_active (w);
2658
2224 forks [active - 1] = forks [--forkcnt]; 2659 forks [active - 1] = forks [--forkcnt];
2225 ((W)forks [active - 1])->active = active; 2660 ev_active (forks [active - 1]) = active;
2226 } 2661 }
2227 2662
2228 ev_stop (EV_A_ (W)w); 2663 ev_stop (EV_A_ (W)w);
2664}
2665#endif
2666
2667#if EV_ASYNC_ENABLE
2668void
2669ev_async_start (EV_P_ ev_async *w)
2670{
2671 if (expect_false (ev_is_active (w)))
2672 return;
2673
2674 evpipe_init (EV_A);
2675
2676 ev_start (EV_A_ (W)w, ++asynccnt);
2677 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2678 asyncs [asynccnt - 1] = w;
2679}
2680
2681void
2682ev_async_stop (EV_P_ ev_async *w)
2683{
2684 clear_pending (EV_A_ (W)w);
2685 if (expect_false (!ev_is_active (w)))
2686 return;
2687
2688 {
2689 int active = ev_active (w);
2690
2691 asyncs [active - 1] = asyncs [--asynccnt];
2692 ev_active (asyncs [active - 1]) = active;
2693 }
2694
2695 ev_stop (EV_A_ (W)w);
2696}
2697
2698void
2699ev_async_send (EV_P_ ev_async *w)
2700{
2701 w->sent = 1;
2702 evpipe_write (EV_A_ &gotasync);
2229} 2703}
2230#endif 2704#endif
2231 2705
2232/*****************************************************************************/ 2706/*****************************************************************************/
2233 2707
2291 ev_timer_set (&once->to, timeout, 0.); 2765 ev_timer_set (&once->to, timeout, 0.);
2292 ev_timer_start (EV_A_ &once->to); 2766 ev_timer_start (EV_A_ &once->to);
2293 } 2767 }
2294} 2768}
2295 2769
2770#if EV_MULTIPLICITY
2771 #include "ev_wrap.h"
2772#endif
2773
2296#ifdef __cplusplus 2774#ifdef __cplusplus
2297} 2775}
2298#endif 2776#endif
2299 2777

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines