ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.173 by root, Sun Dec 9 19:42:57 2007 UTC vs.
Revision 1.457 by root, Thu Sep 5 18:45:29 2013 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
89# endif 127# endif
90 128
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
94# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
97# endif 136# endif
98 137
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
105# endif 145# endif
106 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
107#endif 154# endif
108 155
109#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
110#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
111#include <fcntl.h> 169#include <fcntl.h>
112#include <stddef.h> 170#include <stddef.h>
113 171
114#include <stdio.h> 172#include <stdio.h>
115 173
116#include <assert.h> 174#include <assert.h>
117#include <errno.h> 175#include <errno.h>
118#include <sys/types.h> 176#include <sys/types.h>
119#include <time.h> 177#include <time.h>
178#include <limits.h>
120 179
121#include <signal.h> 180#include <signal.h>
122 181
123#ifdef EV_H 182#ifdef EV_H
124# include EV_H 183# include EV_H
125#else 184#else
126# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
127#endif 197#endif
128 198
129#ifndef _WIN32 199#ifndef _WIN32
130# include <sys/time.h> 200# include <sys/time.h>
131# include <sys/wait.h> 201# include <sys/wait.h>
132# include <unistd.h> 202# include <unistd.h>
133#else 203#else
204# include <io.h>
134# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
135# include <windows.h> 207# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
138# endif 210# endif
211# undef EV_AVOID_STDIO
212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
221
222/* this block tries to deduce configuration from header-defined symbols and defaults */
223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
139#endif 261# endif
140 262#endif
141/**/
142 263
143#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
144# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
269# endif
145#endif 270#endif
146 271
147#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
274#endif
275
276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
280# define EV_USE_NANOSLEEP 0
281# endif
149#endif 282#endif
150 283
151#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 286#endif
154 287
155#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
156# ifdef _WIN32 289# ifdef _WIN32
157# define EV_USE_POLL 0 290# define EV_USE_POLL 0
158# else 291# else
159# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 293# endif
161#endif 294#endif
162 295
163#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
299# else
164# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
301# endif
165#endif 302#endif
166 303
167#ifndef EV_USE_KQUEUE 304#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 305# define EV_USE_KQUEUE 0
169#endif 306#endif
171#ifndef EV_USE_PORT 308#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 309# define EV_USE_PORT 0
173#endif 310#endif
174 311
175#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
314# define EV_USE_INOTIFY EV_FEATURE_OS
315# else
176# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
317# endif
177#endif 318#endif
178 319
179#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 322#endif
323
324#ifndef EV_INOTIFY_HASHSIZE
325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
326#endif
327
328#ifndef EV_USE_EVENTFD
329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
330# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 331# else
183# define EV_PID_HASHSIZE 16 332# define EV_USE_EVENTFD 0
184# endif 333# endif
185#endif 334#endif
186 335
187#ifndef EV_INOTIFY_HASHSIZE 336#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 338# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 339# else
191# define EV_INOTIFY_HASHSIZE 16 340# define EV_USE_SIGNALFD 0
192# endif 341# endif
193#endif 342#endif
194 343
195/**/ 344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362#ifdef ANDROID
363/* supposedly, android doesn't typedef fd_mask */
364# undef EV_USE_SELECT
365# define EV_USE_SELECT 0
366/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
367# undef EV_USE_CLOCK_SYSCALL
368# define EV_USE_CLOCK_SYSCALL 0
369#endif
370
371/* aix's poll.h seems to cause lots of trouble */
372#ifdef _AIX
373/* AIX has a completely broken poll.h header */
374# undef EV_USE_POLL
375# define EV_USE_POLL 0
376#endif
377
378/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
379/* which makes programs even slower. might work on other unices, too. */
380#if EV_USE_CLOCK_SYSCALL
381# include <sys/syscall.h>
382# ifdef SYS_clock_gettime
383# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
384# undef EV_USE_MONOTONIC
385# define EV_USE_MONOTONIC 1
386# else
387# undef EV_USE_CLOCK_SYSCALL
388# define EV_USE_CLOCK_SYSCALL 0
389# endif
390#endif
391
392/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 393
197#ifndef CLOCK_MONOTONIC 394#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 395# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 396# define EV_USE_MONOTONIC 0
200#endif 397#endif
202#ifndef CLOCK_REALTIME 399#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 400# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 401# define EV_USE_REALTIME 0
205#endif 402#endif
206 403
207#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h>
209#endif
210
211#if !EV_STAT_ENABLE 404#if !EV_STAT_ENABLE
405# undef EV_USE_INOTIFY
212# define EV_USE_INOTIFY 0 406# define EV_USE_INOTIFY 0
213#endif 407#endif
214 408
409#if !EV_USE_NANOSLEEP
410/* hp-ux has it in sys/time.h, which we unconditionally include above */
411# if !defined _WIN32 && !defined __hpux
412# include <sys/select.h>
413# endif
414#endif
415
215#if EV_USE_INOTIFY 416#if EV_USE_INOTIFY
417# include <sys/statfs.h>
216# include <sys/inotify.h> 418# include <sys/inotify.h>
419/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
420# ifndef IN_DONT_FOLLOW
421# undef EV_USE_INOTIFY
422# define EV_USE_INOTIFY 0
423# endif
424#endif
425
426#if EV_USE_EVENTFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef EFD_NONBLOCK
430# define EFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef EFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define EFD_CLOEXEC O_CLOEXEC
435# else
436# define EFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
440#endif
441
442#if EV_USE_SIGNALFD
443/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
444# include <stdint.h>
445# ifndef SFD_NONBLOCK
446# define SFD_NONBLOCK O_NONBLOCK
447# endif
448# ifndef SFD_CLOEXEC
449# ifdef O_CLOEXEC
450# define SFD_CLOEXEC O_CLOEXEC
451# else
452# define SFD_CLOEXEC 02000000
453# endif
454# endif
455EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
456
457struct signalfd_siginfo
458{
459 uint32_t ssi_signo;
460 char pad[128 - sizeof (uint32_t)];
461};
217#endif 462#endif
218 463
219/**/ 464/**/
465
466#if EV_VERIFY >= 3
467# define EV_FREQUENT_CHECK ev_verify (EV_A)
468#else
469# define EV_FREQUENT_CHECK do { } while (0)
470#endif
471
472/*
473 * This is used to work around floating point rounding problems.
474 * This value is good at least till the year 4000.
475 */
476#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
477/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
220 478
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 479#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 480#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */
224 481
482#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
483#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
484
485/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
486/* ECB.H BEGIN */
487/*
488 * libecb - http://software.schmorp.de/pkg/libecb
489 *
490 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
491 * Copyright (©) 2011 Emanuele Giaquinta
492 * All rights reserved.
493 *
494 * Redistribution and use in source and binary forms, with or without modifica-
495 * tion, are permitted provided that the following conditions are met:
496 *
497 * 1. Redistributions of source code must retain the above copyright notice,
498 * this list of conditions and the following disclaimer.
499 *
500 * 2. Redistributions in binary form must reproduce the above copyright
501 * notice, this list of conditions and the following disclaimer in the
502 * documentation and/or other materials provided with the distribution.
503 *
504 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
505 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
506 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
507 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
508 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
509 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
510 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
511 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
512 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
513 * OF THE POSSIBILITY OF SUCH DAMAGE.
514 */
515
516#ifndef ECB_H
517#define ECB_H
518
519/* 16 bits major, 16 bits minor */
520#define ECB_VERSION 0x00010003
521
522#ifdef _WIN32
523 typedef signed char int8_t;
524 typedef unsigned char uint8_t;
525 typedef signed short int16_t;
526 typedef unsigned short uint16_t;
527 typedef signed int int32_t;
528 typedef unsigned int uint32_t;
225#if __GNUC__ >= 3 529 #if __GNUC__
226# define expect(expr,value) __builtin_expect ((expr),(value)) 530 typedef signed long long int64_t;
227# define noinline __attribute__ ((noinline)) 531 typedef unsigned long long uint64_t;
532 #else /* _MSC_VER || __BORLANDC__ */
533 typedef signed __int64 int64_t;
534 typedef unsigned __int64 uint64_t;
535 #endif
536 #ifdef _WIN64
537 #define ECB_PTRSIZE 8
538 typedef uint64_t uintptr_t;
539 typedef int64_t intptr_t;
540 #else
541 #define ECB_PTRSIZE 4
542 typedef uint32_t uintptr_t;
543 typedef int32_t intptr_t;
544 #endif
228#else 545#else
229# define expect(expr,value) (expr) 546 #include <inttypes.h>
230# define noinline 547 #if UINTMAX_MAX > 0xffffffffU
231# if __STDC_VERSION__ < 199901L 548 #define ECB_PTRSIZE 8
232# define inline 549 #else
550 #define ECB_PTRSIZE 4
551 #endif
233# endif 552#endif
553
554/* work around x32 idiocy by defining proper macros */
555#if __x86_64 || _M_AMD64
556 #if __ILP32
557 #define ECB_AMD64_X32 1
558 #else
559 #define ECB_AMD64 1
234#endif 560 #endif
561#endif
235 562
563/* many compilers define _GNUC_ to some versions but then only implement
564 * what their idiot authors think are the "more important" extensions,
565 * causing enormous grief in return for some better fake benchmark numbers.
566 * or so.
567 * we try to detect these and simply assume they are not gcc - if they have
568 * an issue with that they should have done it right in the first place.
569 */
570#ifndef ECB_GCC_VERSION
571 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
572 #define ECB_GCC_VERSION(major,minor) 0
573 #else
574 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
575 #endif
576#endif
577
578#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
579#define ECB_C99 (__STDC_VERSION__ >= 199901L)
580#define ECB_C11 (__STDC_VERSION__ >= 201112L)
581#define ECB_CPP (__cplusplus+0)
582#define ECB_CPP11 (__cplusplus >= 201103L)
583
584#if ECB_CPP
585 #define ECB_EXTERN_C extern "C"
586 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
587 #define ECB_EXTERN_C_END }
588#else
589 #define ECB_EXTERN_C extern
590 #define ECB_EXTERN_C_BEG
591 #define ECB_EXTERN_C_END
592#endif
593
594/*****************************************************************************/
595
596/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
597/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
598
599#if ECB_NO_THREADS
600 #define ECB_NO_SMP 1
601#endif
602
603#if ECB_NO_SMP
604 #define ECB_MEMORY_FENCE do { } while (0)
605#endif
606
607#ifndef ECB_MEMORY_FENCE
608 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
609 #if __i386 || __i386__
610 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
611 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
612 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
613 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
614 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
615 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
616 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
617 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
618 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
619 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
620 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
621 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
622 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
623 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
624 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
625 #elif __sparc || __sparc__
626 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
627 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
628 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
629 #elif defined __s390__ || defined __s390x__
630 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
631 #elif defined __mips__
632 /* GNU/Linux emulates sync on mips1 architectures, so we force it's use */
633 /* anybody else who still uses mips1 is supposed to send in their version, with detection code. */
634 #define ECB_MEMORY_FENCE __asm__ __volatile__ (".set mips2; sync; .set mips0" : : : "memory")
635 #elif defined __alpha__
636 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
637 #elif defined __hppa__
638 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
639 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
640 #elif defined __ia64__
641 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
642 #elif defined __m68k__
643 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
644 #elif defined __m88k__
645 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("tb1 0,%%r0,128" : : : "memory")
646 #elif defined __sh__
647 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
648 #endif
649 #endif
650#endif
651
652#ifndef ECB_MEMORY_FENCE
653 #if ECB_GCC_VERSION(4,7)
654 /* see comment below (stdatomic.h) about the C11 memory model. */
655 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
656
657 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
658 * without risking compile time errors with other compilers. We *could*
659 * define our own ecb_clang_has_feature, but I just can't be bothered to work
660 * around this shit time and again.
661 * #elif defined __clang && __has_feature (cxx_atomic)
662 * // see comment below (stdatomic.h) about the C11 memory model.
663 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
664 */
665
666 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
667 #define ECB_MEMORY_FENCE __sync_synchronize ()
668 #elif _MSC_VER >= 1400 /* VC++ 2005 */
669 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
670 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
671 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
672 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
673 #elif defined _WIN32
674 #include <WinNT.h>
675 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
676 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
677 #include <mbarrier.h>
678 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
679 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
680 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
681 #elif __xlC__
682 #define ECB_MEMORY_FENCE __sync ()
683 #endif
684#endif
685
686#ifndef ECB_MEMORY_FENCE
687 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
688 /* we assume that these memory fences work on all variables/all memory accesses, */
689 /* not just C11 atomics and atomic accesses */
690 #include <stdatomic.h>
691 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
692 /* any fence other than seq_cst, which isn't very efficient for us. */
693 /* Why that is, we don't know - either the C11 memory model is quite useless */
694 /* for most usages, or gcc and clang have a bug */
695 /* I *currently* lean towards the latter, and inefficiently implement */
696 /* all three of ecb's fences as a seq_cst fence */
697 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
698 #endif
699#endif
700
701#ifndef ECB_MEMORY_FENCE
702 #if !ECB_AVOID_PTHREADS
703 /*
704 * if you get undefined symbol references to pthread_mutex_lock,
705 * or failure to find pthread.h, then you should implement
706 * the ECB_MEMORY_FENCE operations for your cpu/compiler
707 * OR provide pthread.h and link against the posix thread library
708 * of your system.
709 */
710 #include <pthread.h>
711 #define ECB_NEEDS_PTHREADS 1
712 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
713
714 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
715 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
716 #endif
717#endif
718
719#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
720 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
721#endif
722
723#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
724 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
725#endif
726
727/*****************************************************************************/
728
729#if __cplusplus
730 #define ecb_inline static inline
731#elif ECB_GCC_VERSION(2,5)
732 #define ecb_inline static __inline__
733#elif ECB_C99
734 #define ecb_inline static inline
735#else
736 #define ecb_inline static
737#endif
738
739#if ECB_GCC_VERSION(3,3)
740 #define ecb_restrict __restrict__
741#elif ECB_C99
742 #define ecb_restrict restrict
743#else
744 #define ecb_restrict
745#endif
746
747typedef int ecb_bool;
748
749#define ECB_CONCAT_(a, b) a ## b
750#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
751#define ECB_STRINGIFY_(a) # a
752#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
753
754#define ecb_function_ ecb_inline
755
756#if ECB_GCC_VERSION(3,1)
757 #define ecb_attribute(attrlist) __attribute__(attrlist)
758 #define ecb_is_constant(expr) __builtin_constant_p (expr)
759 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
760 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
761#else
762 #define ecb_attribute(attrlist)
763 #define ecb_is_constant(expr) 0
764 #define ecb_expect(expr,value) (expr)
765 #define ecb_prefetch(addr,rw,locality)
766#endif
767
768/* no emulation for ecb_decltype */
769#if ECB_GCC_VERSION(4,5)
770 #define ecb_decltype(x) __decltype(x)
771#elif ECB_GCC_VERSION(3,0)
772 #define ecb_decltype(x) __typeof(x)
773#endif
774
775#define ecb_noinline ecb_attribute ((__noinline__))
776#define ecb_unused ecb_attribute ((__unused__))
777#define ecb_const ecb_attribute ((__const__))
778#define ecb_pure ecb_attribute ((__pure__))
779
780#if ECB_C11
781 #define ecb_noreturn _Noreturn
782#else
783 #define ecb_noreturn ecb_attribute ((__noreturn__))
784#endif
785
786#if ECB_GCC_VERSION(4,3)
787 #define ecb_artificial ecb_attribute ((__artificial__))
788 #define ecb_hot ecb_attribute ((__hot__))
789 #define ecb_cold ecb_attribute ((__cold__))
790#else
791 #define ecb_artificial
792 #define ecb_hot
793 #define ecb_cold
794#endif
795
796/* put around conditional expressions if you are very sure that the */
797/* expression is mostly true or mostly false. note that these return */
798/* booleans, not the expression. */
236#define expect_false(expr) expect ((expr) != 0, 0) 799#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
237#define expect_true(expr) expect ((expr) != 0, 1) 800#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
801/* for compatibility to the rest of the world */
802#define ecb_likely(expr) ecb_expect_true (expr)
803#define ecb_unlikely(expr) ecb_expect_false (expr)
804
805/* count trailing zero bits and count # of one bits */
806#if ECB_GCC_VERSION(3,4)
807 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
808 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
809 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
810 #define ecb_ctz32(x) __builtin_ctz (x)
811 #define ecb_ctz64(x) __builtin_ctzll (x)
812 #define ecb_popcount32(x) __builtin_popcount (x)
813 /* no popcountll */
814#else
815 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
816 ecb_function_ int
817 ecb_ctz32 (uint32_t x)
818 {
819 int r = 0;
820
821 x &= ~x + 1; /* this isolates the lowest bit */
822
823#if ECB_branchless_on_i386
824 r += !!(x & 0xaaaaaaaa) << 0;
825 r += !!(x & 0xcccccccc) << 1;
826 r += !!(x & 0xf0f0f0f0) << 2;
827 r += !!(x & 0xff00ff00) << 3;
828 r += !!(x & 0xffff0000) << 4;
829#else
830 if (x & 0xaaaaaaaa) r += 1;
831 if (x & 0xcccccccc) r += 2;
832 if (x & 0xf0f0f0f0) r += 4;
833 if (x & 0xff00ff00) r += 8;
834 if (x & 0xffff0000) r += 16;
835#endif
836
837 return r;
838 }
839
840 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
841 ecb_function_ int
842 ecb_ctz64 (uint64_t x)
843 {
844 int shift = x & 0xffffffffU ? 0 : 32;
845 return ecb_ctz32 (x >> shift) + shift;
846 }
847
848 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
849 ecb_function_ int
850 ecb_popcount32 (uint32_t x)
851 {
852 x -= (x >> 1) & 0x55555555;
853 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
854 x = ((x >> 4) + x) & 0x0f0f0f0f;
855 x *= 0x01010101;
856
857 return x >> 24;
858 }
859
860 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
861 ecb_function_ int ecb_ld32 (uint32_t x)
862 {
863 int r = 0;
864
865 if (x >> 16) { x >>= 16; r += 16; }
866 if (x >> 8) { x >>= 8; r += 8; }
867 if (x >> 4) { x >>= 4; r += 4; }
868 if (x >> 2) { x >>= 2; r += 2; }
869 if (x >> 1) { r += 1; }
870
871 return r;
872 }
873
874 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
875 ecb_function_ int ecb_ld64 (uint64_t x)
876 {
877 int r = 0;
878
879 if (x >> 32) { x >>= 32; r += 32; }
880
881 return r + ecb_ld32 (x);
882 }
883#endif
884
885ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
886ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
887ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
888ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
889
890ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
891ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
892{
893 return ( (x * 0x0802U & 0x22110U)
894 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
895}
896
897ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
898ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
899{
900 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
901 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
902 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
903 x = ( x >> 8 ) | ( x << 8);
904
905 return x;
906}
907
908ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
909ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
910{
911 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
912 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
913 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
914 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
915 x = ( x >> 16 ) | ( x << 16);
916
917 return x;
918}
919
920/* popcount64 is only available on 64 bit cpus as gcc builtin */
921/* so for this version we are lazy */
922ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
923ecb_function_ int
924ecb_popcount64 (uint64_t x)
925{
926 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
927}
928
929ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
930ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
931ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
932ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
933ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
934ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
935ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
936ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
937
938ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
939ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
940ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
941ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
942ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
943ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
944ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
945ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
946
947#if ECB_GCC_VERSION(4,3)
948 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
949 #define ecb_bswap32(x) __builtin_bswap32 (x)
950 #define ecb_bswap64(x) __builtin_bswap64 (x)
951#else
952 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
953 ecb_function_ uint16_t
954 ecb_bswap16 (uint16_t x)
955 {
956 return ecb_rotl16 (x, 8);
957 }
958
959 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
960 ecb_function_ uint32_t
961 ecb_bswap32 (uint32_t x)
962 {
963 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
964 }
965
966 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
967 ecb_function_ uint64_t
968 ecb_bswap64 (uint64_t x)
969 {
970 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
971 }
972#endif
973
974#if ECB_GCC_VERSION(4,5)
975 #define ecb_unreachable() __builtin_unreachable ()
976#else
977 /* this seems to work fine, but gcc always emits a warning for it :/ */
978 ecb_inline void ecb_unreachable (void) ecb_noreturn;
979 ecb_inline void ecb_unreachable (void) { }
980#endif
981
982/* try to tell the compiler that some condition is definitely true */
983#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
984
985ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
986ecb_inline unsigned char
987ecb_byteorder_helper (void)
988{
989 /* the union code still generates code under pressure in gcc, */
990 /* but less than using pointers, and always seems to */
991 /* successfully return a constant. */
992 /* the reason why we have this horrible preprocessor mess */
993 /* is to avoid it in all cases, at least on common architectures */
994 /* or when using a recent enough gcc version (>= 4.6) */
995#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
996 return 0x44;
997#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
998 return 0x44;
999#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1000 return 0x11;
1001#else
1002 union
1003 {
1004 uint32_t i;
1005 uint8_t c;
1006 } u = { 0x11223344 };
1007 return u.c;
1008#endif
1009}
1010
1011ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
1012ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
1013ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
1014ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
1015
1016#if ECB_GCC_VERSION(3,0) || ECB_C99
1017 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1018#else
1019 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1020#endif
1021
1022#if __cplusplus
1023 template<typename T>
1024 static inline T ecb_div_rd (T val, T div)
1025 {
1026 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1027 }
1028 template<typename T>
1029 static inline T ecb_div_ru (T val, T div)
1030 {
1031 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1032 }
1033#else
1034 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1035 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1036#endif
1037
1038#if ecb_cplusplus_does_not_suck
1039 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1040 template<typename T, int N>
1041 static inline int ecb_array_length (const T (&arr)[N])
1042 {
1043 return N;
1044 }
1045#else
1046 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1047#endif
1048
1049/*******************************************************************************/
1050/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1051
1052/* basically, everything uses "ieee pure-endian" floating point numbers */
1053/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1054#if 0 \
1055 || __i386 || __i386__ \
1056 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1057 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1058 || defined __arm__ && defined __ARM_EABI__ \
1059 || defined __s390__ || defined __s390x__ \
1060 || defined __mips__ \
1061 || defined __alpha__ \
1062 || defined __hppa__ \
1063 || defined __ia64__ \
1064 || defined __m68k__ \
1065 || defined __m88k__ \
1066 || defined __sh__ \
1067 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1068 #define ECB_STDFP 1
1069 #include <string.h> /* for memcpy */
1070#else
1071 #define ECB_STDFP 0
1072 #include <math.h> /* for frexp*, ldexp* */
1073#endif
1074
1075#ifndef ECB_NO_LIBM
1076
1077 /* convert a float to ieee single/binary32 */
1078 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1079 ecb_function_ uint32_t
1080 ecb_float_to_binary32 (float x)
1081 {
1082 uint32_t r;
1083
1084 #if ECB_STDFP
1085 memcpy (&r, &x, 4);
1086 #else
1087 /* slow emulation, works for anything but -0 */
1088 uint32_t m;
1089 int e;
1090
1091 if (x == 0e0f ) return 0x00000000U;
1092 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1093 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1094 if (x != x ) return 0x7fbfffffU;
1095
1096 m = frexpf (x, &e) * 0x1000000U;
1097
1098 r = m & 0x80000000U;
1099
1100 if (r)
1101 m = -m;
1102
1103 if (e <= -126)
1104 {
1105 m &= 0xffffffU;
1106 m >>= (-125 - e);
1107 e = -126;
1108 }
1109
1110 r |= (e + 126) << 23;
1111 r |= m & 0x7fffffU;
1112 #endif
1113
1114 return r;
1115 }
1116
1117 /* converts an ieee single/binary32 to a float */
1118 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1119 ecb_function_ float
1120 ecb_binary32_to_float (uint32_t x)
1121 {
1122 float r;
1123
1124 #if ECB_STDFP
1125 memcpy (&r, &x, 4);
1126 #else
1127 /* emulation, only works for normals and subnormals and +0 */
1128 int neg = x >> 31;
1129 int e = (x >> 23) & 0xffU;
1130
1131 x &= 0x7fffffU;
1132
1133 if (e)
1134 x |= 0x800000U;
1135 else
1136 e = 1;
1137
1138 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1139 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1140
1141 r = neg ? -r : r;
1142 #endif
1143
1144 return r;
1145 }
1146
1147 /* convert a double to ieee double/binary64 */
1148 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1149 ecb_function_ uint64_t
1150 ecb_double_to_binary64 (double x)
1151 {
1152 uint64_t r;
1153
1154 #if ECB_STDFP
1155 memcpy (&r, &x, 8);
1156 #else
1157 /* slow emulation, works for anything but -0 */
1158 uint64_t m;
1159 int e;
1160
1161 if (x == 0e0 ) return 0x0000000000000000U;
1162 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1163 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1164 if (x != x ) return 0X7ff7ffffffffffffU;
1165
1166 m = frexp (x, &e) * 0x20000000000000U;
1167
1168 r = m & 0x8000000000000000;;
1169
1170 if (r)
1171 m = -m;
1172
1173 if (e <= -1022)
1174 {
1175 m &= 0x1fffffffffffffU;
1176 m >>= (-1021 - e);
1177 e = -1022;
1178 }
1179
1180 r |= ((uint64_t)(e + 1022)) << 52;
1181 r |= m & 0xfffffffffffffU;
1182 #endif
1183
1184 return r;
1185 }
1186
1187 /* converts an ieee double/binary64 to a double */
1188 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1189 ecb_function_ double
1190 ecb_binary64_to_double (uint64_t x)
1191 {
1192 double r;
1193
1194 #if ECB_STDFP
1195 memcpy (&r, &x, 8);
1196 #else
1197 /* emulation, only works for normals and subnormals and +0 */
1198 int neg = x >> 63;
1199 int e = (x >> 52) & 0x7ffU;
1200
1201 x &= 0xfffffffffffffU;
1202
1203 if (e)
1204 x |= 0x10000000000000U;
1205 else
1206 e = 1;
1207
1208 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1209 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1210
1211 r = neg ? -r : r;
1212 #endif
1213
1214 return r;
1215 }
1216
1217#endif
1218
1219#endif
1220
1221/* ECB.H END */
1222
1223#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1224/* if your architecture doesn't need memory fences, e.g. because it is
1225 * single-cpu/core, or if you use libev in a project that doesn't use libev
1226 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1227 * libev, in which cases the memory fences become nops.
1228 * alternatively, you can remove this #error and link against libpthread,
1229 * which will then provide the memory fences.
1230 */
1231# error "memory fences not defined for your architecture, please report"
1232#endif
1233
1234#ifndef ECB_MEMORY_FENCE
1235# define ECB_MEMORY_FENCE do { } while (0)
1236# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1237# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1238#endif
1239
1240#define expect_false(cond) ecb_expect_false (cond)
1241#define expect_true(cond) ecb_expect_true (cond)
1242#define noinline ecb_noinline
1243
238#define inline_size static inline 1244#define inline_size ecb_inline
239 1245
240#if EV_MINIMAL 1246#if EV_FEATURE_CODE
1247# define inline_speed ecb_inline
1248#else
241# define inline_speed static noinline 1249# define inline_speed static noinline
1250#endif
1251
1252#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1253
1254#if EV_MINPRI == EV_MAXPRI
1255# define ABSPRI(w) (((W)w), 0)
242#else 1256#else
243# define inline_speed static inline
244#endif
245
246#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
247#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1257# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1258#endif
248 1259
249#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1260#define EMPTY /* required for microsofts broken pseudo-c compiler */
250#define EMPTY2(a,b) /* used to suppress some warnings */ 1261#define EMPTY2(a,b) /* used to suppress some warnings */
251 1262
252typedef ev_watcher *W; 1263typedef ev_watcher *W;
253typedef ev_watcher_list *WL; 1264typedef ev_watcher_list *WL;
254typedef ev_watcher_time *WT; 1265typedef ev_watcher_time *WT;
255 1266
1267#define ev_active(w) ((W)(w))->active
1268#define ev_at(w) ((WT)(w))->at
1269
1270#if EV_USE_REALTIME
1271/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1272/* giving it a reasonably high chance of working on typical architectures */
1273static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1274#endif
1275
1276#if EV_USE_MONOTONIC
256static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1277static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1278#endif
1279
1280#ifndef EV_FD_TO_WIN32_HANDLE
1281# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1282#endif
1283#ifndef EV_WIN32_HANDLE_TO_FD
1284# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1285#endif
1286#ifndef EV_WIN32_CLOSE_FD
1287# define EV_WIN32_CLOSE_FD(fd) close (fd)
1288#endif
257 1289
258#ifdef _WIN32 1290#ifdef _WIN32
259# include "ev_win32.c" 1291# include "ev_win32.c"
260#endif 1292#endif
261 1293
262/*****************************************************************************/ 1294/*****************************************************************************/
263 1295
1296/* define a suitable floor function (only used by periodics atm) */
1297
1298#if EV_USE_FLOOR
1299# include <math.h>
1300# define ev_floor(v) floor (v)
1301#else
1302
1303#include <float.h>
1304
1305/* a floor() replacement function, should be independent of ev_tstamp type */
1306static ev_tstamp noinline
1307ev_floor (ev_tstamp v)
1308{
1309 /* the choice of shift factor is not terribly important */
1310#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1311 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1312#else
1313 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1314#endif
1315
1316 /* argument too large for an unsigned long? */
1317 if (expect_false (v >= shift))
1318 {
1319 ev_tstamp f;
1320
1321 if (v == v - 1.)
1322 return v; /* very large number */
1323
1324 f = shift * ev_floor (v * (1. / shift));
1325 return f + ev_floor (v - f);
1326 }
1327
1328 /* special treatment for negative args? */
1329 if (expect_false (v < 0.))
1330 {
1331 ev_tstamp f = -ev_floor (-v);
1332
1333 return f - (f == v ? 0 : 1);
1334 }
1335
1336 /* fits into an unsigned long */
1337 return (unsigned long)v;
1338}
1339
1340#endif
1341
1342/*****************************************************************************/
1343
1344#ifdef __linux
1345# include <sys/utsname.h>
1346#endif
1347
1348static unsigned int noinline ecb_cold
1349ev_linux_version (void)
1350{
1351#ifdef __linux
1352 unsigned int v = 0;
1353 struct utsname buf;
1354 int i;
1355 char *p = buf.release;
1356
1357 if (uname (&buf))
1358 return 0;
1359
1360 for (i = 3+1; --i; )
1361 {
1362 unsigned int c = 0;
1363
1364 for (;;)
1365 {
1366 if (*p >= '0' && *p <= '9')
1367 c = c * 10 + *p++ - '0';
1368 else
1369 {
1370 p += *p == '.';
1371 break;
1372 }
1373 }
1374
1375 v = (v << 8) | c;
1376 }
1377
1378 return v;
1379#else
1380 return 0;
1381#endif
1382}
1383
1384/*****************************************************************************/
1385
1386#if EV_AVOID_STDIO
1387static void noinline ecb_cold
1388ev_printerr (const char *msg)
1389{
1390 write (STDERR_FILENO, msg, strlen (msg));
1391}
1392#endif
1393
264static void (*syserr_cb)(const char *msg); 1394static void (*syserr_cb)(const char *msg) EV_THROW;
265 1395
266void 1396void ecb_cold
267ev_set_syserr_cb (void (*cb)(const char *msg)) 1397ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
268{ 1398{
269 syserr_cb = cb; 1399 syserr_cb = cb;
270} 1400}
271 1401
272static void noinline 1402static void noinline ecb_cold
273syserr (const char *msg) 1403ev_syserr (const char *msg)
274{ 1404{
275 if (!msg) 1405 if (!msg)
276 msg = "(libev) system error"; 1406 msg = "(libev) system error";
277 1407
278 if (syserr_cb) 1408 if (syserr_cb)
279 syserr_cb (msg); 1409 syserr_cb (msg);
280 else 1410 else
281 { 1411 {
1412#if EV_AVOID_STDIO
1413 ev_printerr (msg);
1414 ev_printerr (": ");
1415 ev_printerr (strerror (errno));
1416 ev_printerr ("\n");
1417#else
282 perror (msg); 1418 perror (msg);
1419#endif
283 abort (); 1420 abort ();
284 } 1421 }
285} 1422}
286 1423
1424static void *
1425ev_realloc_emul (void *ptr, long size) EV_THROW
1426{
1427 /* some systems, notably openbsd and darwin, fail to properly
1428 * implement realloc (x, 0) (as required by both ansi c-89 and
1429 * the single unix specification, so work around them here.
1430 * recently, also (at least) fedora and debian started breaking it,
1431 * despite documenting it otherwise.
1432 */
1433
1434 if (size)
1435 return realloc (ptr, size);
1436
1437 free (ptr);
1438 return 0;
1439}
1440
287static void *(*alloc)(void *ptr, long size); 1441static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
288 1442
289void 1443void ecb_cold
290ev_set_allocator (void *(*cb)(void *ptr, long size)) 1444ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
291{ 1445{
292 alloc = cb; 1446 alloc = cb;
293} 1447}
294 1448
295inline_speed void * 1449inline_speed void *
296ev_realloc (void *ptr, long size) 1450ev_realloc (void *ptr, long size)
297{ 1451{
298 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1452 ptr = alloc (ptr, size);
299 1453
300 if (!ptr && size) 1454 if (!ptr && size)
301 { 1455 {
1456#if EV_AVOID_STDIO
1457 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1458#else
302 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1459 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1460#endif
303 abort (); 1461 abort ();
304 } 1462 }
305 1463
306 return ptr; 1464 return ptr;
307} 1465}
309#define ev_malloc(size) ev_realloc (0, (size)) 1467#define ev_malloc(size) ev_realloc (0, (size))
310#define ev_free(ptr) ev_realloc ((ptr), 0) 1468#define ev_free(ptr) ev_realloc ((ptr), 0)
311 1469
312/*****************************************************************************/ 1470/*****************************************************************************/
313 1471
1472/* set in reify when reification needed */
1473#define EV_ANFD_REIFY 1
1474
1475/* file descriptor info structure */
314typedef struct 1476typedef struct
315{ 1477{
316 WL head; 1478 WL head;
317 unsigned char events; 1479 unsigned char events; /* the events watched for */
1480 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1481 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
318 unsigned char reify; 1482 unsigned char unused;
1483#if EV_USE_EPOLL
1484 unsigned int egen; /* generation counter to counter epoll bugs */
1485#endif
319#if EV_SELECT_IS_WINSOCKET 1486#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
320 SOCKET handle; 1487 SOCKET handle;
321#endif 1488#endif
1489#if EV_USE_IOCP
1490 OVERLAPPED or, ow;
1491#endif
322} ANFD; 1492} ANFD;
323 1493
1494/* stores the pending event set for a given watcher */
324typedef struct 1495typedef struct
325{ 1496{
326 W w; 1497 W w;
327 int events; 1498 int events; /* the pending event set for the given watcher */
328} ANPENDING; 1499} ANPENDING;
329 1500
330#if EV_USE_INOTIFY 1501#if EV_USE_INOTIFY
1502/* hash table entry per inotify-id */
331typedef struct 1503typedef struct
332{ 1504{
333 WL head; 1505 WL head;
334} ANFS; 1506} ANFS;
1507#endif
1508
1509/* Heap Entry */
1510#if EV_HEAP_CACHE_AT
1511 /* a heap element */
1512 typedef struct {
1513 ev_tstamp at;
1514 WT w;
1515 } ANHE;
1516
1517 #define ANHE_w(he) (he).w /* access watcher, read-write */
1518 #define ANHE_at(he) (he).at /* access cached at, read-only */
1519 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1520#else
1521 /* a heap element */
1522 typedef WT ANHE;
1523
1524 #define ANHE_w(he) (he)
1525 #define ANHE_at(he) (he)->at
1526 #define ANHE_at_cache(he)
335#endif 1527#endif
336 1528
337#if EV_MULTIPLICITY 1529#if EV_MULTIPLICITY
338 1530
339 struct ev_loop 1531 struct ev_loop
345 #undef VAR 1537 #undef VAR
346 }; 1538 };
347 #include "ev_wrap.h" 1539 #include "ev_wrap.h"
348 1540
349 static struct ev_loop default_loop_struct; 1541 static struct ev_loop default_loop_struct;
350 struct ev_loop *ev_default_loop_ptr; 1542 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
351 1543
352#else 1544#else
353 1545
354 ev_tstamp ev_rt_now; 1546 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
355 #define VAR(name,decl) static decl; 1547 #define VAR(name,decl) static decl;
356 #include "ev_vars.h" 1548 #include "ev_vars.h"
357 #undef VAR 1549 #undef VAR
358 1550
359 static int ev_default_loop_ptr; 1551 static int ev_default_loop_ptr;
360 1552
361#endif 1553#endif
362 1554
1555#if EV_FEATURE_API
1556# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1557# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1558# define EV_INVOKE_PENDING invoke_cb (EV_A)
1559#else
1560# define EV_RELEASE_CB (void)0
1561# define EV_ACQUIRE_CB (void)0
1562# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1563#endif
1564
1565#define EVBREAK_RECURSE 0x80
1566
363/*****************************************************************************/ 1567/*****************************************************************************/
364 1568
1569#ifndef EV_HAVE_EV_TIME
365ev_tstamp 1570ev_tstamp
366ev_time (void) 1571ev_time (void) EV_THROW
367{ 1572{
368#if EV_USE_REALTIME 1573#if EV_USE_REALTIME
1574 if (expect_true (have_realtime))
1575 {
369 struct timespec ts; 1576 struct timespec ts;
370 clock_gettime (CLOCK_REALTIME, &ts); 1577 clock_gettime (CLOCK_REALTIME, &ts);
371 return ts.tv_sec + ts.tv_nsec * 1e-9; 1578 return ts.tv_sec + ts.tv_nsec * 1e-9;
372#else 1579 }
1580#endif
1581
373 struct timeval tv; 1582 struct timeval tv;
374 gettimeofday (&tv, 0); 1583 gettimeofday (&tv, 0);
375 return tv.tv_sec + tv.tv_usec * 1e-6; 1584 return tv.tv_sec + tv.tv_usec * 1e-6;
376#endif
377} 1585}
1586#endif
378 1587
379ev_tstamp inline_size 1588inline_size ev_tstamp
380get_clock (void) 1589get_clock (void)
381{ 1590{
382#if EV_USE_MONOTONIC 1591#if EV_USE_MONOTONIC
383 if (expect_true (have_monotonic)) 1592 if (expect_true (have_monotonic))
384 { 1593 {
391 return ev_time (); 1600 return ev_time ();
392} 1601}
393 1602
394#if EV_MULTIPLICITY 1603#if EV_MULTIPLICITY
395ev_tstamp 1604ev_tstamp
396ev_now (EV_P) 1605ev_now (EV_P) EV_THROW
397{ 1606{
398 return ev_rt_now; 1607 return ev_rt_now;
399} 1608}
400#endif 1609#endif
401 1610
402int inline_size 1611void
1612ev_sleep (ev_tstamp delay) EV_THROW
1613{
1614 if (delay > 0.)
1615 {
1616#if EV_USE_NANOSLEEP
1617 struct timespec ts;
1618
1619 EV_TS_SET (ts, delay);
1620 nanosleep (&ts, 0);
1621#elif defined _WIN32
1622 Sleep ((unsigned long)(delay * 1e3));
1623#else
1624 struct timeval tv;
1625
1626 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1627 /* something not guaranteed by newer posix versions, but guaranteed */
1628 /* by older ones */
1629 EV_TV_SET (tv, delay);
1630 select (0, 0, 0, 0, &tv);
1631#endif
1632 }
1633}
1634
1635/*****************************************************************************/
1636
1637#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1638
1639/* find a suitable new size for the given array, */
1640/* hopefully by rounding to a nice-to-malloc size */
1641inline_size int
403array_nextsize (int elem, int cur, int cnt) 1642array_nextsize (int elem, int cur, int cnt)
404{ 1643{
405 int ncur = cur + 1; 1644 int ncur = cur + 1;
406 1645
407 do 1646 do
408 ncur <<= 1; 1647 ncur <<= 1;
409 while (cnt > ncur); 1648 while (cnt > ncur);
410 1649
411 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1650 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
412 if (elem * ncur > 4096) 1651 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
413 { 1652 {
414 ncur *= elem; 1653 ncur *= elem;
415 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1654 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
416 ncur = ncur - sizeof (void *) * 4; 1655 ncur = ncur - sizeof (void *) * 4;
417 ncur /= elem; 1656 ncur /= elem;
418 } 1657 }
419 1658
420 return ncur; 1659 return ncur;
421} 1660}
422 1661
423static noinline void * 1662static void * noinline ecb_cold
424array_realloc (int elem, void *base, int *cur, int cnt) 1663array_realloc (int elem, void *base, int *cur, int cnt)
425{ 1664{
426 *cur = array_nextsize (elem, *cur, cnt); 1665 *cur = array_nextsize (elem, *cur, cnt);
427 return ev_realloc (base, elem * *cur); 1666 return ev_realloc (base, elem * *cur);
428} 1667}
1668
1669#define array_init_zero(base,count) \
1670 memset ((void *)(base), 0, sizeof (*(base)) * (count))
429 1671
430#define array_needsize(type,base,cur,cnt,init) \ 1672#define array_needsize(type,base,cur,cnt,init) \
431 if (expect_false ((cnt) > (cur))) \ 1673 if (expect_false ((cnt) > (cur))) \
432 { \ 1674 { \
433 int ocur_ = (cur); \ 1675 int ecb_unused ocur_ = (cur); \
434 (base) = (type *)array_realloc \ 1676 (base) = (type *)array_realloc \
435 (sizeof (type), (base), &(cur), (cnt)); \ 1677 (sizeof (type), (base), &(cur), (cnt)); \
436 init ((base) + (ocur_), (cur) - ocur_); \ 1678 init ((base) + (ocur_), (cur) - ocur_); \
437 } 1679 }
438 1680
445 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1687 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
446 } 1688 }
447#endif 1689#endif
448 1690
449#define array_free(stem, idx) \ 1691#define array_free(stem, idx) \
450 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1692 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
451 1693
452/*****************************************************************************/ 1694/*****************************************************************************/
453 1695
1696/* dummy callback for pending events */
1697static void noinline
1698pendingcb (EV_P_ ev_prepare *w, int revents)
1699{
1700}
1701
454void noinline 1702void noinline
455ev_feed_event (EV_P_ void *w, int revents) 1703ev_feed_event (EV_P_ void *w, int revents) EV_THROW
456{ 1704{
457 W w_ = (W)w; 1705 W w_ = (W)w;
458 int pri = ABSPRI (w_); 1706 int pri = ABSPRI (w_);
459 1707
460 if (expect_false (w_->pending)) 1708 if (expect_false (w_->pending))
464 w_->pending = ++pendingcnt [pri]; 1712 w_->pending = ++pendingcnt [pri];
465 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1713 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
466 pendings [pri][w_->pending - 1].w = w_; 1714 pendings [pri][w_->pending - 1].w = w_;
467 pendings [pri][w_->pending - 1].events = revents; 1715 pendings [pri][w_->pending - 1].events = revents;
468 } 1716 }
469}
470 1717
471void inline_size 1718 pendingpri = NUMPRI - 1;
1719}
1720
1721inline_speed void
1722feed_reverse (EV_P_ W w)
1723{
1724 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1725 rfeeds [rfeedcnt++] = w;
1726}
1727
1728inline_size void
1729feed_reverse_done (EV_P_ int revents)
1730{
1731 do
1732 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1733 while (rfeedcnt);
1734}
1735
1736inline_speed void
472queue_events (EV_P_ W *events, int eventcnt, int type) 1737queue_events (EV_P_ W *events, int eventcnt, int type)
473{ 1738{
474 int i; 1739 int i;
475 1740
476 for (i = 0; i < eventcnt; ++i) 1741 for (i = 0; i < eventcnt; ++i)
477 ev_feed_event (EV_A_ events [i], type); 1742 ev_feed_event (EV_A_ events [i], type);
478} 1743}
479 1744
480/*****************************************************************************/ 1745/*****************************************************************************/
481 1746
482void inline_size 1747inline_speed void
483anfds_init (ANFD *base, int count)
484{
485 while (count--)
486 {
487 base->head = 0;
488 base->events = EV_NONE;
489 base->reify = 0;
490
491 ++base;
492 }
493}
494
495void inline_speed
496fd_event (EV_P_ int fd, int revents) 1748fd_event_nocheck (EV_P_ int fd, int revents)
497{ 1749{
498 ANFD *anfd = anfds + fd; 1750 ANFD *anfd = anfds + fd;
499 ev_io *w; 1751 ev_io *w;
500 1752
501 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1753 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
505 if (ev) 1757 if (ev)
506 ev_feed_event (EV_A_ (W)w, ev); 1758 ev_feed_event (EV_A_ (W)w, ev);
507 } 1759 }
508} 1760}
509 1761
1762/* do not submit kernel events for fds that have reify set */
1763/* because that means they changed while we were polling for new events */
1764inline_speed void
1765fd_event (EV_P_ int fd, int revents)
1766{
1767 ANFD *anfd = anfds + fd;
1768
1769 if (expect_true (!anfd->reify))
1770 fd_event_nocheck (EV_A_ fd, revents);
1771}
1772
510void 1773void
511ev_feed_fd_event (EV_P_ int fd, int revents) 1774ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
512{ 1775{
513 if (fd >= 0 && fd < anfdmax) 1776 if (fd >= 0 && fd < anfdmax)
514 fd_event (EV_A_ fd, revents); 1777 fd_event_nocheck (EV_A_ fd, revents);
515} 1778}
516 1779
517void inline_size 1780/* make sure the external fd watch events are in-sync */
1781/* with the kernel/libev internal state */
1782inline_size void
518fd_reify (EV_P) 1783fd_reify (EV_P)
519{ 1784{
520 int i; 1785 int i;
1786
1787#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1788 for (i = 0; i < fdchangecnt; ++i)
1789 {
1790 int fd = fdchanges [i];
1791 ANFD *anfd = anfds + fd;
1792
1793 if (anfd->reify & EV__IOFDSET && anfd->head)
1794 {
1795 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1796
1797 if (handle != anfd->handle)
1798 {
1799 unsigned long arg;
1800
1801 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1802
1803 /* handle changed, but fd didn't - we need to do it in two steps */
1804 backend_modify (EV_A_ fd, anfd->events, 0);
1805 anfd->events = 0;
1806 anfd->handle = handle;
1807 }
1808 }
1809 }
1810#endif
521 1811
522 for (i = 0; i < fdchangecnt; ++i) 1812 for (i = 0; i < fdchangecnt; ++i)
523 { 1813 {
524 int fd = fdchanges [i]; 1814 int fd = fdchanges [i];
525 ANFD *anfd = anfds + fd; 1815 ANFD *anfd = anfds + fd;
526 ev_io *w; 1816 ev_io *w;
527 1817
528 int events = 0; 1818 unsigned char o_events = anfd->events;
1819 unsigned char o_reify = anfd->reify;
529 1820
530 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1821 anfd->reify = 0;
531 events |= w->events;
532 1822
533#if EV_SELECT_IS_WINSOCKET 1823 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
534 if (events)
535 { 1824 {
536 unsigned long argp; 1825 anfd->events = 0;
537 anfd->handle = _get_osfhandle (fd); 1826
538 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1827 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1828 anfd->events |= (unsigned char)w->events;
1829
1830 if (o_events != anfd->events)
1831 o_reify = EV__IOFDSET; /* actually |= */
539 } 1832 }
540#endif
541 1833
542 anfd->reify = 0; 1834 if (o_reify & EV__IOFDSET)
543
544 backend_modify (EV_A_ fd, anfd->events, events); 1835 backend_modify (EV_A_ fd, o_events, anfd->events);
545 anfd->events = events;
546 } 1836 }
547 1837
548 fdchangecnt = 0; 1838 fdchangecnt = 0;
549} 1839}
550 1840
551void inline_size 1841/* something about the given fd changed */
1842inline_size void
552fd_change (EV_P_ int fd) 1843fd_change (EV_P_ int fd, int flags)
553{ 1844{
554 if (expect_false (anfds [fd].reify)) 1845 unsigned char reify = anfds [fd].reify;
555 return;
556
557 anfds [fd].reify = 1; 1846 anfds [fd].reify |= flags;
558 1847
1848 if (expect_true (!reify))
1849 {
559 ++fdchangecnt; 1850 ++fdchangecnt;
560 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1851 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
561 fdchanges [fdchangecnt - 1] = fd; 1852 fdchanges [fdchangecnt - 1] = fd;
1853 }
562} 1854}
563 1855
564void inline_speed 1856/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1857inline_speed void ecb_cold
565fd_kill (EV_P_ int fd) 1858fd_kill (EV_P_ int fd)
566{ 1859{
567 ev_io *w; 1860 ev_io *w;
568 1861
569 while ((w = (ev_io *)anfds [fd].head)) 1862 while ((w = (ev_io *)anfds [fd].head))
571 ev_io_stop (EV_A_ w); 1864 ev_io_stop (EV_A_ w);
572 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1865 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
573 } 1866 }
574} 1867}
575 1868
576int inline_size 1869/* check whether the given fd is actually valid, for error recovery */
1870inline_size int ecb_cold
577fd_valid (int fd) 1871fd_valid (int fd)
578{ 1872{
579#ifdef _WIN32 1873#ifdef _WIN32
580 return _get_osfhandle (fd) != -1; 1874 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
581#else 1875#else
582 return fcntl (fd, F_GETFD) != -1; 1876 return fcntl (fd, F_GETFD) != -1;
583#endif 1877#endif
584} 1878}
585 1879
586/* called on EBADF to verify fds */ 1880/* called on EBADF to verify fds */
587static void noinline 1881static void noinline ecb_cold
588fd_ebadf (EV_P) 1882fd_ebadf (EV_P)
589{ 1883{
590 int fd; 1884 int fd;
591 1885
592 for (fd = 0; fd < anfdmax; ++fd) 1886 for (fd = 0; fd < anfdmax; ++fd)
593 if (anfds [fd].events) 1887 if (anfds [fd].events)
594 if (!fd_valid (fd) == -1 && errno == EBADF) 1888 if (!fd_valid (fd) && errno == EBADF)
595 fd_kill (EV_A_ fd); 1889 fd_kill (EV_A_ fd);
596} 1890}
597 1891
598/* called on ENOMEM in select/poll to kill some fds and retry */ 1892/* called on ENOMEM in select/poll to kill some fds and retry */
599static void noinline 1893static void noinline ecb_cold
600fd_enomem (EV_P) 1894fd_enomem (EV_P)
601{ 1895{
602 int fd; 1896 int fd;
603 1897
604 for (fd = anfdmax; fd--; ) 1898 for (fd = anfdmax; fd--; )
605 if (anfds [fd].events) 1899 if (anfds [fd].events)
606 { 1900 {
607 fd_kill (EV_A_ fd); 1901 fd_kill (EV_A_ fd);
608 return; 1902 break;
609 } 1903 }
610} 1904}
611 1905
612/* usually called after fork if backend needs to re-arm all fds from scratch */ 1906/* usually called after fork if backend needs to re-arm all fds from scratch */
613static void noinline 1907static void noinline
617 1911
618 for (fd = 0; fd < anfdmax; ++fd) 1912 for (fd = 0; fd < anfdmax; ++fd)
619 if (anfds [fd].events) 1913 if (anfds [fd].events)
620 { 1914 {
621 anfds [fd].events = 0; 1915 anfds [fd].events = 0;
622 fd_change (EV_A_ fd); 1916 anfds [fd].emask = 0;
1917 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
623 } 1918 }
624} 1919}
625 1920
626/*****************************************************************************/ 1921/* used to prepare libev internal fd's */
627 1922/* this is not fork-safe */
628void inline_speed 1923inline_speed void
629upheap (WT *heap, int k)
630{
631 WT w = heap [k];
632
633 while (k && heap [k >> 1]->at > w->at)
634 {
635 heap [k] = heap [k >> 1];
636 ((W)heap [k])->active = k + 1;
637 k >>= 1;
638 }
639
640 heap [k] = w;
641 ((W)heap [k])->active = k + 1;
642
643}
644
645void inline_speed
646downheap (WT *heap, int N, int k)
647{
648 WT w = heap [k];
649
650 while (k < (N >> 1))
651 {
652 int j = k << 1;
653
654 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
655 ++j;
656
657 if (w->at <= heap [j]->at)
658 break;
659
660 heap [k] = heap [j];
661 ((W)heap [k])->active = k + 1;
662 k = j;
663 }
664
665 heap [k] = w;
666 ((W)heap [k])->active = k + 1;
667}
668
669void inline_size
670adjustheap (WT *heap, int N, int k)
671{
672 upheap (heap, k);
673 downheap (heap, N, k);
674}
675
676/*****************************************************************************/
677
678typedef struct
679{
680 WL head;
681 sig_atomic_t volatile gotsig;
682} ANSIG;
683
684static ANSIG *signals;
685static int signalmax;
686
687static int sigpipe [2];
688static sig_atomic_t volatile gotsig;
689static ev_io sigev;
690
691void inline_size
692signals_init (ANSIG *base, int count)
693{
694 while (count--)
695 {
696 base->head = 0;
697 base->gotsig = 0;
698
699 ++base;
700 }
701}
702
703static void
704sighandler (int signum)
705{
706#if _WIN32
707 signal (signum, sighandler);
708#endif
709
710 signals [signum - 1].gotsig = 1;
711
712 if (!gotsig)
713 {
714 int old_errno = errno;
715 gotsig = 1;
716 write (sigpipe [1], &signum, 1);
717 errno = old_errno;
718 }
719}
720
721void noinline
722ev_feed_signal_event (EV_P_ int signum)
723{
724 WL w;
725
726#if EV_MULTIPLICITY
727 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
728#endif
729
730 --signum;
731
732 if (signum < 0 || signum >= signalmax)
733 return;
734
735 signals [signum].gotsig = 0;
736
737 for (w = signals [signum].head; w; w = w->next)
738 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
739}
740
741static void
742sigcb (EV_P_ ev_io *iow, int revents)
743{
744 int signum;
745
746 read (sigpipe [0], &revents, 1);
747 gotsig = 0;
748
749 for (signum = signalmax; signum--; )
750 if (signals [signum].gotsig)
751 ev_feed_signal_event (EV_A_ signum + 1);
752}
753
754void inline_speed
755fd_intern (int fd) 1924fd_intern (int fd)
756{ 1925{
757#ifdef _WIN32 1926#ifdef _WIN32
758 int arg = 1; 1927 unsigned long arg = 1;
759 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1928 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
760#else 1929#else
761 fcntl (fd, F_SETFD, FD_CLOEXEC); 1930 fcntl (fd, F_SETFD, FD_CLOEXEC);
762 fcntl (fd, F_SETFL, O_NONBLOCK); 1931 fcntl (fd, F_SETFL, O_NONBLOCK);
763#endif 1932#endif
764} 1933}
765 1934
766static void noinline
767siginit (EV_P)
768{
769 fd_intern (sigpipe [0]);
770 fd_intern (sigpipe [1]);
771
772 ev_io_set (&sigev, sigpipe [0], EV_READ);
773 ev_io_start (EV_A_ &sigev);
774 ev_unref (EV_A); /* child watcher should not keep loop alive */
775}
776
777/*****************************************************************************/ 1935/*****************************************************************************/
778 1936
779static ev_child *childs [EV_PID_HASHSIZE]; 1937/*
1938 * the heap functions want a real array index. array index 0 is guaranteed to not
1939 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1940 * the branching factor of the d-tree.
1941 */
780 1942
1943/*
1944 * at the moment we allow libev the luxury of two heaps,
1945 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1946 * which is more cache-efficient.
1947 * the difference is about 5% with 50000+ watchers.
1948 */
1949#if EV_USE_4HEAP
1950
1951#define DHEAP 4
1952#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1953#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1954#define UPHEAP_DONE(p,k) ((p) == (k))
1955
1956/* away from the root */
1957inline_speed void
1958downheap (ANHE *heap, int N, int k)
1959{
1960 ANHE he = heap [k];
1961 ANHE *E = heap + N + HEAP0;
1962
1963 for (;;)
1964 {
1965 ev_tstamp minat;
1966 ANHE *minpos;
1967 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1968
1969 /* find minimum child */
1970 if (expect_true (pos + DHEAP - 1 < E))
1971 {
1972 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1973 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1974 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1975 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1976 }
1977 else if (pos < E)
1978 {
1979 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1980 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1981 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1982 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1983 }
1984 else
1985 break;
1986
1987 if (ANHE_at (he) <= minat)
1988 break;
1989
1990 heap [k] = *minpos;
1991 ev_active (ANHE_w (*minpos)) = k;
1992
1993 k = minpos - heap;
1994 }
1995
1996 heap [k] = he;
1997 ev_active (ANHE_w (he)) = k;
1998}
1999
2000#else /* 4HEAP */
2001
2002#define HEAP0 1
2003#define HPARENT(k) ((k) >> 1)
2004#define UPHEAP_DONE(p,k) (!(p))
2005
2006/* away from the root */
2007inline_speed void
2008downheap (ANHE *heap, int N, int k)
2009{
2010 ANHE he = heap [k];
2011
2012 for (;;)
2013 {
2014 int c = k << 1;
2015
2016 if (c >= N + HEAP0)
2017 break;
2018
2019 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2020 ? 1 : 0;
2021
2022 if (ANHE_at (he) <= ANHE_at (heap [c]))
2023 break;
2024
2025 heap [k] = heap [c];
2026 ev_active (ANHE_w (heap [k])) = k;
2027
2028 k = c;
2029 }
2030
2031 heap [k] = he;
2032 ev_active (ANHE_w (he)) = k;
2033}
2034#endif
2035
2036/* towards the root */
2037inline_speed void
2038upheap (ANHE *heap, int k)
2039{
2040 ANHE he = heap [k];
2041
2042 for (;;)
2043 {
2044 int p = HPARENT (k);
2045
2046 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2047 break;
2048
2049 heap [k] = heap [p];
2050 ev_active (ANHE_w (heap [k])) = k;
2051 k = p;
2052 }
2053
2054 heap [k] = he;
2055 ev_active (ANHE_w (he)) = k;
2056}
2057
2058/* move an element suitably so it is in a correct place */
2059inline_size void
2060adjustheap (ANHE *heap, int N, int k)
2061{
2062 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2063 upheap (heap, k);
2064 else
2065 downheap (heap, N, k);
2066}
2067
2068/* rebuild the heap: this function is used only once and executed rarely */
2069inline_size void
2070reheap (ANHE *heap, int N)
2071{
2072 int i;
2073
2074 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2075 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2076 for (i = 0; i < N; ++i)
2077 upheap (heap, i + HEAP0);
2078}
2079
2080/*****************************************************************************/
2081
2082/* associate signal watchers to a signal signal */
2083typedef struct
2084{
2085 EV_ATOMIC_T pending;
2086#if EV_MULTIPLICITY
2087 EV_P;
2088#endif
2089 WL head;
2090} ANSIG;
2091
2092static ANSIG signals [EV_NSIG - 1];
2093
2094/*****************************************************************************/
2095
2096#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2097
2098static void noinline ecb_cold
2099evpipe_init (EV_P)
2100{
2101 if (!ev_is_active (&pipe_w))
2102 {
2103 int fds [2];
2104
2105# if EV_USE_EVENTFD
2106 fds [0] = -1;
2107 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2108 if (fds [1] < 0 && errno == EINVAL)
2109 fds [1] = eventfd (0, 0);
2110
2111 if (fds [1] < 0)
2112# endif
2113 {
2114 while (pipe (fds))
2115 ev_syserr ("(libev) error creating signal/async pipe");
2116
2117 fd_intern (fds [0]);
2118 }
2119
2120 evpipe [0] = fds [0];
2121
2122 if (evpipe [1] < 0)
2123 evpipe [1] = fds [1]; /* first call, set write fd */
2124 else
2125 {
2126 /* on subsequent calls, do not change evpipe [1] */
2127 /* so that evpipe_write can always rely on its value. */
2128 /* this branch does not do anything sensible on windows, */
2129 /* so must not be executed on windows */
2130
2131 dup2 (fds [1], evpipe [1]);
2132 close (fds [1]);
2133 }
2134
2135 fd_intern (evpipe [1]);
2136
2137 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
2138 ev_io_start (EV_A_ &pipe_w);
2139 ev_unref (EV_A); /* watcher should not keep loop alive */
2140 }
2141}
2142
2143inline_speed void
2144evpipe_write (EV_P_ EV_ATOMIC_T *flag)
2145{
2146 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2147
2148 if (expect_true (*flag))
2149 return;
2150
2151 *flag = 1;
2152 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2153
2154 pipe_write_skipped = 1;
2155
2156 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2157
2158 if (pipe_write_wanted)
2159 {
2160 int old_errno;
2161
2162 pipe_write_skipped = 0;
2163 ECB_MEMORY_FENCE_RELEASE;
2164
2165 old_errno = errno; /* save errno because write will clobber it */
2166
2167#if EV_USE_EVENTFD
2168 if (evpipe [0] < 0)
2169 {
2170 uint64_t counter = 1;
2171 write (evpipe [1], &counter, sizeof (uint64_t));
2172 }
2173 else
2174#endif
2175 {
781#ifndef _WIN32 2176#ifdef _WIN32
2177 WSABUF buf;
2178 DWORD sent;
2179 buf.buf = &buf;
2180 buf.len = 1;
2181 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2182#else
2183 write (evpipe [1], &(evpipe [1]), 1);
2184#endif
2185 }
2186
2187 errno = old_errno;
2188 }
2189}
2190
2191/* called whenever the libev signal pipe */
2192/* got some events (signal, async) */
2193static void
2194pipecb (EV_P_ ev_io *iow, int revents)
2195{
2196 int i;
2197
2198 if (revents & EV_READ)
2199 {
2200#if EV_USE_EVENTFD
2201 if (evpipe [0] < 0)
2202 {
2203 uint64_t counter;
2204 read (evpipe [1], &counter, sizeof (uint64_t));
2205 }
2206 else
2207#endif
2208 {
2209 char dummy[4];
2210#ifdef _WIN32
2211 WSABUF buf;
2212 DWORD recvd;
2213 DWORD flags = 0;
2214 buf.buf = dummy;
2215 buf.len = sizeof (dummy);
2216 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2217#else
2218 read (evpipe [0], &dummy, sizeof (dummy));
2219#endif
2220 }
2221 }
2222
2223 pipe_write_skipped = 0;
2224
2225 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2226
2227#if EV_SIGNAL_ENABLE
2228 if (sig_pending)
2229 {
2230 sig_pending = 0;
2231
2232 ECB_MEMORY_FENCE;
2233
2234 for (i = EV_NSIG - 1; i--; )
2235 if (expect_false (signals [i].pending))
2236 ev_feed_signal_event (EV_A_ i + 1);
2237 }
2238#endif
2239
2240#if EV_ASYNC_ENABLE
2241 if (async_pending)
2242 {
2243 async_pending = 0;
2244
2245 ECB_MEMORY_FENCE;
2246
2247 for (i = asynccnt; i--; )
2248 if (asyncs [i]->sent)
2249 {
2250 asyncs [i]->sent = 0;
2251 ECB_MEMORY_FENCE_RELEASE;
2252 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
2253 }
2254 }
2255#endif
2256}
2257
2258/*****************************************************************************/
2259
2260void
2261ev_feed_signal (int signum) EV_THROW
2262{
2263#if EV_MULTIPLICITY
2264 EV_P;
2265 ECB_MEMORY_FENCE_ACQUIRE;
2266 EV_A = signals [signum - 1].loop;
2267
2268 if (!EV_A)
2269 return;
2270#endif
2271
2272 signals [signum - 1].pending = 1;
2273 evpipe_write (EV_A_ &sig_pending);
2274}
2275
2276static void
2277ev_sighandler (int signum)
2278{
2279#ifdef _WIN32
2280 signal (signum, ev_sighandler);
2281#endif
2282
2283 ev_feed_signal (signum);
2284}
2285
2286void noinline
2287ev_feed_signal_event (EV_P_ int signum) EV_THROW
2288{
2289 WL w;
2290
2291 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2292 return;
2293
2294 --signum;
2295
2296#if EV_MULTIPLICITY
2297 /* it is permissible to try to feed a signal to the wrong loop */
2298 /* or, likely more useful, feeding a signal nobody is waiting for */
2299
2300 if (expect_false (signals [signum].loop != EV_A))
2301 return;
2302#endif
2303
2304 signals [signum].pending = 0;
2305 ECB_MEMORY_FENCE_RELEASE;
2306
2307 for (w = signals [signum].head; w; w = w->next)
2308 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2309}
2310
2311#if EV_USE_SIGNALFD
2312static void
2313sigfdcb (EV_P_ ev_io *iow, int revents)
2314{
2315 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2316
2317 for (;;)
2318 {
2319 ssize_t res = read (sigfd, si, sizeof (si));
2320
2321 /* not ISO-C, as res might be -1, but works with SuS */
2322 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2323 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2324
2325 if (res < (ssize_t)sizeof (si))
2326 break;
2327 }
2328}
2329#endif
2330
2331#endif
2332
2333/*****************************************************************************/
2334
2335#if EV_CHILD_ENABLE
2336static WL childs [EV_PID_HASHSIZE];
782 2337
783static ev_signal childev; 2338static ev_signal childev;
784 2339
785void inline_speed 2340#ifndef WIFCONTINUED
2341# define WIFCONTINUED(status) 0
2342#endif
2343
2344/* handle a single child status event */
2345inline_speed void
786child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2346child_reap (EV_P_ int chain, int pid, int status)
787{ 2347{
788 ev_child *w; 2348 ev_child *w;
2349 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
789 2350
790 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2351 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2352 {
791 if (w->pid == pid || !w->pid) 2353 if ((w->pid == pid || !w->pid)
2354 && (!traced || (w->flags & 1)))
792 { 2355 {
793 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2356 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
794 w->rpid = pid; 2357 w->rpid = pid;
795 w->rstatus = status; 2358 w->rstatus = status;
796 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2359 ev_feed_event (EV_A_ (W)w, EV_CHILD);
797 } 2360 }
2361 }
798} 2362}
799 2363
800#ifndef WCONTINUED 2364#ifndef WCONTINUED
801# define WCONTINUED 0 2365# define WCONTINUED 0
802#endif 2366#endif
803 2367
2368/* called on sigchld etc., calls waitpid */
804static void 2369static void
805childcb (EV_P_ ev_signal *sw, int revents) 2370childcb (EV_P_ ev_signal *sw, int revents)
806{ 2371{
807 int pid, status; 2372 int pid, status;
808 2373
811 if (!WCONTINUED 2376 if (!WCONTINUED
812 || errno != EINVAL 2377 || errno != EINVAL
813 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2378 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
814 return; 2379 return;
815 2380
816 /* make sure we are called again until all childs have been reaped */ 2381 /* make sure we are called again until all children have been reaped */
817 /* we need to do it this way so that the callback gets called before we continue */ 2382 /* we need to do it this way so that the callback gets called before we continue */
818 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2383 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
819 2384
820 child_reap (EV_A_ sw, pid, pid, status); 2385 child_reap (EV_A_ pid, pid, status);
821 if (EV_PID_HASHSIZE > 1) 2386 if ((EV_PID_HASHSIZE) > 1)
822 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2387 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
823} 2388}
824 2389
825#endif 2390#endif
826 2391
827/*****************************************************************************/ 2392/*****************************************************************************/
828 2393
2394#if EV_USE_IOCP
2395# include "ev_iocp.c"
2396#endif
829#if EV_USE_PORT 2397#if EV_USE_PORT
830# include "ev_port.c" 2398# include "ev_port.c"
831#endif 2399#endif
832#if EV_USE_KQUEUE 2400#if EV_USE_KQUEUE
833# include "ev_kqueue.c" 2401# include "ev_kqueue.c"
840#endif 2408#endif
841#if EV_USE_SELECT 2409#if EV_USE_SELECT
842# include "ev_select.c" 2410# include "ev_select.c"
843#endif 2411#endif
844 2412
845int 2413int ecb_cold
846ev_version_major (void) 2414ev_version_major (void) EV_THROW
847{ 2415{
848 return EV_VERSION_MAJOR; 2416 return EV_VERSION_MAJOR;
849} 2417}
850 2418
851int 2419int ecb_cold
852ev_version_minor (void) 2420ev_version_minor (void) EV_THROW
853{ 2421{
854 return EV_VERSION_MINOR; 2422 return EV_VERSION_MINOR;
855} 2423}
856 2424
857/* return true if we are running with elevated privileges and should ignore env variables */ 2425/* return true if we are running with elevated privileges and should ignore env variables */
858int inline_size 2426int inline_size ecb_cold
859enable_secure (void) 2427enable_secure (void)
860{ 2428{
861#ifdef _WIN32 2429#ifdef _WIN32
862 return 0; 2430 return 0;
863#else 2431#else
864 return getuid () != geteuid () 2432 return getuid () != geteuid ()
865 || getgid () != getegid (); 2433 || getgid () != getegid ();
866#endif 2434#endif
867} 2435}
868 2436
869unsigned int 2437unsigned int ecb_cold
870ev_supported_backends (void) 2438ev_supported_backends (void) EV_THROW
871{ 2439{
872 unsigned int flags = 0; 2440 unsigned int flags = 0;
873 2441
874 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2442 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
875 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2443 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
878 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2446 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
879 2447
880 return flags; 2448 return flags;
881} 2449}
882 2450
883unsigned int 2451unsigned int ecb_cold
884ev_recommended_backends (void) 2452ev_recommended_backends (void) EV_THROW
885{ 2453{
886 unsigned int flags = ev_supported_backends (); 2454 unsigned int flags = ev_supported_backends ();
887 2455
888#ifndef __NetBSD__ 2456#ifndef __NetBSD__
889 /* kqueue is borked on everything but netbsd apparently */ 2457 /* kqueue is borked on everything but netbsd apparently */
890 /* it usually doesn't work correctly on anything but sockets and pipes */ 2458 /* it usually doesn't work correctly on anything but sockets and pipes */
891 flags &= ~EVBACKEND_KQUEUE; 2459 flags &= ~EVBACKEND_KQUEUE;
892#endif 2460#endif
893#ifdef __APPLE__ 2461#ifdef __APPLE__
894 // flags &= ~EVBACKEND_KQUEUE; for documentation 2462 /* only select works correctly on that "unix-certified" platform */
895 flags &= ~EVBACKEND_POLL; 2463 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2464 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2465#endif
2466#ifdef __FreeBSD__
2467 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
896#endif 2468#endif
897 2469
898 return flags; 2470 return flags;
899} 2471}
900 2472
2473unsigned int ecb_cold
2474ev_embeddable_backends (void) EV_THROW
2475{
2476 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2477
2478 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2479 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2480 flags &= ~EVBACKEND_EPOLL;
2481
2482 return flags;
2483}
2484
901unsigned int 2485unsigned int
902ev_embeddable_backends (void) 2486ev_backend (EV_P) EV_THROW
903{ 2487{
904 return EVBACKEND_EPOLL 2488 return backend;
905 | EVBACKEND_KQUEUE
906 | EVBACKEND_PORT;
907} 2489}
908 2490
2491#if EV_FEATURE_API
909unsigned int 2492unsigned int
910ev_backend (EV_P) 2493ev_iteration (EV_P) EV_THROW
911{ 2494{
912 return backend; 2495 return loop_count;
913} 2496}
914 2497
915unsigned int 2498unsigned int
916ev_loop_count (EV_P) 2499ev_depth (EV_P) EV_THROW
917{ 2500{
918 return loop_count; 2501 return loop_depth;
919} 2502}
920 2503
2504void
2505ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2506{
2507 io_blocktime = interval;
2508}
2509
2510void
2511ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2512{
2513 timeout_blocktime = interval;
2514}
2515
2516void
2517ev_set_userdata (EV_P_ void *data) EV_THROW
2518{
2519 userdata = data;
2520}
2521
2522void *
2523ev_userdata (EV_P) EV_THROW
2524{
2525 return userdata;
2526}
2527
2528void
2529ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2530{
2531 invoke_cb = invoke_pending_cb;
2532}
2533
2534void
2535ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2536{
2537 release_cb = release;
2538 acquire_cb = acquire;
2539}
2540#endif
2541
2542/* initialise a loop structure, must be zero-initialised */
921static void noinline 2543static void noinline ecb_cold
922loop_init (EV_P_ unsigned int flags) 2544loop_init (EV_P_ unsigned int flags) EV_THROW
923{ 2545{
924 if (!backend) 2546 if (!backend)
925 { 2547 {
2548 origflags = flags;
2549
2550#if EV_USE_REALTIME
2551 if (!have_realtime)
2552 {
2553 struct timespec ts;
2554
2555 if (!clock_gettime (CLOCK_REALTIME, &ts))
2556 have_realtime = 1;
2557 }
2558#endif
2559
926#if EV_USE_MONOTONIC 2560#if EV_USE_MONOTONIC
2561 if (!have_monotonic)
927 { 2562 {
928 struct timespec ts; 2563 struct timespec ts;
2564
929 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2565 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
930 have_monotonic = 1; 2566 have_monotonic = 1;
931 } 2567 }
932#endif 2568#endif
933
934 ev_rt_now = ev_time ();
935 mn_now = get_clock ();
936 now_floor = mn_now;
937 rtmn_diff = ev_rt_now - mn_now;
938 2569
939 /* pid check not overridable via env */ 2570 /* pid check not overridable via env */
940#ifndef _WIN32 2571#ifndef _WIN32
941 if (flags & EVFLAG_FORKCHECK) 2572 if (flags & EVFLAG_FORKCHECK)
942 curpid = getpid (); 2573 curpid = getpid ();
945 if (!(flags & EVFLAG_NOENV) 2576 if (!(flags & EVFLAG_NOENV)
946 && !enable_secure () 2577 && !enable_secure ()
947 && getenv ("LIBEV_FLAGS")) 2578 && getenv ("LIBEV_FLAGS"))
948 flags = atoi (getenv ("LIBEV_FLAGS")); 2579 flags = atoi (getenv ("LIBEV_FLAGS"));
949 2580
950 if (!(flags & 0x0000ffffUL)) 2581 ev_rt_now = ev_time ();
2582 mn_now = get_clock ();
2583 now_floor = mn_now;
2584 rtmn_diff = ev_rt_now - mn_now;
2585#if EV_FEATURE_API
2586 invoke_cb = ev_invoke_pending;
2587#endif
2588
2589 io_blocktime = 0.;
2590 timeout_blocktime = 0.;
2591 backend = 0;
2592 backend_fd = -1;
2593 sig_pending = 0;
2594#if EV_ASYNC_ENABLE
2595 async_pending = 0;
2596#endif
2597 pipe_write_skipped = 0;
2598 pipe_write_wanted = 0;
2599 evpipe [0] = -1;
2600 evpipe [1] = -1;
2601#if EV_USE_INOTIFY
2602 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2603#endif
2604#if EV_USE_SIGNALFD
2605 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2606#endif
2607
2608 if (!(flags & EVBACKEND_MASK))
951 flags |= ev_recommended_backends (); 2609 flags |= ev_recommended_backends ();
952 2610
953 backend = 0;
954 backend_fd = -1;
955#if EV_USE_INOTIFY 2611#if EV_USE_IOCP
956 fs_fd = -2; 2612 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
957#endif 2613#endif
958
959#if EV_USE_PORT 2614#if EV_USE_PORT
960 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2615 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
961#endif 2616#endif
962#if EV_USE_KQUEUE 2617#if EV_USE_KQUEUE
963 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2618 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
970#endif 2625#endif
971#if EV_USE_SELECT 2626#if EV_USE_SELECT
972 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2627 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
973#endif 2628#endif
974 2629
2630 ev_prepare_init (&pending_w, pendingcb);
2631
2632#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
975 ev_init (&sigev, sigcb); 2633 ev_init (&pipe_w, pipecb);
976 ev_set_priority (&sigev, EV_MAXPRI); 2634 ev_set_priority (&pipe_w, EV_MAXPRI);
2635#endif
977 } 2636 }
978} 2637}
979 2638
980static void noinline 2639/* free up a loop structure */
2640void ecb_cold
981loop_destroy (EV_P) 2641ev_loop_destroy (EV_P)
982{ 2642{
983 int i; 2643 int i;
2644
2645#if EV_MULTIPLICITY
2646 /* mimic free (0) */
2647 if (!EV_A)
2648 return;
2649#endif
2650
2651#if EV_CLEANUP_ENABLE
2652 /* queue cleanup watchers (and execute them) */
2653 if (expect_false (cleanupcnt))
2654 {
2655 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2656 EV_INVOKE_PENDING;
2657 }
2658#endif
2659
2660#if EV_CHILD_ENABLE
2661 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2662 {
2663 ev_ref (EV_A); /* child watcher */
2664 ev_signal_stop (EV_A_ &childev);
2665 }
2666#endif
2667
2668 if (ev_is_active (&pipe_w))
2669 {
2670 /*ev_ref (EV_A);*/
2671 /*ev_io_stop (EV_A_ &pipe_w);*/
2672
2673 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2674 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2675 }
2676
2677#if EV_USE_SIGNALFD
2678 if (ev_is_active (&sigfd_w))
2679 close (sigfd);
2680#endif
984 2681
985#if EV_USE_INOTIFY 2682#if EV_USE_INOTIFY
986 if (fs_fd >= 0) 2683 if (fs_fd >= 0)
987 close (fs_fd); 2684 close (fs_fd);
988#endif 2685#endif
989 2686
990 if (backend_fd >= 0) 2687 if (backend_fd >= 0)
991 close (backend_fd); 2688 close (backend_fd);
992 2689
2690#if EV_USE_IOCP
2691 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2692#endif
993#if EV_USE_PORT 2693#if EV_USE_PORT
994 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2694 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
995#endif 2695#endif
996#if EV_USE_KQUEUE 2696#if EV_USE_KQUEUE
997 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2697 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1012#if EV_IDLE_ENABLE 2712#if EV_IDLE_ENABLE
1013 array_free (idle, [i]); 2713 array_free (idle, [i]);
1014#endif 2714#endif
1015 } 2715 }
1016 2716
2717 ev_free (anfds); anfds = 0; anfdmax = 0;
2718
1017 /* have to use the microsoft-never-gets-it-right macro */ 2719 /* have to use the microsoft-never-gets-it-right macro */
2720 array_free (rfeed, EMPTY);
1018 array_free (fdchange, EMPTY); 2721 array_free (fdchange, EMPTY);
1019 array_free (timer, EMPTY); 2722 array_free (timer, EMPTY);
1020#if EV_PERIODIC_ENABLE 2723#if EV_PERIODIC_ENABLE
1021 array_free (periodic, EMPTY); 2724 array_free (periodic, EMPTY);
1022#endif 2725#endif
2726#if EV_FORK_ENABLE
2727 array_free (fork, EMPTY);
2728#endif
2729#if EV_CLEANUP_ENABLE
2730 array_free (cleanup, EMPTY);
2731#endif
1023 array_free (prepare, EMPTY); 2732 array_free (prepare, EMPTY);
1024 array_free (check, EMPTY); 2733 array_free (check, EMPTY);
2734#if EV_ASYNC_ENABLE
2735 array_free (async, EMPTY);
2736#endif
1025 2737
1026 backend = 0; 2738 backend = 0;
1027}
1028 2739
2740#if EV_MULTIPLICITY
2741 if (ev_is_default_loop (EV_A))
2742#endif
2743 ev_default_loop_ptr = 0;
2744#if EV_MULTIPLICITY
2745 else
2746 ev_free (EV_A);
2747#endif
2748}
2749
2750#if EV_USE_INOTIFY
1029void inline_size infy_fork (EV_P); 2751inline_size void infy_fork (EV_P);
2752#endif
1030 2753
1031void inline_size 2754inline_size void
1032loop_fork (EV_P) 2755loop_fork (EV_P)
1033{ 2756{
1034#if EV_USE_PORT 2757#if EV_USE_PORT
1035 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2758 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1036#endif 2759#endif
1042#endif 2765#endif
1043#if EV_USE_INOTIFY 2766#if EV_USE_INOTIFY
1044 infy_fork (EV_A); 2767 infy_fork (EV_A);
1045#endif 2768#endif
1046 2769
2770#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1047 if (ev_is_active (&sigev)) 2771 if (ev_is_active (&pipe_w))
1048 { 2772 {
1049 /* default loop */ 2773 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1050 2774
1051 ev_ref (EV_A); 2775 ev_ref (EV_A);
1052 ev_io_stop (EV_A_ &sigev); 2776 ev_io_stop (EV_A_ &pipe_w);
1053 close (sigpipe [0]);
1054 close (sigpipe [1]);
1055 2777
1056 while (pipe (sigpipe)) 2778 if (evpipe [0] >= 0)
1057 syserr ("(libev) error creating pipe"); 2779 EV_WIN32_CLOSE_FD (evpipe [0]);
1058 2780
1059 siginit (EV_A); 2781 evpipe_init (EV_A);
2782 /* iterate over everything, in case we missed something before */
2783 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1060 } 2784 }
2785#endif
1061 2786
1062 postfork = 0; 2787 postfork = 0;
1063} 2788}
1064 2789
1065#if EV_MULTIPLICITY 2790#if EV_MULTIPLICITY
2791
1066struct ev_loop * 2792struct ev_loop * ecb_cold
1067ev_loop_new (unsigned int flags) 2793ev_loop_new (unsigned int flags) EV_THROW
1068{ 2794{
1069 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2795 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1070 2796
1071 memset (loop, 0, sizeof (struct ev_loop)); 2797 memset (EV_A, 0, sizeof (struct ev_loop));
1072
1073 loop_init (EV_A_ flags); 2798 loop_init (EV_A_ flags);
1074 2799
1075 if (ev_backend (EV_A)) 2800 if (ev_backend (EV_A))
1076 return loop; 2801 return EV_A;
1077 2802
2803 ev_free (EV_A);
1078 return 0; 2804 return 0;
1079} 2805}
1080 2806
1081void 2807#endif /* multiplicity */
1082ev_loop_destroy (EV_P)
1083{
1084 loop_destroy (EV_A);
1085 ev_free (loop);
1086}
1087 2808
1088void 2809#if EV_VERIFY
1089ev_loop_fork (EV_P) 2810static void noinline ecb_cold
2811verify_watcher (EV_P_ W w)
1090{ 2812{
1091 postfork = 1; 2813 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1092}
1093 2814
2815 if (w->pending)
2816 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2817}
2818
2819static void noinline ecb_cold
2820verify_heap (EV_P_ ANHE *heap, int N)
2821{
2822 int i;
2823
2824 for (i = HEAP0; i < N + HEAP0; ++i)
2825 {
2826 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2827 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2828 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2829
2830 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2831 }
2832}
2833
2834static void noinline ecb_cold
2835array_verify (EV_P_ W *ws, int cnt)
2836{
2837 while (cnt--)
2838 {
2839 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2840 verify_watcher (EV_A_ ws [cnt]);
2841 }
2842}
2843#endif
2844
2845#if EV_FEATURE_API
2846void ecb_cold
2847ev_verify (EV_P) EV_THROW
2848{
2849#if EV_VERIFY
2850 int i;
2851 WL w, w2;
2852
2853 assert (activecnt >= -1);
2854
2855 assert (fdchangemax >= fdchangecnt);
2856 for (i = 0; i < fdchangecnt; ++i)
2857 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2858
2859 assert (anfdmax >= 0);
2860 for (i = 0; i < anfdmax; ++i)
2861 {
2862 int j = 0;
2863
2864 for (w = w2 = anfds [i].head; w; w = w->next)
2865 {
2866 verify_watcher (EV_A_ (W)w);
2867
2868 if (j++ & 1)
2869 {
2870 assert (("libev: io watcher list contains a loop", w != w2));
2871 w2 = w2->next;
2872 }
2873
2874 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2875 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2876 }
2877 }
2878
2879 assert (timermax >= timercnt);
2880 verify_heap (EV_A_ timers, timercnt);
2881
2882#if EV_PERIODIC_ENABLE
2883 assert (periodicmax >= periodiccnt);
2884 verify_heap (EV_A_ periodics, periodiccnt);
2885#endif
2886
2887 for (i = NUMPRI; i--; )
2888 {
2889 assert (pendingmax [i] >= pendingcnt [i]);
2890#if EV_IDLE_ENABLE
2891 assert (idleall >= 0);
2892 assert (idlemax [i] >= idlecnt [i]);
2893 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2894#endif
2895 }
2896
2897#if EV_FORK_ENABLE
2898 assert (forkmax >= forkcnt);
2899 array_verify (EV_A_ (W *)forks, forkcnt);
2900#endif
2901
2902#if EV_CLEANUP_ENABLE
2903 assert (cleanupmax >= cleanupcnt);
2904 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2905#endif
2906
2907#if EV_ASYNC_ENABLE
2908 assert (asyncmax >= asynccnt);
2909 array_verify (EV_A_ (W *)asyncs, asynccnt);
2910#endif
2911
2912#if EV_PREPARE_ENABLE
2913 assert (preparemax >= preparecnt);
2914 array_verify (EV_A_ (W *)prepares, preparecnt);
2915#endif
2916
2917#if EV_CHECK_ENABLE
2918 assert (checkmax >= checkcnt);
2919 array_verify (EV_A_ (W *)checks, checkcnt);
2920#endif
2921
2922# if 0
2923#if EV_CHILD_ENABLE
2924 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2925 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2926#endif
2927# endif
2928#endif
2929}
1094#endif 2930#endif
1095 2931
1096#if EV_MULTIPLICITY 2932#if EV_MULTIPLICITY
1097struct ev_loop * 2933struct ev_loop * ecb_cold
1098ev_default_loop_init (unsigned int flags)
1099#else 2934#else
1100int 2935int
2936#endif
1101ev_default_loop (unsigned int flags) 2937ev_default_loop (unsigned int flags) EV_THROW
1102#endif
1103{ 2938{
1104 if (sigpipe [0] == sigpipe [1])
1105 if (pipe (sigpipe))
1106 return 0;
1107
1108 if (!ev_default_loop_ptr) 2939 if (!ev_default_loop_ptr)
1109 { 2940 {
1110#if EV_MULTIPLICITY 2941#if EV_MULTIPLICITY
1111 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2942 EV_P = ev_default_loop_ptr = &default_loop_struct;
1112#else 2943#else
1113 ev_default_loop_ptr = 1; 2944 ev_default_loop_ptr = 1;
1114#endif 2945#endif
1115 2946
1116 loop_init (EV_A_ flags); 2947 loop_init (EV_A_ flags);
1117 2948
1118 if (ev_backend (EV_A)) 2949 if (ev_backend (EV_A))
1119 { 2950 {
1120 siginit (EV_A); 2951#if EV_CHILD_ENABLE
1121
1122#ifndef _WIN32
1123 ev_signal_init (&childev, childcb, SIGCHLD); 2952 ev_signal_init (&childev, childcb, SIGCHLD);
1124 ev_set_priority (&childev, EV_MAXPRI); 2953 ev_set_priority (&childev, EV_MAXPRI);
1125 ev_signal_start (EV_A_ &childev); 2954 ev_signal_start (EV_A_ &childev);
1126 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2955 ev_unref (EV_A); /* child watcher should not keep loop alive */
1127#endif 2956#endif
1132 2961
1133 return ev_default_loop_ptr; 2962 return ev_default_loop_ptr;
1134} 2963}
1135 2964
1136void 2965void
1137ev_default_destroy (void) 2966ev_loop_fork (EV_P) EV_THROW
1138{ 2967{
1139#if EV_MULTIPLICITY
1140 struct ev_loop *loop = ev_default_loop_ptr;
1141#endif
1142
1143#ifndef _WIN32
1144 ev_ref (EV_A); /* child watcher */
1145 ev_signal_stop (EV_A_ &childev);
1146#endif
1147
1148 ev_ref (EV_A); /* signal watcher */
1149 ev_io_stop (EV_A_ &sigev);
1150
1151 close (sigpipe [0]); sigpipe [0] = 0;
1152 close (sigpipe [1]); sigpipe [1] = 0;
1153
1154 loop_destroy (EV_A);
1155}
1156
1157void
1158ev_default_fork (void)
1159{
1160#if EV_MULTIPLICITY
1161 struct ev_loop *loop = ev_default_loop_ptr;
1162#endif
1163
1164 if (backend)
1165 postfork = 1; 2968 postfork = 1;
1166} 2969}
1167 2970
1168/*****************************************************************************/ 2971/*****************************************************************************/
1169 2972
1170void 2973void
1171ev_invoke (EV_P_ void *w, int revents) 2974ev_invoke (EV_P_ void *w, int revents)
1172{ 2975{
1173 EV_CB_INVOKE ((W)w, revents); 2976 EV_CB_INVOKE ((W)w, revents);
1174} 2977}
1175 2978
1176void inline_speed 2979unsigned int
1177call_pending (EV_P) 2980ev_pending_count (EV_P) EV_THROW
1178{ 2981{
1179 int pri; 2982 int pri;
2983 unsigned int count = 0;
1180 2984
1181 for (pri = NUMPRI; pri--; ) 2985 for (pri = NUMPRI; pri--; )
2986 count += pendingcnt [pri];
2987
2988 return count;
2989}
2990
2991void noinline
2992ev_invoke_pending (EV_P)
2993{
2994 pendingpri = NUMPRI;
2995
2996 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2997 {
2998 --pendingpri;
2999
1182 while (pendingcnt [pri]) 3000 while (pendingcnt [pendingpri])
1183 {
1184 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1185
1186 if (expect_true (p->w))
1187 {
1188 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1189
1190 p->w->pending = 0;
1191 EV_CB_INVOKE (p->w, p->events);
1192 }
1193 }
1194}
1195
1196void inline_size
1197timers_reify (EV_P)
1198{
1199 while (timercnt && ((WT)timers [0])->at <= mn_now)
1200 {
1201 ev_timer *w = timers [0];
1202
1203 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1204
1205 /* first reschedule or stop timer */
1206 if (w->repeat)
1207 { 3001 {
1208 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 3002 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1209 3003
1210 ((WT)w)->at += w->repeat; 3004 p->w->pending = 0;
1211 if (((WT)w)->at < mn_now) 3005 EV_CB_INVOKE (p->w, p->events);
1212 ((WT)w)->at = mn_now; 3006 EV_FREQUENT_CHECK;
1213
1214 downheap ((WT *)timers, timercnt, 0);
1215 } 3007 }
1216 else
1217 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1218
1219 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1220 }
1221}
1222
1223#if EV_PERIODIC_ENABLE
1224void inline_size
1225periodics_reify (EV_P)
1226{
1227 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1228 { 3008 }
1229 ev_periodic *w = periodics [0];
1230
1231 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1232
1233 /* first reschedule or stop timer */
1234 if (w->reschedule_cb)
1235 {
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1237 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1238 downheap ((WT *)periodics, periodiccnt, 0);
1239 }
1240 else if (w->interval)
1241 {
1242 ((WT)w)->at = w->offset + floor ((ev_rt_now - w->offset) / w->interval + 1.) * w->interval;
1243 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1244 downheap ((WT *)periodics, periodiccnt, 0);
1245 }
1246 else
1247 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1248
1249 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1250 }
1251} 3009}
1252
1253static void noinline
1254periodics_reschedule (EV_P)
1255{
1256 int i;
1257
1258 /* adjust periodics after time jump */
1259 for (i = 0; i < periodiccnt; ++i)
1260 {
1261 ev_periodic *w = periodics [i];
1262
1263 if (w->reschedule_cb)
1264 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1265 else if (w->interval)
1266 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1267 }
1268
1269 /* now rebuild the heap */
1270 for (i = periodiccnt >> 1; i--; )
1271 downheap ((WT *)periodics, periodiccnt, i);
1272}
1273#endif
1274 3010
1275#if EV_IDLE_ENABLE 3011#if EV_IDLE_ENABLE
1276void inline_size 3012/* make idle watchers pending. this handles the "call-idle */
3013/* only when higher priorities are idle" logic */
3014inline_size void
1277idle_reify (EV_P) 3015idle_reify (EV_P)
1278{ 3016{
1279 if (expect_false (idleall)) 3017 if (expect_false (idleall))
1280 { 3018 {
1281 int pri; 3019 int pri;
1293 } 3031 }
1294 } 3032 }
1295} 3033}
1296#endif 3034#endif
1297 3035
1298int inline_size 3036/* make timers pending */
1299time_update_monotonic (EV_P) 3037inline_size void
3038timers_reify (EV_P)
1300{ 3039{
3040 EV_FREQUENT_CHECK;
3041
3042 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3043 {
3044 do
3045 {
3046 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3047
3048 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3049
3050 /* first reschedule or stop timer */
3051 if (w->repeat)
3052 {
3053 ev_at (w) += w->repeat;
3054 if (ev_at (w) < mn_now)
3055 ev_at (w) = mn_now;
3056
3057 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3058
3059 ANHE_at_cache (timers [HEAP0]);
3060 downheap (timers, timercnt, HEAP0);
3061 }
3062 else
3063 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3064
3065 EV_FREQUENT_CHECK;
3066 feed_reverse (EV_A_ (W)w);
3067 }
3068 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3069
3070 feed_reverse_done (EV_A_ EV_TIMER);
3071 }
3072}
3073
3074#if EV_PERIODIC_ENABLE
3075
3076static void noinline
3077periodic_recalc (EV_P_ ev_periodic *w)
3078{
3079 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3080 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3081
3082 /* the above almost always errs on the low side */
3083 while (at <= ev_rt_now)
3084 {
3085 ev_tstamp nat = at + w->interval;
3086
3087 /* when resolution fails us, we use ev_rt_now */
3088 if (expect_false (nat == at))
3089 {
3090 at = ev_rt_now;
3091 break;
3092 }
3093
3094 at = nat;
3095 }
3096
3097 ev_at (w) = at;
3098}
3099
3100/* make periodics pending */
3101inline_size void
3102periodics_reify (EV_P)
3103{
3104 EV_FREQUENT_CHECK;
3105
3106 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3107 {
3108 do
3109 {
3110 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3111
3112 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3113
3114 /* first reschedule or stop timer */
3115 if (w->reschedule_cb)
3116 {
3117 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3118
3119 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3120
3121 ANHE_at_cache (periodics [HEAP0]);
3122 downheap (periodics, periodiccnt, HEAP0);
3123 }
3124 else if (w->interval)
3125 {
3126 periodic_recalc (EV_A_ w);
3127 ANHE_at_cache (periodics [HEAP0]);
3128 downheap (periodics, periodiccnt, HEAP0);
3129 }
3130 else
3131 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3132
3133 EV_FREQUENT_CHECK;
3134 feed_reverse (EV_A_ (W)w);
3135 }
3136 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3137
3138 feed_reverse_done (EV_A_ EV_PERIODIC);
3139 }
3140}
3141
3142/* simply recalculate all periodics */
3143/* TODO: maybe ensure that at least one event happens when jumping forward? */
3144static void noinline ecb_cold
3145periodics_reschedule (EV_P)
3146{
3147 int i;
3148
3149 /* adjust periodics after time jump */
3150 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3151 {
3152 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3153
3154 if (w->reschedule_cb)
3155 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3156 else if (w->interval)
3157 periodic_recalc (EV_A_ w);
3158
3159 ANHE_at_cache (periodics [i]);
3160 }
3161
3162 reheap (periodics, periodiccnt);
3163}
3164#endif
3165
3166/* adjust all timers by a given offset */
3167static void noinline ecb_cold
3168timers_reschedule (EV_P_ ev_tstamp adjust)
3169{
3170 int i;
3171
3172 for (i = 0; i < timercnt; ++i)
3173 {
3174 ANHE *he = timers + i + HEAP0;
3175 ANHE_w (*he)->at += adjust;
3176 ANHE_at_cache (*he);
3177 }
3178}
3179
3180/* fetch new monotonic and realtime times from the kernel */
3181/* also detect if there was a timejump, and act accordingly */
3182inline_speed void
3183time_update (EV_P_ ev_tstamp max_block)
3184{
3185#if EV_USE_MONOTONIC
3186 if (expect_true (have_monotonic))
3187 {
3188 int i;
3189 ev_tstamp odiff = rtmn_diff;
3190
1301 mn_now = get_clock (); 3191 mn_now = get_clock ();
1302 3192
3193 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
3194 /* interpolate in the meantime */
1303 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 3195 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1304 { 3196 {
1305 ev_rt_now = rtmn_diff + mn_now; 3197 ev_rt_now = rtmn_diff + mn_now;
1306 return 0; 3198 return;
1307 } 3199 }
1308 else 3200
1309 {
1310 now_floor = mn_now; 3201 now_floor = mn_now;
1311 ev_rt_now = ev_time (); 3202 ev_rt_now = ev_time ();
1312 return 1;
1313 }
1314}
1315 3203
1316void inline_size 3204 /* loop a few times, before making important decisions.
1317time_update (EV_P) 3205 * on the choice of "4": one iteration isn't enough,
1318{ 3206 * in case we get preempted during the calls to
1319 int i; 3207 * ev_time and get_clock. a second call is almost guaranteed
1320 3208 * to succeed in that case, though. and looping a few more times
1321#if EV_USE_MONOTONIC 3209 * doesn't hurt either as we only do this on time-jumps or
1322 if (expect_true (have_monotonic)) 3210 * in the unlikely event of having been preempted here.
1323 { 3211 */
1324 if (time_update_monotonic (EV_A)) 3212 for (i = 4; --i; )
1325 { 3213 {
1326 ev_tstamp odiff = rtmn_diff; 3214 ev_tstamp diff;
1327
1328 /* loop a few times, before making important decisions.
1329 * on the choice of "4": one iteration isn't enough,
1330 * in case we get preempted during the calls to
1331 * ev_time and get_clock. a second call is almost guaranteed
1332 * to succeed in that case, though. and looping a few more times
1333 * doesn't hurt either as we only do this on time-jumps or
1334 * in the unlikely event of having been preempted here.
1335 */
1336 for (i = 4; --i; )
1337 {
1338 rtmn_diff = ev_rt_now - mn_now; 3215 rtmn_diff = ev_rt_now - mn_now;
1339 3216
1340 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3217 diff = odiff - rtmn_diff;
3218
3219 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1341 return; /* all is well */ 3220 return; /* all is well */
1342 3221
1343 ev_rt_now = ev_time (); 3222 ev_rt_now = ev_time ();
1344 mn_now = get_clock (); 3223 mn_now = get_clock ();
1345 now_floor = mn_now; 3224 now_floor = mn_now;
1346 } 3225 }
1347 3226
3227 /* no timer adjustment, as the monotonic clock doesn't jump */
3228 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1348# if EV_PERIODIC_ENABLE 3229# if EV_PERIODIC_ENABLE
1349 periodics_reschedule (EV_A); 3230 periodics_reschedule (EV_A);
1350# endif 3231# endif
1351 /* no timer adjustment, as the monotonic clock doesn't jump */
1352 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1353 }
1354 } 3232 }
1355 else 3233 else
1356#endif 3234#endif
1357 { 3235 {
1358 ev_rt_now = ev_time (); 3236 ev_rt_now = ev_time ();
1359 3237
1360 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 3238 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1361 { 3239 {
3240 /* adjust timers. this is easy, as the offset is the same for all of them */
3241 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1362#if EV_PERIODIC_ENABLE 3242#if EV_PERIODIC_ENABLE
1363 periodics_reschedule (EV_A); 3243 periodics_reschedule (EV_A);
1364#endif 3244#endif
1365
1366 /* adjust timers. this is easy, as the offset is the same for all of them */
1367 for (i = 0; i < timercnt; ++i)
1368 ((WT)timers [i])->at += ev_rt_now - mn_now;
1369 } 3245 }
1370 3246
1371 mn_now = ev_rt_now; 3247 mn_now = ev_rt_now;
1372 } 3248 }
1373} 3249}
1374 3250
1375void 3251int
1376ev_ref (EV_P)
1377{
1378 ++activecnt;
1379}
1380
1381void
1382ev_unref (EV_P)
1383{
1384 --activecnt;
1385}
1386
1387static int loop_done;
1388
1389void
1390ev_loop (EV_P_ int flags) 3252ev_run (EV_P_ int flags)
1391{ 3253{
1392 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 3254#if EV_FEATURE_API
1393 ? EVUNLOOP_ONE 3255 ++loop_depth;
1394 : EVUNLOOP_CANCEL; 3256#endif
1395 3257
3258 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3259
3260 loop_done = EVBREAK_CANCEL;
3261
1396 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3262 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1397 3263
1398 do 3264 do
1399 { 3265 {
3266#if EV_VERIFY >= 2
3267 ev_verify (EV_A);
3268#endif
3269
1400#ifndef _WIN32 3270#ifndef _WIN32
1401 if (expect_false (curpid)) /* penalise the forking check even more */ 3271 if (expect_false (curpid)) /* penalise the forking check even more */
1402 if (expect_false (getpid () != curpid)) 3272 if (expect_false (getpid () != curpid))
1403 { 3273 {
1404 curpid = getpid (); 3274 curpid = getpid ();
1410 /* we might have forked, so queue fork handlers */ 3280 /* we might have forked, so queue fork handlers */
1411 if (expect_false (postfork)) 3281 if (expect_false (postfork))
1412 if (forkcnt) 3282 if (forkcnt)
1413 { 3283 {
1414 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3284 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1415 call_pending (EV_A); 3285 EV_INVOKE_PENDING;
1416 } 3286 }
1417#endif 3287#endif
1418 3288
3289#if EV_PREPARE_ENABLE
1419 /* queue prepare watchers (and execute them) */ 3290 /* queue prepare watchers (and execute them) */
1420 if (expect_false (preparecnt)) 3291 if (expect_false (preparecnt))
1421 { 3292 {
1422 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3293 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1423 call_pending (EV_A); 3294 EV_INVOKE_PENDING;
1424 } 3295 }
3296#endif
1425 3297
1426 if (expect_false (!activecnt)) 3298 if (expect_false (loop_done))
1427 break; 3299 break;
1428 3300
1429 /* we might have forked, so reify kernel state if necessary */ 3301 /* we might have forked, so reify kernel state if necessary */
1430 if (expect_false (postfork)) 3302 if (expect_false (postfork))
1431 loop_fork (EV_A); 3303 loop_fork (EV_A);
1433 /* update fd-related kernel structures */ 3305 /* update fd-related kernel structures */
1434 fd_reify (EV_A); 3306 fd_reify (EV_A);
1435 3307
1436 /* calculate blocking time */ 3308 /* calculate blocking time */
1437 { 3309 {
1438 ev_tstamp block; 3310 ev_tstamp waittime = 0.;
3311 ev_tstamp sleeptime = 0.;
1439 3312
1440 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 3313 /* remember old timestamp for io_blocktime calculation */
1441 block = 0.; /* do not block at all */ 3314 ev_tstamp prev_mn_now = mn_now;
1442 else 3315
3316 /* update time to cancel out callback processing overhead */
3317 time_update (EV_A_ 1e100);
3318
3319 /* from now on, we want a pipe-wake-up */
3320 pipe_write_wanted = 1;
3321
3322 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3323
3324 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1443 { 3325 {
1444 /* update time to cancel out callback processing overhead */
1445#if EV_USE_MONOTONIC
1446 if (expect_true (have_monotonic))
1447 time_update_monotonic (EV_A);
1448 else
1449#endif
1450 {
1451 ev_rt_now = ev_time ();
1452 mn_now = ev_rt_now;
1453 }
1454
1455 block = MAX_BLOCKTIME; 3326 waittime = MAX_BLOCKTIME;
1456 3327
1457 if (timercnt) 3328 if (timercnt)
1458 { 3329 {
1459 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3330 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1460 if (block > to) block = to; 3331 if (waittime > to) waittime = to;
1461 } 3332 }
1462 3333
1463#if EV_PERIODIC_ENABLE 3334#if EV_PERIODIC_ENABLE
1464 if (periodiccnt) 3335 if (periodiccnt)
1465 { 3336 {
1466 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3337 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1467 if (block > to) block = to; 3338 if (waittime > to) waittime = to;
1468 } 3339 }
1469#endif 3340#endif
1470 3341
3342 /* don't let timeouts decrease the waittime below timeout_blocktime */
3343 if (expect_false (waittime < timeout_blocktime))
3344 waittime = timeout_blocktime;
3345
3346 /* at this point, we NEED to wait, so we have to ensure */
3347 /* to pass a minimum nonzero value to the backend */
3348 if (expect_false (waittime < backend_mintime))
3349 waittime = backend_mintime;
3350
3351 /* extra check because io_blocktime is commonly 0 */
1471 if (expect_false (block < 0.)) block = 0.; 3352 if (expect_false (io_blocktime))
3353 {
3354 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3355
3356 if (sleeptime > waittime - backend_mintime)
3357 sleeptime = waittime - backend_mintime;
3358
3359 if (expect_true (sleeptime > 0.))
3360 {
3361 ev_sleep (sleeptime);
3362 waittime -= sleeptime;
3363 }
3364 }
1472 } 3365 }
1473 3366
3367#if EV_FEATURE_API
1474 ++loop_count; 3368 ++loop_count;
3369#endif
3370 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1475 backend_poll (EV_A_ block); 3371 backend_poll (EV_A_ waittime);
3372 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3373
3374 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3375
3376 ECB_MEMORY_FENCE_ACQUIRE;
3377 if (pipe_write_skipped)
3378 {
3379 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3380 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3381 }
3382
3383
3384 /* update ev_rt_now, do magic */
3385 time_update (EV_A_ waittime + sleeptime);
1476 } 3386 }
1477
1478 /* update ev_rt_now, do magic */
1479 time_update (EV_A);
1480 3387
1481 /* queue pending timers and reschedule them */ 3388 /* queue pending timers and reschedule them */
1482 timers_reify (EV_A); /* relative timers called last */ 3389 timers_reify (EV_A); /* relative timers called last */
1483#if EV_PERIODIC_ENABLE 3390#if EV_PERIODIC_ENABLE
1484 periodics_reify (EV_A); /* absolute timers called first */ 3391 periodics_reify (EV_A); /* absolute timers called first */
1487#if EV_IDLE_ENABLE 3394#if EV_IDLE_ENABLE
1488 /* queue idle watchers unless other events are pending */ 3395 /* queue idle watchers unless other events are pending */
1489 idle_reify (EV_A); 3396 idle_reify (EV_A);
1490#endif 3397#endif
1491 3398
3399#if EV_CHECK_ENABLE
1492 /* queue check watchers, to be executed first */ 3400 /* queue check watchers, to be executed first */
1493 if (expect_false (checkcnt)) 3401 if (expect_false (checkcnt))
1494 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3402 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3403#endif
1495 3404
1496 call_pending (EV_A); 3405 EV_INVOKE_PENDING;
1497
1498 } 3406 }
1499 while (expect_true (activecnt && !loop_done)); 3407 while (expect_true (
3408 activecnt
3409 && !loop_done
3410 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3411 ));
1500 3412
1501 if (loop_done == EVUNLOOP_ONE) 3413 if (loop_done == EVBREAK_ONE)
1502 loop_done = EVUNLOOP_CANCEL; 3414 loop_done = EVBREAK_CANCEL;
3415
3416#if EV_FEATURE_API
3417 --loop_depth;
3418#endif
3419
3420 return activecnt;
1503} 3421}
1504 3422
1505void 3423void
1506ev_unloop (EV_P_ int how) 3424ev_break (EV_P_ int how) EV_THROW
1507{ 3425{
1508 loop_done = how; 3426 loop_done = how;
1509} 3427}
1510 3428
3429void
3430ev_ref (EV_P) EV_THROW
3431{
3432 ++activecnt;
3433}
3434
3435void
3436ev_unref (EV_P) EV_THROW
3437{
3438 --activecnt;
3439}
3440
3441void
3442ev_now_update (EV_P) EV_THROW
3443{
3444 time_update (EV_A_ 1e100);
3445}
3446
3447void
3448ev_suspend (EV_P) EV_THROW
3449{
3450 ev_now_update (EV_A);
3451}
3452
3453void
3454ev_resume (EV_P) EV_THROW
3455{
3456 ev_tstamp mn_prev = mn_now;
3457
3458 ev_now_update (EV_A);
3459 timers_reschedule (EV_A_ mn_now - mn_prev);
3460#if EV_PERIODIC_ENABLE
3461 /* TODO: really do this? */
3462 periodics_reschedule (EV_A);
3463#endif
3464}
3465
1511/*****************************************************************************/ 3466/*****************************************************************************/
3467/* singly-linked list management, used when the expected list length is short */
1512 3468
1513void inline_size 3469inline_size void
1514wlist_add (WL *head, WL elem) 3470wlist_add (WL *head, WL elem)
1515{ 3471{
1516 elem->next = *head; 3472 elem->next = *head;
1517 *head = elem; 3473 *head = elem;
1518} 3474}
1519 3475
1520void inline_size 3476inline_size void
1521wlist_del (WL *head, WL elem) 3477wlist_del (WL *head, WL elem)
1522{ 3478{
1523 while (*head) 3479 while (*head)
1524 { 3480 {
1525 if (*head == elem) 3481 if (expect_true (*head == elem))
1526 { 3482 {
1527 *head = elem->next; 3483 *head = elem->next;
1528 return; 3484 break;
1529 } 3485 }
1530 3486
1531 head = &(*head)->next; 3487 head = &(*head)->next;
1532 } 3488 }
1533} 3489}
1534 3490
1535void inline_speed 3491/* internal, faster, version of ev_clear_pending */
3492inline_speed void
1536clear_pending (EV_P_ W w) 3493clear_pending (EV_P_ W w)
1537{ 3494{
1538 if (w->pending) 3495 if (w->pending)
1539 { 3496 {
1540 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3497 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1541 w->pending = 0; 3498 w->pending = 0;
1542 } 3499 }
1543} 3500}
1544 3501
1545int 3502int
1546ev_clear_pending (EV_P_ void *w) 3503ev_clear_pending (EV_P_ void *w) EV_THROW
1547{ 3504{
1548 W w_ = (W)w; 3505 W w_ = (W)w;
1549 int pending = w_->pending; 3506 int pending = w_->pending;
1550 3507
1551 if (expect_true (pending)) 3508 if (expect_true (pending))
1552 { 3509 {
1553 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3510 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3511 p->w = (W)&pending_w;
1554 w_->pending = 0; 3512 w_->pending = 0;
1555 p->w = 0;
1556 return p->events; 3513 return p->events;
1557 } 3514 }
1558 else 3515 else
1559 return 0; 3516 return 0;
1560} 3517}
1561 3518
1562void inline_size 3519inline_size void
1563pri_adjust (EV_P_ W w) 3520pri_adjust (EV_P_ W w)
1564{ 3521{
1565 int pri = w->priority; 3522 int pri = ev_priority (w);
1566 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3523 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1567 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3524 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1568 w->priority = pri; 3525 ev_set_priority (w, pri);
1569} 3526}
1570 3527
1571void inline_speed 3528inline_speed void
1572ev_start (EV_P_ W w, int active) 3529ev_start (EV_P_ W w, int active)
1573{ 3530{
1574 pri_adjust (EV_A_ w); 3531 pri_adjust (EV_A_ w);
1575 w->active = active; 3532 w->active = active;
1576 ev_ref (EV_A); 3533 ev_ref (EV_A);
1577} 3534}
1578 3535
1579void inline_size 3536inline_size void
1580ev_stop (EV_P_ W w) 3537ev_stop (EV_P_ W w)
1581{ 3538{
1582 ev_unref (EV_A); 3539 ev_unref (EV_A);
1583 w->active = 0; 3540 w->active = 0;
1584} 3541}
1585 3542
1586/*****************************************************************************/ 3543/*****************************************************************************/
1587 3544
1588void noinline 3545void noinline
1589ev_io_start (EV_P_ ev_io *w) 3546ev_io_start (EV_P_ ev_io *w) EV_THROW
1590{ 3547{
1591 int fd = w->fd; 3548 int fd = w->fd;
1592 3549
1593 if (expect_false (ev_is_active (w))) 3550 if (expect_false (ev_is_active (w)))
1594 return; 3551 return;
1595 3552
1596 assert (("ev_io_start called with negative fd", fd >= 0)); 3553 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3554 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3555
3556 EV_FREQUENT_CHECK;
1597 3557
1598 ev_start (EV_A_ (W)w, 1); 3558 ev_start (EV_A_ (W)w, 1);
1599 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3559 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1600 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3560 wlist_add (&anfds[fd].head, (WL)w);
1601 3561
1602 fd_change (EV_A_ fd); 3562 /* common bug, apparently */
3563 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3564
3565 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3566 w->events &= ~EV__IOFDSET;
3567
3568 EV_FREQUENT_CHECK;
1603} 3569}
1604 3570
1605void noinline 3571void noinline
1606ev_io_stop (EV_P_ ev_io *w) 3572ev_io_stop (EV_P_ ev_io *w) EV_THROW
1607{ 3573{
1608 clear_pending (EV_A_ (W)w); 3574 clear_pending (EV_A_ (W)w);
1609 if (expect_false (!ev_is_active (w))) 3575 if (expect_false (!ev_is_active (w)))
1610 return; 3576 return;
1611 3577
1612 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3578 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1613 3579
3580 EV_FREQUENT_CHECK;
3581
1614 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3582 wlist_del (&anfds[w->fd].head, (WL)w);
1615 ev_stop (EV_A_ (W)w); 3583 ev_stop (EV_A_ (W)w);
1616 3584
1617 fd_change (EV_A_ w->fd); 3585 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3586
3587 EV_FREQUENT_CHECK;
1618} 3588}
1619 3589
1620void noinline 3590void noinline
1621ev_timer_start (EV_P_ ev_timer *w) 3591ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1622{ 3592{
1623 if (expect_false (ev_is_active (w))) 3593 if (expect_false (ev_is_active (w)))
1624 return; 3594 return;
1625 3595
1626 ((WT)w)->at += mn_now; 3596 ev_at (w) += mn_now;
1627 3597
1628 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3598 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1629 3599
3600 EV_FREQUENT_CHECK;
3601
3602 ++timercnt;
1630 ev_start (EV_A_ (W)w, ++timercnt); 3603 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1631 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 3604 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1632 timers [timercnt - 1] = w; 3605 ANHE_w (timers [ev_active (w)]) = (WT)w;
1633 upheap ((WT *)timers, timercnt - 1); 3606 ANHE_at_cache (timers [ev_active (w)]);
3607 upheap (timers, ev_active (w));
1634 3608
3609 EV_FREQUENT_CHECK;
3610
1635 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3611 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1636} 3612}
1637 3613
1638void noinline 3614void noinline
1639ev_timer_stop (EV_P_ ev_timer *w) 3615ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1640{ 3616{
1641 clear_pending (EV_A_ (W)w); 3617 clear_pending (EV_A_ (W)w);
1642 if (expect_false (!ev_is_active (w))) 3618 if (expect_false (!ev_is_active (w)))
1643 return; 3619 return;
1644 3620
1645 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3621 EV_FREQUENT_CHECK;
1646 3622
1647 { 3623 {
1648 int active = ((W)w)->active; 3624 int active = ev_active (w);
1649 3625
3626 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3627
3628 --timercnt;
3629
1650 if (expect_true (--active < --timercnt)) 3630 if (expect_true (active < timercnt + HEAP0))
1651 { 3631 {
1652 timers [active] = timers [timercnt]; 3632 timers [active] = timers [timercnt + HEAP0];
1653 adjustheap ((WT *)timers, timercnt, active); 3633 adjustheap (timers, timercnt, active);
1654 } 3634 }
1655 } 3635 }
1656 3636
1657 ((WT)w)->at -= mn_now; 3637 ev_at (w) -= mn_now;
1658 3638
1659 ev_stop (EV_A_ (W)w); 3639 ev_stop (EV_A_ (W)w);
3640
3641 EV_FREQUENT_CHECK;
1660} 3642}
1661 3643
1662void noinline 3644void noinline
1663ev_timer_again (EV_P_ ev_timer *w) 3645ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1664{ 3646{
3647 EV_FREQUENT_CHECK;
3648
3649 clear_pending (EV_A_ (W)w);
3650
1665 if (ev_is_active (w)) 3651 if (ev_is_active (w))
1666 { 3652 {
1667 if (w->repeat) 3653 if (w->repeat)
1668 { 3654 {
1669 ((WT)w)->at = mn_now + w->repeat; 3655 ev_at (w) = mn_now + w->repeat;
3656 ANHE_at_cache (timers [ev_active (w)]);
1670 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3657 adjustheap (timers, timercnt, ev_active (w));
1671 } 3658 }
1672 else 3659 else
1673 ev_timer_stop (EV_A_ w); 3660 ev_timer_stop (EV_A_ w);
1674 } 3661 }
1675 else if (w->repeat) 3662 else if (w->repeat)
1676 { 3663 {
1677 w->at = w->repeat; 3664 ev_at (w) = w->repeat;
1678 ev_timer_start (EV_A_ w); 3665 ev_timer_start (EV_A_ w);
1679 } 3666 }
3667
3668 EV_FREQUENT_CHECK;
3669}
3670
3671ev_tstamp
3672ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3673{
3674 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1680} 3675}
1681 3676
1682#if EV_PERIODIC_ENABLE 3677#if EV_PERIODIC_ENABLE
1683void noinline 3678void noinline
1684ev_periodic_start (EV_P_ ev_periodic *w) 3679ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1685{ 3680{
1686 if (expect_false (ev_is_active (w))) 3681 if (expect_false (ev_is_active (w)))
1687 return; 3682 return;
1688 3683
1689 if (w->reschedule_cb) 3684 if (w->reschedule_cb)
1690 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3685 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1691 else if (w->interval) 3686 else if (w->interval)
1692 { 3687 {
1693 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3688 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1694 /* this formula differs from the one in periodic_reify because we do not always round up */ 3689 periodic_recalc (EV_A_ w);
1695 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1696 } 3690 }
1697 else 3691 else
1698 ((WT)w)->at = w->offset; 3692 ev_at (w) = w->offset;
1699 3693
3694 EV_FREQUENT_CHECK;
3695
3696 ++periodiccnt;
1700 ev_start (EV_A_ (W)w, ++periodiccnt); 3697 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1701 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 3698 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1702 periodics [periodiccnt - 1] = w; 3699 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1703 upheap ((WT *)periodics, periodiccnt - 1); 3700 ANHE_at_cache (periodics [ev_active (w)]);
3701 upheap (periodics, ev_active (w));
1704 3702
3703 EV_FREQUENT_CHECK;
3704
1705 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3705 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1706} 3706}
1707 3707
1708void noinline 3708void noinline
1709ev_periodic_stop (EV_P_ ev_periodic *w) 3709ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1710{ 3710{
1711 clear_pending (EV_A_ (W)w); 3711 clear_pending (EV_A_ (W)w);
1712 if (expect_false (!ev_is_active (w))) 3712 if (expect_false (!ev_is_active (w)))
1713 return; 3713 return;
1714 3714
1715 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3715 EV_FREQUENT_CHECK;
1716 3716
1717 { 3717 {
1718 int active = ((W)w)->active; 3718 int active = ev_active (w);
1719 3719
3720 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3721
3722 --periodiccnt;
3723
1720 if (expect_true (--active < --periodiccnt)) 3724 if (expect_true (active < periodiccnt + HEAP0))
1721 { 3725 {
1722 periodics [active] = periodics [periodiccnt]; 3726 periodics [active] = periodics [periodiccnt + HEAP0];
1723 adjustheap ((WT *)periodics, periodiccnt, active); 3727 adjustheap (periodics, periodiccnt, active);
1724 } 3728 }
1725 } 3729 }
1726 3730
1727 ev_stop (EV_A_ (W)w); 3731 ev_stop (EV_A_ (W)w);
3732
3733 EV_FREQUENT_CHECK;
1728} 3734}
1729 3735
1730void noinline 3736void noinline
1731ev_periodic_again (EV_P_ ev_periodic *w) 3737ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1732{ 3738{
1733 /* TODO: use adjustheap and recalculation */ 3739 /* TODO: use adjustheap and recalculation */
1734 ev_periodic_stop (EV_A_ w); 3740 ev_periodic_stop (EV_A_ w);
1735 ev_periodic_start (EV_A_ w); 3741 ev_periodic_start (EV_A_ w);
1736} 3742}
1738 3744
1739#ifndef SA_RESTART 3745#ifndef SA_RESTART
1740# define SA_RESTART 0 3746# define SA_RESTART 0
1741#endif 3747#endif
1742 3748
3749#if EV_SIGNAL_ENABLE
3750
1743void noinline 3751void noinline
1744ev_signal_start (EV_P_ ev_signal *w) 3752ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1745{ 3753{
1746#if EV_MULTIPLICITY
1747 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1748#endif
1749 if (expect_false (ev_is_active (w))) 3754 if (expect_false (ev_is_active (w)))
1750 return; 3755 return;
1751 3756
1752 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3757 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3758
3759#if EV_MULTIPLICITY
3760 assert (("libev: a signal must not be attached to two different loops",
3761 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3762
3763 signals [w->signum - 1].loop = EV_A;
3764 ECB_MEMORY_FENCE_RELEASE;
3765#endif
3766
3767 EV_FREQUENT_CHECK;
3768
3769#if EV_USE_SIGNALFD
3770 if (sigfd == -2)
3771 {
3772 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3773 if (sigfd < 0 && errno == EINVAL)
3774 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3775
3776 if (sigfd >= 0)
3777 {
3778 fd_intern (sigfd); /* doing it twice will not hurt */
3779
3780 sigemptyset (&sigfd_set);
3781
3782 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3783 ev_set_priority (&sigfd_w, EV_MAXPRI);
3784 ev_io_start (EV_A_ &sigfd_w);
3785 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3786 }
3787 }
3788
3789 if (sigfd >= 0)
3790 {
3791 /* TODO: check .head */
3792 sigaddset (&sigfd_set, w->signum);
3793 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3794
3795 signalfd (sigfd, &sigfd_set, 0);
3796 }
3797#endif
1753 3798
1754 ev_start (EV_A_ (W)w, 1); 3799 ev_start (EV_A_ (W)w, 1);
1755 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1756 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 3800 wlist_add (&signals [w->signum - 1].head, (WL)w);
1757 3801
1758 if (!((WL)w)->next) 3802 if (!((WL)w)->next)
3803# if EV_USE_SIGNALFD
3804 if (sigfd < 0) /*TODO*/
3805# endif
1759 { 3806 {
1760#if _WIN32 3807# ifdef _WIN32
3808 evpipe_init (EV_A);
3809
1761 signal (w->signum, sighandler); 3810 signal (w->signum, ev_sighandler);
1762#else 3811# else
1763 struct sigaction sa; 3812 struct sigaction sa;
3813
3814 evpipe_init (EV_A);
3815
1764 sa.sa_handler = sighandler; 3816 sa.sa_handler = ev_sighandler;
1765 sigfillset (&sa.sa_mask); 3817 sigfillset (&sa.sa_mask);
1766 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3818 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1767 sigaction (w->signum, &sa, 0); 3819 sigaction (w->signum, &sa, 0);
3820
3821 if (origflags & EVFLAG_NOSIGMASK)
3822 {
3823 sigemptyset (&sa.sa_mask);
3824 sigaddset (&sa.sa_mask, w->signum);
3825 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3826 }
1768#endif 3827#endif
1769 } 3828 }
3829
3830 EV_FREQUENT_CHECK;
1770} 3831}
1771 3832
1772void noinline 3833void noinline
1773ev_signal_stop (EV_P_ ev_signal *w) 3834ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1774{ 3835{
1775 clear_pending (EV_A_ (W)w); 3836 clear_pending (EV_A_ (W)w);
1776 if (expect_false (!ev_is_active (w))) 3837 if (expect_false (!ev_is_active (w)))
1777 return; 3838 return;
1778 3839
3840 EV_FREQUENT_CHECK;
3841
1779 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3842 wlist_del (&signals [w->signum - 1].head, (WL)w);
1780 ev_stop (EV_A_ (W)w); 3843 ev_stop (EV_A_ (W)w);
1781 3844
1782 if (!signals [w->signum - 1].head) 3845 if (!signals [w->signum - 1].head)
3846 {
3847#if EV_MULTIPLICITY
3848 signals [w->signum - 1].loop = 0; /* unattach from signal */
3849#endif
3850#if EV_USE_SIGNALFD
3851 if (sigfd >= 0)
3852 {
3853 sigset_t ss;
3854
3855 sigemptyset (&ss);
3856 sigaddset (&ss, w->signum);
3857 sigdelset (&sigfd_set, w->signum);
3858
3859 signalfd (sigfd, &sigfd_set, 0);
3860 sigprocmask (SIG_UNBLOCK, &ss, 0);
3861 }
3862 else
3863#endif
1783 signal (w->signum, SIG_DFL); 3864 signal (w->signum, SIG_DFL);
3865 }
3866
3867 EV_FREQUENT_CHECK;
1784} 3868}
3869
3870#endif
3871
3872#if EV_CHILD_ENABLE
1785 3873
1786void 3874void
1787ev_child_start (EV_P_ ev_child *w) 3875ev_child_start (EV_P_ ev_child *w) EV_THROW
1788{ 3876{
1789#if EV_MULTIPLICITY 3877#if EV_MULTIPLICITY
1790 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3878 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1791#endif 3879#endif
1792 if (expect_false (ev_is_active (w))) 3880 if (expect_false (ev_is_active (w)))
1793 return; 3881 return;
1794 3882
3883 EV_FREQUENT_CHECK;
3884
1795 ev_start (EV_A_ (W)w, 1); 3885 ev_start (EV_A_ (W)w, 1);
1796 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3886 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3887
3888 EV_FREQUENT_CHECK;
1797} 3889}
1798 3890
1799void 3891void
1800ev_child_stop (EV_P_ ev_child *w) 3892ev_child_stop (EV_P_ ev_child *w) EV_THROW
1801{ 3893{
1802 clear_pending (EV_A_ (W)w); 3894 clear_pending (EV_A_ (W)w);
1803 if (expect_false (!ev_is_active (w))) 3895 if (expect_false (!ev_is_active (w)))
1804 return; 3896 return;
1805 3897
3898 EV_FREQUENT_CHECK;
3899
1806 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3900 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1807 ev_stop (EV_A_ (W)w); 3901 ev_stop (EV_A_ (W)w);
3902
3903 EV_FREQUENT_CHECK;
1808} 3904}
3905
3906#endif
1809 3907
1810#if EV_STAT_ENABLE 3908#if EV_STAT_ENABLE
1811 3909
1812# ifdef _WIN32 3910# ifdef _WIN32
1813# undef lstat 3911# undef lstat
1814# define lstat(a,b) _stati64 (a,b) 3912# define lstat(a,b) _stati64 (a,b)
1815# endif 3913# endif
1816 3914
1817#define DEF_STAT_INTERVAL 5.0074891 3915#define DEF_STAT_INTERVAL 5.0074891
3916#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1818#define MIN_STAT_INTERVAL 0.1074891 3917#define MIN_STAT_INTERVAL 0.1074891
1819 3918
1820static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3919static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1821 3920
1822#if EV_USE_INOTIFY 3921#if EV_USE_INOTIFY
1823# define EV_INOTIFY_BUFSIZE 8192 3922
3923/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3924# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1824 3925
1825static void noinline 3926static void noinline
1826infy_add (EV_P_ ev_stat *w) 3927infy_add (EV_P_ ev_stat *w)
1827{ 3928{
1828 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3929 w->wd = inotify_add_watch (fs_fd, w->path,
3930 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3931 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3932 | IN_DONT_FOLLOW | IN_MASK_ADD);
1829 3933
1830 if (w->wd < 0) 3934 if (w->wd >= 0)
3935 {
3936 struct statfs sfs;
3937
3938 /* now local changes will be tracked by inotify, but remote changes won't */
3939 /* unless the filesystem is known to be local, we therefore still poll */
3940 /* also do poll on <2.6.25, but with normal frequency */
3941
3942 if (!fs_2625)
3943 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3944 else if (!statfs (w->path, &sfs)
3945 && (sfs.f_type == 0x1373 /* devfs */
3946 || sfs.f_type == 0x4006 /* fat */
3947 || sfs.f_type == 0x4d44 /* msdos */
3948 || sfs.f_type == 0xEF53 /* ext2/3 */
3949 || sfs.f_type == 0x72b6 /* jffs2 */
3950 || sfs.f_type == 0x858458f6 /* ramfs */
3951 || sfs.f_type == 0x5346544e /* ntfs */
3952 || sfs.f_type == 0x3153464a /* jfs */
3953 || sfs.f_type == 0x9123683e /* btrfs */
3954 || sfs.f_type == 0x52654973 /* reiser3 */
3955 || sfs.f_type == 0x01021994 /* tmpfs */
3956 || sfs.f_type == 0x58465342 /* xfs */))
3957 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3958 else
3959 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1831 { 3960 }
1832 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3961 else
3962 {
3963 /* can't use inotify, continue to stat */
3964 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1833 3965
1834 /* monitor some parent directory for speedup hints */ 3966 /* if path is not there, monitor some parent directory for speedup hints */
3967 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3968 /* but an efficiency issue only */
1835 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3969 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1836 { 3970 {
1837 char path [4096]; 3971 char path [4096];
1838 strcpy (path, w->path); 3972 strcpy (path, w->path);
1839 3973
1842 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3976 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1843 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3977 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1844 3978
1845 char *pend = strrchr (path, '/'); 3979 char *pend = strrchr (path, '/');
1846 3980
1847 if (!pend) 3981 if (!pend || pend == path)
1848 break; /* whoops, no '/', complain to your admin */ 3982 break;
1849 3983
1850 *pend = 0; 3984 *pend = 0;
1851 w->wd = inotify_add_watch (fs_fd, path, mask); 3985 w->wd = inotify_add_watch (fs_fd, path, mask);
1852 } 3986 }
1853 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3987 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1854 } 3988 }
1855 } 3989 }
1856 else
1857 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1858 3990
1859 if (w->wd >= 0) 3991 if (w->wd >= 0)
1860 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3992 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3993
3994 /* now re-arm timer, if required */
3995 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3996 ev_timer_again (EV_A_ &w->timer);
3997 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1861} 3998}
1862 3999
1863static void noinline 4000static void noinline
1864infy_del (EV_P_ ev_stat *w) 4001infy_del (EV_P_ ev_stat *w)
1865{ 4002{
1868 4005
1869 if (wd < 0) 4006 if (wd < 0)
1870 return; 4007 return;
1871 4008
1872 w->wd = -2; 4009 w->wd = -2;
1873 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 4010 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1874 wlist_del (&fs_hash [slot].head, (WL)w); 4011 wlist_del (&fs_hash [slot].head, (WL)w);
1875 4012
1876 /* remove this watcher, if others are watching it, they will rearm */ 4013 /* remove this watcher, if others are watching it, they will rearm */
1877 inotify_rm_watch (fs_fd, wd); 4014 inotify_rm_watch (fs_fd, wd);
1878} 4015}
1879 4016
1880static void noinline 4017static void noinline
1881infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 4018infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1882{ 4019{
1883 if (slot < 0) 4020 if (slot < 0)
1884 /* overflow, need to check for all hahs slots */ 4021 /* overflow, need to check for all hash slots */
1885 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4022 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1886 infy_wd (EV_A_ slot, wd, ev); 4023 infy_wd (EV_A_ slot, wd, ev);
1887 else 4024 else
1888 { 4025 {
1889 WL w_; 4026 WL w_;
1890 4027
1891 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4028 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1892 { 4029 {
1893 ev_stat *w = (ev_stat *)w_; 4030 ev_stat *w = (ev_stat *)w_;
1894 w_ = w_->next; /* lets us remove this watcher and all before it */ 4031 w_ = w_->next; /* lets us remove this watcher and all before it */
1895 4032
1896 if (w->wd == wd || wd == -1) 4033 if (w->wd == wd || wd == -1)
1897 { 4034 {
1898 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4035 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1899 { 4036 {
4037 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1900 w->wd = -1; 4038 w->wd = -1;
1901 infy_add (EV_A_ w); /* re-add, no matter what */ 4039 infy_add (EV_A_ w); /* re-add, no matter what */
1902 } 4040 }
1903 4041
1904 stat_timer_cb (EV_A_ &w->timer, 0); 4042 stat_timer_cb (EV_A_ &w->timer, 0);
1909 4047
1910static void 4048static void
1911infy_cb (EV_P_ ev_io *w, int revents) 4049infy_cb (EV_P_ ev_io *w, int revents)
1912{ 4050{
1913 char buf [EV_INOTIFY_BUFSIZE]; 4051 char buf [EV_INOTIFY_BUFSIZE];
1914 struct inotify_event *ev = (struct inotify_event *)buf;
1915 int ofs; 4052 int ofs;
1916 int len = read (fs_fd, buf, sizeof (buf)); 4053 int len = read (fs_fd, buf, sizeof (buf));
1917 4054
1918 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4055 for (ofs = 0; ofs < len; )
4056 {
4057 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1919 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4058 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4059 ofs += sizeof (struct inotify_event) + ev->len;
4060 }
1920} 4061}
1921 4062
1922void inline_size 4063inline_size void ecb_cold
4064ev_check_2625 (EV_P)
4065{
4066 /* kernels < 2.6.25 are borked
4067 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4068 */
4069 if (ev_linux_version () < 0x020619)
4070 return;
4071
4072 fs_2625 = 1;
4073}
4074
4075inline_size int
4076infy_newfd (void)
4077{
4078#if defined IN_CLOEXEC && defined IN_NONBLOCK
4079 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4080 if (fd >= 0)
4081 return fd;
4082#endif
4083 return inotify_init ();
4084}
4085
4086inline_size void
1923infy_init (EV_P) 4087infy_init (EV_P)
1924{ 4088{
1925 if (fs_fd != -2) 4089 if (fs_fd != -2)
1926 return; 4090 return;
1927 4091
4092 fs_fd = -1;
4093
4094 ev_check_2625 (EV_A);
4095
1928 fs_fd = inotify_init (); 4096 fs_fd = infy_newfd ();
1929 4097
1930 if (fs_fd >= 0) 4098 if (fs_fd >= 0)
1931 { 4099 {
4100 fd_intern (fs_fd);
1932 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4101 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1933 ev_set_priority (&fs_w, EV_MAXPRI); 4102 ev_set_priority (&fs_w, EV_MAXPRI);
1934 ev_io_start (EV_A_ &fs_w); 4103 ev_io_start (EV_A_ &fs_w);
4104 ev_unref (EV_A);
1935 } 4105 }
1936} 4106}
1937 4107
1938void inline_size 4108inline_size void
1939infy_fork (EV_P) 4109infy_fork (EV_P)
1940{ 4110{
1941 int slot; 4111 int slot;
1942 4112
1943 if (fs_fd < 0) 4113 if (fs_fd < 0)
1944 return; 4114 return;
1945 4115
4116 ev_ref (EV_A);
4117 ev_io_stop (EV_A_ &fs_w);
1946 close (fs_fd); 4118 close (fs_fd);
1947 fs_fd = inotify_init (); 4119 fs_fd = infy_newfd ();
1948 4120
4121 if (fs_fd >= 0)
4122 {
4123 fd_intern (fs_fd);
4124 ev_io_set (&fs_w, fs_fd, EV_READ);
4125 ev_io_start (EV_A_ &fs_w);
4126 ev_unref (EV_A);
4127 }
4128
1949 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4129 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1950 { 4130 {
1951 WL w_ = fs_hash [slot].head; 4131 WL w_ = fs_hash [slot].head;
1952 fs_hash [slot].head = 0; 4132 fs_hash [slot].head = 0;
1953 4133
1954 while (w_) 4134 while (w_)
1959 w->wd = -1; 4139 w->wd = -1;
1960 4140
1961 if (fs_fd >= 0) 4141 if (fs_fd >= 0)
1962 infy_add (EV_A_ w); /* re-add, no matter what */ 4142 infy_add (EV_A_ w); /* re-add, no matter what */
1963 else 4143 else
4144 {
4145 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4146 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1964 ev_timer_start (EV_A_ &w->timer); 4147 ev_timer_again (EV_A_ &w->timer);
4148 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4149 }
1965 } 4150 }
1966
1967 } 4151 }
1968} 4152}
1969 4153
4154#endif
4155
4156#ifdef _WIN32
4157# define EV_LSTAT(p,b) _stati64 (p, b)
4158#else
4159# define EV_LSTAT(p,b) lstat (p, b)
1970#endif 4160#endif
1971 4161
1972void 4162void
1973ev_stat_stat (EV_P_ ev_stat *w) 4163ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
1974{ 4164{
1975 if (lstat (w->path, &w->attr) < 0) 4165 if (lstat (w->path, &w->attr) < 0)
1976 w->attr.st_nlink = 0; 4166 w->attr.st_nlink = 0;
1977 else if (!w->attr.st_nlink) 4167 else if (!w->attr.st_nlink)
1978 w->attr.st_nlink = 1; 4168 w->attr.st_nlink = 1;
1981static void noinline 4171static void noinline
1982stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4172stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1983{ 4173{
1984 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4174 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1985 4175
1986 /* we copy this here each the time so that */ 4176 ev_statdata prev = w->attr;
1987 /* prev has the old value when the callback gets invoked */
1988 w->prev = w->attr;
1989 ev_stat_stat (EV_A_ w); 4177 ev_stat_stat (EV_A_ w);
1990 4178
1991 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4179 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1992 if ( 4180 if (
1993 w->prev.st_dev != w->attr.st_dev 4181 prev.st_dev != w->attr.st_dev
1994 || w->prev.st_ino != w->attr.st_ino 4182 || prev.st_ino != w->attr.st_ino
1995 || w->prev.st_mode != w->attr.st_mode 4183 || prev.st_mode != w->attr.st_mode
1996 || w->prev.st_nlink != w->attr.st_nlink 4184 || prev.st_nlink != w->attr.st_nlink
1997 || w->prev.st_uid != w->attr.st_uid 4185 || prev.st_uid != w->attr.st_uid
1998 || w->prev.st_gid != w->attr.st_gid 4186 || prev.st_gid != w->attr.st_gid
1999 || w->prev.st_rdev != w->attr.st_rdev 4187 || prev.st_rdev != w->attr.st_rdev
2000 || w->prev.st_size != w->attr.st_size 4188 || prev.st_size != w->attr.st_size
2001 || w->prev.st_atime != w->attr.st_atime 4189 || prev.st_atime != w->attr.st_atime
2002 || w->prev.st_mtime != w->attr.st_mtime 4190 || prev.st_mtime != w->attr.st_mtime
2003 || w->prev.st_ctime != w->attr.st_ctime 4191 || prev.st_ctime != w->attr.st_ctime
2004 ) { 4192 ) {
4193 /* we only update w->prev on actual differences */
4194 /* in case we test more often than invoke the callback, */
4195 /* to ensure that prev is always different to attr */
4196 w->prev = prev;
4197
2005 #if EV_USE_INOTIFY 4198 #if EV_USE_INOTIFY
4199 if (fs_fd >= 0)
4200 {
2006 infy_del (EV_A_ w); 4201 infy_del (EV_A_ w);
2007 infy_add (EV_A_ w); 4202 infy_add (EV_A_ w);
2008 ev_stat_stat (EV_A_ w); /* avoid race... */ 4203 ev_stat_stat (EV_A_ w); /* avoid race... */
4204 }
2009 #endif 4205 #endif
2010 4206
2011 ev_feed_event (EV_A_ w, EV_STAT); 4207 ev_feed_event (EV_A_ w, EV_STAT);
2012 } 4208 }
2013} 4209}
2014 4210
2015void 4211void
2016ev_stat_start (EV_P_ ev_stat *w) 4212ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2017{ 4213{
2018 if (expect_false (ev_is_active (w))) 4214 if (expect_false (ev_is_active (w)))
2019 return; 4215 return;
2020 4216
2021 /* since we use memcmp, we need to clear any padding data etc. */
2022 memset (&w->prev, 0, sizeof (ev_statdata));
2023 memset (&w->attr, 0, sizeof (ev_statdata));
2024
2025 ev_stat_stat (EV_A_ w); 4217 ev_stat_stat (EV_A_ w);
2026 4218
4219 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2027 if (w->interval < MIN_STAT_INTERVAL) 4220 w->interval = MIN_STAT_INTERVAL;
2028 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2029 4221
2030 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4222 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2031 ev_set_priority (&w->timer, ev_priority (w)); 4223 ev_set_priority (&w->timer, ev_priority (w));
2032 4224
2033#if EV_USE_INOTIFY 4225#if EV_USE_INOTIFY
2034 infy_init (EV_A); 4226 infy_init (EV_A);
2035 4227
2036 if (fs_fd >= 0) 4228 if (fs_fd >= 0)
2037 infy_add (EV_A_ w); 4229 infy_add (EV_A_ w);
2038 else 4230 else
2039#endif 4231#endif
4232 {
2040 ev_timer_start (EV_A_ &w->timer); 4233 ev_timer_again (EV_A_ &w->timer);
4234 ev_unref (EV_A);
4235 }
2041 4236
2042 ev_start (EV_A_ (W)w, 1); 4237 ev_start (EV_A_ (W)w, 1);
4238
4239 EV_FREQUENT_CHECK;
2043} 4240}
2044 4241
2045void 4242void
2046ev_stat_stop (EV_P_ ev_stat *w) 4243ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2047{ 4244{
2048 clear_pending (EV_A_ (W)w); 4245 clear_pending (EV_A_ (W)w);
2049 if (expect_false (!ev_is_active (w))) 4246 if (expect_false (!ev_is_active (w)))
2050 return; 4247 return;
2051 4248
4249 EV_FREQUENT_CHECK;
4250
2052#if EV_USE_INOTIFY 4251#if EV_USE_INOTIFY
2053 infy_del (EV_A_ w); 4252 infy_del (EV_A_ w);
2054#endif 4253#endif
4254
4255 if (ev_is_active (&w->timer))
4256 {
4257 ev_ref (EV_A);
2055 ev_timer_stop (EV_A_ &w->timer); 4258 ev_timer_stop (EV_A_ &w->timer);
4259 }
2056 4260
2057 ev_stop (EV_A_ (W)w); 4261 ev_stop (EV_A_ (W)w);
4262
4263 EV_FREQUENT_CHECK;
2058} 4264}
2059#endif 4265#endif
2060 4266
2061#if EV_IDLE_ENABLE 4267#if EV_IDLE_ENABLE
2062void 4268void
2063ev_idle_start (EV_P_ ev_idle *w) 4269ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2064{ 4270{
2065 if (expect_false (ev_is_active (w))) 4271 if (expect_false (ev_is_active (w)))
2066 return; 4272 return;
2067 4273
2068 pri_adjust (EV_A_ (W)w); 4274 pri_adjust (EV_A_ (W)w);
4275
4276 EV_FREQUENT_CHECK;
2069 4277
2070 { 4278 {
2071 int active = ++idlecnt [ABSPRI (w)]; 4279 int active = ++idlecnt [ABSPRI (w)];
2072 4280
2073 ++idleall; 4281 ++idleall;
2074 ev_start (EV_A_ (W)w, active); 4282 ev_start (EV_A_ (W)w, active);
2075 4283
2076 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4284 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2077 idles [ABSPRI (w)][active - 1] = w; 4285 idles [ABSPRI (w)][active - 1] = w;
2078 } 4286 }
4287
4288 EV_FREQUENT_CHECK;
2079} 4289}
2080 4290
2081void 4291void
2082ev_idle_stop (EV_P_ ev_idle *w) 4292ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2083{ 4293{
2084 clear_pending (EV_A_ (W)w); 4294 clear_pending (EV_A_ (W)w);
2085 if (expect_false (!ev_is_active (w))) 4295 if (expect_false (!ev_is_active (w)))
2086 return; 4296 return;
2087 4297
4298 EV_FREQUENT_CHECK;
4299
2088 { 4300 {
2089 int active = ((W)w)->active; 4301 int active = ev_active (w);
2090 4302
2091 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4303 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2092 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4304 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2093 4305
2094 ev_stop (EV_A_ (W)w); 4306 ev_stop (EV_A_ (W)w);
2095 --idleall; 4307 --idleall;
2096 } 4308 }
2097}
2098#endif
2099 4309
4310 EV_FREQUENT_CHECK;
4311}
4312#endif
4313
4314#if EV_PREPARE_ENABLE
2100void 4315void
2101ev_prepare_start (EV_P_ ev_prepare *w) 4316ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2102{ 4317{
2103 if (expect_false (ev_is_active (w))) 4318 if (expect_false (ev_is_active (w)))
2104 return; 4319 return;
4320
4321 EV_FREQUENT_CHECK;
2105 4322
2106 ev_start (EV_A_ (W)w, ++preparecnt); 4323 ev_start (EV_A_ (W)w, ++preparecnt);
2107 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4324 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2108 prepares [preparecnt - 1] = w; 4325 prepares [preparecnt - 1] = w;
4326
4327 EV_FREQUENT_CHECK;
2109} 4328}
2110 4329
2111void 4330void
2112ev_prepare_stop (EV_P_ ev_prepare *w) 4331ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2113{ 4332{
2114 clear_pending (EV_A_ (W)w); 4333 clear_pending (EV_A_ (W)w);
2115 if (expect_false (!ev_is_active (w))) 4334 if (expect_false (!ev_is_active (w)))
2116 return; 4335 return;
2117 4336
4337 EV_FREQUENT_CHECK;
4338
2118 { 4339 {
2119 int active = ((W)w)->active; 4340 int active = ev_active (w);
4341
2120 prepares [active - 1] = prepares [--preparecnt]; 4342 prepares [active - 1] = prepares [--preparecnt];
2121 ((W)prepares [active - 1])->active = active; 4343 ev_active (prepares [active - 1]) = active;
2122 } 4344 }
2123 4345
2124 ev_stop (EV_A_ (W)w); 4346 ev_stop (EV_A_ (W)w);
2125}
2126 4347
4348 EV_FREQUENT_CHECK;
4349}
4350#endif
4351
4352#if EV_CHECK_ENABLE
2127void 4353void
2128ev_check_start (EV_P_ ev_check *w) 4354ev_check_start (EV_P_ ev_check *w) EV_THROW
2129{ 4355{
2130 if (expect_false (ev_is_active (w))) 4356 if (expect_false (ev_is_active (w)))
2131 return; 4357 return;
4358
4359 EV_FREQUENT_CHECK;
2132 4360
2133 ev_start (EV_A_ (W)w, ++checkcnt); 4361 ev_start (EV_A_ (W)w, ++checkcnt);
2134 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4362 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2135 checks [checkcnt - 1] = w; 4363 checks [checkcnt - 1] = w;
4364
4365 EV_FREQUENT_CHECK;
2136} 4366}
2137 4367
2138void 4368void
2139ev_check_stop (EV_P_ ev_check *w) 4369ev_check_stop (EV_P_ ev_check *w) EV_THROW
2140{ 4370{
2141 clear_pending (EV_A_ (W)w); 4371 clear_pending (EV_A_ (W)w);
2142 if (expect_false (!ev_is_active (w))) 4372 if (expect_false (!ev_is_active (w)))
2143 return; 4373 return;
2144 4374
4375 EV_FREQUENT_CHECK;
4376
2145 { 4377 {
2146 int active = ((W)w)->active; 4378 int active = ev_active (w);
4379
2147 checks [active - 1] = checks [--checkcnt]; 4380 checks [active - 1] = checks [--checkcnt];
2148 ((W)checks [active - 1])->active = active; 4381 ev_active (checks [active - 1]) = active;
2149 } 4382 }
2150 4383
2151 ev_stop (EV_A_ (W)w); 4384 ev_stop (EV_A_ (W)w);
4385
4386 EV_FREQUENT_CHECK;
2152} 4387}
4388#endif
2153 4389
2154#if EV_EMBED_ENABLE 4390#if EV_EMBED_ENABLE
2155void noinline 4391void noinline
2156ev_embed_sweep (EV_P_ ev_embed *w) 4392ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2157{ 4393{
2158 ev_loop (w->loop, EVLOOP_NONBLOCK); 4394 ev_run (w->other, EVRUN_NOWAIT);
2159} 4395}
2160 4396
2161static void 4397static void
2162embed_cb (EV_P_ ev_io *io, int revents) 4398embed_io_cb (EV_P_ ev_io *io, int revents)
2163{ 4399{
2164 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4400 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2165 4401
2166 if (ev_cb (w)) 4402 if (ev_cb (w))
2167 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4403 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2168 else 4404 else
2169 ev_embed_sweep (loop, w); 4405 ev_run (w->other, EVRUN_NOWAIT);
2170} 4406}
4407
4408static void
4409embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4410{
4411 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4412
4413 {
4414 EV_P = w->other;
4415
4416 while (fdchangecnt)
4417 {
4418 fd_reify (EV_A);
4419 ev_run (EV_A_ EVRUN_NOWAIT);
4420 }
4421 }
4422}
4423
4424static void
4425embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4426{
4427 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4428
4429 ev_embed_stop (EV_A_ w);
4430
4431 {
4432 EV_P = w->other;
4433
4434 ev_loop_fork (EV_A);
4435 ev_run (EV_A_ EVRUN_NOWAIT);
4436 }
4437
4438 ev_embed_start (EV_A_ w);
4439}
4440
4441#if 0
4442static void
4443embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4444{
4445 ev_idle_stop (EV_A_ idle);
4446}
4447#endif
2171 4448
2172void 4449void
2173ev_embed_start (EV_P_ ev_embed *w) 4450ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2174{ 4451{
2175 if (expect_false (ev_is_active (w))) 4452 if (expect_false (ev_is_active (w)))
2176 return; 4453 return;
2177 4454
2178 { 4455 {
2179 struct ev_loop *loop = w->loop; 4456 EV_P = w->other;
2180 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4457 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2181 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 4458 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2182 } 4459 }
4460
4461 EV_FREQUENT_CHECK;
2183 4462
2184 ev_set_priority (&w->io, ev_priority (w)); 4463 ev_set_priority (&w->io, ev_priority (w));
2185 ev_io_start (EV_A_ &w->io); 4464 ev_io_start (EV_A_ &w->io);
2186 4465
4466 ev_prepare_init (&w->prepare, embed_prepare_cb);
4467 ev_set_priority (&w->prepare, EV_MINPRI);
4468 ev_prepare_start (EV_A_ &w->prepare);
4469
4470 ev_fork_init (&w->fork, embed_fork_cb);
4471 ev_fork_start (EV_A_ &w->fork);
4472
4473 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4474
2187 ev_start (EV_A_ (W)w, 1); 4475 ev_start (EV_A_ (W)w, 1);
4476
4477 EV_FREQUENT_CHECK;
2188} 4478}
2189 4479
2190void 4480void
2191ev_embed_stop (EV_P_ ev_embed *w) 4481ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2192{ 4482{
2193 clear_pending (EV_A_ (W)w); 4483 clear_pending (EV_A_ (W)w);
2194 if (expect_false (!ev_is_active (w))) 4484 if (expect_false (!ev_is_active (w)))
2195 return; 4485 return;
2196 4486
4487 EV_FREQUENT_CHECK;
4488
2197 ev_io_stop (EV_A_ &w->io); 4489 ev_io_stop (EV_A_ &w->io);
4490 ev_prepare_stop (EV_A_ &w->prepare);
4491 ev_fork_stop (EV_A_ &w->fork);
2198 4492
2199 ev_stop (EV_A_ (W)w); 4493 ev_stop (EV_A_ (W)w);
4494
4495 EV_FREQUENT_CHECK;
2200} 4496}
2201#endif 4497#endif
2202 4498
2203#if EV_FORK_ENABLE 4499#if EV_FORK_ENABLE
2204void 4500void
2205ev_fork_start (EV_P_ ev_fork *w) 4501ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2206{ 4502{
2207 if (expect_false (ev_is_active (w))) 4503 if (expect_false (ev_is_active (w)))
2208 return; 4504 return;
4505
4506 EV_FREQUENT_CHECK;
2209 4507
2210 ev_start (EV_A_ (W)w, ++forkcnt); 4508 ev_start (EV_A_ (W)w, ++forkcnt);
2211 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4509 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2212 forks [forkcnt - 1] = w; 4510 forks [forkcnt - 1] = w;
4511
4512 EV_FREQUENT_CHECK;
2213} 4513}
2214 4514
2215void 4515void
2216ev_fork_stop (EV_P_ ev_fork *w) 4516ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2217{ 4517{
2218 clear_pending (EV_A_ (W)w); 4518 clear_pending (EV_A_ (W)w);
2219 if (expect_false (!ev_is_active (w))) 4519 if (expect_false (!ev_is_active (w)))
2220 return; 4520 return;
2221 4521
4522 EV_FREQUENT_CHECK;
4523
2222 { 4524 {
2223 int active = ((W)w)->active; 4525 int active = ev_active (w);
4526
2224 forks [active - 1] = forks [--forkcnt]; 4527 forks [active - 1] = forks [--forkcnt];
2225 ((W)forks [active - 1])->active = active; 4528 ev_active (forks [active - 1]) = active;
2226 } 4529 }
2227 4530
2228 ev_stop (EV_A_ (W)w); 4531 ev_stop (EV_A_ (W)w);
4532
4533 EV_FREQUENT_CHECK;
4534}
4535#endif
4536
4537#if EV_CLEANUP_ENABLE
4538void
4539ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4540{
4541 if (expect_false (ev_is_active (w)))
4542 return;
4543
4544 EV_FREQUENT_CHECK;
4545
4546 ev_start (EV_A_ (W)w, ++cleanupcnt);
4547 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4548 cleanups [cleanupcnt - 1] = w;
4549
4550 /* cleanup watchers should never keep a refcount on the loop */
4551 ev_unref (EV_A);
4552 EV_FREQUENT_CHECK;
4553}
4554
4555void
4556ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4557{
4558 clear_pending (EV_A_ (W)w);
4559 if (expect_false (!ev_is_active (w)))
4560 return;
4561
4562 EV_FREQUENT_CHECK;
4563 ev_ref (EV_A);
4564
4565 {
4566 int active = ev_active (w);
4567
4568 cleanups [active - 1] = cleanups [--cleanupcnt];
4569 ev_active (cleanups [active - 1]) = active;
4570 }
4571
4572 ev_stop (EV_A_ (W)w);
4573
4574 EV_FREQUENT_CHECK;
4575}
4576#endif
4577
4578#if EV_ASYNC_ENABLE
4579void
4580ev_async_start (EV_P_ ev_async *w) EV_THROW
4581{
4582 if (expect_false (ev_is_active (w)))
4583 return;
4584
4585 w->sent = 0;
4586
4587 evpipe_init (EV_A);
4588
4589 EV_FREQUENT_CHECK;
4590
4591 ev_start (EV_A_ (W)w, ++asynccnt);
4592 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4593 asyncs [asynccnt - 1] = w;
4594
4595 EV_FREQUENT_CHECK;
4596}
4597
4598void
4599ev_async_stop (EV_P_ ev_async *w) EV_THROW
4600{
4601 clear_pending (EV_A_ (W)w);
4602 if (expect_false (!ev_is_active (w)))
4603 return;
4604
4605 EV_FREQUENT_CHECK;
4606
4607 {
4608 int active = ev_active (w);
4609
4610 asyncs [active - 1] = asyncs [--asynccnt];
4611 ev_active (asyncs [active - 1]) = active;
4612 }
4613
4614 ev_stop (EV_A_ (W)w);
4615
4616 EV_FREQUENT_CHECK;
4617}
4618
4619void
4620ev_async_send (EV_P_ ev_async *w) EV_THROW
4621{
4622 w->sent = 1;
4623 evpipe_write (EV_A_ &async_pending);
2229} 4624}
2230#endif 4625#endif
2231 4626
2232/*****************************************************************************/ 4627/*****************************************************************************/
2233 4628
2243once_cb (EV_P_ struct ev_once *once, int revents) 4638once_cb (EV_P_ struct ev_once *once, int revents)
2244{ 4639{
2245 void (*cb)(int revents, void *arg) = once->cb; 4640 void (*cb)(int revents, void *arg) = once->cb;
2246 void *arg = once->arg; 4641 void *arg = once->arg;
2247 4642
2248 ev_io_stop (EV_A_ &once->io); 4643 ev_io_stop (EV_A_ &once->io);
2249 ev_timer_stop (EV_A_ &once->to); 4644 ev_timer_stop (EV_A_ &once->to);
2250 ev_free (once); 4645 ev_free (once);
2251 4646
2252 cb (revents, arg); 4647 cb (revents, arg);
2253} 4648}
2254 4649
2255static void 4650static void
2256once_cb_io (EV_P_ ev_io *w, int revents) 4651once_cb_io (EV_P_ ev_io *w, int revents)
2257{ 4652{
2258 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4653 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4654
4655 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2259} 4656}
2260 4657
2261static void 4658static void
2262once_cb_to (EV_P_ ev_timer *w, int revents) 4659once_cb_to (EV_P_ ev_timer *w, int revents)
2263{ 4660{
2264 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4661 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4662
4663 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2265} 4664}
2266 4665
2267void 4666void
2268ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4667ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2269{ 4668{
2270 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4669 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2271 4670
2272 if (expect_false (!once)) 4671 if (expect_false (!once))
2273 { 4672 {
2274 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4673 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2275 return; 4674 return;
2276 } 4675 }
2277 4676
2278 once->cb = cb; 4677 once->cb = cb;
2279 once->arg = arg; 4678 once->arg = arg;
2291 ev_timer_set (&once->to, timeout, 0.); 4690 ev_timer_set (&once->to, timeout, 0.);
2292 ev_timer_start (EV_A_ &once->to); 4691 ev_timer_start (EV_A_ &once->to);
2293 } 4692 }
2294} 4693}
2295 4694
2296#ifdef __cplusplus 4695/*****************************************************************************/
2297} 4696
4697#if EV_WALK_ENABLE
4698void ecb_cold
4699ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4700{
4701 int i, j;
4702 ev_watcher_list *wl, *wn;
4703
4704 if (types & (EV_IO | EV_EMBED))
4705 for (i = 0; i < anfdmax; ++i)
4706 for (wl = anfds [i].head; wl; )
4707 {
4708 wn = wl->next;
4709
4710#if EV_EMBED_ENABLE
4711 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4712 {
4713 if (types & EV_EMBED)
4714 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4715 }
4716 else
4717#endif
4718#if EV_USE_INOTIFY
4719 if (ev_cb ((ev_io *)wl) == infy_cb)
4720 ;
4721 else
4722#endif
4723 if ((ev_io *)wl != &pipe_w)
4724 if (types & EV_IO)
4725 cb (EV_A_ EV_IO, wl);
4726
4727 wl = wn;
4728 }
4729
4730 if (types & (EV_TIMER | EV_STAT))
4731 for (i = timercnt + HEAP0; i-- > HEAP0; )
4732#if EV_STAT_ENABLE
4733 /*TODO: timer is not always active*/
4734 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4735 {
4736 if (types & EV_STAT)
4737 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4738 }
4739 else
4740#endif
4741 if (types & EV_TIMER)
4742 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4743
4744#if EV_PERIODIC_ENABLE
4745 if (types & EV_PERIODIC)
4746 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4747 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4748#endif
4749
4750#if EV_IDLE_ENABLE
4751 if (types & EV_IDLE)
4752 for (j = NUMPRI; j--; )
4753 for (i = idlecnt [j]; i--; )
4754 cb (EV_A_ EV_IDLE, idles [j][i]);
4755#endif
4756
4757#if EV_FORK_ENABLE
4758 if (types & EV_FORK)
4759 for (i = forkcnt; i--; )
4760 if (ev_cb (forks [i]) != embed_fork_cb)
4761 cb (EV_A_ EV_FORK, forks [i]);
4762#endif
4763
4764#if EV_ASYNC_ENABLE
4765 if (types & EV_ASYNC)
4766 for (i = asynccnt; i--; )
4767 cb (EV_A_ EV_ASYNC, asyncs [i]);
4768#endif
4769
4770#if EV_PREPARE_ENABLE
4771 if (types & EV_PREPARE)
4772 for (i = preparecnt; i--; )
4773# if EV_EMBED_ENABLE
4774 if (ev_cb (prepares [i]) != embed_prepare_cb)
2298#endif 4775# endif
4776 cb (EV_A_ EV_PREPARE, prepares [i]);
4777#endif
2299 4778
4779#if EV_CHECK_ENABLE
4780 if (types & EV_CHECK)
4781 for (i = checkcnt; i--; )
4782 cb (EV_A_ EV_CHECK, checks [i]);
4783#endif
4784
4785#if EV_SIGNAL_ENABLE
4786 if (types & EV_SIGNAL)
4787 for (i = 0; i < EV_NSIG - 1; ++i)
4788 for (wl = signals [i].head; wl; )
4789 {
4790 wn = wl->next;
4791 cb (EV_A_ EV_SIGNAL, wl);
4792 wl = wn;
4793 }
4794#endif
4795
4796#if EV_CHILD_ENABLE
4797 if (types & EV_CHILD)
4798 for (i = (EV_PID_HASHSIZE); i--; )
4799 for (wl = childs [i]; wl; )
4800 {
4801 wn = wl->next;
4802 cb (EV_A_ EV_CHILD, wl);
4803 wl = wn;
4804 }
4805#endif
4806/* EV_STAT 0x00001000 /* stat data changed */
4807/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4808}
4809#endif
4810
4811#if EV_MULTIPLICITY
4812 #include "ev_wrap.h"
4813#endif
4814

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines