ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.176 by root, Tue Dec 11 04:31:55 2007 UTC vs.
Revision 1.210 by root, Sat Feb 9 00:34:11 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
51# ifndef EV_USE_MONOTONIC 59# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 60# define EV_USE_MONOTONIC 0
53# endif 61# endif
54# ifndef EV_USE_REALTIME 62# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 63# define EV_USE_REALTIME 0
64# endif
65# endif
66
67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
56# endif 72# endif
57# endif 73# endif
58 74
59# ifndef EV_USE_SELECT 75# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 76# if HAVE_SELECT && HAVE_SYS_SELECT_H
146 162
147#ifndef EV_USE_REALTIME 163#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 164# define EV_USE_REALTIME 0
149#endif 165#endif
150 166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
169#endif
170
151#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
153#endif 173#endif
154 174
155#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
202#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
205#endif 225#endif
206 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
207#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 243# include <winsock.h>
209#endif
210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif 244#endif
218 245
219/**/ 246/**/
220 247
221/* 248/*
222 * This is used to avoid floating point rounding problems. 249 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 250 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 251 * to ensure progress, time-wise, even when rounding
225 * errors are against us. 252 * errors are against us.
226 * This value is good at least till the year 4000 253 * This value is good at least till the year 4000.
227 * and intervals up to 20 years.
228 * Better solutions welcome. 254 * Better solutions welcome.
229 */ 255 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 256#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231 257
232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
235 261
236#if __GNUC__ >= 3 262#if __GNUC__ >= 4
237# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
238# define noinline __attribute__ ((noinline)) 264# define noinline __attribute__ ((noinline))
239#else 265#else
240# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
241# define noinline 267# define noinline
262 288
263typedef ev_watcher *W; 289typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
266 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
268 298
269#ifdef _WIN32 299#ifdef _WIN32
270# include "ev_win32.c" 300# include "ev_win32.c"
271#endif 301#endif
272 302
408{ 438{
409 return ev_rt_now; 439 return ev_rt_now;
410} 440}
411#endif 441#endif
412 442
443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
413int inline_size 470int inline_size
414array_nextsize (int elem, int cur, int cnt) 471array_nextsize (int elem, int cur, int cnt)
415{ 472{
416 int ncur = cur + 1; 473 int ncur = cur + 1;
417 474
477 pendings [pri][w_->pending - 1].w = w_; 534 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents; 535 pendings [pri][w_->pending - 1].events = revents;
479 } 536 }
480} 537}
481 538
482void inline_size 539void inline_speed
483queue_events (EV_P_ W *events, int eventcnt, int type) 540queue_events (EV_P_ W *events, int eventcnt, int type)
484{ 541{
485 int i; 542 int i;
486 543
487 for (i = 0; i < eventcnt; ++i) 544 for (i = 0; i < eventcnt; ++i)
534 { 591 {
535 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
536 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
537 ev_io *w; 594 ev_io *w;
538 595
539 int events = 0; 596 unsigned char events = 0;
540 597
541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
542 events |= w->events; 599 events |= (unsigned char)w->events;
543 600
544#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
545 if (events) 602 if (events)
546 { 603 {
547 unsigned long argp; 604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
548 anfd->handle = _get_osfhandle (fd); 608 anfd->handle = _get_osfhandle (fd);
609 #endif
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
550 } 611 }
551#endif 612#endif
552 613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
553 anfd->reify = 0; 618 anfd->reify = 0;
554
555 backend_modify (EV_A_ fd, anfd->events, events);
556 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
557 } 624 }
558 625
559 fdchangecnt = 0; 626 fdchangecnt = 0;
560} 627}
561 628
562void inline_size 629void inline_size
563fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
564{ 631{
565 if (expect_false (anfds [fd].reify)) 632 unsigned char reify = anfds [fd].reify;
566 return;
567
568 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
569 634
635 if (expect_true (!reify))
636 {
570 ++fdchangecnt; 637 ++fdchangecnt;
571 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
572 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
573} 641}
574 642
575void inline_speed 643void inline_speed
576fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
577{ 645{
628 696
629 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
630 if (anfds [fd].events) 698 if (anfds [fd].events)
631 { 699 {
632 anfds [fd].events = 0; 700 anfds [fd].events = 0;
633 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
634 } 702 }
635} 703}
636 704
637/*****************************************************************************/ 705/*****************************************************************************/
638 706
639void inline_speed 707void inline_speed
640upheap (WT *heap, int k) 708upheap (WT *heap, int k)
641{ 709{
642 WT w = heap [k]; 710 WT w = heap [k];
643 711
644 while (k && heap [k >> 1]->at > w->at) 712 while (k)
645 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
646 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
647 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
648 k >>= 1; 721 k = p;
649 } 722 }
650 723
651 heap [k] = w; 724 heap [k] = w;
652 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
653
654} 726}
655 727
656void inline_speed 728void inline_speed
657downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
658{ 730{
659 WT w = heap [k]; 731 WT w = heap [k];
660 732
661 while (k < (N >> 1)) 733 for (;;)
662 { 734 {
663 int j = k << 1; 735 int c = (k << 1) + 1;
664 736
665 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
666 ++j;
667
668 if (w->at <= heap [j]->at)
669 break; 738 break;
670 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
671 heap [k] = heap [j]; 746 heap [k] = heap [c];
672 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
673 k = j; 749 k = c;
674 } 750 }
675 751
676 heap [k] = w; 752 heap [k] = w;
677 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
678} 754}
687/*****************************************************************************/ 763/*****************************************************************************/
688 764
689typedef struct 765typedef struct
690{ 766{
691 WL head; 767 WL head;
692 sig_atomic_t volatile gotsig; 768 EV_ATOMIC_T gotsig;
693} ANSIG; 769} ANSIG;
694 770
695static ANSIG *signals; 771static ANSIG *signals;
696static int signalmax; 772static int signalmax;
697 773
698static int sigpipe [2]; 774static EV_ATOMIC_T gotsig;
699static sig_atomic_t volatile gotsig;
700static ev_io sigev;
701 775
702void inline_size 776void inline_size
703signals_init (ANSIG *base, int count) 777signals_init (ANSIG *base, int count)
704{ 778{
705 while (count--) 779 while (count--)
709 783
710 ++base; 784 ++base;
711 } 785 }
712} 786}
713 787
714static void 788/*****************************************************************************/
715sighandler (int signum)
716{
717#if _WIN32
718 signal (signum, sighandler);
719#endif
720
721 signals [signum - 1].gotsig = 1;
722
723 if (!gotsig)
724 {
725 int old_errno = errno;
726 gotsig = 1;
727 write (sigpipe [1], &signum, 1);
728 errno = old_errno;
729 }
730}
731
732void noinline
733ev_feed_signal_event (EV_P_ int signum)
734{
735 WL w;
736
737#if EV_MULTIPLICITY
738 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
739#endif
740
741 --signum;
742
743 if (signum < 0 || signum >= signalmax)
744 return;
745
746 signals [signum].gotsig = 0;
747
748 for (w = signals [signum].head; w; w = w->next)
749 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
750}
751
752static void
753sigcb (EV_P_ ev_io *iow, int revents)
754{
755 int signum;
756
757 read (sigpipe [0], &revents, 1);
758 gotsig = 0;
759
760 for (signum = signalmax; signum--; )
761 if (signals [signum].gotsig)
762 ev_feed_signal_event (EV_A_ signum + 1);
763}
764 789
765void inline_speed 790void inline_speed
766fd_intern (int fd) 791fd_intern (int fd)
767{ 792{
768#ifdef _WIN32 793#ifdef _WIN32
773 fcntl (fd, F_SETFL, O_NONBLOCK); 798 fcntl (fd, F_SETFL, O_NONBLOCK);
774#endif 799#endif
775} 800}
776 801
777static void noinline 802static void noinline
778siginit (EV_P) 803evpipe_init (EV_P)
779{ 804{
805 if (!ev_is_active (&pipeev))
806 {
807 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe");
809
780 fd_intern (sigpipe [0]); 810 fd_intern (evpipe [0]);
781 fd_intern (sigpipe [1]); 811 fd_intern (evpipe [1]);
782 812
783 ev_io_set (&sigev, sigpipe [0], EV_READ); 813 ev_io_set (&pipeev, evpipe [0], EV_READ);
784 ev_io_start (EV_A_ &sigev); 814 ev_io_start (EV_A_ &pipeev);
785 ev_unref (EV_A); /* child watcher should not keep loop alive */ 815 ev_unref (EV_A); /* watcher should not keep loop alive */
816 }
817}
818
819void inline_size
820evpipe_write (EV_P_ int sig, int async)
821{
822 if (!(gotasync || gotsig))
823 {
824 int old_errno = errno; /* save errno becaue write might clobber it */
825
826 if (sig) gotsig = 1;
827 if (async) gotasync = 1;
828
829 write (evpipe [1], &old_errno, 1);
830
831 errno = old_errno;
832 }
833}
834
835static void
836pipecb (EV_P_ ev_io *iow, int revents)
837{
838 {
839 int dummy;
840 read (evpipe [0], &dummy, 1);
841 }
842
843 if (gotsig)
844 {
845 int signum;
846 gotsig = 0;
847
848 for (signum = signalmax; signum--; )
849 if (signals [signum].gotsig)
850 ev_feed_signal_event (EV_A_ signum + 1);
851 }
852
853#if EV_ASYNC_ENABLE
854 if (gotasync)
855 {
856 int i;
857 gotasync = 0;
858
859 for (i = asynccnt; i--; )
860 if (asyncs [i]->sent)
861 {
862 asyncs [i]->sent = 0;
863 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
864 }
865 }
866#endif
786} 867}
787 868
788/*****************************************************************************/ 869/*****************************************************************************/
789 870
871static void
872sighandler (int signum)
873{
874#if EV_MULTIPLICITY
875 struct ev_loop *loop = &default_loop_struct;
876#endif
877
878#if _WIN32
879 signal (signum, sighandler);
880#endif
881
882 signals [signum - 1].gotsig = 1;
883 evpipe_write (EV_A_ 1, 0);
884}
885
886void noinline
887ev_feed_signal_event (EV_P_ int signum)
888{
889 WL w;
890
891#if EV_MULTIPLICITY
892 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
893#endif
894
895 --signum;
896
897 if (signum < 0 || signum >= signalmax)
898 return;
899
900 signals [signum].gotsig = 0;
901
902 for (w = signals [signum].head; w; w = w->next)
903 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
904}
905
906/*****************************************************************************/
907
790static ev_child *childs [EV_PID_HASHSIZE]; 908static WL childs [EV_PID_HASHSIZE];
791 909
792#ifndef _WIN32 910#ifndef _WIN32
793 911
794static ev_signal childev; 912static ev_signal childev;
913
914#ifndef WIFCONTINUED
915# define WIFCONTINUED(status) 0
916#endif
795 917
796void inline_speed 918void inline_speed
797child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 919child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
798{ 920{
799 ev_child *w; 921 ev_child *w;
922 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
800 923
801 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 924 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
925 {
802 if (w->pid == pid || !w->pid) 926 if ((w->pid == pid || !w->pid)
927 && (!traced || (w->flags & 1)))
803 { 928 {
804 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 929 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
805 w->rpid = pid; 930 w->rpid = pid;
806 w->rstatus = status; 931 w->rstatus = status;
807 ev_feed_event (EV_A_ (W)w, EV_CHILD); 932 ev_feed_event (EV_A_ (W)w, EV_CHILD);
808 } 933 }
934 }
809} 935}
810 936
811#ifndef WCONTINUED 937#ifndef WCONTINUED
812# define WCONTINUED 0 938# define WCONTINUED 0
813#endif 939#endif
910} 1036}
911 1037
912unsigned int 1038unsigned int
913ev_embeddable_backends (void) 1039ev_embeddable_backends (void)
914{ 1040{
915 return EVBACKEND_EPOLL 1041 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
916 | EVBACKEND_KQUEUE 1042
917 | EVBACKEND_PORT; 1043 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1044 /* please fix it and tell me how to detect the fix */
1045 flags &= ~EVBACKEND_EPOLL;
1046
1047 return flags;
918} 1048}
919 1049
920unsigned int 1050unsigned int
921ev_backend (EV_P) 1051ev_backend (EV_P)
922{ 1052{
925 1055
926unsigned int 1056unsigned int
927ev_loop_count (EV_P) 1057ev_loop_count (EV_P)
928{ 1058{
929 return loop_count; 1059 return loop_count;
1060}
1061
1062void
1063ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1064{
1065 io_blocktime = interval;
1066}
1067
1068void
1069ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1070{
1071 timeout_blocktime = interval;
930} 1072}
931 1073
932static void noinline 1074static void noinline
933loop_init (EV_P_ unsigned int flags) 1075loop_init (EV_P_ unsigned int flags)
934{ 1076{
940 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1082 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
941 have_monotonic = 1; 1083 have_monotonic = 1;
942 } 1084 }
943#endif 1085#endif
944 1086
945 ev_rt_now = ev_time (); 1087 ev_rt_now = ev_time ();
946 mn_now = get_clock (); 1088 mn_now = get_clock ();
947 now_floor = mn_now; 1089 now_floor = mn_now;
948 rtmn_diff = ev_rt_now - mn_now; 1090 rtmn_diff = ev_rt_now - mn_now;
1091
1092 io_blocktime = 0.;
1093 timeout_blocktime = 0.;
1094 backend = 0;
1095 backend_fd = -1;
1096 gotasync = 0;
1097#if EV_USE_INOTIFY
1098 fs_fd = -2;
1099#endif
949 1100
950 /* pid check not overridable via env */ 1101 /* pid check not overridable via env */
951#ifndef _WIN32 1102#ifndef _WIN32
952 if (flags & EVFLAG_FORKCHECK) 1103 if (flags & EVFLAG_FORKCHECK)
953 curpid = getpid (); 1104 curpid = getpid ();
959 flags = atoi (getenv ("LIBEV_FLAGS")); 1110 flags = atoi (getenv ("LIBEV_FLAGS"));
960 1111
961 if (!(flags & 0x0000ffffUL)) 1112 if (!(flags & 0x0000ffffUL))
962 flags |= ev_recommended_backends (); 1113 flags |= ev_recommended_backends ();
963 1114
964 backend = 0;
965 backend_fd = -1;
966#if EV_USE_INOTIFY
967 fs_fd = -2;
968#endif
969
970#if EV_USE_PORT 1115#if EV_USE_PORT
971 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1116 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
972#endif 1117#endif
973#if EV_USE_KQUEUE 1118#if EV_USE_KQUEUE
974 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1119 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
981#endif 1126#endif
982#if EV_USE_SELECT 1127#if EV_USE_SELECT
983 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1128 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
984#endif 1129#endif
985 1130
986 ev_init (&sigev, sigcb); 1131 ev_init (&pipeev, pipecb);
987 ev_set_priority (&sigev, EV_MAXPRI); 1132 ev_set_priority (&pipeev, EV_MAXPRI);
988 } 1133 }
989} 1134}
990 1135
991static void noinline 1136static void noinline
992loop_destroy (EV_P) 1137loop_destroy (EV_P)
993{ 1138{
994 int i; 1139 int i;
1140
1141 if (ev_is_active (&pipeev))
1142 {
1143 ev_ref (EV_A); /* signal watcher */
1144 ev_io_stop (EV_A_ &pipeev);
1145
1146 close (evpipe [0]); evpipe [0] = 0;
1147 close (evpipe [1]); evpipe [1] = 0;
1148 }
995 1149
996#if EV_USE_INOTIFY 1150#if EV_USE_INOTIFY
997 if (fs_fd >= 0) 1151 if (fs_fd >= 0)
998 close (fs_fd); 1152 close (fs_fd);
999#endif 1153#endif
1022 array_free (pending, [i]); 1176 array_free (pending, [i]);
1023#if EV_IDLE_ENABLE 1177#if EV_IDLE_ENABLE
1024 array_free (idle, [i]); 1178 array_free (idle, [i]);
1025#endif 1179#endif
1026 } 1180 }
1181
1182 ev_free (anfds); anfdmax = 0;
1027 1183
1028 /* have to use the microsoft-never-gets-it-right macro */ 1184 /* have to use the microsoft-never-gets-it-right macro */
1029 array_free (fdchange, EMPTY); 1185 array_free (fdchange, EMPTY);
1030 array_free (timer, EMPTY); 1186 array_free (timer, EMPTY);
1031#if EV_PERIODIC_ENABLE 1187#if EV_PERIODIC_ENABLE
1032 array_free (periodic, EMPTY); 1188 array_free (periodic, EMPTY);
1033#endif 1189#endif
1190#if EV_FORK_ENABLE
1191 array_free (fork, EMPTY);
1192#endif
1034 array_free (prepare, EMPTY); 1193 array_free (prepare, EMPTY);
1035 array_free (check, EMPTY); 1194 array_free (check, EMPTY);
1195#if EV_ASYNC_ENABLE
1196 array_free (async, EMPTY);
1197#endif
1036 1198
1037 backend = 0; 1199 backend = 0;
1038} 1200}
1039 1201
1040void inline_size infy_fork (EV_P); 1202void inline_size infy_fork (EV_P);
1053#endif 1215#endif
1054#if EV_USE_INOTIFY 1216#if EV_USE_INOTIFY
1055 infy_fork (EV_A); 1217 infy_fork (EV_A);
1056#endif 1218#endif
1057 1219
1058 if (ev_is_active (&sigev)) 1220 if (ev_is_active (&pipeev))
1059 { 1221 {
1060 /* default loop */ 1222 /* this "locks" the handlers against writing to the pipe */
1223 gotsig = gotasync = 1;
1061 1224
1062 ev_ref (EV_A); 1225 ev_ref (EV_A);
1063 ev_io_stop (EV_A_ &sigev); 1226 ev_io_stop (EV_A_ &pipeev);
1064 close (sigpipe [0]); 1227 close (evpipe [0]);
1065 close (sigpipe [1]); 1228 close (evpipe [1]);
1066 1229
1067 while (pipe (sigpipe))
1068 syserr ("(libev) error creating pipe");
1069
1070 siginit (EV_A); 1230 evpipe_init (EV_A);
1231 /* now iterate over everything, in case we missed something */
1232 pipecb (EV_A_ &pipeev, EV_READ);
1071 } 1233 }
1072 1234
1073 postfork = 0; 1235 postfork = 0;
1074} 1236}
1075 1237
1097} 1259}
1098 1260
1099void 1261void
1100ev_loop_fork (EV_P) 1262ev_loop_fork (EV_P)
1101{ 1263{
1102 postfork = 1; 1264 postfork = 1; /* must be in line with ev_default_fork */
1103} 1265}
1104 1266
1105#endif 1267#endif
1106 1268
1107#if EV_MULTIPLICITY 1269#if EV_MULTIPLICITY
1110#else 1272#else
1111int 1273int
1112ev_default_loop (unsigned int flags) 1274ev_default_loop (unsigned int flags)
1113#endif 1275#endif
1114{ 1276{
1115 if (sigpipe [0] == sigpipe [1])
1116 if (pipe (sigpipe))
1117 return 0;
1118
1119 if (!ev_default_loop_ptr) 1277 if (!ev_default_loop_ptr)
1120 { 1278 {
1121#if EV_MULTIPLICITY 1279#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1280 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1123#else 1281#else
1126 1284
1127 loop_init (EV_A_ flags); 1285 loop_init (EV_A_ flags);
1128 1286
1129 if (ev_backend (EV_A)) 1287 if (ev_backend (EV_A))
1130 { 1288 {
1131 siginit (EV_A);
1132
1133#ifndef _WIN32 1289#ifndef _WIN32
1134 ev_signal_init (&childev, childcb, SIGCHLD); 1290 ev_signal_init (&childev, childcb, SIGCHLD);
1135 ev_set_priority (&childev, EV_MAXPRI); 1291 ev_set_priority (&childev, EV_MAXPRI);
1136 ev_signal_start (EV_A_ &childev); 1292 ev_signal_start (EV_A_ &childev);
1137 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1293 ev_unref (EV_A); /* child watcher should not keep loop alive */
1154#ifndef _WIN32 1310#ifndef _WIN32
1155 ev_ref (EV_A); /* child watcher */ 1311 ev_ref (EV_A); /* child watcher */
1156 ev_signal_stop (EV_A_ &childev); 1312 ev_signal_stop (EV_A_ &childev);
1157#endif 1313#endif
1158 1314
1159 ev_ref (EV_A); /* signal watcher */
1160 ev_io_stop (EV_A_ &sigev);
1161
1162 close (sigpipe [0]); sigpipe [0] = 0;
1163 close (sigpipe [1]); sigpipe [1] = 0;
1164
1165 loop_destroy (EV_A); 1315 loop_destroy (EV_A);
1166} 1316}
1167 1317
1168void 1318void
1169ev_default_fork (void) 1319ev_default_fork (void)
1171#if EV_MULTIPLICITY 1321#if EV_MULTIPLICITY
1172 struct ev_loop *loop = ev_default_loop_ptr; 1322 struct ev_loop *loop = ev_default_loop_ptr;
1173#endif 1323#endif
1174 1324
1175 if (backend) 1325 if (backend)
1176 postfork = 1; 1326 postfork = 1; /* must be in line with ev_loop_fork */
1177} 1327}
1178 1328
1179/*****************************************************************************/ 1329/*****************************************************************************/
1180 1330
1181void 1331void
1207void inline_size 1357void inline_size
1208timers_reify (EV_P) 1358timers_reify (EV_P)
1209{ 1359{
1210 while (timercnt && ((WT)timers [0])->at <= mn_now) 1360 while (timercnt && ((WT)timers [0])->at <= mn_now)
1211 { 1361 {
1212 ev_timer *w = timers [0]; 1362 ev_timer *w = (ev_timer *)timers [0];
1213 1363
1214 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1364 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1215 1365
1216 /* first reschedule or stop timer */ 1366 /* first reschedule or stop timer */
1217 if (w->repeat) 1367 if (w->repeat)
1220 1370
1221 ((WT)w)->at += w->repeat; 1371 ((WT)w)->at += w->repeat;
1222 if (((WT)w)->at < mn_now) 1372 if (((WT)w)->at < mn_now)
1223 ((WT)w)->at = mn_now; 1373 ((WT)w)->at = mn_now;
1224 1374
1225 downheap ((WT *)timers, timercnt, 0); 1375 downheap (timers, timercnt, 0);
1226 } 1376 }
1227 else 1377 else
1228 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1378 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1229 1379
1230 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1380 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1235void inline_size 1385void inline_size
1236periodics_reify (EV_P) 1386periodics_reify (EV_P)
1237{ 1387{
1238 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1388 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1239 { 1389 {
1240 ev_periodic *w = periodics [0]; 1390 ev_periodic *w = (ev_periodic *)periodics [0];
1241 1391
1242 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1392 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1243 1393
1244 /* first reschedule or stop timer */ 1394 /* first reschedule or stop timer */
1245 if (w->reschedule_cb) 1395 if (w->reschedule_cb)
1246 { 1396 {
1247 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1397 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1248 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1398 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1249 downheap ((WT *)periodics, periodiccnt, 0); 1399 downheap (periodics, periodiccnt, 0);
1250 } 1400 }
1251 else if (w->interval) 1401 else if (w->interval)
1252 { 1402 {
1253 ((WT)w)->at = w->offset + floor ((ev_rt_now + TIME_EPSILON - w->offset) / w->interval + 1.) * w->interval; 1403 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1404 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1405 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1255 downheap ((WT *)periodics, periodiccnt, 0); 1406 downheap (periodics, periodiccnt, 0);
1256 } 1407 }
1257 else 1408 else
1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1409 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1259 1410
1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1411 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1267 int i; 1418 int i;
1268 1419
1269 /* adjust periodics after time jump */ 1420 /* adjust periodics after time jump */
1270 for (i = 0; i < periodiccnt; ++i) 1421 for (i = 0; i < periodiccnt; ++i)
1271 { 1422 {
1272 ev_periodic *w = periodics [i]; 1423 ev_periodic *w = (ev_periodic *)periodics [i];
1273 1424
1274 if (w->reschedule_cb) 1425 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1426 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1276 else if (w->interval) 1427 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1428 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 } 1429 }
1279 1430
1280 /* now rebuild the heap */ 1431 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; ) 1432 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i); 1433 downheap (periodics, periodiccnt, i);
1283} 1434}
1284#endif 1435#endif
1285 1436
1286#if EV_IDLE_ENABLE 1437#if EV_IDLE_ENABLE
1287void inline_size 1438void inline_size
1304 } 1455 }
1305 } 1456 }
1306} 1457}
1307#endif 1458#endif
1308 1459
1309int inline_size 1460void inline_speed
1310time_update_monotonic (EV_P) 1461time_update (EV_P_ ev_tstamp max_block)
1311{ 1462{
1463 int i;
1464
1465#if EV_USE_MONOTONIC
1466 if (expect_true (have_monotonic))
1467 {
1468 ev_tstamp odiff = rtmn_diff;
1469
1312 mn_now = get_clock (); 1470 mn_now = get_clock ();
1313 1471
1472 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1473 /* interpolate in the meantime */
1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1474 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1315 { 1475 {
1316 ev_rt_now = rtmn_diff + mn_now; 1476 ev_rt_now = rtmn_diff + mn_now;
1317 return 0; 1477 return;
1318 } 1478 }
1319 else 1479
1320 {
1321 now_floor = mn_now; 1480 now_floor = mn_now;
1322 ev_rt_now = ev_time (); 1481 ev_rt_now = ev_time ();
1323 return 1;
1324 }
1325}
1326 1482
1327void inline_size 1483 /* loop a few times, before making important decisions.
1328time_update (EV_P) 1484 * on the choice of "4": one iteration isn't enough,
1329{ 1485 * in case we get preempted during the calls to
1330 int i; 1486 * ev_time and get_clock. a second call is almost guaranteed
1331 1487 * to succeed in that case, though. and looping a few more times
1332#if EV_USE_MONOTONIC 1488 * doesn't hurt either as we only do this on time-jumps or
1333 if (expect_true (have_monotonic)) 1489 * in the unlikely event of having been preempted here.
1334 { 1490 */
1335 if (time_update_monotonic (EV_A)) 1491 for (i = 4; --i; )
1336 { 1492 {
1337 ev_tstamp odiff = rtmn_diff;
1338
1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1348 {
1349 rtmn_diff = ev_rt_now - mn_now; 1493 rtmn_diff = ev_rt_now - mn_now;
1350 1494
1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1495 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1352 return; /* all is well */ 1496 return; /* all is well */
1353 1497
1354 ev_rt_now = ev_time (); 1498 ev_rt_now = ev_time ();
1355 mn_now = get_clock (); 1499 mn_now = get_clock ();
1356 now_floor = mn_now; 1500 now_floor = mn_now;
1357 } 1501 }
1358 1502
1359# if EV_PERIODIC_ENABLE 1503# if EV_PERIODIC_ENABLE
1360 periodics_reschedule (EV_A); 1504 periodics_reschedule (EV_A);
1361# endif 1505# endif
1362 /* no timer adjustment, as the monotonic clock doesn't jump */ 1506 /* no timer adjustment, as the monotonic clock doesn't jump */
1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1507 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1364 }
1365 } 1508 }
1366 else 1509 else
1367#endif 1510#endif
1368 { 1511 {
1369 ev_rt_now = ev_time (); 1512 ev_rt_now = ev_time ();
1370 1513
1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1514 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 { 1515 {
1373#if EV_PERIODIC_ENABLE 1516#if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 1517 periodics_reschedule (EV_A);
1375#endif 1518#endif
1376
1377 /* adjust timers. this is easy, as the offset is the same for all of them */ 1519 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i) 1520 for (i = 0; i < timercnt; ++i)
1379 ((WT)timers [i])->at += ev_rt_now - mn_now; 1521 ((WT)timers [i])->at += ev_rt_now - mn_now;
1380 } 1522 }
1381 1523
1444 /* update fd-related kernel structures */ 1586 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 1587 fd_reify (EV_A);
1446 1588
1447 /* calculate blocking time */ 1589 /* calculate blocking time */
1448 { 1590 {
1449 ev_tstamp block; 1591 ev_tstamp waittime = 0.;
1592 ev_tstamp sleeptime = 0.;
1450 1593
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1594 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 1595 {
1455 /* update time to cancel out callback processing overhead */ 1596 /* update time to cancel out callback processing overhead */
1456#if EV_USE_MONOTONIC
1457 if (expect_true (have_monotonic))
1458 time_update_monotonic (EV_A); 1597 time_update (EV_A_ 1e100);
1459 else
1460#endif
1461 {
1462 ev_rt_now = ev_time ();
1463 mn_now = ev_rt_now;
1464 }
1465 1598
1466 block = MAX_BLOCKTIME; 1599 waittime = MAX_BLOCKTIME;
1467 1600
1468 if (timercnt) 1601 if (timercnt)
1469 { 1602 {
1470 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1603 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1471 if (block > to) block = to; 1604 if (waittime > to) waittime = to;
1472 } 1605 }
1473 1606
1474#if EV_PERIODIC_ENABLE 1607#if EV_PERIODIC_ENABLE
1475 if (periodiccnt) 1608 if (periodiccnt)
1476 { 1609 {
1477 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1610 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1478 if (block > to) block = to; 1611 if (waittime > to) waittime = to;
1479 } 1612 }
1480#endif 1613#endif
1481 1614
1482 if (expect_false (block < 0.)) block = 0.; 1615 if (expect_false (waittime < timeout_blocktime))
1616 waittime = timeout_blocktime;
1617
1618 sleeptime = waittime - backend_fudge;
1619
1620 if (expect_true (sleeptime > io_blocktime))
1621 sleeptime = io_blocktime;
1622
1623 if (sleeptime)
1624 {
1625 ev_sleep (sleeptime);
1626 waittime -= sleeptime;
1627 }
1483 } 1628 }
1484 1629
1485 ++loop_count; 1630 ++loop_count;
1486 backend_poll (EV_A_ block); 1631 backend_poll (EV_A_ waittime);
1632
1633 /* update ev_rt_now, do magic */
1634 time_update (EV_A_ waittime + sleeptime);
1487 } 1635 }
1488
1489 /* update ev_rt_now, do magic */
1490 time_update (EV_A);
1491 1636
1492 /* queue pending timers and reschedule them */ 1637 /* queue pending timers and reschedule them */
1493 timers_reify (EV_A); /* relative timers called last */ 1638 timers_reify (EV_A); /* relative timers called last */
1494#if EV_PERIODIC_ENABLE 1639#if EV_PERIODIC_ENABLE
1495 periodics_reify (EV_A); /* absolute timers called first */ 1640 periodics_reify (EV_A); /* absolute timers called first */
1606 1751
1607 assert (("ev_io_start called with negative fd", fd >= 0)); 1752 assert (("ev_io_start called with negative fd", fd >= 0));
1608 1753
1609 ev_start (EV_A_ (W)w, 1); 1754 ev_start (EV_A_ (W)w, 1);
1610 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1755 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1611 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1756 wlist_add (&anfds[fd].head, (WL)w);
1612 1757
1613 fd_change (EV_A_ fd); 1758 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1759 w->events &= ~EV_IOFDSET;
1614} 1760}
1615 1761
1616void noinline 1762void noinline
1617ev_io_stop (EV_P_ ev_io *w) 1763ev_io_stop (EV_P_ ev_io *w)
1618{ 1764{
1620 if (expect_false (!ev_is_active (w))) 1766 if (expect_false (!ev_is_active (w)))
1621 return; 1767 return;
1622 1768
1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1769 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1624 1770
1625 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1771 wlist_del (&anfds[w->fd].head, (WL)w);
1626 ev_stop (EV_A_ (W)w); 1772 ev_stop (EV_A_ (W)w);
1627 1773
1628 fd_change (EV_A_ w->fd); 1774 fd_change (EV_A_ w->fd, 1);
1629} 1775}
1630 1776
1631void noinline 1777void noinline
1632ev_timer_start (EV_P_ ev_timer *w) 1778ev_timer_start (EV_P_ ev_timer *w)
1633{ 1779{
1637 ((WT)w)->at += mn_now; 1783 ((WT)w)->at += mn_now;
1638 1784
1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1785 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1640 1786
1641 ev_start (EV_A_ (W)w, ++timercnt); 1787 ev_start (EV_A_ (W)w, ++timercnt);
1642 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1788 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1643 timers [timercnt - 1] = w; 1789 timers [timercnt - 1] = (WT)w;
1644 upheap ((WT *)timers, timercnt - 1); 1790 upheap (timers, timercnt - 1);
1645 1791
1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1792 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1647} 1793}
1648 1794
1649void noinline 1795void noinline
1651{ 1797{
1652 clear_pending (EV_A_ (W)w); 1798 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 1799 if (expect_false (!ev_is_active (w)))
1654 return; 1800 return;
1655 1801
1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1802 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1657 1803
1658 { 1804 {
1659 int active = ((W)w)->active; 1805 int active = ((W)w)->active;
1660 1806
1661 if (expect_true (--active < --timercnt)) 1807 if (expect_true (--active < --timercnt))
1662 { 1808 {
1663 timers [active] = timers [timercnt]; 1809 timers [active] = timers [timercnt];
1664 adjustheap ((WT *)timers, timercnt, active); 1810 adjustheap (timers, timercnt, active);
1665 } 1811 }
1666 } 1812 }
1667 1813
1668 ((WT)w)->at -= mn_now; 1814 ((WT)w)->at -= mn_now;
1669 1815
1676 if (ev_is_active (w)) 1822 if (ev_is_active (w))
1677 { 1823 {
1678 if (w->repeat) 1824 if (w->repeat)
1679 { 1825 {
1680 ((WT)w)->at = mn_now + w->repeat; 1826 ((WT)w)->at = mn_now + w->repeat;
1681 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1827 adjustheap (timers, timercnt, ((W)w)->active - 1);
1682 } 1828 }
1683 else 1829 else
1684 ev_timer_stop (EV_A_ w); 1830 ev_timer_stop (EV_A_ w);
1685 } 1831 }
1686 else if (w->repeat) 1832 else if (w->repeat)
1707 } 1853 }
1708 else 1854 else
1709 ((WT)w)->at = w->offset; 1855 ((WT)w)->at = w->offset;
1710 1856
1711 ev_start (EV_A_ (W)w, ++periodiccnt); 1857 ev_start (EV_A_ (W)w, ++periodiccnt);
1712 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1858 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1713 periodics [periodiccnt - 1] = w; 1859 periodics [periodiccnt - 1] = (WT)w;
1714 upheap ((WT *)periodics, periodiccnt - 1); 1860 upheap (periodics, periodiccnt - 1);
1715 1861
1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1862 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1717} 1863}
1718 1864
1719void noinline 1865void noinline
1721{ 1867{
1722 clear_pending (EV_A_ (W)w); 1868 clear_pending (EV_A_ (W)w);
1723 if (expect_false (!ev_is_active (w))) 1869 if (expect_false (!ev_is_active (w)))
1724 return; 1870 return;
1725 1871
1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1872 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1727 1873
1728 { 1874 {
1729 int active = ((W)w)->active; 1875 int active = ((W)w)->active;
1730 1876
1731 if (expect_true (--active < --periodiccnt)) 1877 if (expect_true (--active < --periodiccnt))
1732 { 1878 {
1733 periodics [active] = periodics [periodiccnt]; 1879 periodics [active] = periodics [periodiccnt];
1734 adjustheap ((WT *)periodics, periodiccnt, active); 1880 adjustheap (periodics, periodiccnt, active);
1735 } 1881 }
1736 } 1882 }
1737 1883
1738 ev_stop (EV_A_ (W)w); 1884 ev_stop (EV_A_ (W)w);
1739} 1885}
1760 if (expect_false (ev_is_active (w))) 1906 if (expect_false (ev_is_active (w)))
1761 return; 1907 return;
1762 1908
1763 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1909 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1764 1910
1911 evpipe_init (EV_A);
1912
1913 {
1914#ifndef _WIN32
1915 sigset_t full, prev;
1916 sigfillset (&full);
1917 sigprocmask (SIG_SETMASK, &full, &prev);
1918#endif
1919
1920 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1921
1922#ifndef _WIN32
1923 sigprocmask (SIG_SETMASK, &prev, 0);
1924#endif
1925 }
1926
1765 ev_start (EV_A_ (W)w, 1); 1927 ev_start (EV_A_ (W)w, 1);
1766 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1767 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1928 wlist_add (&signals [w->signum - 1].head, (WL)w);
1768 1929
1769 if (!((WL)w)->next) 1930 if (!((WL)w)->next)
1770 { 1931 {
1771#if _WIN32 1932#if _WIN32
1772 signal (w->signum, sighandler); 1933 signal (w->signum, sighandler);
1785{ 1946{
1786 clear_pending (EV_A_ (W)w); 1947 clear_pending (EV_A_ (W)w);
1787 if (expect_false (!ev_is_active (w))) 1948 if (expect_false (!ev_is_active (w)))
1788 return; 1949 return;
1789 1950
1790 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1951 wlist_del (&signals [w->signum - 1].head, (WL)w);
1791 ev_stop (EV_A_ (W)w); 1952 ev_stop (EV_A_ (W)w);
1792 1953
1793 if (!signals [w->signum - 1].head) 1954 if (!signals [w->signum - 1].head)
1794 signal (w->signum, SIG_DFL); 1955 signal (w->signum, SIG_DFL);
1795} 1956}
1802#endif 1963#endif
1803 if (expect_false (ev_is_active (w))) 1964 if (expect_false (ev_is_active (w)))
1804 return; 1965 return;
1805 1966
1806 ev_start (EV_A_ (W)w, 1); 1967 ev_start (EV_A_ (W)w, 1);
1807 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1968 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1808} 1969}
1809 1970
1810void 1971void
1811ev_child_stop (EV_P_ ev_child *w) 1972ev_child_stop (EV_P_ ev_child *w)
1812{ 1973{
1813 clear_pending (EV_A_ (W)w); 1974 clear_pending (EV_A_ (W)w);
1814 if (expect_false (!ev_is_active (w))) 1975 if (expect_false (!ev_is_active (w)))
1815 return; 1976 return;
1816 1977
1817 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1978 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1818 ev_stop (EV_A_ (W)w); 1979 ev_stop (EV_A_ (W)w);
1819} 1980}
1820 1981
1821#if EV_STAT_ENABLE 1982#if EV_STAT_ENABLE
1822 1983
2164 2325
2165#if EV_EMBED_ENABLE 2326#if EV_EMBED_ENABLE
2166void noinline 2327void noinline
2167ev_embed_sweep (EV_P_ ev_embed *w) 2328ev_embed_sweep (EV_P_ ev_embed *w)
2168{ 2329{
2169 ev_loop (w->loop, EVLOOP_NONBLOCK); 2330 ev_loop (w->other, EVLOOP_NONBLOCK);
2170} 2331}
2171 2332
2172static void 2333static void
2173embed_cb (EV_P_ ev_io *io, int revents) 2334embed_io_cb (EV_P_ ev_io *io, int revents)
2174{ 2335{
2175 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2336 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2176 2337
2177 if (ev_cb (w)) 2338 if (ev_cb (w))
2178 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2339 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2179 else 2340 else
2180 ev_embed_sweep (loop, w); 2341 ev_loop (w->other, EVLOOP_NONBLOCK);
2181} 2342}
2343
2344static void
2345embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2346{
2347 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2348
2349 {
2350 struct ev_loop *loop = w->other;
2351
2352 while (fdchangecnt)
2353 {
2354 fd_reify (EV_A);
2355 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2356 }
2357 }
2358}
2359
2360#if 0
2361static void
2362embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2363{
2364 ev_idle_stop (EV_A_ idle);
2365}
2366#endif
2182 2367
2183void 2368void
2184ev_embed_start (EV_P_ ev_embed *w) 2369ev_embed_start (EV_P_ ev_embed *w)
2185{ 2370{
2186 if (expect_false (ev_is_active (w))) 2371 if (expect_false (ev_is_active (w)))
2187 return; 2372 return;
2188 2373
2189 { 2374 {
2190 struct ev_loop *loop = w->loop; 2375 struct ev_loop *loop = w->other;
2191 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2376 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2192 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2377 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2193 } 2378 }
2194 2379
2195 ev_set_priority (&w->io, ev_priority (w)); 2380 ev_set_priority (&w->io, ev_priority (w));
2196 ev_io_start (EV_A_ &w->io); 2381 ev_io_start (EV_A_ &w->io);
2197 2382
2383 ev_prepare_init (&w->prepare, embed_prepare_cb);
2384 ev_set_priority (&w->prepare, EV_MINPRI);
2385 ev_prepare_start (EV_A_ &w->prepare);
2386
2387 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2388
2198 ev_start (EV_A_ (W)w, 1); 2389 ev_start (EV_A_ (W)w, 1);
2199} 2390}
2200 2391
2201void 2392void
2202ev_embed_stop (EV_P_ ev_embed *w) 2393ev_embed_stop (EV_P_ ev_embed *w)
2204 clear_pending (EV_A_ (W)w); 2395 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w))) 2396 if (expect_false (!ev_is_active (w)))
2206 return; 2397 return;
2207 2398
2208 ev_io_stop (EV_A_ &w->io); 2399 ev_io_stop (EV_A_ &w->io);
2400 ev_prepare_stop (EV_A_ &w->prepare);
2209 2401
2210 ev_stop (EV_A_ (W)w); 2402 ev_stop (EV_A_ (W)w);
2211} 2403}
2212#endif 2404#endif
2213 2405
2238 2430
2239 ev_stop (EV_A_ (W)w); 2431 ev_stop (EV_A_ (W)w);
2240} 2432}
2241#endif 2433#endif
2242 2434
2435#if EV_ASYNC_ENABLE
2436void
2437ev_async_start (EV_P_ ev_async *w)
2438{
2439 if (expect_false (ev_is_active (w)))
2440 return;
2441
2442 evpipe_init (EV_A);
2443
2444 ev_start (EV_A_ (W)w, ++asynccnt);
2445 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2446 asyncs [asynccnt - 1] = w;
2447}
2448
2449void
2450ev_async_stop (EV_P_ ev_async *w)
2451{
2452 clear_pending (EV_A_ (W)w);
2453 if (expect_false (!ev_is_active (w)))
2454 return;
2455
2456 {
2457 int active = ((W)w)->active;
2458 asyncs [active - 1] = asyncs [--asynccnt];
2459 ((W)asyncs [active - 1])->active = active;
2460 }
2461
2462 ev_stop (EV_A_ (W)w);
2463}
2464
2465void
2466ev_async_send (EV_P_ ev_async *w)
2467{
2468 w->sent = 1;
2469 evpipe_write (EV_A_ 0, 1);
2470}
2471#endif
2472
2243/*****************************************************************************/ 2473/*****************************************************************************/
2244 2474
2245struct ev_once 2475struct ev_once
2246{ 2476{
2247 ev_io io; 2477 ev_io io;
2302 ev_timer_set (&once->to, timeout, 0.); 2532 ev_timer_set (&once->to, timeout, 0.);
2303 ev_timer_start (EV_A_ &once->to); 2533 ev_timer_start (EV_A_ &once->to);
2304 } 2534 }
2305} 2535}
2306 2536
2537#if EV_MULTIPLICITY
2538 #include "ev_wrap.h"
2539#endif
2540
2307#ifdef __cplusplus 2541#ifdef __cplusplus
2308} 2542}
2309#endif 2543#endif
2310 2544

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines