ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.176 by root, Tue Dec 11 04:31:55 2007 UTC vs.
Revision 1.226 by root, Fri Apr 18 17:16:44 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 241
197#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
200#endif 245#endif
202#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
205#endif 250#endif
206 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
207#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 268# include <winsock.h>
209#endif 269#endif
210 270
211#if !EV_STAT_ENABLE 271#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
213#endif 276# endif
214 277int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 278# ifdef __cplusplus
216# include <sys/inotify.h> 279}
280# endif
217#endif 281#endif
218 282
219/**/ 283/**/
220 284
221/* 285/*
222 * This is used to avoid floating point rounding problems. 286 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 287 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 288 * to ensure progress, time-wise, even when rounding
225 * errors are against us. 289 * errors are against us.
226 * This value is good at least till the year 4000 290 * This value is good at least till the year 4000.
227 * and intervals up to 20 years.
228 * Better solutions welcome. 291 * Better solutions welcome.
229 */ 292 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231 294
232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
235 298
236#if __GNUC__ >= 3 299#if __GNUC__ >= 4
237# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
238# define noinline __attribute__ ((noinline)) 301# define noinline __attribute__ ((noinline))
239#else 302#else
240# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
241# define noinline 304# define noinline
242# if __STDC_VERSION__ < 199901L 305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
243# define inline 306# define inline
244# endif 307# endif
245#endif 308#endif
246 309
247#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
262 325
263typedef ev_watcher *W; 326typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
266 329
330#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif
268 335
269#ifdef _WIN32 336#ifdef _WIN32
270# include "ev_win32.c" 337# include "ev_win32.c"
271#endif 338#endif
272 339
293 perror (msg); 360 perror (msg);
294 abort (); 361 abort ();
295 } 362 }
296} 363}
297 364
365static void *
366ev_realloc_emul (void *ptr, long size)
367{
368 /* some systems, notably openbsd and darwin, fail to properly
369 * implement realloc (x, 0) (as required by both ansi c-98 and
370 * the single unix specification, so work around them here.
371 */
372
373 if (size)
374 return realloc (ptr, size);
375
376 free (ptr);
377 return 0;
378}
379
298static void *(*alloc)(void *ptr, long size); 380static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
299 381
300void 382void
301ev_set_allocator (void *(*cb)(void *ptr, long size)) 383ev_set_allocator (void *(*cb)(void *ptr, long size))
302{ 384{
303 alloc = cb; 385 alloc = cb;
304} 386}
305 387
306inline_speed void * 388inline_speed void *
307ev_realloc (void *ptr, long size) 389ev_realloc (void *ptr, long size)
308{ 390{
309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 391 ptr = alloc (ptr, size);
310 392
311 if (!ptr && size) 393 if (!ptr && size)
312 { 394 {
313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 395 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
314 abort (); 396 abort ();
408{ 490{
409 return ev_rt_now; 491 return ev_rt_now;
410} 492}
411#endif 493#endif
412 494
495void
496ev_sleep (ev_tstamp delay)
497{
498 if (delay > 0.)
499 {
500#if EV_USE_NANOSLEEP
501 struct timespec ts;
502
503 ts.tv_sec = (time_t)delay;
504 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
505
506 nanosleep (&ts, 0);
507#elif defined(_WIN32)
508 Sleep ((unsigned long)(delay * 1e3));
509#else
510 struct timeval tv;
511
512 tv.tv_sec = (time_t)delay;
513 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
514
515 select (0, 0, 0, 0, &tv);
516#endif
517 }
518}
519
520/*****************************************************************************/
521
413int inline_size 522int inline_size
414array_nextsize (int elem, int cur, int cnt) 523array_nextsize (int elem, int cur, int cnt)
415{ 524{
416 int ncur = cur + 1; 525 int ncur = cur + 1;
417 526
477 pendings [pri][w_->pending - 1].w = w_; 586 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents; 587 pendings [pri][w_->pending - 1].events = revents;
479 } 588 }
480} 589}
481 590
482void inline_size 591void inline_speed
483queue_events (EV_P_ W *events, int eventcnt, int type) 592queue_events (EV_P_ W *events, int eventcnt, int type)
484{ 593{
485 int i; 594 int i;
486 595
487 for (i = 0; i < eventcnt; ++i) 596 for (i = 0; i < eventcnt; ++i)
534 { 643 {
535 int fd = fdchanges [i]; 644 int fd = fdchanges [i];
536 ANFD *anfd = anfds + fd; 645 ANFD *anfd = anfds + fd;
537 ev_io *w; 646 ev_io *w;
538 647
539 int events = 0; 648 unsigned char events = 0;
540 649
541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 650 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
542 events |= w->events; 651 events |= (unsigned char)w->events;
543 652
544#if EV_SELECT_IS_WINSOCKET 653#if EV_SELECT_IS_WINSOCKET
545 if (events) 654 if (events)
546 { 655 {
547 unsigned long argp; 656 unsigned long argp;
657 #ifdef EV_FD_TO_WIN32_HANDLE
658 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
659 #else
548 anfd->handle = _get_osfhandle (fd); 660 anfd->handle = _get_osfhandle (fd);
661 #endif
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 662 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
550 } 663 }
551#endif 664#endif
552 665
666 {
667 unsigned char o_events = anfd->events;
668 unsigned char o_reify = anfd->reify;
669
553 anfd->reify = 0; 670 anfd->reify = 0;
554
555 backend_modify (EV_A_ fd, anfd->events, events);
556 anfd->events = events; 671 anfd->events = events;
672
673 if (o_events != events || o_reify & EV_IOFDSET)
674 backend_modify (EV_A_ fd, o_events, events);
675 }
557 } 676 }
558 677
559 fdchangecnt = 0; 678 fdchangecnt = 0;
560} 679}
561 680
562void inline_size 681void inline_size
563fd_change (EV_P_ int fd) 682fd_change (EV_P_ int fd, int flags)
564{ 683{
565 if (expect_false (anfds [fd].reify)) 684 unsigned char reify = anfds [fd].reify;
566 return;
567
568 anfds [fd].reify = 1; 685 anfds [fd].reify |= flags;
569 686
687 if (expect_true (!reify))
688 {
570 ++fdchangecnt; 689 ++fdchangecnt;
571 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 690 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
572 fdchanges [fdchangecnt - 1] = fd; 691 fdchanges [fdchangecnt - 1] = fd;
692 }
573} 693}
574 694
575void inline_speed 695void inline_speed
576fd_kill (EV_P_ int fd) 696fd_kill (EV_P_ int fd)
577{ 697{
628 748
629 for (fd = 0; fd < anfdmax; ++fd) 749 for (fd = 0; fd < anfdmax; ++fd)
630 if (anfds [fd].events) 750 if (anfds [fd].events)
631 { 751 {
632 anfds [fd].events = 0; 752 anfds [fd].events = 0;
633 fd_change (EV_A_ fd); 753 fd_change (EV_A_ fd, EV_IOFDSET | 1);
634 } 754 }
635} 755}
636 756
637/*****************************************************************************/ 757/*****************************************************************************/
638 758
639void inline_speed 759void inline_speed
640upheap (WT *heap, int k) 760upheap (WT *heap, int k)
641{ 761{
642 WT w = heap [k]; 762 WT w = heap [k];
643 763
644 while (k && heap [k >> 1]->at > w->at) 764 while (k)
645 { 765 {
766 int p = (k - 1) >> 1;
767
768 if (heap [p]->at <= w->at)
769 break;
770
646 heap [k] = heap [k >> 1]; 771 heap [k] = heap [p];
647 ((W)heap [k])->active = k + 1; 772 ((W)heap [k])->active = k + 1;
648 k >>= 1; 773 k = p;
649 } 774 }
650 775
651 heap [k] = w; 776 heap [k] = w;
652 ((W)heap [k])->active = k + 1; 777 ((W)heap [k])->active = k + 1;
653
654} 778}
655 779
656void inline_speed 780void inline_speed
657downheap (WT *heap, int N, int k) 781downheap (WT *heap, int N, int k)
658{ 782{
659 WT w = heap [k]; 783 WT w = heap [k];
660 784
661 while (k < (N >> 1)) 785 for (;;)
662 { 786 {
663 int j = k << 1; 787 int c = (k << 1) + 1;
664 788
665 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 789 if (c >= N)
666 ++j;
667
668 if (w->at <= heap [j]->at)
669 break; 790 break;
670 791
792 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
793 ? 1 : 0;
794
795 if (w->at <= heap [c]->at)
796 break;
797
671 heap [k] = heap [j]; 798 heap [k] = heap [c];
672 ((W)heap [k])->active = k + 1; 799 ((W)heap [k])->active = k + 1;
800
673 k = j; 801 k = c;
674 } 802 }
675 803
676 heap [k] = w; 804 heap [k] = w;
677 ((W)heap [k])->active = k + 1; 805 ((W)heap [k])->active = k + 1;
678} 806}
687/*****************************************************************************/ 815/*****************************************************************************/
688 816
689typedef struct 817typedef struct
690{ 818{
691 WL head; 819 WL head;
692 sig_atomic_t volatile gotsig; 820 EV_ATOMIC_T gotsig;
693} ANSIG; 821} ANSIG;
694 822
695static ANSIG *signals; 823static ANSIG *signals;
696static int signalmax; 824static int signalmax;
697 825
698static int sigpipe [2]; 826static EV_ATOMIC_T gotsig;
699static sig_atomic_t volatile gotsig;
700static ev_io sigev;
701 827
702void inline_size 828void inline_size
703signals_init (ANSIG *base, int count) 829signals_init (ANSIG *base, int count)
704{ 830{
705 while (count--) 831 while (count--)
709 835
710 ++base; 836 ++base;
711 } 837 }
712} 838}
713 839
714static void 840/*****************************************************************************/
715sighandler (int signum)
716{
717#if _WIN32
718 signal (signum, sighandler);
719#endif
720
721 signals [signum - 1].gotsig = 1;
722
723 if (!gotsig)
724 {
725 int old_errno = errno;
726 gotsig = 1;
727 write (sigpipe [1], &signum, 1);
728 errno = old_errno;
729 }
730}
731
732void noinline
733ev_feed_signal_event (EV_P_ int signum)
734{
735 WL w;
736
737#if EV_MULTIPLICITY
738 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
739#endif
740
741 --signum;
742
743 if (signum < 0 || signum >= signalmax)
744 return;
745
746 signals [signum].gotsig = 0;
747
748 for (w = signals [signum].head; w; w = w->next)
749 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
750}
751
752static void
753sigcb (EV_P_ ev_io *iow, int revents)
754{
755 int signum;
756
757 read (sigpipe [0], &revents, 1);
758 gotsig = 0;
759
760 for (signum = signalmax; signum--; )
761 if (signals [signum].gotsig)
762 ev_feed_signal_event (EV_A_ signum + 1);
763}
764 841
765void inline_speed 842void inline_speed
766fd_intern (int fd) 843fd_intern (int fd)
767{ 844{
768#ifdef _WIN32 845#ifdef _WIN32
773 fcntl (fd, F_SETFL, O_NONBLOCK); 850 fcntl (fd, F_SETFL, O_NONBLOCK);
774#endif 851#endif
775} 852}
776 853
777static void noinline 854static void noinline
778siginit (EV_P) 855evpipe_init (EV_P)
779{ 856{
857 if (!ev_is_active (&pipeev))
858 {
859#if EV_USE_EVENTFD
860 if ((evfd = eventfd (0, 0)) >= 0)
861 {
862 evpipe [0] = -1;
863 fd_intern (evfd);
864 ev_io_set (&pipeev, evfd, EV_READ);
865 }
866 else
867#endif
868 {
869 while (pipe (evpipe))
870 syserr ("(libev) error creating signal/async pipe");
871
780 fd_intern (sigpipe [0]); 872 fd_intern (evpipe [0]);
781 fd_intern (sigpipe [1]); 873 fd_intern (evpipe [1]);
874 ev_io_set (&pipeev, evpipe [0], EV_READ);
875 }
782 876
783 ev_io_set (&sigev, sigpipe [0], EV_READ);
784 ev_io_start (EV_A_ &sigev); 877 ev_io_start (EV_A_ &pipeev);
785 ev_unref (EV_A); /* child watcher should not keep loop alive */ 878 ev_unref (EV_A); /* watcher should not keep loop alive */
879 }
880}
881
882void inline_size
883evpipe_write (EV_P_ EV_ATOMIC_T *flag)
884{
885 if (!*flag)
886 {
887 int old_errno = errno; /* save errno because write might clobber it */
888
889 *flag = 1;
890
891#if EV_USE_EVENTFD
892 if (evfd >= 0)
893 {
894 uint64_t counter = 1;
895 write (evfd, &counter, sizeof (uint64_t));
896 }
897 else
898#endif
899 write (evpipe [1], &old_errno, 1);
900
901 errno = old_errno;
902 }
903}
904
905static void
906pipecb (EV_P_ ev_io *iow, int revents)
907{
908#if EV_USE_EVENTFD
909 if (evfd >= 0)
910 {
911 uint64_t counter = 1;
912 read (evfd, &counter, sizeof (uint64_t));
913 }
914 else
915#endif
916 {
917 char dummy;
918 read (evpipe [0], &dummy, 1);
919 }
920
921 if (gotsig && ev_is_default_loop (EV_A))
922 {
923 int signum;
924 gotsig = 0;
925
926 for (signum = signalmax; signum--; )
927 if (signals [signum].gotsig)
928 ev_feed_signal_event (EV_A_ signum + 1);
929 }
930
931#if EV_ASYNC_ENABLE
932 if (gotasync)
933 {
934 int i;
935 gotasync = 0;
936
937 for (i = asynccnt; i--; )
938 if (asyncs [i]->sent)
939 {
940 asyncs [i]->sent = 0;
941 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
942 }
943 }
944#endif
786} 945}
787 946
788/*****************************************************************************/ 947/*****************************************************************************/
789 948
949static void
950ev_sighandler (int signum)
951{
952#if EV_MULTIPLICITY
953 struct ev_loop *loop = &default_loop_struct;
954#endif
955
956#if _WIN32
957 signal (signum, ev_sighandler);
958#endif
959
960 signals [signum - 1].gotsig = 1;
961 evpipe_write (EV_A_ &gotsig);
962}
963
964void noinline
965ev_feed_signal_event (EV_P_ int signum)
966{
967 WL w;
968
969#if EV_MULTIPLICITY
970 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
971#endif
972
973 --signum;
974
975 if (signum < 0 || signum >= signalmax)
976 return;
977
978 signals [signum].gotsig = 0;
979
980 for (w = signals [signum].head; w; w = w->next)
981 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
982}
983
984/*****************************************************************************/
985
790static ev_child *childs [EV_PID_HASHSIZE]; 986static WL childs [EV_PID_HASHSIZE];
791 987
792#ifndef _WIN32 988#ifndef _WIN32
793 989
794static ev_signal childev; 990static ev_signal childev;
795 991
992#ifndef WIFCONTINUED
993# define WIFCONTINUED(status) 0
994#endif
995
796void inline_speed 996void inline_speed
797child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 997child_reap (EV_P_ int chain, int pid, int status)
798{ 998{
799 ev_child *w; 999 ev_child *w;
1000 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
800 1001
801 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1002 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1003 {
802 if (w->pid == pid || !w->pid) 1004 if ((w->pid == pid || !w->pid)
1005 && (!traced || (w->flags & 1)))
803 { 1006 {
804 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1007 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
805 w->rpid = pid; 1008 w->rpid = pid;
806 w->rstatus = status; 1009 w->rstatus = status;
807 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1010 ev_feed_event (EV_A_ (W)w, EV_CHILD);
808 } 1011 }
1012 }
809} 1013}
810 1014
811#ifndef WCONTINUED 1015#ifndef WCONTINUED
812# define WCONTINUED 0 1016# define WCONTINUED 0
813#endif 1017#endif
822 if (!WCONTINUED 1026 if (!WCONTINUED
823 || errno != EINVAL 1027 || errno != EINVAL
824 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1028 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
825 return; 1029 return;
826 1030
827 /* make sure we are called again until all childs have been reaped */ 1031 /* make sure we are called again until all children have been reaped */
828 /* we need to do it this way so that the callback gets called before we continue */ 1032 /* we need to do it this way so that the callback gets called before we continue */
829 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1033 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
830 1034
831 child_reap (EV_A_ sw, pid, pid, status); 1035 child_reap (EV_A_ pid, pid, status);
832 if (EV_PID_HASHSIZE > 1) 1036 if (EV_PID_HASHSIZE > 1)
833 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1037 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
834} 1038}
835 1039
836#endif 1040#endif
837 1041
838/*****************************************************************************/ 1042/*****************************************************************************/
910} 1114}
911 1115
912unsigned int 1116unsigned int
913ev_embeddable_backends (void) 1117ev_embeddable_backends (void)
914{ 1118{
915 return EVBACKEND_EPOLL 1119 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
916 | EVBACKEND_KQUEUE 1120
917 | EVBACKEND_PORT; 1121 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1122 /* please fix it and tell me how to detect the fix */
1123 flags &= ~EVBACKEND_EPOLL;
1124
1125 return flags;
918} 1126}
919 1127
920unsigned int 1128unsigned int
921ev_backend (EV_P) 1129ev_backend (EV_P)
922{ 1130{
925 1133
926unsigned int 1134unsigned int
927ev_loop_count (EV_P) 1135ev_loop_count (EV_P)
928{ 1136{
929 return loop_count; 1137 return loop_count;
1138}
1139
1140void
1141ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1142{
1143 io_blocktime = interval;
1144}
1145
1146void
1147ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1148{
1149 timeout_blocktime = interval;
930} 1150}
931 1151
932static void noinline 1152static void noinline
933loop_init (EV_P_ unsigned int flags) 1153loop_init (EV_P_ unsigned int flags)
934{ 1154{
940 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1160 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
941 have_monotonic = 1; 1161 have_monotonic = 1;
942 } 1162 }
943#endif 1163#endif
944 1164
945 ev_rt_now = ev_time (); 1165 ev_rt_now = ev_time ();
946 mn_now = get_clock (); 1166 mn_now = get_clock ();
947 now_floor = mn_now; 1167 now_floor = mn_now;
948 rtmn_diff = ev_rt_now - mn_now; 1168 rtmn_diff = ev_rt_now - mn_now;
1169
1170 io_blocktime = 0.;
1171 timeout_blocktime = 0.;
1172 backend = 0;
1173 backend_fd = -1;
1174 gotasync = 0;
1175#if EV_USE_INOTIFY
1176 fs_fd = -2;
1177#endif
949 1178
950 /* pid check not overridable via env */ 1179 /* pid check not overridable via env */
951#ifndef _WIN32 1180#ifndef _WIN32
952 if (flags & EVFLAG_FORKCHECK) 1181 if (flags & EVFLAG_FORKCHECK)
953 curpid = getpid (); 1182 curpid = getpid ();
956 if (!(flags & EVFLAG_NOENV) 1185 if (!(flags & EVFLAG_NOENV)
957 && !enable_secure () 1186 && !enable_secure ()
958 && getenv ("LIBEV_FLAGS")) 1187 && getenv ("LIBEV_FLAGS"))
959 flags = atoi (getenv ("LIBEV_FLAGS")); 1188 flags = atoi (getenv ("LIBEV_FLAGS"));
960 1189
961 if (!(flags & 0x0000ffffUL)) 1190 if (!(flags & 0x0000ffffU))
962 flags |= ev_recommended_backends (); 1191 flags |= ev_recommended_backends ();
963
964 backend = 0;
965 backend_fd = -1;
966#if EV_USE_INOTIFY
967 fs_fd = -2;
968#endif
969 1192
970#if EV_USE_PORT 1193#if EV_USE_PORT
971 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1194 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
972#endif 1195#endif
973#if EV_USE_KQUEUE 1196#if EV_USE_KQUEUE
981#endif 1204#endif
982#if EV_USE_SELECT 1205#if EV_USE_SELECT
983 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1206 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
984#endif 1207#endif
985 1208
986 ev_init (&sigev, sigcb); 1209 ev_init (&pipeev, pipecb);
987 ev_set_priority (&sigev, EV_MAXPRI); 1210 ev_set_priority (&pipeev, EV_MAXPRI);
988 } 1211 }
989} 1212}
990 1213
991static void noinline 1214static void noinline
992loop_destroy (EV_P) 1215loop_destroy (EV_P)
993{ 1216{
994 int i; 1217 int i;
1218
1219 if (ev_is_active (&pipeev))
1220 {
1221 ev_ref (EV_A); /* signal watcher */
1222 ev_io_stop (EV_A_ &pipeev);
1223
1224#if EV_USE_EVENTFD
1225 if (evfd >= 0)
1226 close (evfd);
1227#endif
1228
1229 if (evpipe [0] >= 0)
1230 {
1231 close (evpipe [0]);
1232 close (evpipe [1]);
1233 }
1234 }
995 1235
996#if EV_USE_INOTIFY 1236#if EV_USE_INOTIFY
997 if (fs_fd >= 0) 1237 if (fs_fd >= 0)
998 close (fs_fd); 1238 close (fs_fd);
999#endif 1239#endif
1022 array_free (pending, [i]); 1262 array_free (pending, [i]);
1023#if EV_IDLE_ENABLE 1263#if EV_IDLE_ENABLE
1024 array_free (idle, [i]); 1264 array_free (idle, [i]);
1025#endif 1265#endif
1026 } 1266 }
1267
1268 ev_free (anfds); anfdmax = 0;
1027 1269
1028 /* have to use the microsoft-never-gets-it-right macro */ 1270 /* have to use the microsoft-never-gets-it-right macro */
1029 array_free (fdchange, EMPTY); 1271 array_free (fdchange, EMPTY);
1030 array_free (timer, EMPTY); 1272 array_free (timer, EMPTY);
1031#if EV_PERIODIC_ENABLE 1273#if EV_PERIODIC_ENABLE
1032 array_free (periodic, EMPTY); 1274 array_free (periodic, EMPTY);
1033#endif 1275#endif
1276#if EV_FORK_ENABLE
1277 array_free (fork, EMPTY);
1278#endif
1034 array_free (prepare, EMPTY); 1279 array_free (prepare, EMPTY);
1035 array_free (check, EMPTY); 1280 array_free (check, EMPTY);
1281#if EV_ASYNC_ENABLE
1282 array_free (async, EMPTY);
1283#endif
1036 1284
1037 backend = 0; 1285 backend = 0;
1038} 1286}
1039 1287
1288#if EV_USE_INOTIFY
1040void inline_size infy_fork (EV_P); 1289void inline_size infy_fork (EV_P);
1290#endif
1041 1291
1042void inline_size 1292void inline_size
1043loop_fork (EV_P) 1293loop_fork (EV_P)
1044{ 1294{
1045#if EV_USE_PORT 1295#if EV_USE_PORT
1053#endif 1303#endif
1054#if EV_USE_INOTIFY 1304#if EV_USE_INOTIFY
1055 infy_fork (EV_A); 1305 infy_fork (EV_A);
1056#endif 1306#endif
1057 1307
1058 if (ev_is_active (&sigev)) 1308 if (ev_is_active (&pipeev))
1059 { 1309 {
1060 /* default loop */ 1310 /* this "locks" the handlers against writing to the pipe */
1311 /* while we modify the fd vars */
1312 gotsig = 1;
1313#if EV_ASYNC_ENABLE
1314 gotasync = 1;
1315#endif
1061 1316
1062 ev_ref (EV_A); 1317 ev_ref (EV_A);
1063 ev_io_stop (EV_A_ &sigev); 1318 ev_io_stop (EV_A_ &pipeev);
1319
1320#if EV_USE_EVENTFD
1321 if (evfd >= 0)
1322 close (evfd);
1323#endif
1324
1325 if (evpipe [0] >= 0)
1326 {
1064 close (sigpipe [0]); 1327 close (evpipe [0]);
1065 close (sigpipe [1]); 1328 close (evpipe [1]);
1329 }
1066 1330
1067 while (pipe (sigpipe))
1068 syserr ("(libev) error creating pipe");
1069
1070 siginit (EV_A); 1331 evpipe_init (EV_A);
1332 /* now iterate over everything, in case we missed something */
1333 pipecb (EV_A_ &pipeev, EV_READ);
1071 } 1334 }
1072 1335
1073 postfork = 0; 1336 postfork = 0;
1074} 1337}
1075 1338
1097} 1360}
1098 1361
1099void 1362void
1100ev_loop_fork (EV_P) 1363ev_loop_fork (EV_P)
1101{ 1364{
1102 postfork = 1; 1365 postfork = 1; /* must be in line with ev_default_fork */
1103} 1366}
1104 1367
1105#endif 1368#endif
1106 1369
1107#if EV_MULTIPLICITY 1370#if EV_MULTIPLICITY
1110#else 1373#else
1111int 1374int
1112ev_default_loop (unsigned int flags) 1375ev_default_loop (unsigned int flags)
1113#endif 1376#endif
1114{ 1377{
1115 if (sigpipe [0] == sigpipe [1])
1116 if (pipe (sigpipe))
1117 return 0;
1118
1119 if (!ev_default_loop_ptr) 1378 if (!ev_default_loop_ptr)
1120 { 1379 {
1121#if EV_MULTIPLICITY 1380#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1381 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1123#else 1382#else
1126 1385
1127 loop_init (EV_A_ flags); 1386 loop_init (EV_A_ flags);
1128 1387
1129 if (ev_backend (EV_A)) 1388 if (ev_backend (EV_A))
1130 { 1389 {
1131 siginit (EV_A);
1132
1133#ifndef _WIN32 1390#ifndef _WIN32
1134 ev_signal_init (&childev, childcb, SIGCHLD); 1391 ev_signal_init (&childev, childcb, SIGCHLD);
1135 ev_set_priority (&childev, EV_MAXPRI); 1392 ev_set_priority (&childev, EV_MAXPRI);
1136 ev_signal_start (EV_A_ &childev); 1393 ev_signal_start (EV_A_ &childev);
1137 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1394 ev_unref (EV_A); /* child watcher should not keep loop alive */
1154#ifndef _WIN32 1411#ifndef _WIN32
1155 ev_ref (EV_A); /* child watcher */ 1412 ev_ref (EV_A); /* child watcher */
1156 ev_signal_stop (EV_A_ &childev); 1413 ev_signal_stop (EV_A_ &childev);
1157#endif 1414#endif
1158 1415
1159 ev_ref (EV_A); /* signal watcher */
1160 ev_io_stop (EV_A_ &sigev);
1161
1162 close (sigpipe [0]); sigpipe [0] = 0;
1163 close (sigpipe [1]); sigpipe [1] = 0;
1164
1165 loop_destroy (EV_A); 1416 loop_destroy (EV_A);
1166} 1417}
1167 1418
1168void 1419void
1169ev_default_fork (void) 1420ev_default_fork (void)
1171#if EV_MULTIPLICITY 1422#if EV_MULTIPLICITY
1172 struct ev_loop *loop = ev_default_loop_ptr; 1423 struct ev_loop *loop = ev_default_loop_ptr;
1173#endif 1424#endif
1174 1425
1175 if (backend) 1426 if (backend)
1176 postfork = 1; 1427 postfork = 1; /* must be in line with ev_loop_fork */
1177} 1428}
1178 1429
1179/*****************************************************************************/ 1430/*****************************************************************************/
1180 1431
1181void 1432void
1207void inline_size 1458void inline_size
1208timers_reify (EV_P) 1459timers_reify (EV_P)
1209{ 1460{
1210 while (timercnt && ((WT)timers [0])->at <= mn_now) 1461 while (timercnt && ((WT)timers [0])->at <= mn_now)
1211 { 1462 {
1212 ev_timer *w = timers [0]; 1463 ev_timer *w = (ev_timer *)timers [0];
1213 1464
1214 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1465 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1215 1466
1216 /* first reschedule or stop timer */ 1467 /* first reschedule or stop timer */
1217 if (w->repeat) 1468 if (w->repeat)
1220 1471
1221 ((WT)w)->at += w->repeat; 1472 ((WT)w)->at += w->repeat;
1222 if (((WT)w)->at < mn_now) 1473 if (((WT)w)->at < mn_now)
1223 ((WT)w)->at = mn_now; 1474 ((WT)w)->at = mn_now;
1224 1475
1225 downheap ((WT *)timers, timercnt, 0); 1476 downheap (timers, timercnt, 0);
1226 } 1477 }
1227 else 1478 else
1228 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1479 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1229 1480
1230 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1481 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1235void inline_size 1486void inline_size
1236periodics_reify (EV_P) 1487periodics_reify (EV_P)
1237{ 1488{
1238 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1489 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1239 { 1490 {
1240 ev_periodic *w = periodics [0]; 1491 ev_periodic *w = (ev_periodic *)periodics [0];
1241 1492
1242 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1493 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1243 1494
1244 /* first reschedule or stop timer */ 1495 /* first reschedule or stop timer */
1245 if (w->reschedule_cb) 1496 if (w->reschedule_cb)
1246 { 1497 {
1247 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1498 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1248 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1499 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1249 downheap ((WT *)periodics, periodiccnt, 0); 1500 downheap (periodics, periodiccnt, 0);
1250 } 1501 }
1251 else if (w->interval) 1502 else if (w->interval)
1252 { 1503 {
1253 ((WT)w)->at = w->offset + floor ((ev_rt_now + TIME_EPSILON - w->offset) / w->interval + 1.) * w->interval; 1504 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1505 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1506 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1255 downheap ((WT *)periodics, periodiccnt, 0); 1507 downheap (periodics, periodiccnt, 0);
1256 } 1508 }
1257 else 1509 else
1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1510 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1259 1511
1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1512 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1267 int i; 1519 int i;
1268 1520
1269 /* adjust periodics after time jump */ 1521 /* adjust periodics after time jump */
1270 for (i = 0; i < periodiccnt; ++i) 1522 for (i = 0; i < periodiccnt; ++i)
1271 { 1523 {
1272 ev_periodic *w = periodics [i]; 1524 ev_periodic *w = (ev_periodic *)periodics [i];
1273 1525
1274 if (w->reschedule_cb) 1526 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1527 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1276 else if (w->interval) 1528 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1529 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 } 1530 }
1279 1531
1280 /* now rebuild the heap */ 1532 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; ) 1533 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i); 1534 downheap (periodics, periodiccnt, i);
1283} 1535}
1284#endif 1536#endif
1285 1537
1286#if EV_IDLE_ENABLE 1538#if EV_IDLE_ENABLE
1287void inline_size 1539void inline_size
1304 } 1556 }
1305 } 1557 }
1306} 1558}
1307#endif 1559#endif
1308 1560
1309int inline_size 1561void inline_speed
1310time_update_monotonic (EV_P) 1562time_update (EV_P_ ev_tstamp max_block)
1311{ 1563{
1564 int i;
1565
1566#if EV_USE_MONOTONIC
1567 if (expect_true (have_monotonic))
1568 {
1569 ev_tstamp odiff = rtmn_diff;
1570
1312 mn_now = get_clock (); 1571 mn_now = get_clock ();
1313 1572
1573 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1574 /* interpolate in the meantime */
1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1575 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1315 { 1576 {
1316 ev_rt_now = rtmn_diff + mn_now; 1577 ev_rt_now = rtmn_diff + mn_now;
1317 return 0; 1578 return;
1318 } 1579 }
1319 else 1580
1320 {
1321 now_floor = mn_now; 1581 now_floor = mn_now;
1322 ev_rt_now = ev_time (); 1582 ev_rt_now = ev_time ();
1323 return 1;
1324 }
1325}
1326 1583
1327void inline_size 1584 /* loop a few times, before making important decisions.
1328time_update (EV_P) 1585 * on the choice of "4": one iteration isn't enough,
1329{ 1586 * in case we get preempted during the calls to
1330 int i; 1587 * ev_time and get_clock. a second call is almost guaranteed
1331 1588 * to succeed in that case, though. and looping a few more times
1332#if EV_USE_MONOTONIC 1589 * doesn't hurt either as we only do this on time-jumps or
1333 if (expect_true (have_monotonic)) 1590 * in the unlikely event of having been preempted here.
1334 { 1591 */
1335 if (time_update_monotonic (EV_A)) 1592 for (i = 4; --i; )
1336 { 1593 {
1337 ev_tstamp odiff = rtmn_diff;
1338
1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1348 {
1349 rtmn_diff = ev_rt_now - mn_now; 1594 rtmn_diff = ev_rt_now - mn_now;
1350 1595
1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1596 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1352 return; /* all is well */ 1597 return; /* all is well */
1353 1598
1354 ev_rt_now = ev_time (); 1599 ev_rt_now = ev_time ();
1355 mn_now = get_clock (); 1600 mn_now = get_clock ();
1356 now_floor = mn_now; 1601 now_floor = mn_now;
1357 } 1602 }
1358 1603
1359# if EV_PERIODIC_ENABLE 1604# if EV_PERIODIC_ENABLE
1360 periodics_reschedule (EV_A); 1605 periodics_reschedule (EV_A);
1361# endif 1606# endif
1362 /* no timer adjustment, as the monotonic clock doesn't jump */ 1607 /* no timer adjustment, as the monotonic clock doesn't jump */
1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1608 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1364 }
1365 } 1609 }
1366 else 1610 else
1367#endif 1611#endif
1368 { 1612 {
1369 ev_rt_now = ev_time (); 1613 ev_rt_now = ev_time ();
1370 1614
1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1615 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 { 1616 {
1373#if EV_PERIODIC_ENABLE 1617#if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 1618 periodics_reschedule (EV_A);
1375#endif 1619#endif
1376
1377 /* adjust timers. this is easy, as the offset is the same for all of them */ 1620 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i) 1621 for (i = 0; i < timercnt; ++i)
1379 ((WT)timers [i])->at += ev_rt_now - mn_now; 1622 ((WT)timers [i])->at += ev_rt_now - mn_now;
1380 } 1623 }
1381 1624
1398static int loop_done; 1641static int loop_done;
1399 1642
1400void 1643void
1401ev_loop (EV_P_ int flags) 1644ev_loop (EV_P_ int flags)
1402{ 1645{
1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1646 loop_done = EVUNLOOP_CANCEL;
1404 ? EVUNLOOP_ONE
1405 : EVUNLOOP_CANCEL;
1406 1647
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1648 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1408 1649
1409 do 1650 do
1410 { 1651 {
1444 /* update fd-related kernel structures */ 1685 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 1686 fd_reify (EV_A);
1446 1687
1447 /* calculate blocking time */ 1688 /* calculate blocking time */
1448 { 1689 {
1449 ev_tstamp block; 1690 ev_tstamp waittime = 0.;
1691 ev_tstamp sleeptime = 0.;
1450 1692
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1693 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 1694 {
1455 /* update time to cancel out callback processing overhead */ 1695 /* update time to cancel out callback processing overhead */
1456#if EV_USE_MONOTONIC
1457 if (expect_true (have_monotonic))
1458 time_update_monotonic (EV_A); 1696 time_update (EV_A_ 1e100);
1459 else
1460#endif
1461 {
1462 ev_rt_now = ev_time ();
1463 mn_now = ev_rt_now;
1464 }
1465 1697
1466 block = MAX_BLOCKTIME; 1698 waittime = MAX_BLOCKTIME;
1467 1699
1468 if (timercnt) 1700 if (timercnt)
1469 { 1701 {
1470 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1702 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1471 if (block > to) block = to; 1703 if (waittime > to) waittime = to;
1472 } 1704 }
1473 1705
1474#if EV_PERIODIC_ENABLE 1706#if EV_PERIODIC_ENABLE
1475 if (periodiccnt) 1707 if (periodiccnt)
1476 { 1708 {
1477 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1709 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1478 if (block > to) block = to; 1710 if (waittime > to) waittime = to;
1479 } 1711 }
1480#endif 1712#endif
1481 1713
1482 if (expect_false (block < 0.)) block = 0.; 1714 if (expect_false (waittime < timeout_blocktime))
1715 waittime = timeout_blocktime;
1716
1717 sleeptime = waittime - backend_fudge;
1718
1719 if (expect_true (sleeptime > io_blocktime))
1720 sleeptime = io_blocktime;
1721
1722 if (sleeptime)
1723 {
1724 ev_sleep (sleeptime);
1725 waittime -= sleeptime;
1726 }
1483 } 1727 }
1484 1728
1485 ++loop_count; 1729 ++loop_count;
1486 backend_poll (EV_A_ block); 1730 backend_poll (EV_A_ waittime);
1731
1732 /* update ev_rt_now, do magic */
1733 time_update (EV_A_ waittime + sleeptime);
1487 } 1734 }
1488
1489 /* update ev_rt_now, do magic */
1490 time_update (EV_A);
1491 1735
1492 /* queue pending timers and reschedule them */ 1736 /* queue pending timers and reschedule them */
1493 timers_reify (EV_A); /* relative timers called last */ 1737 timers_reify (EV_A); /* relative timers called last */
1494#if EV_PERIODIC_ENABLE 1738#if EV_PERIODIC_ENABLE
1495 periodics_reify (EV_A); /* absolute timers called first */ 1739 periodics_reify (EV_A); /* absolute timers called first */
1503 /* queue check watchers, to be executed first */ 1747 /* queue check watchers, to be executed first */
1504 if (expect_false (checkcnt)) 1748 if (expect_false (checkcnt))
1505 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1749 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1506 1750
1507 call_pending (EV_A); 1751 call_pending (EV_A);
1508
1509 } 1752 }
1510 while (expect_true (activecnt && !loop_done)); 1753 while (expect_true (
1754 activecnt
1755 && !loop_done
1756 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1757 ));
1511 1758
1512 if (loop_done == EVUNLOOP_ONE) 1759 if (loop_done == EVUNLOOP_ONE)
1513 loop_done = EVUNLOOP_CANCEL; 1760 loop_done = EVUNLOOP_CANCEL;
1514} 1761}
1515 1762
1606 1853
1607 assert (("ev_io_start called with negative fd", fd >= 0)); 1854 assert (("ev_io_start called with negative fd", fd >= 0));
1608 1855
1609 ev_start (EV_A_ (W)w, 1); 1856 ev_start (EV_A_ (W)w, 1);
1610 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1857 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1611 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1858 wlist_add (&anfds[fd].head, (WL)w);
1612 1859
1613 fd_change (EV_A_ fd); 1860 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1861 w->events &= ~EV_IOFDSET;
1614} 1862}
1615 1863
1616void noinline 1864void noinline
1617ev_io_stop (EV_P_ ev_io *w) 1865ev_io_stop (EV_P_ ev_io *w)
1618{ 1866{
1620 if (expect_false (!ev_is_active (w))) 1868 if (expect_false (!ev_is_active (w)))
1621 return; 1869 return;
1622 1870
1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1871 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1624 1872
1625 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1873 wlist_del (&anfds[w->fd].head, (WL)w);
1626 ev_stop (EV_A_ (W)w); 1874 ev_stop (EV_A_ (W)w);
1627 1875
1628 fd_change (EV_A_ w->fd); 1876 fd_change (EV_A_ w->fd, 1);
1629} 1877}
1630 1878
1631void noinline 1879void noinline
1632ev_timer_start (EV_P_ ev_timer *w) 1880ev_timer_start (EV_P_ ev_timer *w)
1633{ 1881{
1637 ((WT)w)->at += mn_now; 1885 ((WT)w)->at += mn_now;
1638 1886
1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1887 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1640 1888
1641 ev_start (EV_A_ (W)w, ++timercnt); 1889 ev_start (EV_A_ (W)w, ++timercnt);
1642 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1890 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1643 timers [timercnt - 1] = w; 1891 timers [timercnt - 1] = (WT)w;
1644 upheap ((WT *)timers, timercnt - 1); 1892 upheap (timers, timercnt - 1);
1645 1893
1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1894 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1647} 1895}
1648 1896
1649void noinline 1897void noinline
1651{ 1899{
1652 clear_pending (EV_A_ (W)w); 1900 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 1901 if (expect_false (!ev_is_active (w)))
1654 return; 1902 return;
1655 1903
1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1904 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1657 1905
1658 { 1906 {
1659 int active = ((W)w)->active; 1907 int active = ((W)w)->active;
1660 1908
1661 if (expect_true (--active < --timercnt)) 1909 if (expect_true (--active < --timercnt))
1662 { 1910 {
1663 timers [active] = timers [timercnt]; 1911 timers [active] = timers [timercnt];
1664 adjustheap ((WT *)timers, timercnt, active); 1912 adjustheap (timers, timercnt, active);
1665 } 1913 }
1666 } 1914 }
1667 1915
1668 ((WT)w)->at -= mn_now; 1916 ((WT)w)->at -= mn_now;
1669 1917
1676 if (ev_is_active (w)) 1924 if (ev_is_active (w))
1677 { 1925 {
1678 if (w->repeat) 1926 if (w->repeat)
1679 { 1927 {
1680 ((WT)w)->at = mn_now + w->repeat; 1928 ((WT)w)->at = mn_now + w->repeat;
1681 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1929 adjustheap (timers, timercnt, ((W)w)->active - 1);
1682 } 1930 }
1683 else 1931 else
1684 ev_timer_stop (EV_A_ w); 1932 ev_timer_stop (EV_A_ w);
1685 } 1933 }
1686 else if (w->repeat) 1934 else if (w->repeat)
1707 } 1955 }
1708 else 1956 else
1709 ((WT)w)->at = w->offset; 1957 ((WT)w)->at = w->offset;
1710 1958
1711 ev_start (EV_A_ (W)w, ++periodiccnt); 1959 ev_start (EV_A_ (W)w, ++periodiccnt);
1712 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1960 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1713 periodics [periodiccnt - 1] = w; 1961 periodics [periodiccnt - 1] = (WT)w;
1714 upheap ((WT *)periodics, periodiccnt - 1); 1962 upheap (periodics, periodiccnt - 1);
1715 1963
1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1964 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1717} 1965}
1718 1966
1719void noinline 1967void noinline
1721{ 1969{
1722 clear_pending (EV_A_ (W)w); 1970 clear_pending (EV_A_ (W)w);
1723 if (expect_false (!ev_is_active (w))) 1971 if (expect_false (!ev_is_active (w)))
1724 return; 1972 return;
1725 1973
1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1974 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1727 1975
1728 { 1976 {
1729 int active = ((W)w)->active; 1977 int active = ((W)w)->active;
1730 1978
1731 if (expect_true (--active < --periodiccnt)) 1979 if (expect_true (--active < --periodiccnt))
1732 { 1980 {
1733 periodics [active] = periodics [periodiccnt]; 1981 periodics [active] = periodics [periodiccnt];
1734 adjustheap ((WT *)periodics, periodiccnt, active); 1982 adjustheap (periodics, periodiccnt, active);
1735 } 1983 }
1736 } 1984 }
1737 1985
1738 ev_stop (EV_A_ (W)w); 1986 ev_stop (EV_A_ (W)w);
1739} 1987}
1760 if (expect_false (ev_is_active (w))) 2008 if (expect_false (ev_is_active (w)))
1761 return; 2009 return;
1762 2010
1763 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2011 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1764 2012
2013 evpipe_init (EV_A);
2014
2015 {
2016#ifndef _WIN32
2017 sigset_t full, prev;
2018 sigfillset (&full);
2019 sigprocmask (SIG_SETMASK, &full, &prev);
2020#endif
2021
2022 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2023
2024#ifndef _WIN32
2025 sigprocmask (SIG_SETMASK, &prev, 0);
2026#endif
2027 }
2028
1765 ev_start (EV_A_ (W)w, 1); 2029 ev_start (EV_A_ (W)w, 1);
1766 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1767 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2030 wlist_add (&signals [w->signum - 1].head, (WL)w);
1768 2031
1769 if (!((WL)w)->next) 2032 if (!((WL)w)->next)
1770 { 2033 {
1771#if _WIN32 2034#if _WIN32
1772 signal (w->signum, sighandler); 2035 signal (w->signum, ev_sighandler);
1773#else 2036#else
1774 struct sigaction sa; 2037 struct sigaction sa;
1775 sa.sa_handler = sighandler; 2038 sa.sa_handler = ev_sighandler;
1776 sigfillset (&sa.sa_mask); 2039 sigfillset (&sa.sa_mask);
1777 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2040 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1778 sigaction (w->signum, &sa, 0); 2041 sigaction (w->signum, &sa, 0);
1779#endif 2042#endif
1780 } 2043 }
1785{ 2048{
1786 clear_pending (EV_A_ (W)w); 2049 clear_pending (EV_A_ (W)w);
1787 if (expect_false (!ev_is_active (w))) 2050 if (expect_false (!ev_is_active (w)))
1788 return; 2051 return;
1789 2052
1790 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2053 wlist_del (&signals [w->signum - 1].head, (WL)w);
1791 ev_stop (EV_A_ (W)w); 2054 ev_stop (EV_A_ (W)w);
1792 2055
1793 if (!signals [w->signum - 1].head) 2056 if (!signals [w->signum - 1].head)
1794 signal (w->signum, SIG_DFL); 2057 signal (w->signum, SIG_DFL);
1795} 2058}
1802#endif 2065#endif
1803 if (expect_false (ev_is_active (w))) 2066 if (expect_false (ev_is_active (w)))
1804 return; 2067 return;
1805 2068
1806 ev_start (EV_A_ (W)w, 1); 2069 ev_start (EV_A_ (W)w, 1);
1807 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2070 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1808} 2071}
1809 2072
1810void 2073void
1811ev_child_stop (EV_P_ ev_child *w) 2074ev_child_stop (EV_P_ ev_child *w)
1812{ 2075{
1813 clear_pending (EV_A_ (W)w); 2076 clear_pending (EV_A_ (W)w);
1814 if (expect_false (!ev_is_active (w))) 2077 if (expect_false (!ev_is_active (w)))
1815 return; 2078 return;
1816 2079
1817 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2080 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1818 ev_stop (EV_A_ (W)w); 2081 ev_stop (EV_A_ (W)w);
1819} 2082}
1820 2083
1821#if EV_STAT_ENABLE 2084#if EV_STAT_ENABLE
1822 2085
2164 2427
2165#if EV_EMBED_ENABLE 2428#if EV_EMBED_ENABLE
2166void noinline 2429void noinline
2167ev_embed_sweep (EV_P_ ev_embed *w) 2430ev_embed_sweep (EV_P_ ev_embed *w)
2168{ 2431{
2169 ev_loop (w->loop, EVLOOP_NONBLOCK); 2432 ev_loop (w->other, EVLOOP_NONBLOCK);
2170} 2433}
2171 2434
2172static void 2435static void
2173embed_cb (EV_P_ ev_io *io, int revents) 2436embed_io_cb (EV_P_ ev_io *io, int revents)
2174{ 2437{
2175 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2438 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2176 2439
2177 if (ev_cb (w)) 2440 if (ev_cb (w))
2178 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2441 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2179 else 2442 else
2180 ev_embed_sweep (loop, w); 2443 ev_loop (w->other, EVLOOP_NONBLOCK);
2181} 2444}
2445
2446static void
2447embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2448{
2449 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2450
2451 {
2452 struct ev_loop *loop = w->other;
2453
2454 while (fdchangecnt)
2455 {
2456 fd_reify (EV_A);
2457 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2458 }
2459 }
2460}
2461
2462#if 0
2463static void
2464embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2465{
2466 ev_idle_stop (EV_A_ idle);
2467}
2468#endif
2182 2469
2183void 2470void
2184ev_embed_start (EV_P_ ev_embed *w) 2471ev_embed_start (EV_P_ ev_embed *w)
2185{ 2472{
2186 if (expect_false (ev_is_active (w))) 2473 if (expect_false (ev_is_active (w)))
2187 return; 2474 return;
2188 2475
2189 { 2476 {
2190 struct ev_loop *loop = w->loop; 2477 struct ev_loop *loop = w->other;
2191 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2478 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2192 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2479 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2193 } 2480 }
2194 2481
2195 ev_set_priority (&w->io, ev_priority (w)); 2482 ev_set_priority (&w->io, ev_priority (w));
2196 ev_io_start (EV_A_ &w->io); 2483 ev_io_start (EV_A_ &w->io);
2197 2484
2485 ev_prepare_init (&w->prepare, embed_prepare_cb);
2486 ev_set_priority (&w->prepare, EV_MINPRI);
2487 ev_prepare_start (EV_A_ &w->prepare);
2488
2489 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2490
2198 ev_start (EV_A_ (W)w, 1); 2491 ev_start (EV_A_ (W)w, 1);
2199} 2492}
2200 2493
2201void 2494void
2202ev_embed_stop (EV_P_ ev_embed *w) 2495ev_embed_stop (EV_P_ ev_embed *w)
2204 clear_pending (EV_A_ (W)w); 2497 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w))) 2498 if (expect_false (!ev_is_active (w)))
2206 return; 2499 return;
2207 2500
2208 ev_io_stop (EV_A_ &w->io); 2501 ev_io_stop (EV_A_ &w->io);
2502 ev_prepare_stop (EV_A_ &w->prepare);
2209 2503
2210 ev_stop (EV_A_ (W)w); 2504 ev_stop (EV_A_ (W)w);
2211} 2505}
2212#endif 2506#endif
2213 2507
2238 2532
2239 ev_stop (EV_A_ (W)w); 2533 ev_stop (EV_A_ (W)w);
2240} 2534}
2241#endif 2535#endif
2242 2536
2537#if EV_ASYNC_ENABLE
2538void
2539ev_async_start (EV_P_ ev_async *w)
2540{
2541 if (expect_false (ev_is_active (w)))
2542 return;
2543
2544 evpipe_init (EV_A);
2545
2546 ev_start (EV_A_ (W)w, ++asynccnt);
2547 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2548 asyncs [asynccnt - 1] = w;
2549}
2550
2551void
2552ev_async_stop (EV_P_ ev_async *w)
2553{
2554 clear_pending (EV_A_ (W)w);
2555 if (expect_false (!ev_is_active (w)))
2556 return;
2557
2558 {
2559 int active = ((W)w)->active;
2560 asyncs [active - 1] = asyncs [--asynccnt];
2561 ((W)asyncs [active - 1])->active = active;
2562 }
2563
2564 ev_stop (EV_A_ (W)w);
2565}
2566
2567void
2568ev_async_send (EV_P_ ev_async *w)
2569{
2570 w->sent = 1;
2571 evpipe_write (EV_A_ &gotasync);
2572}
2573#endif
2574
2243/*****************************************************************************/ 2575/*****************************************************************************/
2244 2576
2245struct ev_once 2577struct ev_once
2246{ 2578{
2247 ev_io io; 2579 ev_io io;
2302 ev_timer_set (&once->to, timeout, 0.); 2634 ev_timer_set (&once->to, timeout, 0.);
2303 ev_timer_start (EV_A_ &once->to); 2635 ev_timer_start (EV_A_ &once->to);
2304 } 2636 }
2305} 2637}
2306 2638
2639#if EV_MULTIPLICITY
2640 #include "ev_wrap.h"
2641#endif
2642
2307#ifdef __cplusplus 2643#ifdef __cplusplus
2308} 2644}
2309#endif 2645#endif
2310 2646

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines