ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.176 by root, Tue Dec 11 04:31:55 2007 UTC vs.
Revision 1.242 by root, Fri May 9 14:07:19 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 241
197#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
200#endif 245#endif
202#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
205#endif 250#endif
206 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
207#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 268# include <winsock.h>
209#endif 269#endif
210 270
211#if !EV_STAT_ENABLE 271#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
213#endif 276# endif
214 277int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 278# ifdef __cplusplus
216# include <sys/inotify.h> 279}
280# endif
217#endif 281#endif
218 282
219/**/ 283/**/
220 284
221/* 285/*
222 * This is used to avoid floating point rounding problems. 286 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 287 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 288 * to ensure progress, time-wise, even when rounding
225 * errors are against us. 289 * errors are against us.
226 * This value is good at least till the year 4000 290 * This value is good at least till the year 4000.
227 * and intervals up to 20 years.
228 * Better solutions welcome. 291 * Better solutions welcome.
229 */ 292 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231 294
232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
235 298
236#if __GNUC__ >= 3 299#if __GNUC__ >= 4
237# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
238# define noinline __attribute__ ((noinline)) 301# define noinline __attribute__ ((noinline))
239#else 302#else
240# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
241# define noinline 304# define noinline
242# if __STDC_VERSION__ < 199901L 305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
243# define inline 306# define inline
244# endif 307# endif
245#endif 308#endif
246 309
247#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
262 325
263typedef ev_watcher *W; 326typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
266 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
268 338
269#ifdef _WIN32 339#ifdef _WIN32
270# include "ev_win32.c" 340# include "ev_win32.c"
271#endif 341#endif
272 342
293 perror (msg); 363 perror (msg);
294 abort (); 364 abort ();
295 } 365 }
296} 366}
297 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
298static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
299 384
300void 385void
301ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
302{ 387{
303 alloc = cb; 388 alloc = cb;
304} 389}
305 390
306inline_speed void * 391inline_speed void *
307ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
308{ 393{
309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
310 395
311 if (!ptr && size) 396 if (!ptr && size)
312 { 397 {
313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
314 abort (); 399 abort ();
337 W w; 422 W w;
338 int events; 423 int events;
339} ANPENDING; 424} ANPENDING;
340 425
341#if EV_USE_INOTIFY 426#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */
342typedef struct 428typedef struct
343{ 429{
344 WL head; 430 WL head;
345} ANFS; 431} ANFS;
432#endif
433
434/* Heap Entry */
435#define EV_HEAP_CACHE_AT 0
436#if EV_HEAP_CACHE_AT
437 typedef struct {
438 WT w;
439 ev_tstamp at;
440 } ANHE;
441
442 #define ANHE_w(he) (he).w /* access watcher, read-write */
443 #define ANHE_at(he) (he).at /* access cached at, read-only */
444 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
445#else
446 typedef WT ANHE;
447
448 #define ANHE_w(he) (he)
449 #define ANHE_at(he) (he)->at
450 #define ANHE_at_set(he)
346#endif 451#endif
347 452
348#if EV_MULTIPLICITY 453#if EV_MULTIPLICITY
349 454
350 struct ev_loop 455 struct ev_loop
408{ 513{
409 return ev_rt_now; 514 return ev_rt_now;
410} 515}
411#endif 516#endif
412 517
518void
519ev_sleep (ev_tstamp delay)
520{
521 if (delay > 0.)
522 {
523#if EV_USE_NANOSLEEP
524 struct timespec ts;
525
526 ts.tv_sec = (time_t)delay;
527 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
528
529 nanosleep (&ts, 0);
530#elif defined(_WIN32)
531 Sleep ((unsigned long)(delay * 1e3));
532#else
533 struct timeval tv;
534
535 tv.tv_sec = (time_t)delay;
536 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
537
538 select (0, 0, 0, 0, &tv);
539#endif
540 }
541}
542
543/*****************************************************************************/
544
545#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
546
413int inline_size 547int inline_size
414array_nextsize (int elem, int cur, int cnt) 548array_nextsize (int elem, int cur, int cnt)
415{ 549{
416 int ncur = cur + 1; 550 int ncur = cur + 1;
417 551
418 do 552 do
419 ncur <<= 1; 553 ncur <<= 1;
420 while (cnt > ncur); 554 while (cnt > ncur);
421 555
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 556 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096) 557 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
424 { 558 {
425 ncur *= elem; 559 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 560 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
427 ncur = ncur - sizeof (void *) * 4; 561 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem; 562 ncur /= elem;
429 } 563 }
430 564
431 return ncur; 565 return ncur;
477 pendings [pri][w_->pending - 1].w = w_; 611 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents; 612 pendings [pri][w_->pending - 1].events = revents;
479 } 613 }
480} 614}
481 615
482void inline_size 616void inline_speed
483queue_events (EV_P_ W *events, int eventcnt, int type) 617queue_events (EV_P_ W *events, int eventcnt, int type)
484{ 618{
485 int i; 619 int i;
486 620
487 for (i = 0; i < eventcnt; ++i) 621 for (i = 0; i < eventcnt; ++i)
534 { 668 {
535 int fd = fdchanges [i]; 669 int fd = fdchanges [i];
536 ANFD *anfd = anfds + fd; 670 ANFD *anfd = anfds + fd;
537 ev_io *w; 671 ev_io *w;
538 672
539 int events = 0; 673 unsigned char events = 0;
540 674
541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 675 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
542 events |= w->events; 676 events |= (unsigned char)w->events;
543 677
544#if EV_SELECT_IS_WINSOCKET 678#if EV_SELECT_IS_WINSOCKET
545 if (events) 679 if (events)
546 { 680 {
547 unsigned long argp; 681 unsigned long argp;
682 #ifdef EV_FD_TO_WIN32_HANDLE
683 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
684 #else
548 anfd->handle = _get_osfhandle (fd); 685 anfd->handle = _get_osfhandle (fd);
686 #endif
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 687 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
550 } 688 }
551#endif 689#endif
552 690
691 {
692 unsigned char o_events = anfd->events;
693 unsigned char o_reify = anfd->reify;
694
553 anfd->reify = 0; 695 anfd->reify = 0;
554
555 backend_modify (EV_A_ fd, anfd->events, events);
556 anfd->events = events; 696 anfd->events = events;
697
698 if (o_events != events || o_reify & EV_IOFDSET)
699 backend_modify (EV_A_ fd, o_events, events);
700 }
557 } 701 }
558 702
559 fdchangecnt = 0; 703 fdchangecnt = 0;
560} 704}
561 705
562void inline_size 706void inline_size
563fd_change (EV_P_ int fd) 707fd_change (EV_P_ int fd, int flags)
564{ 708{
565 if (expect_false (anfds [fd].reify)) 709 unsigned char reify = anfds [fd].reify;
566 return;
567
568 anfds [fd].reify = 1; 710 anfds [fd].reify |= flags;
569 711
712 if (expect_true (!reify))
713 {
570 ++fdchangecnt; 714 ++fdchangecnt;
571 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 715 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
572 fdchanges [fdchangecnt - 1] = fd; 716 fdchanges [fdchangecnt - 1] = fd;
717 }
573} 718}
574 719
575void inline_speed 720void inline_speed
576fd_kill (EV_P_ int fd) 721fd_kill (EV_P_ int fd)
577{ 722{
628 773
629 for (fd = 0; fd < anfdmax; ++fd) 774 for (fd = 0; fd < anfdmax; ++fd)
630 if (anfds [fd].events) 775 if (anfds [fd].events)
631 { 776 {
632 anfds [fd].events = 0; 777 anfds [fd].events = 0;
633 fd_change (EV_A_ fd); 778 fd_change (EV_A_ fd, EV_IOFDSET | 1);
634 } 779 }
635} 780}
636 781
637/*****************************************************************************/ 782/*****************************************************************************/
638 783
784/*
785 * the heap functions want a real array index. array index 0 uis guaranteed to not
786 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
787 * the branching factor of the d-tree.
788 */
789
790/*
791 * at the moment we allow libev the luxury of two heaps,
792 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
793 * which is more cache-efficient.
794 * the difference is about 5% with 50000+ watchers.
795 */
796#define EV_USE_4HEAP !EV_MINIMAL
797#if EV_USE_4HEAP
798
799#define DHEAP 4
800#define HEAP0 (DHEAP - 1) /* index of first element in heap */
801
802/* towards the root */
639void inline_speed 803void inline_speed
640upheap (WT *heap, int k) 804upheap (ANHE *heap, int k)
641{ 805{
642 WT w = heap [k]; 806 ANHE he = heap [k];
643 807
644 while (k && heap [k >> 1]->at > w->at) 808 for (;;)
645 { 809 {
810 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
811
812 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
813 break;
814
646 heap [k] = heap [k >> 1]; 815 heap [k] = heap [p];
647 ((W)heap [k])->active = k + 1; 816 ev_active (ANHE_w (heap [k])) = k;
648 k >>= 1; 817 k = p;
818 }
819
820 ev_active (ANHE_w (he)) = k;
821 heap [k] = he;
822}
823
824/* away from the root */
825void inline_speed
826downheap (ANHE *heap, int N, int k)
827{
828 ANHE he = heap [k];
829 ANHE *E = heap + N + HEAP0;
830
831 for (;;)
832 {
833 ev_tstamp minat;
834 ANHE *minpos;
835 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
836
837 // find minimum child
838 if (expect_true (pos + DHEAP - 1 < E))
839 {
840 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
843 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
844 }
845 else if (pos < E)
846 {
847 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
850 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
851 }
852 else
853 break;
854
855 if (ANHE_at (he) <= minat)
856 break;
857
858 ev_active (ANHE_w (*minpos)) = k;
859 heap [k] = *minpos;
860
861 k = minpos - heap;
862 }
863
864 ev_active (ANHE_w (he)) = k;
865 heap [k] = he;
866}
867
868#else // 4HEAP
869
870#define HEAP0 1
871
872/* towards the root */
873void inline_speed
874upheap (ANHE *heap, int k)
875{
876 ANHE he = heap [k];
877
878 for (;;)
879 {
880 int p = k >> 1;
881
882 /* maybe we could use a dummy element at heap [0]? */
883 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
884 break;
885
886 heap [k] = heap [p];
887 ev_active (ANHE_w (heap [k])) = k;
888 k = p;
649 } 889 }
650 890
651 heap [k] = w; 891 heap [k] = w;
652 ((W)heap [k])->active = k + 1; 892 ev_active (ANHE_w (heap [k])) = k;
653
654} 893}
655 894
895/* away from the root */
656void inline_speed 896void inline_speed
657downheap (WT *heap, int N, int k) 897downheap (ANHE *heap, int N, int k)
658{ 898{
659 WT w = heap [k]; 899 ANHE he = heap [k];
660 900
661 while (k < (N >> 1)) 901 for (;;)
662 { 902 {
663 int j = k << 1; 903 int c = k << 1;
664 904
665 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 905 if (c > N)
666 ++j;
667
668 if (w->at <= heap [j]->at)
669 break; 906 break;
670 907
908 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
909 ? 1 : 0;
910
911 if (w->at <= ANHE_at (heap [c]))
912 break;
913
671 heap [k] = heap [j]; 914 heap [k] = heap [c];
672 ((W)heap [k])->active = k + 1; 915 ev_active (ANHE_w (heap [k])) = k;
916
673 k = j; 917 k = c;
674 } 918 }
675 919
676 heap [k] = w; 920 heap [k] = he;
677 ((W)heap [k])->active = k + 1; 921 ev_active (ANHE_w (he)) = k;
678} 922}
923#endif
679 924
680void inline_size 925void inline_size
681adjustheap (WT *heap, int N, int k) 926adjustheap (ANHE *heap, int N, int k)
682{ 927{
683 upheap (heap, k); 928 upheap (heap, k);
684 downheap (heap, N, k); 929 downheap (heap, N, k);
685} 930}
686 931
687/*****************************************************************************/ 932/*****************************************************************************/
688 933
689typedef struct 934typedef struct
690{ 935{
691 WL head; 936 WL head;
692 sig_atomic_t volatile gotsig; 937 EV_ATOMIC_T gotsig;
693} ANSIG; 938} ANSIG;
694 939
695static ANSIG *signals; 940static ANSIG *signals;
696static int signalmax; 941static int signalmax;
697 942
698static int sigpipe [2]; 943static EV_ATOMIC_T gotsig;
699static sig_atomic_t volatile gotsig;
700static ev_io sigev;
701 944
702void inline_size 945void inline_size
703signals_init (ANSIG *base, int count) 946signals_init (ANSIG *base, int count)
704{ 947{
705 while (count--) 948 while (count--)
709 952
710 ++base; 953 ++base;
711 } 954 }
712} 955}
713 956
714static void 957/*****************************************************************************/
715sighandler (int signum)
716{
717#if _WIN32
718 signal (signum, sighandler);
719#endif
720
721 signals [signum - 1].gotsig = 1;
722
723 if (!gotsig)
724 {
725 int old_errno = errno;
726 gotsig = 1;
727 write (sigpipe [1], &signum, 1);
728 errno = old_errno;
729 }
730}
731
732void noinline
733ev_feed_signal_event (EV_P_ int signum)
734{
735 WL w;
736
737#if EV_MULTIPLICITY
738 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
739#endif
740
741 --signum;
742
743 if (signum < 0 || signum >= signalmax)
744 return;
745
746 signals [signum].gotsig = 0;
747
748 for (w = signals [signum].head; w; w = w->next)
749 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
750}
751
752static void
753sigcb (EV_P_ ev_io *iow, int revents)
754{
755 int signum;
756
757 read (sigpipe [0], &revents, 1);
758 gotsig = 0;
759
760 for (signum = signalmax; signum--; )
761 if (signals [signum].gotsig)
762 ev_feed_signal_event (EV_A_ signum + 1);
763}
764 958
765void inline_speed 959void inline_speed
766fd_intern (int fd) 960fd_intern (int fd)
767{ 961{
768#ifdef _WIN32 962#ifdef _WIN32
773 fcntl (fd, F_SETFL, O_NONBLOCK); 967 fcntl (fd, F_SETFL, O_NONBLOCK);
774#endif 968#endif
775} 969}
776 970
777static void noinline 971static void noinline
778siginit (EV_P) 972evpipe_init (EV_P)
779{ 973{
974 if (!ev_is_active (&pipeev))
975 {
976#if EV_USE_EVENTFD
977 if ((evfd = eventfd (0, 0)) >= 0)
978 {
979 evpipe [0] = -1;
980 fd_intern (evfd);
981 ev_io_set (&pipeev, evfd, EV_READ);
982 }
983 else
984#endif
985 {
986 while (pipe (evpipe))
987 syserr ("(libev) error creating signal/async pipe");
988
780 fd_intern (sigpipe [0]); 989 fd_intern (evpipe [0]);
781 fd_intern (sigpipe [1]); 990 fd_intern (evpipe [1]);
991 ev_io_set (&pipeev, evpipe [0], EV_READ);
992 }
782 993
783 ev_io_set (&sigev, sigpipe [0], EV_READ);
784 ev_io_start (EV_A_ &sigev); 994 ev_io_start (EV_A_ &pipeev);
785 ev_unref (EV_A); /* child watcher should not keep loop alive */ 995 ev_unref (EV_A); /* watcher should not keep loop alive */
996 }
997}
998
999void inline_size
1000evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1001{
1002 if (!*flag)
1003 {
1004 int old_errno = errno; /* save errno because write might clobber it */
1005
1006 *flag = 1;
1007
1008#if EV_USE_EVENTFD
1009 if (evfd >= 0)
1010 {
1011 uint64_t counter = 1;
1012 write (evfd, &counter, sizeof (uint64_t));
1013 }
1014 else
1015#endif
1016 write (evpipe [1], &old_errno, 1);
1017
1018 errno = old_errno;
1019 }
1020}
1021
1022static void
1023pipecb (EV_P_ ev_io *iow, int revents)
1024{
1025#if EV_USE_EVENTFD
1026 if (evfd >= 0)
1027 {
1028 uint64_t counter;
1029 read (evfd, &counter, sizeof (uint64_t));
1030 }
1031 else
1032#endif
1033 {
1034 char dummy;
1035 read (evpipe [0], &dummy, 1);
1036 }
1037
1038 if (gotsig && ev_is_default_loop (EV_A))
1039 {
1040 int signum;
1041 gotsig = 0;
1042
1043 for (signum = signalmax; signum--; )
1044 if (signals [signum].gotsig)
1045 ev_feed_signal_event (EV_A_ signum + 1);
1046 }
1047
1048#if EV_ASYNC_ENABLE
1049 if (gotasync)
1050 {
1051 int i;
1052 gotasync = 0;
1053
1054 for (i = asynccnt; i--; )
1055 if (asyncs [i]->sent)
1056 {
1057 asyncs [i]->sent = 0;
1058 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1059 }
1060 }
1061#endif
786} 1062}
787 1063
788/*****************************************************************************/ 1064/*****************************************************************************/
789 1065
1066static void
1067ev_sighandler (int signum)
1068{
1069#if EV_MULTIPLICITY
1070 struct ev_loop *loop = &default_loop_struct;
1071#endif
1072
1073#if _WIN32
1074 signal (signum, ev_sighandler);
1075#endif
1076
1077 signals [signum - 1].gotsig = 1;
1078 evpipe_write (EV_A_ &gotsig);
1079}
1080
1081void noinline
1082ev_feed_signal_event (EV_P_ int signum)
1083{
1084 WL w;
1085
1086#if EV_MULTIPLICITY
1087 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1088#endif
1089
1090 --signum;
1091
1092 if (signum < 0 || signum >= signalmax)
1093 return;
1094
1095 signals [signum].gotsig = 0;
1096
1097 for (w = signals [signum].head; w; w = w->next)
1098 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1099}
1100
1101/*****************************************************************************/
1102
790static ev_child *childs [EV_PID_HASHSIZE]; 1103static WL childs [EV_PID_HASHSIZE];
791 1104
792#ifndef _WIN32 1105#ifndef _WIN32
793 1106
794static ev_signal childev; 1107static ev_signal childev;
795 1108
1109#ifndef WIFCONTINUED
1110# define WIFCONTINUED(status) 0
1111#endif
1112
796void inline_speed 1113void inline_speed
797child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1114child_reap (EV_P_ int chain, int pid, int status)
798{ 1115{
799 ev_child *w; 1116 ev_child *w;
1117 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
800 1118
801 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1119 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1120 {
802 if (w->pid == pid || !w->pid) 1121 if ((w->pid == pid || !w->pid)
1122 && (!traced || (w->flags & 1)))
803 { 1123 {
804 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1124 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
805 w->rpid = pid; 1125 w->rpid = pid;
806 w->rstatus = status; 1126 w->rstatus = status;
807 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1127 ev_feed_event (EV_A_ (W)w, EV_CHILD);
808 } 1128 }
1129 }
809} 1130}
810 1131
811#ifndef WCONTINUED 1132#ifndef WCONTINUED
812# define WCONTINUED 0 1133# define WCONTINUED 0
813#endif 1134#endif
822 if (!WCONTINUED 1143 if (!WCONTINUED
823 || errno != EINVAL 1144 || errno != EINVAL
824 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1145 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
825 return; 1146 return;
826 1147
827 /* make sure we are called again until all childs have been reaped */ 1148 /* make sure we are called again until all children have been reaped */
828 /* we need to do it this way so that the callback gets called before we continue */ 1149 /* we need to do it this way so that the callback gets called before we continue */
829 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1150 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
830 1151
831 child_reap (EV_A_ sw, pid, pid, status); 1152 child_reap (EV_A_ pid, pid, status);
832 if (EV_PID_HASHSIZE > 1) 1153 if (EV_PID_HASHSIZE > 1)
833 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1154 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
834} 1155}
835 1156
836#endif 1157#endif
837 1158
838/*****************************************************************************/ 1159/*****************************************************************************/
910} 1231}
911 1232
912unsigned int 1233unsigned int
913ev_embeddable_backends (void) 1234ev_embeddable_backends (void)
914{ 1235{
915 return EVBACKEND_EPOLL 1236 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
916 | EVBACKEND_KQUEUE 1237
917 | EVBACKEND_PORT; 1238 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1239 /* please fix it and tell me how to detect the fix */
1240 flags &= ~EVBACKEND_EPOLL;
1241
1242 return flags;
918} 1243}
919 1244
920unsigned int 1245unsigned int
921ev_backend (EV_P) 1246ev_backend (EV_P)
922{ 1247{
925 1250
926unsigned int 1251unsigned int
927ev_loop_count (EV_P) 1252ev_loop_count (EV_P)
928{ 1253{
929 return loop_count; 1254 return loop_count;
1255}
1256
1257void
1258ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1259{
1260 io_blocktime = interval;
1261}
1262
1263void
1264ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1265{
1266 timeout_blocktime = interval;
930} 1267}
931 1268
932static void noinline 1269static void noinline
933loop_init (EV_P_ unsigned int flags) 1270loop_init (EV_P_ unsigned int flags)
934{ 1271{
940 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1277 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
941 have_monotonic = 1; 1278 have_monotonic = 1;
942 } 1279 }
943#endif 1280#endif
944 1281
945 ev_rt_now = ev_time (); 1282 ev_rt_now = ev_time ();
946 mn_now = get_clock (); 1283 mn_now = get_clock ();
947 now_floor = mn_now; 1284 now_floor = mn_now;
948 rtmn_diff = ev_rt_now - mn_now; 1285 rtmn_diff = ev_rt_now - mn_now;
1286
1287 io_blocktime = 0.;
1288 timeout_blocktime = 0.;
1289 backend = 0;
1290 backend_fd = -1;
1291 gotasync = 0;
1292#if EV_USE_INOTIFY
1293 fs_fd = -2;
1294#endif
949 1295
950 /* pid check not overridable via env */ 1296 /* pid check not overridable via env */
951#ifndef _WIN32 1297#ifndef _WIN32
952 if (flags & EVFLAG_FORKCHECK) 1298 if (flags & EVFLAG_FORKCHECK)
953 curpid = getpid (); 1299 curpid = getpid ();
956 if (!(flags & EVFLAG_NOENV) 1302 if (!(flags & EVFLAG_NOENV)
957 && !enable_secure () 1303 && !enable_secure ()
958 && getenv ("LIBEV_FLAGS")) 1304 && getenv ("LIBEV_FLAGS"))
959 flags = atoi (getenv ("LIBEV_FLAGS")); 1305 flags = atoi (getenv ("LIBEV_FLAGS"));
960 1306
961 if (!(flags & 0x0000ffffUL)) 1307 if (!(flags & 0x0000ffffU))
962 flags |= ev_recommended_backends (); 1308 flags |= ev_recommended_backends ();
963
964 backend = 0;
965 backend_fd = -1;
966#if EV_USE_INOTIFY
967 fs_fd = -2;
968#endif
969 1309
970#if EV_USE_PORT 1310#if EV_USE_PORT
971 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1311 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
972#endif 1312#endif
973#if EV_USE_KQUEUE 1313#if EV_USE_KQUEUE
981#endif 1321#endif
982#if EV_USE_SELECT 1322#if EV_USE_SELECT
983 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1323 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
984#endif 1324#endif
985 1325
986 ev_init (&sigev, sigcb); 1326 ev_init (&pipeev, pipecb);
987 ev_set_priority (&sigev, EV_MAXPRI); 1327 ev_set_priority (&pipeev, EV_MAXPRI);
988 } 1328 }
989} 1329}
990 1330
991static void noinline 1331static void noinline
992loop_destroy (EV_P) 1332loop_destroy (EV_P)
993{ 1333{
994 int i; 1334 int i;
1335
1336 if (ev_is_active (&pipeev))
1337 {
1338 ev_ref (EV_A); /* signal watcher */
1339 ev_io_stop (EV_A_ &pipeev);
1340
1341#if EV_USE_EVENTFD
1342 if (evfd >= 0)
1343 close (evfd);
1344#endif
1345
1346 if (evpipe [0] >= 0)
1347 {
1348 close (evpipe [0]);
1349 close (evpipe [1]);
1350 }
1351 }
995 1352
996#if EV_USE_INOTIFY 1353#if EV_USE_INOTIFY
997 if (fs_fd >= 0) 1354 if (fs_fd >= 0)
998 close (fs_fd); 1355 close (fs_fd);
999#endif 1356#endif
1022 array_free (pending, [i]); 1379 array_free (pending, [i]);
1023#if EV_IDLE_ENABLE 1380#if EV_IDLE_ENABLE
1024 array_free (idle, [i]); 1381 array_free (idle, [i]);
1025#endif 1382#endif
1026 } 1383 }
1384
1385 ev_free (anfds); anfdmax = 0;
1027 1386
1028 /* have to use the microsoft-never-gets-it-right macro */ 1387 /* have to use the microsoft-never-gets-it-right macro */
1029 array_free (fdchange, EMPTY); 1388 array_free (fdchange, EMPTY);
1030 array_free (timer, EMPTY); 1389 array_free (timer, EMPTY);
1031#if EV_PERIODIC_ENABLE 1390#if EV_PERIODIC_ENABLE
1032 array_free (periodic, EMPTY); 1391 array_free (periodic, EMPTY);
1033#endif 1392#endif
1393#if EV_FORK_ENABLE
1394 array_free (fork, EMPTY);
1395#endif
1034 array_free (prepare, EMPTY); 1396 array_free (prepare, EMPTY);
1035 array_free (check, EMPTY); 1397 array_free (check, EMPTY);
1398#if EV_ASYNC_ENABLE
1399 array_free (async, EMPTY);
1400#endif
1036 1401
1037 backend = 0; 1402 backend = 0;
1038} 1403}
1039 1404
1405#if EV_USE_INOTIFY
1040void inline_size infy_fork (EV_P); 1406void inline_size infy_fork (EV_P);
1407#endif
1041 1408
1042void inline_size 1409void inline_size
1043loop_fork (EV_P) 1410loop_fork (EV_P)
1044{ 1411{
1045#if EV_USE_PORT 1412#if EV_USE_PORT
1053#endif 1420#endif
1054#if EV_USE_INOTIFY 1421#if EV_USE_INOTIFY
1055 infy_fork (EV_A); 1422 infy_fork (EV_A);
1056#endif 1423#endif
1057 1424
1058 if (ev_is_active (&sigev)) 1425 if (ev_is_active (&pipeev))
1059 { 1426 {
1060 /* default loop */ 1427 /* this "locks" the handlers against writing to the pipe */
1428 /* while we modify the fd vars */
1429 gotsig = 1;
1430#if EV_ASYNC_ENABLE
1431 gotasync = 1;
1432#endif
1061 1433
1062 ev_ref (EV_A); 1434 ev_ref (EV_A);
1063 ev_io_stop (EV_A_ &sigev); 1435 ev_io_stop (EV_A_ &pipeev);
1436
1437#if EV_USE_EVENTFD
1438 if (evfd >= 0)
1439 close (evfd);
1440#endif
1441
1442 if (evpipe [0] >= 0)
1443 {
1064 close (sigpipe [0]); 1444 close (evpipe [0]);
1065 close (sigpipe [1]); 1445 close (evpipe [1]);
1446 }
1066 1447
1067 while (pipe (sigpipe))
1068 syserr ("(libev) error creating pipe");
1069
1070 siginit (EV_A); 1448 evpipe_init (EV_A);
1449 /* now iterate over everything, in case we missed something */
1450 pipecb (EV_A_ &pipeev, EV_READ);
1071 } 1451 }
1072 1452
1073 postfork = 0; 1453 postfork = 0;
1074} 1454}
1075 1455
1097} 1477}
1098 1478
1099void 1479void
1100ev_loop_fork (EV_P) 1480ev_loop_fork (EV_P)
1101{ 1481{
1102 postfork = 1; 1482 postfork = 1; /* must be in line with ev_default_fork */
1103} 1483}
1104
1105#endif 1484#endif
1106 1485
1107#if EV_MULTIPLICITY 1486#if EV_MULTIPLICITY
1108struct ev_loop * 1487struct ev_loop *
1109ev_default_loop_init (unsigned int flags) 1488ev_default_loop_init (unsigned int flags)
1110#else 1489#else
1111int 1490int
1112ev_default_loop (unsigned int flags) 1491ev_default_loop (unsigned int flags)
1113#endif 1492#endif
1114{ 1493{
1115 if (sigpipe [0] == sigpipe [1])
1116 if (pipe (sigpipe))
1117 return 0;
1118
1119 if (!ev_default_loop_ptr) 1494 if (!ev_default_loop_ptr)
1120 { 1495 {
1121#if EV_MULTIPLICITY 1496#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1497 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1123#else 1498#else
1126 1501
1127 loop_init (EV_A_ flags); 1502 loop_init (EV_A_ flags);
1128 1503
1129 if (ev_backend (EV_A)) 1504 if (ev_backend (EV_A))
1130 { 1505 {
1131 siginit (EV_A);
1132
1133#ifndef _WIN32 1506#ifndef _WIN32
1134 ev_signal_init (&childev, childcb, SIGCHLD); 1507 ev_signal_init (&childev, childcb, SIGCHLD);
1135 ev_set_priority (&childev, EV_MAXPRI); 1508 ev_set_priority (&childev, EV_MAXPRI);
1136 ev_signal_start (EV_A_ &childev); 1509 ev_signal_start (EV_A_ &childev);
1137 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1510 ev_unref (EV_A); /* child watcher should not keep loop alive */
1154#ifndef _WIN32 1527#ifndef _WIN32
1155 ev_ref (EV_A); /* child watcher */ 1528 ev_ref (EV_A); /* child watcher */
1156 ev_signal_stop (EV_A_ &childev); 1529 ev_signal_stop (EV_A_ &childev);
1157#endif 1530#endif
1158 1531
1159 ev_ref (EV_A); /* signal watcher */
1160 ev_io_stop (EV_A_ &sigev);
1161
1162 close (sigpipe [0]); sigpipe [0] = 0;
1163 close (sigpipe [1]); sigpipe [1] = 0;
1164
1165 loop_destroy (EV_A); 1532 loop_destroy (EV_A);
1166} 1533}
1167 1534
1168void 1535void
1169ev_default_fork (void) 1536ev_default_fork (void)
1171#if EV_MULTIPLICITY 1538#if EV_MULTIPLICITY
1172 struct ev_loop *loop = ev_default_loop_ptr; 1539 struct ev_loop *loop = ev_default_loop_ptr;
1173#endif 1540#endif
1174 1541
1175 if (backend) 1542 if (backend)
1176 postfork = 1; 1543 postfork = 1; /* must be in line with ev_loop_fork */
1177} 1544}
1178 1545
1179/*****************************************************************************/ 1546/*****************************************************************************/
1180 1547
1181void 1548void
1201 p->w->pending = 0; 1568 p->w->pending = 0;
1202 EV_CB_INVOKE (p->w, p->events); 1569 EV_CB_INVOKE (p->w, p->events);
1203 } 1570 }
1204 } 1571 }
1205} 1572}
1206
1207void inline_size
1208timers_reify (EV_P)
1209{
1210 while (timercnt && ((WT)timers [0])->at <= mn_now)
1211 {
1212 ev_timer *w = timers [0];
1213
1214 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1215
1216 /* first reschedule or stop timer */
1217 if (w->repeat)
1218 {
1219 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1220
1221 ((WT)w)->at += w->repeat;
1222 if (((WT)w)->at < mn_now)
1223 ((WT)w)->at = mn_now;
1224
1225 downheap ((WT *)timers, timercnt, 0);
1226 }
1227 else
1228 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1229
1230 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1231 }
1232}
1233
1234#if EV_PERIODIC_ENABLE
1235void inline_size
1236periodics_reify (EV_P)
1237{
1238 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1239 {
1240 ev_periodic *w = periodics [0];
1241
1242 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1243
1244 /* first reschedule or stop timer */
1245 if (w->reschedule_cb)
1246 {
1247 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1248 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1249 downheap ((WT *)periodics, periodiccnt, 0);
1250 }
1251 else if (w->interval)
1252 {
1253 ((WT)w)->at = w->offset + floor ((ev_rt_now + TIME_EPSILON - w->offset) / w->interval + 1.) * w->interval;
1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1255 downheap ((WT *)periodics, periodiccnt, 0);
1256 }
1257 else
1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1259
1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1261 }
1262}
1263
1264static void noinline
1265periodics_reschedule (EV_P)
1266{
1267 int i;
1268
1269 /* adjust periodics after time jump */
1270 for (i = 0; i < periodiccnt; ++i)
1271 {
1272 ev_periodic *w = periodics [i];
1273
1274 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1276 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 }
1279
1280 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i);
1283}
1284#endif
1285 1573
1286#if EV_IDLE_ENABLE 1574#if EV_IDLE_ENABLE
1287void inline_size 1575void inline_size
1288idle_reify (EV_P) 1576idle_reify (EV_P)
1289{ 1577{
1304 } 1592 }
1305 } 1593 }
1306} 1594}
1307#endif 1595#endif
1308 1596
1309int inline_size 1597void inline_size
1310time_update_monotonic (EV_P) 1598timers_reify (EV_P)
1311{ 1599{
1600 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now)
1601 {
1602 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1603
1604 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1605
1606 /* first reschedule or stop timer */
1607 if (w->repeat)
1608 {
1609 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1610
1611 ev_at (w) += w->repeat;
1612 if (ev_at (w) < mn_now)
1613 ev_at (w) = mn_now;
1614
1615 ANHE_at_set (timers [HEAP0]);
1616 downheap (timers, timercnt, HEAP0);
1617 }
1618 else
1619 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1620
1621 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1622 }
1623}
1624
1625#if EV_PERIODIC_ENABLE
1626void inline_size
1627periodics_reify (EV_P)
1628{
1629 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now)
1630 {
1631 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1632
1633 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1634
1635 /* first reschedule or stop timer */
1636 if (w->reschedule_cb)
1637 {
1638 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1639 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1640 ANHE_at_set (periodics [HEAP0]);
1641 downheap (periodics, periodiccnt, HEAP0);
1642 }
1643 else if (w->interval)
1644 {
1645 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1646 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1647 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1648 ANHE_at_set (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0);
1650 }
1651 else
1652 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1653
1654 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1655 }
1656}
1657
1658static void noinline
1659periodics_reschedule (EV_P)
1660{
1661 int i;
1662
1663 /* adjust periodics after time jump */
1664 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1665 {
1666 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1667
1668 if (w->reschedule_cb)
1669 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1670 else if (w->interval)
1671 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1672
1673 ANHE_at_set (periodics [i]);
1674 }
1675
1676 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */
1677 for (i = periodiccnt >> 1; --i; )
1678 downheap (periodics, periodiccnt, i + HEAP0);
1679}
1680#endif
1681
1682void inline_speed
1683time_update (EV_P_ ev_tstamp max_block)
1684{
1685 int i;
1686
1687#if EV_USE_MONOTONIC
1688 if (expect_true (have_monotonic))
1689 {
1690 ev_tstamp odiff = rtmn_diff;
1691
1312 mn_now = get_clock (); 1692 mn_now = get_clock ();
1313 1693
1694 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1695 /* interpolate in the meantime */
1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1696 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1315 { 1697 {
1316 ev_rt_now = rtmn_diff + mn_now; 1698 ev_rt_now = rtmn_diff + mn_now;
1317 return 0; 1699 return;
1318 } 1700 }
1319 else 1701
1320 {
1321 now_floor = mn_now; 1702 now_floor = mn_now;
1322 ev_rt_now = ev_time (); 1703 ev_rt_now = ev_time ();
1323 return 1;
1324 }
1325}
1326 1704
1327void inline_size 1705 /* loop a few times, before making important decisions.
1328time_update (EV_P) 1706 * on the choice of "4": one iteration isn't enough,
1329{ 1707 * in case we get preempted during the calls to
1330 int i; 1708 * ev_time and get_clock. a second call is almost guaranteed
1331 1709 * to succeed in that case, though. and looping a few more times
1332#if EV_USE_MONOTONIC 1710 * doesn't hurt either as we only do this on time-jumps or
1333 if (expect_true (have_monotonic)) 1711 * in the unlikely event of having been preempted here.
1334 { 1712 */
1335 if (time_update_monotonic (EV_A)) 1713 for (i = 4; --i; )
1336 { 1714 {
1337 ev_tstamp odiff = rtmn_diff;
1338
1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1348 {
1349 rtmn_diff = ev_rt_now - mn_now; 1715 rtmn_diff = ev_rt_now - mn_now;
1350 1716
1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1717 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1352 return; /* all is well */ 1718 return; /* all is well */
1353 1719
1354 ev_rt_now = ev_time (); 1720 ev_rt_now = ev_time ();
1355 mn_now = get_clock (); 1721 mn_now = get_clock ();
1356 now_floor = mn_now; 1722 now_floor = mn_now;
1357 } 1723 }
1358 1724
1359# if EV_PERIODIC_ENABLE 1725# if EV_PERIODIC_ENABLE
1360 periodics_reschedule (EV_A); 1726 periodics_reschedule (EV_A);
1361# endif 1727# endif
1362 /* no timer adjustment, as the monotonic clock doesn't jump */ 1728 /* no timer adjustment, as the monotonic clock doesn't jump */
1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1729 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1364 }
1365 } 1730 }
1366 else 1731 else
1367#endif 1732#endif
1368 { 1733 {
1369 ev_rt_now = ev_time (); 1734 ev_rt_now = ev_time ();
1370 1735
1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1736 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 { 1737 {
1373#if EV_PERIODIC_ENABLE 1738#if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 1739 periodics_reschedule (EV_A);
1375#endif 1740#endif
1376
1377 /* adjust timers. this is easy, as the offset is the same for all of them */ 1741 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i) 1742 for (i = 0; i < timercnt; ++i)
1743 {
1744 ANHE *he = timers + i + HEAP0;
1379 ((WT)timers [i])->at += ev_rt_now - mn_now; 1745 ANHE_w (*he)->at += ev_rt_now - mn_now;
1746 ANHE_at_set (*he);
1747 }
1380 } 1748 }
1381 1749
1382 mn_now = ev_rt_now; 1750 mn_now = ev_rt_now;
1383 } 1751 }
1384} 1752}
1398static int loop_done; 1766static int loop_done;
1399 1767
1400void 1768void
1401ev_loop (EV_P_ int flags) 1769ev_loop (EV_P_ int flags)
1402{ 1770{
1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1771 loop_done = EVUNLOOP_CANCEL;
1404 ? EVUNLOOP_ONE
1405 : EVUNLOOP_CANCEL;
1406 1772
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1773 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1408 1774
1409 do 1775 do
1410 { 1776 {
1444 /* update fd-related kernel structures */ 1810 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 1811 fd_reify (EV_A);
1446 1812
1447 /* calculate blocking time */ 1813 /* calculate blocking time */
1448 { 1814 {
1449 ev_tstamp block; 1815 ev_tstamp waittime = 0.;
1816 ev_tstamp sleeptime = 0.;
1450 1817
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1818 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 1819 {
1455 /* update time to cancel out callback processing overhead */ 1820 /* update time to cancel out callback processing overhead */
1456#if EV_USE_MONOTONIC
1457 if (expect_true (have_monotonic))
1458 time_update_monotonic (EV_A); 1821 time_update (EV_A_ 1e100);
1459 else
1460#endif
1461 {
1462 ev_rt_now = ev_time ();
1463 mn_now = ev_rt_now;
1464 }
1465 1822
1466 block = MAX_BLOCKTIME; 1823 waittime = MAX_BLOCKTIME;
1467 1824
1468 if (timercnt) 1825 if (timercnt)
1469 { 1826 {
1470 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1827 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1471 if (block > to) block = to; 1828 if (waittime > to) waittime = to;
1472 } 1829 }
1473 1830
1474#if EV_PERIODIC_ENABLE 1831#if EV_PERIODIC_ENABLE
1475 if (periodiccnt) 1832 if (periodiccnt)
1476 { 1833 {
1477 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1834 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1478 if (block > to) block = to; 1835 if (waittime > to) waittime = to;
1479 } 1836 }
1480#endif 1837#endif
1481 1838
1482 if (expect_false (block < 0.)) block = 0.; 1839 if (expect_false (waittime < timeout_blocktime))
1840 waittime = timeout_blocktime;
1841
1842 sleeptime = waittime - backend_fudge;
1843
1844 if (expect_true (sleeptime > io_blocktime))
1845 sleeptime = io_blocktime;
1846
1847 if (sleeptime)
1848 {
1849 ev_sleep (sleeptime);
1850 waittime -= sleeptime;
1851 }
1483 } 1852 }
1484 1853
1485 ++loop_count; 1854 ++loop_count;
1486 backend_poll (EV_A_ block); 1855 backend_poll (EV_A_ waittime);
1856
1857 /* update ev_rt_now, do magic */
1858 time_update (EV_A_ waittime + sleeptime);
1487 } 1859 }
1488
1489 /* update ev_rt_now, do magic */
1490 time_update (EV_A);
1491 1860
1492 /* queue pending timers and reschedule them */ 1861 /* queue pending timers and reschedule them */
1493 timers_reify (EV_A); /* relative timers called last */ 1862 timers_reify (EV_A); /* relative timers called last */
1494#if EV_PERIODIC_ENABLE 1863#if EV_PERIODIC_ENABLE
1495 periodics_reify (EV_A); /* absolute timers called first */ 1864 periodics_reify (EV_A); /* absolute timers called first */
1503 /* queue check watchers, to be executed first */ 1872 /* queue check watchers, to be executed first */
1504 if (expect_false (checkcnt)) 1873 if (expect_false (checkcnt))
1505 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1874 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1506 1875
1507 call_pending (EV_A); 1876 call_pending (EV_A);
1508
1509 } 1877 }
1510 while (expect_true (activecnt && !loop_done)); 1878 while (expect_true (
1879 activecnt
1880 && !loop_done
1881 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1882 ));
1511 1883
1512 if (loop_done == EVUNLOOP_ONE) 1884 if (loop_done == EVUNLOOP_ONE)
1513 loop_done = EVUNLOOP_CANCEL; 1885 loop_done = EVUNLOOP_CANCEL;
1514} 1886}
1515 1887
1606 1978
1607 assert (("ev_io_start called with negative fd", fd >= 0)); 1979 assert (("ev_io_start called with negative fd", fd >= 0));
1608 1980
1609 ev_start (EV_A_ (W)w, 1); 1981 ev_start (EV_A_ (W)w, 1);
1610 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1982 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1611 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1983 wlist_add (&anfds[fd].head, (WL)w);
1612 1984
1613 fd_change (EV_A_ fd); 1985 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1986 w->events &= ~EV_IOFDSET;
1614} 1987}
1615 1988
1616void noinline 1989void noinline
1617ev_io_stop (EV_P_ ev_io *w) 1990ev_io_stop (EV_P_ ev_io *w)
1618{ 1991{
1619 clear_pending (EV_A_ (W)w); 1992 clear_pending (EV_A_ (W)w);
1620 if (expect_false (!ev_is_active (w))) 1993 if (expect_false (!ev_is_active (w)))
1621 return; 1994 return;
1622 1995
1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1996 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1624 1997
1625 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1998 wlist_del (&anfds[w->fd].head, (WL)w);
1626 ev_stop (EV_A_ (W)w); 1999 ev_stop (EV_A_ (W)w);
1627 2000
1628 fd_change (EV_A_ w->fd); 2001 fd_change (EV_A_ w->fd, 1);
1629} 2002}
1630 2003
1631void noinline 2004void noinline
1632ev_timer_start (EV_P_ ev_timer *w) 2005ev_timer_start (EV_P_ ev_timer *w)
1633{ 2006{
1634 if (expect_false (ev_is_active (w))) 2007 if (expect_false (ev_is_active (w)))
1635 return; 2008 return;
1636 2009
1637 ((WT)w)->at += mn_now; 2010 ev_at (w) += mn_now;
1638 2011
1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2012 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1640 2013
1641 ev_start (EV_A_ (W)w, ++timercnt); 2014 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1642 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2015 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1643 timers [timercnt - 1] = w; 2016 ANHE_w (timers [ev_active (w)]) = (WT)w;
1644 upheap ((WT *)timers, timercnt - 1); 2017 ANHE_at_set (timers [ev_active (w)]);
2018 upheap (timers, ev_active (w));
1645 2019
1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2020 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1647} 2021}
1648 2022
1649void noinline 2023void noinline
1650ev_timer_stop (EV_P_ ev_timer *w) 2024ev_timer_stop (EV_P_ ev_timer *w)
1651{ 2025{
1652 clear_pending (EV_A_ (W)w); 2026 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 2027 if (expect_false (!ev_is_active (w)))
1654 return; 2028 return;
1655 2029
1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1657
1658 { 2030 {
1659 int active = ((W)w)->active; 2031 int active = ev_active (w);
1660 2032
2033 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2034
1661 if (expect_true (--active < --timercnt)) 2035 if (expect_true (active < timercnt + HEAP0 - 1))
1662 { 2036 {
1663 timers [active] = timers [timercnt]; 2037 timers [active] = timers [timercnt + HEAP0 - 1];
1664 adjustheap ((WT *)timers, timercnt, active); 2038 adjustheap (timers, timercnt, active);
1665 } 2039 }
2040
2041 --timercnt;
1666 } 2042 }
1667 2043
1668 ((WT)w)->at -= mn_now; 2044 ev_at (w) -= mn_now;
1669 2045
1670 ev_stop (EV_A_ (W)w); 2046 ev_stop (EV_A_ (W)w);
1671} 2047}
1672 2048
1673void noinline 2049void noinline
1675{ 2051{
1676 if (ev_is_active (w)) 2052 if (ev_is_active (w))
1677 { 2053 {
1678 if (w->repeat) 2054 if (w->repeat)
1679 { 2055 {
1680 ((WT)w)->at = mn_now + w->repeat; 2056 ev_at (w) = mn_now + w->repeat;
2057 ANHE_at_set (timers [ev_active (w)]);
1681 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2058 adjustheap (timers, timercnt, ev_active (w));
1682 } 2059 }
1683 else 2060 else
1684 ev_timer_stop (EV_A_ w); 2061 ev_timer_stop (EV_A_ w);
1685 } 2062 }
1686 else if (w->repeat) 2063 else if (w->repeat)
1687 { 2064 {
1688 w->at = w->repeat; 2065 ev_at (w) = w->repeat;
1689 ev_timer_start (EV_A_ w); 2066 ev_timer_start (EV_A_ w);
1690 } 2067 }
1691} 2068}
1692 2069
1693#if EV_PERIODIC_ENABLE 2070#if EV_PERIODIC_ENABLE
1696{ 2073{
1697 if (expect_false (ev_is_active (w))) 2074 if (expect_false (ev_is_active (w)))
1698 return; 2075 return;
1699 2076
1700 if (w->reschedule_cb) 2077 if (w->reschedule_cb)
1701 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2078 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1702 else if (w->interval) 2079 else if (w->interval)
1703 { 2080 {
1704 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2081 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1705 /* this formula differs from the one in periodic_reify because we do not always round up */ 2082 /* this formula differs from the one in periodic_reify because we do not always round up */
1706 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2083 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1707 } 2084 }
1708 else 2085 else
1709 ((WT)w)->at = w->offset; 2086 ev_at (w) = w->offset;
1710 2087
1711 ev_start (EV_A_ (W)w, ++periodiccnt); 2088 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1712 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2089 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1713 periodics [periodiccnt - 1] = w; 2090 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1714 upheap ((WT *)periodics, periodiccnt - 1); 2091 upheap (periodics, ev_active (w));
1715 2092
1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2093 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1717} 2094}
1718 2095
1719void noinline 2096void noinline
1720ev_periodic_stop (EV_P_ ev_periodic *w) 2097ev_periodic_stop (EV_P_ ev_periodic *w)
1721{ 2098{
1722 clear_pending (EV_A_ (W)w); 2099 clear_pending (EV_A_ (W)w);
1723 if (expect_false (!ev_is_active (w))) 2100 if (expect_false (!ev_is_active (w)))
1724 return; 2101 return;
1725 2102
1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1727
1728 { 2103 {
1729 int active = ((W)w)->active; 2104 int active = ev_active (w);
1730 2105
2106 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2107
1731 if (expect_true (--active < --periodiccnt)) 2108 if (expect_true (active < periodiccnt + HEAP0 - 1))
1732 { 2109 {
1733 periodics [active] = periodics [periodiccnt]; 2110 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1734 adjustheap ((WT *)periodics, periodiccnt, active); 2111 adjustheap (periodics, periodiccnt, active);
1735 } 2112 }
2113
2114 --periodiccnt;
1736 } 2115 }
1737 2116
1738 ev_stop (EV_A_ (W)w); 2117 ev_stop (EV_A_ (W)w);
1739} 2118}
1740 2119
1760 if (expect_false (ev_is_active (w))) 2139 if (expect_false (ev_is_active (w)))
1761 return; 2140 return;
1762 2141
1763 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2142 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1764 2143
2144 evpipe_init (EV_A);
2145
2146 {
2147#ifndef _WIN32
2148 sigset_t full, prev;
2149 sigfillset (&full);
2150 sigprocmask (SIG_SETMASK, &full, &prev);
2151#endif
2152
2153 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2154
2155#ifndef _WIN32
2156 sigprocmask (SIG_SETMASK, &prev, 0);
2157#endif
2158 }
2159
1765 ev_start (EV_A_ (W)w, 1); 2160 ev_start (EV_A_ (W)w, 1);
1766 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1767 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2161 wlist_add (&signals [w->signum - 1].head, (WL)w);
1768 2162
1769 if (!((WL)w)->next) 2163 if (!((WL)w)->next)
1770 { 2164 {
1771#if _WIN32 2165#if _WIN32
1772 signal (w->signum, sighandler); 2166 signal (w->signum, ev_sighandler);
1773#else 2167#else
1774 struct sigaction sa; 2168 struct sigaction sa;
1775 sa.sa_handler = sighandler; 2169 sa.sa_handler = ev_sighandler;
1776 sigfillset (&sa.sa_mask); 2170 sigfillset (&sa.sa_mask);
1777 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2171 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1778 sigaction (w->signum, &sa, 0); 2172 sigaction (w->signum, &sa, 0);
1779#endif 2173#endif
1780 } 2174 }
1785{ 2179{
1786 clear_pending (EV_A_ (W)w); 2180 clear_pending (EV_A_ (W)w);
1787 if (expect_false (!ev_is_active (w))) 2181 if (expect_false (!ev_is_active (w)))
1788 return; 2182 return;
1789 2183
1790 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2184 wlist_del (&signals [w->signum - 1].head, (WL)w);
1791 ev_stop (EV_A_ (W)w); 2185 ev_stop (EV_A_ (W)w);
1792 2186
1793 if (!signals [w->signum - 1].head) 2187 if (!signals [w->signum - 1].head)
1794 signal (w->signum, SIG_DFL); 2188 signal (w->signum, SIG_DFL);
1795} 2189}
1802#endif 2196#endif
1803 if (expect_false (ev_is_active (w))) 2197 if (expect_false (ev_is_active (w)))
1804 return; 2198 return;
1805 2199
1806 ev_start (EV_A_ (W)w, 1); 2200 ev_start (EV_A_ (W)w, 1);
1807 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2201 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1808} 2202}
1809 2203
1810void 2204void
1811ev_child_stop (EV_P_ ev_child *w) 2205ev_child_stop (EV_P_ ev_child *w)
1812{ 2206{
1813 clear_pending (EV_A_ (W)w); 2207 clear_pending (EV_A_ (W)w);
1814 if (expect_false (!ev_is_active (w))) 2208 if (expect_false (!ev_is_active (w)))
1815 return; 2209 return;
1816 2210
1817 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2211 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1818 ev_stop (EV_A_ (W)w); 2212 ev_stop (EV_A_ (W)w);
1819} 2213}
1820 2214
1821#if EV_STAT_ENABLE 2215#if EV_STAT_ENABLE
1822 2216
1841 if (w->wd < 0) 2235 if (w->wd < 0)
1842 { 2236 {
1843 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2237 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1844 2238
1845 /* monitor some parent directory for speedup hints */ 2239 /* monitor some parent directory for speedup hints */
2240 /* note that exceeding the hardcoded limit is not a correctness issue, */
2241 /* but an efficiency issue only */
1846 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2242 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1847 { 2243 {
1848 char path [4096]; 2244 char path [4096];
1849 strcpy (path, w->path); 2245 strcpy (path, w->path);
1850 2246
2095 clear_pending (EV_A_ (W)w); 2491 clear_pending (EV_A_ (W)w);
2096 if (expect_false (!ev_is_active (w))) 2492 if (expect_false (!ev_is_active (w)))
2097 return; 2493 return;
2098 2494
2099 { 2495 {
2100 int active = ((W)w)->active; 2496 int active = ev_active (w);
2101 2497
2102 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2498 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2103 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2499 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2104 2500
2105 ev_stop (EV_A_ (W)w); 2501 ev_stop (EV_A_ (W)w);
2106 --idleall; 2502 --idleall;
2107 } 2503 }
2108} 2504}
2125 clear_pending (EV_A_ (W)w); 2521 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w))) 2522 if (expect_false (!ev_is_active (w)))
2127 return; 2523 return;
2128 2524
2129 { 2525 {
2130 int active = ((W)w)->active; 2526 int active = ev_active (w);
2527
2131 prepares [active - 1] = prepares [--preparecnt]; 2528 prepares [active - 1] = prepares [--preparecnt];
2132 ((W)prepares [active - 1])->active = active; 2529 ev_active (prepares [active - 1]) = active;
2133 } 2530 }
2134 2531
2135 ev_stop (EV_A_ (W)w); 2532 ev_stop (EV_A_ (W)w);
2136} 2533}
2137 2534
2152 clear_pending (EV_A_ (W)w); 2549 clear_pending (EV_A_ (W)w);
2153 if (expect_false (!ev_is_active (w))) 2550 if (expect_false (!ev_is_active (w)))
2154 return; 2551 return;
2155 2552
2156 { 2553 {
2157 int active = ((W)w)->active; 2554 int active = ev_active (w);
2555
2158 checks [active - 1] = checks [--checkcnt]; 2556 checks [active - 1] = checks [--checkcnt];
2159 ((W)checks [active - 1])->active = active; 2557 ev_active (checks [active - 1]) = active;
2160 } 2558 }
2161 2559
2162 ev_stop (EV_A_ (W)w); 2560 ev_stop (EV_A_ (W)w);
2163} 2561}
2164 2562
2165#if EV_EMBED_ENABLE 2563#if EV_EMBED_ENABLE
2166void noinline 2564void noinline
2167ev_embed_sweep (EV_P_ ev_embed *w) 2565ev_embed_sweep (EV_P_ ev_embed *w)
2168{ 2566{
2169 ev_loop (w->loop, EVLOOP_NONBLOCK); 2567 ev_loop (w->other, EVLOOP_NONBLOCK);
2170} 2568}
2171 2569
2172static void 2570static void
2173embed_cb (EV_P_ ev_io *io, int revents) 2571embed_io_cb (EV_P_ ev_io *io, int revents)
2174{ 2572{
2175 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2573 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2176 2574
2177 if (ev_cb (w)) 2575 if (ev_cb (w))
2178 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2576 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2179 else 2577 else
2180 ev_embed_sweep (loop, w); 2578 ev_loop (w->other, EVLOOP_NONBLOCK);
2181} 2579}
2580
2581static void
2582embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2583{
2584 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2585
2586 {
2587 struct ev_loop *loop = w->other;
2588
2589 while (fdchangecnt)
2590 {
2591 fd_reify (EV_A);
2592 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2593 }
2594 }
2595}
2596
2597#if 0
2598static void
2599embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2600{
2601 ev_idle_stop (EV_A_ idle);
2602}
2603#endif
2182 2604
2183void 2605void
2184ev_embed_start (EV_P_ ev_embed *w) 2606ev_embed_start (EV_P_ ev_embed *w)
2185{ 2607{
2186 if (expect_false (ev_is_active (w))) 2608 if (expect_false (ev_is_active (w)))
2187 return; 2609 return;
2188 2610
2189 { 2611 {
2190 struct ev_loop *loop = w->loop; 2612 struct ev_loop *loop = w->other;
2191 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2613 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2192 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2614 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2193 } 2615 }
2194 2616
2195 ev_set_priority (&w->io, ev_priority (w)); 2617 ev_set_priority (&w->io, ev_priority (w));
2196 ev_io_start (EV_A_ &w->io); 2618 ev_io_start (EV_A_ &w->io);
2619
2620 ev_prepare_init (&w->prepare, embed_prepare_cb);
2621 ev_set_priority (&w->prepare, EV_MINPRI);
2622 ev_prepare_start (EV_A_ &w->prepare);
2623
2624 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2197 2625
2198 ev_start (EV_A_ (W)w, 1); 2626 ev_start (EV_A_ (W)w, 1);
2199} 2627}
2200 2628
2201void 2629void
2204 clear_pending (EV_A_ (W)w); 2632 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w))) 2633 if (expect_false (!ev_is_active (w)))
2206 return; 2634 return;
2207 2635
2208 ev_io_stop (EV_A_ &w->io); 2636 ev_io_stop (EV_A_ &w->io);
2637 ev_prepare_stop (EV_A_ &w->prepare);
2209 2638
2210 ev_stop (EV_A_ (W)w); 2639 ev_stop (EV_A_ (W)w);
2211} 2640}
2212#endif 2641#endif
2213 2642
2229 clear_pending (EV_A_ (W)w); 2658 clear_pending (EV_A_ (W)w);
2230 if (expect_false (!ev_is_active (w))) 2659 if (expect_false (!ev_is_active (w)))
2231 return; 2660 return;
2232 2661
2233 { 2662 {
2234 int active = ((W)w)->active; 2663 int active = ev_active (w);
2664
2235 forks [active - 1] = forks [--forkcnt]; 2665 forks [active - 1] = forks [--forkcnt];
2236 ((W)forks [active - 1])->active = active; 2666 ev_active (forks [active - 1]) = active;
2237 } 2667 }
2238 2668
2239 ev_stop (EV_A_ (W)w); 2669 ev_stop (EV_A_ (W)w);
2670}
2671#endif
2672
2673#if EV_ASYNC_ENABLE
2674void
2675ev_async_start (EV_P_ ev_async *w)
2676{
2677 if (expect_false (ev_is_active (w)))
2678 return;
2679
2680 evpipe_init (EV_A);
2681
2682 ev_start (EV_A_ (W)w, ++asynccnt);
2683 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2684 asyncs [asynccnt - 1] = w;
2685}
2686
2687void
2688ev_async_stop (EV_P_ ev_async *w)
2689{
2690 clear_pending (EV_A_ (W)w);
2691 if (expect_false (!ev_is_active (w)))
2692 return;
2693
2694 {
2695 int active = ev_active (w);
2696
2697 asyncs [active - 1] = asyncs [--asynccnt];
2698 ev_active (asyncs [active - 1]) = active;
2699 }
2700
2701 ev_stop (EV_A_ (W)w);
2702}
2703
2704void
2705ev_async_send (EV_P_ ev_async *w)
2706{
2707 w->sent = 1;
2708 evpipe_write (EV_A_ &gotasync);
2240} 2709}
2241#endif 2710#endif
2242 2711
2243/*****************************************************************************/ 2712/*****************************************************************************/
2244 2713
2302 ev_timer_set (&once->to, timeout, 0.); 2771 ev_timer_set (&once->to, timeout, 0.);
2303 ev_timer_start (EV_A_ &once->to); 2772 ev_timer_start (EV_A_ &once->to);
2304 } 2773 }
2305} 2774}
2306 2775
2776#if EV_MULTIPLICITY
2777 #include "ev_wrap.h"
2778#endif
2779
2307#ifdef __cplusplus 2780#ifdef __cplusplus
2308} 2781}
2309#endif 2782#endif
2310 2783

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines