ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.176 by root, Tue Dec 11 04:31:55 2007 UTC vs.
Revision 1.251 by root, Thu May 22 03:42:34 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 259
197#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
200#endif 263#endif
202#ifndef CLOCK_REALTIME 265#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 266# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 267# define EV_USE_REALTIME 0
205#endif 268#endif
206 269
270#if !EV_STAT_ENABLE
271# undef EV_USE_INOTIFY
272# define EV_USE_INOTIFY 0
273#endif
274
275#if !EV_USE_NANOSLEEP
276# ifndef _WIN32
277# include <sys/select.h>
278# endif
279#endif
280
281#if EV_USE_INOTIFY
282# include <sys/inotify.h>
283#endif
284
207#if EV_SELECT_IS_WINSOCKET 285#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 286# include <winsock.h>
209#endif 287#endif
210 288
211#if !EV_STAT_ENABLE 289#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h>
292# ifdef __cplusplus
293extern "C" {
213#endif 294# endif
214 295int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 296# ifdef __cplusplus
216# include <sys/inotify.h> 297}
298# endif
217#endif 299#endif
218 300
219/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
220 308
221/* 309/*
222 * This is used to avoid floating point rounding problems. 310 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 311 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 312 * to ensure progress, time-wise, even when rounding
225 * errors are against us. 313 * errors are against us.
226 * This value is good at least till the year 4000 314 * This value is good at least till the year 4000.
227 * and intervals up to 20 years.
228 * Better solutions welcome. 315 * Better solutions welcome.
229 */ 316 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 317#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231 318
232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 319#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 320#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 321/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
235 322
236#if __GNUC__ >= 3 323#if __GNUC__ >= 4
237# define expect(expr,value) __builtin_expect ((expr),(value)) 324# define expect(expr,value) __builtin_expect ((expr),(value))
238# define noinline __attribute__ ((noinline)) 325# define noinline __attribute__ ((noinline))
239#else 326#else
240# define expect(expr,value) (expr) 327# define expect(expr,value) (expr)
241# define noinline 328# define noinline
242# if __STDC_VERSION__ < 199901L 329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
243# define inline 330# define inline
244# endif 331# endif
245#endif 332#endif
246 333
247#define expect_false(expr) expect ((expr) != 0, 0) 334#define expect_false(expr) expect ((expr) != 0, 0)
262 349
263typedef ev_watcher *W; 350typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 351typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 352typedef ev_watcher_time *WT;
266 353
354#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at
356
357#if EV_USE_MONOTONIC
358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
359/* giving it a reasonably high chance of working on typical architetcures */
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
361#endif
268 362
269#ifdef _WIN32 363#ifdef _WIN32
270# include "ev_win32.c" 364# include "ev_win32.c"
271#endif 365#endif
272 366
293 perror (msg); 387 perror (msg);
294 abort (); 388 abort ();
295 } 389 }
296} 390}
297 391
392static void *
393ev_realloc_emul (void *ptr, long size)
394{
395 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and
397 * the single unix specification, so work around them here.
398 */
399
400 if (size)
401 return realloc (ptr, size);
402
403 free (ptr);
404 return 0;
405}
406
298static void *(*alloc)(void *ptr, long size); 407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
299 408
300void 409void
301ev_set_allocator (void *(*cb)(void *ptr, long size)) 410ev_set_allocator (void *(*cb)(void *ptr, long size))
302{ 411{
303 alloc = cb; 412 alloc = cb;
304} 413}
305 414
306inline_speed void * 415inline_speed void *
307ev_realloc (void *ptr, long size) 416ev_realloc (void *ptr, long size)
308{ 417{
309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 418 ptr = alloc (ptr, size);
310 419
311 if (!ptr && size) 420 if (!ptr && size)
312 { 421 {
313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
314 abort (); 423 abort ();
337 W w; 446 W w;
338 int events; 447 int events;
339} ANPENDING; 448} ANPENDING;
340 449
341#if EV_USE_INOTIFY 450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
342typedef struct 452typedef struct
343{ 453{
344 WL head; 454 WL head;
345} ANFS; 455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
346#endif 474#endif
347 475
348#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
349 477
350 struct ev_loop 478 struct ev_loop
408{ 536{
409 return ev_rt_now; 537 return ev_rt_now;
410} 538}
411#endif 539#endif
412 540
541void
542ev_sleep (ev_tstamp delay)
543{
544 if (delay > 0.)
545 {
546#if EV_USE_NANOSLEEP
547 struct timespec ts;
548
549 ts.tv_sec = (time_t)delay;
550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
551
552 nanosleep (&ts, 0);
553#elif defined(_WIN32)
554 Sleep ((unsigned long)(delay * 1e3));
555#else
556 struct timeval tv;
557
558 tv.tv_sec = (time_t)delay;
559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
560
561 select (0, 0, 0, 0, &tv);
562#endif
563 }
564}
565
566/*****************************************************************************/
567
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569
413int inline_size 570int inline_size
414array_nextsize (int elem, int cur, int cnt) 571array_nextsize (int elem, int cur, int cnt)
415{ 572{
416 int ncur = cur + 1; 573 int ncur = cur + 1;
417 574
418 do 575 do
419 ncur <<= 1; 576 ncur <<= 1;
420 while (cnt > ncur); 577 while (cnt > ncur);
421 578
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096) 580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
424 { 581 {
425 ncur *= elem; 582 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
427 ncur = ncur - sizeof (void *) * 4; 584 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem; 585 ncur /= elem;
429 } 586 }
430 587
431 return ncur; 588 return ncur;
477 pendings [pri][w_->pending - 1].w = w_; 634 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents; 635 pendings [pri][w_->pending - 1].events = revents;
479 } 636 }
480} 637}
481 638
482void inline_size 639void inline_speed
483queue_events (EV_P_ W *events, int eventcnt, int type) 640queue_events (EV_P_ W *events, int eventcnt, int type)
484{ 641{
485 int i; 642 int i;
486 643
487 for (i = 0; i < eventcnt; ++i) 644 for (i = 0; i < eventcnt; ++i)
534 { 691 {
535 int fd = fdchanges [i]; 692 int fd = fdchanges [i];
536 ANFD *anfd = anfds + fd; 693 ANFD *anfd = anfds + fd;
537 ev_io *w; 694 ev_io *w;
538 695
539 int events = 0; 696 unsigned char events = 0;
540 697
541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 698 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
542 events |= w->events; 699 events |= (unsigned char)w->events;
543 700
544#if EV_SELECT_IS_WINSOCKET 701#if EV_SELECT_IS_WINSOCKET
545 if (events) 702 if (events)
546 { 703 {
547 unsigned long argp; 704 unsigned long argp;
705 #ifdef EV_FD_TO_WIN32_HANDLE
706 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
707 #else
548 anfd->handle = _get_osfhandle (fd); 708 anfd->handle = _get_osfhandle (fd);
709 #endif
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 710 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
550 } 711 }
551#endif 712#endif
552 713
714 {
715 unsigned char o_events = anfd->events;
716 unsigned char o_reify = anfd->reify;
717
553 anfd->reify = 0; 718 anfd->reify = 0;
554
555 backend_modify (EV_A_ fd, anfd->events, events);
556 anfd->events = events; 719 anfd->events = events;
720
721 if (o_events != events || o_reify & EV_IOFDSET)
722 backend_modify (EV_A_ fd, o_events, events);
723 }
557 } 724 }
558 725
559 fdchangecnt = 0; 726 fdchangecnt = 0;
560} 727}
561 728
562void inline_size 729void inline_size
563fd_change (EV_P_ int fd) 730fd_change (EV_P_ int fd, int flags)
564{ 731{
565 if (expect_false (anfds [fd].reify)) 732 unsigned char reify = anfds [fd].reify;
566 return;
567
568 anfds [fd].reify = 1; 733 anfds [fd].reify |= flags;
569 734
735 if (expect_true (!reify))
736 {
570 ++fdchangecnt; 737 ++fdchangecnt;
571 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 738 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
572 fdchanges [fdchangecnt - 1] = fd; 739 fdchanges [fdchangecnt - 1] = fd;
740 }
573} 741}
574 742
575void inline_speed 743void inline_speed
576fd_kill (EV_P_ int fd) 744fd_kill (EV_P_ int fd)
577{ 745{
628 796
629 for (fd = 0; fd < anfdmax; ++fd) 797 for (fd = 0; fd < anfdmax; ++fd)
630 if (anfds [fd].events) 798 if (anfds [fd].events)
631 { 799 {
632 anfds [fd].events = 0; 800 anfds [fd].events = 0;
633 fd_change (EV_A_ fd); 801 fd_change (EV_A_ fd, EV_IOFDSET | 1);
634 } 802 }
635} 803}
636 804
637/*****************************************************************************/ 805/*****************************************************************************/
638 806
807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
814 * at the moment we allow libev the luxury of two heaps,
815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
816 * which is more cache-efficient.
817 * the difference is about 5% with 50000+ watchers.
818 */
819#if EV_USE_4HEAP
820
821#define DHEAP 4
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
825
826/* away from the root */
639void inline_speed 827void inline_speed
640upheap (WT *heap, int k) 828downheap (ANHE *heap, int N, int k)
641{ 829{
642 WT w = heap [k]; 830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
643 832
644 while (k && heap [k >> 1]->at > w->at) 833 for (;;)
645 {
646 heap [k] = heap [k >> 1];
647 ((W)heap [k])->active = k + 1;
648 k >>= 1;
649 } 834 {
835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
650 838
839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
841 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
855 break;
856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
651 heap [k] = w; 866 heap [k] = he;
652 ((W)heap [k])->active = k + 1; 867 ev_active (ANHE_w (he)) = k;
653
654} 868}
655 869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
656void inline_speed 877void inline_speed
657downheap (WT *heap, int N, int k) 878downheap (ANHE *heap, int N, int k)
658{ 879{
659 WT w = heap [k]; 880 ANHE he = heap [k];
660 881
661 while (k < (N >> 1)) 882 for (;;)
662 { 883 {
663 int j = k << 1; 884 int c = k << 1;
664 885
665 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 886 if (c > N + HEAP0 - 1)
666 ++j;
667
668 if (w->at <= heap [j]->at)
669 break; 887 break;
670 888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
671 heap [k] = heap [j]; 895 heap [k] = heap [c];
672 ((W)heap [k])->active = k + 1; 896 ev_active (ANHE_w (heap [k])) = k;
897
673 k = j; 898 k = c;
674 } 899 }
675 900
676 heap [k] = w; 901 heap [k] = he;
677 ((W)heap [k])->active = k + 1; 902 ev_active (ANHE_w (he)) = k;
903}
904#endif
905
906/* towards the root */
907void inline_speed
908upheap (ANHE *heap, int k)
909{
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
919 heap [k] = heap [p];
920 ev_active (ANHE_w (heap [k])) = k;
921 k = p;
922 }
923
924 heap [k] = he;
925 ev_active (ANHE_w (he)) = k;
678} 926}
679 927
680void inline_size 928void inline_size
681adjustheap (WT *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
682{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
683 upheap (heap, k); 932 upheap (heap, k);
933 else
684 downheap (heap, N, k); 934 downheap (heap, N, k);
935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
685} 947}
686 948
687/*****************************************************************************/ 949/*****************************************************************************/
688 950
689typedef struct 951typedef struct
690{ 952{
691 WL head; 953 WL head;
692 sig_atomic_t volatile gotsig; 954 EV_ATOMIC_T gotsig;
693} ANSIG; 955} ANSIG;
694 956
695static ANSIG *signals; 957static ANSIG *signals;
696static int signalmax; 958static int signalmax;
697 959
698static int sigpipe [2]; 960static EV_ATOMIC_T gotsig;
699static sig_atomic_t volatile gotsig;
700static ev_io sigev;
701 961
702void inline_size 962void inline_size
703signals_init (ANSIG *base, int count) 963signals_init (ANSIG *base, int count)
704{ 964{
705 while (count--) 965 while (count--)
709 969
710 ++base; 970 ++base;
711 } 971 }
712} 972}
713 973
714static void 974/*****************************************************************************/
715sighandler (int signum)
716{
717#if _WIN32
718 signal (signum, sighandler);
719#endif
720
721 signals [signum - 1].gotsig = 1;
722
723 if (!gotsig)
724 {
725 int old_errno = errno;
726 gotsig = 1;
727 write (sigpipe [1], &signum, 1);
728 errno = old_errno;
729 }
730}
731
732void noinline
733ev_feed_signal_event (EV_P_ int signum)
734{
735 WL w;
736
737#if EV_MULTIPLICITY
738 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
739#endif
740
741 --signum;
742
743 if (signum < 0 || signum >= signalmax)
744 return;
745
746 signals [signum].gotsig = 0;
747
748 for (w = signals [signum].head; w; w = w->next)
749 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
750}
751
752static void
753sigcb (EV_P_ ev_io *iow, int revents)
754{
755 int signum;
756
757 read (sigpipe [0], &revents, 1);
758 gotsig = 0;
759
760 for (signum = signalmax; signum--; )
761 if (signals [signum].gotsig)
762 ev_feed_signal_event (EV_A_ signum + 1);
763}
764 975
765void inline_speed 976void inline_speed
766fd_intern (int fd) 977fd_intern (int fd)
767{ 978{
768#ifdef _WIN32 979#ifdef _WIN32
773 fcntl (fd, F_SETFL, O_NONBLOCK); 984 fcntl (fd, F_SETFL, O_NONBLOCK);
774#endif 985#endif
775} 986}
776 987
777static void noinline 988static void noinline
778siginit (EV_P) 989evpipe_init (EV_P)
779{ 990{
991 if (!ev_is_active (&pipeev))
992 {
993#if EV_USE_EVENTFD
994 if ((evfd = eventfd (0, 0)) >= 0)
995 {
996 evpipe [0] = -1;
997 fd_intern (evfd);
998 ev_io_set (&pipeev, evfd, EV_READ);
999 }
1000 else
1001#endif
1002 {
1003 while (pipe (evpipe))
1004 syserr ("(libev) error creating signal/async pipe");
1005
780 fd_intern (sigpipe [0]); 1006 fd_intern (evpipe [0]);
781 fd_intern (sigpipe [1]); 1007 fd_intern (evpipe [1]);
1008 ev_io_set (&pipeev, evpipe [0], EV_READ);
1009 }
782 1010
783 ev_io_set (&sigev, sigpipe [0], EV_READ);
784 ev_io_start (EV_A_ &sigev); 1011 ev_io_start (EV_A_ &pipeev);
785 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1012 ev_unref (EV_A); /* watcher should not keep loop alive */
1013 }
1014}
1015
1016void inline_size
1017evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1018{
1019 if (!*flag)
1020 {
1021 int old_errno = errno; /* save errno because write might clobber it */
1022
1023 *flag = 1;
1024
1025#if EV_USE_EVENTFD
1026 if (evfd >= 0)
1027 {
1028 uint64_t counter = 1;
1029 write (evfd, &counter, sizeof (uint64_t));
1030 }
1031 else
1032#endif
1033 write (evpipe [1], &old_errno, 1);
1034
1035 errno = old_errno;
1036 }
1037}
1038
1039static void
1040pipecb (EV_P_ ev_io *iow, int revents)
1041{
1042#if EV_USE_EVENTFD
1043 if (evfd >= 0)
1044 {
1045 uint64_t counter;
1046 read (evfd, &counter, sizeof (uint64_t));
1047 }
1048 else
1049#endif
1050 {
1051 char dummy;
1052 read (evpipe [0], &dummy, 1);
1053 }
1054
1055 if (gotsig && ev_is_default_loop (EV_A))
1056 {
1057 int signum;
1058 gotsig = 0;
1059
1060 for (signum = signalmax; signum--; )
1061 if (signals [signum].gotsig)
1062 ev_feed_signal_event (EV_A_ signum + 1);
1063 }
1064
1065#if EV_ASYNC_ENABLE
1066 if (gotasync)
1067 {
1068 int i;
1069 gotasync = 0;
1070
1071 for (i = asynccnt; i--; )
1072 if (asyncs [i]->sent)
1073 {
1074 asyncs [i]->sent = 0;
1075 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1076 }
1077 }
1078#endif
786} 1079}
787 1080
788/*****************************************************************************/ 1081/*****************************************************************************/
789 1082
1083static void
1084ev_sighandler (int signum)
1085{
1086#if EV_MULTIPLICITY
1087 struct ev_loop *loop = &default_loop_struct;
1088#endif
1089
1090#if _WIN32
1091 signal (signum, ev_sighandler);
1092#endif
1093
1094 signals [signum - 1].gotsig = 1;
1095 evpipe_write (EV_A_ &gotsig);
1096}
1097
1098void noinline
1099ev_feed_signal_event (EV_P_ int signum)
1100{
1101 WL w;
1102
1103#if EV_MULTIPLICITY
1104 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1105#endif
1106
1107 --signum;
1108
1109 if (signum < 0 || signum >= signalmax)
1110 return;
1111
1112 signals [signum].gotsig = 0;
1113
1114 for (w = signals [signum].head; w; w = w->next)
1115 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1116}
1117
1118/*****************************************************************************/
1119
790static ev_child *childs [EV_PID_HASHSIZE]; 1120static WL childs [EV_PID_HASHSIZE];
791 1121
792#ifndef _WIN32 1122#ifndef _WIN32
793 1123
794static ev_signal childev; 1124static ev_signal childev;
795 1125
1126#ifndef WIFCONTINUED
1127# define WIFCONTINUED(status) 0
1128#endif
1129
796void inline_speed 1130void inline_speed
797child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1131child_reap (EV_P_ int chain, int pid, int status)
798{ 1132{
799 ev_child *w; 1133 ev_child *w;
1134 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
800 1135
801 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1136 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1137 {
802 if (w->pid == pid || !w->pid) 1138 if ((w->pid == pid || !w->pid)
1139 && (!traced || (w->flags & 1)))
803 { 1140 {
804 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1141 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
805 w->rpid = pid; 1142 w->rpid = pid;
806 w->rstatus = status; 1143 w->rstatus = status;
807 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1144 ev_feed_event (EV_A_ (W)w, EV_CHILD);
808 } 1145 }
1146 }
809} 1147}
810 1148
811#ifndef WCONTINUED 1149#ifndef WCONTINUED
812# define WCONTINUED 0 1150# define WCONTINUED 0
813#endif 1151#endif
822 if (!WCONTINUED 1160 if (!WCONTINUED
823 || errno != EINVAL 1161 || errno != EINVAL
824 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1162 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
825 return; 1163 return;
826 1164
827 /* make sure we are called again until all childs have been reaped */ 1165 /* make sure we are called again until all children have been reaped */
828 /* we need to do it this way so that the callback gets called before we continue */ 1166 /* we need to do it this way so that the callback gets called before we continue */
829 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1167 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
830 1168
831 child_reap (EV_A_ sw, pid, pid, status); 1169 child_reap (EV_A_ pid, pid, status);
832 if (EV_PID_HASHSIZE > 1) 1170 if (EV_PID_HASHSIZE > 1)
833 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1171 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
834} 1172}
835 1173
836#endif 1174#endif
837 1175
838/*****************************************************************************/ 1176/*****************************************************************************/
910} 1248}
911 1249
912unsigned int 1250unsigned int
913ev_embeddable_backends (void) 1251ev_embeddable_backends (void)
914{ 1252{
915 return EVBACKEND_EPOLL 1253 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
916 | EVBACKEND_KQUEUE 1254
917 | EVBACKEND_PORT; 1255 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1256 /* please fix it and tell me how to detect the fix */
1257 flags &= ~EVBACKEND_EPOLL;
1258
1259 return flags;
918} 1260}
919 1261
920unsigned int 1262unsigned int
921ev_backend (EV_P) 1263ev_backend (EV_P)
922{ 1264{
925 1267
926unsigned int 1268unsigned int
927ev_loop_count (EV_P) 1269ev_loop_count (EV_P)
928{ 1270{
929 return loop_count; 1271 return loop_count;
1272}
1273
1274void
1275ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1276{
1277 io_blocktime = interval;
1278}
1279
1280void
1281ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1282{
1283 timeout_blocktime = interval;
930} 1284}
931 1285
932static void noinline 1286static void noinline
933loop_init (EV_P_ unsigned int flags) 1287loop_init (EV_P_ unsigned int flags)
934{ 1288{
940 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1294 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
941 have_monotonic = 1; 1295 have_monotonic = 1;
942 } 1296 }
943#endif 1297#endif
944 1298
945 ev_rt_now = ev_time (); 1299 ev_rt_now = ev_time ();
946 mn_now = get_clock (); 1300 mn_now = get_clock ();
947 now_floor = mn_now; 1301 now_floor = mn_now;
948 rtmn_diff = ev_rt_now - mn_now; 1302 rtmn_diff = ev_rt_now - mn_now;
1303
1304 io_blocktime = 0.;
1305 timeout_blocktime = 0.;
1306 backend = 0;
1307 backend_fd = -1;
1308 gotasync = 0;
1309#if EV_USE_INOTIFY
1310 fs_fd = -2;
1311#endif
949 1312
950 /* pid check not overridable via env */ 1313 /* pid check not overridable via env */
951#ifndef _WIN32 1314#ifndef _WIN32
952 if (flags & EVFLAG_FORKCHECK) 1315 if (flags & EVFLAG_FORKCHECK)
953 curpid = getpid (); 1316 curpid = getpid ();
956 if (!(flags & EVFLAG_NOENV) 1319 if (!(flags & EVFLAG_NOENV)
957 && !enable_secure () 1320 && !enable_secure ()
958 && getenv ("LIBEV_FLAGS")) 1321 && getenv ("LIBEV_FLAGS"))
959 flags = atoi (getenv ("LIBEV_FLAGS")); 1322 flags = atoi (getenv ("LIBEV_FLAGS"));
960 1323
961 if (!(flags & 0x0000ffffUL)) 1324 if (!(flags & 0x0000ffffU))
962 flags |= ev_recommended_backends (); 1325 flags |= ev_recommended_backends ();
963
964 backend = 0;
965 backend_fd = -1;
966#if EV_USE_INOTIFY
967 fs_fd = -2;
968#endif
969 1326
970#if EV_USE_PORT 1327#if EV_USE_PORT
971 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1328 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
972#endif 1329#endif
973#if EV_USE_KQUEUE 1330#if EV_USE_KQUEUE
981#endif 1338#endif
982#if EV_USE_SELECT 1339#if EV_USE_SELECT
983 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
984#endif 1341#endif
985 1342
986 ev_init (&sigev, sigcb); 1343 ev_init (&pipeev, pipecb);
987 ev_set_priority (&sigev, EV_MAXPRI); 1344 ev_set_priority (&pipeev, EV_MAXPRI);
988 } 1345 }
989} 1346}
990 1347
991static void noinline 1348static void noinline
992loop_destroy (EV_P) 1349loop_destroy (EV_P)
993{ 1350{
994 int i; 1351 int i;
1352
1353 if (ev_is_active (&pipeev))
1354 {
1355 ev_ref (EV_A); /* signal watcher */
1356 ev_io_stop (EV_A_ &pipeev);
1357
1358#if EV_USE_EVENTFD
1359 if (evfd >= 0)
1360 close (evfd);
1361#endif
1362
1363 if (evpipe [0] >= 0)
1364 {
1365 close (evpipe [0]);
1366 close (evpipe [1]);
1367 }
1368 }
995 1369
996#if EV_USE_INOTIFY 1370#if EV_USE_INOTIFY
997 if (fs_fd >= 0) 1371 if (fs_fd >= 0)
998 close (fs_fd); 1372 close (fs_fd);
999#endif 1373#endif
1022 array_free (pending, [i]); 1396 array_free (pending, [i]);
1023#if EV_IDLE_ENABLE 1397#if EV_IDLE_ENABLE
1024 array_free (idle, [i]); 1398 array_free (idle, [i]);
1025#endif 1399#endif
1026 } 1400 }
1401
1402 ev_free (anfds); anfdmax = 0;
1027 1403
1028 /* have to use the microsoft-never-gets-it-right macro */ 1404 /* have to use the microsoft-never-gets-it-right macro */
1029 array_free (fdchange, EMPTY); 1405 array_free (fdchange, EMPTY);
1030 array_free (timer, EMPTY); 1406 array_free (timer, EMPTY);
1031#if EV_PERIODIC_ENABLE 1407#if EV_PERIODIC_ENABLE
1032 array_free (periodic, EMPTY); 1408 array_free (periodic, EMPTY);
1033#endif 1409#endif
1410#if EV_FORK_ENABLE
1411 array_free (fork, EMPTY);
1412#endif
1034 array_free (prepare, EMPTY); 1413 array_free (prepare, EMPTY);
1035 array_free (check, EMPTY); 1414 array_free (check, EMPTY);
1415#if EV_ASYNC_ENABLE
1416 array_free (async, EMPTY);
1417#endif
1036 1418
1037 backend = 0; 1419 backend = 0;
1038} 1420}
1039 1421
1422#if EV_USE_INOTIFY
1040void inline_size infy_fork (EV_P); 1423void inline_size infy_fork (EV_P);
1424#endif
1041 1425
1042void inline_size 1426void inline_size
1043loop_fork (EV_P) 1427loop_fork (EV_P)
1044{ 1428{
1045#if EV_USE_PORT 1429#if EV_USE_PORT
1053#endif 1437#endif
1054#if EV_USE_INOTIFY 1438#if EV_USE_INOTIFY
1055 infy_fork (EV_A); 1439 infy_fork (EV_A);
1056#endif 1440#endif
1057 1441
1058 if (ev_is_active (&sigev)) 1442 if (ev_is_active (&pipeev))
1059 { 1443 {
1060 /* default loop */ 1444 /* this "locks" the handlers against writing to the pipe */
1445 /* while we modify the fd vars */
1446 gotsig = 1;
1447#if EV_ASYNC_ENABLE
1448 gotasync = 1;
1449#endif
1061 1450
1062 ev_ref (EV_A); 1451 ev_ref (EV_A);
1063 ev_io_stop (EV_A_ &sigev); 1452 ev_io_stop (EV_A_ &pipeev);
1453
1454#if EV_USE_EVENTFD
1455 if (evfd >= 0)
1456 close (evfd);
1457#endif
1458
1459 if (evpipe [0] >= 0)
1460 {
1064 close (sigpipe [0]); 1461 close (evpipe [0]);
1065 close (sigpipe [1]); 1462 close (evpipe [1]);
1463 }
1066 1464
1067 while (pipe (sigpipe))
1068 syserr ("(libev) error creating pipe");
1069
1070 siginit (EV_A); 1465 evpipe_init (EV_A);
1466 /* now iterate over everything, in case we missed something */
1467 pipecb (EV_A_ &pipeev, EV_READ);
1071 } 1468 }
1072 1469
1073 postfork = 0; 1470 postfork = 0;
1074} 1471}
1075 1472
1076#if EV_MULTIPLICITY 1473#if EV_MULTIPLICITY
1474
1077struct ev_loop * 1475struct ev_loop *
1078ev_loop_new (unsigned int flags) 1476ev_loop_new (unsigned int flags)
1079{ 1477{
1080 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1081 1479
1097} 1495}
1098 1496
1099void 1497void
1100ev_loop_fork (EV_P) 1498ev_loop_fork (EV_P)
1101{ 1499{
1102 postfork = 1; 1500 postfork = 1; /* must be in line with ev_default_fork */
1103} 1501}
1104 1502
1503#if EV_VERIFY
1504void noinline
1505verify_watcher (EV_P_ W w)
1506{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508
1509 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511}
1512
1513static void noinline
1514verify_heap (EV_P_ ANHE *heap, int N)
1515{
1516 int i;
1517
1518 for (i = HEAP0; i < N + HEAP0; ++i)
1519 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 }
1526}
1527
1528static void noinline
1529array_verify (EV_P_ W *ws, int cnt)
1530{
1531 while (cnt--)
1532 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]);
1535 }
1536}
1537#endif
1538
1539void
1540ev_loop_verify (EV_P)
1541{
1542#if EV_VERIFY
1543 int i;
1544 WL w;
1545
1546 assert (activecnt >= -1);
1547
1548 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1551
1552 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i)
1554 for (w = anfds [i].head; w; w = w->next)
1555 {
1556 verify_watcher (EV_A_ (W)w);
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 }
1560
1561 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt);
1563
1564#if EV_PERIODIC_ENABLE
1565 assert (periodicmax >= periodiccnt);
1566 verify_heap (EV_A_ periodics, periodiccnt);
1567#endif
1568
1569 for (i = NUMPRI; i--; )
1570 {
1571 assert (pendingmax [i] >= pendingcnt [i]);
1572#if EV_IDLE_ENABLE
1573 assert (idlemax [i] >= idlecnt [i]);
1574 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1575#endif
1576 }
1577
1578#if EV_FORK_ENABLE
1579 assert (forkmax >= forkcnt);
1580 array_verify (EV_A_ (W *)forks, forkcnt);
1581#endif
1582
1583#if EV_ASYNC_ENABLE
1584 assert (asyncmax >= asynccnt);
1585 array_verify (EV_A_ (W *)asyncs, asynccnt);
1586#endif
1587
1588 assert (preparemax >= preparecnt);
1589 array_verify (EV_A_ (W *)prepares, preparecnt);
1590
1591 assert (checkmax >= checkcnt);
1592 array_verify (EV_A_ (W *)checks, checkcnt);
1593
1594# if 0
1595 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1596 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1105#endif 1597# endif
1598#endif
1599}
1600
1601#endif /* multiplicity */
1106 1602
1107#if EV_MULTIPLICITY 1603#if EV_MULTIPLICITY
1108struct ev_loop * 1604struct ev_loop *
1109ev_default_loop_init (unsigned int flags) 1605ev_default_loop_init (unsigned int flags)
1110#else 1606#else
1111int 1607int
1112ev_default_loop (unsigned int flags) 1608ev_default_loop (unsigned int flags)
1113#endif 1609#endif
1114{ 1610{
1115 if (sigpipe [0] == sigpipe [1])
1116 if (pipe (sigpipe))
1117 return 0;
1118
1119 if (!ev_default_loop_ptr) 1611 if (!ev_default_loop_ptr)
1120 { 1612 {
1121#if EV_MULTIPLICITY 1613#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1614 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1123#else 1615#else
1126 1618
1127 loop_init (EV_A_ flags); 1619 loop_init (EV_A_ flags);
1128 1620
1129 if (ev_backend (EV_A)) 1621 if (ev_backend (EV_A))
1130 { 1622 {
1131 siginit (EV_A);
1132
1133#ifndef _WIN32 1623#ifndef _WIN32
1134 ev_signal_init (&childev, childcb, SIGCHLD); 1624 ev_signal_init (&childev, childcb, SIGCHLD);
1135 ev_set_priority (&childev, EV_MAXPRI); 1625 ev_set_priority (&childev, EV_MAXPRI);
1136 ev_signal_start (EV_A_ &childev); 1626 ev_signal_start (EV_A_ &childev);
1137 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1627 ev_unref (EV_A); /* child watcher should not keep loop alive */
1154#ifndef _WIN32 1644#ifndef _WIN32
1155 ev_ref (EV_A); /* child watcher */ 1645 ev_ref (EV_A); /* child watcher */
1156 ev_signal_stop (EV_A_ &childev); 1646 ev_signal_stop (EV_A_ &childev);
1157#endif 1647#endif
1158 1648
1159 ev_ref (EV_A); /* signal watcher */
1160 ev_io_stop (EV_A_ &sigev);
1161
1162 close (sigpipe [0]); sigpipe [0] = 0;
1163 close (sigpipe [1]); sigpipe [1] = 0;
1164
1165 loop_destroy (EV_A); 1649 loop_destroy (EV_A);
1166} 1650}
1167 1651
1168void 1652void
1169ev_default_fork (void) 1653ev_default_fork (void)
1171#if EV_MULTIPLICITY 1655#if EV_MULTIPLICITY
1172 struct ev_loop *loop = ev_default_loop_ptr; 1656 struct ev_loop *loop = ev_default_loop_ptr;
1173#endif 1657#endif
1174 1658
1175 if (backend) 1659 if (backend)
1176 postfork = 1; 1660 postfork = 1; /* must be in line with ev_loop_fork */
1177} 1661}
1178 1662
1179/*****************************************************************************/ 1663/*****************************************************************************/
1180 1664
1181void 1665void
1198 { 1682 {
1199 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1683 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1200 1684
1201 p->w->pending = 0; 1685 p->w->pending = 0;
1202 EV_CB_INVOKE (p->w, p->events); 1686 EV_CB_INVOKE (p->w, p->events);
1687 EV_FREQUENT_CHECK;
1203 } 1688 }
1204 } 1689 }
1205} 1690}
1206
1207void inline_size
1208timers_reify (EV_P)
1209{
1210 while (timercnt && ((WT)timers [0])->at <= mn_now)
1211 {
1212 ev_timer *w = timers [0];
1213
1214 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1215
1216 /* first reschedule or stop timer */
1217 if (w->repeat)
1218 {
1219 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1220
1221 ((WT)w)->at += w->repeat;
1222 if (((WT)w)->at < mn_now)
1223 ((WT)w)->at = mn_now;
1224
1225 downheap ((WT *)timers, timercnt, 0);
1226 }
1227 else
1228 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1229
1230 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1231 }
1232}
1233
1234#if EV_PERIODIC_ENABLE
1235void inline_size
1236periodics_reify (EV_P)
1237{
1238 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1239 {
1240 ev_periodic *w = periodics [0];
1241
1242 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1243
1244 /* first reschedule or stop timer */
1245 if (w->reschedule_cb)
1246 {
1247 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1248 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1249 downheap ((WT *)periodics, periodiccnt, 0);
1250 }
1251 else if (w->interval)
1252 {
1253 ((WT)w)->at = w->offset + floor ((ev_rt_now + TIME_EPSILON - w->offset) / w->interval + 1.) * w->interval;
1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1255 downheap ((WT *)periodics, periodiccnt, 0);
1256 }
1257 else
1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1259
1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1261 }
1262}
1263
1264static void noinline
1265periodics_reschedule (EV_P)
1266{
1267 int i;
1268
1269 /* adjust periodics after time jump */
1270 for (i = 0; i < periodiccnt; ++i)
1271 {
1272 ev_periodic *w = periodics [i];
1273
1274 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1276 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 }
1279
1280 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i);
1283}
1284#endif
1285 1691
1286#if EV_IDLE_ENABLE 1692#if EV_IDLE_ENABLE
1287void inline_size 1693void inline_size
1288idle_reify (EV_P) 1694idle_reify (EV_P)
1289{ 1695{
1304 } 1710 }
1305 } 1711 }
1306} 1712}
1307#endif 1713#endif
1308 1714
1309int inline_size 1715void inline_size
1310time_update_monotonic (EV_P) 1716timers_reify (EV_P)
1311{ 1717{
1718 EV_FREQUENT_CHECK;
1719
1720 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1721 {
1722 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1723
1724 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1725
1726 /* first reschedule or stop timer */
1727 if (w->repeat)
1728 {
1729 ev_at (w) += w->repeat;
1730 if (ev_at (w) < mn_now)
1731 ev_at (w) = mn_now;
1732
1733 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1734
1735 ANHE_at_cache (timers [HEAP0]);
1736 downheap (timers, timercnt, HEAP0);
1737 }
1738 else
1739 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1740
1741 EV_FREQUENT_CHECK;
1742 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1743 }
1744}
1745
1746#if EV_PERIODIC_ENABLE
1747void inline_size
1748periodics_reify (EV_P)
1749{
1750 EV_FREQUENT_CHECK;
1751
1752 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1753 {
1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1755
1756 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1757
1758 /* first reschedule or stop timer */
1759 if (w->reschedule_cb)
1760 {
1761 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1762
1763 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1764
1765 ANHE_at_cache (periodics [HEAP0]);
1766 downheap (periodics, periodiccnt, HEAP0);
1767 }
1768 else if (w->interval)
1769 {
1770 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1771 /* if next trigger time is not sufficiently in the future, put it there */
1772 /* this might happen because of floating point inexactness */
1773 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1774 {
1775 ev_at (w) += w->interval;
1776
1777 /* if interval is unreasonably low we might still have a time in the past */
1778 /* so correct this. this will make the periodic very inexact, but the user */
1779 /* has effectively asked to get triggered more often than possible */
1780 if (ev_at (w) < ev_rt_now)
1781 ev_at (w) = ev_rt_now;
1782 }
1783
1784 ANHE_at_cache (periodics [HEAP0]);
1785 downheap (periodics, periodiccnt, HEAP0);
1786 }
1787 else
1788 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1789
1790 EV_FREQUENT_CHECK;
1791 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1792 }
1793}
1794
1795static void noinline
1796periodics_reschedule (EV_P)
1797{
1798 int i;
1799
1800 /* adjust periodics after time jump */
1801 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1802 {
1803 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1804
1805 if (w->reschedule_cb)
1806 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1807 else if (w->interval)
1808 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1809
1810 ANHE_at_cache (periodics [i]);
1811 }
1812
1813 reheap (periodics, periodiccnt);
1814}
1815#endif
1816
1817void inline_speed
1818time_update (EV_P_ ev_tstamp max_block)
1819{
1820 int i;
1821
1822#if EV_USE_MONOTONIC
1823 if (expect_true (have_monotonic))
1824 {
1825 ev_tstamp odiff = rtmn_diff;
1826
1312 mn_now = get_clock (); 1827 mn_now = get_clock ();
1313 1828
1829 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1830 /* interpolate in the meantime */
1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1831 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1315 { 1832 {
1316 ev_rt_now = rtmn_diff + mn_now; 1833 ev_rt_now = rtmn_diff + mn_now;
1317 return 0; 1834 return;
1318 } 1835 }
1319 else 1836
1320 {
1321 now_floor = mn_now; 1837 now_floor = mn_now;
1322 ev_rt_now = ev_time (); 1838 ev_rt_now = ev_time ();
1323 return 1;
1324 }
1325}
1326 1839
1327void inline_size 1840 /* loop a few times, before making important decisions.
1328time_update (EV_P) 1841 * on the choice of "4": one iteration isn't enough,
1329{ 1842 * in case we get preempted during the calls to
1330 int i; 1843 * ev_time and get_clock. a second call is almost guaranteed
1331 1844 * to succeed in that case, though. and looping a few more times
1332#if EV_USE_MONOTONIC 1845 * doesn't hurt either as we only do this on time-jumps or
1333 if (expect_true (have_monotonic)) 1846 * in the unlikely event of having been preempted here.
1334 { 1847 */
1335 if (time_update_monotonic (EV_A)) 1848 for (i = 4; --i; )
1336 { 1849 {
1337 ev_tstamp odiff = rtmn_diff;
1338
1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1348 {
1349 rtmn_diff = ev_rt_now - mn_now; 1850 rtmn_diff = ev_rt_now - mn_now;
1350 1851
1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1852 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1352 return; /* all is well */ 1853 return; /* all is well */
1353 1854
1354 ev_rt_now = ev_time (); 1855 ev_rt_now = ev_time ();
1355 mn_now = get_clock (); 1856 mn_now = get_clock ();
1356 now_floor = mn_now; 1857 now_floor = mn_now;
1357 } 1858 }
1358 1859
1359# if EV_PERIODIC_ENABLE 1860# if EV_PERIODIC_ENABLE
1360 periodics_reschedule (EV_A); 1861 periodics_reschedule (EV_A);
1361# endif 1862# endif
1362 /* no timer adjustment, as the monotonic clock doesn't jump */ 1863 /* no timer adjustment, as the monotonic clock doesn't jump */
1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1864 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1364 }
1365 } 1865 }
1366 else 1866 else
1367#endif 1867#endif
1368 { 1868 {
1369 ev_rt_now = ev_time (); 1869 ev_rt_now = ev_time ();
1370 1870
1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1871 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 { 1872 {
1373#if EV_PERIODIC_ENABLE 1873#if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 1874 periodics_reschedule (EV_A);
1375#endif 1875#endif
1376
1377 /* adjust timers. this is easy, as the offset is the same for all of them */ 1876 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i) 1877 for (i = 0; i < timercnt; ++i)
1878 {
1879 ANHE *he = timers + i + HEAP0;
1379 ((WT)timers [i])->at += ev_rt_now - mn_now; 1880 ANHE_w (*he)->at += ev_rt_now - mn_now;
1881 ANHE_at_cache (*he);
1882 }
1380 } 1883 }
1381 1884
1382 mn_now = ev_rt_now; 1885 mn_now = ev_rt_now;
1383 } 1886 }
1384} 1887}
1398static int loop_done; 1901static int loop_done;
1399 1902
1400void 1903void
1401ev_loop (EV_P_ int flags) 1904ev_loop (EV_P_ int flags)
1402{ 1905{
1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1906 loop_done = EVUNLOOP_CANCEL;
1404 ? EVUNLOOP_ONE
1405 : EVUNLOOP_CANCEL;
1406 1907
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1908 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1408 1909
1409 do 1910 do
1410 { 1911 {
1912#if EV_VERIFY >= 2
1913 ev_loop_verify (EV_A);
1914#endif
1915
1411#ifndef _WIN32 1916#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */ 1917 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid)) 1918 if (expect_false (getpid () != curpid))
1414 { 1919 {
1415 curpid = getpid (); 1920 curpid = getpid ();
1444 /* update fd-related kernel structures */ 1949 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 1950 fd_reify (EV_A);
1446 1951
1447 /* calculate blocking time */ 1952 /* calculate blocking time */
1448 { 1953 {
1449 ev_tstamp block; 1954 ev_tstamp waittime = 0.;
1955 ev_tstamp sleeptime = 0.;
1450 1956
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1957 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 1958 {
1455 /* update time to cancel out callback processing overhead */ 1959 /* update time to cancel out callback processing overhead */
1456#if EV_USE_MONOTONIC
1457 if (expect_true (have_monotonic))
1458 time_update_monotonic (EV_A); 1960 time_update (EV_A_ 1e100);
1459 else
1460#endif
1461 {
1462 ev_rt_now = ev_time ();
1463 mn_now = ev_rt_now;
1464 }
1465 1961
1466 block = MAX_BLOCKTIME; 1962 waittime = MAX_BLOCKTIME;
1467 1963
1468 if (timercnt) 1964 if (timercnt)
1469 { 1965 {
1470 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1966 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1471 if (block > to) block = to; 1967 if (waittime > to) waittime = to;
1472 } 1968 }
1473 1969
1474#if EV_PERIODIC_ENABLE 1970#if EV_PERIODIC_ENABLE
1475 if (periodiccnt) 1971 if (periodiccnt)
1476 { 1972 {
1477 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1973 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1478 if (block > to) block = to; 1974 if (waittime > to) waittime = to;
1479 } 1975 }
1480#endif 1976#endif
1481 1977
1482 if (expect_false (block < 0.)) block = 0.; 1978 if (expect_false (waittime < timeout_blocktime))
1979 waittime = timeout_blocktime;
1980
1981 sleeptime = waittime - backend_fudge;
1982
1983 if (expect_true (sleeptime > io_blocktime))
1984 sleeptime = io_blocktime;
1985
1986 if (sleeptime)
1987 {
1988 ev_sleep (sleeptime);
1989 waittime -= sleeptime;
1990 }
1483 } 1991 }
1484 1992
1485 ++loop_count; 1993 ++loop_count;
1486 backend_poll (EV_A_ block); 1994 backend_poll (EV_A_ waittime);
1995
1996 /* update ev_rt_now, do magic */
1997 time_update (EV_A_ waittime + sleeptime);
1487 } 1998 }
1488
1489 /* update ev_rt_now, do magic */
1490 time_update (EV_A);
1491 1999
1492 /* queue pending timers and reschedule them */ 2000 /* queue pending timers and reschedule them */
1493 timers_reify (EV_A); /* relative timers called last */ 2001 timers_reify (EV_A); /* relative timers called last */
1494#if EV_PERIODIC_ENABLE 2002#if EV_PERIODIC_ENABLE
1495 periodics_reify (EV_A); /* absolute timers called first */ 2003 periodics_reify (EV_A); /* absolute timers called first */
1503 /* queue check watchers, to be executed first */ 2011 /* queue check watchers, to be executed first */
1504 if (expect_false (checkcnt)) 2012 if (expect_false (checkcnt))
1505 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2013 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1506 2014
1507 call_pending (EV_A); 2015 call_pending (EV_A);
1508
1509 } 2016 }
1510 while (expect_true (activecnt && !loop_done)); 2017 while (expect_true (
2018 activecnt
2019 && !loop_done
2020 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2021 ));
1511 2022
1512 if (loop_done == EVUNLOOP_ONE) 2023 if (loop_done == EVUNLOOP_ONE)
1513 loop_done = EVUNLOOP_CANCEL; 2024 loop_done = EVUNLOOP_CANCEL;
1514} 2025}
1515 2026
1604 if (expect_false (ev_is_active (w))) 2115 if (expect_false (ev_is_active (w)))
1605 return; 2116 return;
1606 2117
1607 assert (("ev_io_start called with negative fd", fd >= 0)); 2118 assert (("ev_io_start called with negative fd", fd >= 0));
1608 2119
2120 EV_FREQUENT_CHECK;
2121
1609 ev_start (EV_A_ (W)w, 1); 2122 ev_start (EV_A_ (W)w, 1);
1610 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2123 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1611 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2124 wlist_add (&anfds[fd].head, (WL)w);
1612 2125
1613 fd_change (EV_A_ fd); 2126 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2127 w->events &= ~EV_IOFDSET;
2128
2129 EV_FREQUENT_CHECK;
1614} 2130}
1615 2131
1616void noinline 2132void noinline
1617ev_io_stop (EV_P_ ev_io *w) 2133ev_io_stop (EV_P_ ev_io *w)
1618{ 2134{
1619 clear_pending (EV_A_ (W)w); 2135 clear_pending (EV_A_ (W)w);
1620 if (expect_false (!ev_is_active (w))) 2136 if (expect_false (!ev_is_active (w)))
1621 return; 2137 return;
1622 2138
1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2139 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1624 2140
2141 EV_FREQUENT_CHECK;
2142
1625 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2143 wlist_del (&anfds[w->fd].head, (WL)w);
1626 ev_stop (EV_A_ (W)w); 2144 ev_stop (EV_A_ (W)w);
1627 2145
1628 fd_change (EV_A_ w->fd); 2146 fd_change (EV_A_ w->fd, 1);
2147
2148 EV_FREQUENT_CHECK;
1629} 2149}
1630 2150
1631void noinline 2151void noinline
1632ev_timer_start (EV_P_ ev_timer *w) 2152ev_timer_start (EV_P_ ev_timer *w)
1633{ 2153{
1634 if (expect_false (ev_is_active (w))) 2154 if (expect_false (ev_is_active (w)))
1635 return; 2155 return;
1636 2156
1637 ((WT)w)->at += mn_now; 2157 ev_at (w) += mn_now;
1638 2158
1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2159 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1640 2160
2161 EV_FREQUENT_CHECK;
2162
2163 ++timercnt;
1641 ev_start (EV_A_ (W)w, ++timercnt); 2164 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1642 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2165 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1643 timers [timercnt - 1] = w; 2166 ANHE_w (timers [ev_active (w)]) = (WT)w;
1644 upheap ((WT *)timers, timercnt - 1); 2167 ANHE_at_cache (timers [ev_active (w)]);
2168 upheap (timers, ev_active (w));
1645 2169
2170 EV_FREQUENT_CHECK;
2171
1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2172 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1647} 2173}
1648 2174
1649void noinline 2175void noinline
1650ev_timer_stop (EV_P_ ev_timer *w) 2176ev_timer_stop (EV_P_ ev_timer *w)
1651{ 2177{
1652 clear_pending (EV_A_ (W)w); 2178 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 2179 if (expect_false (!ev_is_active (w)))
1654 return; 2180 return;
1655 2181
1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2182 EV_FREQUENT_CHECK;
1657 2183
1658 { 2184 {
1659 int active = ((W)w)->active; 2185 int active = ev_active (w);
1660 2186
2187 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2188
2189 --timercnt;
2190
1661 if (expect_true (--active < --timercnt)) 2191 if (expect_true (active < timercnt + HEAP0))
1662 { 2192 {
1663 timers [active] = timers [timercnt]; 2193 timers [active] = timers [timercnt + HEAP0];
1664 adjustheap ((WT *)timers, timercnt, active); 2194 adjustheap (timers, timercnt, active);
1665 } 2195 }
1666 } 2196 }
1667 2197
1668 ((WT)w)->at -= mn_now; 2198 EV_FREQUENT_CHECK;
2199
2200 ev_at (w) -= mn_now;
1669 2201
1670 ev_stop (EV_A_ (W)w); 2202 ev_stop (EV_A_ (W)w);
1671} 2203}
1672 2204
1673void noinline 2205void noinline
1674ev_timer_again (EV_P_ ev_timer *w) 2206ev_timer_again (EV_P_ ev_timer *w)
1675{ 2207{
2208 EV_FREQUENT_CHECK;
2209
1676 if (ev_is_active (w)) 2210 if (ev_is_active (w))
1677 { 2211 {
1678 if (w->repeat) 2212 if (w->repeat)
1679 { 2213 {
1680 ((WT)w)->at = mn_now + w->repeat; 2214 ev_at (w) = mn_now + w->repeat;
2215 ANHE_at_cache (timers [ev_active (w)]);
1681 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2216 adjustheap (timers, timercnt, ev_active (w));
1682 } 2217 }
1683 else 2218 else
1684 ev_timer_stop (EV_A_ w); 2219 ev_timer_stop (EV_A_ w);
1685 } 2220 }
1686 else if (w->repeat) 2221 else if (w->repeat)
1687 { 2222 {
1688 w->at = w->repeat; 2223 ev_at (w) = w->repeat;
1689 ev_timer_start (EV_A_ w); 2224 ev_timer_start (EV_A_ w);
1690 } 2225 }
2226
2227 EV_FREQUENT_CHECK;
1691} 2228}
1692 2229
1693#if EV_PERIODIC_ENABLE 2230#if EV_PERIODIC_ENABLE
1694void noinline 2231void noinline
1695ev_periodic_start (EV_P_ ev_periodic *w) 2232ev_periodic_start (EV_P_ ev_periodic *w)
1696{ 2233{
1697 if (expect_false (ev_is_active (w))) 2234 if (expect_false (ev_is_active (w)))
1698 return; 2235 return;
1699 2236
1700 if (w->reschedule_cb) 2237 if (w->reschedule_cb)
1701 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2238 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1702 else if (w->interval) 2239 else if (w->interval)
1703 { 2240 {
1704 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2241 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1705 /* this formula differs from the one in periodic_reify because we do not always round up */ 2242 /* this formula differs from the one in periodic_reify because we do not always round up */
1706 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2243 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1707 } 2244 }
1708 else 2245 else
1709 ((WT)w)->at = w->offset; 2246 ev_at (w) = w->offset;
1710 2247
2248 EV_FREQUENT_CHECK;
2249
2250 ++periodiccnt;
1711 ev_start (EV_A_ (W)w, ++periodiccnt); 2251 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1712 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2252 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1713 periodics [periodiccnt - 1] = w; 2253 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1714 upheap ((WT *)periodics, periodiccnt - 1); 2254 ANHE_at_cache (periodics [ev_active (w)]);
2255 upheap (periodics, ev_active (w));
1715 2256
2257 EV_FREQUENT_CHECK;
2258
1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2259 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1717} 2260}
1718 2261
1719void noinline 2262void noinline
1720ev_periodic_stop (EV_P_ ev_periodic *w) 2263ev_periodic_stop (EV_P_ ev_periodic *w)
1721{ 2264{
1722 clear_pending (EV_A_ (W)w); 2265 clear_pending (EV_A_ (W)w);
1723 if (expect_false (!ev_is_active (w))) 2266 if (expect_false (!ev_is_active (w)))
1724 return; 2267 return;
1725 2268
1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2269 EV_FREQUENT_CHECK;
1727 2270
1728 { 2271 {
1729 int active = ((W)w)->active; 2272 int active = ev_active (w);
1730 2273
2274 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2275
2276 --periodiccnt;
2277
1731 if (expect_true (--active < --periodiccnt)) 2278 if (expect_true (active < periodiccnt + HEAP0))
1732 { 2279 {
1733 periodics [active] = periodics [periodiccnt]; 2280 periodics [active] = periodics [periodiccnt + HEAP0];
1734 adjustheap ((WT *)periodics, periodiccnt, active); 2281 adjustheap (periodics, periodiccnt, active);
1735 } 2282 }
1736 } 2283 }
2284
2285 EV_FREQUENT_CHECK;
1737 2286
1738 ev_stop (EV_A_ (W)w); 2287 ev_stop (EV_A_ (W)w);
1739} 2288}
1740 2289
1741void noinline 2290void noinline
1760 if (expect_false (ev_is_active (w))) 2309 if (expect_false (ev_is_active (w)))
1761 return; 2310 return;
1762 2311
1763 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2312 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1764 2313
2314 evpipe_init (EV_A);
2315
2316 EV_FREQUENT_CHECK;
2317
2318 {
2319#ifndef _WIN32
2320 sigset_t full, prev;
2321 sigfillset (&full);
2322 sigprocmask (SIG_SETMASK, &full, &prev);
2323#endif
2324
2325 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2326
2327#ifndef _WIN32
2328 sigprocmask (SIG_SETMASK, &prev, 0);
2329#endif
2330 }
2331
1765 ev_start (EV_A_ (W)w, 1); 2332 ev_start (EV_A_ (W)w, 1);
1766 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1767 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2333 wlist_add (&signals [w->signum - 1].head, (WL)w);
1768 2334
1769 if (!((WL)w)->next) 2335 if (!((WL)w)->next)
1770 { 2336 {
1771#if _WIN32 2337#if _WIN32
1772 signal (w->signum, sighandler); 2338 signal (w->signum, ev_sighandler);
1773#else 2339#else
1774 struct sigaction sa; 2340 struct sigaction sa;
1775 sa.sa_handler = sighandler; 2341 sa.sa_handler = ev_sighandler;
1776 sigfillset (&sa.sa_mask); 2342 sigfillset (&sa.sa_mask);
1777 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2343 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1778 sigaction (w->signum, &sa, 0); 2344 sigaction (w->signum, &sa, 0);
1779#endif 2345#endif
1780 } 2346 }
2347
2348 EV_FREQUENT_CHECK;
1781} 2349}
1782 2350
1783void noinline 2351void noinline
1784ev_signal_stop (EV_P_ ev_signal *w) 2352ev_signal_stop (EV_P_ ev_signal *w)
1785{ 2353{
1786 clear_pending (EV_A_ (W)w); 2354 clear_pending (EV_A_ (W)w);
1787 if (expect_false (!ev_is_active (w))) 2355 if (expect_false (!ev_is_active (w)))
1788 return; 2356 return;
1789 2357
2358 EV_FREQUENT_CHECK;
2359
1790 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2360 wlist_del (&signals [w->signum - 1].head, (WL)w);
1791 ev_stop (EV_A_ (W)w); 2361 ev_stop (EV_A_ (W)w);
1792 2362
1793 if (!signals [w->signum - 1].head) 2363 if (!signals [w->signum - 1].head)
1794 signal (w->signum, SIG_DFL); 2364 signal (w->signum, SIG_DFL);
2365
2366 EV_FREQUENT_CHECK;
1795} 2367}
1796 2368
1797void 2369void
1798ev_child_start (EV_P_ ev_child *w) 2370ev_child_start (EV_P_ ev_child *w)
1799{ 2371{
1801 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2373 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1802#endif 2374#endif
1803 if (expect_false (ev_is_active (w))) 2375 if (expect_false (ev_is_active (w)))
1804 return; 2376 return;
1805 2377
2378 EV_FREQUENT_CHECK;
2379
1806 ev_start (EV_A_ (W)w, 1); 2380 ev_start (EV_A_ (W)w, 1);
1807 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2381 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2382
2383 EV_FREQUENT_CHECK;
1808} 2384}
1809 2385
1810void 2386void
1811ev_child_stop (EV_P_ ev_child *w) 2387ev_child_stop (EV_P_ ev_child *w)
1812{ 2388{
1813 clear_pending (EV_A_ (W)w); 2389 clear_pending (EV_A_ (W)w);
1814 if (expect_false (!ev_is_active (w))) 2390 if (expect_false (!ev_is_active (w)))
1815 return; 2391 return;
1816 2392
2393 EV_FREQUENT_CHECK;
2394
1817 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2395 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1818 ev_stop (EV_A_ (W)w); 2396 ev_stop (EV_A_ (W)w);
2397
2398 EV_FREQUENT_CHECK;
1819} 2399}
1820 2400
1821#if EV_STAT_ENABLE 2401#if EV_STAT_ENABLE
1822 2402
1823# ifdef _WIN32 2403# ifdef _WIN32
1841 if (w->wd < 0) 2421 if (w->wd < 0)
1842 { 2422 {
1843 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2423 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1844 2424
1845 /* monitor some parent directory for speedup hints */ 2425 /* monitor some parent directory for speedup hints */
2426 /* note that exceeding the hardcoded limit is not a correctness issue, */
2427 /* but an efficiency issue only */
1846 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2428 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1847 { 2429 {
1848 char path [4096]; 2430 char path [4096];
1849 strcpy (path, w->path); 2431 strcpy (path, w->path);
1850 2432
2049 else 2631 else
2050#endif 2632#endif
2051 ev_timer_start (EV_A_ &w->timer); 2633 ev_timer_start (EV_A_ &w->timer);
2052 2634
2053 ev_start (EV_A_ (W)w, 1); 2635 ev_start (EV_A_ (W)w, 1);
2636
2637 EV_FREQUENT_CHECK;
2054} 2638}
2055 2639
2056void 2640void
2057ev_stat_stop (EV_P_ ev_stat *w) 2641ev_stat_stop (EV_P_ ev_stat *w)
2058{ 2642{
2059 clear_pending (EV_A_ (W)w); 2643 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w))) 2644 if (expect_false (!ev_is_active (w)))
2061 return; 2645 return;
2062 2646
2647 EV_FREQUENT_CHECK;
2648
2063#if EV_USE_INOTIFY 2649#if EV_USE_INOTIFY
2064 infy_del (EV_A_ w); 2650 infy_del (EV_A_ w);
2065#endif 2651#endif
2066 ev_timer_stop (EV_A_ &w->timer); 2652 ev_timer_stop (EV_A_ &w->timer);
2067 2653
2068 ev_stop (EV_A_ (W)w); 2654 ev_stop (EV_A_ (W)w);
2655
2656 EV_FREQUENT_CHECK;
2069} 2657}
2070#endif 2658#endif
2071 2659
2072#if EV_IDLE_ENABLE 2660#if EV_IDLE_ENABLE
2073void 2661void
2075{ 2663{
2076 if (expect_false (ev_is_active (w))) 2664 if (expect_false (ev_is_active (w)))
2077 return; 2665 return;
2078 2666
2079 pri_adjust (EV_A_ (W)w); 2667 pri_adjust (EV_A_ (W)w);
2668
2669 EV_FREQUENT_CHECK;
2080 2670
2081 { 2671 {
2082 int active = ++idlecnt [ABSPRI (w)]; 2672 int active = ++idlecnt [ABSPRI (w)];
2083 2673
2084 ++idleall; 2674 ++idleall;
2085 ev_start (EV_A_ (W)w, active); 2675 ev_start (EV_A_ (W)w, active);
2086 2676
2087 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2677 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2088 idles [ABSPRI (w)][active - 1] = w; 2678 idles [ABSPRI (w)][active - 1] = w;
2089 } 2679 }
2680
2681 EV_FREQUENT_CHECK;
2090} 2682}
2091 2683
2092void 2684void
2093ev_idle_stop (EV_P_ ev_idle *w) 2685ev_idle_stop (EV_P_ ev_idle *w)
2094{ 2686{
2095 clear_pending (EV_A_ (W)w); 2687 clear_pending (EV_A_ (W)w);
2096 if (expect_false (!ev_is_active (w))) 2688 if (expect_false (!ev_is_active (w)))
2097 return; 2689 return;
2098 2690
2691 EV_FREQUENT_CHECK;
2692
2099 { 2693 {
2100 int active = ((W)w)->active; 2694 int active = ev_active (w);
2101 2695
2102 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2696 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2103 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2697 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2104 2698
2105 ev_stop (EV_A_ (W)w); 2699 ev_stop (EV_A_ (W)w);
2106 --idleall; 2700 --idleall;
2107 } 2701 }
2702
2703 EV_FREQUENT_CHECK;
2108} 2704}
2109#endif 2705#endif
2110 2706
2111void 2707void
2112ev_prepare_start (EV_P_ ev_prepare *w) 2708ev_prepare_start (EV_P_ ev_prepare *w)
2113{ 2709{
2114 if (expect_false (ev_is_active (w))) 2710 if (expect_false (ev_is_active (w)))
2115 return; 2711 return;
2712
2713 EV_FREQUENT_CHECK;
2116 2714
2117 ev_start (EV_A_ (W)w, ++preparecnt); 2715 ev_start (EV_A_ (W)w, ++preparecnt);
2118 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2716 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2119 prepares [preparecnt - 1] = w; 2717 prepares [preparecnt - 1] = w;
2718
2719 EV_FREQUENT_CHECK;
2120} 2720}
2121 2721
2122void 2722void
2123ev_prepare_stop (EV_P_ ev_prepare *w) 2723ev_prepare_stop (EV_P_ ev_prepare *w)
2124{ 2724{
2125 clear_pending (EV_A_ (W)w); 2725 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w))) 2726 if (expect_false (!ev_is_active (w)))
2127 return; 2727 return;
2128 2728
2729 EV_FREQUENT_CHECK;
2730
2129 { 2731 {
2130 int active = ((W)w)->active; 2732 int active = ev_active (w);
2733
2131 prepares [active - 1] = prepares [--preparecnt]; 2734 prepares [active - 1] = prepares [--preparecnt];
2132 ((W)prepares [active - 1])->active = active; 2735 ev_active (prepares [active - 1]) = active;
2133 } 2736 }
2134 2737
2135 ev_stop (EV_A_ (W)w); 2738 ev_stop (EV_A_ (W)w);
2739
2740 EV_FREQUENT_CHECK;
2136} 2741}
2137 2742
2138void 2743void
2139ev_check_start (EV_P_ ev_check *w) 2744ev_check_start (EV_P_ ev_check *w)
2140{ 2745{
2141 if (expect_false (ev_is_active (w))) 2746 if (expect_false (ev_is_active (w)))
2142 return; 2747 return;
2748
2749 EV_FREQUENT_CHECK;
2143 2750
2144 ev_start (EV_A_ (W)w, ++checkcnt); 2751 ev_start (EV_A_ (W)w, ++checkcnt);
2145 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2752 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2146 checks [checkcnt - 1] = w; 2753 checks [checkcnt - 1] = w;
2754
2755 EV_FREQUENT_CHECK;
2147} 2756}
2148 2757
2149void 2758void
2150ev_check_stop (EV_P_ ev_check *w) 2759ev_check_stop (EV_P_ ev_check *w)
2151{ 2760{
2152 clear_pending (EV_A_ (W)w); 2761 clear_pending (EV_A_ (W)w);
2153 if (expect_false (!ev_is_active (w))) 2762 if (expect_false (!ev_is_active (w)))
2154 return; 2763 return;
2155 2764
2765 EV_FREQUENT_CHECK;
2766
2156 { 2767 {
2157 int active = ((W)w)->active; 2768 int active = ev_active (w);
2769
2158 checks [active - 1] = checks [--checkcnt]; 2770 checks [active - 1] = checks [--checkcnt];
2159 ((W)checks [active - 1])->active = active; 2771 ev_active (checks [active - 1]) = active;
2160 } 2772 }
2161 2773
2162 ev_stop (EV_A_ (W)w); 2774 ev_stop (EV_A_ (W)w);
2775
2776 EV_FREQUENT_CHECK;
2163} 2777}
2164 2778
2165#if EV_EMBED_ENABLE 2779#if EV_EMBED_ENABLE
2166void noinline 2780void noinline
2167ev_embed_sweep (EV_P_ ev_embed *w) 2781ev_embed_sweep (EV_P_ ev_embed *w)
2168{ 2782{
2169 ev_loop (w->loop, EVLOOP_NONBLOCK); 2783 ev_loop (w->other, EVLOOP_NONBLOCK);
2170} 2784}
2171 2785
2172static void 2786static void
2173embed_cb (EV_P_ ev_io *io, int revents) 2787embed_io_cb (EV_P_ ev_io *io, int revents)
2174{ 2788{
2175 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2789 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2176 2790
2177 if (ev_cb (w)) 2791 if (ev_cb (w))
2178 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2792 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2179 else 2793 else
2180 ev_embed_sweep (loop, w); 2794 ev_loop (w->other, EVLOOP_NONBLOCK);
2181} 2795}
2796
2797static void
2798embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2799{
2800 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2801
2802 {
2803 struct ev_loop *loop = w->other;
2804
2805 while (fdchangecnt)
2806 {
2807 fd_reify (EV_A);
2808 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2809 }
2810 }
2811}
2812
2813#if 0
2814static void
2815embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2816{
2817 ev_idle_stop (EV_A_ idle);
2818}
2819#endif
2182 2820
2183void 2821void
2184ev_embed_start (EV_P_ ev_embed *w) 2822ev_embed_start (EV_P_ ev_embed *w)
2185{ 2823{
2186 if (expect_false (ev_is_active (w))) 2824 if (expect_false (ev_is_active (w)))
2187 return; 2825 return;
2188 2826
2189 { 2827 {
2190 struct ev_loop *loop = w->loop; 2828 struct ev_loop *loop = w->other;
2191 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2829 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2192 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2830 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2193 } 2831 }
2832
2833 EV_FREQUENT_CHECK;
2194 2834
2195 ev_set_priority (&w->io, ev_priority (w)); 2835 ev_set_priority (&w->io, ev_priority (w));
2196 ev_io_start (EV_A_ &w->io); 2836 ev_io_start (EV_A_ &w->io);
2197 2837
2838 ev_prepare_init (&w->prepare, embed_prepare_cb);
2839 ev_set_priority (&w->prepare, EV_MINPRI);
2840 ev_prepare_start (EV_A_ &w->prepare);
2841
2842 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2843
2198 ev_start (EV_A_ (W)w, 1); 2844 ev_start (EV_A_ (W)w, 1);
2845
2846 EV_FREQUENT_CHECK;
2199} 2847}
2200 2848
2201void 2849void
2202ev_embed_stop (EV_P_ ev_embed *w) 2850ev_embed_stop (EV_P_ ev_embed *w)
2203{ 2851{
2204 clear_pending (EV_A_ (W)w); 2852 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w))) 2853 if (expect_false (!ev_is_active (w)))
2206 return; 2854 return;
2207 2855
2856 EV_FREQUENT_CHECK;
2857
2208 ev_io_stop (EV_A_ &w->io); 2858 ev_io_stop (EV_A_ &w->io);
2859 ev_prepare_stop (EV_A_ &w->prepare);
2209 2860
2210 ev_stop (EV_A_ (W)w); 2861 ev_stop (EV_A_ (W)w);
2862
2863 EV_FREQUENT_CHECK;
2211} 2864}
2212#endif 2865#endif
2213 2866
2214#if EV_FORK_ENABLE 2867#if EV_FORK_ENABLE
2215void 2868void
2216ev_fork_start (EV_P_ ev_fork *w) 2869ev_fork_start (EV_P_ ev_fork *w)
2217{ 2870{
2218 if (expect_false (ev_is_active (w))) 2871 if (expect_false (ev_is_active (w)))
2219 return; 2872 return;
2873
2874 EV_FREQUENT_CHECK;
2220 2875
2221 ev_start (EV_A_ (W)w, ++forkcnt); 2876 ev_start (EV_A_ (W)w, ++forkcnt);
2222 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2877 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2223 forks [forkcnt - 1] = w; 2878 forks [forkcnt - 1] = w;
2879
2880 EV_FREQUENT_CHECK;
2224} 2881}
2225 2882
2226void 2883void
2227ev_fork_stop (EV_P_ ev_fork *w) 2884ev_fork_stop (EV_P_ ev_fork *w)
2228{ 2885{
2229 clear_pending (EV_A_ (W)w); 2886 clear_pending (EV_A_ (W)w);
2230 if (expect_false (!ev_is_active (w))) 2887 if (expect_false (!ev_is_active (w)))
2231 return; 2888 return;
2232 2889
2890 EV_FREQUENT_CHECK;
2891
2233 { 2892 {
2234 int active = ((W)w)->active; 2893 int active = ev_active (w);
2894
2235 forks [active - 1] = forks [--forkcnt]; 2895 forks [active - 1] = forks [--forkcnt];
2236 ((W)forks [active - 1])->active = active; 2896 ev_active (forks [active - 1]) = active;
2237 } 2897 }
2238 2898
2239 ev_stop (EV_A_ (W)w); 2899 ev_stop (EV_A_ (W)w);
2900
2901 EV_FREQUENT_CHECK;
2902}
2903#endif
2904
2905#if EV_ASYNC_ENABLE
2906void
2907ev_async_start (EV_P_ ev_async *w)
2908{
2909 if (expect_false (ev_is_active (w)))
2910 return;
2911
2912 evpipe_init (EV_A);
2913
2914 EV_FREQUENT_CHECK;
2915
2916 ev_start (EV_A_ (W)w, ++asynccnt);
2917 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2918 asyncs [asynccnt - 1] = w;
2919
2920 EV_FREQUENT_CHECK;
2921}
2922
2923void
2924ev_async_stop (EV_P_ ev_async *w)
2925{
2926 clear_pending (EV_A_ (W)w);
2927 if (expect_false (!ev_is_active (w)))
2928 return;
2929
2930 EV_FREQUENT_CHECK;
2931
2932 {
2933 int active = ev_active (w);
2934
2935 asyncs [active - 1] = asyncs [--asynccnt];
2936 ev_active (asyncs [active - 1]) = active;
2937 }
2938
2939 ev_stop (EV_A_ (W)w);
2940
2941 EV_FREQUENT_CHECK;
2942}
2943
2944void
2945ev_async_send (EV_P_ ev_async *w)
2946{
2947 w->sent = 1;
2948 evpipe_write (EV_A_ &gotasync);
2240} 2949}
2241#endif 2950#endif
2242 2951
2243/*****************************************************************************/ 2952/*****************************************************************************/
2244 2953
2302 ev_timer_set (&once->to, timeout, 0.); 3011 ev_timer_set (&once->to, timeout, 0.);
2303 ev_timer_start (EV_A_ &once->to); 3012 ev_timer_start (EV_A_ &once->to);
2304 } 3013 }
2305} 3014}
2306 3015
3016#if EV_MULTIPLICITY
3017 #include "ev_wrap.h"
3018#endif
3019
2307#ifdef __cplusplus 3020#ifdef __cplusplus
2308} 3021}
2309#endif 3022#endif
2310 3023

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines