ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.176 by root, Tue Dec 11 04:31:55 2007 UTC vs.
Revision 1.256 by root, Thu Jun 19 06:53:49 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
129#ifndef _WIN32 154#ifndef _WIN32
130# include <sys/time.h> 155# include <sys/time.h>
131# include <sys/wait.h> 156# include <sys/wait.h>
132# include <unistd.h> 157# include <unistd.h>
133#else 158#else
159# include <io.h>
134# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 161# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
138# endif 164# endif
139#endif 165#endif
140 166
141/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
142 168
143#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
144# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
145#endif 175#endif
146 176
147#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
149#endif 187#endif
150 188
151#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
153#endif 191#endif
159# define EV_USE_POLL 1 197# define EV_USE_POLL 1
160# endif 198# endif
161#endif 199#endif
162 200
163#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
164# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
165#endif 207#endif
166 208
167#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
169#endif 211#endif
171#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 214# define EV_USE_PORT 0
173#endif 215#endif
174 216
175#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
176# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
177#endif 223#endif
178 224
179#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 226# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
190# else 236# else
191# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
192# endif 238# endif
193#endif 239#endif
194 240
195/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 268
197#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
200#endif 272#endif
202#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
205#endif 277#endif
206 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/inotify.h>
292#endif
293
207#if EV_SELECT_IS_WINSOCKET 294#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 295# include <winsock.h>
209#endif 296#endif
210 297
211#if !EV_STAT_ENABLE 298#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 299/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
300# include <stdint.h>
301# ifdef __cplusplus
302extern "C" {
213#endif 303# endif
214 304int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 305# ifdef __cplusplus
216# include <sys/inotify.h> 306}
307# endif
217#endif 308#endif
218 309
219/**/ 310/**/
311
312#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
314#else
315# define EV_FREQUENT_CHECK do { } while (0)
316#endif
220 317
221/* 318/*
222 * This is used to avoid floating point rounding problems. 319 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 320 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 321 * to ensure progress, time-wise, even when rounding
225 * errors are against us. 322 * errors are against us.
226 * This value is good at least till the year 4000 323 * This value is good at least till the year 4000.
227 * and intervals up to 20 years.
228 * Better solutions welcome. 324 * Better solutions welcome.
229 */ 325 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 326#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231 327
232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 328#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 329#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 330/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
235 331
236#if __GNUC__ >= 3 332#if __GNUC__ >= 4
237# define expect(expr,value) __builtin_expect ((expr),(value)) 333# define expect(expr,value) __builtin_expect ((expr),(value))
238# define noinline __attribute__ ((noinline)) 334# define noinline __attribute__ ((noinline))
239#else 335#else
240# define expect(expr,value) (expr) 336# define expect(expr,value) (expr)
241# define noinline 337# define noinline
242# if __STDC_VERSION__ < 199901L 338# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
243# define inline 339# define inline
244# endif 340# endif
245#endif 341#endif
246 342
247#define expect_false(expr) expect ((expr) != 0, 0) 343#define expect_false(expr) expect ((expr) != 0, 0)
262 358
263typedef ev_watcher *W; 359typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 360typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 361typedef ev_watcher_time *WT;
266 362
363#define ev_active(w) ((W)(w))->active
364#define ev_at(w) ((WT)(w))->at
365
366#if EV_USE_MONOTONIC
367/* sig_atomic_t is used to avoid per-thread variables or locking but still */
368/* giving it a reasonably high chance of working on typical architetcures */
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 369static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
370#endif
268 371
269#ifdef _WIN32 372#ifdef _WIN32
270# include "ev_win32.c" 373# include "ev_win32.c"
271#endif 374#endif
272 375
293 perror (msg); 396 perror (msg);
294 abort (); 397 abort ();
295 } 398 }
296} 399}
297 400
401static void *
402ev_realloc_emul (void *ptr, long size)
403{
404 /* some systems, notably openbsd and darwin, fail to properly
405 * implement realloc (x, 0) (as required by both ansi c-98 and
406 * the single unix specification, so work around them here.
407 */
408
409 if (size)
410 return realloc (ptr, size);
411
412 free (ptr);
413 return 0;
414}
415
298static void *(*alloc)(void *ptr, long size); 416static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
299 417
300void 418void
301ev_set_allocator (void *(*cb)(void *ptr, long size)) 419ev_set_allocator (void *(*cb)(void *ptr, long size))
302{ 420{
303 alloc = cb; 421 alloc = cb;
304} 422}
305 423
306inline_speed void * 424inline_speed void *
307ev_realloc (void *ptr, long size) 425ev_realloc (void *ptr, long size)
308{ 426{
309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 427 ptr = alloc (ptr, size);
310 428
311 if (!ptr && size) 429 if (!ptr && size)
312 { 430 {
313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 431 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
314 abort (); 432 abort ();
337 W w; 455 W w;
338 int events; 456 int events;
339} ANPENDING; 457} ANPENDING;
340 458
341#if EV_USE_INOTIFY 459#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */
342typedef struct 461typedef struct
343{ 462{
344 WL head; 463 WL head;
345} ANFS; 464} ANFS;
465#endif
466
467/* Heap Entry */
468#if EV_HEAP_CACHE_AT
469 typedef struct {
470 ev_tstamp at;
471 WT w;
472 } ANHE;
473
474 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else
478 typedef WT ANHE;
479
480 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he)
346#endif 483#endif
347 484
348#if EV_MULTIPLICITY 485#if EV_MULTIPLICITY
349 486
350 struct ev_loop 487 struct ev_loop
408{ 545{
409 return ev_rt_now; 546 return ev_rt_now;
410} 547}
411#endif 548#endif
412 549
550void
551ev_sleep (ev_tstamp delay)
552{
553 if (delay > 0.)
554 {
555#if EV_USE_NANOSLEEP
556 struct timespec ts;
557
558 ts.tv_sec = (time_t)delay;
559 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
560
561 nanosleep (&ts, 0);
562#elif defined(_WIN32)
563 Sleep ((unsigned long)(delay * 1e3));
564#else
565 struct timeval tv;
566
567 tv.tv_sec = (time_t)delay;
568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
569
570 select (0, 0, 0, 0, &tv);
571#endif
572 }
573}
574
575/*****************************************************************************/
576
577#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
578
413int inline_size 579int inline_size
414array_nextsize (int elem, int cur, int cnt) 580array_nextsize (int elem, int cur, int cnt)
415{ 581{
416 int ncur = cur + 1; 582 int ncur = cur + 1;
417 583
418 do 584 do
419 ncur <<= 1; 585 ncur <<= 1;
420 while (cnt > ncur); 586 while (cnt > ncur);
421 587
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 588 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096) 589 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
424 { 590 {
425 ncur *= elem; 591 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 592 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
427 ncur = ncur - sizeof (void *) * 4; 593 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem; 594 ncur /= elem;
429 } 595 }
430 596
431 return ncur; 597 return ncur;
477 pendings [pri][w_->pending - 1].w = w_; 643 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents; 644 pendings [pri][w_->pending - 1].events = revents;
479 } 645 }
480} 646}
481 647
482void inline_size 648void inline_speed
483queue_events (EV_P_ W *events, int eventcnt, int type) 649queue_events (EV_P_ W *events, int eventcnt, int type)
484{ 650{
485 int i; 651 int i;
486 652
487 for (i = 0; i < eventcnt; ++i) 653 for (i = 0; i < eventcnt; ++i)
534 { 700 {
535 int fd = fdchanges [i]; 701 int fd = fdchanges [i];
536 ANFD *anfd = anfds + fd; 702 ANFD *anfd = anfds + fd;
537 ev_io *w; 703 ev_io *w;
538 704
539 int events = 0; 705 unsigned char events = 0;
540 706
541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 707 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
542 events |= w->events; 708 events |= (unsigned char)w->events;
543 709
544#if EV_SELECT_IS_WINSOCKET 710#if EV_SELECT_IS_WINSOCKET
545 if (events) 711 if (events)
546 { 712 {
547 unsigned long argp; 713 unsigned long arg;
714 #ifdef EV_FD_TO_WIN32_HANDLE
715 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
716 #else
548 anfd->handle = _get_osfhandle (fd); 717 anfd->handle = _get_osfhandle (fd);
718 #endif
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 719 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
550 } 720 }
551#endif 721#endif
552 722
723 {
724 unsigned char o_events = anfd->events;
725 unsigned char o_reify = anfd->reify;
726
553 anfd->reify = 0; 727 anfd->reify = 0;
554
555 backend_modify (EV_A_ fd, anfd->events, events);
556 anfd->events = events; 728 anfd->events = events;
729
730 if (o_events != events || o_reify & EV_IOFDSET)
731 backend_modify (EV_A_ fd, o_events, events);
732 }
557 } 733 }
558 734
559 fdchangecnt = 0; 735 fdchangecnt = 0;
560} 736}
561 737
562void inline_size 738void inline_size
563fd_change (EV_P_ int fd) 739fd_change (EV_P_ int fd, int flags)
564{ 740{
565 if (expect_false (anfds [fd].reify)) 741 unsigned char reify = anfds [fd].reify;
566 return;
567
568 anfds [fd].reify = 1; 742 anfds [fd].reify |= flags;
569 743
744 if (expect_true (!reify))
745 {
570 ++fdchangecnt; 746 ++fdchangecnt;
571 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 747 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
572 fdchanges [fdchangecnt - 1] = fd; 748 fdchanges [fdchangecnt - 1] = fd;
749 }
573} 750}
574 751
575void inline_speed 752void inline_speed
576fd_kill (EV_P_ int fd) 753fd_kill (EV_P_ int fd)
577{ 754{
600{ 777{
601 int fd; 778 int fd;
602 779
603 for (fd = 0; fd < anfdmax; ++fd) 780 for (fd = 0; fd < anfdmax; ++fd)
604 if (anfds [fd].events) 781 if (anfds [fd].events)
605 if (!fd_valid (fd) == -1 && errno == EBADF) 782 if (!fd_valid (fd) && errno == EBADF)
606 fd_kill (EV_A_ fd); 783 fd_kill (EV_A_ fd);
607} 784}
608 785
609/* called on ENOMEM in select/poll to kill some fds and retry */ 786/* called on ENOMEM in select/poll to kill some fds and retry */
610static void noinline 787static void noinline
628 805
629 for (fd = 0; fd < anfdmax; ++fd) 806 for (fd = 0; fd < anfdmax; ++fd)
630 if (anfds [fd].events) 807 if (anfds [fd].events)
631 { 808 {
632 anfds [fd].events = 0; 809 anfds [fd].events = 0;
633 fd_change (EV_A_ fd); 810 fd_change (EV_A_ fd, EV_IOFDSET | 1);
634 } 811 }
635} 812}
636 813
637/*****************************************************************************/ 814/*****************************************************************************/
638 815
816/*
817 * the heap functions want a real array index. array index 0 uis guaranteed to not
818 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
819 * the branching factor of the d-tree.
820 */
821
822/*
823 * at the moment we allow libev the luxury of two heaps,
824 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
825 * which is more cache-efficient.
826 * the difference is about 5% with 50000+ watchers.
827 */
828#if EV_USE_4HEAP
829
830#define DHEAP 4
831#define HEAP0 (DHEAP - 1) /* index of first element in heap */
832#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
833#define UPHEAP_DONE(p,k) ((p) == (k))
834
835/* away from the root */
639void inline_speed 836void inline_speed
640upheap (WT *heap, int k) 837downheap (ANHE *heap, int N, int k)
641{ 838{
642 WT w = heap [k]; 839 ANHE he = heap [k];
840 ANHE *E = heap + N + HEAP0;
643 841
644 while (k && heap [k >> 1]->at > w->at) 842 for (;;)
645 {
646 heap [k] = heap [k >> 1];
647 ((W)heap [k])->active = k + 1;
648 k >>= 1;
649 } 843 {
844 ev_tstamp minat;
845 ANHE *minpos;
846 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
650 847
848 /* find minimum child */
849 if (expect_true (pos + DHEAP - 1 < E))
850 {
851 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
852 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
853 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
854 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
855 }
856 else if (pos < E)
857 {
858 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
859 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
860 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
861 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
862 }
863 else
864 break;
865
866 if (ANHE_at (he) <= minat)
867 break;
868
869 heap [k] = *minpos;
870 ev_active (ANHE_w (*minpos)) = k;
871
872 k = minpos - heap;
873 }
874
651 heap [k] = w; 875 heap [k] = he;
652 ((W)heap [k])->active = k + 1; 876 ev_active (ANHE_w (he)) = k;
653
654} 877}
655 878
879#else /* 4HEAP */
880
881#define HEAP0 1
882#define HPARENT(k) ((k) >> 1)
883#define UPHEAP_DONE(p,k) (!(p))
884
885/* away from the root */
656void inline_speed 886void inline_speed
657downheap (WT *heap, int N, int k) 887downheap (ANHE *heap, int N, int k)
658{ 888{
659 WT w = heap [k]; 889 ANHE he = heap [k];
660 890
661 while (k < (N >> 1)) 891 for (;;)
662 { 892 {
663 int j = k << 1; 893 int c = k << 1;
664 894
665 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 895 if (c > N + HEAP0 - 1)
666 ++j;
667
668 if (w->at <= heap [j]->at)
669 break; 896 break;
670 897
898 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
899 ? 1 : 0;
900
901 if (ANHE_at (he) <= ANHE_at (heap [c]))
902 break;
903
671 heap [k] = heap [j]; 904 heap [k] = heap [c];
672 ((W)heap [k])->active = k + 1; 905 ev_active (ANHE_w (heap [k])) = k;
906
673 k = j; 907 k = c;
674 } 908 }
675 909
676 heap [k] = w; 910 heap [k] = he;
677 ((W)heap [k])->active = k + 1; 911 ev_active (ANHE_w (he)) = k;
912}
913#endif
914
915/* towards the root */
916void inline_speed
917upheap (ANHE *heap, int k)
918{
919 ANHE he = heap [k];
920
921 for (;;)
922 {
923 int p = HPARENT (k);
924
925 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
926 break;
927
928 heap [k] = heap [p];
929 ev_active (ANHE_w (heap [k])) = k;
930 k = p;
931 }
932
933 heap [k] = he;
934 ev_active (ANHE_w (he)) = k;
678} 935}
679 936
680void inline_size 937void inline_size
681adjustheap (WT *heap, int N, int k) 938adjustheap (ANHE *heap, int N, int k)
682{ 939{
940 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
683 upheap (heap, k); 941 upheap (heap, k);
942 else
684 downheap (heap, N, k); 943 downheap (heap, N, k);
944}
945
946/* rebuild the heap: this function is used only once and executed rarely */
947void inline_size
948reheap (ANHE *heap, int N)
949{
950 int i;
951
952 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
953 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
954 for (i = 0; i < N; ++i)
955 upheap (heap, i + HEAP0);
685} 956}
686 957
687/*****************************************************************************/ 958/*****************************************************************************/
688 959
689typedef struct 960typedef struct
690{ 961{
691 WL head; 962 WL head;
692 sig_atomic_t volatile gotsig; 963 EV_ATOMIC_T gotsig;
693} ANSIG; 964} ANSIG;
694 965
695static ANSIG *signals; 966static ANSIG *signals;
696static int signalmax; 967static int signalmax;
697 968
698static int sigpipe [2]; 969static EV_ATOMIC_T gotsig;
699static sig_atomic_t volatile gotsig;
700static ev_io sigev;
701 970
702void inline_size 971void inline_size
703signals_init (ANSIG *base, int count) 972signals_init (ANSIG *base, int count)
704{ 973{
705 while (count--) 974 while (count--)
709 978
710 ++base; 979 ++base;
711 } 980 }
712} 981}
713 982
714static void 983/*****************************************************************************/
715sighandler (int signum)
716{
717#if _WIN32
718 signal (signum, sighandler);
719#endif
720
721 signals [signum - 1].gotsig = 1;
722
723 if (!gotsig)
724 {
725 int old_errno = errno;
726 gotsig = 1;
727 write (sigpipe [1], &signum, 1);
728 errno = old_errno;
729 }
730}
731
732void noinline
733ev_feed_signal_event (EV_P_ int signum)
734{
735 WL w;
736
737#if EV_MULTIPLICITY
738 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
739#endif
740
741 --signum;
742
743 if (signum < 0 || signum >= signalmax)
744 return;
745
746 signals [signum].gotsig = 0;
747
748 for (w = signals [signum].head; w; w = w->next)
749 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
750}
751
752static void
753sigcb (EV_P_ ev_io *iow, int revents)
754{
755 int signum;
756
757 read (sigpipe [0], &revents, 1);
758 gotsig = 0;
759
760 for (signum = signalmax; signum--; )
761 if (signals [signum].gotsig)
762 ev_feed_signal_event (EV_A_ signum + 1);
763}
764 984
765void inline_speed 985void inline_speed
766fd_intern (int fd) 986fd_intern (int fd)
767{ 987{
768#ifdef _WIN32 988#ifdef _WIN32
769 int arg = 1; 989 unsigned long arg = 1;
770 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 990 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
771#else 991#else
772 fcntl (fd, F_SETFD, FD_CLOEXEC); 992 fcntl (fd, F_SETFD, FD_CLOEXEC);
773 fcntl (fd, F_SETFL, O_NONBLOCK); 993 fcntl (fd, F_SETFL, O_NONBLOCK);
774#endif 994#endif
775} 995}
776 996
777static void noinline 997static void noinline
778siginit (EV_P) 998evpipe_init (EV_P)
779{ 999{
1000 if (!ev_is_active (&pipeev))
1001 {
1002#if EV_USE_EVENTFD
1003 if ((evfd = eventfd (0, 0)) >= 0)
1004 {
1005 evpipe [0] = -1;
1006 fd_intern (evfd);
1007 ev_io_set (&pipeev, evfd, EV_READ);
1008 }
1009 else
1010#endif
1011 {
1012 while (pipe (evpipe))
1013 syserr ("(libev) error creating signal/async pipe");
1014
780 fd_intern (sigpipe [0]); 1015 fd_intern (evpipe [0]);
781 fd_intern (sigpipe [1]); 1016 fd_intern (evpipe [1]);
1017 ev_io_set (&pipeev, evpipe [0], EV_READ);
1018 }
782 1019
783 ev_io_set (&sigev, sigpipe [0], EV_READ);
784 ev_io_start (EV_A_ &sigev); 1020 ev_io_start (EV_A_ &pipeev);
785 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1021 ev_unref (EV_A); /* watcher should not keep loop alive */
1022 }
1023}
1024
1025void inline_size
1026evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1027{
1028 if (!*flag)
1029 {
1030 int old_errno = errno; /* save errno because write might clobber it */
1031
1032 *flag = 1;
1033
1034#if EV_USE_EVENTFD
1035 if (evfd >= 0)
1036 {
1037 uint64_t counter = 1;
1038 write (evfd, &counter, sizeof (uint64_t));
1039 }
1040 else
1041#endif
1042 write (evpipe [1], &old_errno, 1);
1043
1044 errno = old_errno;
1045 }
1046}
1047
1048static void
1049pipecb (EV_P_ ev_io *iow, int revents)
1050{
1051#if EV_USE_EVENTFD
1052 if (evfd >= 0)
1053 {
1054 uint64_t counter;
1055 read (evfd, &counter, sizeof (uint64_t));
1056 }
1057 else
1058#endif
1059 {
1060 char dummy;
1061 read (evpipe [0], &dummy, 1);
1062 }
1063
1064 if (gotsig && ev_is_default_loop (EV_A))
1065 {
1066 int signum;
1067 gotsig = 0;
1068
1069 for (signum = signalmax; signum--; )
1070 if (signals [signum].gotsig)
1071 ev_feed_signal_event (EV_A_ signum + 1);
1072 }
1073
1074#if EV_ASYNC_ENABLE
1075 if (gotasync)
1076 {
1077 int i;
1078 gotasync = 0;
1079
1080 for (i = asynccnt; i--; )
1081 if (asyncs [i]->sent)
1082 {
1083 asyncs [i]->sent = 0;
1084 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1085 }
1086 }
1087#endif
786} 1088}
787 1089
788/*****************************************************************************/ 1090/*****************************************************************************/
789 1091
1092static void
1093ev_sighandler (int signum)
1094{
1095#if EV_MULTIPLICITY
1096 struct ev_loop *loop = &default_loop_struct;
1097#endif
1098
1099#if _WIN32
1100 signal (signum, ev_sighandler);
1101#endif
1102
1103 signals [signum - 1].gotsig = 1;
1104 evpipe_write (EV_A_ &gotsig);
1105}
1106
1107void noinline
1108ev_feed_signal_event (EV_P_ int signum)
1109{
1110 WL w;
1111
1112#if EV_MULTIPLICITY
1113 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1114#endif
1115
1116 --signum;
1117
1118 if (signum < 0 || signum >= signalmax)
1119 return;
1120
1121 signals [signum].gotsig = 0;
1122
1123 for (w = signals [signum].head; w; w = w->next)
1124 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1125}
1126
1127/*****************************************************************************/
1128
790static ev_child *childs [EV_PID_HASHSIZE]; 1129static WL childs [EV_PID_HASHSIZE];
791 1130
792#ifndef _WIN32 1131#ifndef _WIN32
793 1132
794static ev_signal childev; 1133static ev_signal childev;
795 1134
1135#ifndef WIFCONTINUED
1136# define WIFCONTINUED(status) 0
1137#endif
1138
796void inline_speed 1139void inline_speed
797child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1140child_reap (EV_P_ int chain, int pid, int status)
798{ 1141{
799 ev_child *w; 1142 ev_child *w;
1143 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
800 1144
801 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1145 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1146 {
802 if (w->pid == pid || !w->pid) 1147 if ((w->pid == pid || !w->pid)
1148 && (!traced || (w->flags & 1)))
803 { 1149 {
804 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1150 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
805 w->rpid = pid; 1151 w->rpid = pid;
806 w->rstatus = status; 1152 w->rstatus = status;
807 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1153 ev_feed_event (EV_A_ (W)w, EV_CHILD);
808 } 1154 }
1155 }
809} 1156}
810 1157
811#ifndef WCONTINUED 1158#ifndef WCONTINUED
812# define WCONTINUED 0 1159# define WCONTINUED 0
813#endif 1160#endif
822 if (!WCONTINUED 1169 if (!WCONTINUED
823 || errno != EINVAL 1170 || errno != EINVAL
824 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1171 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
825 return; 1172 return;
826 1173
827 /* make sure we are called again until all childs have been reaped */ 1174 /* make sure we are called again until all children have been reaped */
828 /* we need to do it this way so that the callback gets called before we continue */ 1175 /* we need to do it this way so that the callback gets called before we continue */
829 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1176 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
830 1177
831 child_reap (EV_A_ sw, pid, pid, status); 1178 child_reap (EV_A_ pid, pid, status);
832 if (EV_PID_HASHSIZE > 1) 1179 if (EV_PID_HASHSIZE > 1)
833 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1180 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
834} 1181}
835 1182
836#endif 1183#endif
837 1184
838/*****************************************************************************/ 1185/*****************************************************************************/
910} 1257}
911 1258
912unsigned int 1259unsigned int
913ev_embeddable_backends (void) 1260ev_embeddable_backends (void)
914{ 1261{
915 return EVBACKEND_EPOLL 1262 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
916 | EVBACKEND_KQUEUE 1263
917 | EVBACKEND_PORT; 1264 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1265 /* please fix it and tell me how to detect the fix */
1266 flags &= ~EVBACKEND_EPOLL;
1267
1268 return flags;
918} 1269}
919 1270
920unsigned int 1271unsigned int
921ev_backend (EV_P) 1272ev_backend (EV_P)
922{ 1273{
925 1276
926unsigned int 1277unsigned int
927ev_loop_count (EV_P) 1278ev_loop_count (EV_P)
928{ 1279{
929 return loop_count; 1280 return loop_count;
1281}
1282
1283void
1284ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1285{
1286 io_blocktime = interval;
1287}
1288
1289void
1290ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1291{
1292 timeout_blocktime = interval;
930} 1293}
931 1294
932static void noinline 1295static void noinline
933loop_init (EV_P_ unsigned int flags) 1296loop_init (EV_P_ unsigned int flags)
934{ 1297{
940 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1303 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
941 have_monotonic = 1; 1304 have_monotonic = 1;
942 } 1305 }
943#endif 1306#endif
944 1307
945 ev_rt_now = ev_time (); 1308 ev_rt_now = ev_time ();
946 mn_now = get_clock (); 1309 mn_now = get_clock ();
947 now_floor = mn_now; 1310 now_floor = mn_now;
948 rtmn_diff = ev_rt_now - mn_now; 1311 rtmn_diff = ev_rt_now - mn_now;
1312
1313 io_blocktime = 0.;
1314 timeout_blocktime = 0.;
1315 backend = 0;
1316 backend_fd = -1;
1317 gotasync = 0;
1318#if EV_USE_INOTIFY
1319 fs_fd = -2;
1320#endif
949 1321
950 /* pid check not overridable via env */ 1322 /* pid check not overridable via env */
951#ifndef _WIN32 1323#ifndef _WIN32
952 if (flags & EVFLAG_FORKCHECK) 1324 if (flags & EVFLAG_FORKCHECK)
953 curpid = getpid (); 1325 curpid = getpid ();
956 if (!(flags & EVFLAG_NOENV) 1328 if (!(flags & EVFLAG_NOENV)
957 && !enable_secure () 1329 && !enable_secure ()
958 && getenv ("LIBEV_FLAGS")) 1330 && getenv ("LIBEV_FLAGS"))
959 flags = atoi (getenv ("LIBEV_FLAGS")); 1331 flags = atoi (getenv ("LIBEV_FLAGS"));
960 1332
961 if (!(flags & 0x0000ffffUL)) 1333 if (!(flags & 0x0000ffffU))
962 flags |= ev_recommended_backends (); 1334 flags |= ev_recommended_backends ();
963
964 backend = 0;
965 backend_fd = -1;
966#if EV_USE_INOTIFY
967 fs_fd = -2;
968#endif
969 1335
970#if EV_USE_PORT 1336#if EV_USE_PORT
971 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1337 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
972#endif 1338#endif
973#if EV_USE_KQUEUE 1339#if EV_USE_KQUEUE
981#endif 1347#endif
982#if EV_USE_SELECT 1348#if EV_USE_SELECT
983 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1349 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
984#endif 1350#endif
985 1351
986 ev_init (&sigev, sigcb); 1352 ev_init (&pipeev, pipecb);
987 ev_set_priority (&sigev, EV_MAXPRI); 1353 ev_set_priority (&pipeev, EV_MAXPRI);
988 } 1354 }
989} 1355}
990 1356
991static void noinline 1357static void noinline
992loop_destroy (EV_P) 1358loop_destroy (EV_P)
993{ 1359{
994 int i; 1360 int i;
1361
1362 if (ev_is_active (&pipeev))
1363 {
1364 ev_ref (EV_A); /* signal watcher */
1365 ev_io_stop (EV_A_ &pipeev);
1366
1367#if EV_USE_EVENTFD
1368 if (evfd >= 0)
1369 close (evfd);
1370#endif
1371
1372 if (evpipe [0] >= 0)
1373 {
1374 close (evpipe [0]);
1375 close (evpipe [1]);
1376 }
1377 }
995 1378
996#if EV_USE_INOTIFY 1379#if EV_USE_INOTIFY
997 if (fs_fd >= 0) 1380 if (fs_fd >= 0)
998 close (fs_fd); 1381 close (fs_fd);
999#endif 1382#endif
1022 array_free (pending, [i]); 1405 array_free (pending, [i]);
1023#if EV_IDLE_ENABLE 1406#if EV_IDLE_ENABLE
1024 array_free (idle, [i]); 1407 array_free (idle, [i]);
1025#endif 1408#endif
1026 } 1409 }
1410
1411 ev_free (anfds); anfdmax = 0;
1027 1412
1028 /* have to use the microsoft-never-gets-it-right macro */ 1413 /* have to use the microsoft-never-gets-it-right macro */
1029 array_free (fdchange, EMPTY); 1414 array_free (fdchange, EMPTY);
1030 array_free (timer, EMPTY); 1415 array_free (timer, EMPTY);
1031#if EV_PERIODIC_ENABLE 1416#if EV_PERIODIC_ENABLE
1032 array_free (periodic, EMPTY); 1417 array_free (periodic, EMPTY);
1033#endif 1418#endif
1419#if EV_FORK_ENABLE
1420 array_free (fork, EMPTY);
1421#endif
1034 array_free (prepare, EMPTY); 1422 array_free (prepare, EMPTY);
1035 array_free (check, EMPTY); 1423 array_free (check, EMPTY);
1424#if EV_ASYNC_ENABLE
1425 array_free (async, EMPTY);
1426#endif
1036 1427
1037 backend = 0; 1428 backend = 0;
1038} 1429}
1039 1430
1431#if EV_USE_INOTIFY
1040void inline_size infy_fork (EV_P); 1432void inline_size infy_fork (EV_P);
1433#endif
1041 1434
1042void inline_size 1435void inline_size
1043loop_fork (EV_P) 1436loop_fork (EV_P)
1044{ 1437{
1045#if EV_USE_PORT 1438#if EV_USE_PORT
1053#endif 1446#endif
1054#if EV_USE_INOTIFY 1447#if EV_USE_INOTIFY
1055 infy_fork (EV_A); 1448 infy_fork (EV_A);
1056#endif 1449#endif
1057 1450
1058 if (ev_is_active (&sigev)) 1451 if (ev_is_active (&pipeev))
1059 { 1452 {
1060 /* default loop */ 1453 /* this "locks" the handlers against writing to the pipe */
1454 /* while we modify the fd vars */
1455 gotsig = 1;
1456#if EV_ASYNC_ENABLE
1457 gotasync = 1;
1458#endif
1061 1459
1062 ev_ref (EV_A); 1460 ev_ref (EV_A);
1063 ev_io_stop (EV_A_ &sigev); 1461 ev_io_stop (EV_A_ &pipeev);
1462
1463#if EV_USE_EVENTFD
1464 if (evfd >= 0)
1465 close (evfd);
1466#endif
1467
1468 if (evpipe [0] >= 0)
1469 {
1064 close (sigpipe [0]); 1470 close (evpipe [0]);
1065 close (sigpipe [1]); 1471 close (evpipe [1]);
1472 }
1066 1473
1067 while (pipe (sigpipe))
1068 syserr ("(libev) error creating pipe");
1069
1070 siginit (EV_A); 1474 evpipe_init (EV_A);
1475 /* now iterate over everything, in case we missed something */
1476 pipecb (EV_A_ &pipeev, EV_READ);
1071 } 1477 }
1072 1478
1073 postfork = 0; 1479 postfork = 0;
1074} 1480}
1075 1481
1076#if EV_MULTIPLICITY 1482#if EV_MULTIPLICITY
1483
1077struct ev_loop * 1484struct ev_loop *
1078ev_loop_new (unsigned int flags) 1485ev_loop_new (unsigned int flags)
1079{ 1486{
1080 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1487 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1081 1488
1097} 1504}
1098 1505
1099void 1506void
1100ev_loop_fork (EV_P) 1507ev_loop_fork (EV_P)
1101{ 1508{
1102 postfork = 1; 1509 postfork = 1; /* must be in line with ev_default_fork */
1103} 1510}
1104 1511
1512#if EV_VERIFY
1513void noinline
1514verify_watcher (EV_P_ W w)
1515{
1516 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1517
1518 if (w->pending)
1519 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1520}
1521
1522static void noinline
1523verify_heap (EV_P_ ANHE *heap, int N)
1524{
1525 int i;
1526
1527 for (i = HEAP0; i < N + HEAP0; ++i)
1528 {
1529 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1530 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1531 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1532
1533 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1534 }
1535}
1536
1537static void noinline
1538array_verify (EV_P_ W *ws, int cnt)
1539{
1540 while (cnt--)
1541 {
1542 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1543 verify_watcher (EV_A_ ws [cnt]);
1544 }
1545}
1546#endif
1547
1548void
1549ev_loop_verify (EV_P)
1550{
1551#if EV_VERIFY
1552 int i;
1553 WL w;
1554
1555 assert (activecnt >= -1);
1556
1557 assert (fdchangemax >= fdchangecnt);
1558 for (i = 0; i < fdchangecnt; ++i)
1559 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1560
1561 assert (anfdmax >= 0);
1562 for (i = 0; i < anfdmax; ++i)
1563 for (w = anfds [i].head; w; w = w->next)
1564 {
1565 verify_watcher (EV_A_ (W)w);
1566 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1567 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1568 }
1569
1570 assert (timermax >= timercnt);
1571 verify_heap (EV_A_ timers, timercnt);
1572
1573#if EV_PERIODIC_ENABLE
1574 assert (periodicmax >= periodiccnt);
1575 verify_heap (EV_A_ periodics, periodiccnt);
1576#endif
1577
1578 for (i = NUMPRI; i--; )
1579 {
1580 assert (pendingmax [i] >= pendingcnt [i]);
1581#if EV_IDLE_ENABLE
1582 assert (idleall >= 0);
1583 assert (idlemax [i] >= idlecnt [i]);
1584 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1585#endif
1586 }
1587
1588#if EV_FORK_ENABLE
1589 assert (forkmax >= forkcnt);
1590 array_verify (EV_A_ (W *)forks, forkcnt);
1591#endif
1592
1593#if EV_ASYNC_ENABLE
1594 assert (asyncmax >= asynccnt);
1595 array_verify (EV_A_ (W *)asyncs, asynccnt);
1596#endif
1597
1598 assert (preparemax >= preparecnt);
1599 array_verify (EV_A_ (W *)prepares, preparecnt);
1600
1601 assert (checkmax >= checkcnt);
1602 array_verify (EV_A_ (W *)checks, checkcnt);
1603
1604# if 0
1605 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1606 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1105#endif 1607# endif
1608#endif
1609}
1610
1611#endif /* multiplicity */
1106 1612
1107#if EV_MULTIPLICITY 1613#if EV_MULTIPLICITY
1108struct ev_loop * 1614struct ev_loop *
1109ev_default_loop_init (unsigned int flags) 1615ev_default_loop_init (unsigned int flags)
1110#else 1616#else
1111int 1617int
1112ev_default_loop (unsigned int flags) 1618ev_default_loop (unsigned int flags)
1113#endif 1619#endif
1114{ 1620{
1115 if (sigpipe [0] == sigpipe [1])
1116 if (pipe (sigpipe))
1117 return 0;
1118
1119 if (!ev_default_loop_ptr) 1621 if (!ev_default_loop_ptr)
1120 { 1622 {
1121#if EV_MULTIPLICITY 1623#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1624 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1123#else 1625#else
1126 1628
1127 loop_init (EV_A_ flags); 1629 loop_init (EV_A_ flags);
1128 1630
1129 if (ev_backend (EV_A)) 1631 if (ev_backend (EV_A))
1130 { 1632 {
1131 siginit (EV_A);
1132
1133#ifndef _WIN32 1633#ifndef _WIN32
1134 ev_signal_init (&childev, childcb, SIGCHLD); 1634 ev_signal_init (&childev, childcb, SIGCHLD);
1135 ev_set_priority (&childev, EV_MAXPRI); 1635 ev_set_priority (&childev, EV_MAXPRI);
1136 ev_signal_start (EV_A_ &childev); 1636 ev_signal_start (EV_A_ &childev);
1137 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1637 ev_unref (EV_A); /* child watcher should not keep loop alive */
1154#ifndef _WIN32 1654#ifndef _WIN32
1155 ev_ref (EV_A); /* child watcher */ 1655 ev_ref (EV_A); /* child watcher */
1156 ev_signal_stop (EV_A_ &childev); 1656 ev_signal_stop (EV_A_ &childev);
1157#endif 1657#endif
1158 1658
1159 ev_ref (EV_A); /* signal watcher */
1160 ev_io_stop (EV_A_ &sigev);
1161
1162 close (sigpipe [0]); sigpipe [0] = 0;
1163 close (sigpipe [1]); sigpipe [1] = 0;
1164
1165 loop_destroy (EV_A); 1659 loop_destroy (EV_A);
1166} 1660}
1167 1661
1168void 1662void
1169ev_default_fork (void) 1663ev_default_fork (void)
1171#if EV_MULTIPLICITY 1665#if EV_MULTIPLICITY
1172 struct ev_loop *loop = ev_default_loop_ptr; 1666 struct ev_loop *loop = ev_default_loop_ptr;
1173#endif 1667#endif
1174 1668
1175 if (backend) 1669 if (backend)
1176 postfork = 1; 1670 postfork = 1; /* must be in line with ev_loop_fork */
1177} 1671}
1178 1672
1179/*****************************************************************************/ 1673/*****************************************************************************/
1180 1674
1181void 1675void
1198 { 1692 {
1199 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1693 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1200 1694
1201 p->w->pending = 0; 1695 p->w->pending = 0;
1202 EV_CB_INVOKE (p->w, p->events); 1696 EV_CB_INVOKE (p->w, p->events);
1697 EV_FREQUENT_CHECK;
1203 } 1698 }
1204 } 1699 }
1205} 1700}
1206
1207void inline_size
1208timers_reify (EV_P)
1209{
1210 while (timercnt && ((WT)timers [0])->at <= mn_now)
1211 {
1212 ev_timer *w = timers [0];
1213
1214 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1215
1216 /* first reschedule or stop timer */
1217 if (w->repeat)
1218 {
1219 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1220
1221 ((WT)w)->at += w->repeat;
1222 if (((WT)w)->at < mn_now)
1223 ((WT)w)->at = mn_now;
1224
1225 downheap ((WT *)timers, timercnt, 0);
1226 }
1227 else
1228 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1229
1230 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1231 }
1232}
1233
1234#if EV_PERIODIC_ENABLE
1235void inline_size
1236periodics_reify (EV_P)
1237{
1238 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1239 {
1240 ev_periodic *w = periodics [0];
1241
1242 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1243
1244 /* first reschedule or stop timer */
1245 if (w->reschedule_cb)
1246 {
1247 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1248 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1249 downheap ((WT *)periodics, periodiccnt, 0);
1250 }
1251 else if (w->interval)
1252 {
1253 ((WT)w)->at = w->offset + floor ((ev_rt_now + TIME_EPSILON - w->offset) / w->interval + 1.) * w->interval;
1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1255 downheap ((WT *)periodics, periodiccnt, 0);
1256 }
1257 else
1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1259
1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1261 }
1262}
1263
1264static void noinline
1265periodics_reschedule (EV_P)
1266{
1267 int i;
1268
1269 /* adjust periodics after time jump */
1270 for (i = 0; i < periodiccnt; ++i)
1271 {
1272 ev_periodic *w = periodics [i];
1273
1274 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1276 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 }
1279
1280 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i);
1283}
1284#endif
1285 1701
1286#if EV_IDLE_ENABLE 1702#if EV_IDLE_ENABLE
1287void inline_size 1703void inline_size
1288idle_reify (EV_P) 1704idle_reify (EV_P)
1289{ 1705{
1304 } 1720 }
1305 } 1721 }
1306} 1722}
1307#endif 1723#endif
1308 1724
1309int inline_size 1725void inline_size
1310time_update_monotonic (EV_P) 1726timers_reify (EV_P)
1311{ 1727{
1728 EV_FREQUENT_CHECK;
1729
1730 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1731 {
1732 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1733
1734 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1735
1736 /* first reschedule or stop timer */
1737 if (w->repeat)
1738 {
1739 ev_at (w) += w->repeat;
1740 if (ev_at (w) < mn_now)
1741 ev_at (w) = mn_now;
1742
1743 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1744
1745 ANHE_at_cache (timers [HEAP0]);
1746 downheap (timers, timercnt, HEAP0);
1747 }
1748 else
1749 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1750
1751 EV_FREQUENT_CHECK;
1752 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1753 }
1754}
1755
1756#if EV_PERIODIC_ENABLE
1757void inline_size
1758periodics_reify (EV_P)
1759{
1760 EV_FREQUENT_CHECK;
1761
1762 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1763 {
1764 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1765
1766 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1767
1768 /* first reschedule or stop timer */
1769 if (w->reschedule_cb)
1770 {
1771 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1772
1773 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1774
1775 ANHE_at_cache (periodics [HEAP0]);
1776 downheap (periodics, periodiccnt, HEAP0);
1777 }
1778 else if (w->interval)
1779 {
1780 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1781 /* if next trigger time is not sufficiently in the future, put it there */
1782 /* this might happen because of floating point inexactness */
1783 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1784 {
1785 ev_at (w) += w->interval;
1786
1787 /* if interval is unreasonably low we might still have a time in the past */
1788 /* so correct this. this will make the periodic very inexact, but the user */
1789 /* has effectively asked to get triggered more often than possible */
1790 if (ev_at (w) < ev_rt_now)
1791 ev_at (w) = ev_rt_now;
1792 }
1793
1794 ANHE_at_cache (periodics [HEAP0]);
1795 downheap (periodics, periodiccnt, HEAP0);
1796 }
1797 else
1798 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1799
1800 EV_FREQUENT_CHECK;
1801 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1802 }
1803}
1804
1805static void noinline
1806periodics_reschedule (EV_P)
1807{
1808 int i;
1809
1810 /* adjust periodics after time jump */
1811 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1812 {
1813 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1814
1815 if (w->reschedule_cb)
1816 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1817 else if (w->interval)
1818 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1819
1820 ANHE_at_cache (periodics [i]);
1821 }
1822
1823 reheap (periodics, periodiccnt);
1824}
1825#endif
1826
1827void inline_speed
1828time_update (EV_P_ ev_tstamp max_block)
1829{
1830 int i;
1831
1832#if EV_USE_MONOTONIC
1833 if (expect_true (have_monotonic))
1834 {
1835 ev_tstamp odiff = rtmn_diff;
1836
1312 mn_now = get_clock (); 1837 mn_now = get_clock ();
1313 1838
1839 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1840 /* interpolate in the meantime */
1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1841 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1315 { 1842 {
1316 ev_rt_now = rtmn_diff + mn_now; 1843 ev_rt_now = rtmn_diff + mn_now;
1317 return 0; 1844 return;
1318 } 1845 }
1319 else 1846
1320 {
1321 now_floor = mn_now; 1847 now_floor = mn_now;
1322 ev_rt_now = ev_time (); 1848 ev_rt_now = ev_time ();
1323 return 1;
1324 }
1325}
1326 1849
1327void inline_size 1850 /* loop a few times, before making important decisions.
1328time_update (EV_P) 1851 * on the choice of "4": one iteration isn't enough,
1329{ 1852 * in case we get preempted during the calls to
1330 int i; 1853 * ev_time and get_clock. a second call is almost guaranteed
1331 1854 * to succeed in that case, though. and looping a few more times
1332#if EV_USE_MONOTONIC 1855 * doesn't hurt either as we only do this on time-jumps or
1333 if (expect_true (have_monotonic)) 1856 * in the unlikely event of having been preempted here.
1334 { 1857 */
1335 if (time_update_monotonic (EV_A)) 1858 for (i = 4; --i; )
1336 { 1859 {
1337 ev_tstamp odiff = rtmn_diff;
1338
1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1348 {
1349 rtmn_diff = ev_rt_now - mn_now; 1860 rtmn_diff = ev_rt_now - mn_now;
1350 1861
1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1862 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1352 return; /* all is well */ 1863 return; /* all is well */
1353 1864
1354 ev_rt_now = ev_time (); 1865 ev_rt_now = ev_time ();
1355 mn_now = get_clock (); 1866 mn_now = get_clock ();
1356 now_floor = mn_now; 1867 now_floor = mn_now;
1357 } 1868 }
1358 1869
1359# if EV_PERIODIC_ENABLE 1870# if EV_PERIODIC_ENABLE
1360 periodics_reschedule (EV_A); 1871 periodics_reschedule (EV_A);
1361# endif 1872# endif
1362 /* no timer adjustment, as the monotonic clock doesn't jump */ 1873 /* no timer adjustment, as the monotonic clock doesn't jump */
1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1874 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1364 }
1365 } 1875 }
1366 else 1876 else
1367#endif 1877#endif
1368 { 1878 {
1369 ev_rt_now = ev_time (); 1879 ev_rt_now = ev_time ();
1370 1880
1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1881 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 { 1882 {
1373#if EV_PERIODIC_ENABLE 1883#if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 1884 periodics_reschedule (EV_A);
1375#endif 1885#endif
1376
1377 /* adjust timers. this is easy, as the offset is the same for all of them */ 1886 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i) 1887 for (i = 0; i < timercnt; ++i)
1888 {
1889 ANHE *he = timers + i + HEAP0;
1379 ((WT)timers [i])->at += ev_rt_now - mn_now; 1890 ANHE_w (*he)->at += ev_rt_now - mn_now;
1891 ANHE_at_cache (*he);
1892 }
1380 } 1893 }
1381 1894
1382 mn_now = ev_rt_now; 1895 mn_now = ev_rt_now;
1383 } 1896 }
1384} 1897}
1398static int loop_done; 1911static int loop_done;
1399 1912
1400void 1913void
1401ev_loop (EV_P_ int flags) 1914ev_loop (EV_P_ int flags)
1402{ 1915{
1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1916 loop_done = EVUNLOOP_CANCEL;
1404 ? EVUNLOOP_ONE
1405 : EVUNLOOP_CANCEL;
1406 1917
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1918 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1408 1919
1409 do 1920 do
1410 { 1921 {
1922#if EV_VERIFY >= 2
1923 ev_loop_verify (EV_A);
1924#endif
1925
1411#ifndef _WIN32 1926#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */ 1927 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid)) 1928 if (expect_false (getpid () != curpid))
1414 { 1929 {
1415 curpid = getpid (); 1930 curpid = getpid ();
1444 /* update fd-related kernel structures */ 1959 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 1960 fd_reify (EV_A);
1446 1961
1447 /* calculate blocking time */ 1962 /* calculate blocking time */
1448 { 1963 {
1449 ev_tstamp block; 1964 ev_tstamp waittime = 0.;
1965 ev_tstamp sleeptime = 0.;
1450 1966
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1967 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 1968 {
1455 /* update time to cancel out callback processing overhead */ 1969 /* update time to cancel out callback processing overhead */
1456#if EV_USE_MONOTONIC
1457 if (expect_true (have_monotonic))
1458 time_update_monotonic (EV_A); 1970 time_update (EV_A_ 1e100);
1459 else
1460#endif
1461 {
1462 ev_rt_now = ev_time ();
1463 mn_now = ev_rt_now;
1464 }
1465 1971
1466 block = MAX_BLOCKTIME; 1972 waittime = MAX_BLOCKTIME;
1467 1973
1468 if (timercnt) 1974 if (timercnt)
1469 { 1975 {
1470 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1976 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1471 if (block > to) block = to; 1977 if (waittime > to) waittime = to;
1472 } 1978 }
1473 1979
1474#if EV_PERIODIC_ENABLE 1980#if EV_PERIODIC_ENABLE
1475 if (periodiccnt) 1981 if (periodiccnt)
1476 { 1982 {
1477 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1983 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1478 if (block > to) block = to; 1984 if (waittime > to) waittime = to;
1479 } 1985 }
1480#endif 1986#endif
1481 1987
1482 if (expect_false (block < 0.)) block = 0.; 1988 if (expect_false (waittime < timeout_blocktime))
1989 waittime = timeout_blocktime;
1990
1991 sleeptime = waittime - backend_fudge;
1992
1993 if (expect_true (sleeptime > io_blocktime))
1994 sleeptime = io_blocktime;
1995
1996 if (sleeptime)
1997 {
1998 ev_sleep (sleeptime);
1999 waittime -= sleeptime;
2000 }
1483 } 2001 }
1484 2002
1485 ++loop_count; 2003 ++loop_count;
1486 backend_poll (EV_A_ block); 2004 backend_poll (EV_A_ waittime);
2005
2006 /* update ev_rt_now, do magic */
2007 time_update (EV_A_ waittime + sleeptime);
1487 } 2008 }
1488
1489 /* update ev_rt_now, do magic */
1490 time_update (EV_A);
1491 2009
1492 /* queue pending timers and reschedule them */ 2010 /* queue pending timers and reschedule them */
1493 timers_reify (EV_A); /* relative timers called last */ 2011 timers_reify (EV_A); /* relative timers called last */
1494#if EV_PERIODIC_ENABLE 2012#if EV_PERIODIC_ENABLE
1495 periodics_reify (EV_A); /* absolute timers called first */ 2013 periodics_reify (EV_A); /* absolute timers called first */
1503 /* queue check watchers, to be executed first */ 2021 /* queue check watchers, to be executed first */
1504 if (expect_false (checkcnt)) 2022 if (expect_false (checkcnt))
1505 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2023 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1506 2024
1507 call_pending (EV_A); 2025 call_pending (EV_A);
1508
1509 } 2026 }
1510 while (expect_true (activecnt && !loop_done)); 2027 while (expect_true (
2028 activecnt
2029 && !loop_done
2030 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2031 ));
1511 2032
1512 if (loop_done == EVUNLOOP_ONE) 2033 if (loop_done == EVUNLOOP_ONE)
1513 loop_done = EVUNLOOP_CANCEL; 2034 loop_done = EVUNLOOP_CANCEL;
1514} 2035}
1515 2036
1604 if (expect_false (ev_is_active (w))) 2125 if (expect_false (ev_is_active (w)))
1605 return; 2126 return;
1606 2127
1607 assert (("ev_io_start called with negative fd", fd >= 0)); 2128 assert (("ev_io_start called with negative fd", fd >= 0));
1608 2129
2130 EV_FREQUENT_CHECK;
2131
1609 ev_start (EV_A_ (W)w, 1); 2132 ev_start (EV_A_ (W)w, 1);
1610 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2133 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1611 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2134 wlist_add (&anfds[fd].head, (WL)w);
1612 2135
1613 fd_change (EV_A_ fd); 2136 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2137 w->events &= ~EV_IOFDSET;
2138
2139 EV_FREQUENT_CHECK;
1614} 2140}
1615 2141
1616void noinline 2142void noinline
1617ev_io_stop (EV_P_ ev_io *w) 2143ev_io_stop (EV_P_ ev_io *w)
1618{ 2144{
1619 clear_pending (EV_A_ (W)w); 2145 clear_pending (EV_A_ (W)w);
1620 if (expect_false (!ev_is_active (w))) 2146 if (expect_false (!ev_is_active (w)))
1621 return; 2147 return;
1622 2148
1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2149 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1624 2150
2151 EV_FREQUENT_CHECK;
2152
1625 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2153 wlist_del (&anfds[w->fd].head, (WL)w);
1626 ev_stop (EV_A_ (W)w); 2154 ev_stop (EV_A_ (W)w);
1627 2155
1628 fd_change (EV_A_ w->fd); 2156 fd_change (EV_A_ w->fd, 1);
2157
2158 EV_FREQUENT_CHECK;
1629} 2159}
1630 2160
1631void noinline 2161void noinline
1632ev_timer_start (EV_P_ ev_timer *w) 2162ev_timer_start (EV_P_ ev_timer *w)
1633{ 2163{
1634 if (expect_false (ev_is_active (w))) 2164 if (expect_false (ev_is_active (w)))
1635 return; 2165 return;
1636 2166
1637 ((WT)w)->at += mn_now; 2167 ev_at (w) += mn_now;
1638 2168
1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2169 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1640 2170
2171 EV_FREQUENT_CHECK;
2172
2173 ++timercnt;
1641 ev_start (EV_A_ (W)w, ++timercnt); 2174 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1642 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2175 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1643 timers [timercnt - 1] = w; 2176 ANHE_w (timers [ev_active (w)]) = (WT)w;
1644 upheap ((WT *)timers, timercnt - 1); 2177 ANHE_at_cache (timers [ev_active (w)]);
2178 upheap (timers, ev_active (w));
1645 2179
2180 EV_FREQUENT_CHECK;
2181
1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2182 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1647} 2183}
1648 2184
1649void noinline 2185void noinline
1650ev_timer_stop (EV_P_ ev_timer *w) 2186ev_timer_stop (EV_P_ ev_timer *w)
1651{ 2187{
1652 clear_pending (EV_A_ (W)w); 2188 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 2189 if (expect_false (!ev_is_active (w)))
1654 return; 2190 return;
1655 2191
1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2192 EV_FREQUENT_CHECK;
1657 2193
1658 { 2194 {
1659 int active = ((W)w)->active; 2195 int active = ev_active (w);
1660 2196
2197 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2198
2199 --timercnt;
2200
1661 if (expect_true (--active < --timercnt)) 2201 if (expect_true (active < timercnt + HEAP0))
1662 { 2202 {
1663 timers [active] = timers [timercnt]; 2203 timers [active] = timers [timercnt + HEAP0];
1664 adjustheap ((WT *)timers, timercnt, active); 2204 adjustheap (timers, timercnt, active);
1665 } 2205 }
1666 } 2206 }
1667 2207
1668 ((WT)w)->at -= mn_now; 2208 EV_FREQUENT_CHECK;
2209
2210 ev_at (w) -= mn_now;
1669 2211
1670 ev_stop (EV_A_ (W)w); 2212 ev_stop (EV_A_ (W)w);
1671} 2213}
1672 2214
1673void noinline 2215void noinline
1674ev_timer_again (EV_P_ ev_timer *w) 2216ev_timer_again (EV_P_ ev_timer *w)
1675{ 2217{
2218 EV_FREQUENT_CHECK;
2219
1676 if (ev_is_active (w)) 2220 if (ev_is_active (w))
1677 { 2221 {
1678 if (w->repeat) 2222 if (w->repeat)
1679 { 2223 {
1680 ((WT)w)->at = mn_now + w->repeat; 2224 ev_at (w) = mn_now + w->repeat;
2225 ANHE_at_cache (timers [ev_active (w)]);
1681 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2226 adjustheap (timers, timercnt, ev_active (w));
1682 } 2227 }
1683 else 2228 else
1684 ev_timer_stop (EV_A_ w); 2229 ev_timer_stop (EV_A_ w);
1685 } 2230 }
1686 else if (w->repeat) 2231 else if (w->repeat)
1687 { 2232 {
1688 w->at = w->repeat; 2233 ev_at (w) = w->repeat;
1689 ev_timer_start (EV_A_ w); 2234 ev_timer_start (EV_A_ w);
1690 } 2235 }
2236
2237 EV_FREQUENT_CHECK;
1691} 2238}
1692 2239
1693#if EV_PERIODIC_ENABLE 2240#if EV_PERIODIC_ENABLE
1694void noinline 2241void noinline
1695ev_periodic_start (EV_P_ ev_periodic *w) 2242ev_periodic_start (EV_P_ ev_periodic *w)
1696{ 2243{
1697 if (expect_false (ev_is_active (w))) 2244 if (expect_false (ev_is_active (w)))
1698 return; 2245 return;
1699 2246
1700 if (w->reschedule_cb) 2247 if (w->reschedule_cb)
1701 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2248 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1702 else if (w->interval) 2249 else if (w->interval)
1703 { 2250 {
1704 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2251 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1705 /* this formula differs from the one in periodic_reify because we do not always round up */ 2252 /* this formula differs from the one in periodic_reify because we do not always round up */
1706 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2253 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1707 } 2254 }
1708 else 2255 else
1709 ((WT)w)->at = w->offset; 2256 ev_at (w) = w->offset;
1710 2257
2258 EV_FREQUENT_CHECK;
2259
2260 ++periodiccnt;
1711 ev_start (EV_A_ (W)w, ++periodiccnt); 2261 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1712 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2262 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1713 periodics [periodiccnt - 1] = w; 2263 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1714 upheap ((WT *)periodics, periodiccnt - 1); 2264 ANHE_at_cache (periodics [ev_active (w)]);
2265 upheap (periodics, ev_active (w));
1715 2266
2267 EV_FREQUENT_CHECK;
2268
1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2269 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1717} 2270}
1718 2271
1719void noinline 2272void noinline
1720ev_periodic_stop (EV_P_ ev_periodic *w) 2273ev_periodic_stop (EV_P_ ev_periodic *w)
1721{ 2274{
1722 clear_pending (EV_A_ (W)w); 2275 clear_pending (EV_A_ (W)w);
1723 if (expect_false (!ev_is_active (w))) 2276 if (expect_false (!ev_is_active (w)))
1724 return; 2277 return;
1725 2278
1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2279 EV_FREQUENT_CHECK;
1727 2280
1728 { 2281 {
1729 int active = ((W)w)->active; 2282 int active = ev_active (w);
1730 2283
2284 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2285
2286 --periodiccnt;
2287
1731 if (expect_true (--active < --periodiccnt)) 2288 if (expect_true (active < periodiccnt + HEAP0))
1732 { 2289 {
1733 periodics [active] = periodics [periodiccnt]; 2290 periodics [active] = periodics [periodiccnt + HEAP0];
1734 adjustheap ((WT *)periodics, periodiccnt, active); 2291 adjustheap (periodics, periodiccnt, active);
1735 } 2292 }
1736 } 2293 }
2294
2295 EV_FREQUENT_CHECK;
1737 2296
1738 ev_stop (EV_A_ (W)w); 2297 ev_stop (EV_A_ (W)w);
1739} 2298}
1740 2299
1741void noinline 2300void noinline
1760 if (expect_false (ev_is_active (w))) 2319 if (expect_false (ev_is_active (w)))
1761 return; 2320 return;
1762 2321
1763 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2322 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1764 2323
2324 evpipe_init (EV_A);
2325
2326 EV_FREQUENT_CHECK;
2327
2328 {
2329#ifndef _WIN32
2330 sigset_t full, prev;
2331 sigfillset (&full);
2332 sigprocmask (SIG_SETMASK, &full, &prev);
2333#endif
2334
2335 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2336
2337#ifndef _WIN32
2338 sigprocmask (SIG_SETMASK, &prev, 0);
2339#endif
2340 }
2341
1765 ev_start (EV_A_ (W)w, 1); 2342 ev_start (EV_A_ (W)w, 1);
1766 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1767 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2343 wlist_add (&signals [w->signum - 1].head, (WL)w);
1768 2344
1769 if (!((WL)w)->next) 2345 if (!((WL)w)->next)
1770 { 2346 {
1771#if _WIN32 2347#if _WIN32
1772 signal (w->signum, sighandler); 2348 signal (w->signum, ev_sighandler);
1773#else 2349#else
1774 struct sigaction sa; 2350 struct sigaction sa;
1775 sa.sa_handler = sighandler; 2351 sa.sa_handler = ev_sighandler;
1776 sigfillset (&sa.sa_mask); 2352 sigfillset (&sa.sa_mask);
1777 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2353 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1778 sigaction (w->signum, &sa, 0); 2354 sigaction (w->signum, &sa, 0);
1779#endif 2355#endif
1780 } 2356 }
2357
2358 EV_FREQUENT_CHECK;
1781} 2359}
1782 2360
1783void noinline 2361void noinline
1784ev_signal_stop (EV_P_ ev_signal *w) 2362ev_signal_stop (EV_P_ ev_signal *w)
1785{ 2363{
1786 clear_pending (EV_A_ (W)w); 2364 clear_pending (EV_A_ (W)w);
1787 if (expect_false (!ev_is_active (w))) 2365 if (expect_false (!ev_is_active (w)))
1788 return; 2366 return;
1789 2367
2368 EV_FREQUENT_CHECK;
2369
1790 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2370 wlist_del (&signals [w->signum - 1].head, (WL)w);
1791 ev_stop (EV_A_ (W)w); 2371 ev_stop (EV_A_ (W)w);
1792 2372
1793 if (!signals [w->signum - 1].head) 2373 if (!signals [w->signum - 1].head)
1794 signal (w->signum, SIG_DFL); 2374 signal (w->signum, SIG_DFL);
2375
2376 EV_FREQUENT_CHECK;
1795} 2377}
1796 2378
1797void 2379void
1798ev_child_start (EV_P_ ev_child *w) 2380ev_child_start (EV_P_ ev_child *w)
1799{ 2381{
1801 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2383 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1802#endif 2384#endif
1803 if (expect_false (ev_is_active (w))) 2385 if (expect_false (ev_is_active (w)))
1804 return; 2386 return;
1805 2387
2388 EV_FREQUENT_CHECK;
2389
1806 ev_start (EV_A_ (W)w, 1); 2390 ev_start (EV_A_ (W)w, 1);
1807 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2391 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2392
2393 EV_FREQUENT_CHECK;
1808} 2394}
1809 2395
1810void 2396void
1811ev_child_stop (EV_P_ ev_child *w) 2397ev_child_stop (EV_P_ ev_child *w)
1812{ 2398{
1813 clear_pending (EV_A_ (W)w); 2399 clear_pending (EV_A_ (W)w);
1814 if (expect_false (!ev_is_active (w))) 2400 if (expect_false (!ev_is_active (w)))
1815 return; 2401 return;
1816 2402
2403 EV_FREQUENT_CHECK;
2404
1817 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2405 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1818 ev_stop (EV_A_ (W)w); 2406 ev_stop (EV_A_ (W)w);
2407
2408 EV_FREQUENT_CHECK;
1819} 2409}
1820 2410
1821#if EV_STAT_ENABLE 2411#if EV_STAT_ENABLE
1822 2412
1823# ifdef _WIN32 2413# ifdef _WIN32
1841 if (w->wd < 0) 2431 if (w->wd < 0)
1842 { 2432 {
1843 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2433 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1844 2434
1845 /* monitor some parent directory for speedup hints */ 2435 /* monitor some parent directory for speedup hints */
2436 /* note that exceeding the hardcoded limit is not a correctness issue, */
2437 /* but an efficiency issue only */
1846 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2438 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1847 { 2439 {
1848 char path [4096]; 2440 char path [4096];
1849 strcpy (path, w->path); 2441 strcpy (path, w->path);
1850 2442
1976 } 2568 }
1977 2569
1978 } 2570 }
1979} 2571}
1980 2572
2573#endif
2574
2575#ifdef _WIN32
2576# define EV_LSTAT(p,b) _stati64 (p, b)
2577#else
2578# define EV_LSTAT(p,b) lstat (p, b)
1981#endif 2579#endif
1982 2580
1983void 2581void
1984ev_stat_stat (EV_P_ ev_stat *w) 2582ev_stat_stat (EV_P_ ev_stat *w)
1985{ 2583{
2049 else 2647 else
2050#endif 2648#endif
2051 ev_timer_start (EV_A_ &w->timer); 2649 ev_timer_start (EV_A_ &w->timer);
2052 2650
2053 ev_start (EV_A_ (W)w, 1); 2651 ev_start (EV_A_ (W)w, 1);
2652
2653 EV_FREQUENT_CHECK;
2054} 2654}
2055 2655
2056void 2656void
2057ev_stat_stop (EV_P_ ev_stat *w) 2657ev_stat_stop (EV_P_ ev_stat *w)
2058{ 2658{
2059 clear_pending (EV_A_ (W)w); 2659 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w))) 2660 if (expect_false (!ev_is_active (w)))
2061 return; 2661 return;
2062 2662
2663 EV_FREQUENT_CHECK;
2664
2063#if EV_USE_INOTIFY 2665#if EV_USE_INOTIFY
2064 infy_del (EV_A_ w); 2666 infy_del (EV_A_ w);
2065#endif 2667#endif
2066 ev_timer_stop (EV_A_ &w->timer); 2668 ev_timer_stop (EV_A_ &w->timer);
2067 2669
2068 ev_stop (EV_A_ (W)w); 2670 ev_stop (EV_A_ (W)w);
2671
2672 EV_FREQUENT_CHECK;
2069} 2673}
2070#endif 2674#endif
2071 2675
2072#if EV_IDLE_ENABLE 2676#if EV_IDLE_ENABLE
2073void 2677void
2075{ 2679{
2076 if (expect_false (ev_is_active (w))) 2680 if (expect_false (ev_is_active (w)))
2077 return; 2681 return;
2078 2682
2079 pri_adjust (EV_A_ (W)w); 2683 pri_adjust (EV_A_ (W)w);
2684
2685 EV_FREQUENT_CHECK;
2080 2686
2081 { 2687 {
2082 int active = ++idlecnt [ABSPRI (w)]; 2688 int active = ++idlecnt [ABSPRI (w)];
2083 2689
2084 ++idleall; 2690 ++idleall;
2085 ev_start (EV_A_ (W)w, active); 2691 ev_start (EV_A_ (W)w, active);
2086 2692
2087 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2693 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2088 idles [ABSPRI (w)][active - 1] = w; 2694 idles [ABSPRI (w)][active - 1] = w;
2089 } 2695 }
2696
2697 EV_FREQUENT_CHECK;
2090} 2698}
2091 2699
2092void 2700void
2093ev_idle_stop (EV_P_ ev_idle *w) 2701ev_idle_stop (EV_P_ ev_idle *w)
2094{ 2702{
2095 clear_pending (EV_A_ (W)w); 2703 clear_pending (EV_A_ (W)w);
2096 if (expect_false (!ev_is_active (w))) 2704 if (expect_false (!ev_is_active (w)))
2097 return; 2705 return;
2098 2706
2707 EV_FREQUENT_CHECK;
2708
2099 { 2709 {
2100 int active = ((W)w)->active; 2710 int active = ev_active (w);
2101 2711
2102 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2712 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2103 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2713 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2104 2714
2105 ev_stop (EV_A_ (W)w); 2715 ev_stop (EV_A_ (W)w);
2106 --idleall; 2716 --idleall;
2107 } 2717 }
2718
2719 EV_FREQUENT_CHECK;
2108} 2720}
2109#endif 2721#endif
2110 2722
2111void 2723void
2112ev_prepare_start (EV_P_ ev_prepare *w) 2724ev_prepare_start (EV_P_ ev_prepare *w)
2113{ 2725{
2114 if (expect_false (ev_is_active (w))) 2726 if (expect_false (ev_is_active (w)))
2115 return; 2727 return;
2728
2729 EV_FREQUENT_CHECK;
2116 2730
2117 ev_start (EV_A_ (W)w, ++preparecnt); 2731 ev_start (EV_A_ (W)w, ++preparecnt);
2118 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2732 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2119 prepares [preparecnt - 1] = w; 2733 prepares [preparecnt - 1] = w;
2734
2735 EV_FREQUENT_CHECK;
2120} 2736}
2121 2737
2122void 2738void
2123ev_prepare_stop (EV_P_ ev_prepare *w) 2739ev_prepare_stop (EV_P_ ev_prepare *w)
2124{ 2740{
2125 clear_pending (EV_A_ (W)w); 2741 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w))) 2742 if (expect_false (!ev_is_active (w)))
2127 return; 2743 return;
2128 2744
2745 EV_FREQUENT_CHECK;
2746
2129 { 2747 {
2130 int active = ((W)w)->active; 2748 int active = ev_active (w);
2749
2131 prepares [active - 1] = prepares [--preparecnt]; 2750 prepares [active - 1] = prepares [--preparecnt];
2132 ((W)prepares [active - 1])->active = active; 2751 ev_active (prepares [active - 1]) = active;
2133 } 2752 }
2134 2753
2135 ev_stop (EV_A_ (W)w); 2754 ev_stop (EV_A_ (W)w);
2755
2756 EV_FREQUENT_CHECK;
2136} 2757}
2137 2758
2138void 2759void
2139ev_check_start (EV_P_ ev_check *w) 2760ev_check_start (EV_P_ ev_check *w)
2140{ 2761{
2141 if (expect_false (ev_is_active (w))) 2762 if (expect_false (ev_is_active (w)))
2142 return; 2763 return;
2764
2765 EV_FREQUENT_CHECK;
2143 2766
2144 ev_start (EV_A_ (W)w, ++checkcnt); 2767 ev_start (EV_A_ (W)w, ++checkcnt);
2145 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2768 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2146 checks [checkcnt - 1] = w; 2769 checks [checkcnt - 1] = w;
2770
2771 EV_FREQUENT_CHECK;
2147} 2772}
2148 2773
2149void 2774void
2150ev_check_stop (EV_P_ ev_check *w) 2775ev_check_stop (EV_P_ ev_check *w)
2151{ 2776{
2152 clear_pending (EV_A_ (W)w); 2777 clear_pending (EV_A_ (W)w);
2153 if (expect_false (!ev_is_active (w))) 2778 if (expect_false (!ev_is_active (w)))
2154 return; 2779 return;
2155 2780
2781 EV_FREQUENT_CHECK;
2782
2156 { 2783 {
2157 int active = ((W)w)->active; 2784 int active = ev_active (w);
2785
2158 checks [active - 1] = checks [--checkcnt]; 2786 checks [active - 1] = checks [--checkcnt];
2159 ((W)checks [active - 1])->active = active; 2787 ev_active (checks [active - 1]) = active;
2160 } 2788 }
2161 2789
2162 ev_stop (EV_A_ (W)w); 2790 ev_stop (EV_A_ (W)w);
2791
2792 EV_FREQUENT_CHECK;
2163} 2793}
2164 2794
2165#if EV_EMBED_ENABLE 2795#if EV_EMBED_ENABLE
2166void noinline 2796void noinline
2167ev_embed_sweep (EV_P_ ev_embed *w) 2797ev_embed_sweep (EV_P_ ev_embed *w)
2168{ 2798{
2169 ev_loop (w->loop, EVLOOP_NONBLOCK); 2799 ev_loop (w->other, EVLOOP_NONBLOCK);
2170} 2800}
2171 2801
2172static void 2802static void
2173embed_cb (EV_P_ ev_io *io, int revents) 2803embed_io_cb (EV_P_ ev_io *io, int revents)
2174{ 2804{
2175 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2805 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2176 2806
2177 if (ev_cb (w)) 2807 if (ev_cb (w))
2178 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2808 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2179 else 2809 else
2180 ev_embed_sweep (loop, w); 2810 ev_loop (w->other, EVLOOP_NONBLOCK);
2181} 2811}
2812
2813static void
2814embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2815{
2816 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2817
2818 {
2819 struct ev_loop *loop = w->other;
2820
2821 while (fdchangecnt)
2822 {
2823 fd_reify (EV_A);
2824 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2825 }
2826 }
2827}
2828
2829#if 0
2830static void
2831embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2832{
2833 ev_idle_stop (EV_A_ idle);
2834}
2835#endif
2182 2836
2183void 2837void
2184ev_embed_start (EV_P_ ev_embed *w) 2838ev_embed_start (EV_P_ ev_embed *w)
2185{ 2839{
2186 if (expect_false (ev_is_active (w))) 2840 if (expect_false (ev_is_active (w)))
2187 return; 2841 return;
2188 2842
2189 { 2843 {
2190 struct ev_loop *loop = w->loop; 2844 struct ev_loop *loop = w->other;
2191 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2845 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2192 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2846 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2193 } 2847 }
2848
2849 EV_FREQUENT_CHECK;
2194 2850
2195 ev_set_priority (&w->io, ev_priority (w)); 2851 ev_set_priority (&w->io, ev_priority (w));
2196 ev_io_start (EV_A_ &w->io); 2852 ev_io_start (EV_A_ &w->io);
2197 2853
2854 ev_prepare_init (&w->prepare, embed_prepare_cb);
2855 ev_set_priority (&w->prepare, EV_MINPRI);
2856 ev_prepare_start (EV_A_ &w->prepare);
2857
2858 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2859
2198 ev_start (EV_A_ (W)w, 1); 2860 ev_start (EV_A_ (W)w, 1);
2861
2862 EV_FREQUENT_CHECK;
2199} 2863}
2200 2864
2201void 2865void
2202ev_embed_stop (EV_P_ ev_embed *w) 2866ev_embed_stop (EV_P_ ev_embed *w)
2203{ 2867{
2204 clear_pending (EV_A_ (W)w); 2868 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w))) 2869 if (expect_false (!ev_is_active (w)))
2206 return; 2870 return;
2207 2871
2872 EV_FREQUENT_CHECK;
2873
2208 ev_io_stop (EV_A_ &w->io); 2874 ev_io_stop (EV_A_ &w->io);
2875 ev_prepare_stop (EV_A_ &w->prepare);
2209 2876
2210 ev_stop (EV_A_ (W)w); 2877 ev_stop (EV_A_ (W)w);
2878
2879 EV_FREQUENT_CHECK;
2211} 2880}
2212#endif 2881#endif
2213 2882
2214#if EV_FORK_ENABLE 2883#if EV_FORK_ENABLE
2215void 2884void
2216ev_fork_start (EV_P_ ev_fork *w) 2885ev_fork_start (EV_P_ ev_fork *w)
2217{ 2886{
2218 if (expect_false (ev_is_active (w))) 2887 if (expect_false (ev_is_active (w)))
2219 return; 2888 return;
2889
2890 EV_FREQUENT_CHECK;
2220 2891
2221 ev_start (EV_A_ (W)w, ++forkcnt); 2892 ev_start (EV_A_ (W)w, ++forkcnt);
2222 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2893 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2223 forks [forkcnt - 1] = w; 2894 forks [forkcnt - 1] = w;
2895
2896 EV_FREQUENT_CHECK;
2224} 2897}
2225 2898
2226void 2899void
2227ev_fork_stop (EV_P_ ev_fork *w) 2900ev_fork_stop (EV_P_ ev_fork *w)
2228{ 2901{
2229 clear_pending (EV_A_ (W)w); 2902 clear_pending (EV_A_ (W)w);
2230 if (expect_false (!ev_is_active (w))) 2903 if (expect_false (!ev_is_active (w)))
2231 return; 2904 return;
2232 2905
2906 EV_FREQUENT_CHECK;
2907
2233 { 2908 {
2234 int active = ((W)w)->active; 2909 int active = ev_active (w);
2910
2235 forks [active - 1] = forks [--forkcnt]; 2911 forks [active - 1] = forks [--forkcnt];
2236 ((W)forks [active - 1])->active = active; 2912 ev_active (forks [active - 1]) = active;
2237 } 2913 }
2238 2914
2239 ev_stop (EV_A_ (W)w); 2915 ev_stop (EV_A_ (W)w);
2916
2917 EV_FREQUENT_CHECK;
2918}
2919#endif
2920
2921#if EV_ASYNC_ENABLE
2922void
2923ev_async_start (EV_P_ ev_async *w)
2924{
2925 if (expect_false (ev_is_active (w)))
2926 return;
2927
2928 evpipe_init (EV_A);
2929
2930 EV_FREQUENT_CHECK;
2931
2932 ev_start (EV_A_ (W)w, ++asynccnt);
2933 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2934 asyncs [asynccnt - 1] = w;
2935
2936 EV_FREQUENT_CHECK;
2937}
2938
2939void
2940ev_async_stop (EV_P_ ev_async *w)
2941{
2942 clear_pending (EV_A_ (W)w);
2943 if (expect_false (!ev_is_active (w)))
2944 return;
2945
2946 EV_FREQUENT_CHECK;
2947
2948 {
2949 int active = ev_active (w);
2950
2951 asyncs [active - 1] = asyncs [--asynccnt];
2952 ev_active (asyncs [active - 1]) = active;
2953 }
2954
2955 ev_stop (EV_A_ (W)w);
2956
2957 EV_FREQUENT_CHECK;
2958}
2959
2960void
2961ev_async_send (EV_P_ ev_async *w)
2962{
2963 w->sent = 1;
2964 evpipe_write (EV_A_ &gotasync);
2240} 2965}
2241#endif 2966#endif
2242 2967
2243/*****************************************************************************/ 2968/*****************************************************************************/
2244 2969
2302 ev_timer_set (&once->to, timeout, 0.); 3027 ev_timer_set (&once->to, timeout, 0.);
2303 ev_timer_start (EV_A_ &once->to); 3028 ev_timer_start (EV_A_ &once->to);
2304 } 3029 }
2305} 3030}
2306 3031
3032#if EV_MULTIPLICITY
3033 #include "ev_wrap.h"
3034#endif
3035
2307#ifdef __cplusplus 3036#ifdef __cplusplus
2308} 3037}
2309#endif 3038#endif
2310 3039

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines