ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.176 by root, Tue Dec 11 04:31:55 2007 UTC vs.
Revision 1.273 by root, Mon Nov 3 14:27:06 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
129#ifndef _WIN32 154#ifndef _WIN32
130# include <sys/time.h> 155# include <sys/time.h>
131# include <sys/wait.h> 156# include <sys/wait.h>
132# include <unistd.h> 157# include <unistd.h>
133#else 158#else
159# include <io.h>
134# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 161# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
138# endif 164# endif
139#endif 165#endif
140 166
141/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
142 168
143#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
144# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
145#endif 175#endif
146 176
147#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
149#endif 187#endif
150 188
151#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
153#endif 191#endif
159# define EV_USE_POLL 1 197# define EV_USE_POLL 1
160# endif 198# endif
161#endif 199#endif
162 200
163#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
164# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
165#endif 207#endif
166 208
167#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
169#endif 211#endif
171#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 214# define EV_USE_PORT 0
173#endif 215#endif
174 216
175#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
176# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
177#endif 223#endif
178 224
179#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 226# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
190# else 236# else
191# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
192# endif 238# endif
193#endif 239#endif
194 240
195/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 268
197#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
200#endif 272#endif
202#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
205#endif 277#endif
206 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/statfs.h>
293# include <sys/inotify.h>
294/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
295# ifndef IN_DONT_FOLLOW
296# undef EV_USE_INOTIFY
297# define EV_USE_INOTIFY 0
298# endif
299#endif
300
207#if EV_SELECT_IS_WINSOCKET 301#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 302# include <winsock.h>
209#endif 303#endif
210 304
211#if !EV_STAT_ENABLE 305#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 306/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
307# include <stdint.h>
308# ifdef __cplusplus
309extern "C" {
213#endif 310# endif
214 311int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 312# ifdef __cplusplus
216# include <sys/inotify.h> 313}
314# endif
217#endif 315#endif
218 316
219/**/ 317/**/
318
319#if EV_VERIFY >= 3
320# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
321#else
322# define EV_FREQUENT_CHECK do { } while (0)
323#endif
220 324
221/* 325/*
222 * This is used to avoid floating point rounding problems. 326 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 327 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 328 * to ensure progress, time-wise, even when rounding
225 * errors are against us. 329 * errors are against us.
226 * This value is good at least till the year 4000 330 * This value is good at least till the year 4000.
227 * and intervals up to 20 years.
228 * Better solutions welcome. 331 * Better solutions welcome.
229 */ 332 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 333#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231 334
232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 335#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 336#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 337/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
235 338
236#if __GNUC__ >= 3 339#if __GNUC__ >= 4
237# define expect(expr,value) __builtin_expect ((expr),(value)) 340# define expect(expr,value) __builtin_expect ((expr),(value))
238# define noinline __attribute__ ((noinline)) 341# define noinline __attribute__ ((noinline))
239#else 342#else
240# define expect(expr,value) (expr) 343# define expect(expr,value) (expr)
241# define noinline 344# define noinline
242# if __STDC_VERSION__ < 199901L 345# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
243# define inline 346# define inline
244# endif 347# endif
245#endif 348#endif
246 349
247#define expect_false(expr) expect ((expr) != 0, 0) 350#define expect_false(expr) expect ((expr) != 0, 0)
262 365
263typedef ev_watcher *W; 366typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 367typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 368typedef ev_watcher_time *WT;
266 369
370#define ev_active(w) ((W)(w))->active
371#define ev_at(w) ((WT)(w))->at
372
373#if EV_USE_MONOTONIC
374/* sig_atomic_t is used to avoid per-thread variables or locking but still */
375/* giving it a reasonably high chance of working on typical architetcures */
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 376static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
377#endif
268 378
269#ifdef _WIN32 379#ifdef _WIN32
270# include "ev_win32.c" 380# include "ev_win32.c"
271#endif 381#endif
272 382
279{ 389{
280 syserr_cb = cb; 390 syserr_cb = cb;
281} 391}
282 392
283static void noinline 393static void noinline
284syserr (const char *msg) 394ev_syserr (const char *msg)
285{ 395{
286 if (!msg) 396 if (!msg)
287 msg = "(libev) system error"; 397 msg = "(libev) system error";
288 398
289 if (syserr_cb) 399 if (syserr_cb)
293 perror (msg); 403 perror (msg);
294 abort (); 404 abort ();
295 } 405 }
296} 406}
297 407
408static void *
409ev_realloc_emul (void *ptr, long size)
410{
411 /* some systems, notably openbsd and darwin, fail to properly
412 * implement realloc (x, 0) (as required by both ansi c-98 and
413 * the single unix specification, so work around them here.
414 */
415
416 if (size)
417 return realloc (ptr, size);
418
419 free (ptr);
420 return 0;
421}
422
298static void *(*alloc)(void *ptr, long size); 423static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
299 424
300void 425void
301ev_set_allocator (void *(*cb)(void *ptr, long size)) 426ev_set_allocator (void *(*cb)(void *ptr, long size))
302{ 427{
303 alloc = cb; 428 alloc = cb;
304} 429}
305 430
306inline_speed void * 431inline_speed void *
307ev_realloc (void *ptr, long size) 432ev_realloc (void *ptr, long size)
308{ 433{
309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 434 ptr = alloc (ptr, size);
310 435
311 if (!ptr && size) 436 if (!ptr && size)
312 { 437 {
313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 438 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
314 abort (); 439 abort ();
325typedef struct 450typedef struct
326{ 451{
327 WL head; 452 WL head;
328 unsigned char events; 453 unsigned char events;
329 unsigned char reify; 454 unsigned char reify;
455 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
456 unsigned char unused;
457#if EV_USE_EPOLL
458 unsigned int egen; /* generation counter to counter epoll bugs */
459#endif
330#if EV_SELECT_IS_WINSOCKET 460#if EV_SELECT_IS_WINSOCKET
331 SOCKET handle; 461 SOCKET handle;
332#endif 462#endif
333} ANFD; 463} ANFD;
334 464
337 W w; 467 W w;
338 int events; 468 int events;
339} ANPENDING; 469} ANPENDING;
340 470
341#if EV_USE_INOTIFY 471#if EV_USE_INOTIFY
472/* hash table entry per inotify-id */
342typedef struct 473typedef struct
343{ 474{
344 WL head; 475 WL head;
345} ANFS; 476} ANFS;
477#endif
478
479/* Heap Entry */
480#if EV_HEAP_CACHE_AT
481 typedef struct {
482 ev_tstamp at;
483 WT w;
484 } ANHE;
485
486 #define ANHE_w(he) (he).w /* access watcher, read-write */
487 #define ANHE_at(he) (he).at /* access cached at, read-only */
488 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
489#else
490 typedef WT ANHE;
491
492 #define ANHE_w(he) (he)
493 #define ANHE_at(he) (he)->at
494 #define ANHE_at_cache(he)
346#endif 495#endif
347 496
348#if EV_MULTIPLICITY 497#if EV_MULTIPLICITY
349 498
350 struct ev_loop 499 struct ev_loop
408{ 557{
409 return ev_rt_now; 558 return ev_rt_now;
410} 559}
411#endif 560#endif
412 561
562void
563ev_sleep (ev_tstamp delay)
564{
565 if (delay > 0.)
566 {
567#if EV_USE_NANOSLEEP
568 struct timespec ts;
569
570 ts.tv_sec = (time_t)delay;
571 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
572
573 nanosleep (&ts, 0);
574#elif defined(_WIN32)
575 Sleep ((unsigned long)(delay * 1e3));
576#else
577 struct timeval tv;
578
579 tv.tv_sec = (time_t)delay;
580 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
581
582 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
583 /* somehting nto guaranteed by newer posix versions, but guaranteed */
584 /* by older ones */
585 select (0, 0, 0, 0, &tv);
586#endif
587 }
588}
589
590/*****************************************************************************/
591
592#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
593
413int inline_size 594int inline_size
414array_nextsize (int elem, int cur, int cnt) 595array_nextsize (int elem, int cur, int cnt)
415{ 596{
416 int ncur = cur + 1; 597 int ncur = cur + 1;
417 598
418 do 599 do
419 ncur <<= 1; 600 ncur <<= 1;
420 while (cnt > ncur); 601 while (cnt > ncur);
421 602
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 603 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096) 604 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
424 { 605 {
425 ncur *= elem; 606 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 607 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
427 ncur = ncur - sizeof (void *) * 4; 608 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem; 609 ncur /= elem;
429 } 610 }
430 611
431 return ncur; 612 return ncur;
435array_realloc (int elem, void *base, int *cur, int cnt) 616array_realloc (int elem, void *base, int *cur, int cnt)
436{ 617{
437 *cur = array_nextsize (elem, *cur, cnt); 618 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur); 619 return ev_realloc (base, elem * *cur);
439} 620}
621
622#define array_init_zero(base,count) \
623 memset ((void *)(base), 0, sizeof (*(base)) * (count))
440 624
441#define array_needsize(type,base,cur,cnt,init) \ 625#define array_needsize(type,base,cur,cnt,init) \
442 if (expect_false ((cnt) > (cur))) \ 626 if (expect_false ((cnt) > (cur))) \
443 { \ 627 { \
444 int ocur_ = (cur); \ 628 int ocur_ = (cur); \
477 pendings [pri][w_->pending - 1].w = w_; 661 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents; 662 pendings [pri][w_->pending - 1].events = revents;
479 } 663 }
480} 664}
481 665
482void inline_size 666void inline_speed
483queue_events (EV_P_ W *events, int eventcnt, int type) 667queue_events (EV_P_ W *events, int eventcnt, int type)
484{ 668{
485 int i; 669 int i;
486 670
487 for (i = 0; i < eventcnt; ++i) 671 for (i = 0; i < eventcnt; ++i)
488 ev_feed_event (EV_A_ events [i], type); 672 ev_feed_event (EV_A_ events [i], type);
489} 673}
490 674
491/*****************************************************************************/ 675/*****************************************************************************/
492
493void inline_size
494anfds_init (ANFD *base, int count)
495{
496 while (count--)
497 {
498 base->head = 0;
499 base->events = EV_NONE;
500 base->reify = 0;
501
502 ++base;
503 }
504}
505 676
506void inline_speed 677void inline_speed
507fd_event (EV_P_ int fd, int revents) 678fd_event (EV_P_ int fd, int revents)
508{ 679{
509 ANFD *anfd = anfds + fd; 680 ANFD *anfd = anfds + fd;
534 { 705 {
535 int fd = fdchanges [i]; 706 int fd = fdchanges [i];
536 ANFD *anfd = anfds + fd; 707 ANFD *anfd = anfds + fd;
537 ev_io *w; 708 ev_io *w;
538 709
539 int events = 0; 710 unsigned char events = 0;
540 711
541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 712 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
542 events |= w->events; 713 events |= (unsigned char)w->events;
543 714
544#if EV_SELECT_IS_WINSOCKET 715#if EV_SELECT_IS_WINSOCKET
545 if (events) 716 if (events)
546 { 717 {
547 unsigned long argp; 718 unsigned long arg;
719 #ifdef EV_FD_TO_WIN32_HANDLE
720 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
721 #else
548 anfd->handle = _get_osfhandle (fd); 722 anfd->handle = _get_osfhandle (fd);
723 #endif
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 724 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
550 } 725 }
551#endif 726#endif
552 727
728 {
729 unsigned char o_events = anfd->events;
730 unsigned char o_reify = anfd->reify;
731
553 anfd->reify = 0; 732 anfd->reify = 0;
554
555 backend_modify (EV_A_ fd, anfd->events, events);
556 anfd->events = events; 733 anfd->events = events;
734
735 if (o_events != events || o_reify & EV_IOFDSET)
736 backend_modify (EV_A_ fd, o_events, events);
737 }
557 } 738 }
558 739
559 fdchangecnt = 0; 740 fdchangecnt = 0;
560} 741}
561 742
562void inline_size 743void inline_size
563fd_change (EV_P_ int fd) 744fd_change (EV_P_ int fd, int flags)
564{ 745{
565 if (expect_false (anfds [fd].reify)) 746 unsigned char reify = anfds [fd].reify;
566 return;
567
568 anfds [fd].reify = 1; 747 anfds [fd].reify |= flags;
569 748
749 if (expect_true (!reify))
750 {
570 ++fdchangecnt; 751 ++fdchangecnt;
571 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 752 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
572 fdchanges [fdchangecnt - 1] = fd; 753 fdchanges [fdchangecnt - 1] = fd;
754 }
573} 755}
574 756
575void inline_speed 757void inline_speed
576fd_kill (EV_P_ int fd) 758fd_kill (EV_P_ int fd)
577{ 759{
600{ 782{
601 int fd; 783 int fd;
602 784
603 for (fd = 0; fd < anfdmax; ++fd) 785 for (fd = 0; fd < anfdmax; ++fd)
604 if (anfds [fd].events) 786 if (anfds [fd].events)
605 if (!fd_valid (fd) == -1 && errno == EBADF) 787 if (!fd_valid (fd) && errno == EBADF)
606 fd_kill (EV_A_ fd); 788 fd_kill (EV_A_ fd);
607} 789}
608 790
609/* called on ENOMEM in select/poll to kill some fds and retry */ 791/* called on ENOMEM in select/poll to kill some fds and retry */
610static void noinline 792static void noinline
628 810
629 for (fd = 0; fd < anfdmax; ++fd) 811 for (fd = 0; fd < anfdmax; ++fd)
630 if (anfds [fd].events) 812 if (anfds [fd].events)
631 { 813 {
632 anfds [fd].events = 0; 814 anfds [fd].events = 0;
815 anfds [fd].emask = 0;
633 fd_change (EV_A_ fd); 816 fd_change (EV_A_ fd, EV_IOFDSET | 1);
634 } 817 }
635} 818}
636 819
637/*****************************************************************************/ 820/*****************************************************************************/
638 821
822/*
823 * the heap functions want a real array index. array index 0 uis guaranteed to not
824 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
825 * the branching factor of the d-tree.
826 */
827
828/*
829 * at the moment we allow libev the luxury of two heaps,
830 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
831 * which is more cache-efficient.
832 * the difference is about 5% with 50000+ watchers.
833 */
834#if EV_USE_4HEAP
835
836#define DHEAP 4
837#define HEAP0 (DHEAP - 1) /* index of first element in heap */
838#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
839#define UPHEAP_DONE(p,k) ((p) == (k))
840
841/* away from the root */
639void inline_speed 842void inline_speed
640upheap (WT *heap, int k) 843downheap (ANHE *heap, int N, int k)
641{ 844{
642 WT w = heap [k]; 845 ANHE he = heap [k];
846 ANHE *E = heap + N + HEAP0;
643 847
644 while (k && heap [k >> 1]->at > w->at) 848 for (;;)
645 {
646 heap [k] = heap [k >> 1];
647 ((W)heap [k])->active = k + 1;
648 k >>= 1;
649 } 849 {
850 ev_tstamp minat;
851 ANHE *minpos;
852 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
650 853
854 /* find minimum child */
855 if (expect_true (pos + DHEAP - 1 < E))
856 {
857 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
858 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
860 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
861 }
862 else if (pos < E)
863 {
864 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
865 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
866 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
867 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
868 }
869 else
870 break;
871
872 if (ANHE_at (he) <= minat)
873 break;
874
875 heap [k] = *minpos;
876 ev_active (ANHE_w (*minpos)) = k;
877
878 k = minpos - heap;
879 }
880
651 heap [k] = w; 881 heap [k] = he;
652 ((W)heap [k])->active = k + 1; 882 ev_active (ANHE_w (he)) = k;
653
654} 883}
655 884
885#else /* 4HEAP */
886
887#define HEAP0 1
888#define HPARENT(k) ((k) >> 1)
889#define UPHEAP_DONE(p,k) (!(p))
890
891/* away from the root */
656void inline_speed 892void inline_speed
657downheap (WT *heap, int N, int k) 893downheap (ANHE *heap, int N, int k)
658{ 894{
659 WT w = heap [k]; 895 ANHE he = heap [k];
660 896
661 while (k < (N >> 1)) 897 for (;;)
662 { 898 {
663 int j = k << 1; 899 int c = k << 1;
664 900
665 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 901 if (c > N + HEAP0 - 1)
666 ++j;
667
668 if (w->at <= heap [j]->at)
669 break; 902 break;
670 903
904 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
905 ? 1 : 0;
906
907 if (ANHE_at (he) <= ANHE_at (heap [c]))
908 break;
909
671 heap [k] = heap [j]; 910 heap [k] = heap [c];
672 ((W)heap [k])->active = k + 1; 911 ev_active (ANHE_w (heap [k])) = k;
912
673 k = j; 913 k = c;
674 } 914 }
675 915
676 heap [k] = w; 916 heap [k] = he;
677 ((W)heap [k])->active = k + 1; 917 ev_active (ANHE_w (he)) = k;
918}
919#endif
920
921/* towards the root */
922void inline_speed
923upheap (ANHE *heap, int k)
924{
925 ANHE he = heap [k];
926
927 for (;;)
928 {
929 int p = HPARENT (k);
930
931 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
932 break;
933
934 heap [k] = heap [p];
935 ev_active (ANHE_w (heap [k])) = k;
936 k = p;
937 }
938
939 heap [k] = he;
940 ev_active (ANHE_w (he)) = k;
678} 941}
679 942
680void inline_size 943void inline_size
681adjustheap (WT *heap, int N, int k) 944adjustheap (ANHE *heap, int N, int k)
682{ 945{
946 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
683 upheap (heap, k); 947 upheap (heap, k);
948 else
684 downheap (heap, N, k); 949 downheap (heap, N, k);
950}
951
952/* rebuild the heap: this function is used only once and executed rarely */
953void inline_size
954reheap (ANHE *heap, int N)
955{
956 int i;
957
958 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
959 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
960 for (i = 0; i < N; ++i)
961 upheap (heap, i + HEAP0);
685} 962}
686 963
687/*****************************************************************************/ 964/*****************************************************************************/
688 965
689typedef struct 966typedef struct
690{ 967{
691 WL head; 968 WL head;
692 sig_atomic_t volatile gotsig; 969 EV_ATOMIC_T gotsig;
693} ANSIG; 970} ANSIG;
694 971
695static ANSIG *signals; 972static ANSIG *signals;
696static int signalmax; 973static int signalmax;
697 974
698static int sigpipe [2]; 975static EV_ATOMIC_T gotsig;
699static sig_atomic_t volatile gotsig;
700static ev_io sigev;
701 976
702void inline_size 977/*****************************************************************************/
703signals_init (ANSIG *base, int count)
704{
705 while (count--)
706 {
707 base->head = 0;
708 base->gotsig = 0;
709
710 ++base;
711 }
712}
713
714static void
715sighandler (int signum)
716{
717#if _WIN32
718 signal (signum, sighandler);
719#endif
720
721 signals [signum - 1].gotsig = 1;
722
723 if (!gotsig)
724 {
725 int old_errno = errno;
726 gotsig = 1;
727 write (sigpipe [1], &signum, 1);
728 errno = old_errno;
729 }
730}
731
732void noinline
733ev_feed_signal_event (EV_P_ int signum)
734{
735 WL w;
736
737#if EV_MULTIPLICITY
738 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
739#endif
740
741 --signum;
742
743 if (signum < 0 || signum >= signalmax)
744 return;
745
746 signals [signum].gotsig = 0;
747
748 for (w = signals [signum].head; w; w = w->next)
749 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
750}
751
752static void
753sigcb (EV_P_ ev_io *iow, int revents)
754{
755 int signum;
756
757 read (sigpipe [0], &revents, 1);
758 gotsig = 0;
759
760 for (signum = signalmax; signum--; )
761 if (signals [signum].gotsig)
762 ev_feed_signal_event (EV_A_ signum + 1);
763}
764 978
765void inline_speed 979void inline_speed
766fd_intern (int fd) 980fd_intern (int fd)
767{ 981{
768#ifdef _WIN32 982#ifdef _WIN32
769 int arg = 1; 983 unsigned long arg = 1;
770 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 984 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
771#else 985#else
772 fcntl (fd, F_SETFD, FD_CLOEXEC); 986 fcntl (fd, F_SETFD, FD_CLOEXEC);
773 fcntl (fd, F_SETFL, O_NONBLOCK); 987 fcntl (fd, F_SETFL, O_NONBLOCK);
774#endif 988#endif
775} 989}
776 990
777static void noinline 991static void noinline
778siginit (EV_P) 992evpipe_init (EV_P)
779{ 993{
994 if (!ev_is_active (&pipeev))
995 {
996#if EV_USE_EVENTFD
997 if ((evfd = eventfd (0, 0)) >= 0)
998 {
999 evpipe [0] = -1;
1000 fd_intern (evfd);
1001 ev_io_set (&pipeev, evfd, EV_READ);
1002 }
1003 else
1004#endif
1005 {
1006 while (pipe (evpipe))
1007 ev_syserr ("(libev) error creating signal/async pipe");
1008
780 fd_intern (sigpipe [0]); 1009 fd_intern (evpipe [0]);
781 fd_intern (sigpipe [1]); 1010 fd_intern (evpipe [1]);
1011 ev_io_set (&pipeev, evpipe [0], EV_READ);
1012 }
782 1013
783 ev_io_set (&sigev, sigpipe [0], EV_READ);
784 ev_io_start (EV_A_ &sigev); 1014 ev_io_start (EV_A_ &pipeev);
785 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1015 ev_unref (EV_A); /* watcher should not keep loop alive */
1016 }
1017}
1018
1019void inline_size
1020evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1021{
1022 if (!*flag)
1023 {
1024 int old_errno = errno; /* save errno because write might clobber it */
1025
1026 *flag = 1;
1027
1028#if EV_USE_EVENTFD
1029 if (evfd >= 0)
1030 {
1031 uint64_t counter = 1;
1032 write (evfd, &counter, sizeof (uint64_t));
1033 }
1034 else
1035#endif
1036 write (evpipe [1], &old_errno, 1);
1037
1038 errno = old_errno;
1039 }
1040}
1041
1042static void
1043pipecb (EV_P_ ev_io *iow, int revents)
1044{
1045#if EV_USE_EVENTFD
1046 if (evfd >= 0)
1047 {
1048 uint64_t counter;
1049 read (evfd, &counter, sizeof (uint64_t));
1050 }
1051 else
1052#endif
1053 {
1054 char dummy;
1055 read (evpipe [0], &dummy, 1);
1056 }
1057
1058 if (gotsig && ev_is_default_loop (EV_A))
1059 {
1060 int signum;
1061 gotsig = 0;
1062
1063 for (signum = signalmax; signum--; )
1064 if (signals [signum].gotsig)
1065 ev_feed_signal_event (EV_A_ signum + 1);
1066 }
1067
1068#if EV_ASYNC_ENABLE
1069 if (gotasync)
1070 {
1071 int i;
1072 gotasync = 0;
1073
1074 for (i = asynccnt; i--; )
1075 if (asyncs [i]->sent)
1076 {
1077 asyncs [i]->sent = 0;
1078 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1079 }
1080 }
1081#endif
786} 1082}
787 1083
788/*****************************************************************************/ 1084/*****************************************************************************/
789 1085
1086static void
1087ev_sighandler (int signum)
1088{
1089#if EV_MULTIPLICITY
1090 struct ev_loop *loop = &default_loop_struct;
1091#endif
1092
1093#if _WIN32
1094 signal (signum, ev_sighandler);
1095#endif
1096
1097 signals [signum - 1].gotsig = 1;
1098 evpipe_write (EV_A_ &gotsig);
1099}
1100
1101void noinline
1102ev_feed_signal_event (EV_P_ int signum)
1103{
1104 WL w;
1105
1106#if EV_MULTIPLICITY
1107 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1108#endif
1109
1110 --signum;
1111
1112 if (signum < 0 || signum >= signalmax)
1113 return;
1114
1115 signals [signum].gotsig = 0;
1116
1117 for (w = signals [signum].head; w; w = w->next)
1118 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1119}
1120
1121/*****************************************************************************/
1122
790static ev_child *childs [EV_PID_HASHSIZE]; 1123static WL childs [EV_PID_HASHSIZE];
791 1124
792#ifndef _WIN32 1125#ifndef _WIN32
793 1126
794static ev_signal childev; 1127static ev_signal childev;
795 1128
1129#ifndef WIFCONTINUED
1130# define WIFCONTINUED(status) 0
1131#endif
1132
796void inline_speed 1133void inline_speed
797child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1134child_reap (EV_P_ int chain, int pid, int status)
798{ 1135{
799 ev_child *w; 1136 ev_child *w;
1137 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
800 1138
801 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1139 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1140 {
802 if (w->pid == pid || !w->pid) 1141 if ((w->pid == pid || !w->pid)
1142 && (!traced || (w->flags & 1)))
803 { 1143 {
804 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1144 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
805 w->rpid = pid; 1145 w->rpid = pid;
806 w->rstatus = status; 1146 w->rstatus = status;
807 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1147 ev_feed_event (EV_A_ (W)w, EV_CHILD);
808 } 1148 }
1149 }
809} 1150}
810 1151
811#ifndef WCONTINUED 1152#ifndef WCONTINUED
812# define WCONTINUED 0 1153# define WCONTINUED 0
813#endif 1154#endif
822 if (!WCONTINUED 1163 if (!WCONTINUED
823 || errno != EINVAL 1164 || errno != EINVAL
824 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1165 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
825 return; 1166 return;
826 1167
827 /* make sure we are called again until all childs have been reaped */ 1168 /* make sure we are called again until all children have been reaped */
828 /* we need to do it this way so that the callback gets called before we continue */ 1169 /* we need to do it this way so that the callback gets called before we continue */
829 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1170 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
830 1171
831 child_reap (EV_A_ sw, pid, pid, status); 1172 child_reap (EV_A_ pid, pid, status);
832 if (EV_PID_HASHSIZE > 1) 1173 if (EV_PID_HASHSIZE > 1)
833 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1174 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
834} 1175}
835 1176
836#endif 1177#endif
837 1178
838/*****************************************************************************/ 1179/*****************************************************************************/
910} 1251}
911 1252
912unsigned int 1253unsigned int
913ev_embeddable_backends (void) 1254ev_embeddable_backends (void)
914{ 1255{
915 return EVBACKEND_EPOLL 1256 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
916 | EVBACKEND_KQUEUE 1257
917 | EVBACKEND_PORT; 1258 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1259 /* please fix it and tell me how to detect the fix */
1260 flags &= ~EVBACKEND_EPOLL;
1261
1262 return flags;
918} 1263}
919 1264
920unsigned int 1265unsigned int
921ev_backend (EV_P) 1266ev_backend (EV_P)
922{ 1267{
925 1270
926unsigned int 1271unsigned int
927ev_loop_count (EV_P) 1272ev_loop_count (EV_P)
928{ 1273{
929 return loop_count; 1274 return loop_count;
1275}
1276
1277void
1278ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1279{
1280 io_blocktime = interval;
1281}
1282
1283void
1284ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1285{
1286 timeout_blocktime = interval;
930} 1287}
931 1288
932static void noinline 1289static void noinline
933loop_init (EV_P_ unsigned int flags) 1290loop_init (EV_P_ unsigned int flags)
934{ 1291{
940 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1297 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
941 have_monotonic = 1; 1298 have_monotonic = 1;
942 } 1299 }
943#endif 1300#endif
944 1301
945 ev_rt_now = ev_time (); 1302 ev_rt_now = ev_time ();
946 mn_now = get_clock (); 1303 mn_now = get_clock ();
947 now_floor = mn_now; 1304 now_floor = mn_now;
948 rtmn_diff = ev_rt_now - mn_now; 1305 rtmn_diff = ev_rt_now - mn_now;
1306
1307 io_blocktime = 0.;
1308 timeout_blocktime = 0.;
1309 backend = 0;
1310 backend_fd = -1;
1311 gotasync = 0;
1312#if EV_USE_INOTIFY
1313 fs_fd = -2;
1314#endif
949 1315
950 /* pid check not overridable via env */ 1316 /* pid check not overridable via env */
951#ifndef _WIN32 1317#ifndef _WIN32
952 if (flags & EVFLAG_FORKCHECK) 1318 if (flags & EVFLAG_FORKCHECK)
953 curpid = getpid (); 1319 curpid = getpid ();
956 if (!(flags & EVFLAG_NOENV) 1322 if (!(flags & EVFLAG_NOENV)
957 && !enable_secure () 1323 && !enable_secure ()
958 && getenv ("LIBEV_FLAGS")) 1324 && getenv ("LIBEV_FLAGS"))
959 flags = atoi (getenv ("LIBEV_FLAGS")); 1325 flags = atoi (getenv ("LIBEV_FLAGS"));
960 1326
961 if (!(flags & 0x0000ffffUL)) 1327 if (!(flags & 0x0000ffffU))
962 flags |= ev_recommended_backends (); 1328 flags |= ev_recommended_backends ();
963
964 backend = 0;
965 backend_fd = -1;
966#if EV_USE_INOTIFY
967 fs_fd = -2;
968#endif
969 1329
970#if EV_USE_PORT 1330#if EV_USE_PORT
971 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1331 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
972#endif 1332#endif
973#if EV_USE_KQUEUE 1333#if EV_USE_KQUEUE
981#endif 1341#endif
982#if EV_USE_SELECT 1342#if EV_USE_SELECT
983 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1343 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
984#endif 1344#endif
985 1345
986 ev_init (&sigev, sigcb); 1346 ev_init (&pipeev, pipecb);
987 ev_set_priority (&sigev, EV_MAXPRI); 1347 ev_set_priority (&pipeev, EV_MAXPRI);
988 } 1348 }
989} 1349}
990 1350
991static void noinline 1351static void noinline
992loop_destroy (EV_P) 1352loop_destroy (EV_P)
993{ 1353{
994 int i; 1354 int i;
1355
1356 if (ev_is_active (&pipeev))
1357 {
1358 ev_ref (EV_A); /* signal watcher */
1359 ev_io_stop (EV_A_ &pipeev);
1360
1361#if EV_USE_EVENTFD
1362 if (evfd >= 0)
1363 close (evfd);
1364#endif
1365
1366 if (evpipe [0] >= 0)
1367 {
1368 close (evpipe [0]);
1369 close (evpipe [1]);
1370 }
1371 }
995 1372
996#if EV_USE_INOTIFY 1373#if EV_USE_INOTIFY
997 if (fs_fd >= 0) 1374 if (fs_fd >= 0)
998 close (fs_fd); 1375 close (fs_fd);
999#endif 1376#endif
1022 array_free (pending, [i]); 1399 array_free (pending, [i]);
1023#if EV_IDLE_ENABLE 1400#if EV_IDLE_ENABLE
1024 array_free (idle, [i]); 1401 array_free (idle, [i]);
1025#endif 1402#endif
1026 } 1403 }
1404
1405 ev_free (anfds); anfdmax = 0;
1027 1406
1028 /* have to use the microsoft-never-gets-it-right macro */ 1407 /* have to use the microsoft-never-gets-it-right macro */
1029 array_free (fdchange, EMPTY); 1408 array_free (fdchange, EMPTY);
1030 array_free (timer, EMPTY); 1409 array_free (timer, EMPTY);
1031#if EV_PERIODIC_ENABLE 1410#if EV_PERIODIC_ENABLE
1032 array_free (periodic, EMPTY); 1411 array_free (periodic, EMPTY);
1033#endif 1412#endif
1413#if EV_FORK_ENABLE
1414 array_free (fork, EMPTY);
1415#endif
1034 array_free (prepare, EMPTY); 1416 array_free (prepare, EMPTY);
1035 array_free (check, EMPTY); 1417 array_free (check, EMPTY);
1418#if EV_ASYNC_ENABLE
1419 array_free (async, EMPTY);
1420#endif
1036 1421
1037 backend = 0; 1422 backend = 0;
1038} 1423}
1039 1424
1425#if EV_USE_INOTIFY
1040void inline_size infy_fork (EV_P); 1426void inline_size infy_fork (EV_P);
1427#endif
1041 1428
1042void inline_size 1429void inline_size
1043loop_fork (EV_P) 1430loop_fork (EV_P)
1044{ 1431{
1045#if EV_USE_PORT 1432#if EV_USE_PORT
1053#endif 1440#endif
1054#if EV_USE_INOTIFY 1441#if EV_USE_INOTIFY
1055 infy_fork (EV_A); 1442 infy_fork (EV_A);
1056#endif 1443#endif
1057 1444
1058 if (ev_is_active (&sigev)) 1445 if (ev_is_active (&pipeev))
1059 { 1446 {
1060 /* default loop */ 1447 /* this "locks" the handlers against writing to the pipe */
1448 /* while we modify the fd vars */
1449 gotsig = 1;
1450#if EV_ASYNC_ENABLE
1451 gotasync = 1;
1452#endif
1061 1453
1062 ev_ref (EV_A); 1454 ev_ref (EV_A);
1063 ev_io_stop (EV_A_ &sigev); 1455 ev_io_stop (EV_A_ &pipeev);
1456
1457#if EV_USE_EVENTFD
1458 if (evfd >= 0)
1459 close (evfd);
1460#endif
1461
1462 if (evpipe [0] >= 0)
1463 {
1064 close (sigpipe [0]); 1464 close (evpipe [0]);
1065 close (sigpipe [1]); 1465 close (evpipe [1]);
1466 }
1066 1467
1067 while (pipe (sigpipe))
1068 syserr ("(libev) error creating pipe");
1069
1070 siginit (EV_A); 1468 evpipe_init (EV_A);
1469 /* now iterate over everything, in case we missed something */
1470 pipecb (EV_A_ &pipeev, EV_READ);
1071 } 1471 }
1072 1472
1073 postfork = 0; 1473 postfork = 0;
1074} 1474}
1075 1475
1076#if EV_MULTIPLICITY 1476#if EV_MULTIPLICITY
1477
1077struct ev_loop * 1478struct ev_loop *
1078ev_loop_new (unsigned int flags) 1479ev_loop_new (unsigned int flags)
1079{ 1480{
1080 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1481 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1081 1482
1097} 1498}
1098 1499
1099void 1500void
1100ev_loop_fork (EV_P) 1501ev_loop_fork (EV_P)
1101{ 1502{
1102 postfork = 1; 1503 postfork = 1; /* must be in line with ev_default_fork */
1103} 1504}
1104 1505
1506#if EV_VERIFY
1507static void noinline
1508verify_watcher (EV_P_ W w)
1509{
1510 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1511
1512 if (w->pending)
1513 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1514}
1515
1516static void noinline
1517verify_heap (EV_P_ ANHE *heap, int N)
1518{
1519 int i;
1520
1521 for (i = HEAP0; i < N + HEAP0; ++i)
1522 {
1523 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1524 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1525 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1526
1527 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1528 }
1529}
1530
1531static void noinline
1532array_verify (EV_P_ W *ws, int cnt)
1533{
1534 while (cnt--)
1535 {
1536 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1537 verify_watcher (EV_A_ ws [cnt]);
1538 }
1539}
1540#endif
1541
1542void
1543ev_loop_verify (EV_P)
1544{
1545#if EV_VERIFY
1546 int i;
1547 WL w;
1548
1549 assert (activecnt >= -1);
1550
1551 assert (fdchangemax >= fdchangecnt);
1552 for (i = 0; i < fdchangecnt; ++i)
1553 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1554
1555 assert (anfdmax >= 0);
1556 for (i = 0; i < anfdmax; ++i)
1557 for (w = anfds [i].head; w; w = w->next)
1558 {
1559 verify_watcher (EV_A_ (W)w);
1560 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1561 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1562 }
1563
1564 assert (timermax >= timercnt);
1565 verify_heap (EV_A_ timers, timercnt);
1566
1567#if EV_PERIODIC_ENABLE
1568 assert (periodicmax >= periodiccnt);
1569 verify_heap (EV_A_ periodics, periodiccnt);
1570#endif
1571
1572 for (i = NUMPRI; i--; )
1573 {
1574 assert (pendingmax [i] >= pendingcnt [i]);
1575#if EV_IDLE_ENABLE
1576 assert (idleall >= 0);
1577 assert (idlemax [i] >= idlecnt [i]);
1578 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1579#endif
1580 }
1581
1582#if EV_FORK_ENABLE
1583 assert (forkmax >= forkcnt);
1584 array_verify (EV_A_ (W *)forks, forkcnt);
1585#endif
1586
1587#if EV_ASYNC_ENABLE
1588 assert (asyncmax >= asynccnt);
1589 array_verify (EV_A_ (W *)asyncs, asynccnt);
1590#endif
1591
1592 assert (preparemax >= preparecnt);
1593 array_verify (EV_A_ (W *)prepares, preparecnt);
1594
1595 assert (checkmax >= checkcnt);
1596 array_verify (EV_A_ (W *)checks, checkcnt);
1597
1598# if 0
1599 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1600 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1105#endif 1601# endif
1602#endif
1603}
1604
1605#endif /* multiplicity */
1106 1606
1107#if EV_MULTIPLICITY 1607#if EV_MULTIPLICITY
1108struct ev_loop * 1608struct ev_loop *
1109ev_default_loop_init (unsigned int flags) 1609ev_default_loop_init (unsigned int flags)
1110#else 1610#else
1111int 1611int
1112ev_default_loop (unsigned int flags) 1612ev_default_loop (unsigned int flags)
1113#endif 1613#endif
1114{ 1614{
1115 if (sigpipe [0] == sigpipe [1])
1116 if (pipe (sigpipe))
1117 return 0;
1118
1119 if (!ev_default_loop_ptr) 1615 if (!ev_default_loop_ptr)
1120 { 1616 {
1121#if EV_MULTIPLICITY 1617#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1618 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1123#else 1619#else
1126 1622
1127 loop_init (EV_A_ flags); 1623 loop_init (EV_A_ flags);
1128 1624
1129 if (ev_backend (EV_A)) 1625 if (ev_backend (EV_A))
1130 { 1626 {
1131 siginit (EV_A);
1132
1133#ifndef _WIN32 1627#ifndef _WIN32
1134 ev_signal_init (&childev, childcb, SIGCHLD); 1628 ev_signal_init (&childev, childcb, SIGCHLD);
1135 ev_set_priority (&childev, EV_MAXPRI); 1629 ev_set_priority (&childev, EV_MAXPRI);
1136 ev_signal_start (EV_A_ &childev); 1630 ev_signal_start (EV_A_ &childev);
1137 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1631 ev_unref (EV_A); /* child watcher should not keep loop alive */
1149{ 1643{
1150#if EV_MULTIPLICITY 1644#if EV_MULTIPLICITY
1151 struct ev_loop *loop = ev_default_loop_ptr; 1645 struct ev_loop *loop = ev_default_loop_ptr;
1152#endif 1646#endif
1153 1647
1648 ev_default_loop_ptr = 0;
1649
1154#ifndef _WIN32 1650#ifndef _WIN32
1155 ev_ref (EV_A); /* child watcher */ 1651 ev_ref (EV_A); /* child watcher */
1156 ev_signal_stop (EV_A_ &childev); 1652 ev_signal_stop (EV_A_ &childev);
1157#endif 1653#endif
1158 1654
1159 ev_ref (EV_A); /* signal watcher */
1160 ev_io_stop (EV_A_ &sigev);
1161
1162 close (sigpipe [0]); sigpipe [0] = 0;
1163 close (sigpipe [1]); sigpipe [1] = 0;
1164
1165 loop_destroy (EV_A); 1655 loop_destroy (EV_A);
1166} 1656}
1167 1657
1168void 1658void
1169ev_default_fork (void) 1659ev_default_fork (void)
1170{ 1660{
1171#if EV_MULTIPLICITY 1661#if EV_MULTIPLICITY
1172 struct ev_loop *loop = ev_default_loop_ptr; 1662 struct ev_loop *loop = ev_default_loop_ptr;
1173#endif 1663#endif
1174 1664
1175 if (backend) 1665 postfork = 1; /* must be in line with ev_loop_fork */
1176 postfork = 1;
1177} 1666}
1178 1667
1179/*****************************************************************************/ 1668/*****************************************************************************/
1180 1669
1181void 1670void
1198 { 1687 {
1199 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1688 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1200 1689
1201 p->w->pending = 0; 1690 p->w->pending = 0;
1202 EV_CB_INVOKE (p->w, p->events); 1691 EV_CB_INVOKE (p->w, p->events);
1692 EV_FREQUENT_CHECK;
1203 } 1693 }
1204 } 1694 }
1205} 1695}
1206
1207void inline_size
1208timers_reify (EV_P)
1209{
1210 while (timercnt && ((WT)timers [0])->at <= mn_now)
1211 {
1212 ev_timer *w = timers [0];
1213
1214 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1215
1216 /* first reschedule or stop timer */
1217 if (w->repeat)
1218 {
1219 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1220
1221 ((WT)w)->at += w->repeat;
1222 if (((WT)w)->at < mn_now)
1223 ((WT)w)->at = mn_now;
1224
1225 downheap ((WT *)timers, timercnt, 0);
1226 }
1227 else
1228 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1229
1230 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1231 }
1232}
1233
1234#if EV_PERIODIC_ENABLE
1235void inline_size
1236periodics_reify (EV_P)
1237{
1238 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1239 {
1240 ev_periodic *w = periodics [0];
1241
1242 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1243
1244 /* first reschedule or stop timer */
1245 if (w->reschedule_cb)
1246 {
1247 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1248 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1249 downheap ((WT *)periodics, periodiccnt, 0);
1250 }
1251 else if (w->interval)
1252 {
1253 ((WT)w)->at = w->offset + floor ((ev_rt_now + TIME_EPSILON - w->offset) / w->interval + 1.) * w->interval;
1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1255 downheap ((WT *)periodics, periodiccnt, 0);
1256 }
1257 else
1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1259
1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1261 }
1262}
1263
1264static void noinline
1265periodics_reschedule (EV_P)
1266{
1267 int i;
1268
1269 /* adjust periodics after time jump */
1270 for (i = 0; i < periodiccnt; ++i)
1271 {
1272 ev_periodic *w = periodics [i];
1273
1274 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1276 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 }
1279
1280 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i);
1283}
1284#endif
1285 1696
1286#if EV_IDLE_ENABLE 1697#if EV_IDLE_ENABLE
1287void inline_size 1698void inline_size
1288idle_reify (EV_P) 1699idle_reify (EV_P)
1289{ 1700{
1304 } 1715 }
1305 } 1716 }
1306} 1717}
1307#endif 1718#endif
1308 1719
1309int inline_size 1720void inline_size
1310time_update_monotonic (EV_P) 1721timers_reify (EV_P)
1311{ 1722{
1723 EV_FREQUENT_CHECK;
1724
1725 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1726 {
1727 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1728
1729 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1730
1731 /* first reschedule or stop timer */
1732 if (w->repeat)
1733 {
1734 ev_at (w) += w->repeat;
1735 if (ev_at (w) < mn_now)
1736 ev_at (w) = mn_now;
1737
1738 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1739
1740 ANHE_at_cache (timers [HEAP0]);
1741 downheap (timers, timercnt, HEAP0);
1742 }
1743 else
1744 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1745
1746 EV_FREQUENT_CHECK;
1747 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1748 }
1749}
1750
1751#if EV_PERIODIC_ENABLE
1752void inline_size
1753periodics_reify (EV_P)
1754{
1755 EV_FREQUENT_CHECK;
1756
1757 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1758 {
1759 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1760
1761 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1762
1763 /* first reschedule or stop timer */
1764 if (w->reschedule_cb)
1765 {
1766 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1767
1768 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1769
1770 ANHE_at_cache (periodics [HEAP0]);
1771 downheap (periodics, periodiccnt, HEAP0);
1772 }
1773 else if (w->interval)
1774 {
1775 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1776 /* if next trigger time is not sufficiently in the future, put it there */
1777 /* this might happen because of floating point inexactness */
1778 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1779 {
1780 ev_at (w) += w->interval;
1781
1782 /* if interval is unreasonably low we might still have a time in the past */
1783 /* so correct this. this will make the periodic very inexact, but the user */
1784 /* has effectively asked to get triggered more often than possible */
1785 if (ev_at (w) < ev_rt_now)
1786 ev_at (w) = ev_rt_now;
1787 }
1788
1789 ANHE_at_cache (periodics [HEAP0]);
1790 downheap (periodics, periodiccnt, HEAP0);
1791 }
1792 else
1793 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1794
1795 EV_FREQUENT_CHECK;
1796 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1797 }
1798}
1799
1800static void noinline
1801periodics_reschedule (EV_P)
1802{
1803 int i;
1804
1805 /* adjust periodics after time jump */
1806 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1807 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1809
1810 if (w->reschedule_cb)
1811 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1812 else if (w->interval)
1813 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1814
1815 ANHE_at_cache (periodics [i]);
1816 }
1817
1818 reheap (periodics, periodiccnt);
1819}
1820#endif
1821
1822void inline_speed
1823time_update (EV_P_ ev_tstamp max_block)
1824{
1825 int i;
1826
1827#if EV_USE_MONOTONIC
1828 if (expect_true (have_monotonic))
1829 {
1830 ev_tstamp odiff = rtmn_diff;
1831
1312 mn_now = get_clock (); 1832 mn_now = get_clock ();
1313 1833
1834 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1835 /* interpolate in the meantime */
1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1836 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1315 { 1837 {
1316 ev_rt_now = rtmn_diff + mn_now; 1838 ev_rt_now = rtmn_diff + mn_now;
1317 return 0; 1839 return;
1318 } 1840 }
1319 else 1841
1320 {
1321 now_floor = mn_now; 1842 now_floor = mn_now;
1322 ev_rt_now = ev_time (); 1843 ev_rt_now = ev_time ();
1323 return 1;
1324 }
1325}
1326 1844
1327void inline_size 1845 /* loop a few times, before making important decisions.
1328time_update (EV_P) 1846 * on the choice of "4": one iteration isn't enough,
1329{ 1847 * in case we get preempted during the calls to
1330 int i; 1848 * ev_time and get_clock. a second call is almost guaranteed
1331 1849 * to succeed in that case, though. and looping a few more times
1332#if EV_USE_MONOTONIC 1850 * doesn't hurt either as we only do this on time-jumps or
1333 if (expect_true (have_monotonic)) 1851 * in the unlikely event of having been preempted here.
1334 { 1852 */
1335 if (time_update_monotonic (EV_A)) 1853 for (i = 4; --i; )
1336 { 1854 {
1337 ev_tstamp odiff = rtmn_diff;
1338
1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1348 {
1349 rtmn_diff = ev_rt_now - mn_now; 1855 rtmn_diff = ev_rt_now - mn_now;
1350 1856
1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1857 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1352 return; /* all is well */ 1858 return; /* all is well */
1353 1859
1354 ev_rt_now = ev_time (); 1860 ev_rt_now = ev_time ();
1355 mn_now = get_clock (); 1861 mn_now = get_clock ();
1356 now_floor = mn_now; 1862 now_floor = mn_now;
1357 } 1863 }
1358 1864
1359# if EV_PERIODIC_ENABLE 1865# if EV_PERIODIC_ENABLE
1360 periodics_reschedule (EV_A); 1866 periodics_reschedule (EV_A);
1361# endif 1867# endif
1362 /* no timer adjustment, as the monotonic clock doesn't jump */ 1868 /* no timer adjustment, as the monotonic clock doesn't jump */
1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1869 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1364 }
1365 } 1870 }
1366 else 1871 else
1367#endif 1872#endif
1368 { 1873 {
1369 ev_rt_now = ev_time (); 1874 ev_rt_now = ev_time ();
1370 1875
1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1876 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 { 1877 {
1373#if EV_PERIODIC_ENABLE 1878#if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 1879 periodics_reschedule (EV_A);
1375#endif 1880#endif
1376
1377 /* adjust timers. this is easy, as the offset is the same for all of them */ 1881 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i) 1882 for (i = 0; i < timercnt; ++i)
1883 {
1884 ANHE *he = timers + i + HEAP0;
1379 ((WT)timers [i])->at += ev_rt_now - mn_now; 1885 ANHE_w (*he)->at += ev_rt_now - mn_now;
1886 ANHE_at_cache (*he);
1887 }
1380 } 1888 }
1381 1889
1382 mn_now = ev_rt_now; 1890 mn_now = ev_rt_now;
1383 } 1891 }
1384} 1892}
1393ev_unref (EV_P) 1901ev_unref (EV_P)
1394{ 1902{
1395 --activecnt; 1903 --activecnt;
1396} 1904}
1397 1905
1906void
1907ev_now_update (EV_P)
1908{
1909 time_update (EV_A_ 1e100);
1910}
1911
1398static int loop_done; 1912static int loop_done;
1399 1913
1400void 1914void
1401ev_loop (EV_P_ int flags) 1915ev_loop (EV_P_ int flags)
1402{ 1916{
1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1917 loop_done = EVUNLOOP_CANCEL;
1404 ? EVUNLOOP_ONE
1405 : EVUNLOOP_CANCEL;
1406 1918
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1919 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1408 1920
1409 do 1921 do
1410 { 1922 {
1923#if EV_VERIFY >= 2
1924 ev_loop_verify (EV_A);
1925#endif
1926
1411#ifndef _WIN32 1927#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */ 1928 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid)) 1929 if (expect_false (getpid () != curpid))
1414 { 1930 {
1415 curpid = getpid (); 1931 curpid = getpid ();
1444 /* update fd-related kernel structures */ 1960 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 1961 fd_reify (EV_A);
1446 1962
1447 /* calculate blocking time */ 1963 /* calculate blocking time */
1448 { 1964 {
1449 ev_tstamp block; 1965 ev_tstamp waittime = 0.;
1966 ev_tstamp sleeptime = 0.;
1450 1967
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1968 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 1969 {
1455 /* update time to cancel out callback processing overhead */ 1970 /* update time to cancel out callback processing overhead */
1456#if EV_USE_MONOTONIC
1457 if (expect_true (have_monotonic))
1458 time_update_monotonic (EV_A); 1971 time_update (EV_A_ 1e100);
1459 else
1460#endif
1461 {
1462 ev_rt_now = ev_time ();
1463 mn_now = ev_rt_now;
1464 }
1465 1972
1466 block = MAX_BLOCKTIME; 1973 waittime = MAX_BLOCKTIME;
1467 1974
1468 if (timercnt) 1975 if (timercnt)
1469 { 1976 {
1470 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1977 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1471 if (block > to) block = to; 1978 if (waittime > to) waittime = to;
1472 } 1979 }
1473 1980
1474#if EV_PERIODIC_ENABLE 1981#if EV_PERIODIC_ENABLE
1475 if (periodiccnt) 1982 if (periodiccnt)
1476 { 1983 {
1477 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1984 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1478 if (block > to) block = to; 1985 if (waittime > to) waittime = to;
1479 } 1986 }
1480#endif 1987#endif
1481 1988
1482 if (expect_false (block < 0.)) block = 0.; 1989 if (expect_false (waittime < timeout_blocktime))
1990 waittime = timeout_blocktime;
1991
1992 sleeptime = waittime - backend_fudge;
1993
1994 if (expect_true (sleeptime > io_blocktime))
1995 sleeptime = io_blocktime;
1996
1997 if (sleeptime)
1998 {
1999 ev_sleep (sleeptime);
2000 waittime -= sleeptime;
2001 }
1483 } 2002 }
1484 2003
1485 ++loop_count; 2004 ++loop_count;
1486 backend_poll (EV_A_ block); 2005 backend_poll (EV_A_ waittime);
2006
2007 /* update ev_rt_now, do magic */
2008 time_update (EV_A_ waittime + sleeptime);
1487 } 2009 }
1488
1489 /* update ev_rt_now, do magic */
1490 time_update (EV_A);
1491 2010
1492 /* queue pending timers and reschedule them */ 2011 /* queue pending timers and reschedule them */
1493 timers_reify (EV_A); /* relative timers called last */ 2012 timers_reify (EV_A); /* relative timers called last */
1494#if EV_PERIODIC_ENABLE 2013#if EV_PERIODIC_ENABLE
1495 periodics_reify (EV_A); /* absolute timers called first */ 2014 periodics_reify (EV_A); /* absolute timers called first */
1503 /* queue check watchers, to be executed first */ 2022 /* queue check watchers, to be executed first */
1504 if (expect_false (checkcnt)) 2023 if (expect_false (checkcnt))
1505 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1506 2025
1507 call_pending (EV_A); 2026 call_pending (EV_A);
1508
1509 } 2027 }
1510 while (expect_true (activecnt && !loop_done)); 2028 while (expect_true (
2029 activecnt
2030 && !loop_done
2031 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2032 ));
1511 2033
1512 if (loop_done == EVUNLOOP_ONE) 2034 if (loop_done == EVUNLOOP_ONE)
1513 loop_done = EVUNLOOP_CANCEL; 2035 loop_done = EVUNLOOP_CANCEL;
1514} 2036}
1515 2037
1603 2125
1604 if (expect_false (ev_is_active (w))) 2126 if (expect_false (ev_is_active (w)))
1605 return; 2127 return;
1606 2128
1607 assert (("ev_io_start called with negative fd", fd >= 0)); 2129 assert (("ev_io_start called with negative fd", fd >= 0));
2130 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2131
2132 EV_FREQUENT_CHECK;
1608 2133
1609 ev_start (EV_A_ (W)w, 1); 2134 ev_start (EV_A_ (W)w, 1);
1610 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2135 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1611 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2136 wlist_add (&anfds[fd].head, (WL)w);
1612 2137
1613 fd_change (EV_A_ fd); 2138 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2139 w->events &= ~EV_IOFDSET;
2140
2141 EV_FREQUENT_CHECK;
1614} 2142}
1615 2143
1616void noinline 2144void noinline
1617ev_io_stop (EV_P_ ev_io *w) 2145ev_io_stop (EV_P_ ev_io *w)
1618{ 2146{
1619 clear_pending (EV_A_ (W)w); 2147 clear_pending (EV_A_ (W)w);
1620 if (expect_false (!ev_is_active (w))) 2148 if (expect_false (!ev_is_active (w)))
1621 return; 2149 return;
1622 2150
1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2151 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1624 2152
2153 EV_FREQUENT_CHECK;
2154
1625 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2155 wlist_del (&anfds[w->fd].head, (WL)w);
1626 ev_stop (EV_A_ (W)w); 2156 ev_stop (EV_A_ (W)w);
1627 2157
1628 fd_change (EV_A_ w->fd); 2158 fd_change (EV_A_ w->fd, 1);
2159
2160 EV_FREQUENT_CHECK;
1629} 2161}
1630 2162
1631void noinline 2163void noinline
1632ev_timer_start (EV_P_ ev_timer *w) 2164ev_timer_start (EV_P_ ev_timer *w)
1633{ 2165{
1634 if (expect_false (ev_is_active (w))) 2166 if (expect_false (ev_is_active (w)))
1635 return; 2167 return;
1636 2168
1637 ((WT)w)->at += mn_now; 2169 ev_at (w) += mn_now;
1638 2170
1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2171 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1640 2172
2173 EV_FREQUENT_CHECK;
2174
2175 ++timercnt;
1641 ev_start (EV_A_ (W)w, ++timercnt); 2176 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1642 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2177 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1643 timers [timercnt - 1] = w; 2178 ANHE_w (timers [ev_active (w)]) = (WT)w;
1644 upheap ((WT *)timers, timercnt - 1); 2179 ANHE_at_cache (timers [ev_active (w)]);
2180 upheap (timers, ev_active (w));
1645 2181
2182 EV_FREQUENT_CHECK;
2183
1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2184 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1647} 2185}
1648 2186
1649void noinline 2187void noinline
1650ev_timer_stop (EV_P_ ev_timer *w) 2188ev_timer_stop (EV_P_ ev_timer *w)
1651{ 2189{
1652 clear_pending (EV_A_ (W)w); 2190 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 2191 if (expect_false (!ev_is_active (w)))
1654 return; 2192 return;
1655 2193
1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2194 EV_FREQUENT_CHECK;
1657 2195
1658 { 2196 {
1659 int active = ((W)w)->active; 2197 int active = ev_active (w);
1660 2198
2199 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2200
2201 --timercnt;
2202
1661 if (expect_true (--active < --timercnt)) 2203 if (expect_true (active < timercnt + HEAP0))
1662 { 2204 {
1663 timers [active] = timers [timercnt]; 2205 timers [active] = timers [timercnt + HEAP0];
1664 adjustheap ((WT *)timers, timercnt, active); 2206 adjustheap (timers, timercnt, active);
1665 } 2207 }
1666 } 2208 }
1667 2209
1668 ((WT)w)->at -= mn_now; 2210 EV_FREQUENT_CHECK;
2211
2212 ev_at (w) -= mn_now;
1669 2213
1670 ev_stop (EV_A_ (W)w); 2214 ev_stop (EV_A_ (W)w);
1671} 2215}
1672 2216
1673void noinline 2217void noinline
1674ev_timer_again (EV_P_ ev_timer *w) 2218ev_timer_again (EV_P_ ev_timer *w)
1675{ 2219{
2220 EV_FREQUENT_CHECK;
2221
1676 if (ev_is_active (w)) 2222 if (ev_is_active (w))
1677 { 2223 {
1678 if (w->repeat) 2224 if (w->repeat)
1679 { 2225 {
1680 ((WT)w)->at = mn_now + w->repeat; 2226 ev_at (w) = mn_now + w->repeat;
2227 ANHE_at_cache (timers [ev_active (w)]);
1681 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2228 adjustheap (timers, timercnt, ev_active (w));
1682 } 2229 }
1683 else 2230 else
1684 ev_timer_stop (EV_A_ w); 2231 ev_timer_stop (EV_A_ w);
1685 } 2232 }
1686 else if (w->repeat) 2233 else if (w->repeat)
1687 { 2234 {
1688 w->at = w->repeat; 2235 ev_at (w) = w->repeat;
1689 ev_timer_start (EV_A_ w); 2236 ev_timer_start (EV_A_ w);
1690 } 2237 }
2238
2239 EV_FREQUENT_CHECK;
1691} 2240}
1692 2241
1693#if EV_PERIODIC_ENABLE 2242#if EV_PERIODIC_ENABLE
1694void noinline 2243void noinline
1695ev_periodic_start (EV_P_ ev_periodic *w) 2244ev_periodic_start (EV_P_ ev_periodic *w)
1696{ 2245{
1697 if (expect_false (ev_is_active (w))) 2246 if (expect_false (ev_is_active (w)))
1698 return; 2247 return;
1699 2248
1700 if (w->reschedule_cb) 2249 if (w->reschedule_cb)
1701 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2250 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1702 else if (w->interval) 2251 else if (w->interval)
1703 { 2252 {
1704 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2253 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1705 /* this formula differs from the one in periodic_reify because we do not always round up */ 2254 /* this formula differs from the one in periodic_reify because we do not always round up */
1706 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2255 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1707 } 2256 }
1708 else 2257 else
1709 ((WT)w)->at = w->offset; 2258 ev_at (w) = w->offset;
1710 2259
2260 EV_FREQUENT_CHECK;
2261
2262 ++periodiccnt;
1711 ev_start (EV_A_ (W)w, ++periodiccnt); 2263 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1712 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2264 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1713 periodics [periodiccnt - 1] = w; 2265 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1714 upheap ((WT *)periodics, periodiccnt - 1); 2266 ANHE_at_cache (periodics [ev_active (w)]);
2267 upheap (periodics, ev_active (w));
1715 2268
2269 EV_FREQUENT_CHECK;
2270
1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2271 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1717} 2272}
1718 2273
1719void noinline 2274void noinline
1720ev_periodic_stop (EV_P_ ev_periodic *w) 2275ev_periodic_stop (EV_P_ ev_periodic *w)
1721{ 2276{
1722 clear_pending (EV_A_ (W)w); 2277 clear_pending (EV_A_ (W)w);
1723 if (expect_false (!ev_is_active (w))) 2278 if (expect_false (!ev_is_active (w)))
1724 return; 2279 return;
1725 2280
1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2281 EV_FREQUENT_CHECK;
1727 2282
1728 { 2283 {
1729 int active = ((W)w)->active; 2284 int active = ev_active (w);
1730 2285
2286 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2287
2288 --periodiccnt;
2289
1731 if (expect_true (--active < --periodiccnt)) 2290 if (expect_true (active < periodiccnt + HEAP0))
1732 { 2291 {
1733 periodics [active] = periodics [periodiccnt]; 2292 periodics [active] = periodics [periodiccnt + HEAP0];
1734 adjustheap ((WT *)periodics, periodiccnt, active); 2293 adjustheap (periodics, periodiccnt, active);
1735 } 2294 }
1736 } 2295 }
2296
2297 EV_FREQUENT_CHECK;
1737 2298
1738 ev_stop (EV_A_ (W)w); 2299 ev_stop (EV_A_ (W)w);
1739} 2300}
1740 2301
1741void noinline 2302void noinline
1760 if (expect_false (ev_is_active (w))) 2321 if (expect_false (ev_is_active (w)))
1761 return; 2322 return;
1762 2323
1763 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2324 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1764 2325
2326 evpipe_init (EV_A);
2327
2328 EV_FREQUENT_CHECK;
2329
2330 {
2331#ifndef _WIN32
2332 sigset_t full, prev;
2333 sigfillset (&full);
2334 sigprocmask (SIG_SETMASK, &full, &prev);
2335#endif
2336
2337 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2338
2339#ifndef _WIN32
2340 sigprocmask (SIG_SETMASK, &prev, 0);
2341#endif
2342 }
2343
1765 ev_start (EV_A_ (W)w, 1); 2344 ev_start (EV_A_ (W)w, 1);
1766 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1767 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2345 wlist_add (&signals [w->signum - 1].head, (WL)w);
1768 2346
1769 if (!((WL)w)->next) 2347 if (!((WL)w)->next)
1770 { 2348 {
1771#if _WIN32 2349#if _WIN32
1772 signal (w->signum, sighandler); 2350 signal (w->signum, ev_sighandler);
1773#else 2351#else
1774 struct sigaction sa; 2352 struct sigaction sa;
1775 sa.sa_handler = sighandler; 2353 sa.sa_handler = ev_sighandler;
1776 sigfillset (&sa.sa_mask); 2354 sigfillset (&sa.sa_mask);
1777 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2355 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1778 sigaction (w->signum, &sa, 0); 2356 sigaction (w->signum, &sa, 0);
1779#endif 2357#endif
1780 } 2358 }
2359
2360 EV_FREQUENT_CHECK;
1781} 2361}
1782 2362
1783void noinline 2363void noinline
1784ev_signal_stop (EV_P_ ev_signal *w) 2364ev_signal_stop (EV_P_ ev_signal *w)
1785{ 2365{
1786 clear_pending (EV_A_ (W)w); 2366 clear_pending (EV_A_ (W)w);
1787 if (expect_false (!ev_is_active (w))) 2367 if (expect_false (!ev_is_active (w)))
1788 return; 2368 return;
1789 2369
2370 EV_FREQUENT_CHECK;
2371
1790 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2372 wlist_del (&signals [w->signum - 1].head, (WL)w);
1791 ev_stop (EV_A_ (W)w); 2373 ev_stop (EV_A_ (W)w);
1792 2374
1793 if (!signals [w->signum - 1].head) 2375 if (!signals [w->signum - 1].head)
1794 signal (w->signum, SIG_DFL); 2376 signal (w->signum, SIG_DFL);
2377
2378 EV_FREQUENT_CHECK;
1795} 2379}
1796 2380
1797void 2381void
1798ev_child_start (EV_P_ ev_child *w) 2382ev_child_start (EV_P_ ev_child *w)
1799{ 2383{
1801 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2385 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1802#endif 2386#endif
1803 if (expect_false (ev_is_active (w))) 2387 if (expect_false (ev_is_active (w)))
1804 return; 2388 return;
1805 2389
2390 EV_FREQUENT_CHECK;
2391
1806 ev_start (EV_A_ (W)w, 1); 2392 ev_start (EV_A_ (W)w, 1);
1807 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2393 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2394
2395 EV_FREQUENT_CHECK;
1808} 2396}
1809 2397
1810void 2398void
1811ev_child_stop (EV_P_ ev_child *w) 2399ev_child_stop (EV_P_ ev_child *w)
1812{ 2400{
1813 clear_pending (EV_A_ (W)w); 2401 clear_pending (EV_A_ (W)w);
1814 if (expect_false (!ev_is_active (w))) 2402 if (expect_false (!ev_is_active (w)))
1815 return; 2403 return;
1816 2404
2405 EV_FREQUENT_CHECK;
2406
1817 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2407 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1818 ev_stop (EV_A_ (W)w); 2408 ev_stop (EV_A_ (W)w);
2409
2410 EV_FREQUENT_CHECK;
1819} 2411}
1820 2412
1821#if EV_STAT_ENABLE 2413#if EV_STAT_ENABLE
1822 2414
1823# ifdef _WIN32 2415# ifdef _WIN32
1824# undef lstat 2416# undef lstat
1825# define lstat(a,b) _stati64 (a,b) 2417# define lstat(a,b) _stati64 (a,b)
1826# endif 2418# endif
1827 2419
1828#define DEF_STAT_INTERVAL 5.0074891 2420#define DEF_STAT_INTERVAL 5.0074891
2421#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1829#define MIN_STAT_INTERVAL 0.1074891 2422#define MIN_STAT_INTERVAL 0.1074891
1830 2423
1831static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2424static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1832 2425
1833#if EV_USE_INOTIFY 2426#if EV_USE_INOTIFY
1834# define EV_INOTIFY_BUFSIZE 8192 2427# define EV_INOTIFY_BUFSIZE 8192
1838{ 2431{
1839 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2432 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1840 2433
1841 if (w->wd < 0) 2434 if (w->wd < 0)
1842 { 2435 {
2436 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1843 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2437 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1844 2438
1845 /* monitor some parent directory for speedup hints */ 2439 /* monitor some parent directory for speedup hints */
2440 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2441 /* but an efficiency issue only */
1846 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2442 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1847 { 2443 {
1848 char path [4096]; 2444 char path [4096];
1849 strcpy (path, w->path); 2445 strcpy (path, w->path);
1850 2446
1863 } 2459 }
1864 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2460 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1865 } 2461 }
1866 } 2462 }
1867 else 2463 else
1868 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */ 2464 {
1869
1870 if (w->wd >= 0)
1871 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2465 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2466
2467 /* now local changes will be tracked by inotify, but remote changes won't */
2468 /* unless the filesystem it known to be local, we therefore still poll */
2469 /* also do poll on <2.6.25, but with normal frequency */
2470 struct statfs sfs;
2471
2472 if (fs_2625 && !statfs (w->path, &sfs))
2473 if (sfs.f_type == 0x1373 /* devfs */
2474 || sfs.f_type == 0xEF53 /* ext2/3 */
2475 || sfs.f_type == 0x3153464a /* jfs */
2476 || sfs.f_type == 0x52654973 /* reiser3 */
2477 || sfs.f_type == 0x01021994 /* tempfs */
2478 || sfs.f_type == 0x58465342 /* xfs */)
2479 return;
2480
2481 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2482 ev_timer_again (EV_A_ &w->timer);
2483 }
1872} 2484}
1873 2485
1874static void noinline 2486static void noinline
1875infy_del (EV_P_ ev_stat *w) 2487infy_del (EV_P_ ev_stat *w)
1876{ 2488{
1890 2502
1891static void noinline 2503static void noinline
1892infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2504infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1893{ 2505{
1894 if (slot < 0) 2506 if (slot < 0)
1895 /* overflow, need to check for all hahs slots */ 2507 /* overflow, need to check for all hash slots */
1896 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2508 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1897 infy_wd (EV_A_ slot, wd, ev); 2509 infy_wd (EV_A_ slot, wd, ev);
1898 else 2510 else
1899 { 2511 {
1900 WL w_; 2512 WL w_;
1929 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2541 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1930 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2542 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1931} 2543}
1932 2544
1933void inline_size 2545void inline_size
2546check_2625 (EV_P)
2547{
2548 /* kernels < 2.6.25 are borked
2549 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2550 */
2551 struct utsname buf;
2552 int major, minor, micro;
2553
2554 if (uname (&buf))
2555 return;
2556
2557 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2558 return;
2559
2560 if (major < 2
2561 || (major == 2 && minor < 6)
2562 || (major == 2 && minor == 6 && micro < 25))
2563 return;
2564
2565 fs_2625 = 1;
2566}
2567
2568void inline_size
1934infy_init (EV_P) 2569infy_init (EV_P)
1935{ 2570{
1936 if (fs_fd != -2) 2571 if (fs_fd != -2)
1937 return; 2572 return;
2573
2574 fs_fd = -1;
2575
2576 check_2625 (EV_A);
1938 2577
1939 fs_fd = inotify_init (); 2578 fs_fd = inotify_init ();
1940 2579
1941 if (fs_fd >= 0) 2580 if (fs_fd >= 0)
1942 { 2581 {
1970 w->wd = -1; 2609 w->wd = -1;
1971 2610
1972 if (fs_fd >= 0) 2611 if (fs_fd >= 0)
1973 infy_add (EV_A_ w); /* re-add, no matter what */ 2612 infy_add (EV_A_ w); /* re-add, no matter what */
1974 else 2613 else
1975 ev_timer_start (EV_A_ &w->timer); 2614 ev_timer_again (EV_A_ &w->timer);
1976 } 2615 }
1977
1978 } 2616 }
1979} 2617}
1980 2618
2619#endif
2620
2621#ifdef _WIN32
2622# define EV_LSTAT(p,b) _stati64 (p, b)
2623#else
2624# define EV_LSTAT(p,b) lstat (p, b)
1981#endif 2625#endif
1982 2626
1983void 2627void
1984ev_stat_stat (EV_P_ ev_stat *w) 2628ev_stat_stat (EV_P_ ev_stat *w)
1985{ 2629{
2012 || w->prev.st_atime != w->attr.st_atime 2656 || w->prev.st_atime != w->attr.st_atime
2013 || w->prev.st_mtime != w->attr.st_mtime 2657 || w->prev.st_mtime != w->attr.st_mtime
2014 || w->prev.st_ctime != w->attr.st_ctime 2658 || w->prev.st_ctime != w->attr.st_ctime
2015 ) { 2659 ) {
2016 #if EV_USE_INOTIFY 2660 #if EV_USE_INOTIFY
2661 if (fs_fd >= 0)
2662 {
2017 infy_del (EV_A_ w); 2663 infy_del (EV_A_ w);
2018 infy_add (EV_A_ w); 2664 infy_add (EV_A_ w);
2019 ev_stat_stat (EV_A_ w); /* avoid race... */ 2665 ev_stat_stat (EV_A_ w); /* avoid race... */
2666 }
2020 #endif 2667 #endif
2021 2668
2022 ev_feed_event (EV_A_ w, EV_STAT); 2669 ev_feed_event (EV_A_ w, EV_STAT);
2023 } 2670 }
2024} 2671}
2027ev_stat_start (EV_P_ ev_stat *w) 2674ev_stat_start (EV_P_ ev_stat *w)
2028{ 2675{
2029 if (expect_false (ev_is_active (w))) 2676 if (expect_false (ev_is_active (w)))
2030 return; 2677 return;
2031 2678
2032 /* since we use memcmp, we need to clear any padding data etc. */
2033 memset (&w->prev, 0, sizeof (ev_statdata));
2034 memset (&w->attr, 0, sizeof (ev_statdata));
2035
2036 ev_stat_stat (EV_A_ w); 2679 ev_stat_stat (EV_A_ w);
2037 2680
2681 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2038 if (w->interval < MIN_STAT_INTERVAL) 2682 w->interval = MIN_STAT_INTERVAL;
2039 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2040 2683
2041 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2684 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2042 ev_set_priority (&w->timer, ev_priority (w)); 2685 ev_set_priority (&w->timer, ev_priority (w));
2043 2686
2044#if EV_USE_INOTIFY 2687#if EV_USE_INOTIFY
2045 infy_init (EV_A); 2688 infy_init (EV_A);
2046 2689
2047 if (fs_fd >= 0) 2690 if (fs_fd >= 0)
2048 infy_add (EV_A_ w); 2691 infy_add (EV_A_ w);
2049 else 2692 else
2050#endif 2693#endif
2051 ev_timer_start (EV_A_ &w->timer); 2694 ev_timer_again (EV_A_ &w->timer);
2052 2695
2053 ev_start (EV_A_ (W)w, 1); 2696 ev_start (EV_A_ (W)w, 1);
2697
2698 EV_FREQUENT_CHECK;
2054} 2699}
2055 2700
2056void 2701void
2057ev_stat_stop (EV_P_ ev_stat *w) 2702ev_stat_stop (EV_P_ ev_stat *w)
2058{ 2703{
2059 clear_pending (EV_A_ (W)w); 2704 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w))) 2705 if (expect_false (!ev_is_active (w)))
2061 return; 2706 return;
2062 2707
2708 EV_FREQUENT_CHECK;
2709
2063#if EV_USE_INOTIFY 2710#if EV_USE_INOTIFY
2064 infy_del (EV_A_ w); 2711 infy_del (EV_A_ w);
2065#endif 2712#endif
2066 ev_timer_stop (EV_A_ &w->timer); 2713 ev_timer_stop (EV_A_ &w->timer);
2067 2714
2068 ev_stop (EV_A_ (W)w); 2715 ev_stop (EV_A_ (W)w);
2716
2717 EV_FREQUENT_CHECK;
2069} 2718}
2070#endif 2719#endif
2071 2720
2072#if EV_IDLE_ENABLE 2721#if EV_IDLE_ENABLE
2073void 2722void
2075{ 2724{
2076 if (expect_false (ev_is_active (w))) 2725 if (expect_false (ev_is_active (w)))
2077 return; 2726 return;
2078 2727
2079 pri_adjust (EV_A_ (W)w); 2728 pri_adjust (EV_A_ (W)w);
2729
2730 EV_FREQUENT_CHECK;
2080 2731
2081 { 2732 {
2082 int active = ++idlecnt [ABSPRI (w)]; 2733 int active = ++idlecnt [ABSPRI (w)];
2083 2734
2084 ++idleall; 2735 ++idleall;
2085 ev_start (EV_A_ (W)w, active); 2736 ev_start (EV_A_ (W)w, active);
2086 2737
2087 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2738 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2088 idles [ABSPRI (w)][active - 1] = w; 2739 idles [ABSPRI (w)][active - 1] = w;
2089 } 2740 }
2741
2742 EV_FREQUENT_CHECK;
2090} 2743}
2091 2744
2092void 2745void
2093ev_idle_stop (EV_P_ ev_idle *w) 2746ev_idle_stop (EV_P_ ev_idle *w)
2094{ 2747{
2095 clear_pending (EV_A_ (W)w); 2748 clear_pending (EV_A_ (W)w);
2096 if (expect_false (!ev_is_active (w))) 2749 if (expect_false (!ev_is_active (w)))
2097 return; 2750 return;
2098 2751
2752 EV_FREQUENT_CHECK;
2753
2099 { 2754 {
2100 int active = ((W)w)->active; 2755 int active = ev_active (w);
2101 2756
2102 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2757 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2103 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2758 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2104 2759
2105 ev_stop (EV_A_ (W)w); 2760 ev_stop (EV_A_ (W)w);
2106 --idleall; 2761 --idleall;
2107 } 2762 }
2763
2764 EV_FREQUENT_CHECK;
2108} 2765}
2109#endif 2766#endif
2110 2767
2111void 2768void
2112ev_prepare_start (EV_P_ ev_prepare *w) 2769ev_prepare_start (EV_P_ ev_prepare *w)
2113{ 2770{
2114 if (expect_false (ev_is_active (w))) 2771 if (expect_false (ev_is_active (w)))
2115 return; 2772 return;
2773
2774 EV_FREQUENT_CHECK;
2116 2775
2117 ev_start (EV_A_ (W)w, ++preparecnt); 2776 ev_start (EV_A_ (W)w, ++preparecnt);
2118 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2777 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2119 prepares [preparecnt - 1] = w; 2778 prepares [preparecnt - 1] = w;
2779
2780 EV_FREQUENT_CHECK;
2120} 2781}
2121 2782
2122void 2783void
2123ev_prepare_stop (EV_P_ ev_prepare *w) 2784ev_prepare_stop (EV_P_ ev_prepare *w)
2124{ 2785{
2125 clear_pending (EV_A_ (W)w); 2786 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w))) 2787 if (expect_false (!ev_is_active (w)))
2127 return; 2788 return;
2128 2789
2790 EV_FREQUENT_CHECK;
2791
2129 { 2792 {
2130 int active = ((W)w)->active; 2793 int active = ev_active (w);
2794
2131 prepares [active - 1] = prepares [--preparecnt]; 2795 prepares [active - 1] = prepares [--preparecnt];
2132 ((W)prepares [active - 1])->active = active; 2796 ev_active (prepares [active - 1]) = active;
2133 } 2797 }
2134 2798
2135 ev_stop (EV_A_ (W)w); 2799 ev_stop (EV_A_ (W)w);
2800
2801 EV_FREQUENT_CHECK;
2136} 2802}
2137 2803
2138void 2804void
2139ev_check_start (EV_P_ ev_check *w) 2805ev_check_start (EV_P_ ev_check *w)
2140{ 2806{
2141 if (expect_false (ev_is_active (w))) 2807 if (expect_false (ev_is_active (w)))
2142 return; 2808 return;
2809
2810 EV_FREQUENT_CHECK;
2143 2811
2144 ev_start (EV_A_ (W)w, ++checkcnt); 2812 ev_start (EV_A_ (W)w, ++checkcnt);
2145 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2813 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2146 checks [checkcnt - 1] = w; 2814 checks [checkcnt - 1] = w;
2815
2816 EV_FREQUENT_CHECK;
2147} 2817}
2148 2818
2149void 2819void
2150ev_check_stop (EV_P_ ev_check *w) 2820ev_check_stop (EV_P_ ev_check *w)
2151{ 2821{
2152 clear_pending (EV_A_ (W)w); 2822 clear_pending (EV_A_ (W)w);
2153 if (expect_false (!ev_is_active (w))) 2823 if (expect_false (!ev_is_active (w)))
2154 return; 2824 return;
2155 2825
2826 EV_FREQUENT_CHECK;
2827
2156 { 2828 {
2157 int active = ((W)w)->active; 2829 int active = ev_active (w);
2830
2158 checks [active - 1] = checks [--checkcnt]; 2831 checks [active - 1] = checks [--checkcnt];
2159 ((W)checks [active - 1])->active = active; 2832 ev_active (checks [active - 1]) = active;
2160 } 2833 }
2161 2834
2162 ev_stop (EV_A_ (W)w); 2835 ev_stop (EV_A_ (W)w);
2836
2837 EV_FREQUENT_CHECK;
2163} 2838}
2164 2839
2165#if EV_EMBED_ENABLE 2840#if EV_EMBED_ENABLE
2166void noinline 2841void noinline
2167ev_embed_sweep (EV_P_ ev_embed *w) 2842ev_embed_sweep (EV_P_ ev_embed *w)
2168{ 2843{
2169 ev_loop (w->loop, EVLOOP_NONBLOCK); 2844 ev_loop (w->other, EVLOOP_NONBLOCK);
2170} 2845}
2171 2846
2172static void 2847static void
2173embed_cb (EV_P_ ev_io *io, int revents) 2848embed_io_cb (EV_P_ ev_io *io, int revents)
2174{ 2849{
2175 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2850 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2176 2851
2177 if (ev_cb (w)) 2852 if (ev_cb (w))
2178 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2853 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2179 else 2854 else
2180 ev_embed_sweep (loop, w); 2855 ev_loop (w->other, EVLOOP_NONBLOCK);
2181} 2856}
2857
2858static void
2859embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2860{
2861 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2862
2863 {
2864 struct ev_loop *loop = w->other;
2865
2866 while (fdchangecnt)
2867 {
2868 fd_reify (EV_A);
2869 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2870 }
2871 }
2872}
2873
2874static void
2875embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2876{
2877 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2878
2879 {
2880 struct ev_loop *loop = w->other;
2881
2882 ev_loop_fork (EV_A);
2883 }
2884}
2885
2886#if 0
2887static void
2888embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2889{
2890 ev_idle_stop (EV_A_ idle);
2891}
2892#endif
2182 2893
2183void 2894void
2184ev_embed_start (EV_P_ ev_embed *w) 2895ev_embed_start (EV_P_ ev_embed *w)
2185{ 2896{
2186 if (expect_false (ev_is_active (w))) 2897 if (expect_false (ev_is_active (w)))
2187 return; 2898 return;
2188 2899
2189 { 2900 {
2190 struct ev_loop *loop = w->loop; 2901 struct ev_loop *loop = w->other;
2191 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2902 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2192 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2903 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2193 } 2904 }
2905
2906 EV_FREQUENT_CHECK;
2194 2907
2195 ev_set_priority (&w->io, ev_priority (w)); 2908 ev_set_priority (&w->io, ev_priority (w));
2196 ev_io_start (EV_A_ &w->io); 2909 ev_io_start (EV_A_ &w->io);
2197 2910
2911 ev_prepare_init (&w->prepare, embed_prepare_cb);
2912 ev_set_priority (&w->prepare, EV_MINPRI);
2913 ev_prepare_start (EV_A_ &w->prepare);
2914
2915 ev_fork_init (&w->fork, embed_fork_cb);
2916 ev_fork_start (EV_A_ &w->fork);
2917
2918 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2919
2198 ev_start (EV_A_ (W)w, 1); 2920 ev_start (EV_A_ (W)w, 1);
2921
2922 EV_FREQUENT_CHECK;
2199} 2923}
2200 2924
2201void 2925void
2202ev_embed_stop (EV_P_ ev_embed *w) 2926ev_embed_stop (EV_P_ ev_embed *w)
2203{ 2927{
2204 clear_pending (EV_A_ (W)w); 2928 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w))) 2929 if (expect_false (!ev_is_active (w)))
2206 return; 2930 return;
2207 2931
2932 EV_FREQUENT_CHECK;
2933
2208 ev_io_stop (EV_A_ &w->io); 2934 ev_io_stop (EV_A_ &w->io);
2935 ev_prepare_stop (EV_A_ &w->prepare);
2936 ev_fork_stop (EV_A_ &w->fork);
2209 2937
2210 ev_stop (EV_A_ (W)w); 2938 EV_FREQUENT_CHECK;
2211} 2939}
2212#endif 2940#endif
2213 2941
2214#if EV_FORK_ENABLE 2942#if EV_FORK_ENABLE
2215void 2943void
2216ev_fork_start (EV_P_ ev_fork *w) 2944ev_fork_start (EV_P_ ev_fork *w)
2217{ 2945{
2218 if (expect_false (ev_is_active (w))) 2946 if (expect_false (ev_is_active (w)))
2219 return; 2947 return;
2948
2949 EV_FREQUENT_CHECK;
2220 2950
2221 ev_start (EV_A_ (W)w, ++forkcnt); 2951 ev_start (EV_A_ (W)w, ++forkcnt);
2222 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2952 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2223 forks [forkcnt - 1] = w; 2953 forks [forkcnt - 1] = w;
2954
2955 EV_FREQUENT_CHECK;
2224} 2956}
2225 2957
2226void 2958void
2227ev_fork_stop (EV_P_ ev_fork *w) 2959ev_fork_stop (EV_P_ ev_fork *w)
2228{ 2960{
2229 clear_pending (EV_A_ (W)w); 2961 clear_pending (EV_A_ (W)w);
2230 if (expect_false (!ev_is_active (w))) 2962 if (expect_false (!ev_is_active (w)))
2231 return; 2963 return;
2232 2964
2965 EV_FREQUENT_CHECK;
2966
2233 { 2967 {
2234 int active = ((W)w)->active; 2968 int active = ev_active (w);
2969
2235 forks [active - 1] = forks [--forkcnt]; 2970 forks [active - 1] = forks [--forkcnt];
2236 ((W)forks [active - 1])->active = active; 2971 ev_active (forks [active - 1]) = active;
2237 } 2972 }
2238 2973
2239 ev_stop (EV_A_ (W)w); 2974 ev_stop (EV_A_ (W)w);
2975
2976 EV_FREQUENT_CHECK;
2977}
2978#endif
2979
2980#if EV_ASYNC_ENABLE
2981void
2982ev_async_start (EV_P_ ev_async *w)
2983{
2984 if (expect_false (ev_is_active (w)))
2985 return;
2986
2987 evpipe_init (EV_A);
2988
2989 EV_FREQUENT_CHECK;
2990
2991 ev_start (EV_A_ (W)w, ++asynccnt);
2992 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2993 asyncs [asynccnt - 1] = w;
2994
2995 EV_FREQUENT_CHECK;
2996}
2997
2998void
2999ev_async_stop (EV_P_ ev_async *w)
3000{
3001 clear_pending (EV_A_ (W)w);
3002 if (expect_false (!ev_is_active (w)))
3003 return;
3004
3005 EV_FREQUENT_CHECK;
3006
3007 {
3008 int active = ev_active (w);
3009
3010 asyncs [active - 1] = asyncs [--asynccnt];
3011 ev_active (asyncs [active - 1]) = active;
3012 }
3013
3014 ev_stop (EV_A_ (W)w);
3015
3016 EV_FREQUENT_CHECK;
3017}
3018
3019void
3020ev_async_send (EV_P_ ev_async *w)
3021{
3022 w->sent = 1;
3023 evpipe_write (EV_A_ &gotasync);
2240} 3024}
2241#endif 3025#endif
2242 3026
2243/*****************************************************************************/ 3027/*****************************************************************************/
2244 3028
2254once_cb (EV_P_ struct ev_once *once, int revents) 3038once_cb (EV_P_ struct ev_once *once, int revents)
2255{ 3039{
2256 void (*cb)(int revents, void *arg) = once->cb; 3040 void (*cb)(int revents, void *arg) = once->cb;
2257 void *arg = once->arg; 3041 void *arg = once->arg;
2258 3042
2259 ev_io_stop (EV_A_ &once->io); 3043 ev_io_stop (EV_A_ &once->io);
2260 ev_timer_stop (EV_A_ &once->to); 3044 ev_timer_stop (EV_A_ &once->to);
2261 ev_free (once); 3045 ev_free (once);
2262 3046
2263 cb (revents, arg); 3047 cb (revents, arg);
2264} 3048}
2265 3049
2266static void 3050static void
2267once_cb_io (EV_P_ ev_io *w, int revents) 3051once_cb_io (EV_P_ ev_io *w, int revents)
2268{ 3052{
2269 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3053 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3054
3055 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2270} 3056}
2271 3057
2272static void 3058static void
2273once_cb_to (EV_P_ ev_timer *w, int revents) 3059once_cb_to (EV_P_ ev_timer *w, int revents)
2274{ 3060{
2275 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3061 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3062
3063 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2276} 3064}
2277 3065
2278void 3066void
2279ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3067ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2280{ 3068{
2302 ev_timer_set (&once->to, timeout, 0.); 3090 ev_timer_set (&once->to, timeout, 0.);
2303 ev_timer_start (EV_A_ &once->to); 3091 ev_timer_start (EV_A_ &once->to);
2304 } 3092 }
2305} 3093}
2306 3094
3095#if EV_MULTIPLICITY
3096 #include "ev_wrap.h"
3097#endif
3098
2307#ifdef __cplusplus 3099#ifdef __cplusplus
2308} 3100}
2309#endif 3101#endif
2310 3102

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines