ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.176 by root, Tue Dec 11 04:31:55 2007 UTC vs.
Revision 1.289 by root, Sat Jun 6 11:13:16 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
43# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
46# endif 67# endif
47# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
49# endif 70# endif
50# else 71# else
51# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
53# endif 74# endif
54# ifndef EV_USE_REALTIME 75# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 76# define EV_USE_REALTIME 0
77# endif
78# endif
79
80# ifndef EV_USE_NANOSLEEP
81# if HAVE_NANOSLEEP
82# define EV_USE_NANOSLEEP 1
83# else
84# define EV_USE_NANOSLEEP 0
56# endif 85# endif
57# endif 86# endif
58 87
59# ifndef EV_USE_SELECT 88# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 89# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 131# else
103# define EV_USE_INOTIFY 0 132# define EV_USE_INOTIFY 0
104# endif 133# endif
105# endif 134# endif
106 135
136# ifndef EV_USE_EVENTFD
137# if HAVE_EVENTFD
138# define EV_USE_EVENTFD 1
139# else
140# define EV_USE_EVENTFD 0
141# endif
142# endif
143
107#endif 144#endif
108 145
109#include <math.h> 146#include <math.h>
110#include <stdlib.h> 147#include <stdlib.h>
111#include <fcntl.h> 148#include <fcntl.h>
129#ifndef _WIN32 166#ifndef _WIN32
130# include <sys/time.h> 167# include <sys/time.h>
131# include <sys/wait.h> 168# include <sys/wait.h>
132# include <unistd.h> 169# include <unistd.h>
133#else 170#else
171# include <io.h>
134# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 173# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
138# endif 176# endif
139#endif 177#endif
140 178
141/**/ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
142 188
143#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
144# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
145#endif 195#endif
146 196
147#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
199#endif
200
201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
205# define EV_USE_NANOSLEEP 0
206# endif
149#endif 207#endif
150 208
151#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
153#endif 211#endif
159# define EV_USE_POLL 1 217# define EV_USE_POLL 1
160# endif 218# endif
161#endif 219#endif
162 220
163#ifndef EV_USE_EPOLL 221#ifndef EV_USE_EPOLL
222# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
223# define EV_USE_EPOLL 1
224# else
164# define EV_USE_EPOLL 0 225# define EV_USE_EPOLL 0
226# endif
165#endif 227#endif
166 228
167#ifndef EV_USE_KQUEUE 229#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 230# define EV_USE_KQUEUE 0
169#endif 231#endif
171#ifndef EV_USE_PORT 233#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 234# define EV_USE_PORT 0
173#endif 235#endif
174 236
175#ifndef EV_USE_INOTIFY 237#ifndef EV_USE_INOTIFY
238# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
239# define EV_USE_INOTIFY 1
240# else
176# define EV_USE_INOTIFY 0 241# define EV_USE_INOTIFY 0
242# endif
177#endif 243#endif
178 244
179#ifndef EV_PID_HASHSIZE 245#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 246# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 247# define EV_PID_HASHSIZE 1
190# else 256# else
191# define EV_INOTIFY_HASHSIZE 16 257# define EV_INOTIFY_HASHSIZE 16
192# endif 258# endif
193#endif 259#endif
194 260
195/**/ 261#ifndef EV_USE_EVENTFD
262# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
263# define EV_USE_EVENTFD 1
264# else
265# define EV_USE_EVENTFD 0
266# endif
267#endif
268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 288
197#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
200#endif 292#endif
202#ifndef CLOCK_REALTIME 294#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 295# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 296# define EV_USE_REALTIME 0
205#endif 297#endif
206 298
299#if !EV_STAT_ENABLE
300# undef EV_USE_INOTIFY
301# define EV_USE_INOTIFY 0
302#endif
303
304#if !EV_USE_NANOSLEEP
305# ifndef _WIN32
306# include <sys/select.h>
307# endif
308#endif
309
310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
319#endif
320
207#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 322# include <winsock.h>
209#endif 323#endif
210 324
211#if !EV_STAT_ENABLE 325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
212# define EV_USE_INOTIFY 0 331# define EV_USE_MONOTONIC 1
332#endif
333
334#if EV_USE_EVENTFD
335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
336# include <stdint.h>
337# ifdef __cplusplus
338extern "C" {
213#endif 339# endif
214 340int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 341# ifdef __cplusplus
216# include <sys/inotify.h> 342}
343# endif
217#endif 344#endif
218 345
219/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
220 353
221/* 354/*
222 * This is used to avoid floating point rounding problems. 355 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 356 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 357 * to ensure progress, time-wise, even when rounding
225 * errors are against us. 358 * errors are against us.
226 * This value is good at least till the year 4000 359 * This value is good at least till the year 4000.
227 * and intervals up to 20 years.
228 * Better solutions welcome. 360 * Better solutions welcome.
229 */ 361 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 362#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231 363
232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 364#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 365#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 366/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
235 367
236#if __GNUC__ >= 3 368#if __GNUC__ >= 4
237# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
238# define noinline __attribute__ ((noinline)) 370# define noinline __attribute__ ((noinline))
239#else 371#else
240# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
241# define noinline 373# define noinline
242# if __STDC_VERSION__ < 199901L 374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
243# define inline 375# define inline
244# endif 376# endif
245#endif 377#endif
246 378
247#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
262 394
263typedef ev_watcher *W; 395typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
266 398
399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
410#endif
268 411
269#ifdef _WIN32 412#ifdef _WIN32
270# include "ev_win32.c" 413# include "ev_win32.c"
271#endif 414#endif
272 415
279{ 422{
280 syserr_cb = cb; 423 syserr_cb = cb;
281} 424}
282 425
283static void noinline 426static void noinline
284syserr (const char *msg) 427ev_syserr (const char *msg)
285{ 428{
286 if (!msg) 429 if (!msg)
287 msg = "(libev) system error"; 430 msg = "(libev) system error";
288 431
289 if (syserr_cb) 432 if (syserr_cb)
293 perror (msg); 436 perror (msg);
294 abort (); 437 abort ();
295 } 438 }
296} 439}
297 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
298static void *(*alloc)(void *ptr, long size); 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
299 457
300void 458void
301ev_set_allocator (void *(*cb)(void *ptr, long size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
302{ 460{
303 alloc = cb; 461 alloc = cb;
304} 462}
305 463
306inline_speed void * 464inline_speed void *
307ev_realloc (void *ptr, long size) 465ev_realloc (void *ptr, long size)
308{ 466{
309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 467 ptr = alloc (ptr, size);
310 468
311 if (!ptr && size) 469 if (!ptr && size)
312 { 470 {
313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
314 abort (); 472 abort ();
320#define ev_malloc(size) ev_realloc (0, (size)) 478#define ev_malloc(size) ev_realloc (0, (size))
321#define ev_free(ptr) ev_realloc ((ptr), 0) 479#define ev_free(ptr) ev_realloc ((ptr), 0)
322 480
323/*****************************************************************************/ 481/*****************************************************************************/
324 482
483/* file descriptor info structure */
325typedef struct 484typedef struct
326{ 485{
327 WL head; 486 WL head;
328 unsigned char events; 487 unsigned char events; /* the events watched for */
488 unsigned char reify; /* flag set when this ANFD needs reification */
489 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
329 unsigned char reify; 490 unsigned char unused;
491#if EV_USE_EPOLL
492 unsigned int egen; /* generation counter to counter epoll bugs */
493#endif
330#if EV_SELECT_IS_WINSOCKET 494#if EV_SELECT_IS_WINSOCKET
331 SOCKET handle; 495 SOCKET handle;
332#endif 496#endif
333} ANFD; 497} ANFD;
334 498
499/* stores the pending event set for a given watcher */
335typedef struct 500typedef struct
336{ 501{
337 W w; 502 W w;
338 int events; 503 int events; /* the pending event set for the given watcher */
339} ANPENDING; 504} ANPENDING;
340 505
341#if EV_USE_INOTIFY 506#if EV_USE_INOTIFY
507/* hash table entry per inotify-id */
342typedef struct 508typedef struct
343{ 509{
344 WL head; 510 WL head;
345} ANFS; 511} ANFS;
512#endif
513
514/* Heap Entry */
515#if EV_HEAP_CACHE_AT
516 /* a heap element */
517 typedef struct {
518 ev_tstamp at;
519 WT w;
520 } ANHE;
521
522 #define ANHE_w(he) (he).w /* access watcher, read-write */
523 #define ANHE_at(he) (he).at /* access cached at, read-only */
524 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
525#else
526 /* a heap element */
527 typedef WT ANHE;
528
529 #define ANHE_w(he) (he)
530 #define ANHE_at(he) (he)->at
531 #define ANHE_at_cache(he)
346#endif 532#endif
347 533
348#if EV_MULTIPLICITY 534#if EV_MULTIPLICITY
349 535
350 struct ev_loop 536 struct ev_loop
375 561
376ev_tstamp 562ev_tstamp
377ev_time (void) 563ev_time (void)
378{ 564{
379#if EV_USE_REALTIME 565#if EV_USE_REALTIME
566 if (expect_true (have_realtime))
567 {
380 struct timespec ts; 568 struct timespec ts;
381 clock_gettime (CLOCK_REALTIME, &ts); 569 clock_gettime (CLOCK_REALTIME, &ts);
382 return ts.tv_sec + ts.tv_nsec * 1e-9; 570 return ts.tv_sec + ts.tv_nsec * 1e-9;
383#else 571 }
572#endif
573
384 struct timeval tv; 574 struct timeval tv;
385 gettimeofday (&tv, 0); 575 gettimeofday (&tv, 0);
386 return tv.tv_sec + tv.tv_usec * 1e-6; 576 return tv.tv_sec + tv.tv_usec * 1e-6;
387#endif
388} 577}
389 578
390ev_tstamp inline_size 579inline_size ev_tstamp
391get_clock (void) 580get_clock (void)
392{ 581{
393#if EV_USE_MONOTONIC 582#if EV_USE_MONOTONIC
394 if (expect_true (have_monotonic)) 583 if (expect_true (have_monotonic))
395 { 584 {
408{ 597{
409 return ev_rt_now; 598 return ev_rt_now;
410} 599}
411#endif 600#endif
412 601
413int inline_size 602void
603ev_sleep (ev_tstamp delay)
604{
605 if (delay > 0.)
606 {
607#if EV_USE_NANOSLEEP
608 struct timespec ts;
609
610 ts.tv_sec = (time_t)delay;
611 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
612
613 nanosleep (&ts, 0);
614#elif defined(_WIN32)
615 Sleep ((unsigned long)(delay * 1e3));
616#else
617 struct timeval tv;
618
619 tv.tv_sec = (time_t)delay;
620 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
621
622 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
623 /* somehting nto guaranteed by newer posix versions, but guaranteed */
624 /* by older ones */
625 select (0, 0, 0, 0, &tv);
626#endif
627 }
628}
629
630/*****************************************************************************/
631
632#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
633
634/* find a suitable new size for the given array, */
635/* hopefully by rounding to a ncie-to-malloc size */
636inline_size int
414array_nextsize (int elem, int cur, int cnt) 637array_nextsize (int elem, int cur, int cnt)
415{ 638{
416 int ncur = cur + 1; 639 int ncur = cur + 1;
417 640
418 do 641 do
419 ncur <<= 1; 642 ncur <<= 1;
420 while (cnt > ncur); 643 while (cnt > ncur);
421 644
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 645 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096) 646 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
424 { 647 {
425 ncur *= elem; 648 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 649 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
427 ncur = ncur - sizeof (void *) * 4; 650 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem; 651 ncur /= elem;
429 } 652 }
430 653
431 return ncur; 654 return ncur;
435array_realloc (int elem, void *base, int *cur, int cnt) 658array_realloc (int elem, void *base, int *cur, int cnt)
436{ 659{
437 *cur = array_nextsize (elem, *cur, cnt); 660 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur); 661 return ev_realloc (base, elem * *cur);
439} 662}
663
664#define array_init_zero(base,count) \
665 memset ((void *)(base), 0, sizeof (*(base)) * (count))
440 666
441#define array_needsize(type,base,cur,cnt,init) \ 667#define array_needsize(type,base,cur,cnt,init) \
442 if (expect_false ((cnt) > (cur))) \ 668 if (expect_false ((cnt) > (cur))) \
443 { \ 669 { \
444 int ocur_ = (cur); \ 670 int ocur_ = (cur); \
456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 682 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
457 } 683 }
458#endif 684#endif
459 685
460#define array_free(stem, idx) \ 686#define array_free(stem, idx) \
461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 687 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
462 688
463/*****************************************************************************/ 689/*****************************************************************************/
690
691/* dummy callback for pending events */
692static void noinline
693pendingcb (EV_P_ ev_prepare *w, int revents)
694{
695}
464 696
465void noinline 697void noinline
466ev_feed_event (EV_P_ void *w, int revents) 698ev_feed_event (EV_P_ void *w, int revents)
467{ 699{
468 W w_ = (W)w; 700 W w_ = (W)w;
477 pendings [pri][w_->pending - 1].w = w_; 709 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents; 710 pendings [pri][w_->pending - 1].events = revents;
479 } 711 }
480} 712}
481 713
482void inline_size 714inline_speed void
715feed_reverse (EV_P_ W w)
716{
717 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
718 rfeeds [rfeedcnt++] = w;
719}
720
721inline_size void
722feed_reverse_done (EV_P_ int revents)
723{
724 do
725 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
726 while (rfeedcnt);
727}
728
729inline_speed void
483queue_events (EV_P_ W *events, int eventcnt, int type) 730queue_events (EV_P_ W *events, int eventcnt, int type)
484{ 731{
485 int i; 732 int i;
486 733
487 for (i = 0; i < eventcnt; ++i) 734 for (i = 0; i < eventcnt; ++i)
488 ev_feed_event (EV_A_ events [i], type); 735 ev_feed_event (EV_A_ events [i], type);
489} 736}
490 737
491/*****************************************************************************/ 738/*****************************************************************************/
492 739
493void inline_size 740inline_speed void
494anfds_init (ANFD *base, int count)
495{
496 while (count--)
497 {
498 base->head = 0;
499 base->events = EV_NONE;
500 base->reify = 0;
501
502 ++base;
503 }
504}
505
506void inline_speed
507fd_event (EV_P_ int fd, int revents) 741fd_event (EV_P_ int fd, int revents)
508{ 742{
509 ANFD *anfd = anfds + fd; 743 ANFD *anfd = anfds + fd;
510 ev_io *w; 744 ev_io *w;
511 745
523{ 757{
524 if (fd >= 0 && fd < anfdmax) 758 if (fd >= 0 && fd < anfdmax)
525 fd_event (EV_A_ fd, revents); 759 fd_event (EV_A_ fd, revents);
526} 760}
527 761
528void inline_size 762/* make sure the external fd watch events are in-sync */
763/* with the kernel/libev internal state */
764inline_size void
529fd_reify (EV_P) 765fd_reify (EV_P)
530{ 766{
531 int i; 767 int i;
532 768
533 for (i = 0; i < fdchangecnt; ++i) 769 for (i = 0; i < fdchangecnt; ++i)
534 { 770 {
535 int fd = fdchanges [i]; 771 int fd = fdchanges [i];
536 ANFD *anfd = anfds + fd; 772 ANFD *anfd = anfds + fd;
537 ev_io *w; 773 ev_io *w;
538 774
539 int events = 0; 775 unsigned char events = 0;
540 776
541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 777 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
542 events |= w->events; 778 events |= (unsigned char)w->events;
543 779
544#if EV_SELECT_IS_WINSOCKET 780#if EV_SELECT_IS_WINSOCKET
545 if (events) 781 if (events)
546 { 782 {
547 unsigned long argp; 783 unsigned long arg;
784 #ifdef EV_FD_TO_WIN32_HANDLE
785 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
786 #else
548 anfd->handle = _get_osfhandle (fd); 787 anfd->handle = _get_osfhandle (fd);
788 #endif
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 789 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
550 } 790 }
551#endif 791#endif
552 792
793 {
794 unsigned char o_events = anfd->events;
795 unsigned char o_reify = anfd->reify;
796
553 anfd->reify = 0; 797 anfd->reify = 0;
554
555 backend_modify (EV_A_ fd, anfd->events, events);
556 anfd->events = events; 798 anfd->events = events;
799
800 if (o_events != events || o_reify & EV__IOFDSET)
801 backend_modify (EV_A_ fd, o_events, events);
802 }
557 } 803 }
558 804
559 fdchangecnt = 0; 805 fdchangecnt = 0;
560} 806}
561 807
562void inline_size 808/* something about the given fd changed */
809inline_size void
563fd_change (EV_P_ int fd) 810fd_change (EV_P_ int fd, int flags)
564{ 811{
565 if (expect_false (anfds [fd].reify)) 812 unsigned char reify = anfds [fd].reify;
566 return;
567
568 anfds [fd].reify = 1; 813 anfds [fd].reify |= flags;
569 814
815 if (expect_true (!reify))
816 {
570 ++fdchangecnt; 817 ++fdchangecnt;
571 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 818 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
572 fdchanges [fdchangecnt - 1] = fd; 819 fdchanges [fdchangecnt - 1] = fd;
820 }
573} 821}
574 822
575void inline_speed 823/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
824inline_speed void
576fd_kill (EV_P_ int fd) 825fd_kill (EV_P_ int fd)
577{ 826{
578 ev_io *w; 827 ev_io *w;
579 828
580 while ((w = (ev_io *)anfds [fd].head)) 829 while ((w = (ev_io *)anfds [fd].head))
582 ev_io_stop (EV_A_ w); 831 ev_io_stop (EV_A_ w);
583 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 832 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
584 } 833 }
585} 834}
586 835
587int inline_size 836/* check whether the given fd is atcually valid, for error recovery */
837inline_size int
588fd_valid (int fd) 838fd_valid (int fd)
589{ 839{
590#ifdef _WIN32 840#ifdef _WIN32
591 return _get_osfhandle (fd) != -1; 841 return _get_osfhandle (fd) != -1;
592#else 842#else
600{ 850{
601 int fd; 851 int fd;
602 852
603 for (fd = 0; fd < anfdmax; ++fd) 853 for (fd = 0; fd < anfdmax; ++fd)
604 if (anfds [fd].events) 854 if (anfds [fd].events)
605 if (!fd_valid (fd) == -1 && errno == EBADF) 855 if (!fd_valid (fd) && errno == EBADF)
606 fd_kill (EV_A_ fd); 856 fd_kill (EV_A_ fd);
607} 857}
608 858
609/* called on ENOMEM in select/poll to kill some fds and retry */ 859/* called on ENOMEM in select/poll to kill some fds and retry */
610static void noinline 860static void noinline
628 878
629 for (fd = 0; fd < anfdmax; ++fd) 879 for (fd = 0; fd < anfdmax; ++fd)
630 if (anfds [fd].events) 880 if (anfds [fd].events)
631 { 881 {
632 anfds [fd].events = 0; 882 anfds [fd].events = 0;
883 anfds [fd].emask = 0;
633 fd_change (EV_A_ fd); 884 fd_change (EV_A_ fd, EV__IOFDSET | 1);
634 } 885 }
635} 886}
636 887
637/*****************************************************************************/ 888/*****************************************************************************/
638 889
639void inline_speed 890/*
640upheap (WT *heap, int k) 891 * the heap functions want a real array index. array index 0 uis guaranteed to not
641{ 892 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
642 WT w = heap [k]; 893 * the branching factor of the d-tree.
894 */
643 895
644 while (k && heap [k >> 1]->at > w->at) 896/*
645 { 897 * at the moment we allow libev the luxury of two heaps,
646 heap [k] = heap [k >> 1]; 898 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
647 ((W)heap [k])->active = k + 1; 899 * which is more cache-efficient.
648 k >>= 1; 900 * the difference is about 5% with 50000+ watchers.
649 } 901 */
902#if EV_USE_4HEAP
650 903
651 heap [k] = w; 904#define DHEAP 4
652 ((W)heap [k])->active = k + 1; 905#define HEAP0 (DHEAP - 1) /* index of first element in heap */
906#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
907#define UPHEAP_DONE(p,k) ((p) == (k))
653 908
654} 909/* away from the root */
655 910inline_speed void
656void inline_speed
657downheap (WT *heap, int N, int k) 911downheap (ANHE *heap, int N, int k)
658{ 912{
659 WT w = heap [k]; 913 ANHE he = heap [k];
914 ANHE *E = heap + N + HEAP0;
660 915
661 while (k < (N >> 1)) 916 for (;;)
662 { 917 {
663 int j = k << 1; 918 ev_tstamp minat;
919 ANHE *minpos;
920 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
664 921
665 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 922 /* find minimum child */
923 if (expect_true (pos + DHEAP - 1 < E))
666 ++j; 924 {
667 925 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
668 if (w->at <= heap [j]->at) 926 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
927 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
928 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
929 }
930 else if (pos < E)
931 {
932 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
933 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
934 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
935 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
936 }
937 else
669 break; 938 break;
670 939
940 if (ANHE_at (he) <= minat)
941 break;
942
943 heap [k] = *minpos;
944 ev_active (ANHE_w (*minpos)) = k;
945
946 k = minpos - heap;
947 }
948
949 heap [k] = he;
950 ev_active (ANHE_w (he)) = k;
951}
952
953#else /* 4HEAP */
954
955#define HEAP0 1
956#define HPARENT(k) ((k) >> 1)
957#define UPHEAP_DONE(p,k) (!(p))
958
959/* away from the root */
960inline_speed void
961downheap (ANHE *heap, int N, int k)
962{
963 ANHE he = heap [k];
964
965 for (;;)
966 {
967 int c = k << 1;
968
969 if (c > N + HEAP0 - 1)
970 break;
971
972 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
973 ? 1 : 0;
974
975 if (ANHE_at (he) <= ANHE_at (heap [c]))
976 break;
977
671 heap [k] = heap [j]; 978 heap [k] = heap [c];
672 ((W)heap [k])->active = k + 1; 979 ev_active (ANHE_w (heap [k])) = k;
980
673 k = j; 981 k = c;
674 } 982 }
675 983
676 heap [k] = w; 984 heap [k] = he;
677 ((W)heap [k])->active = k + 1; 985 ev_active (ANHE_w (he)) = k;
678} 986}
987#endif
679 988
680void inline_size 989/* towards the root */
990inline_speed void
991upheap (ANHE *heap, int k)
992{
993 ANHE he = heap [k];
994
995 for (;;)
996 {
997 int p = HPARENT (k);
998
999 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1000 break;
1001
1002 heap [k] = heap [p];
1003 ev_active (ANHE_w (heap [k])) = k;
1004 k = p;
1005 }
1006
1007 heap [k] = he;
1008 ev_active (ANHE_w (he)) = k;
1009}
1010
1011/* move an element suitably so it is in a correct place */
1012inline_size void
681adjustheap (WT *heap, int N, int k) 1013adjustheap (ANHE *heap, int N, int k)
682{ 1014{
1015 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
683 upheap (heap, k); 1016 upheap (heap, k);
1017 else
684 downheap (heap, N, k); 1018 downheap (heap, N, k);
1019}
1020
1021/* rebuild the heap: this function is used only once and executed rarely */
1022inline_size void
1023reheap (ANHE *heap, int N)
1024{
1025 int i;
1026
1027 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1028 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1029 for (i = 0; i < N; ++i)
1030 upheap (heap, i + HEAP0);
685} 1031}
686 1032
687/*****************************************************************************/ 1033/*****************************************************************************/
688 1034
1035/* associate signal watchers to a signal signal */
689typedef struct 1036typedef struct
690{ 1037{
691 WL head; 1038 WL head;
692 sig_atomic_t volatile gotsig; 1039 EV_ATOMIC_T gotsig;
693} ANSIG; 1040} ANSIG;
694 1041
695static ANSIG *signals; 1042static ANSIG *signals;
696static int signalmax; 1043static int signalmax;
697 1044
698static int sigpipe [2]; 1045static EV_ATOMIC_T gotsig;
699static sig_atomic_t volatile gotsig;
700static ev_io sigev;
701 1046
702void inline_size 1047/*****************************************************************************/
703signals_init (ANSIG *base, int count)
704{
705 while (count--)
706 {
707 base->head = 0;
708 base->gotsig = 0;
709 1048
710 ++base; 1049/* used to prepare libev internal fd's */
711 } 1050/* this is not fork-safe */
712} 1051inline_speed void
713
714static void
715sighandler (int signum)
716{
717#if _WIN32
718 signal (signum, sighandler);
719#endif
720
721 signals [signum - 1].gotsig = 1;
722
723 if (!gotsig)
724 {
725 int old_errno = errno;
726 gotsig = 1;
727 write (sigpipe [1], &signum, 1);
728 errno = old_errno;
729 }
730}
731
732void noinline
733ev_feed_signal_event (EV_P_ int signum)
734{
735 WL w;
736
737#if EV_MULTIPLICITY
738 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
739#endif
740
741 --signum;
742
743 if (signum < 0 || signum >= signalmax)
744 return;
745
746 signals [signum].gotsig = 0;
747
748 for (w = signals [signum].head; w; w = w->next)
749 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
750}
751
752static void
753sigcb (EV_P_ ev_io *iow, int revents)
754{
755 int signum;
756
757 read (sigpipe [0], &revents, 1);
758 gotsig = 0;
759
760 for (signum = signalmax; signum--; )
761 if (signals [signum].gotsig)
762 ev_feed_signal_event (EV_A_ signum + 1);
763}
764
765void inline_speed
766fd_intern (int fd) 1052fd_intern (int fd)
767{ 1053{
768#ifdef _WIN32 1054#ifdef _WIN32
769 int arg = 1; 1055 unsigned long arg = 1;
770 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1056 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
771#else 1057#else
772 fcntl (fd, F_SETFD, FD_CLOEXEC); 1058 fcntl (fd, F_SETFD, FD_CLOEXEC);
773 fcntl (fd, F_SETFL, O_NONBLOCK); 1059 fcntl (fd, F_SETFL, O_NONBLOCK);
774#endif 1060#endif
775} 1061}
776 1062
777static void noinline 1063static void noinline
778siginit (EV_P) 1064evpipe_init (EV_P)
779{ 1065{
1066 if (!ev_is_active (&pipe_w))
1067 {
1068#if EV_USE_EVENTFD
1069 if ((evfd = eventfd (0, 0)) >= 0)
1070 {
1071 evpipe [0] = -1;
1072 fd_intern (evfd);
1073 ev_io_set (&pipe_w, evfd, EV_READ);
1074 }
1075 else
1076#endif
1077 {
1078 while (pipe (evpipe))
1079 ev_syserr ("(libev) error creating signal/async pipe");
1080
780 fd_intern (sigpipe [0]); 1081 fd_intern (evpipe [0]);
781 fd_intern (sigpipe [1]); 1082 fd_intern (evpipe [1]);
1083 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1084 }
782 1085
783 ev_io_set (&sigev, sigpipe [0], EV_READ);
784 ev_io_start (EV_A_ &sigev); 1086 ev_io_start (EV_A_ &pipe_w);
785 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1087 ev_unref (EV_A); /* watcher should not keep loop alive */
1088 }
1089}
1090
1091inline_size void
1092evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1093{
1094 if (!*flag)
1095 {
1096 int old_errno = errno; /* save errno because write might clobber it */
1097
1098 *flag = 1;
1099
1100#if EV_USE_EVENTFD
1101 if (evfd >= 0)
1102 {
1103 uint64_t counter = 1;
1104 write (evfd, &counter, sizeof (uint64_t));
1105 }
1106 else
1107#endif
1108 write (evpipe [1], &old_errno, 1);
1109
1110 errno = old_errno;
1111 }
1112}
1113
1114/* called whenever the libev signal pipe */
1115/* got some events (signal, async) */
1116static void
1117pipecb (EV_P_ ev_io *iow, int revents)
1118{
1119#if EV_USE_EVENTFD
1120 if (evfd >= 0)
1121 {
1122 uint64_t counter;
1123 read (evfd, &counter, sizeof (uint64_t));
1124 }
1125 else
1126#endif
1127 {
1128 char dummy;
1129 read (evpipe [0], &dummy, 1);
1130 }
1131
1132 if (gotsig && ev_is_default_loop (EV_A))
1133 {
1134 int signum;
1135 gotsig = 0;
1136
1137 for (signum = signalmax; signum--; )
1138 if (signals [signum].gotsig)
1139 ev_feed_signal_event (EV_A_ signum + 1);
1140 }
1141
1142#if EV_ASYNC_ENABLE
1143 if (gotasync)
1144 {
1145 int i;
1146 gotasync = 0;
1147
1148 for (i = asynccnt; i--; )
1149 if (asyncs [i]->sent)
1150 {
1151 asyncs [i]->sent = 0;
1152 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1153 }
1154 }
1155#endif
786} 1156}
787 1157
788/*****************************************************************************/ 1158/*****************************************************************************/
789 1159
1160static void
1161ev_sighandler (int signum)
1162{
1163#if EV_MULTIPLICITY
1164 struct ev_loop *loop = &default_loop_struct;
1165#endif
1166
1167#if _WIN32
1168 signal (signum, ev_sighandler);
1169#endif
1170
1171 signals [signum - 1].gotsig = 1;
1172 evpipe_write (EV_A_ &gotsig);
1173}
1174
1175void noinline
1176ev_feed_signal_event (EV_P_ int signum)
1177{
1178 WL w;
1179
1180#if EV_MULTIPLICITY
1181 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1182#endif
1183
1184 --signum;
1185
1186 if (signum < 0 || signum >= signalmax)
1187 return;
1188
1189 signals [signum].gotsig = 0;
1190
1191 for (w = signals [signum].head; w; w = w->next)
1192 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1193}
1194
1195/*****************************************************************************/
1196
790static ev_child *childs [EV_PID_HASHSIZE]; 1197static WL childs [EV_PID_HASHSIZE];
791 1198
792#ifndef _WIN32 1199#ifndef _WIN32
793 1200
794static ev_signal childev; 1201static ev_signal childev;
795 1202
796void inline_speed 1203#ifndef WIFCONTINUED
1204# define WIFCONTINUED(status) 0
1205#endif
1206
1207/* handle a single child status event */
1208inline_speed void
797child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1209child_reap (EV_P_ int chain, int pid, int status)
798{ 1210{
799 ev_child *w; 1211 ev_child *w;
1212 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
800 1213
801 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1214 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1215 {
802 if (w->pid == pid || !w->pid) 1216 if ((w->pid == pid || !w->pid)
1217 && (!traced || (w->flags & 1)))
803 { 1218 {
804 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1219 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
805 w->rpid = pid; 1220 w->rpid = pid;
806 w->rstatus = status; 1221 w->rstatus = status;
807 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1222 ev_feed_event (EV_A_ (W)w, EV_CHILD);
808 } 1223 }
1224 }
809} 1225}
810 1226
811#ifndef WCONTINUED 1227#ifndef WCONTINUED
812# define WCONTINUED 0 1228# define WCONTINUED 0
813#endif 1229#endif
814 1230
1231/* called on sigchld etc., calls waitpid */
815static void 1232static void
816childcb (EV_P_ ev_signal *sw, int revents) 1233childcb (EV_P_ ev_signal *sw, int revents)
817{ 1234{
818 int pid, status; 1235 int pid, status;
819 1236
822 if (!WCONTINUED 1239 if (!WCONTINUED
823 || errno != EINVAL 1240 || errno != EINVAL
824 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1241 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
825 return; 1242 return;
826 1243
827 /* make sure we are called again until all childs have been reaped */ 1244 /* make sure we are called again until all children have been reaped */
828 /* we need to do it this way so that the callback gets called before we continue */ 1245 /* we need to do it this way so that the callback gets called before we continue */
829 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1246 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
830 1247
831 child_reap (EV_A_ sw, pid, pid, status); 1248 child_reap (EV_A_ pid, pid, status);
832 if (EV_PID_HASHSIZE > 1) 1249 if (EV_PID_HASHSIZE > 1)
833 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1250 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
834} 1251}
835 1252
836#endif 1253#endif
837 1254
838/*****************************************************************************/ 1255/*****************************************************************************/
900 /* kqueue is borked on everything but netbsd apparently */ 1317 /* kqueue is borked on everything but netbsd apparently */
901 /* it usually doesn't work correctly on anything but sockets and pipes */ 1318 /* it usually doesn't work correctly on anything but sockets and pipes */
902 flags &= ~EVBACKEND_KQUEUE; 1319 flags &= ~EVBACKEND_KQUEUE;
903#endif 1320#endif
904#ifdef __APPLE__ 1321#ifdef __APPLE__
905 // flags &= ~EVBACKEND_KQUEUE; for documentation 1322 /* only select works correctly on that "unix-certified" platform */
906 flags &= ~EVBACKEND_POLL; 1323 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1324 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
907#endif 1325#endif
908 1326
909 return flags; 1327 return flags;
910} 1328}
911 1329
912unsigned int 1330unsigned int
913ev_embeddable_backends (void) 1331ev_embeddable_backends (void)
914{ 1332{
915 return EVBACKEND_EPOLL 1333 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
916 | EVBACKEND_KQUEUE 1334
917 | EVBACKEND_PORT; 1335 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1336 /* please fix it and tell me how to detect the fix */
1337 flags &= ~EVBACKEND_EPOLL;
1338
1339 return flags;
918} 1340}
919 1341
920unsigned int 1342unsigned int
921ev_backend (EV_P) 1343ev_backend (EV_P)
922{ 1344{
927ev_loop_count (EV_P) 1349ev_loop_count (EV_P)
928{ 1350{
929 return loop_count; 1351 return loop_count;
930} 1352}
931 1353
1354void
1355ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1356{
1357 io_blocktime = interval;
1358}
1359
1360void
1361ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1362{
1363 timeout_blocktime = interval;
1364}
1365
1366/* initialise a loop structure, must be zero-initialised */
932static void noinline 1367static void noinline
933loop_init (EV_P_ unsigned int flags) 1368loop_init (EV_P_ unsigned int flags)
934{ 1369{
935 if (!backend) 1370 if (!backend)
936 { 1371 {
1372#if EV_USE_REALTIME
1373 if (!have_realtime)
1374 {
1375 struct timespec ts;
1376
1377 if (!clock_gettime (CLOCK_REALTIME, &ts))
1378 have_realtime = 1;
1379 }
1380#endif
1381
937#if EV_USE_MONOTONIC 1382#if EV_USE_MONOTONIC
1383 if (!have_monotonic)
938 { 1384 {
939 struct timespec ts; 1385 struct timespec ts;
1386
940 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1387 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
941 have_monotonic = 1; 1388 have_monotonic = 1;
942 } 1389 }
943#endif 1390#endif
944 1391
945 ev_rt_now = ev_time (); 1392 ev_rt_now = ev_time ();
946 mn_now = get_clock (); 1393 mn_now = get_clock ();
947 now_floor = mn_now; 1394 now_floor = mn_now;
948 rtmn_diff = ev_rt_now - mn_now; 1395 rtmn_diff = ev_rt_now - mn_now;
1396
1397 io_blocktime = 0.;
1398 timeout_blocktime = 0.;
1399 backend = 0;
1400 backend_fd = -1;
1401 gotasync = 0;
1402#if EV_USE_INOTIFY
1403 fs_fd = -2;
1404#endif
949 1405
950 /* pid check not overridable via env */ 1406 /* pid check not overridable via env */
951#ifndef _WIN32 1407#ifndef _WIN32
952 if (flags & EVFLAG_FORKCHECK) 1408 if (flags & EVFLAG_FORKCHECK)
953 curpid = getpid (); 1409 curpid = getpid ();
956 if (!(flags & EVFLAG_NOENV) 1412 if (!(flags & EVFLAG_NOENV)
957 && !enable_secure () 1413 && !enable_secure ()
958 && getenv ("LIBEV_FLAGS")) 1414 && getenv ("LIBEV_FLAGS"))
959 flags = atoi (getenv ("LIBEV_FLAGS")); 1415 flags = atoi (getenv ("LIBEV_FLAGS"));
960 1416
961 if (!(flags & 0x0000ffffUL)) 1417 if (!(flags & 0x0000ffffU))
962 flags |= ev_recommended_backends (); 1418 flags |= ev_recommended_backends ();
963
964 backend = 0;
965 backend_fd = -1;
966#if EV_USE_INOTIFY
967 fs_fd = -2;
968#endif
969 1419
970#if EV_USE_PORT 1420#if EV_USE_PORT
971 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1421 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
972#endif 1422#endif
973#if EV_USE_KQUEUE 1423#if EV_USE_KQUEUE
981#endif 1431#endif
982#if EV_USE_SELECT 1432#if EV_USE_SELECT
983 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1433 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
984#endif 1434#endif
985 1435
1436 ev_prepare_init (&pending_w, pendingcb);
1437
986 ev_init (&sigev, sigcb); 1438 ev_init (&pipe_w, pipecb);
987 ev_set_priority (&sigev, EV_MAXPRI); 1439 ev_set_priority (&pipe_w, EV_MAXPRI);
988 } 1440 }
989} 1441}
990 1442
1443/* free up a loop structure */
991static void noinline 1444static void noinline
992loop_destroy (EV_P) 1445loop_destroy (EV_P)
993{ 1446{
994 int i; 1447 int i;
1448
1449 if (ev_is_active (&pipe_w))
1450 {
1451 ev_ref (EV_A); /* signal watcher */
1452 ev_io_stop (EV_A_ &pipe_w);
1453
1454#if EV_USE_EVENTFD
1455 if (evfd >= 0)
1456 close (evfd);
1457#endif
1458
1459 if (evpipe [0] >= 0)
1460 {
1461 close (evpipe [0]);
1462 close (evpipe [1]);
1463 }
1464 }
995 1465
996#if EV_USE_INOTIFY 1466#if EV_USE_INOTIFY
997 if (fs_fd >= 0) 1467 if (fs_fd >= 0)
998 close (fs_fd); 1468 close (fs_fd);
999#endif 1469#endif
1023#if EV_IDLE_ENABLE 1493#if EV_IDLE_ENABLE
1024 array_free (idle, [i]); 1494 array_free (idle, [i]);
1025#endif 1495#endif
1026 } 1496 }
1027 1497
1498 ev_free (anfds); anfdmax = 0;
1499
1028 /* have to use the microsoft-never-gets-it-right macro */ 1500 /* have to use the microsoft-never-gets-it-right macro */
1501 array_free (rfeed, EMPTY);
1029 array_free (fdchange, EMPTY); 1502 array_free (fdchange, EMPTY);
1030 array_free (timer, EMPTY); 1503 array_free (timer, EMPTY);
1031#if EV_PERIODIC_ENABLE 1504#if EV_PERIODIC_ENABLE
1032 array_free (periodic, EMPTY); 1505 array_free (periodic, EMPTY);
1033#endif 1506#endif
1507#if EV_FORK_ENABLE
1508 array_free (fork, EMPTY);
1509#endif
1034 array_free (prepare, EMPTY); 1510 array_free (prepare, EMPTY);
1035 array_free (check, EMPTY); 1511 array_free (check, EMPTY);
1512#if EV_ASYNC_ENABLE
1513 array_free (async, EMPTY);
1514#endif
1036 1515
1037 backend = 0; 1516 backend = 0;
1038} 1517}
1039 1518
1519#if EV_USE_INOTIFY
1040void inline_size infy_fork (EV_P); 1520inline_size void infy_fork (EV_P);
1521#endif
1041 1522
1042void inline_size 1523inline_size void
1043loop_fork (EV_P) 1524loop_fork (EV_P)
1044{ 1525{
1045#if EV_USE_PORT 1526#if EV_USE_PORT
1046 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1527 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1047#endif 1528#endif
1053#endif 1534#endif
1054#if EV_USE_INOTIFY 1535#if EV_USE_INOTIFY
1055 infy_fork (EV_A); 1536 infy_fork (EV_A);
1056#endif 1537#endif
1057 1538
1058 if (ev_is_active (&sigev)) 1539 if (ev_is_active (&pipe_w))
1059 { 1540 {
1060 /* default loop */ 1541 /* this "locks" the handlers against writing to the pipe */
1542 /* while we modify the fd vars */
1543 gotsig = 1;
1544#if EV_ASYNC_ENABLE
1545 gotasync = 1;
1546#endif
1061 1547
1062 ev_ref (EV_A); 1548 ev_ref (EV_A);
1063 ev_io_stop (EV_A_ &sigev); 1549 ev_io_stop (EV_A_ &pipe_w);
1550
1551#if EV_USE_EVENTFD
1552 if (evfd >= 0)
1553 close (evfd);
1554#endif
1555
1556 if (evpipe [0] >= 0)
1557 {
1064 close (sigpipe [0]); 1558 close (evpipe [0]);
1065 close (sigpipe [1]); 1559 close (evpipe [1]);
1560 }
1066 1561
1067 while (pipe (sigpipe))
1068 syserr ("(libev) error creating pipe");
1069
1070 siginit (EV_A); 1562 evpipe_init (EV_A);
1563 /* now iterate over everything, in case we missed something */
1564 pipecb (EV_A_ &pipe_w, EV_READ);
1071 } 1565 }
1072 1566
1073 postfork = 0; 1567 postfork = 0;
1074} 1568}
1075 1569
1076#if EV_MULTIPLICITY 1570#if EV_MULTIPLICITY
1571
1077struct ev_loop * 1572struct ev_loop *
1078ev_loop_new (unsigned int flags) 1573ev_loop_new (unsigned int flags)
1079{ 1574{
1080 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1575 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1081 1576
1097} 1592}
1098 1593
1099void 1594void
1100ev_loop_fork (EV_P) 1595ev_loop_fork (EV_P)
1101{ 1596{
1102 postfork = 1; 1597 postfork = 1; /* must be in line with ev_default_fork */
1103} 1598}
1104 1599
1600#if EV_VERIFY
1601static void noinline
1602verify_watcher (EV_P_ W w)
1603{
1604 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1605
1606 if (w->pending)
1607 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1608}
1609
1610static void noinline
1611verify_heap (EV_P_ ANHE *heap, int N)
1612{
1613 int i;
1614
1615 for (i = HEAP0; i < N + HEAP0; ++i)
1616 {
1617 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1618 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1619 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1620
1621 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1622 }
1623}
1624
1625static void noinline
1626array_verify (EV_P_ W *ws, int cnt)
1627{
1628 while (cnt--)
1629 {
1630 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1631 verify_watcher (EV_A_ ws [cnt]);
1632 }
1633}
1634#endif
1635
1636void
1637ev_loop_verify (EV_P)
1638{
1639#if EV_VERIFY
1640 int i;
1641 WL w;
1642
1643 assert (activecnt >= -1);
1644
1645 assert (fdchangemax >= fdchangecnt);
1646 for (i = 0; i < fdchangecnt; ++i)
1647 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1648
1649 assert (anfdmax >= 0);
1650 for (i = 0; i < anfdmax; ++i)
1651 for (w = anfds [i].head; w; w = w->next)
1652 {
1653 verify_watcher (EV_A_ (W)w);
1654 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1655 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1656 }
1657
1658 assert (timermax >= timercnt);
1659 verify_heap (EV_A_ timers, timercnt);
1660
1661#if EV_PERIODIC_ENABLE
1662 assert (periodicmax >= periodiccnt);
1663 verify_heap (EV_A_ periodics, periodiccnt);
1664#endif
1665
1666 for (i = NUMPRI; i--; )
1667 {
1668 assert (pendingmax [i] >= pendingcnt [i]);
1669#if EV_IDLE_ENABLE
1670 assert (idleall >= 0);
1671 assert (idlemax [i] >= idlecnt [i]);
1672 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1673#endif
1674 }
1675
1676#if EV_FORK_ENABLE
1677 assert (forkmax >= forkcnt);
1678 array_verify (EV_A_ (W *)forks, forkcnt);
1679#endif
1680
1681#if EV_ASYNC_ENABLE
1682 assert (asyncmax >= asynccnt);
1683 array_verify (EV_A_ (W *)asyncs, asynccnt);
1684#endif
1685
1686 assert (preparemax >= preparecnt);
1687 array_verify (EV_A_ (W *)prepares, preparecnt);
1688
1689 assert (checkmax >= checkcnt);
1690 array_verify (EV_A_ (W *)checks, checkcnt);
1691
1692# if 0
1693 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1694 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1105#endif 1695# endif
1696#endif
1697}
1698
1699#endif /* multiplicity */
1106 1700
1107#if EV_MULTIPLICITY 1701#if EV_MULTIPLICITY
1108struct ev_loop * 1702struct ev_loop *
1109ev_default_loop_init (unsigned int flags) 1703ev_default_loop_init (unsigned int flags)
1110#else 1704#else
1111int 1705int
1112ev_default_loop (unsigned int flags) 1706ev_default_loop (unsigned int flags)
1113#endif 1707#endif
1114{ 1708{
1115 if (sigpipe [0] == sigpipe [1])
1116 if (pipe (sigpipe))
1117 return 0;
1118
1119 if (!ev_default_loop_ptr) 1709 if (!ev_default_loop_ptr)
1120 { 1710 {
1121#if EV_MULTIPLICITY 1711#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1712 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1123#else 1713#else
1126 1716
1127 loop_init (EV_A_ flags); 1717 loop_init (EV_A_ flags);
1128 1718
1129 if (ev_backend (EV_A)) 1719 if (ev_backend (EV_A))
1130 { 1720 {
1131 siginit (EV_A);
1132
1133#ifndef _WIN32 1721#ifndef _WIN32
1134 ev_signal_init (&childev, childcb, SIGCHLD); 1722 ev_signal_init (&childev, childcb, SIGCHLD);
1135 ev_set_priority (&childev, EV_MAXPRI); 1723 ev_set_priority (&childev, EV_MAXPRI);
1136 ev_signal_start (EV_A_ &childev); 1724 ev_signal_start (EV_A_ &childev);
1137 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1725 ev_unref (EV_A); /* child watcher should not keep loop alive */
1149{ 1737{
1150#if EV_MULTIPLICITY 1738#if EV_MULTIPLICITY
1151 struct ev_loop *loop = ev_default_loop_ptr; 1739 struct ev_loop *loop = ev_default_loop_ptr;
1152#endif 1740#endif
1153 1741
1742 ev_default_loop_ptr = 0;
1743
1154#ifndef _WIN32 1744#ifndef _WIN32
1155 ev_ref (EV_A); /* child watcher */ 1745 ev_ref (EV_A); /* child watcher */
1156 ev_signal_stop (EV_A_ &childev); 1746 ev_signal_stop (EV_A_ &childev);
1157#endif 1747#endif
1158 1748
1159 ev_ref (EV_A); /* signal watcher */
1160 ev_io_stop (EV_A_ &sigev);
1161
1162 close (sigpipe [0]); sigpipe [0] = 0;
1163 close (sigpipe [1]); sigpipe [1] = 0;
1164
1165 loop_destroy (EV_A); 1749 loop_destroy (EV_A);
1166} 1750}
1167 1751
1168void 1752void
1169ev_default_fork (void) 1753ev_default_fork (void)
1170{ 1754{
1171#if EV_MULTIPLICITY 1755#if EV_MULTIPLICITY
1172 struct ev_loop *loop = ev_default_loop_ptr; 1756 struct ev_loop *loop = ev_default_loop_ptr;
1173#endif 1757#endif
1174 1758
1175 if (backend) 1759 postfork = 1; /* must be in line with ev_loop_fork */
1176 postfork = 1;
1177} 1760}
1178 1761
1179/*****************************************************************************/ 1762/*****************************************************************************/
1180 1763
1181void 1764void
1182ev_invoke (EV_P_ void *w, int revents) 1765ev_invoke (EV_P_ void *w, int revents)
1183{ 1766{
1184 EV_CB_INVOKE ((W)w, revents); 1767 EV_CB_INVOKE ((W)w, revents);
1185} 1768}
1186 1769
1187void inline_speed 1770inline_speed void
1188call_pending (EV_P) 1771call_pending (EV_P)
1189{ 1772{
1190 int pri; 1773 int pri;
1191 1774
1192 for (pri = NUMPRI; pri--; ) 1775 for (pri = NUMPRI; pri--; )
1193 while (pendingcnt [pri]) 1776 while (pendingcnt [pri])
1194 { 1777 {
1195 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1778 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1196 1779
1197 if (expect_true (p->w))
1198 {
1199 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1780 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1781 /* ^ this is no longer true, as pending_w could be here */
1200 1782
1201 p->w->pending = 0; 1783 p->w->pending = 0;
1202 EV_CB_INVOKE (p->w, p->events); 1784 EV_CB_INVOKE (p->w, p->events);
1203 } 1785 EV_FREQUENT_CHECK;
1204 } 1786 }
1205} 1787}
1206 1788
1207void inline_size
1208timers_reify (EV_P)
1209{
1210 while (timercnt && ((WT)timers [0])->at <= mn_now)
1211 {
1212 ev_timer *w = timers [0];
1213
1214 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1215
1216 /* first reschedule or stop timer */
1217 if (w->repeat)
1218 {
1219 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1220
1221 ((WT)w)->at += w->repeat;
1222 if (((WT)w)->at < mn_now)
1223 ((WT)w)->at = mn_now;
1224
1225 downheap ((WT *)timers, timercnt, 0);
1226 }
1227 else
1228 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1229
1230 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1231 }
1232}
1233
1234#if EV_PERIODIC_ENABLE
1235void inline_size
1236periodics_reify (EV_P)
1237{
1238 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1239 {
1240 ev_periodic *w = periodics [0];
1241
1242 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1243
1244 /* first reschedule or stop timer */
1245 if (w->reschedule_cb)
1246 {
1247 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1248 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1249 downheap ((WT *)periodics, periodiccnt, 0);
1250 }
1251 else if (w->interval)
1252 {
1253 ((WT)w)->at = w->offset + floor ((ev_rt_now + TIME_EPSILON - w->offset) / w->interval + 1.) * w->interval;
1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1255 downheap ((WT *)periodics, periodiccnt, 0);
1256 }
1257 else
1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1259
1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1261 }
1262}
1263
1264static void noinline
1265periodics_reschedule (EV_P)
1266{
1267 int i;
1268
1269 /* adjust periodics after time jump */
1270 for (i = 0; i < periodiccnt; ++i)
1271 {
1272 ev_periodic *w = periodics [i];
1273
1274 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1276 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 }
1279
1280 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i);
1283}
1284#endif
1285
1286#if EV_IDLE_ENABLE 1789#if EV_IDLE_ENABLE
1287void inline_size 1790/* make idle watchers pending. this handles the "call-idle */
1791/* only when higher priorities are idle" logic */
1792inline_size void
1288idle_reify (EV_P) 1793idle_reify (EV_P)
1289{ 1794{
1290 if (expect_false (idleall)) 1795 if (expect_false (idleall))
1291 { 1796 {
1292 int pri; 1797 int pri;
1304 } 1809 }
1305 } 1810 }
1306} 1811}
1307#endif 1812#endif
1308 1813
1309int inline_size 1814/* make timers pending */
1310time_update_monotonic (EV_P) 1815inline_size void
1816timers_reify (EV_P)
1311{ 1817{
1818 EV_FREQUENT_CHECK;
1819
1820 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1821 {
1822 do
1823 {
1824 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1825
1826 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1827
1828 /* first reschedule or stop timer */
1829 if (w->repeat)
1830 {
1831 ev_at (w) += w->repeat;
1832 if (ev_at (w) < mn_now)
1833 ev_at (w) = mn_now;
1834
1835 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1836
1837 ANHE_at_cache (timers [HEAP0]);
1838 downheap (timers, timercnt, HEAP0);
1839 }
1840 else
1841 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1842
1843 EV_FREQUENT_CHECK;
1844 feed_reverse (EV_A_ (W)w);
1845 }
1846 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1847
1848 feed_reverse_done (EV_A_ EV_TIMEOUT);
1849 }
1850}
1851
1852#if EV_PERIODIC_ENABLE
1853/* make periodics pending */
1854inline_size void
1855periodics_reify (EV_P)
1856{
1857 EV_FREQUENT_CHECK;
1858
1859 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1860 {
1861 int feed_count = 0;
1862
1863 do
1864 {
1865 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1866
1867 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1868
1869 /* first reschedule or stop timer */
1870 if (w->reschedule_cb)
1871 {
1872 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1873
1874 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1875
1876 ANHE_at_cache (periodics [HEAP0]);
1877 downheap (periodics, periodiccnt, HEAP0);
1878 }
1879 else if (w->interval)
1880 {
1881 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1882 /* if next trigger time is not sufficiently in the future, put it there */
1883 /* this might happen because of floating point inexactness */
1884 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1885 {
1886 ev_at (w) += w->interval;
1887
1888 /* if interval is unreasonably low we might still have a time in the past */
1889 /* so correct this. this will make the periodic very inexact, but the user */
1890 /* has effectively asked to get triggered more often than possible */
1891 if (ev_at (w) < ev_rt_now)
1892 ev_at (w) = ev_rt_now;
1893 }
1894
1895 ANHE_at_cache (periodics [HEAP0]);
1896 downheap (periodics, periodiccnt, HEAP0);
1897 }
1898 else
1899 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1900
1901 EV_FREQUENT_CHECK;
1902 feed_reverse (EV_A_ (W)w);
1903 }
1904 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1905
1906 feed_reverse_done (EV_A_ EV_PERIODIC);
1907 }
1908}
1909
1910/* simply recalculate all periodics */
1911/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1912static void noinline
1913periodics_reschedule (EV_P)
1914{
1915 int i;
1916
1917 /* adjust periodics after time jump */
1918 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1919 {
1920 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1921
1922 if (w->reschedule_cb)
1923 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1924 else if (w->interval)
1925 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1926
1927 ANHE_at_cache (periodics [i]);
1928 }
1929
1930 reheap (periodics, periodiccnt);
1931}
1932#endif
1933
1934/* adjust all timers by a given offset */
1935static void noinline
1936timers_reschedule (EV_P_ ev_tstamp adjust)
1937{
1938 int i;
1939
1940 for (i = 0; i < timercnt; ++i)
1941 {
1942 ANHE *he = timers + i + HEAP0;
1943 ANHE_w (*he)->at += adjust;
1944 ANHE_at_cache (*he);
1945 }
1946}
1947
1948/* fetch new monotonic and realtime times from the kernel */
1949/* also detetc if there was a timejump, and act accordingly */
1950inline_speed void
1951time_update (EV_P_ ev_tstamp max_block)
1952{
1953#if EV_USE_MONOTONIC
1954 if (expect_true (have_monotonic))
1955 {
1956 int i;
1957 ev_tstamp odiff = rtmn_diff;
1958
1312 mn_now = get_clock (); 1959 mn_now = get_clock ();
1313 1960
1961 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1962 /* interpolate in the meantime */
1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1963 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1315 { 1964 {
1316 ev_rt_now = rtmn_diff + mn_now; 1965 ev_rt_now = rtmn_diff + mn_now;
1317 return 0; 1966 return;
1318 } 1967 }
1319 else 1968
1320 {
1321 now_floor = mn_now; 1969 now_floor = mn_now;
1322 ev_rt_now = ev_time (); 1970 ev_rt_now = ev_time ();
1323 return 1;
1324 }
1325}
1326 1971
1327void inline_size 1972 /* loop a few times, before making important decisions.
1328time_update (EV_P) 1973 * on the choice of "4": one iteration isn't enough,
1329{ 1974 * in case we get preempted during the calls to
1330 int i; 1975 * ev_time and get_clock. a second call is almost guaranteed
1331 1976 * to succeed in that case, though. and looping a few more times
1332#if EV_USE_MONOTONIC 1977 * doesn't hurt either as we only do this on time-jumps or
1333 if (expect_true (have_monotonic)) 1978 * in the unlikely event of having been preempted here.
1334 { 1979 */
1335 if (time_update_monotonic (EV_A)) 1980 for (i = 4; --i; )
1336 { 1981 {
1337 ev_tstamp odiff = rtmn_diff;
1338
1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1348 {
1349 rtmn_diff = ev_rt_now - mn_now; 1982 rtmn_diff = ev_rt_now - mn_now;
1350 1983
1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1984 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1352 return; /* all is well */ 1985 return; /* all is well */
1353 1986
1354 ev_rt_now = ev_time (); 1987 ev_rt_now = ev_time ();
1355 mn_now = get_clock (); 1988 mn_now = get_clock ();
1356 now_floor = mn_now; 1989 now_floor = mn_now;
1357 } 1990 }
1358 1991
1992 /* no timer adjustment, as the monotonic clock doesn't jump */
1993 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1359# if EV_PERIODIC_ENABLE 1994# if EV_PERIODIC_ENABLE
1360 periodics_reschedule (EV_A); 1995 periodics_reschedule (EV_A);
1361# endif 1996# endif
1362 /* no timer adjustment, as the monotonic clock doesn't jump */
1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1364 }
1365 } 1997 }
1366 else 1998 else
1367#endif 1999#endif
1368 { 2000 {
1369 ev_rt_now = ev_time (); 2001 ev_rt_now = ev_time ();
1370 2002
1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2003 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 { 2004 {
2005 /* adjust timers. this is easy, as the offset is the same for all of them */
2006 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1373#if EV_PERIODIC_ENABLE 2007#if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 2008 periodics_reschedule (EV_A);
1375#endif 2009#endif
1376
1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i)
1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1380 } 2010 }
1381 2011
1382 mn_now = ev_rt_now; 2012 mn_now = ev_rt_now;
1383 } 2013 }
1384} 2014}
1385 2015
1386void
1387ev_ref (EV_P)
1388{
1389 ++activecnt;
1390}
1391
1392void
1393ev_unref (EV_P)
1394{
1395 --activecnt;
1396}
1397
1398static int loop_done; 2016static int loop_done;
1399 2017
1400void 2018void
1401ev_loop (EV_P_ int flags) 2019ev_loop (EV_P_ int flags)
1402{ 2020{
1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2021 loop_done = EVUNLOOP_CANCEL;
1404 ? EVUNLOOP_ONE
1405 : EVUNLOOP_CANCEL;
1406 2022
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2023 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1408 2024
1409 do 2025 do
1410 { 2026 {
2027#if EV_VERIFY >= 2
2028 ev_loop_verify (EV_A);
2029#endif
2030
1411#ifndef _WIN32 2031#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */ 2032 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid)) 2033 if (expect_false (getpid () != curpid))
1414 { 2034 {
1415 curpid = getpid (); 2035 curpid = getpid ();
1432 { 2052 {
1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2053 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1434 call_pending (EV_A); 2054 call_pending (EV_A);
1435 } 2055 }
1436 2056
1437 if (expect_false (!activecnt))
1438 break;
1439
1440 /* we might have forked, so reify kernel state if necessary */ 2057 /* we might have forked, so reify kernel state if necessary */
1441 if (expect_false (postfork)) 2058 if (expect_false (postfork))
1442 loop_fork (EV_A); 2059 loop_fork (EV_A);
1443 2060
1444 /* update fd-related kernel structures */ 2061 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 2062 fd_reify (EV_A);
1446 2063
1447 /* calculate blocking time */ 2064 /* calculate blocking time */
1448 { 2065 {
1449 ev_tstamp block; 2066 ev_tstamp waittime = 0.;
2067 ev_tstamp sleeptime = 0.;
1450 2068
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2069 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 2070 {
1455 /* update time to cancel out callback processing overhead */ 2071 /* update time to cancel out callback processing overhead */
1456#if EV_USE_MONOTONIC
1457 if (expect_true (have_monotonic))
1458 time_update_monotonic (EV_A); 2072 time_update (EV_A_ 1e100);
1459 else
1460#endif
1461 {
1462 ev_rt_now = ev_time ();
1463 mn_now = ev_rt_now;
1464 }
1465 2073
1466 block = MAX_BLOCKTIME; 2074 waittime = MAX_BLOCKTIME;
1467 2075
1468 if (timercnt) 2076 if (timercnt)
1469 { 2077 {
1470 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2078 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1471 if (block > to) block = to; 2079 if (waittime > to) waittime = to;
1472 } 2080 }
1473 2081
1474#if EV_PERIODIC_ENABLE 2082#if EV_PERIODIC_ENABLE
1475 if (periodiccnt) 2083 if (periodiccnt)
1476 { 2084 {
1477 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2085 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1478 if (block > to) block = to; 2086 if (waittime > to) waittime = to;
1479 } 2087 }
1480#endif 2088#endif
1481 2089
1482 if (expect_false (block < 0.)) block = 0.; 2090 if (expect_false (waittime < timeout_blocktime))
2091 waittime = timeout_blocktime;
2092
2093 sleeptime = waittime - backend_fudge;
2094
2095 if (expect_true (sleeptime > io_blocktime))
2096 sleeptime = io_blocktime;
2097
2098 if (sleeptime)
2099 {
2100 ev_sleep (sleeptime);
2101 waittime -= sleeptime;
2102 }
1483 } 2103 }
1484 2104
1485 ++loop_count; 2105 ++loop_count;
1486 backend_poll (EV_A_ block); 2106 backend_poll (EV_A_ waittime);
2107
2108 /* update ev_rt_now, do magic */
2109 time_update (EV_A_ waittime + sleeptime);
1487 } 2110 }
1488
1489 /* update ev_rt_now, do magic */
1490 time_update (EV_A);
1491 2111
1492 /* queue pending timers and reschedule them */ 2112 /* queue pending timers and reschedule them */
1493 timers_reify (EV_A); /* relative timers called last */ 2113 timers_reify (EV_A); /* relative timers called last */
1494#if EV_PERIODIC_ENABLE 2114#if EV_PERIODIC_ENABLE
1495 periodics_reify (EV_A); /* absolute timers called first */ 2115 periodics_reify (EV_A); /* absolute timers called first */
1503 /* queue check watchers, to be executed first */ 2123 /* queue check watchers, to be executed first */
1504 if (expect_false (checkcnt)) 2124 if (expect_false (checkcnt))
1505 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2125 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1506 2126
1507 call_pending (EV_A); 2127 call_pending (EV_A);
1508
1509 } 2128 }
1510 while (expect_true (activecnt && !loop_done)); 2129 while (expect_true (
2130 activecnt
2131 && !loop_done
2132 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2133 ));
1511 2134
1512 if (loop_done == EVUNLOOP_ONE) 2135 if (loop_done == EVUNLOOP_ONE)
1513 loop_done = EVUNLOOP_CANCEL; 2136 loop_done = EVUNLOOP_CANCEL;
1514} 2137}
1515 2138
1517ev_unloop (EV_P_ int how) 2140ev_unloop (EV_P_ int how)
1518{ 2141{
1519 loop_done = how; 2142 loop_done = how;
1520} 2143}
1521 2144
2145void
2146ev_ref (EV_P)
2147{
2148 ++activecnt;
2149}
2150
2151void
2152ev_unref (EV_P)
2153{
2154 --activecnt;
2155}
2156
2157void
2158ev_now_update (EV_P)
2159{
2160 time_update (EV_A_ 1e100);
2161}
2162
2163void
2164ev_suspend (EV_P)
2165{
2166 ev_now_update (EV_A);
2167}
2168
2169void
2170ev_resume (EV_P)
2171{
2172 ev_tstamp mn_prev = mn_now;
2173
2174 ev_now_update (EV_A);
2175 timers_reschedule (EV_A_ mn_now - mn_prev);
2176#if EV_PERIODIC_ENABLE
2177 /* TODO: really do this? */
2178 periodics_reschedule (EV_A);
2179#endif
2180}
2181
1522/*****************************************************************************/ 2182/*****************************************************************************/
2183/* singly-linked list management, used when the expected list length is short */
1523 2184
1524void inline_size 2185inline_size void
1525wlist_add (WL *head, WL elem) 2186wlist_add (WL *head, WL elem)
1526{ 2187{
1527 elem->next = *head; 2188 elem->next = *head;
1528 *head = elem; 2189 *head = elem;
1529} 2190}
1530 2191
1531void inline_size 2192inline_size void
1532wlist_del (WL *head, WL elem) 2193wlist_del (WL *head, WL elem)
1533{ 2194{
1534 while (*head) 2195 while (*head)
1535 { 2196 {
1536 if (*head == elem) 2197 if (*head == elem)
1541 2202
1542 head = &(*head)->next; 2203 head = &(*head)->next;
1543 } 2204 }
1544} 2205}
1545 2206
1546void inline_speed 2207/* internal, faster, version of ev_clear_pending */
2208inline_speed void
1547clear_pending (EV_P_ W w) 2209clear_pending (EV_P_ W w)
1548{ 2210{
1549 if (w->pending) 2211 if (w->pending)
1550 { 2212 {
1551 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2213 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1552 w->pending = 0; 2214 w->pending = 0;
1553 } 2215 }
1554} 2216}
1555 2217
1556int 2218int
1560 int pending = w_->pending; 2222 int pending = w_->pending;
1561 2223
1562 if (expect_true (pending)) 2224 if (expect_true (pending))
1563 { 2225 {
1564 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2226 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2227 p->w = (W)&pending_w;
1565 w_->pending = 0; 2228 w_->pending = 0;
1566 p->w = 0;
1567 return p->events; 2229 return p->events;
1568 } 2230 }
1569 else 2231 else
1570 return 0; 2232 return 0;
1571} 2233}
1572 2234
1573void inline_size 2235inline_size void
1574pri_adjust (EV_P_ W w) 2236pri_adjust (EV_P_ W w)
1575{ 2237{
1576 int pri = w->priority; 2238 int pri = w->priority;
1577 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2239 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1578 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2240 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1579 w->priority = pri; 2241 w->priority = pri;
1580} 2242}
1581 2243
1582void inline_speed 2244inline_speed void
1583ev_start (EV_P_ W w, int active) 2245ev_start (EV_P_ W w, int active)
1584{ 2246{
1585 pri_adjust (EV_A_ w); 2247 pri_adjust (EV_A_ w);
1586 w->active = active; 2248 w->active = active;
1587 ev_ref (EV_A); 2249 ev_ref (EV_A);
1588} 2250}
1589 2251
1590void inline_size 2252inline_size void
1591ev_stop (EV_P_ W w) 2253ev_stop (EV_P_ W w)
1592{ 2254{
1593 ev_unref (EV_A); 2255 ev_unref (EV_A);
1594 w->active = 0; 2256 w->active = 0;
1595} 2257}
1602 int fd = w->fd; 2264 int fd = w->fd;
1603 2265
1604 if (expect_false (ev_is_active (w))) 2266 if (expect_false (ev_is_active (w)))
1605 return; 2267 return;
1606 2268
1607 assert (("ev_io_start called with negative fd", fd >= 0)); 2269 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2270 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2271
2272 EV_FREQUENT_CHECK;
1608 2273
1609 ev_start (EV_A_ (W)w, 1); 2274 ev_start (EV_A_ (W)w, 1);
1610 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2275 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1611 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2276 wlist_add (&anfds[fd].head, (WL)w);
1612 2277
1613 fd_change (EV_A_ fd); 2278 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
2279 w->events &= ~EV__IOFDSET;
2280
2281 EV_FREQUENT_CHECK;
1614} 2282}
1615 2283
1616void noinline 2284void noinline
1617ev_io_stop (EV_P_ ev_io *w) 2285ev_io_stop (EV_P_ ev_io *w)
1618{ 2286{
1619 clear_pending (EV_A_ (W)w); 2287 clear_pending (EV_A_ (W)w);
1620 if (expect_false (!ev_is_active (w))) 2288 if (expect_false (!ev_is_active (w)))
1621 return; 2289 return;
1622 2290
1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2291 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1624 2292
2293 EV_FREQUENT_CHECK;
2294
1625 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2295 wlist_del (&anfds[w->fd].head, (WL)w);
1626 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
1627 2297
1628 fd_change (EV_A_ w->fd); 2298 fd_change (EV_A_ w->fd, 1);
2299
2300 EV_FREQUENT_CHECK;
1629} 2301}
1630 2302
1631void noinline 2303void noinline
1632ev_timer_start (EV_P_ ev_timer *w) 2304ev_timer_start (EV_P_ ev_timer *w)
1633{ 2305{
1634 if (expect_false (ev_is_active (w))) 2306 if (expect_false (ev_is_active (w)))
1635 return; 2307 return;
1636 2308
1637 ((WT)w)->at += mn_now; 2309 ev_at (w) += mn_now;
1638 2310
1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2311 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1640 2312
2313 EV_FREQUENT_CHECK;
2314
2315 ++timercnt;
1641 ev_start (EV_A_ (W)w, ++timercnt); 2316 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1642 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2317 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1643 timers [timercnt - 1] = w; 2318 ANHE_w (timers [ev_active (w)]) = (WT)w;
1644 upheap ((WT *)timers, timercnt - 1); 2319 ANHE_at_cache (timers [ev_active (w)]);
2320 upheap (timers, ev_active (w));
1645 2321
2322 EV_FREQUENT_CHECK;
2323
1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2324 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1647} 2325}
1648 2326
1649void noinline 2327void noinline
1650ev_timer_stop (EV_P_ ev_timer *w) 2328ev_timer_stop (EV_P_ ev_timer *w)
1651{ 2329{
1652 clear_pending (EV_A_ (W)w); 2330 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 2331 if (expect_false (!ev_is_active (w)))
1654 return; 2332 return;
1655 2333
1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2334 EV_FREQUENT_CHECK;
1657 2335
1658 { 2336 {
1659 int active = ((W)w)->active; 2337 int active = ev_active (w);
1660 2338
2339 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2340
2341 --timercnt;
2342
1661 if (expect_true (--active < --timercnt)) 2343 if (expect_true (active < timercnt + HEAP0))
1662 { 2344 {
1663 timers [active] = timers [timercnt]; 2345 timers [active] = timers [timercnt + HEAP0];
1664 adjustheap ((WT *)timers, timercnt, active); 2346 adjustheap (timers, timercnt, active);
1665 } 2347 }
1666 } 2348 }
1667 2349
1668 ((WT)w)->at -= mn_now; 2350 EV_FREQUENT_CHECK;
2351
2352 ev_at (w) -= mn_now;
1669 2353
1670 ev_stop (EV_A_ (W)w); 2354 ev_stop (EV_A_ (W)w);
1671} 2355}
1672 2356
1673void noinline 2357void noinline
1674ev_timer_again (EV_P_ ev_timer *w) 2358ev_timer_again (EV_P_ ev_timer *w)
1675{ 2359{
2360 EV_FREQUENT_CHECK;
2361
1676 if (ev_is_active (w)) 2362 if (ev_is_active (w))
1677 { 2363 {
1678 if (w->repeat) 2364 if (w->repeat)
1679 { 2365 {
1680 ((WT)w)->at = mn_now + w->repeat; 2366 ev_at (w) = mn_now + w->repeat;
2367 ANHE_at_cache (timers [ev_active (w)]);
1681 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2368 adjustheap (timers, timercnt, ev_active (w));
1682 } 2369 }
1683 else 2370 else
1684 ev_timer_stop (EV_A_ w); 2371 ev_timer_stop (EV_A_ w);
1685 } 2372 }
1686 else if (w->repeat) 2373 else if (w->repeat)
1687 { 2374 {
1688 w->at = w->repeat; 2375 ev_at (w) = w->repeat;
1689 ev_timer_start (EV_A_ w); 2376 ev_timer_start (EV_A_ w);
1690 } 2377 }
2378
2379 EV_FREQUENT_CHECK;
1691} 2380}
1692 2381
1693#if EV_PERIODIC_ENABLE 2382#if EV_PERIODIC_ENABLE
1694void noinline 2383void noinline
1695ev_periodic_start (EV_P_ ev_periodic *w) 2384ev_periodic_start (EV_P_ ev_periodic *w)
1696{ 2385{
1697 if (expect_false (ev_is_active (w))) 2386 if (expect_false (ev_is_active (w)))
1698 return; 2387 return;
1699 2388
1700 if (w->reschedule_cb) 2389 if (w->reschedule_cb)
1701 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2390 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1702 else if (w->interval) 2391 else if (w->interval)
1703 { 2392 {
1704 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2393 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1705 /* this formula differs from the one in periodic_reify because we do not always round up */ 2394 /* this formula differs from the one in periodic_reify because we do not always round up */
1706 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2395 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1707 } 2396 }
1708 else 2397 else
1709 ((WT)w)->at = w->offset; 2398 ev_at (w) = w->offset;
1710 2399
2400 EV_FREQUENT_CHECK;
2401
2402 ++periodiccnt;
1711 ev_start (EV_A_ (W)w, ++periodiccnt); 2403 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1712 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2404 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1713 periodics [periodiccnt - 1] = w; 2405 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1714 upheap ((WT *)periodics, periodiccnt - 1); 2406 ANHE_at_cache (periodics [ev_active (w)]);
2407 upheap (periodics, ev_active (w));
1715 2408
2409 EV_FREQUENT_CHECK;
2410
1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2411 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1717} 2412}
1718 2413
1719void noinline 2414void noinline
1720ev_periodic_stop (EV_P_ ev_periodic *w) 2415ev_periodic_stop (EV_P_ ev_periodic *w)
1721{ 2416{
1722 clear_pending (EV_A_ (W)w); 2417 clear_pending (EV_A_ (W)w);
1723 if (expect_false (!ev_is_active (w))) 2418 if (expect_false (!ev_is_active (w)))
1724 return; 2419 return;
1725 2420
1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2421 EV_FREQUENT_CHECK;
1727 2422
1728 { 2423 {
1729 int active = ((W)w)->active; 2424 int active = ev_active (w);
1730 2425
2426 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2427
2428 --periodiccnt;
2429
1731 if (expect_true (--active < --periodiccnt)) 2430 if (expect_true (active < periodiccnt + HEAP0))
1732 { 2431 {
1733 periodics [active] = periodics [periodiccnt]; 2432 periodics [active] = periodics [periodiccnt + HEAP0];
1734 adjustheap ((WT *)periodics, periodiccnt, active); 2433 adjustheap (periodics, periodiccnt, active);
1735 } 2434 }
1736 } 2435 }
2436
2437 EV_FREQUENT_CHECK;
1737 2438
1738 ev_stop (EV_A_ (W)w); 2439 ev_stop (EV_A_ (W)w);
1739} 2440}
1740 2441
1741void noinline 2442void noinline
1753 2454
1754void noinline 2455void noinline
1755ev_signal_start (EV_P_ ev_signal *w) 2456ev_signal_start (EV_P_ ev_signal *w)
1756{ 2457{
1757#if EV_MULTIPLICITY 2458#if EV_MULTIPLICITY
1758 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2459 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1759#endif 2460#endif
1760 if (expect_false (ev_is_active (w))) 2461 if (expect_false (ev_is_active (w)))
1761 return; 2462 return;
1762 2463
1763 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2464 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2465
2466 evpipe_init (EV_A);
2467
2468 EV_FREQUENT_CHECK;
2469
2470 {
2471#ifndef _WIN32
2472 sigset_t full, prev;
2473 sigfillset (&full);
2474 sigprocmask (SIG_SETMASK, &full, &prev);
2475#endif
2476
2477 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2478
2479#ifndef _WIN32
2480 sigprocmask (SIG_SETMASK, &prev, 0);
2481#endif
2482 }
1764 2483
1765 ev_start (EV_A_ (W)w, 1); 2484 ev_start (EV_A_ (W)w, 1);
1766 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1767 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2485 wlist_add (&signals [w->signum - 1].head, (WL)w);
1768 2486
1769 if (!((WL)w)->next) 2487 if (!((WL)w)->next)
1770 { 2488 {
1771#if _WIN32 2489#if _WIN32
1772 signal (w->signum, sighandler); 2490 signal (w->signum, ev_sighandler);
1773#else 2491#else
1774 struct sigaction sa; 2492 struct sigaction sa;
1775 sa.sa_handler = sighandler; 2493 sa.sa_handler = ev_sighandler;
1776 sigfillset (&sa.sa_mask); 2494 sigfillset (&sa.sa_mask);
1777 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2495 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1778 sigaction (w->signum, &sa, 0); 2496 sigaction (w->signum, &sa, 0);
1779#endif 2497#endif
1780 } 2498 }
2499
2500 EV_FREQUENT_CHECK;
1781} 2501}
1782 2502
1783void noinline 2503void noinline
1784ev_signal_stop (EV_P_ ev_signal *w) 2504ev_signal_stop (EV_P_ ev_signal *w)
1785{ 2505{
1786 clear_pending (EV_A_ (W)w); 2506 clear_pending (EV_A_ (W)w);
1787 if (expect_false (!ev_is_active (w))) 2507 if (expect_false (!ev_is_active (w)))
1788 return; 2508 return;
1789 2509
2510 EV_FREQUENT_CHECK;
2511
1790 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2512 wlist_del (&signals [w->signum - 1].head, (WL)w);
1791 ev_stop (EV_A_ (W)w); 2513 ev_stop (EV_A_ (W)w);
1792 2514
1793 if (!signals [w->signum - 1].head) 2515 if (!signals [w->signum - 1].head)
1794 signal (w->signum, SIG_DFL); 2516 signal (w->signum, SIG_DFL);
2517
2518 EV_FREQUENT_CHECK;
1795} 2519}
1796 2520
1797void 2521void
1798ev_child_start (EV_P_ ev_child *w) 2522ev_child_start (EV_P_ ev_child *w)
1799{ 2523{
1800#if EV_MULTIPLICITY 2524#if EV_MULTIPLICITY
1801 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2525 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1802#endif 2526#endif
1803 if (expect_false (ev_is_active (w))) 2527 if (expect_false (ev_is_active (w)))
1804 return; 2528 return;
1805 2529
2530 EV_FREQUENT_CHECK;
2531
1806 ev_start (EV_A_ (W)w, 1); 2532 ev_start (EV_A_ (W)w, 1);
1807 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2533 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2534
2535 EV_FREQUENT_CHECK;
1808} 2536}
1809 2537
1810void 2538void
1811ev_child_stop (EV_P_ ev_child *w) 2539ev_child_stop (EV_P_ ev_child *w)
1812{ 2540{
1813 clear_pending (EV_A_ (W)w); 2541 clear_pending (EV_A_ (W)w);
1814 if (expect_false (!ev_is_active (w))) 2542 if (expect_false (!ev_is_active (w)))
1815 return; 2543 return;
1816 2544
2545 EV_FREQUENT_CHECK;
2546
1817 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2547 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1818 ev_stop (EV_A_ (W)w); 2548 ev_stop (EV_A_ (W)w);
2549
2550 EV_FREQUENT_CHECK;
1819} 2551}
1820 2552
1821#if EV_STAT_ENABLE 2553#if EV_STAT_ENABLE
1822 2554
1823# ifdef _WIN32 2555# ifdef _WIN32
1824# undef lstat 2556# undef lstat
1825# define lstat(a,b) _stati64 (a,b) 2557# define lstat(a,b) _stati64 (a,b)
1826# endif 2558# endif
1827 2559
1828#define DEF_STAT_INTERVAL 5.0074891 2560#define DEF_STAT_INTERVAL 5.0074891
2561#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1829#define MIN_STAT_INTERVAL 0.1074891 2562#define MIN_STAT_INTERVAL 0.1074891
1830 2563
1831static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2564static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1832 2565
1833#if EV_USE_INOTIFY 2566#if EV_USE_INOTIFY
1834# define EV_INOTIFY_BUFSIZE 8192 2567# define EV_INOTIFY_BUFSIZE 8192
1838{ 2571{
1839 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2572 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1840 2573
1841 if (w->wd < 0) 2574 if (w->wd < 0)
1842 { 2575 {
2576 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1843 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2577 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1844 2578
1845 /* monitor some parent directory for speedup hints */ 2579 /* monitor some parent directory for speedup hints */
2580 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2581 /* but an efficiency issue only */
1846 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2582 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1847 { 2583 {
1848 char path [4096]; 2584 char path [4096];
1849 strcpy (path, w->path); 2585 strcpy (path, w->path);
1850 2586
1853 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2589 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1854 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2590 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1855 2591
1856 char *pend = strrchr (path, '/'); 2592 char *pend = strrchr (path, '/');
1857 2593
1858 if (!pend) 2594 if (!pend || pend == path)
1859 break; /* whoops, no '/', complain to your admin */ 2595 break;
1860 2596
1861 *pend = 0; 2597 *pend = 0;
1862 w->wd = inotify_add_watch (fs_fd, path, mask); 2598 w->wd = inotify_add_watch (fs_fd, path, mask);
1863 } 2599 }
1864 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2600 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1865 } 2601 }
1866 } 2602 }
1867 else
1868 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1869 2603
1870 if (w->wd >= 0) 2604 if (w->wd >= 0)
2605 {
1871 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2606 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2607
2608 /* now local changes will be tracked by inotify, but remote changes won't */
2609 /* unless the filesystem it known to be local, we therefore still poll */
2610 /* also do poll on <2.6.25, but with normal frequency */
2611 struct statfs sfs;
2612
2613 if (fs_2625 && !statfs (w->path, &sfs))
2614 if (sfs.f_type == 0x1373 /* devfs */
2615 || sfs.f_type == 0xEF53 /* ext2/3 */
2616 || sfs.f_type == 0x3153464a /* jfs */
2617 || sfs.f_type == 0x52654973 /* reiser3 */
2618 || sfs.f_type == 0x01021994 /* tempfs */
2619 || sfs.f_type == 0x58465342 /* xfs */)
2620 return;
2621
2622 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2623 ev_timer_again (EV_A_ &w->timer);
2624 }
1872} 2625}
1873 2626
1874static void noinline 2627static void noinline
1875infy_del (EV_P_ ev_stat *w) 2628infy_del (EV_P_ ev_stat *w)
1876{ 2629{
1890 2643
1891static void noinline 2644static void noinline
1892infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2645infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1893{ 2646{
1894 if (slot < 0) 2647 if (slot < 0)
1895 /* overflow, need to check for all hahs slots */ 2648 /* overflow, need to check for all hash slots */
1896 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2649 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1897 infy_wd (EV_A_ slot, wd, ev); 2650 infy_wd (EV_A_ slot, wd, ev);
1898 else 2651 else
1899 { 2652 {
1900 WL w_; 2653 WL w_;
1906 2659
1907 if (w->wd == wd || wd == -1) 2660 if (w->wd == wd || wd == -1)
1908 { 2661 {
1909 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2662 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1910 { 2663 {
2664 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1911 w->wd = -1; 2665 w->wd = -1;
1912 infy_add (EV_A_ w); /* re-add, no matter what */ 2666 infy_add (EV_A_ w); /* re-add, no matter what */
1913 } 2667 }
1914 2668
1915 stat_timer_cb (EV_A_ &w->timer, 0); 2669 stat_timer_cb (EV_A_ &w->timer, 0);
1928 2682
1929 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2683 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1930 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2684 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1931} 2685}
1932 2686
1933void inline_size 2687inline_size void
2688check_2625 (EV_P)
2689{
2690 /* kernels < 2.6.25 are borked
2691 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2692 */
2693 struct utsname buf;
2694 int major, minor, micro;
2695
2696 if (uname (&buf))
2697 return;
2698
2699 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2700 return;
2701
2702 if (major < 2
2703 || (major == 2 && minor < 6)
2704 || (major == 2 && minor == 6 && micro < 25))
2705 return;
2706
2707 fs_2625 = 1;
2708}
2709
2710inline_size void
1934infy_init (EV_P) 2711infy_init (EV_P)
1935{ 2712{
1936 if (fs_fd != -2) 2713 if (fs_fd != -2)
1937 return; 2714 return;
2715
2716 fs_fd = -1;
2717
2718 check_2625 (EV_A);
1938 2719
1939 fs_fd = inotify_init (); 2720 fs_fd = inotify_init ();
1940 2721
1941 if (fs_fd >= 0) 2722 if (fs_fd >= 0)
1942 { 2723 {
1944 ev_set_priority (&fs_w, EV_MAXPRI); 2725 ev_set_priority (&fs_w, EV_MAXPRI);
1945 ev_io_start (EV_A_ &fs_w); 2726 ev_io_start (EV_A_ &fs_w);
1946 } 2727 }
1947} 2728}
1948 2729
1949void inline_size 2730inline_size void
1950infy_fork (EV_P) 2731infy_fork (EV_P)
1951{ 2732{
1952 int slot; 2733 int slot;
1953 2734
1954 if (fs_fd < 0) 2735 if (fs_fd < 0)
1970 w->wd = -1; 2751 w->wd = -1;
1971 2752
1972 if (fs_fd >= 0) 2753 if (fs_fd >= 0)
1973 infy_add (EV_A_ w); /* re-add, no matter what */ 2754 infy_add (EV_A_ w); /* re-add, no matter what */
1974 else 2755 else
1975 ev_timer_start (EV_A_ &w->timer); 2756 ev_timer_again (EV_A_ &w->timer);
1976 } 2757 }
1977
1978 } 2758 }
1979} 2759}
1980 2760
2761#endif
2762
2763#ifdef _WIN32
2764# define EV_LSTAT(p,b) _stati64 (p, b)
2765#else
2766# define EV_LSTAT(p,b) lstat (p, b)
1981#endif 2767#endif
1982 2768
1983void 2769void
1984ev_stat_stat (EV_P_ ev_stat *w) 2770ev_stat_stat (EV_P_ ev_stat *w)
1985{ 2771{
2012 || w->prev.st_atime != w->attr.st_atime 2798 || w->prev.st_atime != w->attr.st_atime
2013 || w->prev.st_mtime != w->attr.st_mtime 2799 || w->prev.st_mtime != w->attr.st_mtime
2014 || w->prev.st_ctime != w->attr.st_ctime 2800 || w->prev.st_ctime != w->attr.st_ctime
2015 ) { 2801 ) {
2016 #if EV_USE_INOTIFY 2802 #if EV_USE_INOTIFY
2803 if (fs_fd >= 0)
2804 {
2017 infy_del (EV_A_ w); 2805 infy_del (EV_A_ w);
2018 infy_add (EV_A_ w); 2806 infy_add (EV_A_ w);
2019 ev_stat_stat (EV_A_ w); /* avoid race... */ 2807 ev_stat_stat (EV_A_ w); /* avoid race... */
2808 }
2020 #endif 2809 #endif
2021 2810
2022 ev_feed_event (EV_A_ w, EV_STAT); 2811 ev_feed_event (EV_A_ w, EV_STAT);
2023 } 2812 }
2024} 2813}
2027ev_stat_start (EV_P_ ev_stat *w) 2816ev_stat_start (EV_P_ ev_stat *w)
2028{ 2817{
2029 if (expect_false (ev_is_active (w))) 2818 if (expect_false (ev_is_active (w)))
2030 return; 2819 return;
2031 2820
2032 /* since we use memcmp, we need to clear any padding data etc. */
2033 memset (&w->prev, 0, sizeof (ev_statdata));
2034 memset (&w->attr, 0, sizeof (ev_statdata));
2035
2036 ev_stat_stat (EV_A_ w); 2821 ev_stat_stat (EV_A_ w);
2037 2822
2823 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2038 if (w->interval < MIN_STAT_INTERVAL) 2824 w->interval = MIN_STAT_INTERVAL;
2039 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2040 2825
2041 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2826 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2042 ev_set_priority (&w->timer, ev_priority (w)); 2827 ev_set_priority (&w->timer, ev_priority (w));
2043 2828
2044#if EV_USE_INOTIFY 2829#if EV_USE_INOTIFY
2045 infy_init (EV_A); 2830 infy_init (EV_A);
2046 2831
2047 if (fs_fd >= 0) 2832 if (fs_fd >= 0)
2048 infy_add (EV_A_ w); 2833 infy_add (EV_A_ w);
2049 else 2834 else
2050#endif 2835#endif
2051 ev_timer_start (EV_A_ &w->timer); 2836 ev_timer_again (EV_A_ &w->timer);
2052 2837
2053 ev_start (EV_A_ (W)w, 1); 2838 ev_start (EV_A_ (W)w, 1);
2839
2840 EV_FREQUENT_CHECK;
2054} 2841}
2055 2842
2056void 2843void
2057ev_stat_stop (EV_P_ ev_stat *w) 2844ev_stat_stop (EV_P_ ev_stat *w)
2058{ 2845{
2059 clear_pending (EV_A_ (W)w); 2846 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w))) 2847 if (expect_false (!ev_is_active (w)))
2061 return; 2848 return;
2062 2849
2850 EV_FREQUENT_CHECK;
2851
2063#if EV_USE_INOTIFY 2852#if EV_USE_INOTIFY
2064 infy_del (EV_A_ w); 2853 infy_del (EV_A_ w);
2065#endif 2854#endif
2066 ev_timer_stop (EV_A_ &w->timer); 2855 ev_timer_stop (EV_A_ &w->timer);
2067 2856
2068 ev_stop (EV_A_ (W)w); 2857 ev_stop (EV_A_ (W)w);
2858
2859 EV_FREQUENT_CHECK;
2069} 2860}
2070#endif 2861#endif
2071 2862
2072#if EV_IDLE_ENABLE 2863#if EV_IDLE_ENABLE
2073void 2864void
2075{ 2866{
2076 if (expect_false (ev_is_active (w))) 2867 if (expect_false (ev_is_active (w)))
2077 return; 2868 return;
2078 2869
2079 pri_adjust (EV_A_ (W)w); 2870 pri_adjust (EV_A_ (W)w);
2871
2872 EV_FREQUENT_CHECK;
2080 2873
2081 { 2874 {
2082 int active = ++idlecnt [ABSPRI (w)]; 2875 int active = ++idlecnt [ABSPRI (w)];
2083 2876
2084 ++idleall; 2877 ++idleall;
2085 ev_start (EV_A_ (W)w, active); 2878 ev_start (EV_A_ (W)w, active);
2086 2879
2087 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2880 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2088 idles [ABSPRI (w)][active - 1] = w; 2881 idles [ABSPRI (w)][active - 1] = w;
2089 } 2882 }
2883
2884 EV_FREQUENT_CHECK;
2090} 2885}
2091 2886
2092void 2887void
2093ev_idle_stop (EV_P_ ev_idle *w) 2888ev_idle_stop (EV_P_ ev_idle *w)
2094{ 2889{
2095 clear_pending (EV_A_ (W)w); 2890 clear_pending (EV_A_ (W)w);
2096 if (expect_false (!ev_is_active (w))) 2891 if (expect_false (!ev_is_active (w)))
2097 return; 2892 return;
2098 2893
2894 EV_FREQUENT_CHECK;
2895
2099 { 2896 {
2100 int active = ((W)w)->active; 2897 int active = ev_active (w);
2101 2898
2102 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2899 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2103 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2900 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2104 2901
2105 ev_stop (EV_A_ (W)w); 2902 ev_stop (EV_A_ (W)w);
2106 --idleall; 2903 --idleall;
2107 } 2904 }
2905
2906 EV_FREQUENT_CHECK;
2108} 2907}
2109#endif 2908#endif
2110 2909
2111void 2910void
2112ev_prepare_start (EV_P_ ev_prepare *w) 2911ev_prepare_start (EV_P_ ev_prepare *w)
2113{ 2912{
2114 if (expect_false (ev_is_active (w))) 2913 if (expect_false (ev_is_active (w)))
2115 return; 2914 return;
2915
2916 EV_FREQUENT_CHECK;
2116 2917
2117 ev_start (EV_A_ (W)w, ++preparecnt); 2918 ev_start (EV_A_ (W)w, ++preparecnt);
2118 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2919 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2119 prepares [preparecnt - 1] = w; 2920 prepares [preparecnt - 1] = w;
2921
2922 EV_FREQUENT_CHECK;
2120} 2923}
2121 2924
2122void 2925void
2123ev_prepare_stop (EV_P_ ev_prepare *w) 2926ev_prepare_stop (EV_P_ ev_prepare *w)
2124{ 2927{
2125 clear_pending (EV_A_ (W)w); 2928 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w))) 2929 if (expect_false (!ev_is_active (w)))
2127 return; 2930 return;
2128 2931
2932 EV_FREQUENT_CHECK;
2933
2129 { 2934 {
2130 int active = ((W)w)->active; 2935 int active = ev_active (w);
2936
2131 prepares [active - 1] = prepares [--preparecnt]; 2937 prepares [active - 1] = prepares [--preparecnt];
2132 ((W)prepares [active - 1])->active = active; 2938 ev_active (prepares [active - 1]) = active;
2133 } 2939 }
2134 2940
2135 ev_stop (EV_A_ (W)w); 2941 ev_stop (EV_A_ (W)w);
2942
2943 EV_FREQUENT_CHECK;
2136} 2944}
2137 2945
2138void 2946void
2139ev_check_start (EV_P_ ev_check *w) 2947ev_check_start (EV_P_ ev_check *w)
2140{ 2948{
2141 if (expect_false (ev_is_active (w))) 2949 if (expect_false (ev_is_active (w)))
2142 return; 2950 return;
2951
2952 EV_FREQUENT_CHECK;
2143 2953
2144 ev_start (EV_A_ (W)w, ++checkcnt); 2954 ev_start (EV_A_ (W)w, ++checkcnt);
2145 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2955 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2146 checks [checkcnt - 1] = w; 2956 checks [checkcnt - 1] = w;
2957
2958 EV_FREQUENT_CHECK;
2147} 2959}
2148 2960
2149void 2961void
2150ev_check_stop (EV_P_ ev_check *w) 2962ev_check_stop (EV_P_ ev_check *w)
2151{ 2963{
2152 clear_pending (EV_A_ (W)w); 2964 clear_pending (EV_A_ (W)w);
2153 if (expect_false (!ev_is_active (w))) 2965 if (expect_false (!ev_is_active (w)))
2154 return; 2966 return;
2155 2967
2968 EV_FREQUENT_CHECK;
2969
2156 { 2970 {
2157 int active = ((W)w)->active; 2971 int active = ev_active (w);
2972
2158 checks [active - 1] = checks [--checkcnt]; 2973 checks [active - 1] = checks [--checkcnt];
2159 ((W)checks [active - 1])->active = active; 2974 ev_active (checks [active - 1]) = active;
2160 } 2975 }
2161 2976
2162 ev_stop (EV_A_ (W)w); 2977 ev_stop (EV_A_ (W)w);
2978
2979 EV_FREQUENT_CHECK;
2163} 2980}
2164 2981
2165#if EV_EMBED_ENABLE 2982#if EV_EMBED_ENABLE
2166void noinline 2983void noinline
2167ev_embed_sweep (EV_P_ ev_embed *w) 2984ev_embed_sweep (EV_P_ ev_embed *w)
2168{ 2985{
2169 ev_loop (w->loop, EVLOOP_NONBLOCK); 2986 ev_loop (w->other, EVLOOP_NONBLOCK);
2170} 2987}
2171 2988
2172static void 2989static void
2173embed_cb (EV_P_ ev_io *io, int revents) 2990embed_io_cb (EV_P_ ev_io *io, int revents)
2174{ 2991{
2175 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2992 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2176 2993
2177 if (ev_cb (w)) 2994 if (ev_cb (w))
2178 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2995 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2179 else 2996 else
2180 ev_embed_sweep (loop, w); 2997 ev_loop (w->other, EVLOOP_NONBLOCK);
2181} 2998}
2999
3000static void
3001embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3002{
3003 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3004
3005 {
3006 struct ev_loop *loop = w->other;
3007
3008 while (fdchangecnt)
3009 {
3010 fd_reify (EV_A);
3011 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3012 }
3013 }
3014}
3015
3016static void
3017embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3018{
3019 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3020
3021 ev_embed_stop (EV_A_ w);
3022
3023 {
3024 struct ev_loop *loop = w->other;
3025
3026 ev_loop_fork (EV_A);
3027 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3028 }
3029
3030 ev_embed_start (EV_A_ w);
3031}
3032
3033#if 0
3034static void
3035embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3036{
3037 ev_idle_stop (EV_A_ idle);
3038}
3039#endif
2182 3040
2183void 3041void
2184ev_embed_start (EV_P_ ev_embed *w) 3042ev_embed_start (EV_P_ ev_embed *w)
2185{ 3043{
2186 if (expect_false (ev_is_active (w))) 3044 if (expect_false (ev_is_active (w)))
2187 return; 3045 return;
2188 3046
2189 { 3047 {
2190 struct ev_loop *loop = w->loop; 3048 struct ev_loop *loop = w->other;
2191 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3049 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2192 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3050 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2193 } 3051 }
3052
3053 EV_FREQUENT_CHECK;
2194 3054
2195 ev_set_priority (&w->io, ev_priority (w)); 3055 ev_set_priority (&w->io, ev_priority (w));
2196 ev_io_start (EV_A_ &w->io); 3056 ev_io_start (EV_A_ &w->io);
2197 3057
3058 ev_prepare_init (&w->prepare, embed_prepare_cb);
3059 ev_set_priority (&w->prepare, EV_MINPRI);
3060 ev_prepare_start (EV_A_ &w->prepare);
3061
3062 ev_fork_init (&w->fork, embed_fork_cb);
3063 ev_fork_start (EV_A_ &w->fork);
3064
3065 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3066
2198 ev_start (EV_A_ (W)w, 1); 3067 ev_start (EV_A_ (W)w, 1);
3068
3069 EV_FREQUENT_CHECK;
2199} 3070}
2200 3071
2201void 3072void
2202ev_embed_stop (EV_P_ ev_embed *w) 3073ev_embed_stop (EV_P_ ev_embed *w)
2203{ 3074{
2204 clear_pending (EV_A_ (W)w); 3075 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w))) 3076 if (expect_false (!ev_is_active (w)))
2206 return; 3077 return;
2207 3078
3079 EV_FREQUENT_CHECK;
3080
2208 ev_io_stop (EV_A_ &w->io); 3081 ev_io_stop (EV_A_ &w->io);
3082 ev_prepare_stop (EV_A_ &w->prepare);
3083 ev_fork_stop (EV_A_ &w->fork);
2209 3084
2210 ev_stop (EV_A_ (W)w); 3085 EV_FREQUENT_CHECK;
2211} 3086}
2212#endif 3087#endif
2213 3088
2214#if EV_FORK_ENABLE 3089#if EV_FORK_ENABLE
2215void 3090void
2216ev_fork_start (EV_P_ ev_fork *w) 3091ev_fork_start (EV_P_ ev_fork *w)
2217{ 3092{
2218 if (expect_false (ev_is_active (w))) 3093 if (expect_false (ev_is_active (w)))
2219 return; 3094 return;
3095
3096 EV_FREQUENT_CHECK;
2220 3097
2221 ev_start (EV_A_ (W)w, ++forkcnt); 3098 ev_start (EV_A_ (W)w, ++forkcnt);
2222 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3099 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2223 forks [forkcnt - 1] = w; 3100 forks [forkcnt - 1] = w;
3101
3102 EV_FREQUENT_CHECK;
2224} 3103}
2225 3104
2226void 3105void
2227ev_fork_stop (EV_P_ ev_fork *w) 3106ev_fork_stop (EV_P_ ev_fork *w)
2228{ 3107{
2229 clear_pending (EV_A_ (W)w); 3108 clear_pending (EV_A_ (W)w);
2230 if (expect_false (!ev_is_active (w))) 3109 if (expect_false (!ev_is_active (w)))
2231 return; 3110 return;
2232 3111
3112 EV_FREQUENT_CHECK;
3113
2233 { 3114 {
2234 int active = ((W)w)->active; 3115 int active = ev_active (w);
3116
2235 forks [active - 1] = forks [--forkcnt]; 3117 forks [active - 1] = forks [--forkcnt];
2236 ((W)forks [active - 1])->active = active; 3118 ev_active (forks [active - 1]) = active;
2237 } 3119 }
2238 3120
2239 ev_stop (EV_A_ (W)w); 3121 ev_stop (EV_A_ (W)w);
3122
3123 EV_FREQUENT_CHECK;
3124}
3125#endif
3126
3127#if EV_ASYNC_ENABLE
3128void
3129ev_async_start (EV_P_ ev_async *w)
3130{
3131 if (expect_false (ev_is_active (w)))
3132 return;
3133
3134 evpipe_init (EV_A);
3135
3136 EV_FREQUENT_CHECK;
3137
3138 ev_start (EV_A_ (W)w, ++asynccnt);
3139 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3140 asyncs [asynccnt - 1] = w;
3141
3142 EV_FREQUENT_CHECK;
3143}
3144
3145void
3146ev_async_stop (EV_P_ ev_async *w)
3147{
3148 clear_pending (EV_A_ (W)w);
3149 if (expect_false (!ev_is_active (w)))
3150 return;
3151
3152 EV_FREQUENT_CHECK;
3153
3154 {
3155 int active = ev_active (w);
3156
3157 asyncs [active - 1] = asyncs [--asynccnt];
3158 ev_active (asyncs [active - 1]) = active;
3159 }
3160
3161 ev_stop (EV_A_ (W)w);
3162
3163 EV_FREQUENT_CHECK;
3164}
3165
3166void
3167ev_async_send (EV_P_ ev_async *w)
3168{
3169 w->sent = 1;
3170 evpipe_write (EV_A_ &gotasync);
2240} 3171}
2241#endif 3172#endif
2242 3173
2243/*****************************************************************************/ 3174/*****************************************************************************/
2244 3175
2254once_cb (EV_P_ struct ev_once *once, int revents) 3185once_cb (EV_P_ struct ev_once *once, int revents)
2255{ 3186{
2256 void (*cb)(int revents, void *arg) = once->cb; 3187 void (*cb)(int revents, void *arg) = once->cb;
2257 void *arg = once->arg; 3188 void *arg = once->arg;
2258 3189
2259 ev_io_stop (EV_A_ &once->io); 3190 ev_io_stop (EV_A_ &once->io);
2260 ev_timer_stop (EV_A_ &once->to); 3191 ev_timer_stop (EV_A_ &once->to);
2261 ev_free (once); 3192 ev_free (once);
2262 3193
2263 cb (revents, arg); 3194 cb (revents, arg);
2264} 3195}
2265 3196
2266static void 3197static void
2267once_cb_io (EV_P_ ev_io *w, int revents) 3198once_cb_io (EV_P_ ev_io *w, int revents)
2268{ 3199{
2269 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3200 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3201
3202 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2270} 3203}
2271 3204
2272static void 3205static void
2273once_cb_to (EV_P_ ev_timer *w, int revents) 3206once_cb_to (EV_P_ ev_timer *w, int revents)
2274{ 3207{
2275 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3208 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3209
3210 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2276} 3211}
2277 3212
2278void 3213void
2279ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3214ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2280{ 3215{
2302 ev_timer_set (&once->to, timeout, 0.); 3237 ev_timer_set (&once->to, timeout, 0.);
2303 ev_timer_start (EV_A_ &once->to); 3238 ev_timer_start (EV_A_ &once->to);
2304 } 3239 }
2305} 3240}
2306 3241
3242/*****************************************************************************/
3243
3244#if EV_WALK_ENABLE
3245void
3246ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3247{
3248 int i, j;
3249 ev_watcher_list *wl, *wn;
3250
3251 if (types & (EV_IO | EV_EMBED))
3252 for (i = 0; i < anfdmax; ++i)
3253 for (wl = anfds [i].head; wl; )
3254 {
3255 wn = wl->next;
3256
3257#if EV_EMBED_ENABLE
3258 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3259 {
3260 if (types & EV_EMBED)
3261 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3262 }
3263 else
3264#endif
3265#if EV_USE_INOTIFY
3266 if (ev_cb ((ev_io *)wl) == infy_cb)
3267 ;
3268 else
3269#endif
3270 if ((ev_io *)wl != &pipe_w)
3271 if (types & EV_IO)
3272 cb (EV_A_ EV_IO, wl);
3273
3274 wl = wn;
3275 }
3276
3277 if (types & (EV_TIMER | EV_STAT))
3278 for (i = timercnt + HEAP0; i-- > HEAP0; )
3279#if EV_STAT_ENABLE
3280 /*TODO: timer is not always active*/
3281 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3282 {
3283 if (types & EV_STAT)
3284 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3285 }
3286 else
3287#endif
3288 if (types & EV_TIMER)
3289 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3290
3291#if EV_PERIODIC_ENABLE
3292 if (types & EV_PERIODIC)
3293 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3294 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3295#endif
3296
3297#if EV_IDLE_ENABLE
3298 if (types & EV_IDLE)
3299 for (j = NUMPRI; i--; )
3300 for (i = idlecnt [j]; i--; )
3301 cb (EV_A_ EV_IDLE, idles [j][i]);
3302#endif
3303
3304#if EV_FORK_ENABLE
3305 if (types & EV_FORK)
3306 for (i = forkcnt; i--; )
3307 if (ev_cb (forks [i]) != embed_fork_cb)
3308 cb (EV_A_ EV_FORK, forks [i]);
3309#endif
3310
3311#if EV_ASYNC_ENABLE
3312 if (types & EV_ASYNC)
3313 for (i = asynccnt; i--; )
3314 cb (EV_A_ EV_ASYNC, asyncs [i]);
3315#endif
3316
3317 if (types & EV_PREPARE)
3318 for (i = preparecnt; i--; )
3319#if EV_EMBED_ENABLE
3320 if (ev_cb (prepares [i]) != embed_prepare_cb)
3321#endif
3322 cb (EV_A_ EV_PREPARE, prepares [i]);
3323
3324 if (types & EV_CHECK)
3325 for (i = checkcnt; i--; )
3326 cb (EV_A_ EV_CHECK, checks [i]);
3327
3328 if (types & EV_SIGNAL)
3329 for (i = 0; i < signalmax; ++i)
3330 for (wl = signals [i].head; wl; )
3331 {
3332 wn = wl->next;
3333 cb (EV_A_ EV_SIGNAL, wl);
3334 wl = wn;
3335 }
3336
3337 if (types & EV_CHILD)
3338 for (i = EV_PID_HASHSIZE; i--; )
3339 for (wl = childs [i]; wl; )
3340 {
3341 wn = wl->next;
3342 cb (EV_A_ EV_CHILD, wl);
3343 wl = wn;
3344 }
3345/* EV_STAT 0x00001000 /* stat data changed */
3346/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3347}
3348#endif
3349
3350#if EV_MULTIPLICITY
3351 #include "ev_wrap.h"
3352#endif
3353
2307#ifdef __cplusplus 3354#ifdef __cplusplus
2308} 3355}
2309#endif 3356#endif
2310 3357

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines