ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.176 by root, Tue Dec 11 04:31:55 2007 UTC vs.
Revision 1.292 by root, Mon Jun 29 07:22:56 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
56# endif 87# endif
57# endif 88# endif
58 89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
107#endif 146#endif
108 147
109#include <math.h> 148#include <math.h>
110#include <stdlib.h> 149#include <stdlib.h>
111#include <fcntl.h> 150#include <fcntl.h>
129#ifndef _WIN32 168#ifndef _WIN32
130# include <sys/time.h> 169# include <sys/time.h>
131# include <sys/wait.h> 170# include <sys/wait.h>
132# include <unistd.h> 171# include <unistd.h>
133#else 172#else
173# include <io.h>
134# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 175# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
138# endif 178# endif
139#endif 179#endif
140 180
141/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
142 190
143#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
144# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
145#endif 197#endif
146 198
147#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201#endif
202
203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
207# define EV_USE_NANOSLEEP 0
208# endif
149#endif 209#endif
150 210
151#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
153#endif 213#endif
159# define EV_USE_POLL 1 219# define EV_USE_POLL 1
160# endif 220# endif
161#endif 221#endif
162 222
163#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
164# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
165#endif 229#endif
166 230
167#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
169#endif 233#endif
171#ifndef EV_USE_PORT 235#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 236# define EV_USE_PORT 0
173#endif 237#endif
174 238
175#ifndef EV_USE_INOTIFY 239#ifndef EV_USE_INOTIFY
240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241# define EV_USE_INOTIFY 1
242# else
176# define EV_USE_INOTIFY 0 243# define EV_USE_INOTIFY 0
244# endif
177#endif 245#endif
178 246
179#ifndef EV_PID_HASHSIZE 247#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 248# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 249# define EV_PID_HASHSIZE 1
190# else 258# else
191# define EV_INOTIFY_HASHSIZE 16 259# define EV_INOTIFY_HASHSIZE 16
192# endif 260# endif
193#endif 261#endif
194 262
195/**/ 263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 304
197#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
200#endif 308#endif
202#ifndef CLOCK_REALTIME 310#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 311# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 312# define EV_USE_REALTIME 0
205#endif 313#endif
206 314
315#if !EV_STAT_ENABLE
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318#endif
319
320#if !EV_USE_NANOSLEEP
321# ifndef _WIN32
322# include <sys/select.h>
323# endif
324#endif
325
326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
335#endif
336
207#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 338# include <winsock.h>
209#endif 339#endif
210 340
211#if !EV_STAT_ENABLE 341#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
213#endif 346# endif
214 347int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 348# ifdef __cplusplus
216# include <sys/inotify.h> 349}
350# endif
217#endif 351#endif
218 352
219/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
220 360
221/* 361/*
222 * This is used to avoid floating point rounding problems. 362 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 363 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 364 * to ensure progress, time-wise, even when rounding
225 * errors are against us. 365 * errors are against us.
226 * This value is good at least till the year 4000 366 * This value is good at least till the year 4000.
227 * and intervals up to 20 years.
228 * Better solutions welcome. 367 * Better solutions welcome.
229 */ 368 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 369#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231 370
232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 371#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 372#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 373/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
235 374
236#if __GNUC__ >= 3 375#if __GNUC__ >= 4
237# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
238# define noinline __attribute__ ((noinline)) 377# define noinline __attribute__ ((noinline))
239#else 378#else
240# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
241# define noinline 380# define noinline
242# if __STDC_VERSION__ < 199901L 381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
243# define inline 382# define inline
244# endif 383# endif
245#endif 384#endif
246 385
247#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
262 401
263typedef ev_watcher *W; 402typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 403typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 404typedef ev_watcher_time *WT;
266 405
406#define ev_active(w) ((W)(w))->active
407#define ev_at(w) ((WT)(w))->at
408
409#if EV_USE_REALTIME
410/* sig_atomic_t is used to avoid per-thread variables or locking but still */
411/* giving it a reasonably high chance of working on typical architetcures */
412static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
413#endif
414
415#if EV_USE_MONOTONIC
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 416static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
417#endif
268 418
269#ifdef _WIN32 419#ifdef _WIN32
270# include "ev_win32.c" 420# include "ev_win32.c"
271#endif 421#endif
272 422
279{ 429{
280 syserr_cb = cb; 430 syserr_cb = cb;
281} 431}
282 432
283static void noinline 433static void noinline
284syserr (const char *msg) 434ev_syserr (const char *msg)
285{ 435{
286 if (!msg) 436 if (!msg)
287 msg = "(libev) system error"; 437 msg = "(libev) system error";
288 438
289 if (syserr_cb) 439 if (syserr_cb)
293 perror (msg); 443 perror (msg);
294 abort (); 444 abort ();
295 } 445 }
296} 446}
297 447
448static void *
449ev_realloc_emul (void *ptr, long size)
450{
451 /* some systems, notably openbsd and darwin, fail to properly
452 * implement realloc (x, 0) (as required by both ansi c-98 and
453 * the single unix specification, so work around them here.
454 */
455
456 if (size)
457 return realloc (ptr, size);
458
459 free (ptr);
460 return 0;
461}
462
298static void *(*alloc)(void *ptr, long size); 463static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
299 464
300void 465void
301ev_set_allocator (void *(*cb)(void *ptr, long size)) 466ev_set_allocator (void *(*cb)(void *ptr, long size))
302{ 467{
303 alloc = cb; 468 alloc = cb;
304} 469}
305 470
306inline_speed void * 471inline_speed void *
307ev_realloc (void *ptr, long size) 472ev_realloc (void *ptr, long size)
308{ 473{
309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 474 ptr = alloc (ptr, size);
310 475
311 if (!ptr && size) 476 if (!ptr && size)
312 { 477 {
313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 478 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
314 abort (); 479 abort ();
320#define ev_malloc(size) ev_realloc (0, (size)) 485#define ev_malloc(size) ev_realloc (0, (size))
321#define ev_free(ptr) ev_realloc ((ptr), 0) 486#define ev_free(ptr) ev_realloc ((ptr), 0)
322 487
323/*****************************************************************************/ 488/*****************************************************************************/
324 489
490/* file descriptor info structure */
325typedef struct 491typedef struct
326{ 492{
327 WL head; 493 WL head;
328 unsigned char events; 494 unsigned char events; /* the events watched for */
495 unsigned char reify; /* flag set when this ANFD needs reification */
496 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
329 unsigned char reify; 497 unsigned char unused;
498#if EV_USE_EPOLL
499 unsigned int egen; /* generation counter to counter epoll bugs */
500#endif
330#if EV_SELECT_IS_WINSOCKET 501#if EV_SELECT_IS_WINSOCKET
331 SOCKET handle; 502 SOCKET handle;
332#endif 503#endif
333} ANFD; 504} ANFD;
334 505
506/* stores the pending event set for a given watcher */
335typedef struct 507typedef struct
336{ 508{
337 W w; 509 W w;
338 int events; 510 int events; /* the pending event set for the given watcher */
339} ANPENDING; 511} ANPENDING;
340 512
341#if EV_USE_INOTIFY 513#if EV_USE_INOTIFY
514/* hash table entry per inotify-id */
342typedef struct 515typedef struct
343{ 516{
344 WL head; 517 WL head;
345} ANFS; 518} ANFS;
519#endif
520
521/* Heap Entry */
522#if EV_HEAP_CACHE_AT
523 /* a heap element */
524 typedef struct {
525 ev_tstamp at;
526 WT w;
527 } ANHE;
528
529 #define ANHE_w(he) (he).w /* access watcher, read-write */
530 #define ANHE_at(he) (he).at /* access cached at, read-only */
531 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
532#else
533 /* a heap element */
534 typedef WT ANHE;
535
536 #define ANHE_w(he) (he)
537 #define ANHE_at(he) (he)->at
538 #define ANHE_at_cache(he)
346#endif 539#endif
347 540
348#if EV_MULTIPLICITY 541#if EV_MULTIPLICITY
349 542
350 struct ev_loop 543 struct ev_loop
371 564
372#endif 565#endif
373 566
374/*****************************************************************************/ 567/*****************************************************************************/
375 568
569#ifndef EV_HAVE_EV_TIME
376ev_tstamp 570ev_tstamp
377ev_time (void) 571ev_time (void)
378{ 572{
379#if EV_USE_REALTIME 573#if EV_USE_REALTIME
574 if (expect_true (have_realtime))
575 {
380 struct timespec ts; 576 struct timespec ts;
381 clock_gettime (CLOCK_REALTIME, &ts); 577 clock_gettime (CLOCK_REALTIME, &ts);
382 return ts.tv_sec + ts.tv_nsec * 1e-9; 578 return ts.tv_sec + ts.tv_nsec * 1e-9;
383#else 579 }
580#endif
581
384 struct timeval tv; 582 struct timeval tv;
385 gettimeofday (&tv, 0); 583 gettimeofday (&tv, 0);
386 return tv.tv_sec + tv.tv_usec * 1e-6; 584 return tv.tv_sec + tv.tv_usec * 1e-6;
387#endif
388} 585}
586#endif
389 587
390ev_tstamp inline_size 588inline_size ev_tstamp
391get_clock (void) 589get_clock (void)
392{ 590{
393#if EV_USE_MONOTONIC 591#if EV_USE_MONOTONIC
394 if (expect_true (have_monotonic)) 592 if (expect_true (have_monotonic))
395 { 593 {
408{ 606{
409 return ev_rt_now; 607 return ev_rt_now;
410} 608}
411#endif 609#endif
412 610
413int inline_size 611void
612ev_sleep (ev_tstamp delay)
613{
614 if (delay > 0.)
615 {
616#if EV_USE_NANOSLEEP
617 struct timespec ts;
618
619 ts.tv_sec = (time_t)delay;
620 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
621
622 nanosleep (&ts, 0);
623#elif defined(_WIN32)
624 Sleep ((unsigned long)(delay * 1e3));
625#else
626 struct timeval tv;
627
628 tv.tv_sec = (time_t)delay;
629 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
630
631 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
632 /* somehting nto guaranteed by newer posix versions, but guaranteed */
633 /* by older ones */
634 select (0, 0, 0, 0, &tv);
635#endif
636 }
637}
638
639/*****************************************************************************/
640
641#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
642
643/* find a suitable new size for the given array, */
644/* hopefully by rounding to a ncie-to-malloc size */
645inline_size int
414array_nextsize (int elem, int cur, int cnt) 646array_nextsize (int elem, int cur, int cnt)
415{ 647{
416 int ncur = cur + 1; 648 int ncur = cur + 1;
417 649
418 do 650 do
419 ncur <<= 1; 651 ncur <<= 1;
420 while (cnt > ncur); 652 while (cnt > ncur);
421 653
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 654 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096) 655 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
424 { 656 {
425 ncur *= elem; 657 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 658 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
427 ncur = ncur - sizeof (void *) * 4; 659 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem; 660 ncur /= elem;
429 } 661 }
430 662
431 return ncur; 663 return ncur;
435array_realloc (int elem, void *base, int *cur, int cnt) 667array_realloc (int elem, void *base, int *cur, int cnt)
436{ 668{
437 *cur = array_nextsize (elem, *cur, cnt); 669 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur); 670 return ev_realloc (base, elem * *cur);
439} 671}
672
673#define array_init_zero(base,count) \
674 memset ((void *)(base), 0, sizeof (*(base)) * (count))
440 675
441#define array_needsize(type,base,cur,cnt,init) \ 676#define array_needsize(type,base,cur,cnt,init) \
442 if (expect_false ((cnt) > (cur))) \ 677 if (expect_false ((cnt) > (cur))) \
443 { \ 678 { \
444 int ocur_ = (cur); \ 679 int ocur_ = (cur); \
456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 691 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
457 } 692 }
458#endif 693#endif
459 694
460#define array_free(stem, idx) \ 695#define array_free(stem, idx) \
461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 696 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
462 697
463/*****************************************************************************/ 698/*****************************************************************************/
699
700/* dummy callback for pending events */
701static void noinline
702pendingcb (EV_P_ ev_prepare *w, int revents)
703{
704}
464 705
465void noinline 706void noinline
466ev_feed_event (EV_P_ void *w, int revents) 707ev_feed_event (EV_P_ void *w, int revents)
467{ 708{
468 W w_ = (W)w; 709 W w_ = (W)w;
477 pendings [pri][w_->pending - 1].w = w_; 718 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents; 719 pendings [pri][w_->pending - 1].events = revents;
479 } 720 }
480} 721}
481 722
482void inline_size 723inline_speed void
724feed_reverse (EV_P_ W w)
725{
726 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
727 rfeeds [rfeedcnt++] = w;
728}
729
730inline_size void
731feed_reverse_done (EV_P_ int revents)
732{
733 do
734 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
735 while (rfeedcnt);
736}
737
738inline_speed void
483queue_events (EV_P_ W *events, int eventcnt, int type) 739queue_events (EV_P_ W *events, int eventcnt, int type)
484{ 740{
485 int i; 741 int i;
486 742
487 for (i = 0; i < eventcnt; ++i) 743 for (i = 0; i < eventcnt; ++i)
488 ev_feed_event (EV_A_ events [i], type); 744 ev_feed_event (EV_A_ events [i], type);
489} 745}
490 746
491/*****************************************************************************/ 747/*****************************************************************************/
492 748
493void inline_size 749inline_speed void
494anfds_init (ANFD *base, int count)
495{
496 while (count--)
497 {
498 base->head = 0;
499 base->events = EV_NONE;
500 base->reify = 0;
501
502 ++base;
503 }
504}
505
506void inline_speed
507fd_event (EV_P_ int fd, int revents) 750fd_event (EV_P_ int fd, int revents)
508{ 751{
509 ANFD *anfd = anfds + fd; 752 ANFD *anfd = anfds + fd;
510 ev_io *w; 753 ev_io *w;
511 754
523{ 766{
524 if (fd >= 0 && fd < anfdmax) 767 if (fd >= 0 && fd < anfdmax)
525 fd_event (EV_A_ fd, revents); 768 fd_event (EV_A_ fd, revents);
526} 769}
527 770
528void inline_size 771/* make sure the external fd watch events are in-sync */
772/* with the kernel/libev internal state */
773inline_size void
529fd_reify (EV_P) 774fd_reify (EV_P)
530{ 775{
531 int i; 776 int i;
532 777
533 for (i = 0; i < fdchangecnt; ++i) 778 for (i = 0; i < fdchangecnt; ++i)
534 { 779 {
535 int fd = fdchanges [i]; 780 int fd = fdchanges [i];
536 ANFD *anfd = anfds + fd; 781 ANFD *anfd = anfds + fd;
537 ev_io *w; 782 ev_io *w;
538 783
539 int events = 0; 784 unsigned char events = 0;
540 785
541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 786 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
542 events |= w->events; 787 events |= (unsigned char)w->events;
543 788
544#if EV_SELECT_IS_WINSOCKET 789#if EV_SELECT_IS_WINSOCKET
545 if (events) 790 if (events)
546 { 791 {
547 unsigned long argp; 792 unsigned long arg;
793 #ifdef EV_FD_TO_WIN32_HANDLE
794 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
795 #else
548 anfd->handle = _get_osfhandle (fd); 796 anfd->handle = _get_osfhandle (fd);
797 #endif
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 798 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
550 } 799 }
551#endif 800#endif
552 801
802 {
803 unsigned char o_events = anfd->events;
804 unsigned char o_reify = anfd->reify;
805
553 anfd->reify = 0; 806 anfd->reify = 0;
554
555 backend_modify (EV_A_ fd, anfd->events, events);
556 anfd->events = events; 807 anfd->events = events;
808
809 if (o_events != events || o_reify & EV__IOFDSET)
810 backend_modify (EV_A_ fd, o_events, events);
811 }
557 } 812 }
558 813
559 fdchangecnt = 0; 814 fdchangecnt = 0;
560} 815}
561 816
562void inline_size 817/* something about the given fd changed */
818inline_size void
563fd_change (EV_P_ int fd) 819fd_change (EV_P_ int fd, int flags)
564{ 820{
565 if (expect_false (anfds [fd].reify)) 821 unsigned char reify = anfds [fd].reify;
566 return;
567
568 anfds [fd].reify = 1; 822 anfds [fd].reify |= flags;
569 823
824 if (expect_true (!reify))
825 {
570 ++fdchangecnt; 826 ++fdchangecnt;
571 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 827 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
572 fdchanges [fdchangecnt - 1] = fd; 828 fdchanges [fdchangecnt - 1] = fd;
829 }
573} 830}
574 831
575void inline_speed 832/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
833inline_speed void
576fd_kill (EV_P_ int fd) 834fd_kill (EV_P_ int fd)
577{ 835{
578 ev_io *w; 836 ev_io *w;
579 837
580 while ((w = (ev_io *)anfds [fd].head)) 838 while ((w = (ev_io *)anfds [fd].head))
582 ev_io_stop (EV_A_ w); 840 ev_io_stop (EV_A_ w);
583 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 841 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
584 } 842 }
585} 843}
586 844
587int inline_size 845/* check whether the given fd is atcually valid, for error recovery */
846inline_size int
588fd_valid (int fd) 847fd_valid (int fd)
589{ 848{
590#ifdef _WIN32 849#ifdef _WIN32
591 return _get_osfhandle (fd) != -1; 850 return _get_osfhandle (fd) != -1;
592#else 851#else
600{ 859{
601 int fd; 860 int fd;
602 861
603 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
604 if (anfds [fd].events) 863 if (anfds [fd].events)
605 if (!fd_valid (fd) == -1 && errno == EBADF) 864 if (!fd_valid (fd) && errno == EBADF)
606 fd_kill (EV_A_ fd); 865 fd_kill (EV_A_ fd);
607} 866}
608 867
609/* called on ENOMEM in select/poll to kill some fds and retry */ 868/* called on ENOMEM in select/poll to kill some fds and retry */
610static void noinline 869static void noinline
628 887
629 for (fd = 0; fd < anfdmax; ++fd) 888 for (fd = 0; fd < anfdmax; ++fd)
630 if (anfds [fd].events) 889 if (anfds [fd].events)
631 { 890 {
632 anfds [fd].events = 0; 891 anfds [fd].events = 0;
892 anfds [fd].emask = 0;
633 fd_change (EV_A_ fd); 893 fd_change (EV_A_ fd, EV__IOFDSET | 1);
634 } 894 }
635} 895}
636 896
637/*****************************************************************************/ 897/*****************************************************************************/
638 898
639void inline_speed 899/*
640upheap (WT *heap, int k) 900 * the heap functions want a real array index. array index 0 uis guaranteed to not
641{ 901 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
642 WT w = heap [k]; 902 * the branching factor of the d-tree.
903 */
643 904
644 while (k && heap [k >> 1]->at > w->at) 905/*
645 { 906 * at the moment we allow libev the luxury of two heaps,
646 heap [k] = heap [k >> 1]; 907 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
647 ((W)heap [k])->active = k + 1; 908 * which is more cache-efficient.
648 k >>= 1; 909 * the difference is about 5% with 50000+ watchers.
649 } 910 */
911#if EV_USE_4HEAP
650 912
651 heap [k] = w; 913#define DHEAP 4
652 ((W)heap [k])->active = k + 1; 914#define HEAP0 (DHEAP - 1) /* index of first element in heap */
915#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
916#define UPHEAP_DONE(p,k) ((p) == (k))
653 917
654} 918/* away from the root */
655 919inline_speed void
656void inline_speed
657downheap (WT *heap, int N, int k) 920downheap (ANHE *heap, int N, int k)
658{ 921{
659 WT w = heap [k]; 922 ANHE he = heap [k];
923 ANHE *E = heap + N + HEAP0;
660 924
661 while (k < (N >> 1)) 925 for (;;)
662 { 926 {
663 int j = k << 1; 927 ev_tstamp minat;
928 ANHE *minpos;
929 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
664 930
665 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 931 /* find minimum child */
932 if (expect_true (pos + DHEAP - 1 < E))
666 ++j; 933 {
667 934 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
668 if (w->at <= heap [j]->at) 935 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
936 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
937 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
938 }
939 else if (pos < E)
940 {
941 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
942 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
943 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
944 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
945 }
946 else
669 break; 947 break;
670 948
949 if (ANHE_at (he) <= minat)
950 break;
951
952 heap [k] = *minpos;
953 ev_active (ANHE_w (*minpos)) = k;
954
955 k = minpos - heap;
956 }
957
958 heap [k] = he;
959 ev_active (ANHE_w (he)) = k;
960}
961
962#else /* 4HEAP */
963
964#define HEAP0 1
965#define HPARENT(k) ((k) >> 1)
966#define UPHEAP_DONE(p,k) (!(p))
967
968/* away from the root */
969inline_speed void
970downheap (ANHE *heap, int N, int k)
971{
972 ANHE he = heap [k];
973
974 for (;;)
975 {
976 int c = k << 1;
977
978 if (c > N + HEAP0 - 1)
979 break;
980
981 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
982 ? 1 : 0;
983
984 if (ANHE_at (he) <= ANHE_at (heap [c]))
985 break;
986
671 heap [k] = heap [j]; 987 heap [k] = heap [c];
672 ((W)heap [k])->active = k + 1; 988 ev_active (ANHE_w (heap [k])) = k;
989
673 k = j; 990 k = c;
674 } 991 }
675 992
676 heap [k] = w; 993 heap [k] = he;
677 ((W)heap [k])->active = k + 1; 994 ev_active (ANHE_w (he)) = k;
678} 995}
996#endif
679 997
680void inline_size 998/* towards the root */
999inline_speed void
1000upheap (ANHE *heap, int k)
1001{
1002 ANHE he = heap [k];
1003
1004 for (;;)
1005 {
1006 int p = HPARENT (k);
1007
1008 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1009 break;
1010
1011 heap [k] = heap [p];
1012 ev_active (ANHE_w (heap [k])) = k;
1013 k = p;
1014 }
1015
1016 heap [k] = he;
1017 ev_active (ANHE_w (he)) = k;
1018}
1019
1020/* move an element suitably so it is in a correct place */
1021inline_size void
681adjustheap (WT *heap, int N, int k) 1022adjustheap (ANHE *heap, int N, int k)
682{ 1023{
1024 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
683 upheap (heap, k); 1025 upheap (heap, k);
1026 else
684 downheap (heap, N, k); 1027 downheap (heap, N, k);
1028}
1029
1030/* rebuild the heap: this function is used only once and executed rarely */
1031inline_size void
1032reheap (ANHE *heap, int N)
1033{
1034 int i;
1035
1036 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1037 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1038 for (i = 0; i < N; ++i)
1039 upheap (heap, i + HEAP0);
685} 1040}
686 1041
687/*****************************************************************************/ 1042/*****************************************************************************/
688 1043
1044/* associate signal watchers to a signal signal */
689typedef struct 1045typedef struct
690{ 1046{
691 WL head; 1047 WL head;
692 sig_atomic_t volatile gotsig; 1048 EV_ATOMIC_T gotsig;
693} ANSIG; 1049} ANSIG;
694 1050
695static ANSIG *signals; 1051static ANSIG *signals;
696static int signalmax; 1052static int signalmax;
697 1053
698static int sigpipe [2]; 1054static EV_ATOMIC_T gotsig;
699static sig_atomic_t volatile gotsig;
700static ev_io sigev;
701 1055
702void inline_size 1056/*****************************************************************************/
703signals_init (ANSIG *base, int count)
704{
705 while (count--)
706 {
707 base->head = 0;
708 base->gotsig = 0;
709 1057
710 ++base; 1058/* used to prepare libev internal fd's */
711 } 1059/* this is not fork-safe */
712} 1060inline_speed void
713
714static void
715sighandler (int signum)
716{
717#if _WIN32
718 signal (signum, sighandler);
719#endif
720
721 signals [signum - 1].gotsig = 1;
722
723 if (!gotsig)
724 {
725 int old_errno = errno;
726 gotsig = 1;
727 write (sigpipe [1], &signum, 1);
728 errno = old_errno;
729 }
730}
731
732void noinline
733ev_feed_signal_event (EV_P_ int signum)
734{
735 WL w;
736
737#if EV_MULTIPLICITY
738 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
739#endif
740
741 --signum;
742
743 if (signum < 0 || signum >= signalmax)
744 return;
745
746 signals [signum].gotsig = 0;
747
748 for (w = signals [signum].head; w; w = w->next)
749 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
750}
751
752static void
753sigcb (EV_P_ ev_io *iow, int revents)
754{
755 int signum;
756
757 read (sigpipe [0], &revents, 1);
758 gotsig = 0;
759
760 for (signum = signalmax; signum--; )
761 if (signals [signum].gotsig)
762 ev_feed_signal_event (EV_A_ signum + 1);
763}
764
765void inline_speed
766fd_intern (int fd) 1061fd_intern (int fd)
767{ 1062{
768#ifdef _WIN32 1063#ifdef _WIN32
769 int arg = 1; 1064 unsigned long arg = 1;
770 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1065 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
771#else 1066#else
772 fcntl (fd, F_SETFD, FD_CLOEXEC); 1067 fcntl (fd, F_SETFD, FD_CLOEXEC);
773 fcntl (fd, F_SETFL, O_NONBLOCK); 1068 fcntl (fd, F_SETFL, O_NONBLOCK);
774#endif 1069#endif
775} 1070}
776 1071
777static void noinline 1072static void noinline
778siginit (EV_P) 1073evpipe_init (EV_P)
779{ 1074{
1075 if (!ev_is_active (&pipe_w))
1076 {
1077#if EV_USE_EVENTFD
1078 if ((evfd = eventfd (0, 0)) >= 0)
1079 {
1080 evpipe [0] = -1;
1081 fd_intern (evfd);
1082 ev_io_set (&pipe_w, evfd, EV_READ);
1083 }
1084 else
1085#endif
1086 {
1087 while (pipe (evpipe))
1088 ev_syserr ("(libev) error creating signal/async pipe");
1089
780 fd_intern (sigpipe [0]); 1090 fd_intern (evpipe [0]);
781 fd_intern (sigpipe [1]); 1091 fd_intern (evpipe [1]);
1092 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1093 }
782 1094
783 ev_io_set (&sigev, sigpipe [0], EV_READ);
784 ev_io_start (EV_A_ &sigev); 1095 ev_io_start (EV_A_ &pipe_w);
785 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1096 ev_unref (EV_A); /* watcher should not keep loop alive */
1097 }
1098}
1099
1100inline_size void
1101evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1102{
1103 if (!*flag)
1104 {
1105 int old_errno = errno; /* save errno because write might clobber it */
1106
1107 *flag = 1;
1108
1109#if EV_USE_EVENTFD
1110 if (evfd >= 0)
1111 {
1112 uint64_t counter = 1;
1113 write (evfd, &counter, sizeof (uint64_t));
1114 }
1115 else
1116#endif
1117 write (evpipe [1], &old_errno, 1);
1118
1119 errno = old_errno;
1120 }
1121}
1122
1123/* called whenever the libev signal pipe */
1124/* got some events (signal, async) */
1125static void
1126pipecb (EV_P_ ev_io *iow, int revents)
1127{
1128#if EV_USE_EVENTFD
1129 if (evfd >= 0)
1130 {
1131 uint64_t counter;
1132 read (evfd, &counter, sizeof (uint64_t));
1133 }
1134 else
1135#endif
1136 {
1137 char dummy;
1138 read (evpipe [0], &dummy, 1);
1139 }
1140
1141 if (gotsig && ev_is_default_loop (EV_A))
1142 {
1143 int signum;
1144 gotsig = 0;
1145
1146 for (signum = signalmax; signum--; )
1147 if (signals [signum].gotsig)
1148 ev_feed_signal_event (EV_A_ signum + 1);
1149 }
1150
1151#if EV_ASYNC_ENABLE
1152 if (gotasync)
1153 {
1154 int i;
1155 gotasync = 0;
1156
1157 for (i = asynccnt; i--; )
1158 if (asyncs [i]->sent)
1159 {
1160 asyncs [i]->sent = 0;
1161 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1162 }
1163 }
1164#endif
786} 1165}
787 1166
788/*****************************************************************************/ 1167/*****************************************************************************/
789 1168
1169static void
1170ev_sighandler (int signum)
1171{
1172#if EV_MULTIPLICITY
1173 struct ev_loop *loop = &default_loop_struct;
1174#endif
1175
1176#if _WIN32
1177 signal (signum, ev_sighandler);
1178#endif
1179
1180 signals [signum - 1].gotsig = 1;
1181 evpipe_write (EV_A_ &gotsig);
1182}
1183
1184void noinline
1185ev_feed_signal_event (EV_P_ int signum)
1186{
1187 WL w;
1188
1189#if EV_MULTIPLICITY
1190 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1191#endif
1192
1193 --signum;
1194
1195 if (signum < 0 || signum >= signalmax)
1196 return;
1197
1198 signals [signum].gotsig = 0;
1199
1200 for (w = signals [signum].head; w; w = w->next)
1201 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1202}
1203
1204/*****************************************************************************/
1205
790static ev_child *childs [EV_PID_HASHSIZE]; 1206static WL childs [EV_PID_HASHSIZE];
791 1207
792#ifndef _WIN32 1208#ifndef _WIN32
793 1209
794static ev_signal childev; 1210static ev_signal childev;
795 1211
796void inline_speed 1212#ifndef WIFCONTINUED
1213# define WIFCONTINUED(status) 0
1214#endif
1215
1216/* handle a single child status event */
1217inline_speed void
797child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1218child_reap (EV_P_ int chain, int pid, int status)
798{ 1219{
799 ev_child *w; 1220 ev_child *w;
1221 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
800 1222
801 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1223 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1224 {
802 if (w->pid == pid || !w->pid) 1225 if ((w->pid == pid || !w->pid)
1226 && (!traced || (w->flags & 1)))
803 { 1227 {
804 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1228 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
805 w->rpid = pid; 1229 w->rpid = pid;
806 w->rstatus = status; 1230 w->rstatus = status;
807 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1231 ev_feed_event (EV_A_ (W)w, EV_CHILD);
808 } 1232 }
1233 }
809} 1234}
810 1235
811#ifndef WCONTINUED 1236#ifndef WCONTINUED
812# define WCONTINUED 0 1237# define WCONTINUED 0
813#endif 1238#endif
814 1239
1240/* called on sigchld etc., calls waitpid */
815static void 1241static void
816childcb (EV_P_ ev_signal *sw, int revents) 1242childcb (EV_P_ ev_signal *sw, int revents)
817{ 1243{
818 int pid, status; 1244 int pid, status;
819 1245
822 if (!WCONTINUED 1248 if (!WCONTINUED
823 || errno != EINVAL 1249 || errno != EINVAL
824 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1250 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
825 return; 1251 return;
826 1252
827 /* make sure we are called again until all childs have been reaped */ 1253 /* make sure we are called again until all children have been reaped */
828 /* we need to do it this way so that the callback gets called before we continue */ 1254 /* we need to do it this way so that the callback gets called before we continue */
829 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1255 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
830 1256
831 child_reap (EV_A_ sw, pid, pid, status); 1257 child_reap (EV_A_ pid, pid, status);
832 if (EV_PID_HASHSIZE > 1) 1258 if (EV_PID_HASHSIZE > 1)
833 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1259 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
834} 1260}
835 1261
836#endif 1262#endif
837 1263
838/*****************************************************************************/ 1264/*****************************************************************************/
900 /* kqueue is borked on everything but netbsd apparently */ 1326 /* kqueue is borked on everything but netbsd apparently */
901 /* it usually doesn't work correctly on anything but sockets and pipes */ 1327 /* it usually doesn't work correctly on anything but sockets and pipes */
902 flags &= ~EVBACKEND_KQUEUE; 1328 flags &= ~EVBACKEND_KQUEUE;
903#endif 1329#endif
904#ifdef __APPLE__ 1330#ifdef __APPLE__
905 // flags &= ~EVBACKEND_KQUEUE; for documentation 1331 /* only select works correctly on that "unix-certified" platform */
906 flags &= ~EVBACKEND_POLL; 1332 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1333 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
907#endif 1334#endif
908 1335
909 return flags; 1336 return flags;
910} 1337}
911 1338
912unsigned int 1339unsigned int
913ev_embeddable_backends (void) 1340ev_embeddable_backends (void)
914{ 1341{
915 return EVBACKEND_EPOLL 1342 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
916 | EVBACKEND_KQUEUE 1343
917 | EVBACKEND_PORT; 1344 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1345 /* please fix it and tell me how to detect the fix */
1346 flags &= ~EVBACKEND_EPOLL;
1347
1348 return flags;
918} 1349}
919 1350
920unsigned int 1351unsigned int
921ev_backend (EV_P) 1352ev_backend (EV_P)
922{ 1353{
927ev_loop_count (EV_P) 1358ev_loop_count (EV_P)
928{ 1359{
929 return loop_count; 1360 return loop_count;
930} 1361}
931 1362
1363void
1364ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1365{
1366 io_blocktime = interval;
1367}
1368
1369void
1370ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1371{
1372 timeout_blocktime = interval;
1373}
1374
1375/* initialise a loop structure, must be zero-initialised */
932static void noinline 1376static void noinline
933loop_init (EV_P_ unsigned int flags) 1377loop_init (EV_P_ unsigned int flags)
934{ 1378{
935 if (!backend) 1379 if (!backend)
936 { 1380 {
1381#if EV_USE_REALTIME
1382 if (!have_realtime)
1383 {
1384 struct timespec ts;
1385
1386 if (!clock_gettime (CLOCK_REALTIME, &ts))
1387 have_realtime = 1;
1388 }
1389#endif
1390
937#if EV_USE_MONOTONIC 1391#if EV_USE_MONOTONIC
1392 if (!have_monotonic)
938 { 1393 {
939 struct timespec ts; 1394 struct timespec ts;
1395
940 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1396 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
941 have_monotonic = 1; 1397 have_monotonic = 1;
942 } 1398 }
943#endif 1399#endif
944 1400
945 ev_rt_now = ev_time (); 1401 ev_rt_now = ev_time ();
946 mn_now = get_clock (); 1402 mn_now = get_clock ();
947 now_floor = mn_now; 1403 now_floor = mn_now;
948 rtmn_diff = ev_rt_now - mn_now; 1404 rtmn_diff = ev_rt_now - mn_now;
1405
1406 io_blocktime = 0.;
1407 timeout_blocktime = 0.;
1408 backend = 0;
1409 backend_fd = -1;
1410 gotasync = 0;
1411#if EV_USE_INOTIFY
1412 fs_fd = -2;
1413#endif
949 1414
950 /* pid check not overridable via env */ 1415 /* pid check not overridable via env */
951#ifndef _WIN32 1416#ifndef _WIN32
952 if (flags & EVFLAG_FORKCHECK) 1417 if (flags & EVFLAG_FORKCHECK)
953 curpid = getpid (); 1418 curpid = getpid ();
956 if (!(flags & EVFLAG_NOENV) 1421 if (!(flags & EVFLAG_NOENV)
957 && !enable_secure () 1422 && !enable_secure ()
958 && getenv ("LIBEV_FLAGS")) 1423 && getenv ("LIBEV_FLAGS"))
959 flags = atoi (getenv ("LIBEV_FLAGS")); 1424 flags = atoi (getenv ("LIBEV_FLAGS"));
960 1425
961 if (!(flags & 0x0000ffffUL)) 1426 if (!(flags & 0x0000ffffU))
962 flags |= ev_recommended_backends (); 1427 flags |= ev_recommended_backends ();
963
964 backend = 0;
965 backend_fd = -1;
966#if EV_USE_INOTIFY
967 fs_fd = -2;
968#endif
969 1428
970#if EV_USE_PORT 1429#if EV_USE_PORT
971 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1430 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
972#endif 1431#endif
973#if EV_USE_KQUEUE 1432#if EV_USE_KQUEUE
981#endif 1440#endif
982#if EV_USE_SELECT 1441#if EV_USE_SELECT
983 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1442 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
984#endif 1443#endif
985 1444
1445 ev_prepare_init (&pending_w, pendingcb);
1446
986 ev_init (&sigev, sigcb); 1447 ev_init (&pipe_w, pipecb);
987 ev_set_priority (&sigev, EV_MAXPRI); 1448 ev_set_priority (&pipe_w, EV_MAXPRI);
988 } 1449 }
989} 1450}
990 1451
1452/* free up a loop structure */
991static void noinline 1453static void noinline
992loop_destroy (EV_P) 1454loop_destroy (EV_P)
993{ 1455{
994 int i; 1456 int i;
1457
1458 if (ev_is_active (&pipe_w))
1459 {
1460 ev_ref (EV_A); /* signal watcher */
1461 ev_io_stop (EV_A_ &pipe_w);
1462
1463#if EV_USE_EVENTFD
1464 if (evfd >= 0)
1465 close (evfd);
1466#endif
1467
1468 if (evpipe [0] >= 0)
1469 {
1470 close (evpipe [0]);
1471 close (evpipe [1]);
1472 }
1473 }
995 1474
996#if EV_USE_INOTIFY 1475#if EV_USE_INOTIFY
997 if (fs_fd >= 0) 1476 if (fs_fd >= 0)
998 close (fs_fd); 1477 close (fs_fd);
999#endif 1478#endif
1023#if EV_IDLE_ENABLE 1502#if EV_IDLE_ENABLE
1024 array_free (idle, [i]); 1503 array_free (idle, [i]);
1025#endif 1504#endif
1026 } 1505 }
1027 1506
1507 ev_free (anfds); anfdmax = 0;
1508
1028 /* have to use the microsoft-never-gets-it-right macro */ 1509 /* have to use the microsoft-never-gets-it-right macro */
1510 array_free (rfeed, EMPTY);
1029 array_free (fdchange, EMPTY); 1511 array_free (fdchange, EMPTY);
1030 array_free (timer, EMPTY); 1512 array_free (timer, EMPTY);
1031#if EV_PERIODIC_ENABLE 1513#if EV_PERIODIC_ENABLE
1032 array_free (periodic, EMPTY); 1514 array_free (periodic, EMPTY);
1033#endif 1515#endif
1516#if EV_FORK_ENABLE
1517 array_free (fork, EMPTY);
1518#endif
1034 array_free (prepare, EMPTY); 1519 array_free (prepare, EMPTY);
1035 array_free (check, EMPTY); 1520 array_free (check, EMPTY);
1521#if EV_ASYNC_ENABLE
1522 array_free (async, EMPTY);
1523#endif
1036 1524
1037 backend = 0; 1525 backend = 0;
1038} 1526}
1039 1527
1528#if EV_USE_INOTIFY
1040void inline_size infy_fork (EV_P); 1529inline_size void infy_fork (EV_P);
1530#endif
1041 1531
1042void inline_size 1532inline_size void
1043loop_fork (EV_P) 1533loop_fork (EV_P)
1044{ 1534{
1045#if EV_USE_PORT 1535#if EV_USE_PORT
1046 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1536 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1047#endif 1537#endif
1053#endif 1543#endif
1054#if EV_USE_INOTIFY 1544#if EV_USE_INOTIFY
1055 infy_fork (EV_A); 1545 infy_fork (EV_A);
1056#endif 1546#endif
1057 1547
1058 if (ev_is_active (&sigev)) 1548 if (ev_is_active (&pipe_w))
1059 { 1549 {
1060 /* default loop */ 1550 /* this "locks" the handlers against writing to the pipe */
1551 /* while we modify the fd vars */
1552 gotsig = 1;
1553#if EV_ASYNC_ENABLE
1554 gotasync = 1;
1555#endif
1061 1556
1062 ev_ref (EV_A); 1557 ev_ref (EV_A);
1063 ev_io_stop (EV_A_ &sigev); 1558 ev_io_stop (EV_A_ &pipe_w);
1559
1560#if EV_USE_EVENTFD
1561 if (evfd >= 0)
1562 close (evfd);
1563#endif
1564
1565 if (evpipe [0] >= 0)
1566 {
1064 close (sigpipe [0]); 1567 close (evpipe [0]);
1065 close (sigpipe [1]); 1568 close (evpipe [1]);
1569 }
1066 1570
1067 while (pipe (sigpipe))
1068 syserr ("(libev) error creating pipe");
1069
1070 siginit (EV_A); 1571 evpipe_init (EV_A);
1572 /* now iterate over everything, in case we missed something */
1573 pipecb (EV_A_ &pipe_w, EV_READ);
1071 } 1574 }
1072 1575
1073 postfork = 0; 1576 postfork = 0;
1074} 1577}
1075 1578
1076#if EV_MULTIPLICITY 1579#if EV_MULTIPLICITY
1580
1077struct ev_loop * 1581struct ev_loop *
1078ev_loop_new (unsigned int flags) 1582ev_loop_new (unsigned int flags)
1079{ 1583{
1080 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1584 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1081 1585
1097} 1601}
1098 1602
1099void 1603void
1100ev_loop_fork (EV_P) 1604ev_loop_fork (EV_P)
1101{ 1605{
1102 postfork = 1; 1606 postfork = 1; /* must be in line with ev_default_fork */
1103} 1607}
1104 1608
1609#if EV_VERIFY
1610static void noinline
1611verify_watcher (EV_P_ W w)
1612{
1613 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1614
1615 if (w->pending)
1616 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1617}
1618
1619static void noinline
1620verify_heap (EV_P_ ANHE *heap, int N)
1621{
1622 int i;
1623
1624 for (i = HEAP0; i < N + HEAP0; ++i)
1625 {
1626 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1627 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1628 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1629
1630 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1631 }
1632}
1633
1634static void noinline
1635array_verify (EV_P_ W *ws, int cnt)
1636{
1637 while (cnt--)
1638 {
1639 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1640 verify_watcher (EV_A_ ws [cnt]);
1641 }
1642}
1643#endif
1644
1645void
1646ev_loop_verify (EV_P)
1647{
1648#if EV_VERIFY
1649 int i;
1650 WL w;
1651
1652 assert (activecnt >= -1);
1653
1654 assert (fdchangemax >= fdchangecnt);
1655 for (i = 0; i < fdchangecnt; ++i)
1656 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1657
1658 assert (anfdmax >= 0);
1659 for (i = 0; i < anfdmax; ++i)
1660 for (w = anfds [i].head; w; w = w->next)
1661 {
1662 verify_watcher (EV_A_ (W)w);
1663 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1664 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1665 }
1666
1667 assert (timermax >= timercnt);
1668 verify_heap (EV_A_ timers, timercnt);
1669
1670#if EV_PERIODIC_ENABLE
1671 assert (periodicmax >= periodiccnt);
1672 verify_heap (EV_A_ periodics, periodiccnt);
1673#endif
1674
1675 for (i = NUMPRI; i--; )
1676 {
1677 assert (pendingmax [i] >= pendingcnt [i]);
1678#if EV_IDLE_ENABLE
1679 assert (idleall >= 0);
1680 assert (idlemax [i] >= idlecnt [i]);
1681 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1682#endif
1683 }
1684
1685#if EV_FORK_ENABLE
1686 assert (forkmax >= forkcnt);
1687 array_verify (EV_A_ (W *)forks, forkcnt);
1688#endif
1689
1690#if EV_ASYNC_ENABLE
1691 assert (asyncmax >= asynccnt);
1692 array_verify (EV_A_ (W *)asyncs, asynccnt);
1693#endif
1694
1695 assert (preparemax >= preparecnt);
1696 array_verify (EV_A_ (W *)prepares, preparecnt);
1697
1698 assert (checkmax >= checkcnt);
1699 array_verify (EV_A_ (W *)checks, checkcnt);
1700
1701# if 0
1702 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1703 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1105#endif 1704# endif
1705#endif
1706}
1707
1708#endif /* multiplicity */
1106 1709
1107#if EV_MULTIPLICITY 1710#if EV_MULTIPLICITY
1108struct ev_loop * 1711struct ev_loop *
1109ev_default_loop_init (unsigned int flags) 1712ev_default_loop_init (unsigned int flags)
1110#else 1713#else
1111int 1714int
1112ev_default_loop (unsigned int flags) 1715ev_default_loop (unsigned int flags)
1113#endif 1716#endif
1114{ 1717{
1115 if (sigpipe [0] == sigpipe [1])
1116 if (pipe (sigpipe))
1117 return 0;
1118
1119 if (!ev_default_loop_ptr) 1718 if (!ev_default_loop_ptr)
1120 { 1719 {
1121#if EV_MULTIPLICITY 1720#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1721 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1123#else 1722#else
1126 1725
1127 loop_init (EV_A_ flags); 1726 loop_init (EV_A_ flags);
1128 1727
1129 if (ev_backend (EV_A)) 1728 if (ev_backend (EV_A))
1130 { 1729 {
1131 siginit (EV_A);
1132
1133#ifndef _WIN32 1730#ifndef _WIN32
1134 ev_signal_init (&childev, childcb, SIGCHLD); 1731 ev_signal_init (&childev, childcb, SIGCHLD);
1135 ev_set_priority (&childev, EV_MAXPRI); 1732 ev_set_priority (&childev, EV_MAXPRI);
1136 ev_signal_start (EV_A_ &childev); 1733 ev_signal_start (EV_A_ &childev);
1137 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1734 ev_unref (EV_A); /* child watcher should not keep loop alive */
1149{ 1746{
1150#if EV_MULTIPLICITY 1747#if EV_MULTIPLICITY
1151 struct ev_loop *loop = ev_default_loop_ptr; 1748 struct ev_loop *loop = ev_default_loop_ptr;
1152#endif 1749#endif
1153 1750
1751 ev_default_loop_ptr = 0;
1752
1154#ifndef _WIN32 1753#ifndef _WIN32
1155 ev_ref (EV_A); /* child watcher */ 1754 ev_ref (EV_A); /* child watcher */
1156 ev_signal_stop (EV_A_ &childev); 1755 ev_signal_stop (EV_A_ &childev);
1157#endif 1756#endif
1158 1757
1159 ev_ref (EV_A); /* signal watcher */
1160 ev_io_stop (EV_A_ &sigev);
1161
1162 close (sigpipe [0]); sigpipe [0] = 0;
1163 close (sigpipe [1]); sigpipe [1] = 0;
1164
1165 loop_destroy (EV_A); 1758 loop_destroy (EV_A);
1166} 1759}
1167 1760
1168void 1761void
1169ev_default_fork (void) 1762ev_default_fork (void)
1170{ 1763{
1171#if EV_MULTIPLICITY 1764#if EV_MULTIPLICITY
1172 struct ev_loop *loop = ev_default_loop_ptr; 1765 struct ev_loop *loop = ev_default_loop_ptr;
1173#endif 1766#endif
1174 1767
1175 if (backend) 1768 postfork = 1; /* must be in line with ev_loop_fork */
1176 postfork = 1;
1177} 1769}
1178 1770
1179/*****************************************************************************/ 1771/*****************************************************************************/
1180 1772
1181void 1773void
1182ev_invoke (EV_P_ void *w, int revents) 1774ev_invoke (EV_P_ void *w, int revents)
1183{ 1775{
1184 EV_CB_INVOKE ((W)w, revents); 1776 EV_CB_INVOKE ((W)w, revents);
1185} 1777}
1186 1778
1187void inline_speed 1779inline_speed void
1188call_pending (EV_P) 1780call_pending (EV_P)
1189{ 1781{
1190 int pri; 1782 int pri;
1191 1783
1192 for (pri = NUMPRI; pri--; ) 1784 for (pri = NUMPRI; pri--; )
1193 while (pendingcnt [pri]) 1785 while (pendingcnt [pri])
1194 { 1786 {
1195 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1787 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1196 1788
1197 if (expect_true (p->w))
1198 {
1199 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1789 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1790 /* ^ this is no longer true, as pending_w could be here */
1200 1791
1201 p->w->pending = 0; 1792 p->w->pending = 0;
1202 EV_CB_INVOKE (p->w, p->events); 1793 EV_CB_INVOKE (p->w, p->events);
1203 } 1794 EV_FREQUENT_CHECK;
1204 } 1795 }
1205} 1796}
1206 1797
1207void inline_size
1208timers_reify (EV_P)
1209{
1210 while (timercnt && ((WT)timers [0])->at <= mn_now)
1211 {
1212 ev_timer *w = timers [0];
1213
1214 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1215
1216 /* first reschedule or stop timer */
1217 if (w->repeat)
1218 {
1219 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1220
1221 ((WT)w)->at += w->repeat;
1222 if (((WT)w)->at < mn_now)
1223 ((WT)w)->at = mn_now;
1224
1225 downheap ((WT *)timers, timercnt, 0);
1226 }
1227 else
1228 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1229
1230 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1231 }
1232}
1233
1234#if EV_PERIODIC_ENABLE
1235void inline_size
1236periodics_reify (EV_P)
1237{
1238 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1239 {
1240 ev_periodic *w = periodics [0];
1241
1242 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1243
1244 /* first reschedule or stop timer */
1245 if (w->reschedule_cb)
1246 {
1247 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1248 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1249 downheap ((WT *)periodics, periodiccnt, 0);
1250 }
1251 else if (w->interval)
1252 {
1253 ((WT)w)->at = w->offset + floor ((ev_rt_now + TIME_EPSILON - w->offset) / w->interval + 1.) * w->interval;
1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1255 downheap ((WT *)periodics, periodiccnt, 0);
1256 }
1257 else
1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1259
1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1261 }
1262}
1263
1264static void noinline
1265periodics_reschedule (EV_P)
1266{
1267 int i;
1268
1269 /* adjust periodics after time jump */
1270 for (i = 0; i < periodiccnt; ++i)
1271 {
1272 ev_periodic *w = periodics [i];
1273
1274 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1276 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 }
1279
1280 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i);
1283}
1284#endif
1285
1286#if EV_IDLE_ENABLE 1798#if EV_IDLE_ENABLE
1287void inline_size 1799/* make idle watchers pending. this handles the "call-idle */
1800/* only when higher priorities are idle" logic */
1801inline_size void
1288idle_reify (EV_P) 1802idle_reify (EV_P)
1289{ 1803{
1290 if (expect_false (idleall)) 1804 if (expect_false (idleall))
1291 { 1805 {
1292 int pri; 1806 int pri;
1304 } 1818 }
1305 } 1819 }
1306} 1820}
1307#endif 1821#endif
1308 1822
1309int inline_size 1823/* make timers pending */
1310time_update_monotonic (EV_P) 1824inline_size void
1825timers_reify (EV_P)
1311{ 1826{
1827 EV_FREQUENT_CHECK;
1828
1829 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1830 {
1831 do
1832 {
1833 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1834
1835 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1836
1837 /* first reschedule or stop timer */
1838 if (w->repeat)
1839 {
1840 ev_at (w) += w->repeat;
1841 if (ev_at (w) < mn_now)
1842 ev_at (w) = mn_now;
1843
1844 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1845
1846 ANHE_at_cache (timers [HEAP0]);
1847 downheap (timers, timercnt, HEAP0);
1848 }
1849 else
1850 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1851
1852 EV_FREQUENT_CHECK;
1853 feed_reverse (EV_A_ (W)w);
1854 }
1855 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1856
1857 feed_reverse_done (EV_A_ EV_TIMEOUT);
1858 }
1859}
1860
1861#if EV_PERIODIC_ENABLE
1862/* make periodics pending */
1863inline_size void
1864periodics_reify (EV_P)
1865{
1866 EV_FREQUENT_CHECK;
1867
1868 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1869 {
1870 int feed_count = 0;
1871
1872 do
1873 {
1874 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1875
1876 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1877
1878 /* first reschedule or stop timer */
1879 if (w->reschedule_cb)
1880 {
1881 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1882
1883 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1884
1885 ANHE_at_cache (periodics [HEAP0]);
1886 downheap (periodics, periodiccnt, HEAP0);
1887 }
1888 else if (w->interval)
1889 {
1890 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1891 /* if next trigger time is not sufficiently in the future, put it there */
1892 /* this might happen because of floating point inexactness */
1893 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1894 {
1895 ev_at (w) += w->interval;
1896
1897 /* if interval is unreasonably low we might still have a time in the past */
1898 /* so correct this. this will make the periodic very inexact, but the user */
1899 /* has effectively asked to get triggered more often than possible */
1900 if (ev_at (w) < ev_rt_now)
1901 ev_at (w) = ev_rt_now;
1902 }
1903
1904 ANHE_at_cache (periodics [HEAP0]);
1905 downheap (periodics, periodiccnt, HEAP0);
1906 }
1907 else
1908 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1909
1910 EV_FREQUENT_CHECK;
1911 feed_reverse (EV_A_ (W)w);
1912 }
1913 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1914
1915 feed_reverse_done (EV_A_ EV_PERIODIC);
1916 }
1917}
1918
1919/* simply recalculate all periodics */
1920/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1921static void noinline
1922periodics_reschedule (EV_P)
1923{
1924 int i;
1925
1926 /* adjust periodics after time jump */
1927 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1928 {
1929 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1930
1931 if (w->reschedule_cb)
1932 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1933 else if (w->interval)
1934 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1935
1936 ANHE_at_cache (periodics [i]);
1937 }
1938
1939 reheap (periodics, periodiccnt);
1940}
1941#endif
1942
1943/* adjust all timers by a given offset */
1944static void noinline
1945timers_reschedule (EV_P_ ev_tstamp adjust)
1946{
1947 int i;
1948
1949 for (i = 0; i < timercnt; ++i)
1950 {
1951 ANHE *he = timers + i + HEAP0;
1952 ANHE_w (*he)->at += adjust;
1953 ANHE_at_cache (*he);
1954 }
1955}
1956
1957/* fetch new monotonic and realtime times from the kernel */
1958/* also detetc if there was a timejump, and act accordingly */
1959inline_speed void
1960time_update (EV_P_ ev_tstamp max_block)
1961{
1962#if EV_USE_MONOTONIC
1963 if (expect_true (have_monotonic))
1964 {
1965 int i;
1966 ev_tstamp odiff = rtmn_diff;
1967
1312 mn_now = get_clock (); 1968 mn_now = get_clock ();
1313 1969
1970 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1971 /* interpolate in the meantime */
1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1972 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1315 { 1973 {
1316 ev_rt_now = rtmn_diff + mn_now; 1974 ev_rt_now = rtmn_diff + mn_now;
1317 return 0; 1975 return;
1318 } 1976 }
1319 else 1977
1320 {
1321 now_floor = mn_now; 1978 now_floor = mn_now;
1322 ev_rt_now = ev_time (); 1979 ev_rt_now = ev_time ();
1323 return 1;
1324 }
1325}
1326 1980
1327void inline_size 1981 /* loop a few times, before making important decisions.
1328time_update (EV_P) 1982 * on the choice of "4": one iteration isn't enough,
1329{ 1983 * in case we get preempted during the calls to
1330 int i; 1984 * ev_time and get_clock. a second call is almost guaranteed
1331 1985 * to succeed in that case, though. and looping a few more times
1332#if EV_USE_MONOTONIC 1986 * doesn't hurt either as we only do this on time-jumps or
1333 if (expect_true (have_monotonic)) 1987 * in the unlikely event of having been preempted here.
1334 { 1988 */
1335 if (time_update_monotonic (EV_A)) 1989 for (i = 4; --i; )
1336 { 1990 {
1337 ev_tstamp odiff = rtmn_diff;
1338
1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1348 {
1349 rtmn_diff = ev_rt_now - mn_now; 1991 rtmn_diff = ev_rt_now - mn_now;
1350 1992
1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1993 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1352 return; /* all is well */ 1994 return; /* all is well */
1353 1995
1354 ev_rt_now = ev_time (); 1996 ev_rt_now = ev_time ();
1355 mn_now = get_clock (); 1997 mn_now = get_clock ();
1356 now_floor = mn_now; 1998 now_floor = mn_now;
1357 } 1999 }
1358 2000
2001 /* no timer adjustment, as the monotonic clock doesn't jump */
2002 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1359# if EV_PERIODIC_ENABLE 2003# if EV_PERIODIC_ENABLE
1360 periodics_reschedule (EV_A); 2004 periodics_reschedule (EV_A);
1361# endif 2005# endif
1362 /* no timer adjustment, as the monotonic clock doesn't jump */
1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1364 }
1365 } 2006 }
1366 else 2007 else
1367#endif 2008#endif
1368 { 2009 {
1369 ev_rt_now = ev_time (); 2010 ev_rt_now = ev_time ();
1370 2011
1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2012 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 { 2013 {
2014 /* adjust timers. this is easy, as the offset is the same for all of them */
2015 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1373#if EV_PERIODIC_ENABLE 2016#if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 2017 periodics_reschedule (EV_A);
1375#endif 2018#endif
1376
1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i)
1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1380 } 2019 }
1381 2020
1382 mn_now = ev_rt_now; 2021 mn_now = ev_rt_now;
1383 } 2022 }
1384} 2023}
1385 2024
1386void
1387ev_ref (EV_P)
1388{
1389 ++activecnt;
1390}
1391
1392void
1393ev_unref (EV_P)
1394{
1395 --activecnt;
1396}
1397
1398static int loop_done; 2025static int loop_done;
1399 2026
1400void 2027void
1401ev_loop (EV_P_ int flags) 2028ev_loop (EV_P_ int flags)
1402{ 2029{
1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2030 loop_done = EVUNLOOP_CANCEL;
1404 ? EVUNLOOP_ONE
1405 : EVUNLOOP_CANCEL;
1406 2031
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2032 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1408 2033
1409 do 2034 do
1410 { 2035 {
2036#if EV_VERIFY >= 2
2037 ev_loop_verify (EV_A);
2038#endif
2039
1411#ifndef _WIN32 2040#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */ 2041 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid)) 2042 if (expect_false (getpid () != curpid))
1414 { 2043 {
1415 curpid = getpid (); 2044 curpid = getpid ();
1432 { 2061 {
1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2062 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1434 call_pending (EV_A); 2063 call_pending (EV_A);
1435 } 2064 }
1436 2065
1437 if (expect_false (!activecnt))
1438 break;
1439
1440 /* we might have forked, so reify kernel state if necessary */ 2066 /* we might have forked, so reify kernel state if necessary */
1441 if (expect_false (postfork)) 2067 if (expect_false (postfork))
1442 loop_fork (EV_A); 2068 loop_fork (EV_A);
1443 2069
1444 /* update fd-related kernel structures */ 2070 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 2071 fd_reify (EV_A);
1446 2072
1447 /* calculate blocking time */ 2073 /* calculate blocking time */
1448 { 2074 {
1449 ev_tstamp block; 2075 ev_tstamp waittime = 0.;
2076 ev_tstamp sleeptime = 0.;
1450 2077
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2078 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 2079 {
1455 /* update time to cancel out callback processing overhead */ 2080 /* update time to cancel out callback processing overhead */
1456#if EV_USE_MONOTONIC
1457 if (expect_true (have_monotonic))
1458 time_update_monotonic (EV_A); 2081 time_update (EV_A_ 1e100);
1459 else
1460#endif
1461 {
1462 ev_rt_now = ev_time ();
1463 mn_now = ev_rt_now;
1464 }
1465 2082
1466 block = MAX_BLOCKTIME; 2083 waittime = MAX_BLOCKTIME;
1467 2084
1468 if (timercnt) 2085 if (timercnt)
1469 { 2086 {
1470 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2087 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1471 if (block > to) block = to; 2088 if (waittime > to) waittime = to;
1472 } 2089 }
1473 2090
1474#if EV_PERIODIC_ENABLE 2091#if EV_PERIODIC_ENABLE
1475 if (periodiccnt) 2092 if (periodiccnt)
1476 { 2093 {
1477 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2094 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1478 if (block > to) block = to; 2095 if (waittime > to) waittime = to;
1479 } 2096 }
1480#endif 2097#endif
1481 2098
1482 if (expect_false (block < 0.)) block = 0.; 2099 if (expect_false (waittime < timeout_blocktime))
2100 waittime = timeout_blocktime;
2101
2102 sleeptime = waittime - backend_fudge;
2103
2104 if (expect_true (sleeptime > io_blocktime))
2105 sleeptime = io_blocktime;
2106
2107 if (sleeptime)
2108 {
2109 ev_sleep (sleeptime);
2110 waittime -= sleeptime;
2111 }
1483 } 2112 }
1484 2113
1485 ++loop_count; 2114 ++loop_count;
1486 backend_poll (EV_A_ block); 2115 backend_poll (EV_A_ waittime);
2116
2117 /* update ev_rt_now, do magic */
2118 time_update (EV_A_ waittime + sleeptime);
1487 } 2119 }
1488
1489 /* update ev_rt_now, do magic */
1490 time_update (EV_A);
1491 2120
1492 /* queue pending timers and reschedule them */ 2121 /* queue pending timers and reschedule them */
1493 timers_reify (EV_A); /* relative timers called last */ 2122 timers_reify (EV_A); /* relative timers called last */
1494#if EV_PERIODIC_ENABLE 2123#if EV_PERIODIC_ENABLE
1495 periodics_reify (EV_A); /* absolute timers called first */ 2124 periodics_reify (EV_A); /* absolute timers called first */
1503 /* queue check watchers, to be executed first */ 2132 /* queue check watchers, to be executed first */
1504 if (expect_false (checkcnt)) 2133 if (expect_false (checkcnt))
1505 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2134 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1506 2135
1507 call_pending (EV_A); 2136 call_pending (EV_A);
1508
1509 } 2137 }
1510 while (expect_true (activecnt && !loop_done)); 2138 while (expect_true (
2139 activecnt
2140 && !loop_done
2141 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2142 ));
1511 2143
1512 if (loop_done == EVUNLOOP_ONE) 2144 if (loop_done == EVUNLOOP_ONE)
1513 loop_done = EVUNLOOP_CANCEL; 2145 loop_done = EVUNLOOP_CANCEL;
1514} 2146}
1515 2147
1517ev_unloop (EV_P_ int how) 2149ev_unloop (EV_P_ int how)
1518{ 2150{
1519 loop_done = how; 2151 loop_done = how;
1520} 2152}
1521 2153
2154void
2155ev_ref (EV_P)
2156{
2157 ++activecnt;
2158}
2159
2160void
2161ev_unref (EV_P)
2162{
2163 --activecnt;
2164}
2165
2166void
2167ev_now_update (EV_P)
2168{
2169 time_update (EV_A_ 1e100);
2170}
2171
2172void
2173ev_suspend (EV_P)
2174{
2175 ev_now_update (EV_A);
2176}
2177
2178void
2179ev_resume (EV_P)
2180{
2181 ev_tstamp mn_prev = mn_now;
2182
2183 ev_now_update (EV_A);
2184 timers_reschedule (EV_A_ mn_now - mn_prev);
2185#if EV_PERIODIC_ENABLE
2186 /* TODO: really do this? */
2187 periodics_reschedule (EV_A);
2188#endif
2189}
2190
1522/*****************************************************************************/ 2191/*****************************************************************************/
2192/* singly-linked list management, used when the expected list length is short */
1523 2193
1524void inline_size 2194inline_size void
1525wlist_add (WL *head, WL elem) 2195wlist_add (WL *head, WL elem)
1526{ 2196{
1527 elem->next = *head; 2197 elem->next = *head;
1528 *head = elem; 2198 *head = elem;
1529} 2199}
1530 2200
1531void inline_size 2201inline_size void
1532wlist_del (WL *head, WL elem) 2202wlist_del (WL *head, WL elem)
1533{ 2203{
1534 while (*head) 2204 while (*head)
1535 { 2205 {
1536 if (*head == elem) 2206 if (*head == elem)
1541 2211
1542 head = &(*head)->next; 2212 head = &(*head)->next;
1543 } 2213 }
1544} 2214}
1545 2215
1546void inline_speed 2216/* internal, faster, version of ev_clear_pending */
2217inline_speed void
1547clear_pending (EV_P_ W w) 2218clear_pending (EV_P_ W w)
1548{ 2219{
1549 if (w->pending) 2220 if (w->pending)
1550 { 2221 {
1551 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2222 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1552 w->pending = 0; 2223 w->pending = 0;
1553 } 2224 }
1554} 2225}
1555 2226
1556int 2227int
1560 int pending = w_->pending; 2231 int pending = w_->pending;
1561 2232
1562 if (expect_true (pending)) 2233 if (expect_true (pending))
1563 { 2234 {
1564 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2235 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2236 p->w = (W)&pending_w;
1565 w_->pending = 0; 2237 w_->pending = 0;
1566 p->w = 0;
1567 return p->events; 2238 return p->events;
1568 } 2239 }
1569 else 2240 else
1570 return 0; 2241 return 0;
1571} 2242}
1572 2243
1573void inline_size 2244inline_size void
1574pri_adjust (EV_P_ W w) 2245pri_adjust (EV_P_ W w)
1575{ 2246{
1576 int pri = w->priority; 2247 int pri = w->priority;
1577 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2248 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1578 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2249 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1579 w->priority = pri; 2250 w->priority = pri;
1580} 2251}
1581 2252
1582void inline_speed 2253inline_speed void
1583ev_start (EV_P_ W w, int active) 2254ev_start (EV_P_ W w, int active)
1584{ 2255{
1585 pri_adjust (EV_A_ w); 2256 pri_adjust (EV_A_ w);
1586 w->active = active; 2257 w->active = active;
1587 ev_ref (EV_A); 2258 ev_ref (EV_A);
1588} 2259}
1589 2260
1590void inline_size 2261inline_size void
1591ev_stop (EV_P_ W w) 2262ev_stop (EV_P_ W w)
1592{ 2263{
1593 ev_unref (EV_A); 2264 ev_unref (EV_A);
1594 w->active = 0; 2265 w->active = 0;
1595} 2266}
1602 int fd = w->fd; 2273 int fd = w->fd;
1603 2274
1604 if (expect_false (ev_is_active (w))) 2275 if (expect_false (ev_is_active (w)))
1605 return; 2276 return;
1606 2277
1607 assert (("ev_io_start called with negative fd", fd >= 0)); 2278 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2279 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2280
2281 EV_FREQUENT_CHECK;
1608 2282
1609 ev_start (EV_A_ (W)w, 1); 2283 ev_start (EV_A_ (W)w, 1);
1610 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2284 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1611 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2285 wlist_add (&anfds[fd].head, (WL)w);
1612 2286
1613 fd_change (EV_A_ fd); 2287 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
2288 w->events &= ~EV__IOFDSET;
2289
2290 EV_FREQUENT_CHECK;
1614} 2291}
1615 2292
1616void noinline 2293void noinline
1617ev_io_stop (EV_P_ ev_io *w) 2294ev_io_stop (EV_P_ ev_io *w)
1618{ 2295{
1619 clear_pending (EV_A_ (W)w); 2296 clear_pending (EV_A_ (W)w);
1620 if (expect_false (!ev_is_active (w))) 2297 if (expect_false (!ev_is_active (w)))
1621 return; 2298 return;
1622 2299
1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2300 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1624 2301
2302 EV_FREQUENT_CHECK;
2303
1625 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2304 wlist_del (&anfds[w->fd].head, (WL)w);
1626 ev_stop (EV_A_ (W)w); 2305 ev_stop (EV_A_ (W)w);
1627 2306
1628 fd_change (EV_A_ w->fd); 2307 fd_change (EV_A_ w->fd, 1);
2308
2309 EV_FREQUENT_CHECK;
1629} 2310}
1630 2311
1631void noinline 2312void noinline
1632ev_timer_start (EV_P_ ev_timer *w) 2313ev_timer_start (EV_P_ ev_timer *w)
1633{ 2314{
1634 if (expect_false (ev_is_active (w))) 2315 if (expect_false (ev_is_active (w)))
1635 return; 2316 return;
1636 2317
1637 ((WT)w)->at += mn_now; 2318 ev_at (w) += mn_now;
1638 2319
1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2320 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1640 2321
2322 EV_FREQUENT_CHECK;
2323
2324 ++timercnt;
1641 ev_start (EV_A_ (W)w, ++timercnt); 2325 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1642 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2326 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1643 timers [timercnt - 1] = w; 2327 ANHE_w (timers [ev_active (w)]) = (WT)w;
1644 upheap ((WT *)timers, timercnt - 1); 2328 ANHE_at_cache (timers [ev_active (w)]);
2329 upheap (timers, ev_active (w));
1645 2330
2331 EV_FREQUENT_CHECK;
2332
1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2333 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1647} 2334}
1648 2335
1649void noinline 2336void noinline
1650ev_timer_stop (EV_P_ ev_timer *w) 2337ev_timer_stop (EV_P_ ev_timer *w)
1651{ 2338{
1652 clear_pending (EV_A_ (W)w); 2339 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 2340 if (expect_false (!ev_is_active (w)))
1654 return; 2341 return;
1655 2342
1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2343 EV_FREQUENT_CHECK;
1657 2344
1658 { 2345 {
1659 int active = ((W)w)->active; 2346 int active = ev_active (w);
1660 2347
2348 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2349
2350 --timercnt;
2351
1661 if (expect_true (--active < --timercnt)) 2352 if (expect_true (active < timercnt + HEAP0))
1662 { 2353 {
1663 timers [active] = timers [timercnt]; 2354 timers [active] = timers [timercnt + HEAP0];
1664 adjustheap ((WT *)timers, timercnt, active); 2355 adjustheap (timers, timercnt, active);
1665 } 2356 }
1666 } 2357 }
1667 2358
1668 ((WT)w)->at -= mn_now; 2359 EV_FREQUENT_CHECK;
2360
2361 ev_at (w) -= mn_now;
1669 2362
1670 ev_stop (EV_A_ (W)w); 2363 ev_stop (EV_A_ (W)w);
1671} 2364}
1672 2365
1673void noinline 2366void noinline
1674ev_timer_again (EV_P_ ev_timer *w) 2367ev_timer_again (EV_P_ ev_timer *w)
1675{ 2368{
2369 EV_FREQUENT_CHECK;
2370
1676 if (ev_is_active (w)) 2371 if (ev_is_active (w))
1677 { 2372 {
1678 if (w->repeat) 2373 if (w->repeat)
1679 { 2374 {
1680 ((WT)w)->at = mn_now + w->repeat; 2375 ev_at (w) = mn_now + w->repeat;
2376 ANHE_at_cache (timers [ev_active (w)]);
1681 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2377 adjustheap (timers, timercnt, ev_active (w));
1682 } 2378 }
1683 else 2379 else
1684 ev_timer_stop (EV_A_ w); 2380 ev_timer_stop (EV_A_ w);
1685 } 2381 }
1686 else if (w->repeat) 2382 else if (w->repeat)
1687 { 2383 {
1688 w->at = w->repeat; 2384 ev_at (w) = w->repeat;
1689 ev_timer_start (EV_A_ w); 2385 ev_timer_start (EV_A_ w);
1690 } 2386 }
2387
2388 EV_FREQUENT_CHECK;
1691} 2389}
1692 2390
1693#if EV_PERIODIC_ENABLE 2391#if EV_PERIODIC_ENABLE
1694void noinline 2392void noinline
1695ev_periodic_start (EV_P_ ev_periodic *w) 2393ev_periodic_start (EV_P_ ev_periodic *w)
1696{ 2394{
1697 if (expect_false (ev_is_active (w))) 2395 if (expect_false (ev_is_active (w)))
1698 return; 2396 return;
1699 2397
1700 if (w->reschedule_cb) 2398 if (w->reschedule_cb)
1701 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2399 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1702 else if (w->interval) 2400 else if (w->interval)
1703 { 2401 {
1704 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2402 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1705 /* this formula differs from the one in periodic_reify because we do not always round up */ 2403 /* this formula differs from the one in periodic_reify because we do not always round up */
1706 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2404 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1707 } 2405 }
1708 else 2406 else
1709 ((WT)w)->at = w->offset; 2407 ev_at (w) = w->offset;
1710 2408
2409 EV_FREQUENT_CHECK;
2410
2411 ++periodiccnt;
1711 ev_start (EV_A_ (W)w, ++periodiccnt); 2412 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1712 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2413 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1713 periodics [periodiccnt - 1] = w; 2414 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1714 upheap ((WT *)periodics, periodiccnt - 1); 2415 ANHE_at_cache (periodics [ev_active (w)]);
2416 upheap (periodics, ev_active (w));
1715 2417
2418 EV_FREQUENT_CHECK;
2419
1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2420 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1717} 2421}
1718 2422
1719void noinline 2423void noinline
1720ev_periodic_stop (EV_P_ ev_periodic *w) 2424ev_periodic_stop (EV_P_ ev_periodic *w)
1721{ 2425{
1722 clear_pending (EV_A_ (W)w); 2426 clear_pending (EV_A_ (W)w);
1723 if (expect_false (!ev_is_active (w))) 2427 if (expect_false (!ev_is_active (w)))
1724 return; 2428 return;
1725 2429
1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2430 EV_FREQUENT_CHECK;
1727 2431
1728 { 2432 {
1729 int active = ((W)w)->active; 2433 int active = ev_active (w);
1730 2434
2435 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2436
2437 --periodiccnt;
2438
1731 if (expect_true (--active < --periodiccnt)) 2439 if (expect_true (active < periodiccnt + HEAP0))
1732 { 2440 {
1733 periodics [active] = periodics [periodiccnt]; 2441 periodics [active] = periodics [periodiccnt + HEAP0];
1734 adjustheap ((WT *)periodics, periodiccnt, active); 2442 adjustheap (periodics, periodiccnt, active);
1735 } 2443 }
1736 } 2444 }
2445
2446 EV_FREQUENT_CHECK;
1737 2447
1738 ev_stop (EV_A_ (W)w); 2448 ev_stop (EV_A_ (W)w);
1739} 2449}
1740 2450
1741void noinline 2451void noinline
1753 2463
1754void noinline 2464void noinline
1755ev_signal_start (EV_P_ ev_signal *w) 2465ev_signal_start (EV_P_ ev_signal *w)
1756{ 2466{
1757#if EV_MULTIPLICITY 2467#if EV_MULTIPLICITY
1758 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2468 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1759#endif 2469#endif
1760 if (expect_false (ev_is_active (w))) 2470 if (expect_false (ev_is_active (w)))
1761 return; 2471 return;
1762 2472
1763 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2473 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2474
2475 evpipe_init (EV_A);
2476
2477 EV_FREQUENT_CHECK;
2478
2479 {
2480#ifndef _WIN32
2481 sigset_t full, prev;
2482 sigfillset (&full);
2483 sigprocmask (SIG_SETMASK, &full, &prev);
2484#endif
2485
2486 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2487
2488#ifndef _WIN32
2489 sigprocmask (SIG_SETMASK, &prev, 0);
2490#endif
2491 }
1764 2492
1765 ev_start (EV_A_ (W)w, 1); 2493 ev_start (EV_A_ (W)w, 1);
1766 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1767 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2494 wlist_add (&signals [w->signum - 1].head, (WL)w);
1768 2495
1769 if (!((WL)w)->next) 2496 if (!((WL)w)->next)
1770 { 2497 {
1771#if _WIN32 2498#if _WIN32
1772 signal (w->signum, sighandler); 2499 signal (w->signum, ev_sighandler);
1773#else 2500#else
1774 struct sigaction sa; 2501 struct sigaction sa;
1775 sa.sa_handler = sighandler; 2502 sa.sa_handler = ev_sighandler;
1776 sigfillset (&sa.sa_mask); 2503 sigfillset (&sa.sa_mask);
1777 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2504 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1778 sigaction (w->signum, &sa, 0); 2505 sigaction (w->signum, &sa, 0);
1779#endif 2506#endif
1780 } 2507 }
2508
2509 EV_FREQUENT_CHECK;
1781} 2510}
1782 2511
1783void noinline 2512void noinline
1784ev_signal_stop (EV_P_ ev_signal *w) 2513ev_signal_stop (EV_P_ ev_signal *w)
1785{ 2514{
1786 clear_pending (EV_A_ (W)w); 2515 clear_pending (EV_A_ (W)w);
1787 if (expect_false (!ev_is_active (w))) 2516 if (expect_false (!ev_is_active (w)))
1788 return; 2517 return;
1789 2518
2519 EV_FREQUENT_CHECK;
2520
1790 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2521 wlist_del (&signals [w->signum - 1].head, (WL)w);
1791 ev_stop (EV_A_ (W)w); 2522 ev_stop (EV_A_ (W)w);
1792 2523
1793 if (!signals [w->signum - 1].head) 2524 if (!signals [w->signum - 1].head)
1794 signal (w->signum, SIG_DFL); 2525 signal (w->signum, SIG_DFL);
2526
2527 EV_FREQUENT_CHECK;
1795} 2528}
1796 2529
1797void 2530void
1798ev_child_start (EV_P_ ev_child *w) 2531ev_child_start (EV_P_ ev_child *w)
1799{ 2532{
1800#if EV_MULTIPLICITY 2533#if EV_MULTIPLICITY
1801 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2534 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1802#endif 2535#endif
1803 if (expect_false (ev_is_active (w))) 2536 if (expect_false (ev_is_active (w)))
1804 return; 2537 return;
1805 2538
2539 EV_FREQUENT_CHECK;
2540
1806 ev_start (EV_A_ (W)w, 1); 2541 ev_start (EV_A_ (W)w, 1);
1807 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2542 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2543
2544 EV_FREQUENT_CHECK;
1808} 2545}
1809 2546
1810void 2547void
1811ev_child_stop (EV_P_ ev_child *w) 2548ev_child_stop (EV_P_ ev_child *w)
1812{ 2549{
1813 clear_pending (EV_A_ (W)w); 2550 clear_pending (EV_A_ (W)w);
1814 if (expect_false (!ev_is_active (w))) 2551 if (expect_false (!ev_is_active (w)))
1815 return; 2552 return;
1816 2553
2554 EV_FREQUENT_CHECK;
2555
1817 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2556 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1818 ev_stop (EV_A_ (W)w); 2557 ev_stop (EV_A_ (W)w);
2558
2559 EV_FREQUENT_CHECK;
1819} 2560}
1820 2561
1821#if EV_STAT_ENABLE 2562#if EV_STAT_ENABLE
1822 2563
1823# ifdef _WIN32 2564# ifdef _WIN32
1824# undef lstat 2565# undef lstat
1825# define lstat(a,b) _stati64 (a,b) 2566# define lstat(a,b) _stati64 (a,b)
1826# endif 2567# endif
1827 2568
1828#define DEF_STAT_INTERVAL 5.0074891 2569#define DEF_STAT_INTERVAL 5.0074891
2570#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1829#define MIN_STAT_INTERVAL 0.1074891 2571#define MIN_STAT_INTERVAL 0.1074891
1830 2572
1831static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2573static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1832 2574
1833#if EV_USE_INOTIFY 2575#if EV_USE_INOTIFY
1834# define EV_INOTIFY_BUFSIZE 8192 2576# define EV_INOTIFY_BUFSIZE 8192
1838{ 2580{
1839 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2581 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1840 2582
1841 if (w->wd < 0) 2583 if (w->wd < 0)
1842 { 2584 {
2585 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1843 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2586 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1844 2587
1845 /* monitor some parent directory for speedup hints */ 2588 /* monitor some parent directory for speedup hints */
2589 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2590 /* but an efficiency issue only */
1846 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2591 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1847 { 2592 {
1848 char path [4096]; 2593 char path [4096];
1849 strcpy (path, w->path); 2594 strcpy (path, w->path);
1850 2595
1853 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2598 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1854 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2599 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1855 2600
1856 char *pend = strrchr (path, '/'); 2601 char *pend = strrchr (path, '/');
1857 2602
1858 if (!pend) 2603 if (!pend || pend == path)
1859 break; /* whoops, no '/', complain to your admin */ 2604 break;
1860 2605
1861 *pend = 0; 2606 *pend = 0;
1862 w->wd = inotify_add_watch (fs_fd, path, mask); 2607 w->wd = inotify_add_watch (fs_fd, path, mask);
1863 } 2608 }
1864 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2609 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1865 } 2610 }
1866 } 2611 }
1867 else
1868 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1869 2612
1870 if (w->wd >= 0) 2613 if (w->wd >= 0)
2614 {
1871 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2615 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2616
2617 /* now local changes will be tracked by inotify, but remote changes won't */
2618 /* unless the filesystem it known to be local, we therefore still poll */
2619 /* also do poll on <2.6.25, but with normal frequency */
2620 struct statfs sfs;
2621
2622 if (fs_2625 && !statfs (w->path, &sfs))
2623 if (sfs.f_type == 0x1373 /* devfs */
2624 || sfs.f_type == 0xEF53 /* ext2/3 */
2625 || sfs.f_type == 0x3153464a /* jfs */
2626 || sfs.f_type == 0x52654973 /* reiser3 */
2627 || sfs.f_type == 0x01021994 /* tempfs */
2628 || sfs.f_type == 0x58465342 /* xfs */)
2629 return;
2630
2631 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2632 ev_timer_again (EV_A_ &w->timer);
2633 }
1872} 2634}
1873 2635
1874static void noinline 2636static void noinline
1875infy_del (EV_P_ ev_stat *w) 2637infy_del (EV_P_ ev_stat *w)
1876{ 2638{
1890 2652
1891static void noinline 2653static void noinline
1892infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2654infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1893{ 2655{
1894 if (slot < 0) 2656 if (slot < 0)
1895 /* overflow, need to check for all hahs slots */ 2657 /* overflow, need to check for all hash slots */
1896 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2658 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1897 infy_wd (EV_A_ slot, wd, ev); 2659 infy_wd (EV_A_ slot, wd, ev);
1898 else 2660 else
1899 { 2661 {
1900 WL w_; 2662 WL w_;
1906 2668
1907 if (w->wd == wd || wd == -1) 2669 if (w->wd == wd || wd == -1)
1908 { 2670 {
1909 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2671 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1910 { 2672 {
2673 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1911 w->wd = -1; 2674 w->wd = -1;
1912 infy_add (EV_A_ w); /* re-add, no matter what */ 2675 infy_add (EV_A_ w); /* re-add, no matter what */
1913 } 2676 }
1914 2677
1915 stat_timer_cb (EV_A_ &w->timer, 0); 2678 stat_timer_cb (EV_A_ &w->timer, 0);
1928 2691
1929 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2692 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1930 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2693 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1931} 2694}
1932 2695
1933void inline_size 2696inline_size void
2697check_2625 (EV_P)
2698{
2699 /* kernels < 2.6.25 are borked
2700 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2701 */
2702 struct utsname buf;
2703 int major, minor, micro;
2704
2705 if (uname (&buf))
2706 return;
2707
2708 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2709 return;
2710
2711 if (major < 2
2712 || (major == 2 && minor < 6)
2713 || (major == 2 && minor == 6 && micro < 25))
2714 return;
2715
2716 fs_2625 = 1;
2717}
2718
2719inline_size void
1934infy_init (EV_P) 2720infy_init (EV_P)
1935{ 2721{
1936 if (fs_fd != -2) 2722 if (fs_fd != -2)
1937 return; 2723 return;
2724
2725 fs_fd = -1;
2726
2727 check_2625 (EV_A);
1938 2728
1939 fs_fd = inotify_init (); 2729 fs_fd = inotify_init ();
1940 2730
1941 if (fs_fd >= 0) 2731 if (fs_fd >= 0)
1942 { 2732 {
1944 ev_set_priority (&fs_w, EV_MAXPRI); 2734 ev_set_priority (&fs_w, EV_MAXPRI);
1945 ev_io_start (EV_A_ &fs_w); 2735 ev_io_start (EV_A_ &fs_w);
1946 } 2736 }
1947} 2737}
1948 2738
1949void inline_size 2739inline_size void
1950infy_fork (EV_P) 2740infy_fork (EV_P)
1951{ 2741{
1952 int slot; 2742 int slot;
1953 2743
1954 if (fs_fd < 0) 2744 if (fs_fd < 0)
1970 w->wd = -1; 2760 w->wd = -1;
1971 2761
1972 if (fs_fd >= 0) 2762 if (fs_fd >= 0)
1973 infy_add (EV_A_ w); /* re-add, no matter what */ 2763 infy_add (EV_A_ w); /* re-add, no matter what */
1974 else 2764 else
1975 ev_timer_start (EV_A_ &w->timer); 2765 ev_timer_again (EV_A_ &w->timer);
1976 } 2766 }
1977
1978 } 2767 }
1979} 2768}
1980 2769
2770#endif
2771
2772#ifdef _WIN32
2773# define EV_LSTAT(p,b) _stati64 (p, b)
2774#else
2775# define EV_LSTAT(p,b) lstat (p, b)
1981#endif 2776#endif
1982 2777
1983void 2778void
1984ev_stat_stat (EV_P_ ev_stat *w) 2779ev_stat_stat (EV_P_ ev_stat *w)
1985{ 2780{
2012 || w->prev.st_atime != w->attr.st_atime 2807 || w->prev.st_atime != w->attr.st_atime
2013 || w->prev.st_mtime != w->attr.st_mtime 2808 || w->prev.st_mtime != w->attr.st_mtime
2014 || w->prev.st_ctime != w->attr.st_ctime 2809 || w->prev.st_ctime != w->attr.st_ctime
2015 ) { 2810 ) {
2016 #if EV_USE_INOTIFY 2811 #if EV_USE_INOTIFY
2812 if (fs_fd >= 0)
2813 {
2017 infy_del (EV_A_ w); 2814 infy_del (EV_A_ w);
2018 infy_add (EV_A_ w); 2815 infy_add (EV_A_ w);
2019 ev_stat_stat (EV_A_ w); /* avoid race... */ 2816 ev_stat_stat (EV_A_ w); /* avoid race... */
2817 }
2020 #endif 2818 #endif
2021 2819
2022 ev_feed_event (EV_A_ w, EV_STAT); 2820 ev_feed_event (EV_A_ w, EV_STAT);
2023 } 2821 }
2024} 2822}
2027ev_stat_start (EV_P_ ev_stat *w) 2825ev_stat_start (EV_P_ ev_stat *w)
2028{ 2826{
2029 if (expect_false (ev_is_active (w))) 2827 if (expect_false (ev_is_active (w)))
2030 return; 2828 return;
2031 2829
2032 /* since we use memcmp, we need to clear any padding data etc. */
2033 memset (&w->prev, 0, sizeof (ev_statdata));
2034 memset (&w->attr, 0, sizeof (ev_statdata));
2035
2036 ev_stat_stat (EV_A_ w); 2830 ev_stat_stat (EV_A_ w);
2037 2831
2832 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2038 if (w->interval < MIN_STAT_INTERVAL) 2833 w->interval = MIN_STAT_INTERVAL;
2039 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2040 2834
2041 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2835 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2042 ev_set_priority (&w->timer, ev_priority (w)); 2836 ev_set_priority (&w->timer, ev_priority (w));
2043 2837
2044#if EV_USE_INOTIFY 2838#if EV_USE_INOTIFY
2045 infy_init (EV_A); 2839 infy_init (EV_A);
2046 2840
2047 if (fs_fd >= 0) 2841 if (fs_fd >= 0)
2048 infy_add (EV_A_ w); 2842 infy_add (EV_A_ w);
2049 else 2843 else
2050#endif 2844#endif
2051 ev_timer_start (EV_A_ &w->timer); 2845 ev_timer_again (EV_A_ &w->timer);
2052 2846
2053 ev_start (EV_A_ (W)w, 1); 2847 ev_start (EV_A_ (W)w, 1);
2848
2849 EV_FREQUENT_CHECK;
2054} 2850}
2055 2851
2056void 2852void
2057ev_stat_stop (EV_P_ ev_stat *w) 2853ev_stat_stop (EV_P_ ev_stat *w)
2058{ 2854{
2059 clear_pending (EV_A_ (W)w); 2855 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w))) 2856 if (expect_false (!ev_is_active (w)))
2061 return; 2857 return;
2062 2858
2859 EV_FREQUENT_CHECK;
2860
2063#if EV_USE_INOTIFY 2861#if EV_USE_INOTIFY
2064 infy_del (EV_A_ w); 2862 infy_del (EV_A_ w);
2065#endif 2863#endif
2066 ev_timer_stop (EV_A_ &w->timer); 2864 ev_timer_stop (EV_A_ &w->timer);
2067 2865
2068 ev_stop (EV_A_ (W)w); 2866 ev_stop (EV_A_ (W)w);
2867
2868 EV_FREQUENT_CHECK;
2069} 2869}
2070#endif 2870#endif
2071 2871
2072#if EV_IDLE_ENABLE 2872#if EV_IDLE_ENABLE
2073void 2873void
2075{ 2875{
2076 if (expect_false (ev_is_active (w))) 2876 if (expect_false (ev_is_active (w)))
2077 return; 2877 return;
2078 2878
2079 pri_adjust (EV_A_ (W)w); 2879 pri_adjust (EV_A_ (W)w);
2880
2881 EV_FREQUENT_CHECK;
2080 2882
2081 { 2883 {
2082 int active = ++idlecnt [ABSPRI (w)]; 2884 int active = ++idlecnt [ABSPRI (w)];
2083 2885
2084 ++idleall; 2886 ++idleall;
2085 ev_start (EV_A_ (W)w, active); 2887 ev_start (EV_A_ (W)w, active);
2086 2888
2087 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2889 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2088 idles [ABSPRI (w)][active - 1] = w; 2890 idles [ABSPRI (w)][active - 1] = w;
2089 } 2891 }
2892
2893 EV_FREQUENT_CHECK;
2090} 2894}
2091 2895
2092void 2896void
2093ev_idle_stop (EV_P_ ev_idle *w) 2897ev_idle_stop (EV_P_ ev_idle *w)
2094{ 2898{
2095 clear_pending (EV_A_ (W)w); 2899 clear_pending (EV_A_ (W)w);
2096 if (expect_false (!ev_is_active (w))) 2900 if (expect_false (!ev_is_active (w)))
2097 return; 2901 return;
2098 2902
2903 EV_FREQUENT_CHECK;
2904
2099 { 2905 {
2100 int active = ((W)w)->active; 2906 int active = ev_active (w);
2101 2907
2102 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2908 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2103 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2909 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2104 2910
2105 ev_stop (EV_A_ (W)w); 2911 ev_stop (EV_A_ (W)w);
2106 --idleall; 2912 --idleall;
2107 } 2913 }
2914
2915 EV_FREQUENT_CHECK;
2108} 2916}
2109#endif 2917#endif
2110 2918
2111void 2919void
2112ev_prepare_start (EV_P_ ev_prepare *w) 2920ev_prepare_start (EV_P_ ev_prepare *w)
2113{ 2921{
2114 if (expect_false (ev_is_active (w))) 2922 if (expect_false (ev_is_active (w)))
2115 return; 2923 return;
2924
2925 EV_FREQUENT_CHECK;
2116 2926
2117 ev_start (EV_A_ (W)w, ++preparecnt); 2927 ev_start (EV_A_ (W)w, ++preparecnt);
2118 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2928 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2119 prepares [preparecnt - 1] = w; 2929 prepares [preparecnt - 1] = w;
2930
2931 EV_FREQUENT_CHECK;
2120} 2932}
2121 2933
2122void 2934void
2123ev_prepare_stop (EV_P_ ev_prepare *w) 2935ev_prepare_stop (EV_P_ ev_prepare *w)
2124{ 2936{
2125 clear_pending (EV_A_ (W)w); 2937 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w))) 2938 if (expect_false (!ev_is_active (w)))
2127 return; 2939 return;
2128 2940
2941 EV_FREQUENT_CHECK;
2942
2129 { 2943 {
2130 int active = ((W)w)->active; 2944 int active = ev_active (w);
2945
2131 prepares [active - 1] = prepares [--preparecnt]; 2946 prepares [active - 1] = prepares [--preparecnt];
2132 ((W)prepares [active - 1])->active = active; 2947 ev_active (prepares [active - 1]) = active;
2133 } 2948 }
2134 2949
2135 ev_stop (EV_A_ (W)w); 2950 ev_stop (EV_A_ (W)w);
2951
2952 EV_FREQUENT_CHECK;
2136} 2953}
2137 2954
2138void 2955void
2139ev_check_start (EV_P_ ev_check *w) 2956ev_check_start (EV_P_ ev_check *w)
2140{ 2957{
2141 if (expect_false (ev_is_active (w))) 2958 if (expect_false (ev_is_active (w)))
2142 return; 2959 return;
2960
2961 EV_FREQUENT_CHECK;
2143 2962
2144 ev_start (EV_A_ (W)w, ++checkcnt); 2963 ev_start (EV_A_ (W)w, ++checkcnt);
2145 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2964 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2146 checks [checkcnt - 1] = w; 2965 checks [checkcnt - 1] = w;
2966
2967 EV_FREQUENT_CHECK;
2147} 2968}
2148 2969
2149void 2970void
2150ev_check_stop (EV_P_ ev_check *w) 2971ev_check_stop (EV_P_ ev_check *w)
2151{ 2972{
2152 clear_pending (EV_A_ (W)w); 2973 clear_pending (EV_A_ (W)w);
2153 if (expect_false (!ev_is_active (w))) 2974 if (expect_false (!ev_is_active (w)))
2154 return; 2975 return;
2155 2976
2977 EV_FREQUENT_CHECK;
2978
2156 { 2979 {
2157 int active = ((W)w)->active; 2980 int active = ev_active (w);
2981
2158 checks [active - 1] = checks [--checkcnt]; 2982 checks [active - 1] = checks [--checkcnt];
2159 ((W)checks [active - 1])->active = active; 2983 ev_active (checks [active - 1]) = active;
2160 } 2984 }
2161 2985
2162 ev_stop (EV_A_ (W)w); 2986 ev_stop (EV_A_ (W)w);
2987
2988 EV_FREQUENT_CHECK;
2163} 2989}
2164 2990
2165#if EV_EMBED_ENABLE 2991#if EV_EMBED_ENABLE
2166void noinline 2992void noinline
2167ev_embed_sweep (EV_P_ ev_embed *w) 2993ev_embed_sweep (EV_P_ ev_embed *w)
2168{ 2994{
2169 ev_loop (w->loop, EVLOOP_NONBLOCK); 2995 ev_loop (w->other, EVLOOP_NONBLOCK);
2170} 2996}
2171 2997
2172static void 2998static void
2173embed_cb (EV_P_ ev_io *io, int revents) 2999embed_io_cb (EV_P_ ev_io *io, int revents)
2174{ 3000{
2175 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3001 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2176 3002
2177 if (ev_cb (w)) 3003 if (ev_cb (w))
2178 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3004 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2179 else 3005 else
2180 ev_embed_sweep (loop, w); 3006 ev_loop (w->other, EVLOOP_NONBLOCK);
2181} 3007}
3008
3009static void
3010embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3011{
3012 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3013
3014 {
3015 struct ev_loop *loop = w->other;
3016
3017 while (fdchangecnt)
3018 {
3019 fd_reify (EV_A);
3020 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3021 }
3022 }
3023}
3024
3025static void
3026embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3027{
3028 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3029
3030 ev_embed_stop (EV_A_ w);
3031
3032 {
3033 struct ev_loop *loop = w->other;
3034
3035 ev_loop_fork (EV_A);
3036 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3037 }
3038
3039 ev_embed_start (EV_A_ w);
3040}
3041
3042#if 0
3043static void
3044embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3045{
3046 ev_idle_stop (EV_A_ idle);
3047}
3048#endif
2182 3049
2183void 3050void
2184ev_embed_start (EV_P_ ev_embed *w) 3051ev_embed_start (EV_P_ ev_embed *w)
2185{ 3052{
2186 if (expect_false (ev_is_active (w))) 3053 if (expect_false (ev_is_active (w)))
2187 return; 3054 return;
2188 3055
2189 { 3056 {
2190 struct ev_loop *loop = w->loop; 3057 struct ev_loop *loop = w->other;
2191 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3058 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2192 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3059 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2193 } 3060 }
3061
3062 EV_FREQUENT_CHECK;
2194 3063
2195 ev_set_priority (&w->io, ev_priority (w)); 3064 ev_set_priority (&w->io, ev_priority (w));
2196 ev_io_start (EV_A_ &w->io); 3065 ev_io_start (EV_A_ &w->io);
2197 3066
3067 ev_prepare_init (&w->prepare, embed_prepare_cb);
3068 ev_set_priority (&w->prepare, EV_MINPRI);
3069 ev_prepare_start (EV_A_ &w->prepare);
3070
3071 ev_fork_init (&w->fork, embed_fork_cb);
3072 ev_fork_start (EV_A_ &w->fork);
3073
3074 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3075
2198 ev_start (EV_A_ (W)w, 1); 3076 ev_start (EV_A_ (W)w, 1);
3077
3078 EV_FREQUENT_CHECK;
2199} 3079}
2200 3080
2201void 3081void
2202ev_embed_stop (EV_P_ ev_embed *w) 3082ev_embed_stop (EV_P_ ev_embed *w)
2203{ 3083{
2204 clear_pending (EV_A_ (W)w); 3084 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w))) 3085 if (expect_false (!ev_is_active (w)))
2206 return; 3086 return;
2207 3087
3088 EV_FREQUENT_CHECK;
3089
2208 ev_io_stop (EV_A_ &w->io); 3090 ev_io_stop (EV_A_ &w->io);
3091 ev_prepare_stop (EV_A_ &w->prepare);
3092 ev_fork_stop (EV_A_ &w->fork);
2209 3093
2210 ev_stop (EV_A_ (W)w); 3094 EV_FREQUENT_CHECK;
2211} 3095}
2212#endif 3096#endif
2213 3097
2214#if EV_FORK_ENABLE 3098#if EV_FORK_ENABLE
2215void 3099void
2216ev_fork_start (EV_P_ ev_fork *w) 3100ev_fork_start (EV_P_ ev_fork *w)
2217{ 3101{
2218 if (expect_false (ev_is_active (w))) 3102 if (expect_false (ev_is_active (w)))
2219 return; 3103 return;
3104
3105 EV_FREQUENT_CHECK;
2220 3106
2221 ev_start (EV_A_ (W)w, ++forkcnt); 3107 ev_start (EV_A_ (W)w, ++forkcnt);
2222 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3108 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2223 forks [forkcnt - 1] = w; 3109 forks [forkcnt - 1] = w;
3110
3111 EV_FREQUENT_CHECK;
2224} 3112}
2225 3113
2226void 3114void
2227ev_fork_stop (EV_P_ ev_fork *w) 3115ev_fork_stop (EV_P_ ev_fork *w)
2228{ 3116{
2229 clear_pending (EV_A_ (W)w); 3117 clear_pending (EV_A_ (W)w);
2230 if (expect_false (!ev_is_active (w))) 3118 if (expect_false (!ev_is_active (w)))
2231 return; 3119 return;
2232 3120
3121 EV_FREQUENT_CHECK;
3122
2233 { 3123 {
2234 int active = ((W)w)->active; 3124 int active = ev_active (w);
3125
2235 forks [active - 1] = forks [--forkcnt]; 3126 forks [active - 1] = forks [--forkcnt];
2236 ((W)forks [active - 1])->active = active; 3127 ev_active (forks [active - 1]) = active;
2237 } 3128 }
2238 3129
2239 ev_stop (EV_A_ (W)w); 3130 ev_stop (EV_A_ (W)w);
3131
3132 EV_FREQUENT_CHECK;
3133}
3134#endif
3135
3136#if EV_ASYNC_ENABLE
3137void
3138ev_async_start (EV_P_ ev_async *w)
3139{
3140 if (expect_false (ev_is_active (w)))
3141 return;
3142
3143 evpipe_init (EV_A);
3144
3145 EV_FREQUENT_CHECK;
3146
3147 ev_start (EV_A_ (W)w, ++asynccnt);
3148 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3149 asyncs [asynccnt - 1] = w;
3150
3151 EV_FREQUENT_CHECK;
3152}
3153
3154void
3155ev_async_stop (EV_P_ ev_async *w)
3156{
3157 clear_pending (EV_A_ (W)w);
3158 if (expect_false (!ev_is_active (w)))
3159 return;
3160
3161 EV_FREQUENT_CHECK;
3162
3163 {
3164 int active = ev_active (w);
3165
3166 asyncs [active - 1] = asyncs [--asynccnt];
3167 ev_active (asyncs [active - 1]) = active;
3168 }
3169
3170 ev_stop (EV_A_ (W)w);
3171
3172 EV_FREQUENT_CHECK;
3173}
3174
3175void
3176ev_async_send (EV_P_ ev_async *w)
3177{
3178 w->sent = 1;
3179 evpipe_write (EV_A_ &gotasync);
2240} 3180}
2241#endif 3181#endif
2242 3182
2243/*****************************************************************************/ 3183/*****************************************************************************/
2244 3184
2254once_cb (EV_P_ struct ev_once *once, int revents) 3194once_cb (EV_P_ struct ev_once *once, int revents)
2255{ 3195{
2256 void (*cb)(int revents, void *arg) = once->cb; 3196 void (*cb)(int revents, void *arg) = once->cb;
2257 void *arg = once->arg; 3197 void *arg = once->arg;
2258 3198
2259 ev_io_stop (EV_A_ &once->io); 3199 ev_io_stop (EV_A_ &once->io);
2260 ev_timer_stop (EV_A_ &once->to); 3200 ev_timer_stop (EV_A_ &once->to);
2261 ev_free (once); 3201 ev_free (once);
2262 3202
2263 cb (revents, arg); 3203 cb (revents, arg);
2264} 3204}
2265 3205
2266static void 3206static void
2267once_cb_io (EV_P_ ev_io *w, int revents) 3207once_cb_io (EV_P_ ev_io *w, int revents)
2268{ 3208{
2269 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3209 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3210
3211 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2270} 3212}
2271 3213
2272static void 3214static void
2273once_cb_to (EV_P_ ev_timer *w, int revents) 3215once_cb_to (EV_P_ ev_timer *w, int revents)
2274{ 3216{
2275 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3217 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3218
3219 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2276} 3220}
2277 3221
2278void 3222void
2279ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3223ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2280{ 3224{
2302 ev_timer_set (&once->to, timeout, 0.); 3246 ev_timer_set (&once->to, timeout, 0.);
2303 ev_timer_start (EV_A_ &once->to); 3247 ev_timer_start (EV_A_ &once->to);
2304 } 3248 }
2305} 3249}
2306 3250
3251/*****************************************************************************/
3252
3253#if EV_WALK_ENABLE
3254void
3255ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3256{
3257 int i, j;
3258 ev_watcher_list *wl, *wn;
3259
3260 if (types & (EV_IO | EV_EMBED))
3261 for (i = 0; i < anfdmax; ++i)
3262 for (wl = anfds [i].head; wl; )
3263 {
3264 wn = wl->next;
3265
3266#if EV_EMBED_ENABLE
3267 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3268 {
3269 if (types & EV_EMBED)
3270 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3271 }
3272 else
3273#endif
3274#if EV_USE_INOTIFY
3275 if (ev_cb ((ev_io *)wl) == infy_cb)
3276 ;
3277 else
3278#endif
3279 if ((ev_io *)wl != &pipe_w)
3280 if (types & EV_IO)
3281 cb (EV_A_ EV_IO, wl);
3282
3283 wl = wn;
3284 }
3285
3286 if (types & (EV_TIMER | EV_STAT))
3287 for (i = timercnt + HEAP0; i-- > HEAP0; )
3288#if EV_STAT_ENABLE
3289 /*TODO: timer is not always active*/
3290 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3291 {
3292 if (types & EV_STAT)
3293 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3294 }
3295 else
3296#endif
3297 if (types & EV_TIMER)
3298 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3299
3300#if EV_PERIODIC_ENABLE
3301 if (types & EV_PERIODIC)
3302 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3303 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3304#endif
3305
3306#if EV_IDLE_ENABLE
3307 if (types & EV_IDLE)
3308 for (j = NUMPRI; i--; )
3309 for (i = idlecnt [j]; i--; )
3310 cb (EV_A_ EV_IDLE, idles [j][i]);
3311#endif
3312
3313#if EV_FORK_ENABLE
3314 if (types & EV_FORK)
3315 for (i = forkcnt; i--; )
3316 if (ev_cb (forks [i]) != embed_fork_cb)
3317 cb (EV_A_ EV_FORK, forks [i]);
3318#endif
3319
3320#if EV_ASYNC_ENABLE
3321 if (types & EV_ASYNC)
3322 for (i = asynccnt; i--; )
3323 cb (EV_A_ EV_ASYNC, asyncs [i]);
3324#endif
3325
3326 if (types & EV_PREPARE)
3327 for (i = preparecnt; i--; )
3328#if EV_EMBED_ENABLE
3329 if (ev_cb (prepares [i]) != embed_prepare_cb)
3330#endif
3331 cb (EV_A_ EV_PREPARE, prepares [i]);
3332
3333 if (types & EV_CHECK)
3334 for (i = checkcnt; i--; )
3335 cb (EV_A_ EV_CHECK, checks [i]);
3336
3337 if (types & EV_SIGNAL)
3338 for (i = 0; i < signalmax; ++i)
3339 for (wl = signals [i].head; wl; )
3340 {
3341 wn = wl->next;
3342 cb (EV_A_ EV_SIGNAL, wl);
3343 wl = wn;
3344 }
3345
3346 if (types & EV_CHILD)
3347 for (i = EV_PID_HASHSIZE; i--; )
3348 for (wl = childs [i]; wl; )
3349 {
3350 wn = wl->next;
3351 cb (EV_A_ EV_CHILD, wl);
3352 wl = wn;
3353 }
3354/* EV_STAT 0x00001000 /* stat data changed */
3355/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3356}
3357#endif
3358
3359#if EV_MULTIPLICITY
3360 #include "ev_wrap.h"
3361#endif
3362
2307#ifdef __cplusplus 3363#ifdef __cplusplus
2308} 3364}
2309#endif 3365#endif
2310 3366

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines