ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.176 by root, Tue Dec 11 04:31:55 2007 UTC vs.
Revision 1.338 by root, Tue Mar 16 00:20:17 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
61# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
62# else 93# else
63# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
79# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
80# endif 111# endif
81# endif 112# endif
82 113
83# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
85# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
86# else 117# else
87# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
88# endif 119# endif
89# endif 120# endif
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
111#include <fcntl.h> 159#include <fcntl.h>
112#include <stddef.h> 160#include <stddef.h>
113 161
114#include <stdio.h> 162#include <stdio.h>
115 163
116#include <assert.h> 164#include <assert.h>
117#include <errno.h> 165#include <errno.h>
118#include <sys/types.h> 166#include <sys/types.h>
119#include <time.h> 167#include <time.h>
168#include <limits.h>
120 169
121#include <signal.h> 170#include <signal.h>
122 171
123#ifdef EV_H 172#ifdef EV_H
124# include EV_H 173# include EV_H
129#ifndef _WIN32 178#ifndef _WIN32
130# include <sys/time.h> 179# include <sys/time.h>
131# include <sys/wait.h> 180# include <sys/wait.h>
132# include <unistd.h> 181# include <unistd.h>
133#else 182#else
183# include <io.h>
134# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 185# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
138# endif 188# endif
189# undef EV_AVOID_STDIO
190#endif
191
192/* this block tries to deduce configuration from header-defined symbols and defaults */
193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line, */
218/* but consider reporting it, too! :) */
219# define EV_NSIG 65
220#endif
221
222#ifndef EV_USE_CLOCK_SYSCALL
223# if __linux && __GLIBC__ >= 2
224# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
225# else
226# define EV_USE_CLOCK_SYSCALL 0
139#endif 227# endif
140 228#endif
141/**/
142 229
143#ifndef EV_USE_MONOTONIC 230#ifndef EV_USE_MONOTONIC
231# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
232# define EV_USE_MONOTONIC EV_FEATURE_OS
233# else
144# define EV_USE_MONOTONIC 0 234# define EV_USE_MONOTONIC 0
235# endif
145#endif 236#endif
146 237
147#ifndef EV_USE_REALTIME 238#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 239# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
240#endif
241
242#ifndef EV_USE_NANOSLEEP
243# if _POSIX_C_SOURCE >= 199309L
244# define EV_USE_NANOSLEEP EV_FEATURE_OS
245# else
246# define EV_USE_NANOSLEEP 0
247# endif
149#endif 248#endif
150 249
151#ifndef EV_USE_SELECT 250#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 251# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 252#endif
154 253
155#ifndef EV_USE_POLL 254#ifndef EV_USE_POLL
156# ifdef _WIN32 255# ifdef _WIN32
157# define EV_USE_POLL 0 256# define EV_USE_POLL 0
158# else 257# else
159# define EV_USE_POLL 1 258# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 259# endif
161#endif 260#endif
162 261
163#ifndef EV_USE_EPOLL 262#ifndef EV_USE_EPOLL
263# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
264# define EV_USE_EPOLL EV_FEATURE_BACKENDS
265# else
164# define EV_USE_EPOLL 0 266# define EV_USE_EPOLL 0
267# endif
165#endif 268#endif
166 269
167#ifndef EV_USE_KQUEUE 270#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 271# define EV_USE_KQUEUE 0
169#endif 272#endif
171#ifndef EV_USE_PORT 274#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 275# define EV_USE_PORT 0
173#endif 276#endif
174 277
175#ifndef EV_USE_INOTIFY 278#ifndef EV_USE_INOTIFY
279# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
280# define EV_USE_INOTIFY EV_FEATURE_OS
281# else
176# define EV_USE_INOTIFY 0 282# define EV_USE_INOTIFY 0
283# endif
177#endif 284#endif
178 285
179#ifndef EV_PID_HASHSIZE 286#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 287# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 288#endif
289
290#ifndef EV_INOTIFY_HASHSIZE
291# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
292#endif
293
294#ifndef EV_USE_EVENTFD
295# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
296# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 297# else
183# define EV_PID_HASHSIZE 16 298# define EV_USE_EVENTFD 0
184# endif
185#endif 299# endif
300#endif
186 301
187#ifndef EV_INOTIFY_HASHSIZE 302#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 304# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 305# else
191# define EV_INOTIFY_HASHSIZE 16 306# define EV_USE_SIGNALFD 0
192# endif
193#endif 307# endif
308#endif
194 309
195/**/ 310#if 0 /* debugging */
311# define EV_VERIFY 3
312# define EV_USE_4HEAP 1
313# define EV_HEAP_CACHE_AT 1
314#endif
315
316#ifndef EV_VERIFY
317# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
318#endif
319
320#ifndef EV_USE_4HEAP
321# define EV_USE_4HEAP EV_FEATURE_DATA
322#endif
323
324#ifndef EV_HEAP_CACHE_AT
325# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
326#endif
327
328/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
329/* which makes programs even slower. might work on other unices, too. */
330#if EV_USE_CLOCK_SYSCALL
331# include <syscall.h>
332# ifdef SYS_clock_gettime
333# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
334# undef EV_USE_MONOTONIC
335# define EV_USE_MONOTONIC 1
336# else
337# undef EV_USE_CLOCK_SYSCALL
338# define EV_USE_CLOCK_SYSCALL 0
339# endif
340#endif
341
342/* this block fixes any misconfiguration where we know we run into trouble otherwise */
343
344#ifdef _AIX
345/* AIX has a completely broken poll.h header */
346# undef EV_USE_POLL
347# define EV_USE_POLL 0
348#endif
196 349
197#ifndef CLOCK_MONOTONIC 350#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 351# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 352# define EV_USE_MONOTONIC 0
200#endif 353#endif
202#ifndef CLOCK_REALTIME 355#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 356# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 357# define EV_USE_REALTIME 0
205#endif 358#endif
206 359
360#if !EV_STAT_ENABLE
361# undef EV_USE_INOTIFY
362# define EV_USE_INOTIFY 0
363#endif
364
365#if !EV_USE_NANOSLEEP
366# ifndef _WIN32
367# include <sys/select.h>
368# endif
369#endif
370
371#if EV_USE_INOTIFY
372# include <sys/utsname.h>
373# include <sys/statfs.h>
374# include <sys/inotify.h>
375/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
376# ifndef IN_DONT_FOLLOW
377# undef EV_USE_INOTIFY
378# define EV_USE_INOTIFY 0
379# endif
380#endif
381
207#if EV_SELECT_IS_WINSOCKET 382#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 383# include <winsock.h>
209#endif 384#endif
210 385
211#if !EV_STAT_ENABLE 386#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 387/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
388# include <stdint.h>
389# ifndef EFD_NONBLOCK
390# define EFD_NONBLOCK O_NONBLOCK
213#endif 391# endif
214 392# ifndef EFD_CLOEXEC
215#if EV_USE_INOTIFY 393# ifdef O_CLOEXEC
216# include <sys/inotify.h> 394# define EFD_CLOEXEC O_CLOEXEC
395# else
396# define EFD_CLOEXEC 02000000
397# endif
217#endif 398# endif
399# ifdef __cplusplus
400extern "C" {
401# endif
402int (eventfd) (unsigned int initval, int flags);
403# ifdef __cplusplus
404}
405# endif
406#endif
407
408#if EV_USE_SIGNALFD
409/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
410# include <stdint.h>
411# ifndef SFD_NONBLOCK
412# define SFD_NONBLOCK O_NONBLOCK
413# endif
414# ifndef SFD_CLOEXEC
415# ifdef O_CLOEXEC
416# define SFD_CLOEXEC O_CLOEXEC
417# else
418# define SFD_CLOEXEC 02000000
419# endif
420# endif
421# ifdef __cplusplus
422extern "C" {
423# endif
424int signalfd (int fd, const sigset_t *mask, int flags);
425
426struct signalfd_siginfo
427{
428 uint32_t ssi_signo;
429 char pad[128 - sizeof (uint32_t)];
430};
431# ifdef __cplusplus
432}
433# endif
434#endif
435
218 436
219/**/ 437/**/
438
439#if EV_VERIFY >= 3
440# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
441#else
442# define EV_FREQUENT_CHECK do { } while (0)
443#endif
220 444
221/* 445/*
222 * This is used to avoid floating point rounding problems. 446 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 447 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 448 * to ensure progress, time-wise, even when rounding
225 * errors are against us. 449 * errors are against us.
226 * This value is good at least till the year 4000 450 * This value is good at least till the year 4000.
227 * and intervals up to 20 years.
228 * Better solutions welcome. 451 * Better solutions welcome.
229 */ 452 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 453#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231 454
232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 455#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 456#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
235 457
236#if __GNUC__ >= 3 458#if __GNUC__ >= 4
237# define expect(expr,value) __builtin_expect ((expr),(value)) 459# define expect(expr,value) __builtin_expect ((expr),(value))
238# define noinline __attribute__ ((noinline)) 460# define noinline __attribute__ ((noinline))
239#else 461#else
240# define expect(expr,value) (expr) 462# define expect(expr,value) (expr)
241# define noinline 463# define noinline
242# if __STDC_VERSION__ < 199901L 464# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
243# define inline 465# define inline
244# endif 466# endif
245#endif 467#endif
246 468
247#define expect_false(expr) expect ((expr) != 0, 0) 469#define expect_false(expr) expect ((expr) != 0, 0)
248#define expect_true(expr) expect ((expr) != 0, 1) 470#define expect_true(expr) expect ((expr) != 0, 1)
249#define inline_size static inline 471#define inline_size static inline
250 472
251#if EV_MINIMAL 473#if EV_FEATURE_CODE
474# define inline_speed static inline
475#else
252# define inline_speed static noinline 476# define inline_speed static noinline
477#endif
478
479#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
480
481#if EV_MINPRI == EV_MAXPRI
482# define ABSPRI(w) (((W)w), 0)
253#else 483#else
254# define inline_speed static inline
255#endif
256
257#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
258#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 484# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
485#endif
259 486
260#define EMPTY /* required for microsofts broken pseudo-c compiler */ 487#define EMPTY /* required for microsofts broken pseudo-c compiler */
261#define EMPTY2(a,b) /* used to suppress some warnings */ 488#define EMPTY2(a,b) /* used to suppress some warnings */
262 489
263typedef ev_watcher *W; 490typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 491typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 492typedef ev_watcher_time *WT;
266 493
494#define ev_active(w) ((W)(w))->active
495#define ev_at(w) ((WT)(w))->at
496
497#if EV_USE_REALTIME
498/* sig_atomic_t is used to avoid per-thread variables or locking but still */
499/* giving it a reasonably high chance of working on typical architetcures */
500static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
501#endif
502
503#if EV_USE_MONOTONIC
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 504static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
505#endif
506
507#ifndef EV_FD_TO_WIN32_HANDLE
508# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
509#endif
510#ifndef EV_WIN32_HANDLE_TO_FD
511# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
512#endif
513#ifndef EV_WIN32_CLOSE_FD
514# define EV_WIN32_CLOSE_FD(fd) close (fd)
515#endif
268 516
269#ifdef _WIN32 517#ifdef _WIN32
270# include "ev_win32.c" 518# include "ev_win32.c"
271#endif 519#endif
272 520
273/*****************************************************************************/ 521/*****************************************************************************/
274 522
523#if EV_AVOID_STDIO
524static void noinline
525ev_printerr (const char *msg)
526{
527 write (STDERR_FILENO, msg, strlen (msg));
528}
529#endif
530
275static void (*syserr_cb)(const char *msg); 531static void (*syserr_cb)(const char *msg);
276 532
277void 533void
278ev_set_syserr_cb (void (*cb)(const char *msg)) 534ev_set_syserr_cb (void (*cb)(const char *msg))
279{ 535{
280 syserr_cb = cb; 536 syserr_cb = cb;
281} 537}
282 538
283static void noinline 539static void noinline
284syserr (const char *msg) 540ev_syserr (const char *msg)
285{ 541{
286 if (!msg) 542 if (!msg)
287 msg = "(libev) system error"; 543 msg = "(libev) system error";
288 544
289 if (syserr_cb) 545 if (syserr_cb)
290 syserr_cb (msg); 546 syserr_cb (msg);
291 else 547 else
292 { 548 {
549#if EV_AVOID_STDIO
550 const char *err = strerror (errno);
551
552 ev_printerr (msg);
553 ev_printerr (": ");
554 ev_printerr (err);
555 ev_printerr ("\n");
556#else
293 perror (msg); 557 perror (msg);
558#endif
294 abort (); 559 abort ();
295 } 560 }
296} 561}
297 562
563static void *
564ev_realloc_emul (void *ptr, long size)
565{
566#if __GLIBC__
567 return realloc (ptr, size);
568#else
569 /* some systems, notably openbsd and darwin, fail to properly
570 * implement realloc (x, 0) (as required by both ansi c-89 and
571 * the single unix specification, so work around them here.
572 */
573
574 if (size)
575 return realloc (ptr, size);
576
577 free (ptr);
578 return 0;
579#endif
580}
581
298static void *(*alloc)(void *ptr, long size); 582static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
299 583
300void 584void
301ev_set_allocator (void *(*cb)(void *ptr, long size)) 585ev_set_allocator (void *(*cb)(void *ptr, long size))
302{ 586{
303 alloc = cb; 587 alloc = cb;
304} 588}
305 589
306inline_speed void * 590inline_speed void *
307ev_realloc (void *ptr, long size) 591ev_realloc (void *ptr, long size)
308{ 592{
309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 593 ptr = alloc (ptr, size);
310 594
311 if (!ptr && size) 595 if (!ptr && size)
312 { 596 {
597#if EV_AVOID_STDIO
598 ev_printerr ("libev: memory allocation failed, aborting.\n");
599#else
313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 600 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
601#endif
314 abort (); 602 abort ();
315 } 603 }
316 604
317 return ptr; 605 return ptr;
318} 606}
320#define ev_malloc(size) ev_realloc (0, (size)) 608#define ev_malloc(size) ev_realloc (0, (size))
321#define ev_free(ptr) ev_realloc ((ptr), 0) 609#define ev_free(ptr) ev_realloc ((ptr), 0)
322 610
323/*****************************************************************************/ 611/*****************************************************************************/
324 612
613/* set in reify when reification needed */
614#define EV_ANFD_REIFY 1
615
616/* file descriptor info structure */
325typedef struct 617typedef struct
326{ 618{
327 WL head; 619 WL head;
328 unsigned char events; 620 unsigned char events; /* the events watched for */
621 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
622 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
329 unsigned char reify; 623 unsigned char unused;
624#if EV_USE_EPOLL
625 unsigned int egen; /* generation counter to counter epoll bugs */
626#endif
330#if EV_SELECT_IS_WINSOCKET 627#if EV_SELECT_IS_WINSOCKET
331 SOCKET handle; 628 SOCKET handle;
332#endif 629#endif
333} ANFD; 630} ANFD;
334 631
632/* stores the pending event set for a given watcher */
335typedef struct 633typedef struct
336{ 634{
337 W w; 635 W w;
338 int events; 636 int events; /* the pending event set for the given watcher */
339} ANPENDING; 637} ANPENDING;
340 638
341#if EV_USE_INOTIFY 639#if EV_USE_INOTIFY
640/* hash table entry per inotify-id */
342typedef struct 641typedef struct
343{ 642{
344 WL head; 643 WL head;
345} ANFS; 644} ANFS;
645#endif
646
647/* Heap Entry */
648#if EV_HEAP_CACHE_AT
649 /* a heap element */
650 typedef struct {
651 ev_tstamp at;
652 WT w;
653 } ANHE;
654
655 #define ANHE_w(he) (he).w /* access watcher, read-write */
656 #define ANHE_at(he) (he).at /* access cached at, read-only */
657 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
658#else
659 /* a heap element */
660 typedef WT ANHE;
661
662 #define ANHE_w(he) (he)
663 #define ANHE_at(he) (he)->at
664 #define ANHE_at_cache(he)
346#endif 665#endif
347 666
348#if EV_MULTIPLICITY 667#if EV_MULTIPLICITY
349 668
350 struct ev_loop 669 struct ev_loop
369 688
370 static int ev_default_loop_ptr; 689 static int ev_default_loop_ptr;
371 690
372#endif 691#endif
373 692
693#if EV_FEATURE_API
694# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
695# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
696# define EV_INVOKE_PENDING invoke_cb (EV_A)
697#else
698# define EV_RELEASE_CB (void)0
699# define EV_ACQUIRE_CB (void)0
700# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
701#endif
702
703#define EVUNLOOP_RECURSE 0x80
704
374/*****************************************************************************/ 705/*****************************************************************************/
375 706
707#ifndef EV_HAVE_EV_TIME
376ev_tstamp 708ev_tstamp
377ev_time (void) 709ev_time (void)
378{ 710{
379#if EV_USE_REALTIME 711#if EV_USE_REALTIME
712 if (expect_true (have_realtime))
713 {
380 struct timespec ts; 714 struct timespec ts;
381 clock_gettime (CLOCK_REALTIME, &ts); 715 clock_gettime (CLOCK_REALTIME, &ts);
382 return ts.tv_sec + ts.tv_nsec * 1e-9; 716 return ts.tv_sec + ts.tv_nsec * 1e-9;
383#else 717 }
718#endif
719
384 struct timeval tv; 720 struct timeval tv;
385 gettimeofday (&tv, 0); 721 gettimeofday (&tv, 0);
386 return tv.tv_sec + tv.tv_usec * 1e-6; 722 return tv.tv_sec + tv.tv_usec * 1e-6;
387#endif
388} 723}
724#endif
389 725
390ev_tstamp inline_size 726inline_size ev_tstamp
391get_clock (void) 727get_clock (void)
392{ 728{
393#if EV_USE_MONOTONIC 729#if EV_USE_MONOTONIC
394 if (expect_true (have_monotonic)) 730 if (expect_true (have_monotonic))
395 { 731 {
408{ 744{
409 return ev_rt_now; 745 return ev_rt_now;
410} 746}
411#endif 747#endif
412 748
413int inline_size 749void
750ev_sleep (ev_tstamp delay)
751{
752 if (delay > 0.)
753 {
754#if EV_USE_NANOSLEEP
755 struct timespec ts;
756
757 ts.tv_sec = (time_t)delay;
758 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
759
760 nanosleep (&ts, 0);
761#elif defined(_WIN32)
762 Sleep ((unsigned long)(delay * 1e3));
763#else
764 struct timeval tv;
765
766 tv.tv_sec = (time_t)delay;
767 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
768
769 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
770 /* something not guaranteed by newer posix versions, but guaranteed */
771 /* by older ones */
772 select (0, 0, 0, 0, &tv);
773#endif
774 }
775}
776
777/*****************************************************************************/
778
779#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
780
781/* find a suitable new size for the given array, */
782/* hopefully by rounding to a ncie-to-malloc size */
783inline_size int
414array_nextsize (int elem, int cur, int cnt) 784array_nextsize (int elem, int cur, int cnt)
415{ 785{
416 int ncur = cur + 1; 786 int ncur = cur + 1;
417 787
418 do 788 do
419 ncur <<= 1; 789 ncur <<= 1;
420 while (cnt > ncur); 790 while (cnt > ncur);
421 791
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 792 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096) 793 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
424 { 794 {
425 ncur *= elem; 795 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 796 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
427 ncur = ncur - sizeof (void *) * 4; 797 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem; 798 ncur /= elem;
429 } 799 }
430 800
431 return ncur; 801 return ncur;
435array_realloc (int elem, void *base, int *cur, int cnt) 805array_realloc (int elem, void *base, int *cur, int cnt)
436{ 806{
437 *cur = array_nextsize (elem, *cur, cnt); 807 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur); 808 return ev_realloc (base, elem * *cur);
439} 809}
810
811#define array_init_zero(base,count) \
812 memset ((void *)(base), 0, sizeof (*(base)) * (count))
440 813
441#define array_needsize(type,base,cur,cnt,init) \ 814#define array_needsize(type,base,cur,cnt,init) \
442 if (expect_false ((cnt) > (cur))) \ 815 if (expect_false ((cnt) > (cur))) \
443 { \ 816 { \
444 int ocur_ = (cur); \ 817 int ocur_ = (cur); \
456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 829 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
457 } 830 }
458#endif 831#endif
459 832
460#define array_free(stem, idx) \ 833#define array_free(stem, idx) \
461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 834 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
462 835
463/*****************************************************************************/ 836/*****************************************************************************/
837
838/* dummy callback for pending events */
839static void noinline
840pendingcb (EV_P_ ev_prepare *w, int revents)
841{
842}
464 843
465void noinline 844void noinline
466ev_feed_event (EV_P_ void *w, int revents) 845ev_feed_event (EV_P_ void *w, int revents)
467{ 846{
468 W w_ = (W)w; 847 W w_ = (W)w;
477 pendings [pri][w_->pending - 1].w = w_; 856 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents; 857 pendings [pri][w_->pending - 1].events = revents;
479 } 858 }
480} 859}
481 860
482void inline_size 861inline_speed void
862feed_reverse (EV_P_ W w)
863{
864 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
865 rfeeds [rfeedcnt++] = w;
866}
867
868inline_size void
869feed_reverse_done (EV_P_ int revents)
870{
871 do
872 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
873 while (rfeedcnt);
874}
875
876inline_speed void
483queue_events (EV_P_ W *events, int eventcnt, int type) 877queue_events (EV_P_ W *events, int eventcnt, int type)
484{ 878{
485 int i; 879 int i;
486 880
487 for (i = 0; i < eventcnt; ++i) 881 for (i = 0; i < eventcnt; ++i)
488 ev_feed_event (EV_A_ events [i], type); 882 ev_feed_event (EV_A_ events [i], type);
489} 883}
490 884
491/*****************************************************************************/ 885/*****************************************************************************/
492 886
493void inline_size 887inline_speed void
494anfds_init (ANFD *base, int count)
495{
496 while (count--)
497 {
498 base->head = 0;
499 base->events = EV_NONE;
500 base->reify = 0;
501
502 ++base;
503 }
504}
505
506void inline_speed
507fd_event (EV_P_ int fd, int revents) 888fd_event_nocheck (EV_P_ int fd, int revents)
508{ 889{
509 ANFD *anfd = anfds + fd; 890 ANFD *anfd = anfds + fd;
510 ev_io *w; 891 ev_io *w;
511 892
512 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 893 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
516 if (ev) 897 if (ev)
517 ev_feed_event (EV_A_ (W)w, ev); 898 ev_feed_event (EV_A_ (W)w, ev);
518 } 899 }
519} 900}
520 901
902/* do not submit kernel events for fds that have reify set */
903/* because that means they changed while we were polling for new events */
904inline_speed void
905fd_event (EV_P_ int fd, int revents)
906{
907 ANFD *anfd = anfds + fd;
908
909 if (expect_true (!anfd->reify))
910 fd_event_nocheck (EV_A_ fd, revents);
911}
912
521void 913void
522ev_feed_fd_event (EV_P_ int fd, int revents) 914ev_feed_fd_event (EV_P_ int fd, int revents)
523{ 915{
524 if (fd >= 0 && fd < anfdmax) 916 if (fd >= 0 && fd < anfdmax)
525 fd_event (EV_A_ fd, revents); 917 fd_event_nocheck (EV_A_ fd, revents);
526} 918}
527 919
528void inline_size 920/* make sure the external fd watch events are in-sync */
921/* with the kernel/libev internal state */
922inline_size void
529fd_reify (EV_P) 923fd_reify (EV_P)
530{ 924{
531 int i; 925 int i;
532 926
533 for (i = 0; i < fdchangecnt; ++i) 927 for (i = 0; i < fdchangecnt; ++i)
534 { 928 {
535 int fd = fdchanges [i]; 929 int fd = fdchanges [i];
536 ANFD *anfd = anfds + fd; 930 ANFD *anfd = anfds + fd;
537 ev_io *w; 931 ev_io *w;
538 932
539 int events = 0; 933 unsigned char events = 0;
540 934
541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 935 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
542 events |= w->events; 936 events |= (unsigned char)w->events;
543 937
544#if EV_SELECT_IS_WINSOCKET 938#if EV_SELECT_IS_WINSOCKET
545 if (events) 939 if (events)
546 { 940 {
547 unsigned long argp; 941 unsigned long arg;
548 anfd->handle = _get_osfhandle (fd); 942 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 943 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
550 } 944 }
551#endif 945#endif
552 946
947 {
948 unsigned char o_events = anfd->events;
949 unsigned char o_reify = anfd->reify;
950
553 anfd->reify = 0; 951 anfd->reify = 0;
554
555 backend_modify (EV_A_ fd, anfd->events, events);
556 anfd->events = events; 952 anfd->events = events;
953
954 if (o_events != events || o_reify & EV__IOFDSET)
955 backend_modify (EV_A_ fd, o_events, events);
956 }
557 } 957 }
558 958
559 fdchangecnt = 0; 959 fdchangecnt = 0;
560} 960}
561 961
562void inline_size 962/* something about the given fd changed */
963inline_size void
563fd_change (EV_P_ int fd) 964fd_change (EV_P_ int fd, int flags)
564{ 965{
565 if (expect_false (anfds [fd].reify)) 966 unsigned char reify = anfds [fd].reify;
566 return;
567
568 anfds [fd].reify = 1; 967 anfds [fd].reify |= flags;
569 968
969 if (expect_true (!reify))
970 {
570 ++fdchangecnt; 971 ++fdchangecnt;
571 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 972 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
572 fdchanges [fdchangecnt - 1] = fd; 973 fdchanges [fdchangecnt - 1] = fd;
974 }
573} 975}
574 976
575void inline_speed 977/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
978inline_speed void
576fd_kill (EV_P_ int fd) 979fd_kill (EV_P_ int fd)
577{ 980{
578 ev_io *w; 981 ev_io *w;
579 982
580 while ((w = (ev_io *)anfds [fd].head)) 983 while ((w = (ev_io *)anfds [fd].head))
582 ev_io_stop (EV_A_ w); 985 ev_io_stop (EV_A_ w);
583 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 986 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
584 } 987 }
585} 988}
586 989
587int inline_size 990/* check whether the given fd is actually valid, for error recovery */
991inline_size int
588fd_valid (int fd) 992fd_valid (int fd)
589{ 993{
590#ifdef _WIN32 994#ifdef _WIN32
591 return _get_osfhandle (fd) != -1; 995 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
592#else 996#else
593 return fcntl (fd, F_GETFD) != -1; 997 return fcntl (fd, F_GETFD) != -1;
594#endif 998#endif
595} 999}
596 1000
600{ 1004{
601 int fd; 1005 int fd;
602 1006
603 for (fd = 0; fd < anfdmax; ++fd) 1007 for (fd = 0; fd < anfdmax; ++fd)
604 if (anfds [fd].events) 1008 if (anfds [fd].events)
605 if (!fd_valid (fd) == -1 && errno == EBADF) 1009 if (!fd_valid (fd) && errno == EBADF)
606 fd_kill (EV_A_ fd); 1010 fd_kill (EV_A_ fd);
607} 1011}
608 1012
609/* called on ENOMEM in select/poll to kill some fds and retry */ 1013/* called on ENOMEM in select/poll to kill some fds and retry */
610static void noinline 1014static void noinline
614 1018
615 for (fd = anfdmax; fd--; ) 1019 for (fd = anfdmax; fd--; )
616 if (anfds [fd].events) 1020 if (anfds [fd].events)
617 { 1021 {
618 fd_kill (EV_A_ fd); 1022 fd_kill (EV_A_ fd);
619 return; 1023 break;
620 } 1024 }
621} 1025}
622 1026
623/* usually called after fork if backend needs to re-arm all fds from scratch */ 1027/* usually called after fork if backend needs to re-arm all fds from scratch */
624static void noinline 1028static void noinline
628 1032
629 for (fd = 0; fd < anfdmax; ++fd) 1033 for (fd = 0; fd < anfdmax; ++fd)
630 if (anfds [fd].events) 1034 if (anfds [fd].events)
631 { 1035 {
632 anfds [fd].events = 0; 1036 anfds [fd].events = 0;
633 fd_change (EV_A_ fd); 1037 anfds [fd].emask = 0;
1038 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
634 } 1039 }
635} 1040}
636 1041
637/*****************************************************************************/ 1042/* used to prepare libev internal fd's */
638 1043/* this is not fork-safe */
639void inline_speed 1044inline_speed void
640upheap (WT *heap, int k)
641{
642 WT w = heap [k];
643
644 while (k && heap [k >> 1]->at > w->at)
645 {
646 heap [k] = heap [k >> 1];
647 ((W)heap [k])->active = k + 1;
648 k >>= 1;
649 }
650
651 heap [k] = w;
652 ((W)heap [k])->active = k + 1;
653
654}
655
656void inline_speed
657downheap (WT *heap, int N, int k)
658{
659 WT w = heap [k];
660
661 while (k < (N >> 1))
662 {
663 int j = k << 1;
664
665 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
666 ++j;
667
668 if (w->at <= heap [j]->at)
669 break;
670
671 heap [k] = heap [j];
672 ((W)heap [k])->active = k + 1;
673 k = j;
674 }
675
676 heap [k] = w;
677 ((W)heap [k])->active = k + 1;
678}
679
680void inline_size
681adjustheap (WT *heap, int N, int k)
682{
683 upheap (heap, k);
684 downheap (heap, N, k);
685}
686
687/*****************************************************************************/
688
689typedef struct
690{
691 WL head;
692 sig_atomic_t volatile gotsig;
693} ANSIG;
694
695static ANSIG *signals;
696static int signalmax;
697
698static int sigpipe [2];
699static sig_atomic_t volatile gotsig;
700static ev_io sigev;
701
702void inline_size
703signals_init (ANSIG *base, int count)
704{
705 while (count--)
706 {
707 base->head = 0;
708 base->gotsig = 0;
709
710 ++base;
711 }
712}
713
714static void
715sighandler (int signum)
716{
717#if _WIN32
718 signal (signum, sighandler);
719#endif
720
721 signals [signum - 1].gotsig = 1;
722
723 if (!gotsig)
724 {
725 int old_errno = errno;
726 gotsig = 1;
727 write (sigpipe [1], &signum, 1);
728 errno = old_errno;
729 }
730}
731
732void noinline
733ev_feed_signal_event (EV_P_ int signum)
734{
735 WL w;
736
737#if EV_MULTIPLICITY
738 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
739#endif
740
741 --signum;
742
743 if (signum < 0 || signum >= signalmax)
744 return;
745
746 signals [signum].gotsig = 0;
747
748 for (w = signals [signum].head; w; w = w->next)
749 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
750}
751
752static void
753sigcb (EV_P_ ev_io *iow, int revents)
754{
755 int signum;
756
757 read (sigpipe [0], &revents, 1);
758 gotsig = 0;
759
760 for (signum = signalmax; signum--; )
761 if (signals [signum].gotsig)
762 ev_feed_signal_event (EV_A_ signum + 1);
763}
764
765void inline_speed
766fd_intern (int fd) 1045fd_intern (int fd)
767{ 1046{
768#ifdef _WIN32 1047#ifdef _WIN32
769 int arg = 1; 1048 unsigned long arg = 1;
770 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1049 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
771#else 1050#else
772 fcntl (fd, F_SETFD, FD_CLOEXEC); 1051 fcntl (fd, F_SETFD, FD_CLOEXEC);
773 fcntl (fd, F_SETFL, O_NONBLOCK); 1052 fcntl (fd, F_SETFL, O_NONBLOCK);
774#endif 1053#endif
775} 1054}
776 1055
1056/*****************************************************************************/
1057
1058/*
1059 * the heap functions want a real array index. array index 0 uis guaranteed to not
1060 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1061 * the branching factor of the d-tree.
1062 */
1063
1064/*
1065 * at the moment we allow libev the luxury of two heaps,
1066 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1067 * which is more cache-efficient.
1068 * the difference is about 5% with 50000+ watchers.
1069 */
1070#if EV_USE_4HEAP
1071
1072#define DHEAP 4
1073#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1074#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1075#define UPHEAP_DONE(p,k) ((p) == (k))
1076
1077/* away from the root */
1078inline_speed void
1079downheap (ANHE *heap, int N, int k)
1080{
1081 ANHE he = heap [k];
1082 ANHE *E = heap + N + HEAP0;
1083
1084 for (;;)
1085 {
1086 ev_tstamp minat;
1087 ANHE *minpos;
1088 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1089
1090 /* find minimum child */
1091 if (expect_true (pos + DHEAP - 1 < E))
1092 {
1093 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1094 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1095 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1096 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1097 }
1098 else if (pos < E)
1099 {
1100 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1101 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1102 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1103 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1104 }
1105 else
1106 break;
1107
1108 if (ANHE_at (he) <= minat)
1109 break;
1110
1111 heap [k] = *minpos;
1112 ev_active (ANHE_w (*minpos)) = k;
1113
1114 k = minpos - heap;
1115 }
1116
1117 heap [k] = he;
1118 ev_active (ANHE_w (he)) = k;
1119}
1120
1121#else /* 4HEAP */
1122
1123#define HEAP0 1
1124#define HPARENT(k) ((k) >> 1)
1125#define UPHEAP_DONE(p,k) (!(p))
1126
1127/* away from the root */
1128inline_speed void
1129downheap (ANHE *heap, int N, int k)
1130{
1131 ANHE he = heap [k];
1132
1133 for (;;)
1134 {
1135 int c = k << 1;
1136
1137 if (c >= N + HEAP0)
1138 break;
1139
1140 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1141 ? 1 : 0;
1142
1143 if (ANHE_at (he) <= ANHE_at (heap [c]))
1144 break;
1145
1146 heap [k] = heap [c];
1147 ev_active (ANHE_w (heap [k])) = k;
1148
1149 k = c;
1150 }
1151
1152 heap [k] = he;
1153 ev_active (ANHE_w (he)) = k;
1154}
1155#endif
1156
1157/* towards the root */
1158inline_speed void
1159upheap (ANHE *heap, int k)
1160{
1161 ANHE he = heap [k];
1162
1163 for (;;)
1164 {
1165 int p = HPARENT (k);
1166
1167 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1168 break;
1169
1170 heap [k] = heap [p];
1171 ev_active (ANHE_w (heap [k])) = k;
1172 k = p;
1173 }
1174
1175 heap [k] = he;
1176 ev_active (ANHE_w (he)) = k;
1177}
1178
1179/* move an element suitably so it is in a correct place */
1180inline_size void
1181adjustheap (ANHE *heap, int N, int k)
1182{
1183 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1184 upheap (heap, k);
1185 else
1186 downheap (heap, N, k);
1187}
1188
1189/* rebuild the heap: this function is used only once and executed rarely */
1190inline_size void
1191reheap (ANHE *heap, int N)
1192{
1193 int i;
1194
1195 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1196 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1197 for (i = 0; i < N; ++i)
1198 upheap (heap, i + HEAP0);
1199}
1200
1201/*****************************************************************************/
1202
1203/* associate signal watchers to a signal signal */
1204typedef struct
1205{
1206 EV_ATOMIC_T pending;
1207#if EV_MULTIPLICITY
1208 EV_P;
1209#endif
1210 WL head;
1211} ANSIG;
1212
1213static ANSIG signals [EV_NSIG - 1];
1214
1215/*****************************************************************************/
1216
1217#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1218
777static void noinline 1219static void noinline
778siginit (EV_P) 1220evpipe_init (EV_P)
779{ 1221{
1222 if (!ev_is_active (&pipe_w))
1223 {
1224# if EV_USE_EVENTFD
1225 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1226 if (evfd < 0 && errno == EINVAL)
1227 evfd = eventfd (0, 0);
1228
1229 if (evfd >= 0)
1230 {
1231 evpipe [0] = -1;
1232 fd_intern (evfd); /* doing it twice doesn't hurt */
1233 ev_io_set (&pipe_w, evfd, EV_READ);
1234 }
1235 else
1236# endif
1237 {
1238 while (pipe (evpipe))
1239 ev_syserr ("(libev) error creating signal/async pipe");
1240
780 fd_intern (sigpipe [0]); 1241 fd_intern (evpipe [0]);
781 fd_intern (sigpipe [1]); 1242 fd_intern (evpipe [1]);
1243 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1244 }
782 1245
783 ev_io_set (&sigev, sigpipe [0], EV_READ);
784 ev_io_start (EV_A_ &sigev); 1246 ev_io_start (EV_A_ &pipe_w);
785 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1247 ev_unref (EV_A); /* watcher should not keep loop alive */
1248 }
1249}
1250
1251inline_size void
1252evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1253{
1254 if (!*flag)
1255 {
1256 int old_errno = errno; /* save errno because write might clobber it */
1257 char dummy;
1258
1259 *flag = 1;
1260
1261#if EV_USE_EVENTFD
1262 if (evfd >= 0)
1263 {
1264 uint64_t counter = 1;
1265 write (evfd, &counter, sizeof (uint64_t));
1266 }
1267 else
1268#endif
1269 write (evpipe [1], &dummy, 1);
1270
1271 errno = old_errno;
1272 }
1273}
1274
1275/* called whenever the libev signal pipe */
1276/* got some events (signal, async) */
1277static void
1278pipecb (EV_P_ ev_io *iow, int revents)
1279{
1280 int i;
1281
1282#if EV_USE_EVENTFD
1283 if (evfd >= 0)
1284 {
1285 uint64_t counter;
1286 read (evfd, &counter, sizeof (uint64_t));
1287 }
1288 else
1289#endif
1290 {
1291 char dummy;
1292 read (evpipe [0], &dummy, 1);
1293 }
1294
1295 if (sig_pending)
1296 {
1297 sig_pending = 0;
1298
1299 for (i = EV_NSIG - 1; i--; )
1300 if (expect_false (signals [i].pending))
1301 ev_feed_signal_event (EV_A_ i + 1);
1302 }
1303
1304#if EV_ASYNC_ENABLE
1305 if (async_pending)
1306 {
1307 async_pending = 0;
1308
1309 for (i = asynccnt; i--; )
1310 if (asyncs [i]->sent)
1311 {
1312 asyncs [i]->sent = 0;
1313 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1314 }
1315 }
1316#endif
786} 1317}
787 1318
788/*****************************************************************************/ 1319/*****************************************************************************/
789 1320
790static ev_child *childs [EV_PID_HASHSIZE]; 1321static void
1322ev_sighandler (int signum)
1323{
1324#if EV_MULTIPLICITY
1325 EV_P = signals [signum - 1].loop;
1326#endif
791 1327
792#ifndef _WIN32 1328#ifdef _WIN32
1329 signal (signum, ev_sighandler);
1330#endif
1331
1332 signals [signum - 1].pending = 1;
1333 evpipe_write (EV_A_ &sig_pending);
1334}
1335
1336void noinline
1337ev_feed_signal_event (EV_P_ int signum)
1338{
1339 WL w;
1340
1341 if (expect_false (signum <= 0 || signum > EV_NSIG))
1342 return;
1343
1344 --signum;
1345
1346#if EV_MULTIPLICITY
1347 /* it is permissible to try to feed a signal to the wrong loop */
1348 /* or, likely more useful, feeding a signal nobody is waiting for */
1349
1350 if (expect_false (signals [signum].loop != EV_A))
1351 return;
1352#endif
1353
1354 signals [signum].pending = 0;
1355
1356 for (w = signals [signum].head; w; w = w->next)
1357 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1358}
1359
1360#if EV_USE_SIGNALFD
1361static void
1362sigfdcb (EV_P_ ev_io *iow, int revents)
1363{
1364 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1365
1366 for (;;)
1367 {
1368 ssize_t res = read (sigfd, si, sizeof (si));
1369
1370 /* not ISO-C, as res might be -1, but works with SuS */
1371 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1372 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1373
1374 if (res < (ssize_t)sizeof (si))
1375 break;
1376 }
1377}
1378#endif
1379
1380#endif
1381
1382/*****************************************************************************/
1383
1384#if EV_CHILD_ENABLE
1385static WL childs [EV_PID_HASHSIZE];
793 1386
794static ev_signal childev; 1387static ev_signal childev;
795 1388
796void inline_speed 1389#ifndef WIFCONTINUED
1390# define WIFCONTINUED(status) 0
1391#endif
1392
1393/* handle a single child status event */
1394inline_speed void
797child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1395child_reap (EV_P_ int chain, int pid, int status)
798{ 1396{
799 ev_child *w; 1397 ev_child *w;
1398 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
800 1399
801 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1400 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1401 {
802 if (w->pid == pid || !w->pid) 1402 if ((w->pid == pid || !w->pid)
1403 && (!traced || (w->flags & 1)))
803 { 1404 {
804 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1405 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
805 w->rpid = pid; 1406 w->rpid = pid;
806 w->rstatus = status; 1407 w->rstatus = status;
807 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1408 ev_feed_event (EV_A_ (W)w, EV_CHILD);
808 } 1409 }
1410 }
809} 1411}
810 1412
811#ifndef WCONTINUED 1413#ifndef WCONTINUED
812# define WCONTINUED 0 1414# define WCONTINUED 0
813#endif 1415#endif
814 1416
1417/* called on sigchld etc., calls waitpid */
815static void 1418static void
816childcb (EV_P_ ev_signal *sw, int revents) 1419childcb (EV_P_ ev_signal *sw, int revents)
817{ 1420{
818 int pid, status; 1421 int pid, status;
819 1422
822 if (!WCONTINUED 1425 if (!WCONTINUED
823 || errno != EINVAL 1426 || errno != EINVAL
824 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1427 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
825 return; 1428 return;
826 1429
827 /* make sure we are called again until all childs have been reaped */ 1430 /* make sure we are called again until all children have been reaped */
828 /* we need to do it this way so that the callback gets called before we continue */ 1431 /* we need to do it this way so that the callback gets called before we continue */
829 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1432 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
830 1433
831 child_reap (EV_A_ sw, pid, pid, status); 1434 child_reap (EV_A_ pid, pid, status);
832 if (EV_PID_HASHSIZE > 1) 1435 if ((EV_PID_HASHSIZE) > 1)
833 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1436 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
834} 1437}
835 1438
836#endif 1439#endif
837 1440
838/*****************************************************************************/ 1441/*****************************************************************************/
900 /* kqueue is borked on everything but netbsd apparently */ 1503 /* kqueue is borked on everything but netbsd apparently */
901 /* it usually doesn't work correctly on anything but sockets and pipes */ 1504 /* it usually doesn't work correctly on anything but sockets and pipes */
902 flags &= ~EVBACKEND_KQUEUE; 1505 flags &= ~EVBACKEND_KQUEUE;
903#endif 1506#endif
904#ifdef __APPLE__ 1507#ifdef __APPLE__
905 // flags &= ~EVBACKEND_KQUEUE; for documentation 1508 /* only select works correctly on that "unix-certified" platform */
906 flags &= ~EVBACKEND_POLL; 1509 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1510 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
907#endif 1511#endif
908 1512
909 return flags; 1513 return flags;
910} 1514}
911 1515
912unsigned int 1516unsigned int
913ev_embeddable_backends (void) 1517ev_embeddable_backends (void)
914{ 1518{
915 return EVBACKEND_EPOLL 1519 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
916 | EVBACKEND_KQUEUE 1520
917 | EVBACKEND_PORT; 1521 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1522 /* please fix it and tell me how to detect the fix */
1523 flags &= ~EVBACKEND_EPOLL;
1524
1525 return flags;
918} 1526}
919 1527
920unsigned int 1528unsigned int
921ev_backend (EV_P) 1529ev_backend (EV_P)
922{ 1530{
923 return backend; 1531 return backend;
924} 1532}
925 1533
1534#if EV_FEATURE_API
926unsigned int 1535unsigned int
927ev_loop_count (EV_P) 1536ev_loop_count (EV_P)
928{ 1537{
929 return loop_count; 1538 return loop_count;
930} 1539}
931 1540
1541unsigned int
1542ev_loop_depth (EV_P)
1543{
1544 return loop_depth;
1545}
1546
1547void
1548ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1549{
1550 io_blocktime = interval;
1551}
1552
1553void
1554ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1555{
1556 timeout_blocktime = interval;
1557}
1558
1559void
1560ev_set_userdata (EV_P_ void *data)
1561{
1562 userdata = data;
1563}
1564
1565void *
1566ev_userdata (EV_P)
1567{
1568 return userdata;
1569}
1570
1571void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1572{
1573 invoke_cb = invoke_pending_cb;
1574}
1575
1576void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1577{
1578 release_cb = release;
1579 acquire_cb = acquire;
1580}
1581#endif
1582
1583/* initialise a loop structure, must be zero-initialised */
932static void noinline 1584static void noinline
933loop_init (EV_P_ unsigned int flags) 1585loop_init (EV_P_ unsigned int flags)
934{ 1586{
935 if (!backend) 1587 if (!backend)
936 { 1588 {
1589#if EV_USE_REALTIME
1590 if (!have_realtime)
1591 {
1592 struct timespec ts;
1593
1594 if (!clock_gettime (CLOCK_REALTIME, &ts))
1595 have_realtime = 1;
1596 }
1597#endif
1598
937#if EV_USE_MONOTONIC 1599#if EV_USE_MONOTONIC
1600 if (!have_monotonic)
938 { 1601 {
939 struct timespec ts; 1602 struct timespec ts;
1603
940 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
941 have_monotonic = 1; 1605 have_monotonic = 1;
942 } 1606 }
943#endif 1607#endif
944
945 ev_rt_now = ev_time ();
946 mn_now = get_clock ();
947 now_floor = mn_now;
948 rtmn_diff = ev_rt_now - mn_now;
949 1608
950 /* pid check not overridable via env */ 1609 /* pid check not overridable via env */
951#ifndef _WIN32 1610#ifndef _WIN32
952 if (flags & EVFLAG_FORKCHECK) 1611 if (flags & EVFLAG_FORKCHECK)
953 curpid = getpid (); 1612 curpid = getpid ();
956 if (!(flags & EVFLAG_NOENV) 1615 if (!(flags & EVFLAG_NOENV)
957 && !enable_secure () 1616 && !enable_secure ()
958 && getenv ("LIBEV_FLAGS")) 1617 && getenv ("LIBEV_FLAGS"))
959 flags = atoi (getenv ("LIBEV_FLAGS")); 1618 flags = atoi (getenv ("LIBEV_FLAGS"));
960 1619
1620 ev_rt_now = ev_time ();
1621 mn_now = get_clock ();
1622 now_floor = mn_now;
1623 rtmn_diff = ev_rt_now - mn_now;
1624#if EV_FEATURE_API
1625 invoke_cb = ev_invoke_pending;
1626#endif
1627
1628 io_blocktime = 0.;
1629 timeout_blocktime = 0.;
1630 backend = 0;
1631 backend_fd = -1;
1632 sig_pending = 0;
1633#if EV_ASYNC_ENABLE
1634 async_pending = 0;
1635#endif
1636#if EV_USE_INOTIFY
1637 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1638#endif
1639#if EV_USE_SIGNALFD
1640 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1641#endif
1642
961 if (!(flags & 0x0000ffffUL)) 1643 if (!(flags & 0x0000ffffU))
962 flags |= ev_recommended_backends (); 1644 flags |= ev_recommended_backends ();
963
964 backend = 0;
965 backend_fd = -1;
966#if EV_USE_INOTIFY
967 fs_fd = -2;
968#endif
969 1645
970#if EV_USE_PORT 1646#if EV_USE_PORT
971 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1647 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
972#endif 1648#endif
973#if EV_USE_KQUEUE 1649#if EV_USE_KQUEUE
981#endif 1657#endif
982#if EV_USE_SELECT 1658#if EV_USE_SELECT
983 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1659 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
984#endif 1660#endif
985 1661
1662 ev_prepare_init (&pending_w, pendingcb);
1663
1664#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
986 ev_init (&sigev, sigcb); 1665 ev_init (&pipe_w, pipecb);
987 ev_set_priority (&sigev, EV_MAXPRI); 1666 ev_set_priority (&pipe_w, EV_MAXPRI);
1667#endif
988 } 1668 }
989} 1669}
990 1670
1671/* free up a loop structure */
991static void noinline 1672static void noinline
992loop_destroy (EV_P) 1673loop_destroy (EV_P)
993{ 1674{
994 int i; 1675 int i;
1676
1677 if (ev_is_active (&pipe_w))
1678 {
1679 /*ev_ref (EV_A);*/
1680 /*ev_io_stop (EV_A_ &pipe_w);*/
1681
1682#if EV_USE_EVENTFD
1683 if (evfd >= 0)
1684 close (evfd);
1685#endif
1686
1687 if (evpipe [0] >= 0)
1688 {
1689 EV_WIN32_CLOSE_FD (evpipe [0]);
1690 EV_WIN32_CLOSE_FD (evpipe [1]);
1691 }
1692 }
1693
1694#if EV_USE_SIGNALFD
1695 if (ev_is_active (&sigfd_w))
1696 close (sigfd);
1697#endif
995 1698
996#if EV_USE_INOTIFY 1699#if EV_USE_INOTIFY
997 if (fs_fd >= 0) 1700 if (fs_fd >= 0)
998 close (fs_fd); 1701 close (fs_fd);
999#endif 1702#endif
1023#if EV_IDLE_ENABLE 1726#if EV_IDLE_ENABLE
1024 array_free (idle, [i]); 1727 array_free (idle, [i]);
1025#endif 1728#endif
1026 } 1729 }
1027 1730
1731 ev_free (anfds); anfds = 0; anfdmax = 0;
1732
1028 /* have to use the microsoft-never-gets-it-right macro */ 1733 /* have to use the microsoft-never-gets-it-right macro */
1734 array_free (rfeed, EMPTY);
1029 array_free (fdchange, EMPTY); 1735 array_free (fdchange, EMPTY);
1030 array_free (timer, EMPTY); 1736 array_free (timer, EMPTY);
1031#if EV_PERIODIC_ENABLE 1737#if EV_PERIODIC_ENABLE
1032 array_free (periodic, EMPTY); 1738 array_free (periodic, EMPTY);
1033#endif 1739#endif
1740#if EV_FORK_ENABLE
1741 array_free (fork, EMPTY);
1742#endif
1034 array_free (prepare, EMPTY); 1743 array_free (prepare, EMPTY);
1035 array_free (check, EMPTY); 1744 array_free (check, EMPTY);
1745#if EV_ASYNC_ENABLE
1746 array_free (async, EMPTY);
1747#endif
1036 1748
1037 backend = 0; 1749 backend = 0;
1038} 1750}
1039 1751
1752#if EV_USE_INOTIFY
1040void inline_size infy_fork (EV_P); 1753inline_size void infy_fork (EV_P);
1754#endif
1041 1755
1042void inline_size 1756inline_size void
1043loop_fork (EV_P) 1757loop_fork (EV_P)
1044{ 1758{
1045#if EV_USE_PORT 1759#if EV_USE_PORT
1046 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1760 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1047#endif 1761#endif
1053#endif 1767#endif
1054#if EV_USE_INOTIFY 1768#if EV_USE_INOTIFY
1055 infy_fork (EV_A); 1769 infy_fork (EV_A);
1056#endif 1770#endif
1057 1771
1058 if (ev_is_active (&sigev)) 1772 if (ev_is_active (&pipe_w))
1059 { 1773 {
1060 /* default loop */ 1774 /* this "locks" the handlers against writing to the pipe */
1775 /* while we modify the fd vars */
1776 sig_pending = 1;
1777#if EV_ASYNC_ENABLE
1778 async_pending = 1;
1779#endif
1061 1780
1062 ev_ref (EV_A); 1781 ev_ref (EV_A);
1063 ev_io_stop (EV_A_ &sigev); 1782 ev_io_stop (EV_A_ &pipe_w);
1064 close (sigpipe [0]);
1065 close (sigpipe [1]);
1066 1783
1067 while (pipe (sigpipe)) 1784#if EV_USE_EVENTFD
1068 syserr ("(libev) error creating pipe"); 1785 if (evfd >= 0)
1786 close (evfd);
1787#endif
1069 1788
1789 if (evpipe [0] >= 0)
1790 {
1791 EV_WIN32_CLOSE_FD (evpipe [0]);
1792 EV_WIN32_CLOSE_FD (evpipe [1]);
1793 }
1794
1795#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1070 siginit (EV_A); 1796 evpipe_init (EV_A);
1797 /* now iterate over everything, in case we missed something */
1798 pipecb (EV_A_ &pipe_w, EV_READ);
1799#endif
1071 } 1800 }
1072 1801
1073 postfork = 0; 1802 postfork = 0;
1074} 1803}
1075 1804
1076#if EV_MULTIPLICITY 1805#if EV_MULTIPLICITY
1806
1077struct ev_loop * 1807struct ev_loop *
1078ev_loop_new (unsigned int flags) 1808ev_loop_new (unsigned int flags)
1079{ 1809{
1080 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1810 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1081 1811
1082 memset (loop, 0, sizeof (struct ev_loop)); 1812 memset (EV_A, 0, sizeof (struct ev_loop));
1083
1084 loop_init (EV_A_ flags); 1813 loop_init (EV_A_ flags);
1085 1814
1086 if (ev_backend (EV_A)) 1815 if (ev_backend (EV_A))
1087 return loop; 1816 return EV_A;
1088 1817
1089 return 0; 1818 return 0;
1090} 1819}
1091 1820
1092void 1821void
1097} 1826}
1098 1827
1099void 1828void
1100ev_loop_fork (EV_P) 1829ev_loop_fork (EV_P)
1101{ 1830{
1102 postfork = 1; 1831 postfork = 1; /* must be in line with ev_default_fork */
1103} 1832}
1833#endif /* multiplicity */
1104 1834
1835#if EV_VERIFY
1836static void noinline
1837verify_watcher (EV_P_ W w)
1838{
1839 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1840
1841 if (w->pending)
1842 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1843}
1844
1845static void noinline
1846verify_heap (EV_P_ ANHE *heap, int N)
1847{
1848 int i;
1849
1850 for (i = HEAP0; i < N + HEAP0; ++i)
1851 {
1852 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1853 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1854 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1855
1856 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1857 }
1858}
1859
1860static void noinline
1861array_verify (EV_P_ W *ws, int cnt)
1862{
1863 while (cnt--)
1864 {
1865 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1866 verify_watcher (EV_A_ ws [cnt]);
1867 }
1868}
1869#endif
1870
1871#if EV_FEATURE_API
1872void
1873ev_loop_verify (EV_P)
1874{
1875#if EV_VERIFY
1876 int i;
1877 WL w;
1878
1879 assert (activecnt >= -1);
1880
1881 assert (fdchangemax >= fdchangecnt);
1882 for (i = 0; i < fdchangecnt; ++i)
1883 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1884
1885 assert (anfdmax >= 0);
1886 for (i = 0; i < anfdmax; ++i)
1887 for (w = anfds [i].head; w; w = w->next)
1888 {
1889 verify_watcher (EV_A_ (W)w);
1890 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1891 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1892 }
1893
1894 assert (timermax >= timercnt);
1895 verify_heap (EV_A_ timers, timercnt);
1896
1897#if EV_PERIODIC_ENABLE
1898 assert (periodicmax >= periodiccnt);
1899 verify_heap (EV_A_ periodics, periodiccnt);
1900#endif
1901
1902 for (i = NUMPRI; i--; )
1903 {
1904 assert (pendingmax [i] >= pendingcnt [i]);
1905#if EV_IDLE_ENABLE
1906 assert (idleall >= 0);
1907 assert (idlemax [i] >= idlecnt [i]);
1908 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1909#endif
1910 }
1911
1912#if EV_FORK_ENABLE
1913 assert (forkmax >= forkcnt);
1914 array_verify (EV_A_ (W *)forks, forkcnt);
1915#endif
1916
1917#if EV_ASYNC_ENABLE
1918 assert (asyncmax >= asynccnt);
1919 array_verify (EV_A_ (W *)asyncs, asynccnt);
1920#endif
1921
1922#if EV_PREPARE_ENABLE
1923 assert (preparemax >= preparecnt);
1924 array_verify (EV_A_ (W *)prepares, preparecnt);
1925#endif
1926
1927#if EV_CHECK_ENABLE
1928 assert (checkmax >= checkcnt);
1929 array_verify (EV_A_ (W *)checks, checkcnt);
1930#endif
1931
1932# if 0
1933#if EV_CHILD_ENABLE
1934 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1935 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1936#endif
1937# endif
1938#endif
1939}
1105#endif 1940#endif
1106 1941
1107#if EV_MULTIPLICITY 1942#if EV_MULTIPLICITY
1108struct ev_loop * 1943struct ev_loop *
1109ev_default_loop_init (unsigned int flags) 1944ev_default_loop_init (unsigned int flags)
1110#else 1945#else
1111int 1946int
1112ev_default_loop (unsigned int flags) 1947ev_default_loop (unsigned int flags)
1113#endif 1948#endif
1114{ 1949{
1115 if (sigpipe [0] == sigpipe [1])
1116 if (pipe (sigpipe))
1117 return 0;
1118
1119 if (!ev_default_loop_ptr) 1950 if (!ev_default_loop_ptr)
1120 { 1951 {
1121#if EV_MULTIPLICITY 1952#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1953 EV_P = ev_default_loop_ptr = &default_loop_struct;
1123#else 1954#else
1124 ev_default_loop_ptr = 1; 1955 ev_default_loop_ptr = 1;
1125#endif 1956#endif
1126 1957
1127 loop_init (EV_A_ flags); 1958 loop_init (EV_A_ flags);
1128 1959
1129 if (ev_backend (EV_A)) 1960 if (ev_backend (EV_A))
1130 { 1961 {
1131 siginit (EV_A); 1962#if EV_CHILD_ENABLE
1132
1133#ifndef _WIN32
1134 ev_signal_init (&childev, childcb, SIGCHLD); 1963 ev_signal_init (&childev, childcb, SIGCHLD);
1135 ev_set_priority (&childev, EV_MAXPRI); 1964 ev_set_priority (&childev, EV_MAXPRI);
1136 ev_signal_start (EV_A_ &childev); 1965 ev_signal_start (EV_A_ &childev);
1137 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1966 ev_unref (EV_A); /* child watcher should not keep loop alive */
1138#endif 1967#endif
1146 1975
1147void 1976void
1148ev_default_destroy (void) 1977ev_default_destroy (void)
1149{ 1978{
1150#if EV_MULTIPLICITY 1979#if EV_MULTIPLICITY
1151 struct ev_loop *loop = ev_default_loop_ptr; 1980 EV_P = ev_default_loop_ptr;
1152#endif 1981#endif
1153 1982
1154#ifndef _WIN32 1983 ev_default_loop_ptr = 0;
1984
1985#if EV_CHILD_ENABLE
1155 ev_ref (EV_A); /* child watcher */ 1986 ev_ref (EV_A); /* child watcher */
1156 ev_signal_stop (EV_A_ &childev); 1987 ev_signal_stop (EV_A_ &childev);
1157#endif 1988#endif
1158 1989
1159 ev_ref (EV_A); /* signal watcher */
1160 ev_io_stop (EV_A_ &sigev);
1161
1162 close (sigpipe [0]); sigpipe [0] = 0;
1163 close (sigpipe [1]); sigpipe [1] = 0;
1164
1165 loop_destroy (EV_A); 1990 loop_destroy (EV_A);
1166} 1991}
1167 1992
1168void 1993void
1169ev_default_fork (void) 1994ev_default_fork (void)
1170{ 1995{
1171#if EV_MULTIPLICITY 1996#if EV_MULTIPLICITY
1172 struct ev_loop *loop = ev_default_loop_ptr; 1997 EV_P = ev_default_loop_ptr;
1173#endif 1998#endif
1174 1999
1175 if (backend) 2000 postfork = 1; /* must be in line with ev_loop_fork */
1176 postfork = 1;
1177} 2001}
1178 2002
1179/*****************************************************************************/ 2003/*****************************************************************************/
1180 2004
1181void 2005void
1182ev_invoke (EV_P_ void *w, int revents) 2006ev_invoke (EV_P_ void *w, int revents)
1183{ 2007{
1184 EV_CB_INVOKE ((W)w, revents); 2008 EV_CB_INVOKE ((W)w, revents);
1185} 2009}
1186 2010
1187void inline_speed 2011unsigned int
1188call_pending (EV_P) 2012ev_pending_count (EV_P)
2013{
2014 int pri;
2015 unsigned int count = 0;
2016
2017 for (pri = NUMPRI; pri--; )
2018 count += pendingcnt [pri];
2019
2020 return count;
2021}
2022
2023void noinline
2024ev_invoke_pending (EV_P)
1189{ 2025{
1190 int pri; 2026 int pri;
1191 2027
1192 for (pri = NUMPRI; pri--; ) 2028 for (pri = NUMPRI; pri--; )
1193 while (pendingcnt [pri]) 2029 while (pendingcnt [pri])
1194 { 2030 {
1195 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2031 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1196 2032
1197 if (expect_true (p->w))
1198 {
1199 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2033 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2034 /* ^ this is no longer true, as pending_w could be here */
1200 2035
1201 p->w->pending = 0; 2036 p->w->pending = 0;
1202 EV_CB_INVOKE (p->w, p->events); 2037 EV_CB_INVOKE (p->w, p->events);
1203 } 2038 EV_FREQUENT_CHECK;
1204 } 2039 }
1205} 2040}
1206 2041
1207void inline_size
1208timers_reify (EV_P)
1209{
1210 while (timercnt && ((WT)timers [0])->at <= mn_now)
1211 {
1212 ev_timer *w = timers [0];
1213
1214 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1215
1216 /* first reschedule or stop timer */
1217 if (w->repeat)
1218 {
1219 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1220
1221 ((WT)w)->at += w->repeat;
1222 if (((WT)w)->at < mn_now)
1223 ((WT)w)->at = mn_now;
1224
1225 downheap ((WT *)timers, timercnt, 0);
1226 }
1227 else
1228 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1229
1230 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1231 }
1232}
1233
1234#if EV_PERIODIC_ENABLE
1235void inline_size
1236periodics_reify (EV_P)
1237{
1238 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1239 {
1240 ev_periodic *w = periodics [0];
1241
1242 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1243
1244 /* first reschedule or stop timer */
1245 if (w->reschedule_cb)
1246 {
1247 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1248 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1249 downheap ((WT *)periodics, periodiccnt, 0);
1250 }
1251 else if (w->interval)
1252 {
1253 ((WT)w)->at = w->offset + floor ((ev_rt_now + TIME_EPSILON - w->offset) / w->interval + 1.) * w->interval;
1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1255 downheap ((WT *)periodics, periodiccnt, 0);
1256 }
1257 else
1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1259
1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1261 }
1262}
1263
1264static void noinline
1265periodics_reschedule (EV_P)
1266{
1267 int i;
1268
1269 /* adjust periodics after time jump */
1270 for (i = 0; i < periodiccnt; ++i)
1271 {
1272 ev_periodic *w = periodics [i];
1273
1274 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1276 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 }
1279
1280 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i);
1283}
1284#endif
1285
1286#if EV_IDLE_ENABLE 2042#if EV_IDLE_ENABLE
1287void inline_size 2043/* make idle watchers pending. this handles the "call-idle */
2044/* only when higher priorities are idle" logic */
2045inline_size void
1288idle_reify (EV_P) 2046idle_reify (EV_P)
1289{ 2047{
1290 if (expect_false (idleall)) 2048 if (expect_false (idleall))
1291 { 2049 {
1292 int pri; 2050 int pri;
1304 } 2062 }
1305 } 2063 }
1306} 2064}
1307#endif 2065#endif
1308 2066
1309int inline_size 2067/* make timers pending */
1310time_update_monotonic (EV_P) 2068inline_size void
2069timers_reify (EV_P)
1311{ 2070{
2071 EV_FREQUENT_CHECK;
2072
2073 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2074 {
2075 do
2076 {
2077 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2078
2079 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2080
2081 /* first reschedule or stop timer */
2082 if (w->repeat)
2083 {
2084 ev_at (w) += w->repeat;
2085 if (ev_at (w) < mn_now)
2086 ev_at (w) = mn_now;
2087
2088 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2089
2090 ANHE_at_cache (timers [HEAP0]);
2091 downheap (timers, timercnt, HEAP0);
2092 }
2093 else
2094 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2095
2096 EV_FREQUENT_CHECK;
2097 feed_reverse (EV_A_ (W)w);
2098 }
2099 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2100
2101 feed_reverse_done (EV_A_ EV_TIMEOUT);
2102 }
2103}
2104
2105#if EV_PERIODIC_ENABLE
2106/* make periodics pending */
2107inline_size void
2108periodics_reify (EV_P)
2109{
2110 EV_FREQUENT_CHECK;
2111
2112 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2113 {
2114 int feed_count = 0;
2115
2116 do
2117 {
2118 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2119
2120 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2121
2122 /* first reschedule or stop timer */
2123 if (w->reschedule_cb)
2124 {
2125 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2126
2127 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2128
2129 ANHE_at_cache (periodics [HEAP0]);
2130 downheap (periodics, periodiccnt, HEAP0);
2131 }
2132 else if (w->interval)
2133 {
2134 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2135 /* if next trigger time is not sufficiently in the future, put it there */
2136 /* this might happen because of floating point inexactness */
2137 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2138 {
2139 ev_at (w) += w->interval;
2140
2141 /* if interval is unreasonably low we might still have a time in the past */
2142 /* so correct this. this will make the periodic very inexact, but the user */
2143 /* has effectively asked to get triggered more often than possible */
2144 if (ev_at (w) < ev_rt_now)
2145 ev_at (w) = ev_rt_now;
2146 }
2147
2148 ANHE_at_cache (periodics [HEAP0]);
2149 downheap (periodics, periodiccnt, HEAP0);
2150 }
2151 else
2152 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2153
2154 EV_FREQUENT_CHECK;
2155 feed_reverse (EV_A_ (W)w);
2156 }
2157 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2158
2159 feed_reverse_done (EV_A_ EV_PERIODIC);
2160 }
2161}
2162
2163/* simply recalculate all periodics */
2164/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2165static void noinline
2166periodics_reschedule (EV_P)
2167{
2168 int i;
2169
2170 /* adjust periodics after time jump */
2171 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2172 {
2173 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2174
2175 if (w->reschedule_cb)
2176 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2177 else if (w->interval)
2178 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2179
2180 ANHE_at_cache (periodics [i]);
2181 }
2182
2183 reheap (periodics, periodiccnt);
2184}
2185#endif
2186
2187/* adjust all timers by a given offset */
2188static void noinline
2189timers_reschedule (EV_P_ ev_tstamp adjust)
2190{
2191 int i;
2192
2193 for (i = 0; i < timercnt; ++i)
2194 {
2195 ANHE *he = timers + i + HEAP0;
2196 ANHE_w (*he)->at += adjust;
2197 ANHE_at_cache (*he);
2198 }
2199}
2200
2201/* fetch new monotonic and realtime times from the kernel */
2202/* also detect if there was a timejump, and act accordingly */
2203inline_speed void
2204time_update (EV_P_ ev_tstamp max_block)
2205{
2206#if EV_USE_MONOTONIC
2207 if (expect_true (have_monotonic))
2208 {
2209 int i;
2210 ev_tstamp odiff = rtmn_diff;
2211
1312 mn_now = get_clock (); 2212 mn_now = get_clock ();
1313 2213
2214 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2215 /* interpolate in the meantime */
1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2216 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1315 { 2217 {
1316 ev_rt_now = rtmn_diff + mn_now; 2218 ev_rt_now = rtmn_diff + mn_now;
1317 return 0; 2219 return;
1318 } 2220 }
1319 else 2221
1320 {
1321 now_floor = mn_now; 2222 now_floor = mn_now;
1322 ev_rt_now = ev_time (); 2223 ev_rt_now = ev_time ();
1323 return 1;
1324 }
1325}
1326 2224
1327void inline_size 2225 /* loop a few times, before making important decisions.
1328time_update (EV_P) 2226 * on the choice of "4": one iteration isn't enough,
1329{ 2227 * in case we get preempted during the calls to
1330 int i; 2228 * ev_time and get_clock. a second call is almost guaranteed
1331 2229 * to succeed in that case, though. and looping a few more times
1332#if EV_USE_MONOTONIC 2230 * doesn't hurt either as we only do this on time-jumps or
1333 if (expect_true (have_monotonic)) 2231 * in the unlikely event of having been preempted here.
1334 { 2232 */
1335 if (time_update_monotonic (EV_A)) 2233 for (i = 4; --i; )
1336 { 2234 {
1337 ev_tstamp odiff = rtmn_diff;
1338
1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1348 {
1349 rtmn_diff = ev_rt_now - mn_now; 2235 rtmn_diff = ev_rt_now - mn_now;
1350 2236
1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2237 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1352 return; /* all is well */ 2238 return; /* all is well */
1353 2239
1354 ev_rt_now = ev_time (); 2240 ev_rt_now = ev_time ();
1355 mn_now = get_clock (); 2241 mn_now = get_clock ();
1356 now_floor = mn_now; 2242 now_floor = mn_now;
1357 } 2243 }
1358 2244
2245 /* no timer adjustment, as the monotonic clock doesn't jump */
2246 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1359# if EV_PERIODIC_ENABLE 2247# if EV_PERIODIC_ENABLE
1360 periodics_reschedule (EV_A); 2248 periodics_reschedule (EV_A);
1361# endif 2249# endif
1362 /* no timer adjustment, as the monotonic clock doesn't jump */
1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1364 }
1365 } 2250 }
1366 else 2251 else
1367#endif 2252#endif
1368 { 2253 {
1369 ev_rt_now = ev_time (); 2254 ev_rt_now = ev_time ();
1370 2255
1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2256 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 { 2257 {
2258 /* adjust timers. this is easy, as the offset is the same for all of them */
2259 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1373#if EV_PERIODIC_ENABLE 2260#if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 2261 periodics_reschedule (EV_A);
1375#endif 2262#endif
1376
1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i)
1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1380 } 2263 }
1381 2264
1382 mn_now = ev_rt_now; 2265 mn_now = ev_rt_now;
1383 } 2266 }
1384} 2267}
1385 2268
1386void 2269void
1387ev_ref (EV_P)
1388{
1389 ++activecnt;
1390}
1391
1392void
1393ev_unref (EV_P)
1394{
1395 --activecnt;
1396}
1397
1398static int loop_done;
1399
1400void
1401ev_loop (EV_P_ int flags) 2270ev_loop (EV_P_ int flags)
1402{ 2271{
1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2272#if EV_FEATURE_API
1404 ? EVUNLOOP_ONE 2273 ++loop_depth;
1405 : EVUNLOOP_CANCEL; 2274#endif
1406 2275
2276 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2277
2278 loop_done = EVUNLOOP_CANCEL;
2279
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2280 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1408 2281
1409 do 2282 do
1410 { 2283 {
2284#if EV_VERIFY >= 2
2285 ev_loop_verify (EV_A);
2286#endif
2287
1411#ifndef _WIN32 2288#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */ 2289 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid)) 2290 if (expect_false (getpid () != curpid))
1414 { 2291 {
1415 curpid = getpid (); 2292 curpid = getpid ();
1421 /* we might have forked, so queue fork handlers */ 2298 /* we might have forked, so queue fork handlers */
1422 if (expect_false (postfork)) 2299 if (expect_false (postfork))
1423 if (forkcnt) 2300 if (forkcnt)
1424 { 2301 {
1425 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2302 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1426 call_pending (EV_A); 2303 EV_INVOKE_PENDING;
1427 } 2304 }
1428#endif 2305#endif
1429 2306
2307#if EV_PREPARE_ENABLE
1430 /* queue prepare watchers (and execute them) */ 2308 /* queue prepare watchers (and execute them) */
1431 if (expect_false (preparecnt)) 2309 if (expect_false (preparecnt))
1432 { 2310 {
1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2311 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1434 call_pending (EV_A); 2312 EV_INVOKE_PENDING;
1435 } 2313 }
2314#endif
1436 2315
1437 if (expect_false (!activecnt)) 2316 if (expect_false (loop_done))
1438 break; 2317 break;
1439 2318
1440 /* we might have forked, so reify kernel state if necessary */ 2319 /* we might have forked, so reify kernel state if necessary */
1441 if (expect_false (postfork)) 2320 if (expect_false (postfork))
1442 loop_fork (EV_A); 2321 loop_fork (EV_A);
1444 /* update fd-related kernel structures */ 2323 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 2324 fd_reify (EV_A);
1446 2325
1447 /* calculate blocking time */ 2326 /* calculate blocking time */
1448 { 2327 {
1449 ev_tstamp block; 2328 ev_tstamp waittime = 0.;
2329 ev_tstamp sleeptime = 0.;
1450 2330
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2331 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 2332 {
2333 /* remember old timestamp for io_blocktime calculation */
2334 ev_tstamp prev_mn_now = mn_now;
2335
1455 /* update time to cancel out callback processing overhead */ 2336 /* update time to cancel out callback processing overhead */
1456#if EV_USE_MONOTONIC
1457 if (expect_true (have_monotonic))
1458 time_update_monotonic (EV_A); 2337 time_update (EV_A_ 1e100);
1459 else
1460#endif
1461 {
1462 ev_rt_now = ev_time ();
1463 mn_now = ev_rt_now;
1464 }
1465 2338
1466 block = MAX_BLOCKTIME; 2339 waittime = MAX_BLOCKTIME;
1467 2340
1468 if (timercnt) 2341 if (timercnt)
1469 { 2342 {
1470 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2343 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1471 if (block > to) block = to; 2344 if (waittime > to) waittime = to;
1472 } 2345 }
1473 2346
1474#if EV_PERIODIC_ENABLE 2347#if EV_PERIODIC_ENABLE
1475 if (periodiccnt) 2348 if (periodiccnt)
1476 { 2349 {
1477 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2350 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1478 if (block > to) block = to; 2351 if (waittime > to) waittime = to;
1479 } 2352 }
1480#endif 2353#endif
1481 2354
2355 /* don't let timeouts decrease the waittime below timeout_blocktime */
2356 if (expect_false (waittime < timeout_blocktime))
2357 waittime = timeout_blocktime;
2358
2359 /* extra check because io_blocktime is commonly 0 */
1482 if (expect_false (block < 0.)) block = 0.; 2360 if (expect_false (io_blocktime))
2361 {
2362 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2363
2364 if (sleeptime > waittime - backend_fudge)
2365 sleeptime = waittime - backend_fudge;
2366
2367 if (expect_true (sleeptime > 0.))
2368 {
2369 ev_sleep (sleeptime);
2370 waittime -= sleeptime;
2371 }
2372 }
1483 } 2373 }
1484 2374
2375#if EV_FEATURE_API
1485 ++loop_count; 2376 ++loop_count;
2377#endif
2378 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1486 backend_poll (EV_A_ block); 2379 backend_poll (EV_A_ waittime);
2380 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2381
2382 /* update ev_rt_now, do magic */
2383 time_update (EV_A_ waittime + sleeptime);
1487 } 2384 }
1488
1489 /* update ev_rt_now, do magic */
1490 time_update (EV_A);
1491 2385
1492 /* queue pending timers and reschedule them */ 2386 /* queue pending timers and reschedule them */
1493 timers_reify (EV_A); /* relative timers called last */ 2387 timers_reify (EV_A); /* relative timers called last */
1494#if EV_PERIODIC_ENABLE 2388#if EV_PERIODIC_ENABLE
1495 periodics_reify (EV_A); /* absolute timers called first */ 2389 periodics_reify (EV_A); /* absolute timers called first */
1498#if EV_IDLE_ENABLE 2392#if EV_IDLE_ENABLE
1499 /* queue idle watchers unless other events are pending */ 2393 /* queue idle watchers unless other events are pending */
1500 idle_reify (EV_A); 2394 idle_reify (EV_A);
1501#endif 2395#endif
1502 2396
2397#if EV_CHECK_ENABLE
1503 /* queue check watchers, to be executed first */ 2398 /* queue check watchers, to be executed first */
1504 if (expect_false (checkcnt)) 2399 if (expect_false (checkcnt))
1505 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2400 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2401#endif
1506 2402
1507 call_pending (EV_A); 2403 EV_INVOKE_PENDING;
1508
1509 } 2404 }
1510 while (expect_true (activecnt && !loop_done)); 2405 while (expect_true (
2406 activecnt
2407 && !loop_done
2408 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2409 ));
1511 2410
1512 if (loop_done == EVUNLOOP_ONE) 2411 if (loop_done == EVUNLOOP_ONE)
1513 loop_done = EVUNLOOP_CANCEL; 2412 loop_done = EVUNLOOP_CANCEL;
2413
2414#if EV_FEATURE_API
2415 --loop_depth;
2416#endif
1514} 2417}
1515 2418
1516void 2419void
1517ev_unloop (EV_P_ int how) 2420ev_unloop (EV_P_ int how)
1518{ 2421{
1519 loop_done = how; 2422 loop_done = how;
1520} 2423}
1521 2424
2425void
2426ev_ref (EV_P)
2427{
2428 ++activecnt;
2429}
2430
2431void
2432ev_unref (EV_P)
2433{
2434 --activecnt;
2435}
2436
2437void
2438ev_now_update (EV_P)
2439{
2440 time_update (EV_A_ 1e100);
2441}
2442
2443void
2444ev_suspend (EV_P)
2445{
2446 ev_now_update (EV_A);
2447}
2448
2449void
2450ev_resume (EV_P)
2451{
2452 ev_tstamp mn_prev = mn_now;
2453
2454 ev_now_update (EV_A);
2455 timers_reschedule (EV_A_ mn_now - mn_prev);
2456#if EV_PERIODIC_ENABLE
2457 /* TODO: really do this? */
2458 periodics_reschedule (EV_A);
2459#endif
2460}
2461
1522/*****************************************************************************/ 2462/*****************************************************************************/
2463/* singly-linked list management, used when the expected list length is short */
1523 2464
1524void inline_size 2465inline_size void
1525wlist_add (WL *head, WL elem) 2466wlist_add (WL *head, WL elem)
1526{ 2467{
1527 elem->next = *head; 2468 elem->next = *head;
1528 *head = elem; 2469 *head = elem;
1529} 2470}
1530 2471
1531void inline_size 2472inline_size void
1532wlist_del (WL *head, WL elem) 2473wlist_del (WL *head, WL elem)
1533{ 2474{
1534 while (*head) 2475 while (*head)
1535 { 2476 {
1536 if (*head == elem) 2477 if (expect_true (*head == elem))
1537 { 2478 {
1538 *head = elem->next; 2479 *head = elem->next;
1539 return; 2480 break;
1540 } 2481 }
1541 2482
1542 head = &(*head)->next; 2483 head = &(*head)->next;
1543 } 2484 }
1544} 2485}
1545 2486
1546void inline_speed 2487/* internal, faster, version of ev_clear_pending */
2488inline_speed void
1547clear_pending (EV_P_ W w) 2489clear_pending (EV_P_ W w)
1548{ 2490{
1549 if (w->pending) 2491 if (w->pending)
1550 { 2492 {
1551 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2493 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1552 w->pending = 0; 2494 w->pending = 0;
1553 } 2495 }
1554} 2496}
1555 2497
1556int 2498int
1560 int pending = w_->pending; 2502 int pending = w_->pending;
1561 2503
1562 if (expect_true (pending)) 2504 if (expect_true (pending))
1563 { 2505 {
1564 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2506 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2507 p->w = (W)&pending_w;
1565 w_->pending = 0; 2508 w_->pending = 0;
1566 p->w = 0;
1567 return p->events; 2509 return p->events;
1568 } 2510 }
1569 else 2511 else
1570 return 0; 2512 return 0;
1571} 2513}
1572 2514
1573void inline_size 2515inline_size void
1574pri_adjust (EV_P_ W w) 2516pri_adjust (EV_P_ W w)
1575{ 2517{
1576 int pri = w->priority; 2518 int pri = ev_priority (w);
1577 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2519 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1578 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2520 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1579 w->priority = pri; 2521 ev_set_priority (w, pri);
1580} 2522}
1581 2523
1582void inline_speed 2524inline_speed void
1583ev_start (EV_P_ W w, int active) 2525ev_start (EV_P_ W w, int active)
1584{ 2526{
1585 pri_adjust (EV_A_ w); 2527 pri_adjust (EV_A_ w);
1586 w->active = active; 2528 w->active = active;
1587 ev_ref (EV_A); 2529 ev_ref (EV_A);
1588} 2530}
1589 2531
1590void inline_size 2532inline_size void
1591ev_stop (EV_P_ W w) 2533ev_stop (EV_P_ W w)
1592{ 2534{
1593 ev_unref (EV_A); 2535 ev_unref (EV_A);
1594 w->active = 0; 2536 w->active = 0;
1595} 2537}
1602 int fd = w->fd; 2544 int fd = w->fd;
1603 2545
1604 if (expect_false (ev_is_active (w))) 2546 if (expect_false (ev_is_active (w)))
1605 return; 2547 return;
1606 2548
1607 assert (("ev_io_start called with negative fd", fd >= 0)); 2549 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2550 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2551
2552 EV_FREQUENT_CHECK;
1608 2553
1609 ev_start (EV_A_ (W)w, 1); 2554 ev_start (EV_A_ (W)w, 1);
1610 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2555 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1611 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2556 wlist_add (&anfds[fd].head, (WL)w);
1612 2557
1613 fd_change (EV_A_ fd); 2558 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2559 w->events &= ~EV__IOFDSET;
2560
2561 EV_FREQUENT_CHECK;
1614} 2562}
1615 2563
1616void noinline 2564void noinline
1617ev_io_stop (EV_P_ ev_io *w) 2565ev_io_stop (EV_P_ ev_io *w)
1618{ 2566{
1619 clear_pending (EV_A_ (W)w); 2567 clear_pending (EV_A_ (W)w);
1620 if (expect_false (!ev_is_active (w))) 2568 if (expect_false (!ev_is_active (w)))
1621 return; 2569 return;
1622 2570
1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2571 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1624 2572
2573 EV_FREQUENT_CHECK;
2574
1625 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2575 wlist_del (&anfds[w->fd].head, (WL)w);
1626 ev_stop (EV_A_ (W)w); 2576 ev_stop (EV_A_ (W)w);
1627 2577
1628 fd_change (EV_A_ w->fd); 2578 fd_change (EV_A_ w->fd, 1);
2579
2580 EV_FREQUENT_CHECK;
1629} 2581}
1630 2582
1631void noinline 2583void noinline
1632ev_timer_start (EV_P_ ev_timer *w) 2584ev_timer_start (EV_P_ ev_timer *w)
1633{ 2585{
1634 if (expect_false (ev_is_active (w))) 2586 if (expect_false (ev_is_active (w)))
1635 return; 2587 return;
1636 2588
1637 ((WT)w)->at += mn_now; 2589 ev_at (w) += mn_now;
1638 2590
1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2591 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1640 2592
2593 EV_FREQUENT_CHECK;
2594
2595 ++timercnt;
1641 ev_start (EV_A_ (W)w, ++timercnt); 2596 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1642 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2597 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1643 timers [timercnt - 1] = w; 2598 ANHE_w (timers [ev_active (w)]) = (WT)w;
1644 upheap ((WT *)timers, timercnt - 1); 2599 ANHE_at_cache (timers [ev_active (w)]);
2600 upheap (timers, ev_active (w));
1645 2601
2602 EV_FREQUENT_CHECK;
2603
1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2604 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1647} 2605}
1648 2606
1649void noinline 2607void noinline
1650ev_timer_stop (EV_P_ ev_timer *w) 2608ev_timer_stop (EV_P_ ev_timer *w)
1651{ 2609{
1652 clear_pending (EV_A_ (W)w); 2610 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 2611 if (expect_false (!ev_is_active (w)))
1654 return; 2612 return;
1655 2613
1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2614 EV_FREQUENT_CHECK;
1657 2615
1658 { 2616 {
1659 int active = ((W)w)->active; 2617 int active = ev_active (w);
1660 2618
2619 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2620
2621 --timercnt;
2622
1661 if (expect_true (--active < --timercnt)) 2623 if (expect_true (active < timercnt + HEAP0))
1662 { 2624 {
1663 timers [active] = timers [timercnt]; 2625 timers [active] = timers [timercnt + HEAP0];
1664 adjustheap ((WT *)timers, timercnt, active); 2626 adjustheap (timers, timercnt, active);
1665 } 2627 }
1666 } 2628 }
1667 2629
1668 ((WT)w)->at -= mn_now; 2630 ev_at (w) -= mn_now;
1669 2631
1670 ev_stop (EV_A_ (W)w); 2632 ev_stop (EV_A_ (W)w);
2633
2634 EV_FREQUENT_CHECK;
1671} 2635}
1672 2636
1673void noinline 2637void noinline
1674ev_timer_again (EV_P_ ev_timer *w) 2638ev_timer_again (EV_P_ ev_timer *w)
1675{ 2639{
2640 EV_FREQUENT_CHECK;
2641
1676 if (ev_is_active (w)) 2642 if (ev_is_active (w))
1677 { 2643 {
1678 if (w->repeat) 2644 if (w->repeat)
1679 { 2645 {
1680 ((WT)w)->at = mn_now + w->repeat; 2646 ev_at (w) = mn_now + w->repeat;
2647 ANHE_at_cache (timers [ev_active (w)]);
1681 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2648 adjustheap (timers, timercnt, ev_active (w));
1682 } 2649 }
1683 else 2650 else
1684 ev_timer_stop (EV_A_ w); 2651 ev_timer_stop (EV_A_ w);
1685 } 2652 }
1686 else if (w->repeat) 2653 else if (w->repeat)
1687 { 2654 {
1688 w->at = w->repeat; 2655 ev_at (w) = w->repeat;
1689 ev_timer_start (EV_A_ w); 2656 ev_timer_start (EV_A_ w);
1690 } 2657 }
2658
2659 EV_FREQUENT_CHECK;
2660}
2661
2662ev_tstamp
2663ev_timer_remaining (EV_P_ ev_timer *w)
2664{
2665 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1691} 2666}
1692 2667
1693#if EV_PERIODIC_ENABLE 2668#if EV_PERIODIC_ENABLE
1694void noinline 2669void noinline
1695ev_periodic_start (EV_P_ ev_periodic *w) 2670ev_periodic_start (EV_P_ ev_periodic *w)
1696{ 2671{
1697 if (expect_false (ev_is_active (w))) 2672 if (expect_false (ev_is_active (w)))
1698 return; 2673 return;
1699 2674
1700 if (w->reschedule_cb) 2675 if (w->reschedule_cb)
1701 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2676 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1702 else if (w->interval) 2677 else if (w->interval)
1703 { 2678 {
1704 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2679 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1705 /* this formula differs from the one in periodic_reify because we do not always round up */ 2680 /* this formula differs from the one in periodic_reify because we do not always round up */
1706 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2681 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1707 } 2682 }
1708 else 2683 else
1709 ((WT)w)->at = w->offset; 2684 ev_at (w) = w->offset;
1710 2685
2686 EV_FREQUENT_CHECK;
2687
2688 ++periodiccnt;
1711 ev_start (EV_A_ (W)w, ++periodiccnt); 2689 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1712 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2690 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1713 periodics [periodiccnt - 1] = w; 2691 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1714 upheap ((WT *)periodics, periodiccnt - 1); 2692 ANHE_at_cache (periodics [ev_active (w)]);
2693 upheap (periodics, ev_active (w));
1715 2694
2695 EV_FREQUENT_CHECK;
2696
1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2697 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1717} 2698}
1718 2699
1719void noinline 2700void noinline
1720ev_periodic_stop (EV_P_ ev_periodic *w) 2701ev_periodic_stop (EV_P_ ev_periodic *w)
1721{ 2702{
1722 clear_pending (EV_A_ (W)w); 2703 clear_pending (EV_A_ (W)w);
1723 if (expect_false (!ev_is_active (w))) 2704 if (expect_false (!ev_is_active (w)))
1724 return; 2705 return;
1725 2706
1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2707 EV_FREQUENT_CHECK;
1727 2708
1728 { 2709 {
1729 int active = ((W)w)->active; 2710 int active = ev_active (w);
1730 2711
2712 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2713
2714 --periodiccnt;
2715
1731 if (expect_true (--active < --periodiccnt)) 2716 if (expect_true (active < periodiccnt + HEAP0))
1732 { 2717 {
1733 periodics [active] = periodics [periodiccnt]; 2718 periodics [active] = periodics [periodiccnt + HEAP0];
1734 adjustheap ((WT *)periodics, periodiccnt, active); 2719 adjustheap (periodics, periodiccnt, active);
1735 } 2720 }
1736 } 2721 }
1737 2722
1738 ev_stop (EV_A_ (W)w); 2723 ev_stop (EV_A_ (W)w);
2724
2725 EV_FREQUENT_CHECK;
1739} 2726}
1740 2727
1741void noinline 2728void noinline
1742ev_periodic_again (EV_P_ ev_periodic *w) 2729ev_periodic_again (EV_P_ ev_periodic *w)
1743{ 2730{
1749 2736
1750#ifndef SA_RESTART 2737#ifndef SA_RESTART
1751# define SA_RESTART 0 2738# define SA_RESTART 0
1752#endif 2739#endif
1753 2740
2741#if EV_SIGNAL_ENABLE
2742
1754void noinline 2743void noinline
1755ev_signal_start (EV_P_ ev_signal *w) 2744ev_signal_start (EV_P_ ev_signal *w)
1756{ 2745{
1757#if EV_MULTIPLICITY
1758 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1759#endif
1760 if (expect_false (ev_is_active (w))) 2746 if (expect_false (ev_is_active (w)))
1761 return; 2747 return;
1762 2748
1763 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2749 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2750
2751#if EV_MULTIPLICITY
2752 assert (("libev: a signal must not be attached to two different loops",
2753 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2754
2755 signals [w->signum - 1].loop = EV_A;
2756#endif
2757
2758 EV_FREQUENT_CHECK;
2759
2760#if EV_USE_SIGNALFD
2761 if (sigfd == -2)
2762 {
2763 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2764 if (sigfd < 0 && errno == EINVAL)
2765 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2766
2767 if (sigfd >= 0)
2768 {
2769 fd_intern (sigfd); /* doing it twice will not hurt */
2770
2771 sigemptyset (&sigfd_set);
2772
2773 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2774 ev_set_priority (&sigfd_w, EV_MAXPRI);
2775 ev_io_start (EV_A_ &sigfd_w);
2776 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2777 }
2778 }
2779
2780 if (sigfd >= 0)
2781 {
2782 /* TODO: check .head */
2783 sigaddset (&sigfd_set, w->signum);
2784 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2785
2786 signalfd (sigfd, &sigfd_set, 0);
2787 }
2788#endif
1764 2789
1765 ev_start (EV_A_ (W)w, 1); 2790 ev_start (EV_A_ (W)w, 1);
1766 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1767 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2791 wlist_add (&signals [w->signum - 1].head, (WL)w);
1768 2792
1769 if (!((WL)w)->next) 2793 if (!((WL)w)->next)
2794# if EV_USE_SIGNALFD
2795 if (sigfd < 0) /*TODO*/
2796# endif
1770 { 2797 {
1771#if _WIN32 2798# ifdef _WIN32
2799 evpipe_init (EV_A);
2800
1772 signal (w->signum, sighandler); 2801 signal (w->signum, ev_sighandler);
1773#else 2802# else
1774 struct sigaction sa; 2803 struct sigaction sa;
2804
2805 evpipe_init (EV_A);
2806
1775 sa.sa_handler = sighandler; 2807 sa.sa_handler = ev_sighandler;
1776 sigfillset (&sa.sa_mask); 2808 sigfillset (&sa.sa_mask);
1777 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2809 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1778 sigaction (w->signum, &sa, 0); 2810 sigaction (w->signum, &sa, 0);
2811
2812 sigemptyset (&sa.sa_mask);
2813 sigaddset (&sa.sa_mask, w->signum);
2814 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1779#endif 2815#endif
1780 } 2816 }
2817
2818 EV_FREQUENT_CHECK;
1781} 2819}
1782 2820
1783void noinline 2821void noinline
1784ev_signal_stop (EV_P_ ev_signal *w) 2822ev_signal_stop (EV_P_ ev_signal *w)
1785{ 2823{
1786 clear_pending (EV_A_ (W)w); 2824 clear_pending (EV_A_ (W)w);
1787 if (expect_false (!ev_is_active (w))) 2825 if (expect_false (!ev_is_active (w)))
1788 return; 2826 return;
1789 2827
2828 EV_FREQUENT_CHECK;
2829
1790 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2830 wlist_del (&signals [w->signum - 1].head, (WL)w);
1791 ev_stop (EV_A_ (W)w); 2831 ev_stop (EV_A_ (W)w);
1792 2832
1793 if (!signals [w->signum - 1].head) 2833 if (!signals [w->signum - 1].head)
2834 {
2835#if EV_MULTIPLICITY
2836 signals [w->signum - 1].loop = 0; /* unattach from signal */
2837#endif
2838#if EV_USE_SIGNALFD
2839 if (sigfd >= 0)
2840 {
2841 sigset_t ss;
2842
2843 sigemptyset (&ss);
2844 sigaddset (&ss, w->signum);
2845 sigdelset (&sigfd_set, w->signum);
2846
2847 signalfd (sigfd, &sigfd_set, 0);
2848 sigprocmask (SIG_UNBLOCK, &ss, 0);
2849 }
2850 else
2851#endif
1794 signal (w->signum, SIG_DFL); 2852 signal (w->signum, SIG_DFL);
2853 }
2854
2855 EV_FREQUENT_CHECK;
1795} 2856}
2857
2858#endif
2859
2860#if EV_CHILD_ENABLE
1796 2861
1797void 2862void
1798ev_child_start (EV_P_ ev_child *w) 2863ev_child_start (EV_P_ ev_child *w)
1799{ 2864{
1800#if EV_MULTIPLICITY 2865#if EV_MULTIPLICITY
1801 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2866 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1802#endif 2867#endif
1803 if (expect_false (ev_is_active (w))) 2868 if (expect_false (ev_is_active (w)))
1804 return; 2869 return;
1805 2870
2871 EV_FREQUENT_CHECK;
2872
1806 ev_start (EV_A_ (W)w, 1); 2873 ev_start (EV_A_ (W)w, 1);
1807 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2874 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2875
2876 EV_FREQUENT_CHECK;
1808} 2877}
1809 2878
1810void 2879void
1811ev_child_stop (EV_P_ ev_child *w) 2880ev_child_stop (EV_P_ ev_child *w)
1812{ 2881{
1813 clear_pending (EV_A_ (W)w); 2882 clear_pending (EV_A_ (W)w);
1814 if (expect_false (!ev_is_active (w))) 2883 if (expect_false (!ev_is_active (w)))
1815 return; 2884 return;
1816 2885
2886 EV_FREQUENT_CHECK;
2887
1817 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2888 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1818 ev_stop (EV_A_ (W)w); 2889 ev_stop (EV_A_ (W)w);
2890
2891 EV_FREQUENT_CHECK;
1819} 2892}
2893
2894#endif
1820 2895
1821#if EV_STAT_ENABLE 2896#if EV_STAT_ENABLE
1822 2897
1823# ifdef _WIN32 2898# ifdef _WIN32
1824# undef lstat 2899# undef lstat
1825# define lstat(a,b) _stati64 (a,b) 2900# define lstat(a,b) _stati64 (a,b)
1826# endif 2901# endif
1827 2902
1828#define DEF_STAT_INTERVAL 5.0074891 2903#define DEF_STAT_INTERVAL 5.0074891
2904#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1829#define MIN_STAT_INTERVAL 0.1074891 2905#define MIN_STAT_INTERVAL 0.1074891
1830 2906
1831static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2907static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1832 2908
1833#if EV_USE_INOTIFY 2909#if EV_USE_INOTIFY
1834# define EV_INOTIFY_BUFSIZE 8192 2910
2911/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2912# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1835 2913
1836static void noinline 2914static void noinline
1837infy_add (EV_P_ ev_stat *w) 2915infy_add (EV_P_ ev_stat *w)
1838{ 2916{
1839 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2917 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1840 2918
1841 if (w->wd < 0) 2919 if (w->wd >= 0)
2920 {
2921 struct statfs sfs;
2922
2923 /* now local changes will be tracked by inotify, but remote changes won't */
2924 /* unless the filesystem is known to be local, we therefore still poll */
2925 /* also do poll on <2.6.25, but with normal frequency */
2926
2927 if (!fs_2625)
2928 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2929 else if (!statfs (w->path, &sfs)
2930 && (sfs.f_type == 0x1373 /* devfs */
2931 || sfs.f_type == 0xEF53 /* ext2/3 */
2932 || sfs.f_type == 0x3153464a /* jfs */
2933 || sfs.f_type == 0x52654973 /* reiser3 */
2934 || sfs.f_type == 0x01021994 /* tempfs */
2935 || sfs.f_type == 0x58465342 /* xfs */))
2936 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2937 else
2938 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1842 { 2939 }
1843 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2940 else
2941 {
2942 /* can't use inotify, continue to stat */
2943 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1844 2944
1845 /* monitor some parent directory for speedup hints */ 2945 /* if path is not there, monitor some parent directory for speedup hints */
2946 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2947 /* but an efficiency issue only */
1846 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2948 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1847 { 2949 {
1848 char path [4096]; 2950 char path [4096];
1849 strcpy (path, w->path); 2951 strcpy (path, w->path);
1850 2952
1853 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2955 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1854 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2956 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1855 2957
1856 char *pend = strrchr (path, '/'); 2958 char *pend = strrchr (path, '/');
1857 2959
1858 if (!pend) 2960 if (!pend || pend == path)
1859 break; /* whoops, no '/', complain to your admin */ 2961 break;
1860 2962
1861 *pend = 0; 2963 *pend = 0;
1862 w->wd = inotify_add_watch (fs_fd, path, mask); 2964 w->wd = inotify_add_watch (fs_fd, path, mask);
1863 } 2965 }
1864 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2966 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1865 } 2967 }
1866 } 2968 }
1867 else
1868 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1869 2969
1870 if (w->wd >= 0) 2970 if (w->wd >= 0)
1871 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2971 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2972
2973 /* now re-arm timer, if required */
2974 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2975 ev_timer_again (EV_A_ &w->timer);
2976 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1872} 2977}
1873 2978
1874static void noinline 2979static void noinline
1875infy_del (EV_P_ ev_stat *w) 2980infy_del (EV_P_ ev_stat *w)
1876{ 2981{
1879 2984
1880 if (wd < 0) 2985 if (wd < 0)
1881 return; 2986 return;
1882 2987
1883 w->wd = -2; 2988 w->wd = -2;
1884 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 2989 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1885 wlist_del (&fs_hash [slot].head, (WL)w); 2990 wlist_del (&fs_hash [slot].head, (WL)w);
1886 2991
1887 /* remove this watcher, if others are watching it, they will rearm */ 2992 /* remove this watcher, if others are watching it, they will rearm */
1888 inotify_rm_watch (fs_fd, wd); 2993 inotify_rm_watch (fs_fd, wd);
1889} 2994}
1890 2995
1891static void noinline 2996static void noinline
1892infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2997infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1893{ 2998{
1894 if (slot < 0) 2999 if (slot < 0)
1895 /* overflow, need to check for all hahs slots */ 3000 /* overflow, need to check for all hash slots */
1896 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3001 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1897 infy_wd (EV_A_ slot, wd, ev); 3002 infy_wd (EV_A_ slot, wd, ev);
1898 else 3003 else
1899 { 3004 {
1900 WL w_; 3005 WL w_;
1901 3006
1902 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3007 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1903 { 3008 {
1904 ev_stat *w = (ev_stat *)w_; 3009 ev_stat *w = (ev_stat *)w_;
1905 w_ = w_->next; /* lets us remove this watcher and all before it */ 3010 w_ = w_->next; /* lets us remove this watcher and all before it */
1906 3011
1907 if (w->wd == wd || wd == -1) 3012 if (w->wd == wd || wd == -1)
1908 { 3013 {
1909 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3014 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1910 { 3015 {
3016 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1911 w->wd = -1; 3017 w->wd = -1;
1912 infy_add (EV_A_ w); /* re-add, no matter what */ 3018 infy_add (EV_A_ w); /* re-add, no matter what */
1913 } 3019 }
1914 3020
1915 stat_timer_cb (EV_A_ &w->timer, 0); 3021 stat_timer_cb (EV_A_ &w->timer, 0);
1920 3026
1921static void 3027static void
1922infy_cb (EV_P_ ev_io *w, int revents) 3028infy_cb (EV_P_ ev_io *w, int revents)
1923{ 3029{
1924 char buf [EV_INOTIFY_BUFSIZE]; 3030 char buf [EV_INOTIFY_BUFSIZE];
1925 struct inotify_event *ev = (struct inotify_event *)buf;
1926 int ofs; 3031 int ofs;
1927 int len = read (fs_fd, buf, sizeof (buf)); 3032 int len = read (fs_fd, buf, sizeof (buf));
1928 3033
1929 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3034 for (ofs = 0; ofs < len; )
3035 {
3036 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1930 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3037 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3038 ofs += sizeof (struct inotify_event) + ev->len;
3039 }
1931} 3040}
1932 3041
1933void inline_size 3042inline_size unsigned int
3043ev_linux_version (void)
3044{
3045 struct utsname buf;
3046 unsigned int v;
3047 int i;
3048 char *p = buf.release;
3049
3050 if (uname (&buf))
3051 return 0;
3052
3053 for (i = 3+1; --i; )
3054 {
3055 unsigned int c = 0;
3056
3057 for (;;)
3058 {
3059 if (*p >= '0' && *p <= '9')
3060 c = c * 10 + *p++ - '0';
3061 else
3062 {
3063 p += *p == '.';
3064 break;
3065 }
3066 }
3067
3068 v = (v << 8) | c;
3069 }
3070
3071 return v;
3072}
3073
3074inline_size void
3075ev_check_2625 (EV_P)
3076{
3077 /* kernels < 2.6.25 are borked
3078 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3079 */
3080 if (ev_linux_version () < 0x020619)
3081 return;
3082
3083 fs_2625 = 1;
3084}
3085
3086inline_size int
3087infy_newfd (void)
3088{
3089#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3090 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3091 if (fd >= 0)
3092 return fd;
3093#endif
3094 return inotify_init ();
3095}
3096
3097inline_size void
1934infy_init (EV_P) 3098infy_init (EV_P)
1935{ 3099{
1936 if (fs_fd != -2) 3100 if (fs_fd != -2)
1937 return; 3101 return;
1938 3102
3103 fs_fd = -1;
3104
3105 ev_check_2625 (EV_A);
3106
1939 fs_fd = inotify_init (); 3107 fs_fd = infy_newfd ();
1940 3108
1941 if (fs_fd >= 0) 3109 if (fs_fd >= 0)
1942 { 3110 {
3111 fd_intern (fs_fd);
1943 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3112 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1944 ev_set_priority (&fs_w, EV_MAXPRI); 3113 ev_set_priority (&fs_w, EV_MAXPRI);
1945 ev_io_start (EV_A_ &fs_w); 3114 ev_io_start (EV_A_ &fs_w);
3115 ev_unref (EV_A);
1946 } 3116 }
1947} 3117}
1948 3118
1949void inline_size 3119inline_size void
1950infy_fork (EV_P) 3120infy_fork (EV_P)
1951{ 3121{
1952 int slot; 3122 int slot;
1953 3123
1954 if (fs_fd < 0) 3124 if (fs_fd < 0)
1955 return; 3125 return;
1956 3126
3127 ev_ref (EV_A);
3128 ev_io_stop (EV_A_ &fs_w);
1957 close (fs_fd); 3129 close (fs_fd);
1958 fs_fd = inotify_init (); 3130 fs_fd = infy_newfd ();
1959 3131
3132 if (fs_fd >= 0)
3133 {
3134 fd_intern (fs_fd);
3135 ev_io_set (&fs_w, fs_fd, EV_READ);
3136 ev_io_start (EV_A_ &fs_w);
3137 ev_unref (EV_A);
3138 }
3139
1960 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3140 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1961 { 3141 {
1962 WL w_ = fs_hash [slot].head; 3142 WL w_ = fs_hash [slot].head;
1963 fs_hash [slot].head = 0; 3143 fs_hash [slot].head = 0;
1964 3144
1965 while (w_) 3145 while (w_)
1970 w->wd = -1; 3150 w->wd = -1;
1971 3151
1972 if (fs_fd >= 0) 3152 if (fs_fd >= 0)
1973 infy_add (EV_A_ w); /* re-add, no matter what */ 3153 infy_add (EV_A_ w); /* re-add, no matter what */
1974 else 3154 else
3155 {
3156 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3157 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1975 ev_timer_start (EV_A_ &w->timer); 3158 ev_timer_again (EV_A_ &w->timer);
3159 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3160 }
1976 } 3161 }
1977
1978 } 3162 }
1979} 3163}
1980 3164
3165#endif
3166
3167#ifdef _WIN32
3168# define EV_LSTAT(p,b) _stati64 (p, b)
3169#else
3170# define EV_LSTAT(p,b) lstat (p, b)
1981#endif 3171#endif
1982 3172
1983void 3173void
1984ev_stat_stat (EV_P_ ev_stat *w) 3174ev_stat_stat (EV_P_ ev_stat *w)
1985{ 3175{
1992static void noinline 3182static void noinline
1993stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3183stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1994{ 3184{
1995 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3185 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1996 3186
1997 /* we copy this here each the time so that */ 3187 ev_statdata prev = w->attr;
1998 /* prev has the old value when the callback gets invoked */
1999 w->prev = w->attr;
2000 ev_stat_stat (EV_A_ w); 3188 ev_stat_stat (EV_A_ w);
2001 3189
2002 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3190 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2003 if ( 3191 if (
2004 w->prev.st_dev != w->attr.st_dev 3192 prev.st_dev != w->attr.st_dev
2005 || w->prev.st_ino != w->attr.st_ino 3193 || prev.st_ino != w->attr.st_ino
2006 || w->prev.st_mode != w->attr.st_mode 3194 || prev.st_mode != w->attr.st_mode
2007 || w->prev.st_nlink != w->attr.st_nlink 3195 || prev.st_nlink != w->attr.st_nlink
2008 || w->prev.st_uid != w->attr.st_uid 3196 || prev.st_uid != w->attr.st_uid
2009 || w->prev.st_gid != w->attr.st_gid 3197 || prev.st_gid != w->attr.st_gid
2010 || w->prev.st_rdev != w->attr.st_rdev 3198 || prev.st_rdev != w->attr.st_rdev
2011 || w->prev.st_size != w->attr.st_size 3199 || prev.st_size != w->attr.st_size
2012 || w->prev.st_atime != w->attr.st_atime 3200 || prev.st_atime != w->attr.st_atime
2013 || w->prev.st_mtime != w->attr.st_mtime 3201 || prev.st_mtime != w->attr.st_mtime
2014 || w->prev.st_ctime != w->attr.st_ctime 3202 || prev.st_ctime != w->attr.st_ctime
2015 ) { 3203 ) {
3204 /* we only update w->prev on actual differences */
3205 /* in case we test more often than invoke the callback, */
3206 /* to ensure that prev is always different to attr */
3207 w->prev = prev;
3208
2016 #if EV_USE_INOTIFY 3209 #if EV_USE_INOTIFY
3210 if (fs_fd >= 0)
3211 {
2017 infy_del (EV_A_ w); 3212 infy_del (EV_A_ w);
2018 infy_add (EV_A_ w); 3213 infy_add (EV_A_ w);
2019 ev_stat_stat (EV_A_ w); /* avoid race... */ 3214 ev_stat_stat (EV_A_ w); /* avoid race... */
3215 }
2020 #endif 3216 #endif
2021 3217
2022 ev_feed_event (EV_A_ w, EV_STAT); 3218 ev_feed_event (EV_A_ w, EV_STAT);
2023 } 3219 }
2024} 3220}
2027ev_stat_start (EV_P_ ev_stat *w) 3223ev_stat_start (EV_P_ ev_stat *w)
2028{ 3224{
2029 if (expect_false (ev_is_active (w))) 3225 if (expect_false (ev_is_active (w)))
2030 return; 3226 return;
2031 3227
2032 /* since we use memcmp, we need to clear any padding data etc. */
2033 memset (&w->prev, 0, sizeof (ev_statdata));
2034 memset (&w->attr, 0, sizeof (ev_statdata));
2035
2036 ev_stat_stat (EV_A_ w); 3228 ev_stat_stat (EV_A_ w);
2037 3229
3230 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2038 if (w->interval < MIN_STAT_INTERVAL) 3231 w->interval = MIN_STAT_INTERVAL;
2039 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2040 3232
2041 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3233 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2042 ev_set_priority (&w->timer, ev_priority (w)); 3234 ev_set_priority (&w->timer, ev_priority (w));
2043 3235
2044#if EV_USE_INOTIFY 3236#if EV_USE_INOTIFY
2045 infy_init (EV_A); 3237 infy_init (EV_A);
2046 3238
2047 if (fs_fd >= 0) 3239 if (fs_fd >= 0)
2048 infy_add (EV_A_ w); 3240 infy_add (EV_A_ w);
2049 else 3241 else
2050#endif 3242#endif
3243 {
2051 ev_timer_start (EV_A_ &w->timer); 3244 ev_timer_again (EV_A_ &w->timer);
3245 ev_unref (EV_A);
3246 }
2052 3247
2053 ev_start (EV_A_ (W)w, 1); 3248 ev_start (EV_A_ (W)w, 1);
3249
3250 EV_FREQUENT_CHECK;
2054} 3251}
2055 3252
2056void 3253void
2057ev_stat_stop (EV_P_ ev_stat *w) 3254ev_stat_stop (EV_P_ ev_stat *w)
2058{ 3255{
2059 clear_pending (EV_A_ (W)w); 3256 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w))) 3257 if (expect_false (!ev_is_active (w)))
2061 return; 3258 return;
2062 3259
3260 EV_FREQUENT_CHECK;
3261
2063#if EV_USE_INOTIFY 3262#if EV_USE_INOTIFY
2064 infy_del (EV_A_ w); 3263 infy_del (EV_A_ w);
2065#endif 3264#endif
3265
3266 if (ev_is_active (&w->timer))
3267 {
3268 ev_ref (EV_A);
2066 ev_timer_stop (EV_A_ &w->timer); 3269 ev_timer_stop (EV_A_ &w->timer);
3270 }
2067 3271
2068 ev_stop (EV_A_ (W)w); 3272 ev_stop (EV_A_ (W)w);
3273
3274 EV_FREQUENT_CHECK;
2069} 3275}
2070#endif 3276#endif
2071 3277
2072#if EV_IDLE_ENABLE 3278#if EV_IDLE_ENABLE
2073void 3279void
2075{ 3281{
2076 if (expect_false (ev_is_active (w))) 3282 if (expect_false (ev_is_active (w)))
2077 return; 3283 return;
2078 3284
2079 pri_adjust (EV_A_ (W)w); 3285 pri_adjust (EV_A_ (W)w);
3286
3287 EV_FREQUENT_CHECK;
2080 3288
2081 { 3289 {
2082 int active = ++idlecnt [ABSPRI (w)]; 3290 int active = ++idlecnt [ABSPRI (w)];
2083 3291
2084 ++idleall; 3292 ++idleall;
2085 ev_start (EV_A_ (W)w, active); 3293 ev_start (EV_A_ (W)w, active);
2086 3294
2087 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3295 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2088 idles [ABSPRI (w)][active - 1] = w; 3296 idles [ABSPRI (w)][active - 1] = w;
2089 } 3297 }
3298
3299 EV_FREQUENT_CHECK;
2090} 3300}
2091 3301
2092void 3302void
2093ev_idle_stop (EV_P_ ev_idle *w) 3303ev_idle_stop (EV_P_ ev_idle *w)
2094{ 3304{
2095 clear_pending (EV_A_ (W)w); 3305 clear_pending (EV_A_ (W)w);
2096 if (expect_false (!ev_is_active (w))) 3306 if (expect_false (!ev_is_active (w)))
2097 return; 3307 return;
2098 3308
3309 EV_FREQUENT_CHECK;
3310
2099 { 3311 {
2100 int active = ((W)w)->active; 3312 int active = ev_active (w);
2101 3313
2102 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3314 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2103 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3315 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2104 3316
2105 ev_stop (EV_A_ (W)w); 3317 ev_stop (EV_A_ (W)w);
2106 --idleall; 3318 --idleall;
2107 } 3319 }
2108}
2109#endif
2110 3320
3321 EV_FREQUENT_CHECK;
3322}
3323#endif
3324
3325#if EV_PREPARE_ENABLE
2111void 3326void
2112ev_prepare_start (EV_P_ ev_prepare *w) 3327ev_prepare_start (EV_P_ ev_prepare *w)
2113{ 3328{
2114 if (expect_false (ev_is_active (w))) 3329 if (expect_false (ev_is_active (w)))
2115 return; 3330 return;
3331
3332 EV_FREQUENT_CHECK;
2116 3333
2117 ev_start (EV_A_ (W)w, ++preparecnt); 3334 ev_start (EV_A_ (W)w, ++preparecnt);
2118 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3335 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2119 prepares [preparecnt - 1] = w; 3336 prepares [preparecnt - 1] = w;
3337
3338 EV_FREQUENT_CHECK;
2120} 3339}
2121 3340
2122void 3341void
2123ev_prepare_stop (EV_P_ ev_prepare *w) 3342ev_prepare_stop (EV_P_ ev_prepare *w)
2124{ 3343{
2125 clear_pending (EV_A_ (W)w); 3344 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w))) 3345 if (expect_false (!ev_is_active (w)))
2127 return; 3346 return;
2128 3347
3348 EV_FREQUENT_CHECK;
3349
2129 { 3350 {
2130 int active = ((W)w)->active; 3351 int active = ev_active (w);
3352
2131 prepares [active - 1] = prepares [--preparecnt]; 3353 prepares [active - 1] = prepares [--preparecnt];
2132 ((W)prepares [active - 1])->active = active; 3354 ev_active (prepares [active - 1]) = active;
2133 } 3355 }
2134 3356
2135 ev_stop (EV_A_ (W)w); 3357 ev_stop (EV_A_ (W)w);
2136}
2137 3358
3359 EV_FREQUENT_CHECK;
3360}
3361#endif
3362
3363#if EV_CHECK_ENABLE
2138void 3364void
2139ev_check_start (EV_P_ ev_check *w) 3365ev_check_start (EV_P_ ev_check *w)
2140{ 3366{
2141 if (expect_false (ev_is_active (w))) 3367 if (expect_false (ev_is_active (w)))
2142 return; 3368 return;
3369
3370 EV_FREQUENT_CHECK;
2143 3371
2144 ev_start (EV_A_ (W)w, ++checkcnt); 3372 ev_start (EV_A_ (W)w, ++checkcnt);
2145 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3373 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2146 checks [checkcnt - 1] = w; 3374 checks [checkcnt - 1] = w;
3375
3376 EV_FREQUENT_CHECK;
2147} 3377}
2148 3378
2149void 3379void
2150ev_check_stop (EV_P_ ev_check *w) 3380ev_check_stop (EV_P_ ev_check *w)
2151{ 3381{
2152 clear_pending (EV_A_ (W)w); 3382 clear_pending (EV_A_ (W)w);
2153 if (expect_false (!ev_is_active (w))) 3383 if (expect_false (!ev_is_active (w)))
2154 return; 3384 return;
2155 3385
3386 EV_FREQUENT_CHECK;
3387
2156 { 3388 {
2157 int active = ((W)w)->active; 3389 int active = ev_active (w);
3390
2158 checks [active - 1] = checks [--checkcnt]; 3391 checks [active - 1] = checks [--checkcnt];
2159 ((W)checks [active - 1])->active = active; 3392 ev_active (checks [active - 1]) = active;
2160 } 3393 }
2161 3394
2162 ev_stop (EV_A_ (W)w); 3395 ev_stop (EV_A_ (W)w);
3396
3397 EV_FREQUENT_CHECK;
2163} 3398}
3399#endif
2164 3400
2165#if EV_EMBED_ENABLE 3401#if EV_EMBED_ENABLE
2166void noinline 3402void noinline
2167ev_embed_sweep (EV_P_ ev_embed *w) 3403ev_embed_sweep (EV_P_ ev_embed *w)
2168{ 3404{
2169 ev_loop (w->loop, EVLOOP_NONBLOCK); 3405 ev_loop (w->other, EVLOOP_NONBLOCK);
2170} 3406}
2171 3407
2172static void 3408static void
2173embed_cb (EV_P_ ev_io *io, int revents) 3409embed_io_cb (EV_P_ ev_io *io, int revents)
2174{ 3410{
2175 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3411 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2176 3412
2177 if (ev_cb (w)) 3413 if (ev_cb (w))
2178 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3414 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2179 else 3415 else
2180 ev_embed_sweep (loop, w); 3416 ev_loop (w->other, EVLOOP_NONBLOCK);
2181} 3417}
3418
3419static void
3420embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3421{
3422 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3423
3424 {
3425 EV_P = w->other;
3426
3427 while (fdchangecnt)
3428 {
3429 fd_reify (EV_A);
3430 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3431 }
3432 }
3433}
3434
3435static void
3436embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3437{
3438 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3439
3440 ev_embed_stop (EV_A_ w);
3441
3442 {
3443 EV_P = w->other;
3444
3445 ev_loop_fork (EV_A);
3446 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3447 }
3448
3449 ev_embed_start (EV_A_ w);
3450}
3451
3452#if 0
3453static void
3454embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3455{
3456 ev_idle_stop (EV_A_ idle);
3457}
3458#endif
2182 3459
2183void 3460void
2184ev_embed_start (EV_P_ ev_embed *w) 3461ev_embed_start (EV_P_ ev_embed *w)
2185{ 3462{
2186 if (expect_false (ev_is_active (w))) 3463 if (expect_false (ev_is_active (w)))
2187 return; 3464 return;
2188 3465
2189 { 3466 {
2190 struct ev_loop *loop = w->loop; 3467 EV_P = w->other;
2191 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3468 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2192 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3469 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2193 } 3470 }
3471
3472 EV_FREQUENT_CHECK;
2194 3473
2195 ev_set_priority (&w->io, ev_priority (w)); 3474 ev_set_priority (&w->io, ev_priority (w));
2196 ev_io_start (EV_A_ &w->io); 3475 ev_io_start (EV_A_ &w->io);
2197 3476
3477 ev_prepare_init (&w->prepare, embed_prepare_cb);
3478 ev_set_priority (&w->prepare, EV_MINPRI);
3479 ev_prepare_start (EV_A_ &w->prepare);
3480
3481 ev_fork_init (&w->fork, embed_fork_cb);
3482 ev_fork_start (EV_A_ &w->fork);
3483
3484 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3485
2198 ev_start (EV_A_ (W)w, 1); 3486 ev_start (EV_A_ (W)w, 1);
3487
3488 EV_FREQUENT_CHECK;
2199} 3489}
2200 3490
2201void 3491void
2202ev_embed_stop (EV_P_ ev_embed *w) 3492ev_embed_stop (EV_P_ ev_embed *w)
2203{ 3493{
2204 clear_pending (EV_A_ (W)w); 3494 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w))) 3495 if (expect_false (!ev_is_active (w)))
2206 return; 3496 return;
2207 3497
3498 EV_FREQUENT_CHECK;
3499
2208 ev_io_stop (EV_A_ &w->io); 3500 ev_io_stop (EV_A_ &w->io);
3501 ev_prepare_stop (EV_A_ &w->prepare);
3502 ev_fork_stop (EV_A_ &w->fork);
2209 3503
2210 ev_stop (EV_A_ (W)w); 3504 ev_stop (EV_A_ (W)w);
3505
3506 EV_FREQUENT_CHECK;
2211} 3507}
2212#endif 3508#endif
2213 3509
2214#if EV_FORK_ENABLE 3510#if EV_FORK_ENABLE
2215void 3511void
2216ev_fork_start (EV_P_ ev_fork *w) 3512ev_fork_start (EV_P_ ev_fork *w)
2217{ 3513{
2218 if (expect_false (ev_is_active (w))) 3514 if (expect_false (ev_is_active (w)))
2219 return; 3515 return;
3516
3517 EV_FREQUENT_CHECK;
2220 3518
2221 ev_start (EV_A_ (W)w, ++forkcnt); 3519 ev_start (EV_A_ (W)w, ++forkcnt);
2222 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3520 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2223 forks [forkcnt - 1] = w; 3521 forks [forkcnt - 1] = w;
3522
3523 EV_FREQUENT_CHECK;
2224} 3524}
2225 3525
2226void 3526void
2227ev_fork_stop (EV_P_ ev_fork *w) 3527ev_fork_stop (EV_P_ ev_fork *w)
2228{ 3528{
2229 clear_pending (EV_A_ (W)w); 3529 clear_pending (EV_A_ (W)w);
2230 if (expect_false (!ev_is_active (w))) 3530 if (expect_false (!ev_is_active (w)))
2231 return; 3531 return;
2232 3532
3533 EV_FREQUENT_CHECK;
3534
2233 { 3535 {
2234 int active = ((W)w)->active; 3536 int active = ev_active (w);
3537
2235 forks [active - 1] = forks [--forkcnt]; 3538 forks [active - 1] = forks [--forkcnt];
2236 ((W)forks [active - 1])->active = active; 3539 ev_active (forks [active - 1]) = active;
2237 } 3540 }
2238 3541
2239 ev_stop (EV_A_ (W)w); 3542 ev_stop (EV_A_ (W)w);
3543
3544 EV_FREQUENT_CHECK;
3545}
3546#endif
3547
3548#if EV_ASYNC_ENABLE
3549void
3550ev_async_start (EV_P_ ev_async *w)
3551{
3552 if (expect_false (ev_is_active (w)))
3553 return;
3554
3555 evpipe_init (EV_A);
3556
3557 EV_FREQUENT_CHECK;
3558
3559 ev_start (EV_A_ (W)w, ++asynccnt);
3560 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3561 asyncs [asynccnt - 1] = w;
3562
3563 EV_FREQUENT_CHECK;
3564}
3565
3566void
3567ev_async_stop (EV_P_ ev_async *w)
3568{
3569 clear_pending (EV_A_ (W)w);
3570 if (expect_false (!ev_is_active (w)))
3571 return;
3572
3573 EV_FREQUENT_CHECK;
3574
3575 {
3576 int active = ev_active (w);
3577
3578 asyncs [active - 1] = asyncs [--asynccnt];
3579 ev_active (asyncs [active - 1]) = active;
3580 }
3581
3582 ev_stop (EV_A_ (W)w);
3583
3584 EV_FREQUENT_CHECK;
3585}
3586
3587void
3588ev_async_send (EV_P_ ev_async *w)
3589{
3590 w->sent = 1;
3591 evpipe_write (EV_A_ &async_pending);
2240} 3592}
2241#endif 3593#endif
2242 3594
2243/*****************************************************************************/ 3595/*****************************************************************************/
2244 3596
2254once_cb (EV_P_ struct ev_once *once, int revents) 3606once_cb (EV_P_ struct ev_once *once, int revents)
2255{ 3607{
2256 void (*cb)(int revents, void *arg) = once->cb; 3608 void (*cb)(int revents, void *arg) = once->cb;
2257 void *arg = once->arg; 3609 void *arg = once->arg;
2258 3610
2259 ev_io_stop (EV_A_ &once->io); 3611 ev_io_stop (EV_A_ &once->io);
2260 ev_timer_stop (EV_A_ &once->to); 3612 ev_timer_stop (EV_A_ &once->to);
2261 ev_free (once); 3613 ev_free (once);
2262 3614
2263 cb (revents, arg); 3615 cb (revents, arg);
2264} 3616}
2265 3617
2266static void 3618static void
2267once_cb_io (EV_P_ ev_io *w, int revents) 3619once_cb_io (EV_P_ ev_io *w, int revents)
2268{ 3620{
2269 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3621 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3622
3623 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2270} 3624}
2271 3625
2272static void 3626static void
2273once_cb_to (EV_P_ ev_timer *w, int revents) 3627once_cb_to (EV_P_ ev_timer *w, int revents)
2274{ 3628{
2275 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3629 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3630
3631 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2276} 3632}
2277 3633
2278void 3634void
2279ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3635ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2280{ 3636{
2302 ev_timer_set (&once->to, timeout, 0.); 3658 ev_timer_set (&once->to, timeout, 0.);
2303 ev_timer_start (EV_A_ &once->to); 3659 ev_timer_start (EV_A_ &once->to);
2304 } 3660 }
2305} 3661}
2306 3662
3663/*****************************************************************************/
3664
3665#if EV_WALK_ENABLE
3666void
3667ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3668{
3669 int i, j;
3670 ev_watcher_list *wl, *wn;
3671
3672 if (types & (EV_IO | EV_EMBED))
3673 for (i = 0; i < anfdmax; ++i)
3674 for (wl = anfds [i].head; wl; )
3675 {
3676 wn = wl->next;
3677
3678#if EV_EMBED_ENABLE
3679 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3680 {
3681 if (types & EV_EMBED)
3682 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3683 }
3684 else
3685#endif
3686#if EV_USE_INOTIFY
3687 if (ev_cb ((ev_io *)wl) == infy_cb)
3688 ;
3689 else
3690#endif
3691 if ((ev_io *)wl != &pipe_w)
3692 if (types & EV_IO)
3693 cb (EV_A_ EV_IO, wl);
3694
3695 wl = wn;
3696 }
3697
3698 if (types & (EV_TIMER | EV_STAT))
3699 for (i = timercnt + HEAP0; i-- > HEAP0; )
3700#if EV_STAT_ENABLE
3701 /*TODO: timer is not always active*/
3702 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3703 {
3704 if (types & EV_STAT)
3705 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3706 }
3707 else
3708#endif
3709 if (types & EV_TIMER)
3710 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3711
3712#if EV_PERIODIC_ENABLE
3713 if (types & EV_PERIODIC)
3714 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3715 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3716#endif
3717
3718#if EV_IDLE_ENABLE
3719 if (types & EV_IDLE)
3720 for (j = NUMPRI; i--; )
3721 for (i = idlecnt [j]; i--; )
3722 cb (EV_A_ EV_IDLE, idles [j][i]);
3723#endif
3724
3725#if EV_FORK_ENABLE
3726 if (types & EV_FORK)
3727 for (i = forkcnt; i--; )
3728 if (ev_cb (forks [i]) != embed_fork_cb)
3729 cb (EV_A_ EV_FORK, forks [i]);
3730#endif
3731
3732#if EV_ASYNC_ENABLE
3733 if (types & EV_ASYNC)
3734 for (i = asynccnt; i--; )
3735 cb (EV_A_ EV_ASYNC, asyncs [i]);
3736#endif
3737
3738#if EV_PREPARE_ENABLE
3739 if (types & EV_PREPARE)
3740 for (i = preparecnt; i--; )
3741# if EV_EMBED_ENABLE
3742 if (ev_cb (prepares [i]) != embed_prepare_cb)
3743# endif
3744 cb (EV_A_ EV_PREPARE, prepares [i]);
3745#endif
3746
3747#if EV_CHECK_ENABLE
3748 if (types & EV_CHECK)
3749 for (i = checkcnt; i--; )
3750 cb (EV_A_ EV_CHECK, checks [i]);
3751#endif
3752
3753#if EV_SIGNAL_ENABLE
3754 if (types & EV_SIGNAL)
3755 for (i = 0; i < EV_NSIG - 1; ++i)
3756 for (wl = signals [i].head; wl; )
3757 {
3758 wn = wl->next;
3759 cb (EV_A_ EV_SIGNAL, wl);
3760 wl = wn;
3761 }
3762#endif
3763
3764#if EV_CHILD_ENABLE
3765 if (types & EV_CHILD)
3766 for (i = (EV_PID_HASHSIZE); i--; )
3767 for (wl = childs [i]; wl; )
3768 {
3769 wn = wl->next;
3770 cb (EV_A_ EV_CHILD, wl);
3771 wl = wn;
3772 }
3773#endif
3774/* EV_STAT 0x00001000 /* stat data changed */
3775/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3776}
3777#endif
3778
3779#if EV_MULTIPLICITY
3780 #include "ev_wrap.h"
3781#endif
3782
2307#ifdef __cplusplus 3783#ifdef __cplusplus
2308} 3784}
2309#endif 3785#endif
2310 3786

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines