ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.176 by root, Tue Dec 11 04:31:55 2007 UTC vs.
Revision 1.368 by root, Mon Jan 17 12:11:11 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48# if HAVE_CLOCK_SYSCALL
49# ifndef EV_USE_CLOCK_SYSCALL
50# define EV_USE_CLOCK_SYSCALL 1
51# ifndef EV_USE_REALTIME
52# define EV_USE_REALTIME 0
53# endif
54# ifndef EV_USE_MONOTONIC
55# define EV_USE_MONOTONIC 1
56# endif
57# endif
58# elif !defined(EV_USE_CLOCK_SYSCALL)
59# define EV_USE_CLOCK_SYSCALL 0
60# endif
61
43# if HAVE_CLOCK_GETTIME 62# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 63# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 64# define EV_USE_MONOTONIC 1
46# endif 65# endif
47# ifndef EV_USE_REALTIME 66# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 67# define EV_USE_REALTIME 0
49# endif 68# endif
50# else 69# else
51# ifndef EV_USE_MONOTONIC 70# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 71# define EV_USE_MONOTONIC 0
53# endif 72# endif
54# ifndef EV_USE_REALTIME 73# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 74# define EV_USE_REALTIME 0
56# endif 75# endif
57# endif 76# endif
58 77
78# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 79# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 80# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 81# endif
82# else
83# undef EV_USE_NANOSLEEP
84# define EV_USE_NANOSLEEP 0
65# endif 85# endif
66 86
87# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 88# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 89# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 90# endif
91# else
92# undef EV_USE_SELECT
93# define EV_USE_SELECT 0
94# endif
95
96# if HAVE_POLL && HAVE_POLL_H
97# ifndef EV_USE_POLL
98# define EV_USE_POLL EV_FEATURE_BACKENDS
99# endif
100# else
101# undef EV_USE_POLL
102# define EV_USE_POLL 0
73# endif 103# endif
74 104
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 105# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 106# ifndef EV_USE_EPOLL
78# else 107# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 108# endif
109# else
110# undef EV_USE_EPOLL
111# define EV_USE_EPOLL 0
81# endif 112# endif
82 113
114# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 115# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 117# endif
118# else
119# undef EV_USE_KQUEUE
120# define EV_USE_KQUEUE 0
89# endif 121# endif
90 122
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 124# ifndef EV_USE_PORT
94# else 125# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 126# endif
127# else
128# undef EV_USE_PORT
129# define EV_USE_PORT 0
97# endif 130# endif
98 131
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 132# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 133# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 135# endif
136# else
137# undef EV_USE_INOTIFY
138# define EV_USE_INOTIFY 0
105# endif 139# endif
106 140
141# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
142# ifndef EV_USE_SIGNALFD
143# define EV_USE_SIGNALFD EV_FEATURE_OS
144# endif
145# else
146# undef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD 0
148# endif
149
150# if HAVE_EVENTFD
151# ifndef EV_USE_EVENTFD
152# define EV_USE_EVENTFD EV_FEATURE_OS
153# endif
154# else
155# undef EV_USE_EVENTFD
156# define EV_USE_EVENTFD 0
157# endif
158
107#endif 159#endif
108 160
109#include <math.h> 161#include <math.h>
110#include <stdlib.h> 162#include <stdlib.h>
163#include <string.h>
111#include <fcntl.h> 164#include <fcntl.h>
112#include <stddef.h> 165#include <stddef.h>
113 166
114#include <stdio.h> 167#include <stdio.h>
115 168
116#include <assert.h> 169#include <assert.h>
117#include <errno.h> 170#include <errno.h>
118#include <sys/types.h> 171#include <sys/types.h>
119#include <time.h> 172#include <time.h>
173#include <limits.h>
120 174
121#include <signal.h> 175#include <signal.h>
122 176
123#ifdef EV_H 177#ifdef EV_H
124# include EV_H 178# include EV_H
125#else 179#else
126# include "ev.h" 180# include "ev.h"
127#endif 181#endif
182
183EV_CPP(extern "C" {)
128 184
129#ifndef _WIN32 185#ifndef _WIN32
130# include <sys/time.h> 186# include <sys/time.h>
131# include <sys/wait.h> 187# include <sys/wait.h>
132# include <unistd.h> 188# include <unistd.h>
133#else 189#else
190# include <io.h>
134# define WIN32_LEAN_AND_MEAN 191# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 192# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 193# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 194# define EV_SELECT_IS_WINSOCKET 1
138# endif 195# endif
196# undef EV_AVOID_STDIO
197#endif
198
199/* OS X, in its infinite idiocy, actually HARDCODES
200 * a limit of 1024 into their select. Where people have brains,
201 * OS X engineers apparently have a vacuum. Or maybe they were
202 * ordered to have a vacuum, or they do anything for money.
203 * This might help. Or not.
204 */
205#define _DARWIN_UNLIMITED_SELECT 1
206
207/* this block tries to deduce configuration from header-defined symbols and defaults */
208
209/* try to deduce the maximum number of signals on this platform */
210#if defined (EV_NSIG)
211/* use what's provided */
212#elif defined (NSIG)
213# define EV_NSIG (NSIG)
214#elif defined(_NSIG)
215# define EV_NSIG (_NSIG)
216#elif defined (SIGMAX)
217# define EV_NSIG (SIGMAX+1)
218#elif defined (SIG_MAX)
219# define EV_NSIG (SIG_MAX+1)
220#elif defined (_SIG_MAX)
221# define EV_NSIG (_SIG_MAX+1)
222#elif defined (MAXSIG)
223# define EV_NSIG (MAXSIG+1)
224#elif defined (MAX_SIG)
225# define EV_NSIG (MAX_SIG+1)
226#elif defined (SIGARRAYSIZE)
227# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
228#elif defined (_sys_nsig)
229# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
230#else
231# error "unable to find value for NSIG, please report"
232/* to make it compile regardless, just remove the above line, */
233/* but consider reporting it, too! :) */
234# define EV_NSIG 65
235#endif
236
237#ifndef EV_USE_CLOCK_SYSCALL
238# if __linux && __GLIBC__ >= 2
239# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
240# else
241# define EV_USE_CLOCK_SYSCALL 0
139#endif 242# endif
140 243#endif
141/**/
142 244
143#ifndef EV_USE_MONOTONIC 245#ifndef EV_USE_MONOTONIC
246# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
247# define EV_USE_MONOTONIC EV_FEATURE_OS
248# else
144# define EV_USE_MONOTONIC 0 249# define EV_USE_MONOTONIC 0
250# endif
145#endif 251#endif
146 252
147#ifndef EV_USE_REALTIME 253#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 254# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
255#endif
256
257#ifndef EV_USE_NANOSLEEP
258# if _POSIX_C_SOURCE >= 199309L
259# define EV_USE_NANOSLEEP EV_FEATURE_OS
260# else
261# define EV_USE_NANOSLEEP 0
262# endif
149#endif 263#endif
150 264
151#ifndef EV_USE_SELECT 265#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 266# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 267#endif
154 268
155#ifndef EV_USE_POLL 269#ifndef EV_USE_POLL
156# ifdef _WIN32 270# ifdef _WIN32
157# define EV_USE_POLL 0 271# define EV_USE_POLL 0
158# else 272# else
159# define EV_USE_POLL 1 273# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 274# endif
161#endif 275#endif
162 276
163#ifndef EV_USE_EPOLL 277#ifndef EV_USE_EPOLL
278# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
279# define EV_USE_EPOLL EV_FEATURE_BACKENDS
280# else
164# define EV_USE_EPOLL 0 281# define EV_USE_EPOLL 0
282# endif
165#endif 283#endif
166 284
167#ifndef EV_USE_KQUEUE 285#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 286# define EV_USE_KQUEUE 0
169#endif 287#endif
171#ifndef EV_USE_PORT 289#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 290# define EV_USE_PORT 0
173#endif 291#endif
174 292
175#ifndef EV_USE_INOTIFY 293#ifndef EV_USE_INOTIFY
294# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
295# define EV_USE_INOTIFY EV_FEATURE_OS
296# else
176# define EV_USE_INOTIFY 0 297# define EV_USE_INOTIFY 0
298# endif
177#endif 299#endif
178 300
179#ifndef EV_PID_HASHSIZE 301#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 302# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 303#endif
304
305#ifndef EV_INOTIFY_HASHSIZE
306# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
307#endif
308
309#ifndef EV_USE_EVENTFD
310# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
311# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 312# else
183# define EV_PID_HASHSIZE 16 313# define EV_USE_EVENTFD 0
184# endif 314# endif
185#endif 315#endif
186 316
187#ifndef EV_INOTIFY_HASHSIZE 317#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 318# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 319# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 320# else
191# define EV_INOTIFY_HASHSIZE 16 321# define EV_USE_SIGNALFD 0
192# endif 322# endif
193#endif 323#endif
194 324
195/**/ 325#if 0 /* debugging */
326# define EV_VERIFY 3
327# define EV_USE_4HEAP 1
328# define EV_HEAP_CACHE_AT 1
329#endif
330
331#ifndef EV_VERIFY
332# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
333#endif
334
335#ifndef EV_USE_4HEAP
336# define EV_USE_4HEAP EV_FEATURE_DATA
337#endif
338
339#ifndef EV_HEAP_CACHE_AT
340# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
341#endif
342
343/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
344/* which makes programs even slower. might work on other unices, too. */
345#if EV_USE_CLOCK_SYSCALL
346# include <syscall.h>
347# ifdef SYS_clock_gettime
348# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
349# undef EV_USE_MONOTONIC
350# define EV_USE_MONOTONIC 1
351# else
352# undef EV_USE_CLOCK_SYSCALL
353# define EV_USE_CLOCK_SYSCALL 0
354# endif
355#endif
356
357/* this block fixes any misconfiguration where we know we run into trouble otherwise */
358
359#ifdef _AIX
360/* AIX has a completely broken poll.h header */
361# undef EV_USE_POLL
362# define EV_USE_POLL 0
363#endif
196 364
197#ifndef CLOCK_MONOTONIC 365#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 366# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 367# define EV_USE_MONOTONIC 0
200#endif 368#endif
202#ifndef CLOCK_REALTIME 370#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 371# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 372# define EV_USE_REALTIME 0
205#endif 373#endif
206 374
375#if !EV_STAT_ENABLE
376# undef EV_USE_INOTIFY
377# define EV_USE_INOTIFY 0
378#endif
379
380#if !EV_USE_NANOSLEEP
381# ifndef _WIN32
382# include <sys/select.h>
383# endif
384#endif
385
386#if EV_USE_INOTIFY
387# include <sys/statfs.h>
388# include <sys/inotify.h>
389/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
390# ifndef IN_DONT_FOLLOW
391# undef EV_USE_INOTIFY
392# define EV_USE_INOTIFY 0
393# endif
394#endif
395
207#if EV_SELECT_IS_WINSOCKET 396#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 397# include <winsock.h>
209#endif 398#endif
210 399
211#if !EV_STAT_ENABLE 400#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 401/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
402# include <stdint.h>
403# ifndef EFD_NONBLOCK
404# define EFD_NONBLOCK O_NONBLOCK
213#endif 405# endif
406# ifndef EFD_CLOEXEC
407# ifdef O_CLOEXEC
408# define EFD_CLOEXEC O_CLOEXEC
409# else
410# define EFD_CLOEXEC 02000000
411# endif
412# endif
413EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
414#endif
214 415
215#if EV_USE_INOTIFY 416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
216# include <sys/inotify.h> 418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
430
431struct signalfd_siginfo
432{
433 uint32_t ssi_signo;
434 char pad[128 - sizeof (uint32_t)];
435};
217#endif 436#endif
218 437
219/**/ 438/**/
439
440#if EV_VERIFY >= 3
441# define EV_FREQUENT_CHECK ev_verify (EV_A)
442#else
443# define EV_FREQUENT_CHECK do { } while (0)
444#endif
220 445
221/* 446/*
222 * This is used to avoid floating point rounding problems. 447 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 448 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 449 * to ensure progress, time-wise, even when rounding
225 * errors are against us. 450 * errors are against us.
226 * This value is good at least till the year 4000 451 * This value is good at least till the year 4000.
227 * and intervals up to 20 years.
228 * Better solutions welcome. 452 * Better solutions welcome.
229 */ 453 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 454#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231 455
232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 456#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 457#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
235 458
459#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
460#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
461
236#if __GNUC__ >= 3 462#if __GNUC__ >= 4
237# define expect(expr,value) __builtin_expect ((expr),(value)) 463# define expect(expr,value) __builtin_expect ((expr),(value))
238# define noinline __attribute__ ((noinline)) 464# define noinline __attribute__ ((noinline))
239#else 465#else
240# define expect(expr,value) (expr) 466# define expect(expr,value) (expr)
241# define noinline 467# define noinline
242# if __STDC_VERSION__ < 199901L 468# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
243# define inline 469# define inline
244# endif 470# endif
245#endif 471#endif
246 472
247#define expect_false(expr) expect ((expr) != 0, 0) 473#define expect_false(expr) expect ((expr) != 0, 0)
248#define expect_true(expr) expect ((expr) != 0, 1) 474#define expect_true(expr) expect ((expr) != 0, 1)
249#define inline_size static inline 475#define inline_size static inline
250 476
251#if EV_MINIMAL 477#if EV_FEATURE_CODE
478# define inline_speed static inline
479#else
252# define inline_speed static noinline 480# define inline_speed static noinline
481#endif
482
483#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
484
485#if EV_MINPRI == EV_MAXPRI
486# define ABSPRI(w) (((W)w), 0)
253#else 487#else
254# define inline_speed static inline
255#endif
256
257#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
258#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 488# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
489#endif
259 490
260#define EMPTY /* required for microsofts broken pseudo-c compiler */ 491#define EMPTY /* required for microsofts broken pseudo-c compiler */
261#define EMPTY2(a,b) /* used to suppress some warnings */ 492#define EMPTY2(a,b) /* used to suppress some warnings */
262 493
263typedef ev_watcher *W; 494typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 495typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 496typedef ev_watcher_time *WT;
266 497
498#define ev_active(w) ((W)(w))->active
499#define ev_at(w) ((WT)(w))->at
500
501#if EV_USE_REALTIME
502/* sig_atomic_t is used to avoid per-thread variables or locking but still */
503/* giving it a reasonably high chance of working on typical architectures */
504static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
505#endif
506
507#if EV_USE_MONOTONIC
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 508static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
509#endif
510
511#ifndef EV_FD_TO_WIN32_HANDLE
512# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
513#endif
514#ifndef EV_WIN32_HANDLE_TO_FD
515# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
516#endif
517#ifndef EV_WIN32_CLOSE_FD
518# define EV_WIN32_CLOSE_FD(fd) close (fd)
519#endif
268 520
269#ifdef _WIN32 521#ifdef _WIN32
270# include "ev_win32.c" 522# include "ev_win32.c"
271#endif 523#endif
272 524
273/*****************************************************************************/ 525/*****************************************************************************/
274 526
527#ifdef __linux
528# include <sys/utsname.h>
529#endif
530
531static unsigned int noinline
532ev_linux_version (void)
533{
534#ifdef __linux
535 unsigned int v = 0;
536 struct utsname buf;
537 int i;
538 char *p = buf.release;
539
540 if (uname (&buf))
541 return 0;
542
543 for (i = 3+1; --i; )
544 {
545 unsigned int c = 0;
546
547 for (;;)
548 {
549 if (*p >= '0' && *p <= '9')
550 c = c * 10 + *p++ - '0';
551 else
552 {
553 p += *p == '.';
554 break;
555 }
556 }
557
558 v = (v << 8) | c;
559 }
560
561 return v;
562#else
563 return 0;
564#endif
565}
566
567/*****************************************************************************/
568
569#if EV_AVOID_STDIO
570static void noinline
571ev_printerr (const char *msg)
572{
573 write (STDERR_FILENO, msg, strlen (msg));
574}
575#endif
576
275static void (*syserr_cb)(const char *msg); 577static void (*syserr_cb)(const char *msg);
276 578
277void 579void
278ev_set_syserr_cb (void (*cb)(const char *msg)) 580ev_set_syserr_cb (void (*cb)(const char *msg))
279{ 581{
280 syserr_cb = cb; 582 syserr_cb = cb;
281} 583}
282 584
283static void noinline 585static void noinline
284syserr (const char *msg) 586ev_syserr (const char *msg)
285{ 587{
286 if (!msg) 588 if (!msg)
287 msg = "(libev) system error"; 589 msg = "(libev) system error";
288 590
289 if (syserr_cb) 591 if (syserr_cb)
290 syserr_cb (msg); 592 syserr_cb (msg);
291 else 593 else
292 { 594 {
595#if EV_AVOID_STDIO
596 ev_printerr (msg);
597 ev_printerr (": ");
598 ev_printerr (strerror (errno));
599 ev_printerr ("\n");
600#else
293 perror (msg); 601 perror (msg);
602#endif
294 abort (); 603 abort ();
295 } 604 }
296} 605}
297 606
607static void *
608ev_realloc_emul (void *ptr, long size)
609{
610#if __GLIBC__
611 return realloc (ptr, size);
612#else
613 /* some systems, notably openbsd and darwin, fail to properly
614 * implement realloc (x, 0) (as required by both ansi c-89 and
615 * the single unix specification, so work around them here.
616 */
617
618 if (size)
619 return realloc (ptr, size);
620
621 free (ptr);
622 return 0;
623#endif
624}
625
298static void *(*alloc)(void *ptr, long size); 626static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
299 627
300void 628void
301ev_set_allocator (void *(*cb)(void *ptr, long size)) 629ev_set_allocator (void *(*cb)(void *ptr, long size))
302{ 630{
303 alloc = cb; 631 alloc = cb;
304} 632}
305 633
306inline_speed void * 634inline_speed void *
307ev_realloc (void *ptr, long size) 635ev_realloc (void *ptr, long size)
308{ 636{
309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 637 ptr = alloc (ptr, size);
310 638
311 if (!ptr && size) 639 if (!ptr && size)
312 { 640 {
641#if EV_AVOID_STDIO
642 ev_printerr ("(libev) memory allocation failed, aborting.\n");
643#else
313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 644 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
645#endif
314 abort (); 646 abort ();
315 } 647 }
316 648
317 return ptr; 649 return ptr;
318} 650}
320#define ev_malloc(size) ev_realloc (0, (size)) 652#define ev_malloc(size) ev_realloc (0, (size))
321#define ev_free(ptr) ev_realloc ((ptr), 0) 653#define ev_free(ptr) ev_realloc ((ptr), 0)
322 654
323/*****************************************************************************/ 655/*****************************************************************************/
324 656
657/* set in reify when reification needed */
658#define EV_ANFD_REIFY 1
659
660/* file descriptor info structure */
325typedef struct 661typedef struct
326{ 662{
327 WL head; 663 WL head;
328 unsigned char events; 664 unsigned char events; /* the events watched for */
665 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
666 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
329 unsigned char reify; 667 unsigned char unused;
668#if EV_USE_EPOLL
669 unsigned int egen; /* generation counter to counter epoll bugs */
670#endif
330#if EV_SELECT_IS_WINSOCKET 671#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
331 SOCKET handle; 672 SOCKET handle;
332#endif 673#endif
674#if EV_USE_IOCP
675 OVERLAPPED or, ow;
676#endif
333} ANFD; 677} ANFD;
334 678
679/* stores the pending event set for a given watcher */
335typedef struct 680typedef struct
336{ 681{
337 W w; 682 W w;
338 int events; 683 int events; /* the pending event set for the given watcher */
339} ANPENDING; 684} ANPENDING;
340 685
341#if EV_USE_INOTIFY 686#if EV_USE_INOTIFY
687/* hash table entry per inotify-id */
342typedef struct 688typedef struct
343{ 689{
344 WL head; 690 WL head;
345} ANFS; 691} ANFS;
692#endif
693
694/* Heap Entry */
695#if EV_HEAP_CACHE_AT
696 /* a heap element */
697 typedef struct {
698 ev_tstamp at;
699 WT w;
700 } ANHE;
701
702 #define ANHE_w(he) (he).w /* access watcher, read-write */
703 #define ANHE_at(he) (he).at /* access cached at, read-only */
704 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
705#else
706 /* a heap element */
707 typedef WT ANHE;
708
709 #define ANHE_w(he) (he)
710 #define ANHE_at(he) (he)->at
711 #define ANHE_at_cache(he)
346#endif 712#endif
347 713
348#if EV_MULTIPLICITY 714#if EV_MULTIPLICITY
349 715
350 struct ev_loop 716 struct ev_loop
369 735
370 static int ev_default_loop_ptr; 736 static int ev_default_loop_ptr;
371 737
372#endif 738#endif
373 739
740#if EV_FEATURE_API
741# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
742# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
743# define EV_INVOKE_PENDING invoke_cb (EV_A)
744#else
745# define EV_RELEASE_CB (void)0
746# define EV_ACQUIRE_CB (void)0
747# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
748#endif
749
750#define EVBREAK_RECURSE 0x80
751
374/*****************************************************************************/ 752/*****************************************************************************/
375 753
754#ifndef EV_HAVE_EV_TIME
376ev_tstamp 755ev_tstamp
377ev_time (void) 756ev_time (void)
378{ 757{
379#if EV_USE_REALTIME 758#if EV_USE_REALTIME
759 if (expect_true (have_realtime))
760 {
380 struct timespec ts; 761 struct timespec ts;
381 clock_gettime (CLOCK_REALTIME, &ts); 762 clock_gettime (CLOCK_REALTIME, &ts);
382 return ts.tv_sec + ts.tv_nsec * 1e-9; 763 return ts.tv_sec + ts.tv_nsec * 1e-9;
383#else 764 }
765#endif
766
384 struct timeval tv; 767 struct timeval tv;
385 gettimeofday (&tv, 0); 768 gettimeofday (&tv, 0);
386 return tv.tv_sec + tv.tv_usec * 1e-6; 769 return tv.tv_sec + tv.tv_usec * 1e-6;
387#endif
388} 770}
771#endif
389 772
390ev_tstamp inline_size 773inline_size ev_tstamp
391get_clock (void) 774get_clock (void)
392{ 775{
393#if EV_USE_MONOTONIC 776#if EV_USE_MONOTONIC
394 if (expect_true (have_monotonic)) 777 if (expect_true (have_monotonic))
395 { 778 {
408{ 791{
409 return ev_rt_now; 792 return ev_rt_now;
410} 793}
411#endif 794#endif
412 795
413int inline_size 796void
797ev_sleep (ev_tstamp delay)
798{
799 if (delay > 0.)
800 {
801#if EV_USE_NANOSLEEP
802 struct timespec ts;
803
804 EV_TS_SET (ts, delay);
805 nanosleep (&ts, 0);
806#elif defined(_WIN32)
807 Sleep ((unsigned long)(delay * 1e3));
808#else
809 struct timeval tv;
810
811 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
812 /* something not guaranteed by newer posix versions, but guaranteed */
813 /* by older ones */
814 EV_TV_SET (tv, delay);
815 select (0, 0, 0, 0, &tv);
816#endif
817 }
818}
819
820inline_speed int
821ev_timeout_to_ms (ev_tstamp timeout)
822{
823 int ms = timeout * 1000. + .999999;
824
825 return expect_true (ms) ? ms : timeout < 1e-6 ? 0 : 1;
826}
827
828/*****************************************************************************/
829
830#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
831
832/* find a suitable new size for the given array, */
833/* hopefully by rounding to a nice-to-malloc size */
834inline_size int
414array_nextsize (int elem, int cur, int cnt) 835array_nextsize (int elem, int cur, int cnt)
415{ 836{
416 int ncur = cur + 1; 837 int ncur = cur + 1;
417 838
418 do 839 do
419 ncur <<= 1; 840 ncur <<= 1;
420 while (cnt > ncur); 841 while (cnt > ncur);
421 842
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 843 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096) 844 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
424 { 845 {
425 ncur *= elem; 846 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 847 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
427 ncur = ncur - sizeof (void *) * 4; 848 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem; 849 ncur /= elem;
429 } 850 }
430 851
431 return ncur; 852 return ncur;
435array_realloc (int elem, void *base, int *cur, int cnt) 856array_realloc (int elem, void *base, int *cur, int cnt)
436{ 857{
437 *cur = array_nextsize (elem, *cur, cnt); 858 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur); 859 return ev_realloc (base, elem * *cur);
439} 860}
861
862#define array_init_zero(base,count) \
863 memset ((void *)(base), 0, sizeof (*(base)) * (count))
440 864
441#define array_needsize(type,base,cur,cnt,init) \ 865#define array_needsize(type,base,cur,cnt,init) \
442 if (expect_false ((cnt) > (cur))) \ 866 if (expect_false ((cnt) > (cur))) \
443 { \ 867 { \
444 int ocur_ = (cur); \ 868 int ocur_ = (cur); \
456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 880 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
457 } 881 }
458#endif 882#endif
459 883
460#define array_free(stem, idx) \ 884#define array_free(stem, idx) \
461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 885 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
462 886
463/*****************************************************************************/ 887/*****************************************************************************/
888
889/* dummy callback for pending events */
890static void noinline
891pendingcb (EV_P_ ev_prepare *w, int revents)
892{
893}
464 894
465void noinline 895void noinline
466ev_feed_event (EV_P_ void *w, int revents) 896ev_feed_event (EV_P_ void *w, int revents)
467{ 897{
468 W w_ = (W)w; 898 W w_ = (W)w;
477 pendings [pri][w_->pending - 1].w = w_; 907 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents; 908 pendings [pri][w_->pending - 1].events = revents;
479 } 909 }
480} 910}
481 911
482void inline_size 912inline_speed void
913feed_reverse (EV_P_ W w)
914{
915 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
916 rfeeds [rfeedcnt++] = w;
917}
918
919inline_size void
920feed_reverse_done (EV_P_ int revents)
921{
922 do
923 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
924 while (rfeedcnt);
925}
926
927inline_speed void
483queue_events (EV_P_ W *events, int eventcnt, int type) 928queue_events (EV_P_ W *events, int eventcnt, int type)
484{ 929{
485 int i; 930 int i;
486 931
487 for (i = 0; i < eventcnt; ++i) 932 for (i = 0; i < eventcnt; ++i)
488 ev_feed_event (EV_A_ events [i], type); 933 ev_feed_event (EV_A_ events [i], type);
489} 934}
490 935
491/*****************************************************************************/ 936/*****************************************************************************/
492 937
493void inline_size 938inline_speed void
494anfds_init (ANFD *base, int count)
495{
496 while (count--)
497 {
498 base->head = 0;
499 base->events = EV_NONE;
500 base->reify = 0;
501
502 ++base;
503 }
504}
505
506void inline_speed
507fd_event (EV_P_ int fd, int revents) 939fd_event_nocheck (EV_P_ int fd, int revents)
508{ 940{
509 ANFD *anfd = anfds + fd; 941 ANFD *anfd = anfds + fd;
510 ev_io *w; 942 ev_io *w;
511 943
512 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 944 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
516 if (ev) 948 if (ev)
517 ev_feed_event (EV_A_ (W)w, ev); 949 ev_feed_event (EV_A_ (W)w, ev);
518 } 950 }
519} 951}
520 952
953/* do not submit kernel events for fds that have reify set */
954/* because that means they changed while we were polling for new events */
955inline_speed void
956fd_event (EV_P_ int fd, int revents)
957{
958 ANFD *anfd = anfds + fd;
959
960 if (expect_true (!anfd->reify))
961 fd_event_nocheck (EV_A_ fd, revents);
962}
963
521void 964void
522ev_feed_fd_event (EV_P_ int fd, int revents) 965ev_feed_fd_event (EV_P_ int fd, int revents)
523{ 966{
524 if (fd >= 0 && fd < anfdmax) 967 if (fd >= 0 && fd < anfdmax)
525 fd_event (EV_A_ fd, revents); 968 fd_event_nocheck (EV_A_ fd, revents);
526} 969}
527 970
528void inline_size 971/* make sure the external fd watch events are in-sync */
972/* with the kernel/libev internal state */
973inline_size void
529fd_reify (EV_P) 974fd_reify (EV_P)
530{ 975{
531 int i; 976 int i;
532 977
533 for (i = 0; i < fdchangecnt; ++i) 978 for (i = 0; i < fdchangecnt; ++i)
534 { 979 {
535 int fd = fdchanges [i]; 980 int fd = fdchanges [i];
536 ANFD *anfd = anfds + fd; 981 ANFD *anfd = anfds + fd;
537 ev_io *w; 982 ev_io *w;
538 983
539 int events = 0; 984 unsigned char o_events = anfd->events;
985 unsigned char o_reify = anfd->reify;
540 986
541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 987 anfd->reify = 0;
542 events |= w->events;
543 988
544#if EV_SELECT_IS_WINSOCKET 989#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
545 if (events) 990 if (o_reify & EV__IOFDSET)
546 { 991 {
547 unsigned long argp; 992 unsigned long arg;
548 anfd->handle = _get_osfhandle (fd); 993 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 994 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
995 printf ("oi %d %x\n", fd, anfd->handle);//D
550 } 996 }
551#endif 997#endif
552 998
553 anfd->reify = 0; 999 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
1000 {
1001 anfd->events = 0;
554 1002
1003 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1004 anfd->events |= (unsigned char)w->events;
1005
1006 if (o_events != anfd->events)
1007 o_reify = EV__IOFDSET; /* actually |= */
1008 }
1009
1010 if (o_reify & EV__IOFDSET)
555 backend_modify (EV_A_ fd, anfd->events, events); 1011 backend_modify (EV_A_ fd, o_events, anfd->events);
556 anfd->events = events;
557 } 1012 }
558 1013
559 fdchangecnt = 0; 1014 fdchangecnt = 0;
560} 1015}
561 1016
562void inline_size 1017/* something about the given fd changed */
1018inline_size void
563fd_change (EV_P_ int fd) 1019fd_change (EV_P_ int fd, int flags)
564{ 1020{
565 if (expect_false (anfds [fd].reify)) 1021 unsigned char reify = anfds [fd].reify;
566 return;
567
568 anfds [fd].reify = 1; 1022 anfds [fd].reify |= flags;
569 1023
1024 if (expect_true (!reify))
1025 {
570 ++fdchangecnt; 1026 ++fdchangecnt;
571 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1027 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
572 fdchanges [fdchangecnt - 1] = fd; 1028 fdchanges [fdchangecnt - 1] = fd;
1029 }
573} 1030}
574 1031
575void inline_speed 1032/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1033inline_speed void
576fd_kill (EV_P_ int fd) 1034fd_kill (EV_P_ int fd)
577{ 1035{
578 ev_io *w; 1036 ev_io *w;
579 1037
580 while ((w = (ev_io *)anfds [fd].head)) 1038 while ((w = (ev_io *)anfds [fd].head))
582 ev_io_stop (EV_A_ w); 1040 ev_io_stop (EV_A_ w);
583 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1041 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
584 } 1042 }
585} 1043}
586 1044
587int inline_size 1045/* check whether the given fd is actually valid, for error recovery */
1046inline_size int
588fd_valid (int fd) 1047fd_valid (int fd)
589{ 1048{
590#ifdef _WIN32 1049#ifdef _WIN32
591 return _get_osfhandle (fd) != -1; 1050 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
592#else 1051#else
593 return fcntl (fd, F_GETFD) != -1; 1052 return fcntl (fd, F_GETFD) != -1;
594#endif 1053#endif
595} 1054}
596 1055
600{ 1059{
601 int fd; 1060 int fd;
602 1061
603 for (fd = 0; fd < anfdmax; ++fd) 1062 for (fd = 0; fd < anfdmax; ++fd)
604 if (anfds [fd].events) 1063 if (anfds [fd].events)
605 if (!fd_valid (fd) == -1 && errno == EBADF) 1064 if (!fd_valid (fd) && errno == EBADF)
606 fd_kill (EV_A_ fd); 1065 fd_kill (EV_A_ fd);
607} 1066}
608 1067
609/* called on ENOMEM in select/poll to kill some fds and retry */ 1068/* called on ENOMEM in select/poll to kill some fds and retry */
610static void noinline 1069static void noinline
614 1073
615 for (fd = anfdmax; fd--; ) 1074 for (fd = anfdmax; fd--; )
616 if (anfds [fd].events) 1075 if (anfds [fd].events)
617 { 1076 {
618 fd_kill (EV_A_ fd); 1077 fd_kill (EV_A_ fd);
619 return; 1078 break;
620 } 1079 }
621} 1080}
622 1081
623/* usually called after fork if backend needs to re-arm all fds from scratch */ 1082/* usually called after fork if backend needs to re-arm all fds from scratch */
624static void noinline 1083static void noinline
628 1087
629 for (fd = 0; fd < anfdmax; ++fd) 1088 for (fd = 0; fd < anfdmax; ++fd)
630 if (anfds [fd].events) 1089 if (anfds [fd].events)
631 { 1090 {
632 anfds [fd].events = 0; 1091 anfds [fd].events = 0;
633 fd_change (EV_A_ fd); 1092 anfds [fd].emask = 0;
1093 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
634 } 1094 }
635} 1095}
636 1096
637/*****************************************************************************/ 1097/* used to prepare libev internal fd's */
638 1098/* this is not fork-safe */
639void inline_speed 1099inline_speed void
640upheap (WT *heap, int k)
641{
642 WT w = heap [k];
643
644 while (k && heap [k >> 1]->at > w->at)
645 {
646 heap [k] = heap [k >> 1];
647 ((W)heap [k])->active = k + 1;
648 k >>= 1;
649 }
650
651 heap [k] = w;
652 ((W)heap [k])->active = k + 1;
653
654}
655
656void inline_speed
657downheap (WT *heap, int N, int k)
658{
659 WT w = heap [k];
660
661 while (k < (N >> 1))
662 {
663 int j = k << 1;
664
665 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
666 ++j;
667
668 if (w->at <= heap [j]->at)
669 break;
670
671 heap [k] = heap [j];
672 ((W)heap [k])->active = k + 1;
673 k = j;
674 }
675
676 heap [k] = w;
677 ((W)heap [k])->active = k + 1;
678}
679
680void inline_size
681adjustheap (WT *heap, int N, int k)
682{
683 upheap (heap, k);
684 downheap (heap, N, k);
685}
686
687/*****************************************************************************/
688
689typedef struct
690{
691 WL head;
692 sig_atomic_t volatile gotsig;
693} ANSIG;
694
695static ANSIG *signals;
696static int signalmax;
697
698static int sigpipe [2];
699static sig_atomic_t volatile gotsig;
700static ev_io sigev;
701
702void inline_size
703signals_init (ANSIG *base, int count)
704{
705 while (count--)
706 {
707 base->head = 0;
708 base->gotsig = 0;
709
710 ++base;
711 }
712}
713
714static void
715sighandler (int signum)
716{
717#if _WIN32
718 signal (signum, sighandler);
719#endif
720
721 signals [signum - 1].gotsig = 1;
722
723 if (!gotsig)
724 {
725 int old_errno = errno;
726 gotsig = 1;
727 write (sigpipe [1], &signum, 1);
728 errno = old_errno;
729 }
730}
731
732void noinline
733ev_feed_signal_event (EV_P_ int signum)
734{
735 WL w;
736
737#if EV_MULTIPLICITY
738 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
739#endif
740
741 --signum;
742
743 if (signum < 0 || signum >= signalmax)
744 return;
745
746 signals [signum].gotsig = 0;
747
748 for (w = signals [signum].head; w; w = w->next)
749 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
750}
751
752static void
753sigcb (EV_P_ ev_io *iow, int revents)
754{
755 int signum;
756
757 read (sigpipe [0], &revents, 1);
758 gotsig = 0;
759
760 for (signum = signalmax; signum--; )
761 if (signals [signum].gotsig)
762 ev_feed_signal_event (EV_A_ signum + 1);
763}
764
765void inline_speed
766fd_intern (int fd) 1100fd_intern (int fd)
767{ 1101{
768#ifdef _WIN32 1102#ifdef _WIN32
769 int arg = 1; 1103 unsigned long arg = 1;
770 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1104 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
771#else 1105#else
772 fcntl (fd, F_SETFD, FD_CLOEXEC); 1106 fcntl (fd, F_SETFD, FD_CLOEXEC);
773 fcntl (fd, F_SETFL, O_NONBLOCK); 1107 fcntl (fd, F_SETFL, O_NONBLOCK);
774#endif 1108#endif
775} 1109}
776 1110
1111/*****************************************************************************/
1112
1113/*
1114 * the heap functions want a real array index. array index 0 is guaranteed to not
1115 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1116 * the branching factor of the d-tree.
1117 */
1118
1119/*
1120 * at the moment we allow libev the luxury of two heaps,
1121 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1122 * which is more cache-efficient.
1123 * the difference is about 5% with 50000+ watchers.
1124 */
1125#if EV_USE_4HEAP
1126
1127#define DHEAP 4
1128#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1129#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1130#define UPHEAP_DONE(p,k) ((p) == (k))
1131
1132/* away from the root */
1133inline_speed void
1134downheap (ANHE *heap, int N, int k)
1135{
1136 ANHE he = heap [k];
1137 ANHE *E = heap + N + HEAP0;
1138
1139 for (;;)
1140 {
1141 ev_tstamp minat;
1142 ANHE *minpos;
1143 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1144
1145 /* find minimum child */
1146 if (expect_true (pos + DHEAP - 1 < E))
1147 {
1148 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1149 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1150 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1151 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1152 }
1153 else if (pos < E)
1154 {
1155 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1156 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1157 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1158 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1159 }
1160 else
1161 break;
1162
1163 if (ANHE_at (he) <= minat)
1164 break;
1165
1166 heap [k] = *minpos;
1167 ev_active (ANHE_w (*minpos)) = k;
1168
1169 k = minpos - heap;
1170 }
1171
1172 heap [k] = he;
1173 ev_active (ANHE_w (he)) = k;
1174}
1175
1176#else /* 4HEAP */
1177
1178#define HEAP0 1
1179#define HPARENT(k) ((k) >> 1)
1180#define UPHEAP_DONE(p,k) (!(p))
1181
1182/* away from the root */
1183inline_speed void
1184downheap (ANHE *heap, int N, int k)
1185{
1186 ANHE he = heap [k];
1187
1188 for (;;)
1189 {
1190 int c = k << 1;
1191
1192 if (c >= N + HEAP0)
1193 break;
1194
1195 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1196 ? 1 : 0;
1197
1198 if (ANHE_at (he) <= ANHE_at (heap [c]))
1199 break;
1200
1201 heap [k] = heap [c];
1202 ev_active (ANHE_w (heap [k])) = k;
1203
1204 k = c;
1205 }
1206
1207 heap [k] = he;
1208 ev_active (ANHE_w (he)) = k;
1209}
1210#endif
1211
1212/* towards the root */
1213inline_speed void
1214upheap (ANHE *heap, int k)
1215{
1216 ANHE he = heap [k];
1217
1218 for (;;)
1219 {
1220 int p = HPARENT (k);
1221
1222 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1223 break;
1224
1225 heap [k] = heap [p];
1226 ev_active (ANHE_w (heap [k])) = k;
1227 k = p;
1228 }
1229
1230 heap [k] = he;
1231 ev_active (ANHE_w (he)) = k;
1232}
1233
1234/* move an element suitably so it is in a correct place */
1235inline_size void
1236adjustheap (ANHE *heap, int N, int k)
1237{
1238 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1239 upheap (heap, k);
1240 else
1241 downheap (heap, N, k);
1242}
1243
1244/* rebuild the heap: this function is used only once and executed rarely */
1245inline_size void
1246reheap (ANHE *heap, int N)
1247{
1248 int i;
1249
1250 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1251 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1252 for (i = 0; i < N; ++i)
1253 upheap (heap, i + HEAP0);
1254}
1255
1256/*****************************************************************************/
1257
1258/* associate signal watchers to a signal signal */
1259typedef struct
1260{
1261 EV_ATOMIC_T pending;
1262#if EV_MULTIPLICITY
1263 EV_P;
1264#endif
1265 WL head;
1266} ANSIG;
1267
1268static ANSIG signals [EV_NSIG - 1];
1269
1270/*****************************************************************************/
1271
1272#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1273
777static void noinline 1274static void noinline
778siginit (EV_P) 1275evpipe_init (EV_P)
779{ 1276{
1277 if (!ev_is_active (&pipe_w))
1278 {
1279# if EV_USE_EVENTFD
1280 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1281 if (evfd < 0 && errno == EINVAL)
1282 evfd = eventfd (0, 0);
1283
1284 if (evfd >= 0)
1285 {
1286 evpipe [0] = -1;
1287 fd_intern (evfd); /* doing it twice doesn't hurt */
1288 ev_io_set (&pipe_w, evfd, EV_READ);
1289 }
1290 else
1291# endif
1292 {
1293 while (pipe (evpipe))
1294 ev_syserr ("(libev) error creating signal/async pipe");
1295
780 fd_intern (sigpipe [0]); 1296 fd_intern (evpipe [0]);
781 fd_intern (sigpipe [1]); 1297 fd_intern (evpipe [1]);
1298 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1299 }
782 1300
783 ev_io_set (&sigev, sigpipe [0], EV_READ);
784 ev_io_start (EV_A_ &sigev); 1301 ev_io_start (EV_A_ &pipe_w);
785 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1302 ev_unref (EV_A); /* watcher should not keep loop alive */
1303 }
1304}
1305
1306inline_size void
1307evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1308{
1309 if (!*flag)
1310 {
1311 int old_errno = errno; /* save errno because write might clobber it */
1312 char dummy;
1313
1314 *flag = 1;
1315
1316#if EV_USE_EVENTFD
1317 if (evfd >= 0)
1318 {
1319 uint64_t counter = 1;
1320 write (evfd, &counter, sizeof (uint64_t));
1321 }
1322 else
1323#endif
1324 /* win32 people keep sending patches that change this write() to send() */
1325 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1326 /* so when you think this write should be a send instead, please find out */
1327 /* where your send() is from - it's definitely not the microsoft send, and */
1328 /* tell me. thank you. */
1329 write (evpipe [1], &dummy, 1);
1330
1331 errno = old_errno;
1332 }
1333}
1334
1335/* called whenever the libev signal pipe */
1336/* got some events (signal, async) */
1337static void
1338pipecb (EV_P_ ev_io *iow, int revents)
1339{
1340 int i;
1341
1342#if EV_USE_EVENTFD
1343 if (evfd >= 0)
1344 {
1345 uint64_t counter;
1346 read (evfd, &counter, sizeof (uint64_t));
1347 }
1348 else
1349#endif
1350 {
1351 char dummy;
1352 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1353 read (evpipe [0], &dummy, 1);
1354 }
1355
1356 if (sig_pending)
1357 {
1358 sig_pending = 0;
1359
1360 for (i = EV_NSIG - 1; i--; )
1361 if (expect_false (signals [i].pending))
1362 ev_feed_signal_event (EV_A_ i + 1);
1363 }
1364
1365#if EV_ASYNC_ENABLE
1366 if (async_pending)
1367 {
1368 async_pending = 0;
1369
1370 for (i = asynccnt; i--; )
1371 if (asyncs [i]->sent)
1372 {
1373 asyncs [i]->sent = 0;
1374 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1375 }
1376 }
1377#endif
786} 1378}
787 1379
788/*****************************************************************************/ 1380/*****************************************************************************/
789 1381
790static ev_child *childs [EV_PID_HASHSIZE]; 1382void
1383ev_feed_signal (int signum)
1384{
1385#if EV_MULTIPLICITY
1386 EV_P = signals [signum - 1].loop;
791 1387
1388 if (!EV_A)
1389 return;
1390#endif
1391
1392 signals [signum - 1].pending = 1;
1393 evpipe_write (EV_A_ &sig_pending);
1394}
1395
1396static void
1397ev_sighandler (int signum)
1398{
792#ifndef _WIN32 1399#ifdef _WIN32
1400 signal (signum, ev_sighandler);
1401#endif
1402
1403 ev_feed_signal (signum);
1404}
1405
1406void noinline
1407ev_feed_signal_event (EV_P_ int signum)
1408{
1409 WL w;
1410
1411 if (expect_false (signum <= 0 || signum > EV_NSIG))
1412 return;
1413
1414 --signum;
1415
1416#if EV_MULTIPLICITY
1417 /* it is permissible to try to feed a signal to the wrong loop */
1418 /* or, likely more useful, feeding a signal nobody is waiting for */
1419
1420 if (expect_false (signals [signum].loop != EV_A))
1421 return;
1422#endif
1423
1424 signals [signum].pending = 0;
1425
1426 for (w = signals [signum].head; w; w = w->next)
1427 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1428}
1429
1430#if EV_USE_SIGNALFD
1431static void
1432sigfdcb (EV_P_ ev_io *iow, int revents)
1433{
1434 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1435
1436 for (;;)
1437 {
1438 ssize_t res = read (sigfd, si, sizeof (si));
1439
1440 /* not ISO-C, as res might be -1, but works with SuS */
1441 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1442 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1443
1444 if (res < (ssize_t)sizeof (si))
1445 break;
1446 }
1447}
1448#endif
1449
1450#endif
1451
1452/*****************************************************************************/
1453
1454#if EV_CHILD_ENABLE
1455static WL childs [EV_PID_HASHSIZE];
793 1456
794static ev_signal childev; 1457static ev_signal childev;
795 1458
796void inline_speed 1459#ifndef WIFCONTINUED
1460# define WIFCONTINUED(status) 0
1461#endif
1462
1463/* handle a single child status event */
1464inline_speed void
797child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1465child_reap (EV_P_ int chain, int pid, int status)
798{ 1466{
799 ev_child *w; 1467 ev_child *w;
1468 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
800 1469
801 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1470 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1471 {
802 if (w->pid == pid || !w->pid) 1472 if ((w->pid == pid || !w->pid)
1473 && (!traced || (w->flags & 1)))
803 { 1474 {
804 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1475 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
805 w->rpid = pid; 1476 w->rpid = pid;
806 w->rstatus = status; 1477 w->rstatus = status;
807 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1478 ev_feed_event (EV_A_ (W)w, EV_CHILD);
808 } 1479 }
1480 }
809} 1481}
810 1482
811#ifndef WCONTINUED 1483#ifndef WCONTINUED
812# define WCONTINUED 0 1484# define WCONTINUED 0
813#endif 1485#endif
814 1486
1487/* called on sigchld etc., calls waitpid */
815static void 1488static void
816childcb (EV_P_ ev_signal *sw, int revents) 1489childcb (EV_P_ ev_signal *sw, int revents)
817{ 1490{
818 int pid, status; 1491 int pid, status;
819 1492
822 if (!WCONTINUED 1495 if (!WCONTINUED
823 || errno != EINVAL 1496 || errno != EINVAL
824 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1497 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
825 return; 1498 return;
826 1499
827 /* make sure we are called again until all childs have been reaped */ 1500 /* make sure we are called again until all children have been reaped */
828 /* we need to do it this way so that the callback gets called before we continue */ 1501 /* we need to do it this way so that the callback gets called before we continue */
829 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1502 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
830 1503
831 child_reap (EV_A_ sw, pid, pid, status); 1504 child_reap (EV_A_ pid, pid, status);
832 if (EV_PID_HASHSIZE > 1) 1505 if ((EV_PID_HASHSIZE) > 1)
833 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1506 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
834} 1507}
835 1508
836#endif 1509#endif
837 1510
838/*****************************************************************************/ 1511/*****************************************************************************/
839 1512
1513#if EV_USE_IOCP
1514# include "ev_iocp.c"
1515#endif
840#if EV_USE_PORT 1516#if EV_USE_PORT
841# include "ev_port.c" 1517# include "ev_port.c"
842#endif 1518#endif
843#if EV_USE_KQUEUE 1519#if EV_USE_KQUEUE
844# include "ev_kqueue.c" 1520# include "ev_kqueue.c"
900 /* kqueue is borked on everything but netbsd apparently */ 1576 /* kqueue is borked on everything but netbsd apparently */
901 /* it usually doesn't work correctly on anything but sockets and pipes */ 1577 /* it usually doesn't work correctly on anything but sockets and pipes */
902 flags &= ~EVBACKEND_KQUEUE; 1578 flags &= ~EVBACKEND_KQUEUE;
903#endif 1579#endif
904#ifdef __APPLE__ 1580#ifdef __APPLE__
905 // flags &= ~EVBACKEND_KQUEUE; for documentation 1581 /* only select works correctly on that "unix-certified" platform */
906 flags &= ~EVBACKEND_POLL; 1582 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1583 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1584#endif
1585#ifdef __FreeBSD__
1586 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
907#endif 1587#endif
908 1588
909 return flags; 1589 return flags;
910} 1590}
911 1591
912unsigned int 1592unsigned int
913ev_embeddable_backends (void) 1593ev_embeddable_backends (void)
914{ 1594{
915 return EVBACKEND_EPOLL 1595 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
916 | EVBACKEND_KQUEUE 1596
917 | EVBACKEND_PORT; 1597 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1598 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1599 flags &= ~EVBACKEND_EPOLL;
1600
1601 return flags;
918} 1602}
919 1603
920unsigned int 1604unsigned int
921ev_backend (EV_P) 1605ev_backend (EV_P)
922{ 1606{
923 return backend; 1607 return backend;
924} 1608}
925 1609
1610#if EV_FEATURE_API
926unsigned int 1611unsigned int
927ev_loop_count (EV_P) 1612ev_iteration (EV_P)
928{ 1613{
929 return loop_count; 1614 return loop_count;
930} 1615}
931 1616
1617unsigned int
1618ev_depth (EV_P)
1619{
1620 return loop_depth;
1621}
1622
1623void
1624ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1625{
1626 io_blocktime = interval;
1627}
1628
1629void
1630ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1631{
1632 timeout_blocktime = interval;
1633}
1634
1635void
1636ev_set_userdata (EV_P_ void *data)
1637{
1638 userdata = data;
1639}
1640
1641void *
1642ev_userdata (EV_P)
1643{
1644 return userdata;
1645}
1646
1647void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1648{
1649 invoke_cb = invoke_pending_cb;
1650}
1651
1652void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1653{
1654 release_cb = release;
1655 acquire_cb = acquire;
1656}
1657#endif
1658
1659/* initialise a loop structure, must be zero-initialised */
932static void noinline 1660static void noinline
933loop_init (EV_P_ unsigned int flags) 1661loop_init (EV_P_ unsigned int flags)
934{ 1662{
935 if (!backend) 1663 if (!backend)
936 { 1664 {
1665 origflags = flags;
1666
1667#if EV_USE_REALTIME
1668 if (!have_realtime)
1669 {
1670 struct timespec ts;
1671
1672 if (!clock_gettime (CLOCK_REALTIME, &ts))
1673 have_realtime = 1;
1674 }
1675#endif
1676
937#if EV_USE_MONOTONIC 1677#if EV_USE_MONOTONIC
1678 if (!have_monotonic)
938 { 1679 {
939 struct timespec ts; 1680 struct timespec ts;
1681
940 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1682 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
941 have_monotonic = 1; 1683 have_monotonic = 1;
942 } 1684 }
943#endif 1685#endif
944
945 ev_rt_now = ev_time ();
946 mn_now = get_clock ();
947 now_floor = mn_now;
948 rtmn_diff = ev_rt_now - mn_now;
949 1686
950 /* pid check not overridable via env */ 1687 /* pid check not overridable via env */
951#ifndef _WIN32 1688#ifndef _WIN32
952 if (flags & EVFLAG_FORKCHECK) 1689 if (flags & EVFLAG_FORKCHECK)
953 curpid = getpid (); 1690 curpid = getpid ();
956 if (!(flags & EVFLAG_NOENV) 1693 if (!(flags & EVFLAG_NOENV)
957 && !enable_secure () 1694 && !enable_secure ()
958 && getenv ("LIBEV_FLAGS")) 1695 && getenv ("LIBEV_FLAGS"))
959 flags = atoi (getenv ("LIBEV_FLAGS")); 1696 flags = atoi (getenv ("LIBEV_FLAGS"));
960 1697
961 if (!(flags & 0x0000ffffUL)) 1698 ev_rt_now = ev_time ();
1699 mn_now = get_clock ();
1700 now_floor = mn_now;
1701 rtmn_diff = ev_rt_now - mn_now;
1702#if EV_FEATURE_API
1703 invoke_cb = ev_invoke_pending;
1704#endif
1705
1706 io_blocktime = 0.;
1707 timeout_blocktime = 0.;
1708 backend = 0;
1709 backend_fd = -1;
1710 sig_pending = 0;
1711#if EV_ASYNC_ENABLE
1712 async_pending = 0;
1713#endif
1714#if EV_USE_INOTIFY
1715 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1716#endif
1717#if EV_USE_SIGNALFD
1718 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1719#endif
1720
1721 if (!(flags & EVBACKEND_MASK))
962 flags |= ev_recommended_backends (); 1722 flags |= ev_recommended_backends ();
963 1723
964 backend = 0;
965 backend_fd = -1;
966#if EV_USE_INOTIFY 1724#if EV_USE_IOCP
967 fs_fd = -2; 1725 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
968#endif 1726#endif
969
970#if EV_USE_PORT 1727#if EV_USE_PORT
971 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1728 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
972#endif 1729#endif
973#if EV_USE_KQUEUE 1730#if EV_USE_KQUEUE
974 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1731 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
981#endif 1738#endif
982#if EV_USE_SELECT 1739#if EV_USE_SELECT
983 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1740 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
984#endif 1741#endif
985 1742
1743 ev_prepare_init (&pending_w, pendingcb);
1744
1745#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
986 ev_init (&sigev, sigcb); 1746 ev_init (&pipe_w, pipecb);
987 ev_set_priority (&sigev, EV_MAXPRI); 1747 ev_set_priority (&pipe_w, EV_MAXPRI);
1748#endif
988 } 1749 }
989} 1750}
990 1751
991static void noinline 1752/* free up a loop structure */
1753void
992loop_destroy (EV_P) 1754ev_loop_destroy (EV_P)
993{ 1755{
994 int i; 1756 int i;
1757
1758#if EV_MULTIPLICITY
1759 /* mimic free (0) */
1760 if (!EV_A)
1761 return;
1762#endif
1763
1764#if EV_CLEANUP_ENABLE
1765 /* queue cleanup watchers (and execute them) */
1766 if (expect_false (cleanupcnt))
1767 {
1768 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
1769 EV_INVOKE_PENDING;
1770 }
1771#endif
1772
1773#if EV_CHILD_ENABLE
1774 if (ev_is_active (&childev))
1775 {
1776 ev_ref (EV_A); /* child watcher */
1777 ev_signal_stop (EV_A_ &childev);
1778 }
1779#endif
1780
1781 if (ev_is_active (&pipe_w))
1782 {
1783 /*ev_ref (EV_A);*/
1784 /*ev_io_stop (EV_A_ &pipe_w);*/
1785
1786#if EV_USE_EVENTFD
1787 if (evfd >= 0)
1788 close (evfd);
1789#endif
1790
1791 if (evpipe [0] >= 0)
1792 {
1793 EV_WIN32_CLOSE_FD (evpipe [0]);
1794 EV_WIN32_CLOSE_FD (evpipe [1]);
1795 }
1796 }
1797
1798#if EV_USE_SIGNALFD
1799 if (ev_is_active (&sigfd_w))
1800 close (sigfd);
1801#endif
995 1802
996#if EV_USE_INOTIFY 1803#if EV_USE_INOTIFY
997 if (fs_fd >= 0) 1804 if (fs_fd >= 0)
998 close (fs_fd); 1805 close (fs_fd);
999#endif 1806#endif
1000 1807
1001 if (backend_fd >= 0) 1808 if (backend_fd >= 0)
1002 close (backend_fd); 1809 close (backend_fd);
1003 1810
1811#if EV_USE_IOCP
1812 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
1813#endif
1004#if EV_USE_PORT 1814#if EV_USE_PORT
1005 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1815 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1006#endif 1816#endif
1007#if EV_USE_KQUEUE 1817#if EV_USE_KQUEUE
1008 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1818 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1023#if EV_IDLE_ENABLE 1833#if EV_IDLE_ENABLE
1024 array_free (idle, [i]); 1834 array_free (idle, [i]);
1025#endif 1835#endif
1026 } 1836 }
1027 1837
1838 ev_free (anfds); anfds = 0; anfdmax = 0;
1839
1028 /* have to use the microsoft-never-gets-it-right macro */ 1840 /* have to use the microsoft-never-gets-it-right macro */
1841 array_free (rfeed, EMPTY);
1029 array_free (fdchange, EMPTY); 1842 array_free (fdchange, EMPTY);
1030 array_free (timer, EMPTY); 1843 array_free (timer, EMPTY);
1031#if EV_PERIODIC_ENABLE 1844#if EV_PERIODIC_ENABLE
1032 array_free (periodic, EMPTY); 1845 array_free (periodic, EMPTY);
1033#endif 1846#endif
1847#if EV_FORK_ENABLE
1848 array_free (fork, EMPTY);
1849#endif
1850#if EV_CLEANUP_ENABLE
1851 array_free (cleanup, EMPTY);
1852#endif
1034 array_free (prepare, EMPTY); 1853 array_free (prepare, EMPTY);
1035 array_free (check, EMPTY); 1854 array_free (check, EMPTY);
1855#if EV_ASYNC_ENABLE
1856 array_free (async, EMPTY);
1857#endif
1036 1858
1037 backend = 0; 1859 backend = 0;
1038}
1039 1860
1861#if EV_MULTIPLICITY
1862 if (ev_is_default_loop (EV_A))
1863#endif
1864 ev_default_loop_ptr = 0;
1865#if EV_MULTIPLICITY
1866 else
1867 ev_free (EV_A);
1868#endif
1869}
1870
1871#if EV_USE_INOTIFY
1040void inline_size infy_fork (EV_P); 1872inline_size void infy_fork (EV_P);
1873#endif
1041 1874
1042void inline_size 1875inline_size void
1043loop_fork (EV_P) 1876loop_fork (EV_P)
1044{ 1877{
1045#if EV_USE_PORT 1878#if EV_USE_PORT
1046 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1879 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1047#endif 1880#endif
1053#endif 1886#endif
1054#if EV_USE_INOTIFY 1887#if EV_USE_INOTIFY
1055 infy_fork (EV_A); 1888 infy_fork (EV_A);
1056#endif 1889#endif
1057 1890
1058 if (ev_is_active (&sigev)) 1891 if (ev_is_active (&pipe_w))
1059 { 1892 {
1060 /* default loop */ 1893 /* this "locks" the handlers against writing to the pipe */
1894 /* while we modify the fd vars */
1895 sig_pending = 1;
1896#if EV_ASYNC_ENABLE
1897 async_pending = 1;
1898#endif
1061 1899
1062 ev_ref (EV_A); 1900 ev_ref (EV_A);
1063 ev_io_stop (EV_A_ &sigev); 1901 ev_io_stop (EV_A_ &pipe_w);
1064 close (sigpipe [0]);
1065 close (sigpipe [1]);
1066 1902
1067 while (pipe (sigpipe)) 1903#if EV_USE_EVENTFD
1068 syserr ("(libev) error creating pipe"); 1904 if (evfd >= 0)
1905 close (evfd);
1906#endif
1069 1907
1908 if (evpipe [0] >= 0)
1909 {
1910 EV_WIN32_CLOSE_FD (evpipe [0]);
1911 EV_WIN32_CLOSE_FD (evpipe [1]);
1912 }
1913
1914#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1070 siginit (EV_A); 1915 evpipe_init (EV_A);
1916 /* now iterate over everything, in case we missed something */
1917 pipecb (EV_A_ &pipe_w, EV_READ);
1918#endif
1071 } 1919 }
1072 1920
1073 postfork = 0; 1921 postfork = 0;
1074} 1922}
1923
1924#if EV_MULTIPLICITY
1925
1926struct ev_loop *
1927ev_loop_new (unsigned int flags)
1928{
1929 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1930
1931 memset (EV_A, 0, sizeof (struct ev_loop));
1932 loop_init (EV_A_ flags);
1933
1934 if (ev_backend (EV_A))
1935 return EV_A;
1936
1937 ev_free (EV_A);
1938 return 0;
1939}
1940
1941#endif /* multiplicity */
1942
1943#if EV_VERIFY
1944static void noinline
1945verify_watcher (EV_P_ W w)
1946{
1947 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1948
1949 if (w->pending)
1950 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1951}
1952
1953static void noinline
1954verify_heap (EV_P_ ANHE *heap, int N)
1955{
1956 int i;
1957
1958 for (i = HEAP0; i < N + HEAP0; ++i)
1959 {
1960 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1961 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1962 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1963
1964 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1965 }
1966}
1967
1968static void noinline
1969array_verify (EV_P_ W *ws, int cnt)
1970{
1971 while (cnt--)
1972 {
1973 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1974 verify_watcher (EV_A_ ws [cnt]);
1975 }
1976}
1977#endif
1978
1979#if EV_FEATURE_API
1980void
1981ev_verify (EV_P)
1982{
1983#if EV_VERIFY
1984 int i;
1985 WL w;
1986
1987 assert (activecnt >= -1);
1988
1989 assert (fdchangemax >= fdchangecnt);
1990 for (i = 0; i < fdchangecnt; ++i)
1991 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1992
1993 assert (anfdmax >= 0);
1994 for (i = 0; i < anfdmax; ++i)
1995 for (w = anfds [i].head; w; w = w->next)
1996 {
1997 verify_watcher (EV_A_ (W)w);
1998 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1999 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2000 }
2001
2002 assert (timermax >= timercnt);
2003 verify_heap (EV_A_ timers, timercnt);
2004
2005#if EV_PERIODIC_ENABLE
2006 assert (periodicmax >= periodiccnt);
2007 verify_heap (EV_A_ periodics, periodiccnt);
2008#endif
2009
2010 for (i = NUMPRI; i--; )
2011 {
2012 assert (pendingmax [i] >= pendingcnt [i]);
2013#if EV_IDLE_ENABLE
2014 assert (idleall >= 0);
2015 assert (idlemax [i] >= idlecnt [i]);
2016 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2017#endif
2018 }
2019
2020#if EV_FORK_ENABLE
2021 assert (forkmax >= forkcnt);
2022 array_verify (EV_A_ (W *)forks, forkcnt);
2023#endif
2024
2025#if EV_CLEANUP_ENABLE
2026 assert (cleanupmax >= cleanupcnt);
2027 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2028#endif
2029
2030#if EV_ASYNC_ENABLE
2031 assert (asyncmax >= asynccnt);
2032 array_verify (EV_A_ (W *)asyncs, asynccnt);
2033#endif
2034
2035#if EV_PREPARE_ENABLE
2036 assert (preparemax >= preparecnt);
2037 array_verify (EV_A_ (W *)prepares, preparecnt);
2038#endif
2039
2040#if EV_CHECK_ENABLE
2041 assert (checkmax >= checkcnt);
2042 array_verify (EV_A_ (W *)checks, checkcnt);
2043#endif
2044
2045# if 0
2046#if EV_CHILD_ENABLE
2047 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2048 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2049#endif
2050# endif
2051#endif
2052}
2053#endif
1075 2054
1076#if EV_MULTIPLICITY 2055#if EV_MULTIPLICITY
1077struct ev_loop * 2056struct ev_loop *
1078ev_loop_new (unsigned int flags)
1079{
1080 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1081
1082 memset (loop, 0, sizeof (struct ev_loop));
1083
1084 loop_init (EV_A_ flags);
1085
1086 if (ev_backend (EV_A))
1087 return loop;
1088
1089 return 0;
1090}
1091
1092void
1093ev_loop_destroy (EV_P)
1094{
1095 loop_destroy (EV_A);
1096 ev_free (loop);
1097}
1098
1099void
1100ev_loop_fork (EV_P)
1101{
1102 postfork = 1;
1103}
1104
1105#endif
1106
1107#if EV_MULTIPLICITY
1108struct ev_loop *
1109ev_default_loop_init (unsigned int flags)
1110#else 2057#else
1111int 2058int
2059#endif
1112ev_default_loop (unsigned int flags) 2060ev_default_loop (unsigned int flags)
1113#endif
1114{ 2061{
1115 if (sigpipe [0] == sigpipe [1])
1116 if (pipe (sigpipe))
1117 return 0;
1118
1119 if (!ev_default_loop_ptr) 2062 if (!ev_default_loop_ptr)
1120 { 2063 {
1121#if EV_MULTIPLICITY 2064#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2065 EV_P = ev_default_loop_ptr = &default_loop_struct;
1123#else 2066#else
1124 ev_default_loop_ptr = 1; 2067 ev_default_loop_ptr = 1;
1125#endif 2068#endif
1126 2069
1127 loop_init (EV_A_ flags); 2070 loop_init (EV_A_ flags);
1128 2071
1129 if (ev_backend (EV_A)) 2072 if (ev_backend (EV_A))
1130 { 2073 {
1131 siginit (EV_A); 2074#if EV_CHILD_ENABLE
1132
1133#ifndef _WIN32
1134 ev_signal_init (&childev, childcb, SIGCHLD); 2075 ev_signal_init (&childev, childcb, SIGCHLD);
1135 ev_set_priority (&childev, EV_MAXPRI); 2076 ev_set_priority (&childev, EV_MAXPRI);
1136 ev_signal_start (EV_A_ &childev); 2077 ev_signal_start (EV_A_ &childev);
1137 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2078 ev_unref (EV_A); /* child watcher should not keep loop alive */
1138#endif 2079#endif
1143 2084
1144 return ev_default_loop_ptr; 2085 return ev_default_loop_ptr;
1145} 2086}
1146 2087
1147void 2088void
1148ev_default_destroy (void) 2089ev_loop_fork (EV_P)
1149{ 2090{
1150#if EV_MULTIPLICITY 2091 postfork = 1; /* must be in line with ev_default_fork */
1151 struct ev_loop *loop = ev_default_loop_ptr;
1152#endif
1153
1154#ifndef _WIN32
1155 ev_ref (EV_A); /* child watcher */
1156 ev_signal_stop (EV_A_ &childev);
1157#endif
1158
1159 ev_ref (EV_A); /* signal watcher */
1160 ev_io_stop (EV_A_ &sigev);
1161
1162 close (sigpipe [0]); sigpipe [0] = 0;
1163 close (sigpipe [1]); sigpipe [1] = 0;
1164
1165 loop_destroy (EV_A);
1166}
1167
1168void
1169ev_default_fork (void)
1170{
1171#if EV_MULTIPLICITY
1172 struct ev_loop *loop = ev_default_loop_ptr;
1173#endif
1174
1175 if (backend)
1176 postfork = 1;
1177} 2092}
1178 2093
1179/*****************************************************************************/ 2094/*****************************************************************************/
1180 2095
1181void 2096void
1182ev_invoke (EV_P_ void *w, int revents) 2097ev_invoke (EV_P_ void *w, int revents)
1183{ 2098{
1184 EV_CB_INVOKE ((W)w, revents); 2099 EV_CB_INVOKE ((W)w, revents);
1185} 2100}
1186 2101
1187void inline_speed 2102unsigned int
1188call_pending (EV_P) 2103ev_pending_count (EV_P)
2104{
2105 int pri;
2106 unsigned int count = 0;
2107
2108 for (pri = NUMPRI; pri--; )
2109 count += pendingcnt [pri];
2110
2111 return count;
2112}
2113
2114void noinline
2115ev_invoke_pending (EV_P)
1189{ 2116{
1190 int pri; 2117 int pri;
1191 2118
1192 for (pri = NUMPRI; pri--; ) 2119 for (pri = NUMPRI; pri--; )
1193 while (pendingcnt [pri]) 2120 while (pendingcnt [pri])
1194 { 2121 {
1195 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2122 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1196 2123
1197 if (expect_true (p->w))
1198 {
1199 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1200
1201 p->w->pending = 0; 2124 p->w->pending = 0;
1202 EV_CB_INVOKE (p->w, p->events); 2125 EV_CB_INVOKE (p->w, p->events);
1203 } 2126 EV_FREQUENT_CHECK;
1204 } 2127 }
1205} 2128}
1206 2129
1207void inline_size
1208timers_reify (EV_P)
1209{
1210 while (timercnt && ((WT)timers [0])->at <= mn_now)
1211 {
1212 ev_timer *w = timers [0];
1213
1214 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1215
1216 /* first reschedule or stop timer */
1217 if (w->repeat)
1218 {
1219 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1220
1221 ((WT)w)->at += w->repeat;
1222 if (((WT)w)->at < mn_now)
1223 ((WT)w)->at = mn_now;
1224
1225 downheap ((WT *)timers, timercnt, 0);
1226 }
1227 else
1228 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1229
1230 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1231 }
1232}
1233
1234#if EV_PERIODIC_ENABLE
1235void inline_size
1236periodics_reify (EV_P)
1237{
1238 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1239 {
1240 ev_periodic *w = periodics [0];
1241
1242 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1243
1244 /* first reschedule or stop timer */
1245 if (w->reschedule_cb)
1246 {
1247 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1248 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1249 downheap ((WT *)periodics, periodiccnt, 0);
1250 }
1251 else if (w->interval)
1252 {
1253 ((WT)w)->at = w->offset + floor ((ev_rt_now + TIME_EPSILON - w->offset) / w->interval + 1.) * w->interval;
1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1255 downheap ((WT *)periodics, periodiccnt, 0);
1256 }
1257 else
1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1259
1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1261 }
1262}
1263
1264static void noinline
1265periodics_reschedule (EV_P)
1266{
1267 int i;
1268
1269 /* adjust periodics after time jump */
1270 for (i = 0; i < periodiccnt; ++i)
1271 {
1272 ev_periodic *w = periodics [i];
1273
1274 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1276 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 }
1279
1280 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i);
1283}
1284#endif
1285
1286#if EV_IDLE_ENABLE 2130#if EV_IDLE_ENABLE
1287void inline_size 2131/* make idle watchers pending. this handles the "call-idle */
2132/* only when higher priorities are idle" logic */
2133inline_size void
1288idle_reify (EV_P) 2134idle_reify (EV_P)
1289{ 2135{
1290 if (expect_false (idleall)) 2136 if (expect_false (idleall))
1291 { 2137 {
1292 int pri; 2138 int pri;
1304 } 2150 }
1305 } 2151 }
1306} 2152}
1307#endif 2153#endif
1308 2154
1309int inline_size 2155/* make timers pending */
1310time_update_monotonic (EV_P) 2156inline_size void
2157timers_reify (EV_P)
1311{ 2158{
2159 EV_FREQUENT_CHECK;
2160
2161 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2162 {
2163 do
2164 {
2165 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2166
2167 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2168
2169 /* first reschedule or stop timer */
2170 if (w->repeat)
2171 {
2172 ev_at (w) += w->repeat;
2173 if (ev_at (w) < mn_now)
2174 ev_at (w) = mn_now;
2175
2176 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2177
2178 ANHE_at_cache (timers [HEAP0]);
2179 downheap (timers, timercnt, HEAP0);
2180 }
2181 else
2182 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2183
2184 EV_FREQUENT_CHECK;
2185 feed_reverse (EV_A_ (W)w);
2186 }
2187 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2188
2189 feed_reverse_done (EV_A_ EV_TIMER);
2190 }
2191}
2192
2193#if EV_PERIODIC_ENABLE
2194/* make periodics pending */
2195inline_size void
2196periodics_reify (EV_P)
2197{
2198 EV_FREQUENT_CHECK;
2199
2200 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2201 {
2202 int feed_count = 0;
2203
2204 do
2205 {
2206 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2207
2208 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2209
2210 /* first reschedule or stop timer */
2211 if (w->reschedule_cb)
2212 {
2213 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2214
2215 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2216
2217 ANHE_at_cache (periodics [HEAP0]);
2218 downheap (periodics, periodiccnt, HEAP0);
2219 }
2220 else if (w->interval)
2221 {
2222 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2223 /* if next trigger time is not sufficiently in the future, put it there */
2224 /* this might happen because of floating point inexactness */
2225 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2226 {
2227 ev_at (w) += w->interval;
2228
2229 /* if interval is unreasonably low we might still have a time in the past */
2230 /* so correct this. this will make the periodic very inexact, but the user */
2231 /* has effectively asked to get triggered more often than possible */
2232 if (ev_at (w) < ev_rt_now)
2233 ev_at (w) = ev_rt_now;
2234 }
2235
2236 ANHE_at_cache (periodics [HEAP0]);
2237 downheap (periodics, periodiccnt, HEAP0);
2238 }
2239 else
2240 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2241
2242 EV_FREQUENT_CHECK;
2243 feed_reverse (EV_A_ (W)w);
2244 }
2245 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2246
2247 feed_reverse_done (EV_A_ EV_PERIODIC);
2248 }
2249}
2250
2251/* simply recalculate all periodics */
2252/* TODO: maybe ensure that at least one event happens when jumping forward? */
2253static void noinline
2254periodics_reschedule (EV_P)
2255{
2256 int i;
2257
2258 /* adjust periodics after time jump */
2259 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2260 {
2261 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2262
2263 if (w->reschedule_cb)
2264 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2265 else if (w->interval)
2266 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2267
2268 ANHE_at_cache (periodics [i]);
2269 }
2270
2271 reheap (periodics, periodiccnt);
2272}
2273#endif
2274
2275/* adjust all timers by a given offset */
2276static void noinline
2277timers_reschedule (EV_P_ ev_tstamp adjust)
2278{
2279 int i;
2280
2281 for (i = 0; i < timercnt; ++i)
2282 {
2283 ANHE *he = timers + i + HEAP0;
2284 ANHE_w (*he)->at += adjust;
2285 ANHE_at_cache (*he);
2286 }
2287}
2288
2289/* fetch new monotonic and realtime times from the kernel */
2290/* also detect if there was a timejump, and act accordingly */
2291inline_speed void
2292time_update (EV_P_ ev_tstamp max_block)
2293{
2294#if EV_USE_MONOTONIC
2295 if (expect_true (have_monotonic))
2296 {
2297 int i;
2298 ev_tstamp odiff = rtmn_diff;
2299
1312 mn_now = get_clock (); 2300 mn_now = get_clock ();
1313 2301
2302 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2303 /* interpolate in the meantime */
1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2304 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1315 { 2305 {
1316 ev_rt_now = rtmn_diff + mn_now; 2306 ev_rt_now = rtmn_diff + mn_now;
1317 return 0; 2307 return;
1318 } 2308 }
1319 else 2309
1320 {
1321 now_floor = mn_now; 2310 now_floor = mn_now;
1322 ev_rt_now = ev_time (); 2311 ev_rt_now = ev_time ();
1323 return 1;
1324 }
1325}
1326 2312
1327void inline_size 2313 /* loop a few times, before making important decisions.
1328time_update (EV_P) 2314 * on the choice of "4": one iteration isn't enough,
1329{ 2315 * in case we get preempted during the calls to
1330 int i; 2316 * ev_time and get_clock. a second call is almost guaranteed
1331 2317 * to succeed in that case, though. and looping a few more times
1332#if EV_USE_MONOTONIC 2318 * doesn't hurt either as we only do this on time-jumps or
1333 if (expect_true (have_monotonic)) 2319 * in the unlikely event of having been preempted here.
1334 { 2320 */
1335 if (time_update_monotonic (EV_A)) 2321 for (i = 4; --i; )
1336 { 2322 {
1337 ev_tstamp odiff = rtmn_diff;
1338
1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1348 {
1349 rtmn_diff = ev_rt_now - mn_now; 2323 rtmn_diff = ev_rt_now - mn_now;
1350 2324
1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2325 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1352 return; /* all is well */ 2326 return; /* all is well */
1353 2327
1354 ev_rt_now = ev_time (); 2328 ev_rt_now = ev_time ();
1355 mn_now = get_clock (); 2329 mn_now = get_clock ();
1356 now_floor = mn_now; 2330 now_floor = mn_now;
1357 } 2331 }
1358 2332
2333 /* no timer adjustment, as the monotonic clock doesn't jump */
2334 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1359# if EV_PERIODIC_ENABLE 2335# if EV_PERIODIC_ENABLE
1360 periodics_reschedule (EV_A); 2336 periodics_reschedule (EV_A);
1361# endif 2337# endif
1362 /* no timer adjustment, as the monotonic clock doesn't jump */
1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1364 }
1365 } 2338 }
1366 else 2339 else
1367#endif 2340#endif
1368 { 2341 {
1369 ev_rt_now = ev_time (); 2342 ev_rt_now = ev_time ();
1370 2343
1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2344 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 { 2345 {
2346 /* adjust timers. this is easy, as the offset is the same for all of them */
2347 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1373#if EV_PERIODIC_ENABLE 2348#if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 2349 periodics_reschedule (EV_A);
1375#endif 2350#endif
1376
1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i)
1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1380 } 2351 }
1381 2352
1382 mn_now = ev_rt_now; 2353 mn_now = ev_rt_now;
1383 } 2354 }
1384} 2355}
1385 2356
1386void 2357void
1387ev_ref (EV_P)
1388{
1389 ++activecnt;
1390}
1391
1392void
1393ev_unref (EV_P)
1394{
1395 --activecnt;
1396}
1397
1398static int loop_done;
1399
1400void
1401ev_loop (EV_P_ int flags) 2358ev_run (EV_P_ int flags)
1402{ 2359{
1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2360#if EV_FEATURE_API
1404 ? EVUNLOOP_ONE 2361 ++loop_depth;
1405 : EVUNLOOP_CANCEL; 2362#endif
1406 2363
2364 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2365
2366 loop_done = EVBREAK_CANCEL;
2367
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2368 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1408 2369
1409 do 2370 do
1410 { 2371 {
2372#if EV_VERIFY >= 2
2373 ev_verify (EV_A);
2374#endif
2375
1411#ifndef _WIN32 2376#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */ 2377 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid)) 2378 if (expect_false (getpid () != curpid))
1414 { 2379 {
1415 curpid = getpid (); 2380 curpid = getpid ();
1421 /* we might have forked, so queue fork handlers */ 2386 /* we might have forked, so queue fork handlers */
1422 if (expect_false (postfork)) 2387 if (expect_false (postfork))
1423 if (forkcnt) 2388 if (forkcnt)
1424 { 2389 {
1425 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2390 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1426 call_pending (EV_A); 2391 EV_INVOKE_PENDING;
1427 } 2392 }
1428#endif 2393#endif
1429 2394
2395#if EV_PREPARE_ENABLE
1430 /* queue prepare watchers (and execute them) */ 2396 /* queue prepare watchers (and execute them) */
1431 if (expect_false (preparecnt)) 2397 if (expect_false (preparecnt))
1432 { 2398 {
1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2399 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1434 call_pending (EV_A); 2400 EV_INVOKE_PENDING;
1435 } 2401 }
2402#endif
1436 2403
1437 if (expect_false (!activecnt)) 2404 if (expect_false (loop_done))
1438 break; 2405 break;
1439 2406
1440 /* we might have forked, so reify kernel state if necessary */ 2407 /* we might have forked, so reify kernel state if necessary */
1441 if (expect_false (postfork)) 2408 if (expect_false (postfork))
1442 loop_fork (EV_A); 2409 loop_fork (EV_A);
1444 /* update fd-related kernel structures */ 2411 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 2412 fd_reify (EV_A);
1446 2413
1447 /* calculate blocking time */ 2414 /* calculate blocking time */
1448 { 2415 {
1449 ev_tstamp block; 2416 ev_tstamp waittime = 0.;
2417 ev_tstamp sleeptime = 0.;
1450 2418
2419 /* remember old timestamp for io_blocktime calculation */
2420 ev_tstamp prev_mn_now = mn_now;
2421
2422 /* update time to cancel out callback processing overhead */
2423 time_update (EV_A_ 1e100);
2424
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2425 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 2426 {
1455 /* update time to cancel out callback processing overhead */
1456#if EV_USE_MONOTONIC
1457 if (expect_true (have_monotonic))
1458 time_update_monotonic (EV_A);
1459 else
1460#endif
1461 {
1462 ev_rt_now = ev_time ();
1463 mn_now = ev_rt_now;
1464 }
1465
1466 block = MAX_BLOCKTIME; 2427 waittime = MAX_BLOCKTIME;
1467 2428
1468 if (timercnt) 2429 if (timercnt)
1469 { 2430 {
1470 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2431 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1471 if (block > to) block = to; 2432 if (waittime > to) waittime = to;
1472 } 2433 }
1473 2434
1474#if EV_PERIODIC_ENABLE 2435#if EV_PERIODIC_ENABLE
1475 if (periodiccnt) 2436 if (periodiccnt)
1476 { 2437 {
1477 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2438 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1478 if (block > to) block = to; 2439 if (waittime > to) waittime = to;
1479 } 2440 }
1480#endif 2441#endif
1481 2442
2443 /* don't let timeouts decrease the waittime below timeout_blocktime */
2444 if (expect_false (waittime < timeout_blocktime))
2445 waittime = timeout_blocktime;
2446
2447 /* extra check because io_blocktime is commonly 0 */
1482 if (expect_false (block < 0.)) block = 0.; 2448 if (expect_false (io_blocktime))
2449 {
2450 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2451
2452 if (sleeptime > waittime - backend_fudge)
2453 sleeptime = waittime - backend_fudge;
2454
2455 if (expect_true (sleeptime > 0.))
2456 {
2457 ev_sleep (sleeptime);
2458 waittime -= sleeptime;
2459 }
2460 }
1483 } 2461 }
1484 2462
2463#if EV_FEATURE_API
1485 ++loop_count; 2464 ++loop_count;
2465#endif
2466 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1486 backend_poll (EV_A_ block); 2467 backend_poll (EV_A_ waittime);
2468 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2469
2470 /* update ev_rt_now, do magic */
2471 time_update (EV_A_ waittime + sleeptime);
1487 } 2472 }
1488
1489 /* update ev_rt_now, do magic */
1490 time_update (EV_A);
1491 2473
1492 /* queue pending timers and reschedule them */ 2474 /* queue pending timers and reschedule them */
1493 timers_reify (EV_A); /* relative timers called last */ 2475 timers_reify (EV_A); /* relative timers called last */
1494#if EV_PERIODIC_ENABLE 2476#if EV_PERIODIC_ENABLE
1495 periodics_reify (EV_A); /* absolute timers called first */ 2477 periodics_reify (EV_A); /* absolute timers called first */
1498#if EV_IDLE_ENABLE 2480#if EV_IDLE_ENABLE
1499 /* queue idle watchers unless other events are pending */ 2481 /* queue idle watchers unless other events are pending */
1500 idle_reify (EV_A); 2482 idle_reify (EV_A);
1501#endif 2483#endif
1502 2484
2485#if EV_CHECK_ENABLE
1503 /* queue check watchers, to be executed first */ 2486 /* queue check watchers, to be executed first */
1504 if (expect_false (checkcnt)) 2487 if (expect_false (checkcnt))
1505 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2488 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2489#endif
1506 2490
1507 call_pending (EV_A); 2491 EV_INVOKE_PENDING;
1508
1509 } 2492 }
1510 while (expect_true (activecnt && !loop_done)); 2493 while (expect_true (
2494 activecnt
2495 && !loop_done
2496 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
2497 ));
1511 2498
1512 if (loop_done == EVUNLOOP_ONE) 2499 if (loop_done == EVBREAK_ONE)
1513 loop_done = EVUNLOOP_CANCEL; 2500 loop_done = EVBREAK_CANCEL;
1514}
1515 2501
2502#if EV_FEATURE_API
2503 --loop_depth;
2504#endif
2505}
2506
1516void 2507void
1517ev_unloop (EV_P_ int how) 2508ev_break (EV_P_ int how)
1518{ 2509{
1519 loop_done = how; 2510 loop_done = how;
1520} 2511}
1521 2512
2513void
2514ev_ref (EV_P)
2515{
2516 ++activecnt;
2517}
2518
2519void
2520ev_unref (EV_P)
2521{
2522 --activecnt;
2523}
2524
2525void
2526ev_now_update (EV_P)
2527{
2528 time_update (EV_A_ 1e100);
2529}
2530
2531void
2532ev_suspend (EV_P)
2533{
2534 ev_now_update (EV_A);
2535}
2536
2537void
2538ev_resume (EV_P)
2539{
2540 ev_tstamp mn_prev = mn_now;
2541
2542 ev_now_update (EV_A);
2543 timers_reschedule (EV_A_ mn_now - mn_prev);
2544#if EV_PERIODIC_ENABLE
2545 /* TODO: really do this? */
2546 periodics_reschedule (EV_A);
2547#endif
2548}
2549
1522/*****************************************************************************/ 2550/*****************************************************************************/
2551/* singly-linked list management, used when the expected list length is short */
1523 2552
1524void inline_size 2553inline_size void
1525wlist_add (WL *head, WL elem) 2554wlist_add (WL *head, WL elem)
1526{ 2555{
1527 elem->next = *head; 2556 elem->next = *head;
1528 *head = elem; 2557 *head = elem;
1529} 2558}
1530 2559
1531void inline_size 2560inline_size void
1532wlist_del (WL *head, WL elem) 2561wlist_del (WL *head, WL elem)
1533{ 2562{
1534 while (*head) 2563 while (*head)
1535 { 2564 {
1536 if (*head == elem) 2565 if (expect_true (*head == elem))
1537 { 2566 {
1538 *head = elem->next; 2567 *head = elem->next;
1539 return; 2568 break;
1540 } 2569 }
1541 2570
1542 head = &(*head)->next; 2571 head = &(*head)->next;
1543 } 2572 }
1544} 2573}
1545 2574
1546void inline_speed 2575/* internal, faster, version of ev_clear_pending */
2576inline_speed void
1547clear_pending (EV_P_ W w) 2577clear_pending (EV_P_ W w)
1548{ 2578{
1549 if (w->pending) 2579 if (w->pending)
1550 { 2580 {
1551 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2581 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1552 w->pending = 0; 2582 w->pending = 0;
1553 } 2583 }
1554} 2584}
1555 2585
1556int 2586int
1560 int pending = w_->pending; 2590 int pending = w_->pending;
1561 2591
1562 if (expect_true (pending)) 2592 if (expect_true (pending))
1563 { 2593 {
1564 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2594 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2595 p->w = (W)&pending_w;
1565 w_->pending = 0; 2596 w_->pending = 0;
1566 p->w = 0;
1567 return p->events; 2597 return p->events;
1568 } 2598 }
1569 else 2599 else
1570 return 0; 2600 return 0;
1571} 2601}
1572 2602
1573void inline_size 2603inline_size void
1574pri_adjust (EV_P_ W w) 2604pri_adjust (EV_P_ W w)
1575{ 2605{
1576 int pri = w->priority; 2606 int pri = ev_priority (w);
1577 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2607 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1578 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2608 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1579 w->priority = pri; 2609 ev_set_priority (w, pri);
1580} 2610}
1581 2611
1582void inline_speed 2612inline_speed void
1583ev_start (EV_P_ W w, int active) 2613ev_start (EV_P_ W w, int active)
1584{ 2614{
1585 pri_adjust (EV_A_ w); 2615 pri_adjust (EV_A_ w);
1586 w->active = active; 2616 w->active = active;
1587 ev_ref (EV_A); 2617 ev_ref (EV_A);
1588} 2618}
1589 2619
1590void inline_size 2620inline_size void
1591ev_stop (EV_P_ W w) 2621ev_stop (EV_P_ W w)
1592{ 2622{
1593 ev_unref (EV_A); 2623 ev_unref (EV_A);
1594 w->active = 0; 2624 w->active = 0;
1595} 2625}
1602 int fd = w->fd; 2632 int fd = w->fd;
1603 2633
1604 if (expect_false (ev_is_active (w))) 2634 if (expect_false (ev_is_active (w)))
1605 return; 2635 return;
1606 2636
1607 assert (("ev_io_start called with negative fd", fd >= 0)); 2637 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2638 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2639
2640 EV_FREQUENT_CHECK;
1608 2641
1609 ev_start (EV_A_ (W)w, 1); 2642 ev_start (EV_A_ (W)w, 1);
1610 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2643 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1611 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2644 wlist_add (&anfds[fd].head, (WL)w);
1612 2645
1613 fd_change (EV_A_ fd); 2646 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2647 w->events &= ~EV__IOFDSET;
2648
2649 EV_FREQUENT_CHECK;
1614} 2650}
1615 2651
1616void noinline 2652void noinline
1617ev_io_stop (EV_P_ ev_io *w) 2653ev_io_stop (EV_P_ ev_io *w)
1618{ 2654{
1619 clear_pending (EV_A_ (W)w); 2655 clear_pending (EV_A_ (W)w);
1620 if (expect_false (!ev_is_active (w))) 2656 if (expect_false (!ev_is_active (w)))
1621 return; 2657 return;
1622 2658
1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2659 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1624 2660
2661 EV_FREQUENT_CHECK;
2662
1625 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2663 wlist_del (&anfds[w->fd].head, (WL)w);
1626 ev_stop (EV_A_ (W)w); 2664 ev_stop (EV_A_ (W)w);
1627 2665
1628 fd_change (EV_A_ w->fd); 2666 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
2667
2668 EV_FREQUENT_CHECK;
1629} 2669}
1630 2670
1631void noinline 2671void noinline
1632ev_timer_start (EV_P_ ev_timer *w) 2672ev_timer_start (EV_P_ ev_timer *w)
1633{ 2673{
1634 if (expect_false (ev_is_active (w))) 2674 if (expect_false (ev_is_active (w)))
1635 return; 2675 return;
1636 2676
1637 ((WT)w)->at += mn_now; 2677 ev_at (w) += mn_now;
1638 2678
1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2679 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1640 2680
2681 EV_FREQUENT_CHECK;
2682
2683 ++timercnt;
1641 ev_start (EV_A_ (W)w, ++timercnt); 2684 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1642 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2685 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1643 timers [timercnt - 1] = w; 2686 ANHE_w (timers [ev_active (w)]) = (WT)w;
1644 upheap ((WT *)timers, timercnt - 1); 2687 ANHE_at_cache (timers [ev_active (w)]);
2688 upheap (timers, ev_active (w));
1645 2689
2690 EV_FREQUENT_CHECK;
2691
1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2692 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1647} 2693}
1648 2694
1649void noinline 2695void noinline
1650ev_timer_stop (EV_P_ ev_timer *w) 2696ev_timer_stop (EV_P_ ev_timer *w)
1651{ 2697{
1652 clear_pending (EV_A_ (W)w); 2698 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 2699 if (expect_false (!ev_is_active (w)))
1654 return; 2700 return;
1655 2701
1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2702 EV_FREQUENT_CHECK;
1657 2703
1658 { 2704 {
1659 int active = ((W)w)->active; 2705 int active = ev_active (w);
1660 2706
2707 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2708
2709 --timercnt;
2710
1661 if (expect_true (--active < --timercnt)) 2711 if (expect_true (active < timercnt + HEAP0))
1662 { 2712 {
1663 timers [active] = timers [timercnt]; 2713 timers [active] = timers [timercnt + HEAP0];
1664 adjustheap ((WT *)timers, timercnt, active); 2714 adjustheap (timers, timercnt, active);
1665 } 2715 }
1666 } 2716 }
1667 2717
1668 ((WT)w)->at -= mn_now; 2718 ev_at (w) -= mn_now;
1669 2719
1670 ev_stop (EV_A_ (W)w); 2720 ev_stop (EV_A_ (W)w);
2721
2722 EV_FREQUENT_CHECK;
1671} 2723}
1672 2724
1673void noinline 2725void noinline
1674ev_timer_again (EV_P_ ev_timer *w) 2726ev_timer_again (EV_P_ ev_timer *w)
1675{ 2727{
2728 EV_FREQUENT_CHECK;
2729
1676 if (ev_is_active (w)) 2730 if (ev_is_active (w))
1677 { 2731 {
1678 if (w->repeat) 2732 if (w->repeat)
1679 { 2733 {
1680 ((WT)w)->at = mn_now + w->repeat; 2734 ev_at (w) = mn_now + w->repeat;
2735 ANHE_at_cache (timers [ev_active (w)]);
1681 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2736 adjustheap (timers, timercnt, ev_active (w));
1682 } 2737 }
1683 else 2738 else
1684 ev_timer_stop (EV_A_ w); 2739 ev_timer_stop (EV_A_ w);
1685 } 2740 }
1686 else if (w->repeat) 2741 else if (w->repeat)
1687 { 2742 {
1688 w->at = w->repeat; 2743 ev_at (w) = w->repeat;
1689 ev_timer_start (EV_A_ w); 2744 ev_timer_start (EV_A_ w);
1690 } 2745 }
2746
2747 EV_FREQUENT_CHECK;
2748}
2749
2750ev_tstamp
2751ev_timer_remaining (EV_P_ ev_timer *w)
2752{
2753 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1691} 2754}
1692 2755
1693#if EV_PERIODIC_ENABLE 2756#if EV_PERIODIC_ENABLE
1694void noinline 2757void noinline
1695ev_periodic_start (EV_P_ ev_periodic *w) 2758ev_periodic_start (EV_P_ ev_periodic *w)
1696{ 2759{
1697 if (expect_false (ev_is_active (w))) 2760 if (expect_false (ev_is_active (w)))
1698 return; 2761 return;
1699 2762
1700 if (w->reschedule_cb) 2763 if (w->reschedule_cb)
1701 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2764 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1702 else if (w->interval) 2765 else if (w->interval)
1703 { 2766 {
1704 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2767 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1705 /* this formula differs from the one in periodic_reify because we do not always round up */ 2768 /* this formula differs from the one in periodic_reify because we do not always round up */
1706 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2769 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1707 } 2770 }
1708 else 2771 else
1709 ((WT)w)->at = w->offset; 2772 ev_at (w) = w->offset;
1710 2773
2774 EV_FREQUENT_CHECK;
2775
2776 ++periodiccnt;
1711 ev_start (EV_A_ (W)w, ++periodiccnt); 2777 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1712 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2778 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1713 periodics [periodiccnt - 1] = w; 2779 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1714 upheap ((WT *)periodics, periodiccnt - 1); 2780 ANHE_at_cache (periodics [ev_active (w)]);
2781 upheap (periodics, ev_active (w));
1715 2782
2783 EV_FREQUENT_CHECK;
2784
1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2785 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1717} 2786}
1718 2787
1719void noinline 2788void noinline
1720ev_periodic_stop (EV_P_ ev_periodic *w) 2789ev_periodic_stop (EV_P_ ev_periodic *w)
1721{ 2790{
1722 clear_pending (EV_A_ (W)w); 2791 clear_pending (EV_A_ (W)w);
1723 if (expect_false (!ev_is_active (w))) 2792 if (expect_false (!ev_is_active (w)))
1724 return; 2793 return;
1725 2794
1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2795 EV_FREQUENT_CHECK;
1727 2796
1728 { 2797 {
1729 int active = ((W)w)->active; 2798 int active = ev_active (w);
1730 2799
2800 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2801
2802 --periodiccnt;
2803
1731 if (expect_true (--active < --periodiccnt)) 2804 if (expect_true (active < periodiccnt + HEAP0))
1732 { 2805 {
1733 periodics [active] = periodics [periodiccnt]; 2806 periodics [active] = periodics [periodiccnt + HEAP0];
1734 adjustheap ((WT *)periodics, periodiccnt, active); 2807 adjustheap (periodics, periodiccnt, active);
1735 } 2808 }
1736 } 2809 }
1737 2810
1738 ev_stop (EV_A_ (W)w); 2811 ev_stop (EV_A_ (W)w);
2812
2813 EV_FREQUENT_CHECK;
1739} 2814}
1740 2815
1741void noinline 2816void noinline
1742ev_periodic_again (EV_P_ ev_periodic *w) 2817ev_periodic_again (EV_P_ ev_periodic *w)
1743{ 2818{
1749 2824
1750#ifndef SA_RESTART 2825#ifndef SA_RESTART
1751# define SA_RESTART 0 2826# define SA_RESTART 0
1752#endif 2827#endif
1753 2828
2829#if EV_SIGNAL_ENABLE
2830
1754void noinline 2831void noinline
1755ev_signal_start (EV_P_ ev_signal *w) 2832ev_signal_start (EV_P_ ev_signal *w)
1756{ 2833{
1757#if EV_MULTIPLICITY
1758 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1759#endif
1760 if (expect_false (ev_is_active (w))) 2834 if (expect_false (ev_is_active (w)))
1761 return; 2835 return;
1762 2836
1763 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2837 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2838
2839#if EV_MULTIPLICITY
2840 assert (("libev: a signal must not be attached to two different loops",
2841 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2842
2843 signals [w->signum - 1].loop = EV_A;
2844#endif
2845
2846 EV_FREQUENT_CHECK;
2847
2848#if EV_USE_SIGNALFD
2849 if (sigfd == -2)
2850 {
2851 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2852 if (sigfd < 0 && errno == EINVAL)
2853 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2854
2855 if (sigfd >= 0)
2856 {
2857 fd_intern (sigfd); /* doing it twice will not hurt */
2858
2859 sigemptyset (&sigfd_set);
2860
2861 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2862 ev_set_priority (&sigfd_w, EV_MAXPRI);
2863 ev_io_start (EV_A_ &sigfd_w);
2864 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2865 }
2866 }
2867
2868 if (sigfd >= 0)
2869 {
2870 /* TODO: check .head */
2871 sigaddset (&sigfd_set, w->signum);
2872 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2873
2874 signalfd (sigfd, &sigfd_set, 0);
2875 }
2876#endif
1764 2877
1765 ev_start (EV_A_ (W)w, 1); 2878 ev_start (EV_A_ (W)w, 1);
1766 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1767 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2879 wlist_add (&signals [w->signum - 1].head, (WL)w);
1768 2880
1769 if (!((WL)w)->next) 2881 if (!((WL)w)->next)
2882# if EV_USE_SIGNALFD
2883 if (sigfd < 0) /*TODO*/
2884# endif
1770 { 2885 {
1771#if _WIN32 2886# ifdef _WIN32
2887 evpipe_init (EV_A);
2888
1772 signal (w->signum, sighandler); 2889 signal (w->signum, ev_sighandler);
1773#else 2890# else
1774 struct sigaction sa; 2891 struct sigaction sa;
2892
2893 evpipe_init (EV_A);
2894
1775 sa.sa_handler = sighandler; 2895 sa.sa_handler = ev_sighandler;
1776 sigfillset (&sa.sa_mask); 2896 sigfillset (&sa.sa_mask);
1777 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2897 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1778 sigaction (w->signum, &sa, 0); 2898 sigaction (w->signum, &sa, 0);
2899
2900 if (origflags & EVFLAG_NOSIGMASK)
2901 {
2902 sigemptyset (&sa.sa_mask);
2903 sigaddset (&sa.sa_mask, w->signum);
2904 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2905 }
1779#endif 2906#endif
1780 } 2907 }
2908
2909 EV_FREQUENT_CHECK;
1781} 2910}
1782 2911
1783void noinline 2912void noinline
1784ev_signal_stop (EV_P_ ev_signal *w) 2913ev_signal_stop (EV_P_ ev_signal *w)
1785{ 2914{
1786 clear_pending (EV_A_ (W)w); 2915 clear_pending (EV_A_ (W)w);
1787 if (expect_false (!ev_is_active (w))) 2916 if (expect_false (!ev_is_active (w)))
1788 return; 2917 return;
1789 2918
2919 EV_FREQUENT_CHECK;
2920
1790 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2921 wlist_del (&signals [w->signum - 1].head, (WL)w);
1791 ev_stop (EV_A_ (W)w); 2922 ev_stop (EV_A_ (W)w);
1792 2923
1793 if (!signals [w->signum - 1].head) 2924 if (!signals [w->signum - 1].head)
2925 {
2926#if EV_MULTIPLICITY
2927 signals [w->signum - 1].loop = 0; /* unattach from signal */
2928#endif
2929#if EV_USE_SIGNALFD
2930 if (sigfd >= 0)
2931 {
2932 sigset_t ss;
2933
2934 sigemptyset (&ss);
2935 sigaddset (&ss, w->signum);
2936 sigdelset (&sigfd_set, w->signum);
2937
2938 signalfd (sigfd, &sigfd_set, 0);
2939 sigprocmask (SIG_UNBLOCK, &ss, 0);
2940 }
2941 else
2942#endif
1794 signal (w->signum, SIG_DFL); 2943 signal (w->signum, SIG_DFL);
2944 }
2945
2946 EV_FREQUENT_CHECK;
1795} 2947}
2948
2949#endif
2950
2951#if EV_CHILD_ENABLE
1796 2952
1797void 2953void
1798ev_child_start (EV_P_ ev_child *w) 2954ev_child_start (EV_P_ ev_child *w)
1799{ 2955{
1800#if EV_MULTIPLICITY 2956#if EV_MULTIPLICITY
1801 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2957 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1802#endif 2958#endif
1803 if (expect_false (ev_is_active (w))) 2959 if (expect_false (ev_is_active (w)))
1804 return; 2960 return;
1805 2961
2962 EV_FREQUENT_CHECK;
2963
1806 ev_start (EV_A_ (W)w, 1); 2964 ev_start (EV_A_ (W)w, 1);
1807 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2965 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2966
2967 EV_FREQUENT_CHECK;
1808} 2968}
1809 2969
1810void 2970void
1811ev_child_stop (EV_P_ ev_child *w) 2971ev_child_stop (EV_P_ ev_child *w)
1812{ 2972{
1813 clear_pending (EV_A_ (W)w); 2973 clear_pending (EV_A_ (W)w);
1814 if (expect_false (!ev_is_active (w))) 2974 if (expect_false (!ev_is_active (w)))
1815 return; 2975 return;
1816 2976
2977 EV_FREQUENT_CHECK;
2978
1817 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2979 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1818 ev_stop (EV_A_ (W)w); 2980 ev_stop (EV_A_ (W)w);
2981
2982 EV_FREQUENT_CHECK;
1819} 2983}
2984
2985#endif
1820 2986
1821#if EV_STAT_ENABLE 2987#if EV_STAT_ENABLE
1822 2988
1823# ifdef _WIN32 2989# ifdef _WIN32
1824# undef lstat 2990# undef lstat
1825# define lstat(a,b) _stati64 (a,b) 2991# define lstat(a,b) _stati64 (a,b)
1826# endif 2992# endif
1827 2993
1828#define DEF_STAT_INTERVAL 5.0074891 2994#define DEF_STAT_INTERVAL 5.0074891
2995#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1829#define MIN_STAT_INTERVAL 0.1074891 2996#define MIN_STAT_INTERVAL 0.1074891
1830 2997
1831static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2998static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1832 2999
1833#if EV_USE_INOTIFY 3000#if EV_USE_INOTIFY
1834# define EV_INOTIFY_BUFSIZE 8192 3001
3002/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3003# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1835 3004
1836static void noinline 3005static void noinline
1837infy_add (EV_P_ ev_stat *w) 3006infy_add (EV_P_ ev_stat *w)
1838{ 3007{
1839 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3008 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1840 3009
1841 if (w->wd < 0) 3010 if (w->wd >= 0)
3011 {
3012 struct statfs sfs;
3013
3014 /* now local changes will be tracked by inotify, but remote changes won't */
3015 /* unless the filesystem is known to be local, we therefore still poll */
3016 /* also do poll on <2.6.25, but with normal frequency */
3017
3018 if (!fs_2625)
3019 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3020 else if (!statfs (w->path, &sfs)
3021 && (sfs.f_type == 0x1373 /* devfs */
3022 || sfs.f_type == 0xEF53 /* ext2/3 */
3023 || sfs.f_type == 0x3153464a /* jfs */
3024 || sfs.f_type == 0x52654973 /* reiser3 */
3025 || sfs.f_type == 0x01021994 /* tempfs */
3026 || sfs.f_type == 0x58465342 /* xfs */))
3027 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3028 else
3029 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1842 { 3030 }
1843 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3031 else
3032 {
3033 /* can't use inotify, continue to stat */
3034 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1844 3035
1845 /* monitor some parent directory for speedup hints */ 3036 /* if path is not there, monitor some parent directory for speedup hints */
3037 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3038 /* but an efficiency issue only */
1846 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3039 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1847 { 3040 {
1848 char path [4096]; 3041 char path [4096];
1849 strcpy (path, w->path); 3042 strcpy (path, w->path);
1850 3043
1853 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3046 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1854 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3047 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1855 3048
1856 char *pend = strrchr (path, '/'); 3049 char *pend = strrchr (path, '/');
1857 3050
1858 if (!pend) 3051 if (!pend || pend == path)
1859 break; /* whoops, no '/', complain to your admin */ 3052 break;
1860 3053
1861 *pend = 0; 3054 *pend = 0;
1862 w->wd = inotify_add_watch (fs_fd, path, mask); 3055 w->wd = inotify_add_watch (fs_fd, path, mask);
1863 } 3056 }
1864 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3057 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1865 } 3058 }
1866 } 3059 }
1867 else
1868 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1869 3060
1870 if (w->wd >= 0) 3061 if (w->wd >= 0)
1871 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3062 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3063
3064 /* now re-arm timer, if required */
3065 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3066 ev_timer_again (EV_A_ &w->timer);
3067 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1872} 3068}
1873 3069
1874static void noinline 3070static void noinline
1875infy_del (EV_P_ ev_stat *w) 3071infy_del (EV_P_ ev_stat *w)
1876{ 3072{
1879 3075
1880 if (wd < 0) 3076 if (wd < 0)
1881 return; 3077 return;
1882 3078
1883 w->wd = -2; 3079 w->wd = -2;
1884 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3080 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1885 wlist_del (&fs_hash [slot].head, (WL)w); 3081 wlist_del (&fs_hash [slot].head, (WL)w);
1886 3082
1887 /* remove this watcher, if others are watching it, they will rearm */ 3083 /* remove this watcher, if others are watching it, they will rearm */
1888 inotify_rm_watch (fs_fd, wd); 3084 inotify_rm_watch (fs_fd, wd);
1889} 3085}
1890 3086
1891static void noinline 3087static void noinline
1892infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3088infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1893{ 3089{
1894 if (slot < 0) 3090 if (slot < 0)
1895 /* overflow, need to check for all hahs slots */ 3091 /* overflow, need to check for all hash slots */
1896 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3092 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1897 infy_wd (EV_A_ slot, wd, ev); 3093 infy_wd (EV_A_ slot, wd, ev);
1898 else 3094 else
1899 { 3095 {
1900 WL w_; 3096 WL w_;
1901 3097
1902 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3098 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1903 { 3099 {
1904 ev_stat *w = (ev_stat *)w_; 3100 ev_stat *w = (ev_stat *)w_;
1905 w_ = w_->next; /* lets us remove this watcher and all before it */ 3101 w_ = w_->next; /* lets us remove this watcher and all before it */
1906 3102
1907 if (w->wd == wd || wd == -1) 3103 if (w->wd == wd || wd == -1)
1908 { 3104 {
1909 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3105 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1910 { 3106 {
3107 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1911 w->wd = -1; 3108 w->wd = -1;
1912 infy_add (EV_A_ w); /* re-add, no matter what */ 3109 infy_add (EV_A_ w); /* re-add, no matter what */
1913 } 3110 }
1914 3111
1915 stat_timer_cb (EV_A_ &w->timer, 0); 3112 stat_timer_cb (EV_A_ &w->timer, 0);
1920 3117
1921static void 3118static void
1922infy_cb (EV_P_ ev_io *w, int revents) 3119infy_cb (EV_P_ ev_io *w, int revents)
1923{ 3120{
1924 char buf [EV_INOTIFY_BUFSIZE]; 3121 char buf [EV_INOTIFY_BUFSIZE];
1925 struct inotify_event *ev = (struct inotify_event *)buf;
1926 int ofs; 3122 int ofs;
1927 int len = read (fs_fd, buf, sizeof (buf)); 3123 int len = read (fs_fd, buf, sizeof (buf));
1928 3124
1929 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3125 for (ofs = 0; ofs < len; )
3126 {
3127 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1930 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3128 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3129 ofs += sizeof (struct inotify_event) + ev->len;
3130 }
1931} 3131}
1932 3132
1933void inline_size 3133inline_size void
3134ev_check_2625 (EV_P)
3135{
3136 /* kernels < 2.6.25 are borked
3137 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3138 */
3139 if (ev_linux_version () < 0x020619)
3140 return;
3141
3142 fs_2625 = 1;
3143}
3144
3145inline_size int
3146infy_newfd (void)
3147{
3148#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3149 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3150 if (fd >= 0)
3151 return fd;
3152#endif
3153 return inotify_init ();
3154}
3155
3156inline_size void
1934infy_init (EV_P) 3157infy_init (EV_P)
1935{ 3158{
1936 if (fs_fd != -2) 3159 if (fs_fd != -2)
1937 return; 3160 return;
1938 3161
3162 fs_fd = -1;
3163
3164 ev_check_2625 (EV_A);
3165
1939 fs_fd = inotify_init (); 3166 fs_fd = infy_newfd ();
1940 3167
1941 if (fs_fd >= 0) 3168 if (fs_fd >= 0)
1942 { 3169 {
3170 fd_intern (fs_fd);
1943 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3171 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1944 ev_set_priority (&fs_w, EV_MAXPRI); 3172 ev_set_priority (&fs_w, EV_MAXPRI);
1945 ev_io_start (EV_A_ &fs_w); 3173 ev_io_start (EV_A_ &fs_w);
3174 ev_unref (EV_A);
1946 } 3175 }
1947} 3176}
1948 3177
1949void inline_size 3178inline_size void
1950infy_fork (EV_P) 3179infy_fork (EV_P)
1951{ 3180{
1952 int slot; 3181 int slot;
1953 3182
1954 if (fs_fd < 0) 3183 if (fs_fd < 0)
1955 return; 3184 return;
1956 3185
3186 ev_ref (EV_A);
3187 ev_io_stop (EV_A_ &fs_w);
1957 close (fs_fd); 3188 close (fs_fd);
1958 fs_fd = inotify_init (); 3189 fs_fd = infy_newfd ();
1959 3190
3191 if (fs_fd >= 0)
3192 {
3193 fd_intern (fs_fd);
3194 ev_io_set (&fs_w, fs_fd, EV_READ);
3195 ev_io_start (EV_A_ &fs_w);
3196 ev_unref (EV_A);
3197 }
3198
1960 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3199 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1961 { 3200 {
1962 WL w_ = fs_hash [slot].head; 3201 WL w_ = fs_hash [slot].head;
1963 fs_hash [slot].head = 0; 3202 fs_hash [slot].head = 0;
1964 3203
1965 while (w_) 3204 while (w_)
1970 w->wd = -1; 3209 w->wd = -1;
1971 3210
1972 if (fs_fd >= 0) 3211 if (fs_fd >= 0)
1973 infy_add (EV_A_ w); /* re-add, no matter what */ 3212 infy_add (EV_A_ w); /* re-add, no matter what */
1974 else 3213 else
3214 {
3215 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3216 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1975 ev_timer_start (EV_A_ &w->timer); 3217 ev_timer_again (EV_A_ &w->timer);
3218 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3219 }
1976 } 3220 }
1977
1978 } 3221 }
1979} 3222}
1980 3223
3224#endif
3225
3226#ifdef _WIN32
3227# define EV_LSTAT(p,b) _stati64 (p, b)
3228#else
3229# define EV_LSTAT(p,b) lstat (p, b)
1981#endif 3230#endif
1982 3231
1983void 3232void
1984ev_stat_stat (EV_P_ ev_stat *w) 3233ev_stat_stat (EV_P_ ev_stat *w)
1985{ 3234{
1992static void noinline 3241static void noinline
1993stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3242stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1994{ 3243{
1995 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3244 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1996 3245
1997 /* we copy this here each the time so that */ 3246 ev_statdata prev = w->attr;
1998 /* prev has the old value when the callback gets invoked */
1999 w->prev = w->attr;
2000 ev_stat_stat (EV_A_ w); 3247 ev_stat_stat (EV_A_ w);
2001 3248
2002 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3249 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2003 if ( 3250 if (
2004 w->prev.st_dev != w->attr.st_dev 3251 prev.st_dev != w->attr.st_dev
2005 || w->prev.st_ino != w->attr.st_ino 3252 || prev.st_ino != w->attr.st_ino
2006 || w->prev.st_mode != w->attr.st_mode 3253 || prev.st_mode != w->attr.st_mode
2007 || w->prev.st_nlink != w->attr.st_nlink 3254 || prev.st_nlink != w->attr.st_nlink
2008 || w->prev.st_uid != w->attr.st_uid 3255 || prev.st_uid != w->attr.st_uid
2009 || w->prev.st_gid != w->attr.st_gid 3256 || prev.st_gid != w->attr.st_gid
2010 || w->prev.st_rdev != w->attr.st_rdev 3257 || prev.st_rdev != w->attr.st_rdev
2011 || w->prev.st_size != w->attr.st_size 3258 || prev.st_size != w->attr.st_size
2012 || w->prev.st_atime != w->attr.st_atime 3259 || prev.st_atime != w->attr.st_atime
2013 || w->prev.st_mtime != w->attr.st_mtime 3260 || prev.st_mtime != w->attr.st_mtime
2014 || w->prev.st_ctime != w->attr.st_ctime 3261 || prev.st_ctime != w->attr.st_ctime
2015 ) { 3262 ) {
3263 /* we only update w->prev on actual differences */
3264 /* in case we test more often than invoke the callback, */
3265 /* to ensure that prev is always different to attr */
3266 w->prev = prev;
3267
2016 #if EV_USE_INOTIFY 3268 #if EV_USE_INOTIFY
3269 if (fs_fd >= 0)
3270 {
2017 infy_del (EV_A_ w); 3271 infy_del (EV_A_ w);
2018 infy_add (EV_A_ w); 3272 infy_add (EV_A_ w);
2019 ev_stat_stat (EV_A_ w); /* avoid race... */ 3273 ev_stat_stat (EV_A_ w); /* avoid race... */
3274 }
2020 #endif 3275 #endif
2021 3276
2022 ev_feed_event (EV_A_ w, EV_STAT); 3277 ev_feed_event (EV_A_ w, EV_STAT);
2023 } 3278 }
2024} 3279}
2027ev_stat_start (EV_P_ ev_stat *w) 3282ev_stat_start (EV_P_ ev_stat *w)
2028{ 3283{
2029 if (expect_false (ev_is_active (w))) 3284 if (expect_false (ev_is_active (w)))
2030 return; 3285 return;
2031 3286
2032 /* since we use memcmp, we need to clear any padding data etc. */
2033 memset (&w->prev, 0, sizeof (ev_statdata));
2034 memset (&w->attr, 0, sizeof (ev_statdata));
2035
2036 ev_stat_stat (EV_A_ w); 3287 ev_stat_stat (EV_A_ w);
2037 3288
3289 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2038 if (w->interval < MIN_STAT_INTERVAL) 3290 w->interval = MIN_STAT_INTERVAL;
2039 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2040 3291
2041 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3292 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2042 ev_set_priority (&w->timer, ev_priority (w)); 3293 ev_set_priority (&w->timer, ev_priority (w));
2043 3294
2044#if EV_USE_INOTIFY 3295#if EV_USE_INOTIFY
2045 infy_init (EV_A); 3296 infy_init (EV_A);
2046 3297
2047 if (fs_fd >= 0) 3298 if (fs_fd >= 0)
2048 infy_add (EV_A_ w); 3299 infy_add (EV_A_ w);
2049 else 3300 else
2050#endif 3301#endif
3302 {
2051 ev_timer_start (EV_A_ &w->timer); 3303 ev_timer_again (EV_A_ &w->timer);
3304 ev_unref (EV_A);
3305 }
2052 3306
2053 ev_start (EV_A_ (W)w, 1); 3307 ev_start (EV_A_ (W)w, 1);
3308
3309 EV_FREQUENT_CHECK;
2054} 3310}
2055 3311
2056void 3312void
2057ev_stat_stop (EV_P_ ev_stat *w) 3313ev_stat_stop (EV_P_ ev_stat *w)
2058{ 3314{
2059 clear_pending (EV_A_ (W)w); 3315 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w))) 3316 if (expect_false (!ev_is_active (w)))
2061 return; 3317 return;
2062 3318
3319 EV_FREQUENT_CHECK;
3320
2063#if EV_USE_INOTIFY 3321#if EV_USE_INOTIFY
2064 infy_del (EV_A_ w); 3322 infy_del (EV_A_ w);
2065#endif 3323#endif
3324
3325 if (ev_is_active (&w->timer))
3326 {
3327 ev_ref (EV_A);
2066 ev_timer_stop (EV_A_ &w->timer); 3328 ev_timer_stop (EV_A_ &w->timer);
3329 }
2067 3330
2068 ev_stop (EV_A_ (W)w); 3331 ev_stop (EV_A_ (W)w);
3332
3333 EV_FREQUENT_CHECK;
2069} 3334}
2070#endif 3335#endif
2071 3336
2072#if EV_IDLE_ENABLE 3337#if EV_IDLE_ENABLE
2073void 3338void
2075{ 3340{
2076 if (expect_false (ev_is_active (w))) 3341 if (expect_false (ev_is_active (w)))
2077 return; 3342 return;
2078 3343
2079 pri_adjust (EV_A_ (W)w); 3344 pri_adjust (EV_A_ (W)w);
3345
3346 EV_FREQUENT_CHECK;
2080 3347
2081 { 3348 {
2082 int active = ++idlecnt [ABSPRI (w)]; 3349 int active = ++idlecnt [ABSPRI (w)];
2083 3350
2084 ++idleall; 3351 ++idleall;
2085 ev_start (EV_A_ (W)w, active); 3352 ev_start (EV_A_ (W)w, active);
2086 3353
2087 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3354 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2088 idles [ABSPRI (w)][active - 1] = w; 3355 idles [ABSPRI (w)][active - 1] = w;
2089 } 3356 }
3357
3358 EV_FREQUENT_CHECK;
2090} 3359}
2091 3360
2092void 3361void
2093ev_idle_stop (EV_P_ ev_idle *w) 3362ev_idle_stop (EV_P_ ev_idle *w)
2094{ 3363{
2095 clear_pending (EV_A_ (W)w); 3364 clear_pending (EV_A_ (W)w);
2096 if (expect_false (!ev_is_active (w))) 3365 if (expect_false (!ev_is_active (w)))
2097 return; 3366 return;
2098 3367
3368 EV_FREQUENT_CHECK;
3369
2099 { 3370 {
2100 int active = ((W)w)->active; 3371 int active = ev_active (w);
2101 3372
2102 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3373 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2103 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3374 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2104 3375
2105 ev_stop (EV_A_ (W)w); 3376 ev_stop (EV_A_ (W)w);
2106 --idleall; 3377 --idleall;
2107 } 3378 }
2108}
2109#endif
2110 3379
3380 EV_FREQUENT_CHECK;
3381}
3382#endif
3383
3384#if EV_PREPARE_ENABLE
2111void 3385void
2112ev_prepare_start (EV_P_ ev_prepare *w) 3386ev_prepare_start (EV_P_ ev_prepare *w)
2113{ 3387{
2114 if (expect_false (ev_is_active (w))) 3388 if (expect_false (ev_is_active (w)))
2115 return; 3389 return;
3390
3391 EV_FREQUENT_CHECK;
2116 3392
2117 ev_start (EV_A_ (W)w, ++preparecnt); 3393 ev_start (EV_A_ (W)w, ++preparecnt);
2118 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3394 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2119 prepares [preparecnt - 1] = w; 3395 prepares [preparecnt - 1] = w;
3396
3397 EV_FREQUENT_CHECK;
2120} 3398}
2121 3399
2122void 3400void
2123ev_prepare_stop (EV_P_ ev_prepare *w) 3401ev_prepare_stop (EV_P_ ev_prepare *w)
2124{ 3402{
2125 clear_pending (EV_A_ (W)w); 3403 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w))) 3404 if (expect_false (!ev_is_active (w)))
2127 return; 3405 return;
2128 3406
3407 EV_FREQUENT_CHECK;
3408
2129 { 3409 {
2130 int active = ((W)w)->active; 3410 int active = ev_active (w);
3411
2131 prepares [active - 1] = prepares [--preparecnt]; 3412 prepares [active - 1] = prepares [--preparecnt];
2132 ((W)prepares [active - 1])->active = active; 3413 ev_active (prepares [active - 1]) = active;
2133 } 3414 }
2134 3415
2135 ev_stop (EV_A_ (W)w); 3416 ev_stop (EV_A_ (W)w);
2136}
2137 3417
3418 EV_FREQUENT_CHECK;
3419}
3420#endif
3421
3422#if EV_CHECK_ENABLE
2138void 3423void
2139ev_check_start (EV_P_ ev_check *w) 3424ev_check_start (EV_P_ ev_check *w)
2140{ 3425{
2141 if (expect_false (ev_is_active (w))) 3426 if (expect_false (ev_is_active (w)))
2142 return; 3427 return;
3428
3429 EV_FREQUENT_CHECK;
2143 3430
2144 ev_start (EV_A_ (W)w, ++checkcnt); 3431 ev_start (EV_A_ (W)w, ++checkcnt);
2145 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3432 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2146 checks [checkcnt - 1] = w; 3433 checks [checkcnt - 1] = w;
3434
3435 EV_FREQUENT_CHECK;
2147} 3436}
2148 3437
2149void 3438void
2150ev_check_stop (EV_P_ ev_check *w) 3439ev_check_stop (EV_P_ ev_check *w)
2151{ 3440{
2152 clear_pending (EV_A_ (W)w); 3441 clear_pending (EV_A_ (W)w);
2153 if (expect_false (!ev_is_active (w))) 3442 if (expect_false (!ev_is_active (w)))
2154 return; 3443 return;
2155 3444
3445 EV_FREQUENT_CHECK;
3446
2156 { 3447 {
2157 int active = ((W)w)->active; 3448 int active = ev_active (w);
3449
2158 checks [active - 1] = checks [--checkcnt]; 3450 checks [active - 1] = checks [--checkcnt];
2159 ((W)checks [active - 1])->active = active; 3451 ev_active (checks [active - 1]) = active;
2160 } 3452 }
2161 3453
2162 ev_stop (EV_A_ (W)w); 3454 ev_stop (EV_A_ (W)w);
3455
3456 EV_FREQUENT_CHECK;
2163} 3457}
3458#endif
2164 3459
2165#if EV_EMBED_ENABLE 3460#if EV_EMBED_ENABLE
2166void noinline 3461void noinline
2167ev_embed_sweep (EV_P_ ev_embed *w) 3462ev_embed_sweep (EV_P_ ev_embed *w)
2168{ 3463{
2169 ev_loop (w->loop, EVLOOP_NONBLOCK); 3464 ev_run (w->other, EVRUN_NOWAIT);
2170} 3465}
2171 3466
2172static void 3467static void
2173embed_cb (EV_P_ ev_io *io, int revents) 3468embed_io_cb (EV_P_ ev_io *io, int revents)
2174{ 3469{
2175 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3470 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2176 3471
2177 if (ev_cb (w)) 3472 if (ev_cb (w))
2178 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3473 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2179 else 3474 else
2180 ev_embed_sweep (loop, w); 3475 ev_run (w->other, EVRUN_NOWAIT);
2181} 3476}
3477
3478static void
3479embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3480{
3481 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3482
3483 {
3484 EV_P = w->other;
3485
3486 while (fdchangecnt)
3487 {
3488 fd_reify (EV_A);
3489 ev_run (EV_A_ EVRUN_NOWAIT);
3490 }
3491 }
3492}
3493
3494static void
3495embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3496{
3497 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3498
3499 ev_embed_stop (EV_A_ w);
3500
3501 {
3502 EV_P = w->other;
3503
3504 ev_loop_fork (EV_A);
3505 ev_run (EV_A_ EVRUN_NOWAIT);
3506 }
3507
3508 ev_embed_start (EV_A_ w);
3509}
3510
3511#if 0
3512static void
3513embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3514{
3515 ev_idle_stop (EV_A_ idle);
3516}
3517#endif
2182 3518
2183void 3519void
2184ev_embed_start (EV_P_ ev_embed *w) 3520ev_embed_start (EV_P_ ev_embed *w)
2185{ 3521{
2186 if (expect_false (ev_is_active (w))) 3522 if (expect_false (ev_is_active (w)))
2187 return; 3523 return;
2188 3524
2189 { 3525 {
2190 struct ev_loop *loop = w->loop; 3526 EV_P = w->other;
2191 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3527 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2192 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3528 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2193 } 3529 }
3530
3531 EV_FREQUENT_CHECK;
2194 3532
2195 ev_set_priority (&w->io, ev_priority (w)); 3533 ev_set_priority (&w->io, ev_priority (w));
2196 ev_io_start (EV_A_ &w->io); 3534 ev_io_start (EV_A_ &w->io);
2197 3535
3536 ev_prepare_init (&w->prepare, embed_prepare_cb);
3537 ev_set_priority (&w->prepare, EV_MINPRI);
3538 ev_prepare_start (EV_A_ &w->prepare);
3539
3540 ev_fork_init (&w->fork, embed_fork_cb);
3541 ev_fork_start (EV_A_ &w->fork);
3542
3543 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3544
2198 ev_start (EV_A_ (W)w, 1); 3545 ev_start (EV_A_ (W)w, 1);
3546
3547 EV_FREQUENT_CHECK;
2199} 3548}
2200 3549
2201void 3550void
2202ev_embed_stop (EV_P_ ev_embed *w) 3551ev_embed_stop (EV_P_ ev_embed *w)
2203{ 3552{
2204 clear_pending (EV_A_ (W)w); 3553 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w))) 3554 if (expect_false (!ev_is_active (w)))
2206 return; 3555 return;
2207 3556
3557 EV_FREQUENT_CHECK;
3558
2208 ev_io_stop (EV_A_ &w->io); 3559 ev_io_stop (EV_A_ &w->io);
3560 ev_prepare_stop (EV_A_ &w->prepare);
3561 ev_fork_stop (EV_A_ &w->fork);
2209 3562
2210 ev_stop (EV_A_ (W)w); 3563 ev_stop (EV_A_ (W)w);
3564
3565 EV_FREQUENT_CHECK;
2211} 3566}
2212#endif 3567#endif
2213 3568
2214#if EV_FORK_ENABLE 3569#if EV_FORK_ENABLE
2215void 3570void
2216ev_fork_start (EV_P_ ev_fork *w) 3571ev_fork_start (EV_P_ ev_fork *w)
2217{ 3572{
2218 if (expect_false (ev_is_active (w))) 3573 if (expect_false (ev_is_active (w)))
2219 return; 3574 return;
3575
3576 EV_FREQUENT_CHECK;
2220 3577
2221 ev_start (EV_A_ (W)w, ++forkcnt); 3578 ev_start (EV_A_ (W)w, ++forkcnt);
2222 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3579 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2223 forks [forkcnt - 1] = w; 3580 forks [forkcnt - 1] = w;
3581
3582 EV_FREQUENT_CHECK;
2224} 3583}
2225 3584
2226void 3585void
2227ev_fork_stop (EV_P_ ev_fork *w) 3586ev_fork_stop (EV_P_ ev_fork *w)
2228{ 3587{
2229 clear_pending (EV_A_ (W)w); 3588 clear_pending (EV_A_ (W)w);
2230 if (expect_false (!ev_is_active (w))) 3589 if (expect_false (!ev_is_active (w)))
2231 return; 3590 return;
2232 3591
3592 EV_FREQUENT_CHECK;
3593
2233 { 3594 {
2234 int active = ((W)w)->active; 3595 int active = ev_active (w);
3596
2235 forks [active - 1] = forks [--forkcnt]; 3597 forks [active - 1] = forks [--forkcnt];
2236 ((W)forks [active - 1])->active = active; 3598 ev_active (forks [active - 1]) = active;
2237 } 3599 }
2238 3600
2239 ev_stop (EV_A_ (W)w); 3601 ev_stop (EV_A_ (W)w);
3602
3603 EV_FREQUENT_CHECK;
3604}
3605#endif
3606
3607#if EV_CLEANUP_ENABLE
3608void
3609ev_cleanup_start (EV_P_ ev_cleanup *w)
3610{
3611 if (expect_false (ev_is_active (w)))
3612 return;
3613
3614 EV_FREQUENT_CHECK;
3615
3616 ev_start (EV_A_ (W)w, ++cleanupcnt);
3617 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
3618 cleanups [cleanupcnt - 1] = w;
3619
3620 /* cleanup watchers should never keep a refcount on the loop */
3621 ev_unref (EV_A);
3622 EV_FREQUENT_CHECK;
3623}
3624
3625void
3626ev_cleanup_stop (EV_P_ ev_cleanup *w)
3627{
3628 clear_pending (EV_A_ (W)w);
3629 if (expect_false (!ev_is_active (w)))
3630 return;
3631
3632 EV_FREQUENT_CHECK;
3633 ev_ref (EV_A);
3634
3635 {
3636 int active = ev_active (w);
3637
3638 cleanups [active - 1] = cleanups [--cleanupcnt];
3639 ev_active (cleanups [active - 1]) = active;
3640 }
3641
3642 ev_stop (EV_A_ (W)w);
3643
3644 EV_FREQUENT_CHECK;
3645}
3646#endif
3647
3648#if EV_ASYNC_ENABLE
3649void
3650ev_async_start (EV_P_ ev_async *w)
3651{
3652 if (expect_false (ev_is_active (w)))
3653 return;
3654
3655 w->sent = 0;
3656
3657 evpipe_init (EV_A);
3658
3659 EV_FREQUENT_CHECK;
3660
3661 ev_start (EV_A_ (W)w, ++asynccnt);
3662 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3663 asyncs [asynccnt - 1] = w;
3664
3665 EV_FREQUENT_CHECK;
3666}
3667
3668void
3669ev_async_stop (EV_P_ ev_async *w)
3670{
3671 clear_pending (EV_A_ (W)w);
3672 if (expect_false (!ev_is_active (w)))
3673 return;
3674
3675 EV_FREQUENT_CHECK;
3676
3677 {
3678 int active = ev_active (w);
3679
3680 asyncs [active - 1] = asyncs [--asynccnt];
3681 ev_active (asyncs [active - 1]) = active;
3682 }
3683
3684 ev_stop (EV_A_ (W)w);
3685
3686 EV_FREQUENT_CHECK;
3687}
3688
3689void
3690ev_async_send (EV_P_ ev_async *w)
3691{
3692 w->sent = 1;
3693 evpipe_write (EV_A_ &async_pending);
2240} 3694}
2241#endif 3695#endif
2242 3696
2243/*****************************************************************************/ 3697/*****************************************************************************/
2244 3698
2254once_cb (EV_P_ struct ev_once *once, int revents) 3708once_cb (EV_P_ struct ev_once *once, int revents)
2255{ 3709{
2256 void (*cb)(int revents, void *arg) = once->cb; 3710 void (*cb)(int revents, void *arg) = once->cb;
2257 void *arg = once->arg; 3711 void *arg = once->arg;
2258 3712
2259 ev_io_stop (EV_A_ &once->io); 3713 ev_io_stop (EV_A_ &once->io);
2260 ev_timer_stop (EV_A_ &once->to); 3714 ev_timer_stop (EV_A_ &once->to);
2261 ev_free (once); 3715 ev_free (once);
2262 3716
2263 cb (revents, arg); 3717 cb (revents, arg);
2264} 3718}
2265 3719
2266static void 3720static void
2267once_cb_io (EV_P_ ev_io *w, int revents) 3721once_cb_io (EV_P_ ev_io *w, int revents)
2268{ 3722{
2269 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3723 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3724
3725 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2270} 3726}
2271 3727
2272static void 3728static void
2273once_cb_to (EV_P_ ev_timer *w, int revents) 3729once_cb_to (EV_P_ ev_timer *w, int revents)
2274{ 3730{
2275 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3731 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3732
3733 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2276} 3734}
2277 3735
2278void 3736void
2279ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3737ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2280{ 3738{
2281 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3739 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2282 3740
2283 if (expect_false (!once)) 3741 if (expect_false (!once))
2284 { 3742 {
2285 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3743 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2286 return; 3744 return;
2287 } 3745 }
2288 3746
2289 once->cb = cb; 3747 once->cb = cb;
2290 once->arg = arg; 3748 once->arg = arg;
2302 ev_timer_set (&once->to, timeout, 0.); 3760 ev_timer_set (&once->to, timeout, 0.);
2303 ev_timer_start (EV_A_ &once->to); 3761 ev_timer_start (EV_A_ &once->to);
2304 } 3762 }
2305} 3763}
2306 3764
2307#ifdef __cplusplus 3765/*****************************************************************************/
2308} 3766
3767#if EV_WALK_ENABLE
3768void
3769ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3770{
3771 int i, j;
3772 ev_watcher_list *wl, *wn;
3773
3774 if (types & (EV_IO | EV_EMBED))
3775 for (i = 0; i < anfdmax; ++i)
3776 for (wl = anfds [i].head; wl; )
3777 {
3778 wn = wl->next;
3779
3780#if EV_EMBED_ENABLE
3781 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3782 {
3783 if (types & EV_EMBED)
3784 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3785 }
3786 else
3787#endif
3788#if EV_USE_INOTIFY
3789 if (ev_cb ((ev_io *)wl) == infy_cb)
3790 ;
3791 else
3792#endif
3793 if ((ev_io *)wl != &pipe_w)
3794 if (types & EV_IO)
3795 cb (EV_A_ EV_IO, wl);
3796
3797 wl = wn;
3798 }
3799
3800 if (types & (EV_TIMER | EV_STAT))
3801 for (i = timercnt + HEAP0; i-- > HEAP0; )
3802#if EV_STAT_ENABLE
3803 /*TODO: timer is not always active*/
3804 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3805 {
3806 if (types & EV_STAT)
3807 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3808 }
3809 else
3810#endif
3811 if (types & EV_TIMER)
3812 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3813
3814#if EV_PERIODIC_ENABLE
3815 if (types & EV_PERIODIC)
3816 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3817 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3818#endif
3819
3820#if EV_IDLE_ENABLE
3821 if (types & EV_IDLE)
3822 for (j = NUMPRI; i--; )
3823 for (i = idlecnt [j]; i--; )
3824 cb (EV_A_ EV_IDLE, idles [j][i]);
3825#endif
3826
3827#if EV_FORK_ENABLE
3828 if (types & EV_FORK)
3829 for (i = forkcnt; i--; )
3830 if (ev_cb (forks [i]) != embed_fork_cb)
3831 cb (EV_A_ EV_FORK, forks [i]);
3832#endif
3833
3834#if EV_ASYNC_ENABLE
3835 if (types & EV_ASYNC)
3836 for (i = asynccnt; i--; )
3837 cb (EV_A_ EV_ASYNC, asyncs [i]);
3838#endif
3839
3840#if EV_PREPARE_ENABLE
3841 if (types & EV_PREPARE)
3842 for (i = preparecnt; i--; )
3843# if EV_EMBED_ENABLE
3844 if (ev_cb (prepares [i]) != embed_prepare_cb)
2309#endif 3845# endif
3846 cb (EV_A_ EV_PREPARE, prepares [i]);
3847#endif
2310 3848
3849#if EV_CHECK_ENABLE
3850 if (types & EV_CHECK)
3851 for (i = checkcnt; i--; )
3852 cb (EV_A_ EV_CHECK, checks [i]);
3853#endif
3854
3855#if EV_SIGNAL_ENABLE
3856 if (types & EV_SIGNAL)
3857 for (i = 0; i < EV_NSIG - 1; ++i)
3858 for (wl = signals [i].head; wl; )
3859 {
3860 wn = wl->next;
3861 cb (EV_A_ EV_SIGNAL, wl);
3862 wl = wn;
3863 }
3864#endif
3865
3866#if EV_CHILD_ENABLE
3867 if (types & EV_CHILD)
3868 for (i = (EV_PID_HASHSIZE); i--; )
3869 for (wl = childs [i]; wl; )
3870 {
3871 wn = wl->next;
3872 cb (EV_A_ EV_CHILD, wl);
3873 wl = wn;
3874 }
3875#endif
3876/* EV_STAT 0x00001000 /* stat data changed */
3877/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3878}
3879#endif
3880
3881#if EV_MULTIPLICITY
3882 #include "ev_wrap.h"
3883#endif
3884
3885EV_CPP(})
3886

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines