ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.176 by root, Tue Dec 11 04:31:55 2007 UTC vs.
Revision 1.425 by root, Sun May 6 13:09:35 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met:
10 * 9 *
11 * * Redistributions of source code must retain the above copyright 10 * 1. Redistributions of source code must retain the above copyright notice,
12 * notice, this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
13 * 12 *
14 * * Redistributions in binary form must reproduce the above 13 * 2. Redistributions in binary form must reproduce the above copyright
15 * copyright notice, this list of conditions and the following 14 * notice, this list of conditions and the following disclaimer in the
16 * disclaimer in the documentation and/or other materials provided 15 * documentation and/or other materials provided with the distribution.
17 * with the distribution.
18 * 16 *
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 * OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * Alternatively, the contents of this file may be used under the terms of
29 * the GNU General Public License ("GPL") version 2 or any later version,
30 * in which case the provisions of the GPL are applicable instead of
31 * the above. If you wish to allow the use of your version of this file
32 * only under the terms of the GPL and not to allow others to use your
33 * version of this file under the BSD license, indicate your decision
34 * by deleting the provisions above and replace them with the notice
35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL.
30 */ 38 */
31 39
32#ifdef __cplusplus 40/* this big block deduces configuration from config.h */
33extern "C" {
34#endif
35
36#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 43# include EV_CONFIG_H
39# else 44# else
40# include "config.h" 45# include "config.h"
41# endif 46# endif
42 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
43# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
46# endif 71# endif
47# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
49# endif 74# endif
50# else 75# else
51# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
53# endif 78# endif
54# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
56# endif 81# endif
57# endif 82# endif
58 83
84# if HAVE_NANOSLEEP
59# ifndef EV_USE_SELECT 85# ifndef EV_USE_NANOSLEEP
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif 87# endif
88# else
89# undef EV_USE_NANOSLEEP
90# define EV_USE_NANOSLEEP 0
65# endif 91# endif
66 92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
67# ifndef EV_USE_POLL 94# ifndef EV_USE_SELECT
68# if HAVE_POLL && HAVE_POLL_H 95# define EV_USE_SELECT EV_FEATURE_BACKENDS
69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
100# endif
101
102# if HAVE_POLL && HAVE_POLL_H
103# ifndef EV_USE_POLL
104# define EV_USE_POLL EV_FEATURE_BACKENDS
105# endif
106# else
107# undef EV_USE_POLL
108# define EV_USE_POLL 0
73# endif 109# endif
74 110
75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
77# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
78# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
79# define EV_USE_EPOLL 0
80# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
81# endif 118# endif
82 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
83# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
89# endif 127# endif
90 128
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
94# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
95# define EV_USE_PORT 0
96# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
97# endif 136# endif
98 137
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
102# else
103# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
104# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
105# endif 145# endif
106 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
148# ifndef EV_USE_SIGNALFD
149# define EV_USE_SIGNALFD EV_FEATURE_OS
150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
107#endif 154# endif
108 155
109#include <math.h> 156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
163# endif
164
165#endif
166
110#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
111#include <fcntl.h> 169#include <fcntl.h>
112#include <stddef.h> 170#include <stddef.h>
113 171
114#include <stdio.h> 172#include <stdio.h>
115 173
116#include <assert.h> 174#include <assert.h>
117#include <errno.h> 175#include <errno.h>
118#include <sys/types.h> 176#include <sys/types.h>
119#include <time.h> 177#include <time.h>
178#include <limits.h>
120 179
121#include <signal.h> 180#include <signal.h>
122 181
123#ifdef EV_H 182#ifdef EV_H
124# include EV_H 183# include EV_H
125#else 184#else
126# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
127#endif 197#endif
128 198
129#ifndef _WIN32 199#ifndef _WIN32
130# include <sys/time.h> 200# include <sys/time.h>
131# include <sys/wait.h> 201# include <sys/wait.h>
132# include <unistd.h> 202# include <unistd.h>
133#else 203#else
204# include <io.h>
134# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 206# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 207# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 208# define EV_SELECT_IS_WINSOCKET 1
138# endif 209# endif
210# undef EV_AVOID_STDIO
211#endif
212
213/* OS X, in its infinite idiocy, actually HARDCODES
214 * a limit of 1024 into their select. Where people have brains,
215 * OS X engineers apparently have a vacuum. Or maybe they were
216 * ordered to have a vacuum, or they do anything for money.
217 * This might help. Or not.
218 */
219#define _DARWIN_UNLIMITED_SELECT 1
220
221/* this block tries to deduce configuration from header-defined symbols and defaults */
222
223/* try to deduce the maximum number of signals on this platform */
224#if defined EV_NSIG
225/* use what's provided */
226#elif defined NSIG
227# define EV_NSIG (NSIG)
228#elif defined _NSIG
229# define EV_NSIG (_NSIG)
230#elif defined SIGMAX
231# define EV_NSIG (SIGMAX+1)
232#elif defined SIG_MAX
233# define EV_NSIG (SIG_MAX+1)
234#elif defined _SIG_MAX
235# define EV_NSIG (_SIG_MAX+1)
236#elif defined MAXSIG
237# define EV_NSIG (MAXSIG+1)
238#elif defined MAX_SIG
239# define EV_NSIG (MAX_SIG+1)
240#elif defined SIGARRAYSIZE
241# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242#elif defined _sys_nsig
243# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244#else
245# error "unable to find value for NSIG, please report"
246/* to make it compile regardless, just remove the above line, */
247/* but consider reporting it, too! :) */
248# define EV_NSIG 65
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ >= 2
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
139#endif 260# endif
140 261#endif
141/**/
142 262
143#ifndef EV_USE_MONOTONIC 263#ifndef EV_USE_MONOTONIC
264# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
265# define EV_USE_MONOTONIC EV_FEATURE_OS
266# else
144# define EV_USE_MONOTONIC 0 267# define EV_USE_MONOTONIC 0
268# endif
145#endif 269#endif
146 270
147#ifndef EV_USE_REALTIME 271#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 272# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
273#endif
274
275#ifndef EV_USE_NANOSLEEP
276# if _POSIX_C_SOURCE >= 199309L
277# define EV_USE_NANOSLEEP EV_FEATURE_OS
278# else
279# define EV_USE_NANOSLEEP 0
280# endif
149#endif 281#endif
150 282
151#ifndef EV_USE_SELECT 283#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 284# define EV_USE_SELECT EV_FEATURE_BACKENDS
153#endif 285#endif
154 286
155#ifndef EV_USE_POLL 287#ifndef EV_USE_POLL
156# ifdef _WIN32 288# ifdef _WIN32
157# define EV_USE_POLL 0 289# define EV_USE_POLL 0
158# else 290# else
159# define EV_USE_POLL 1 291# define EV_USE_POLL EV_FEATURE_BACKENDS
160# endif 292# endif
161#endif 293#endif
162 294
163#ifndef EV_USE_EPOLL 295#ifndef EV_USE_EPOLL
296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
297# define EV_USE_EPOLL EV_FEATURE_BACKENDS
298# else
164# define EV_USE_EPOLL 0 299# define EV_USE_EPOLL 0
300# endif
165#endif 301#endif
166 302
167#ifndef EV_USE_KQUEUE 303#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 304# define EV_USE_KQUEUE 0
169#endif 305#endif
171#ifndef EV_USE_PORT 307#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 308# define EV_USE_PORT 0
173#endif 309#endif
174 310
175#ifndef EV_USE_INOTIFY 311#ifndef EV_USE_INOTIFY
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
313# define EV_USE_INOTIFY EV_FEATURE_OS
314# else
176# define EV_USE_INOTIFY 0 315# define EV_USE_INOTIFY 0
316# endif
177#endif 317#endif
178 318
179#ifndef EV_PID_HASHSIZE 319#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 320# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
181# define EV_PID_HASHSIZE 1 321#endif
322
323#ifndef EV_INOTIFY_HASHSIZE
324# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
325#endif
326
327#ifndef EV_USE_EVENTFD
328# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
329# define EV_USE_EVENTFD EV_FEATURE_OS
182# else 330# else
183# define EV_PID_HASHSIZE 16 331# define EV_USE_EVENTFD 0
184# endif 332# endif
185#endif 333#endif
186 334
187#ifndef EV_INOTIFY_HASHSIZE 335#ifndef EV_USE_SIGNALFD
188# if EV_MINIMAL 336# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
189# define EV_INOTIFY_HASHSIZE 1 337# define EV_USE_SIGNALFD EV_FEATURE_OS
190# else 338# else
191# define EV_INOTIFY_HASHSIZE 16 339# define EV_USE_SIGNALFD 0
192# endif 340# endif
193#endif 341#endif
194 342
195/**/ 343#if 0 /* debugging */
344# define EV_VERIFY 3
345# define EV_USE_4HEAP 1
346# define EV_HEAP_CACHE_AT 1
347#endif
348
349#ifndef EV_VERIFY
350# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
351#endif
352
353#ifndef EV_USE_4HEAP
354# define EV_USE_4HEAP EV_FEATURE_DATA
355#endif
356
357#ifndef EV_HEAP_CACHE_AT
358# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359#endif
360
361/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362/* which makes programs even slower. might work on other unices, too. */
363#if EV_USE_CLOCK_SYSCALL
364# include <sys/syscall.h>
365# ifdef SYS_clock_gettime
366# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367# undef EV_USE_MONOTONIC
368# define EV_USE_MONOTONIC 1
369# else
370# undef EV_USE_CLOCK_SYSCALL
371# define EV_USE_CLOCK_SYSCALL 0
372# endif
373#endif
374
375/* this block fixes any misconfiguration where we know we run into trouble otherwise */
376
377#ifdef _AIX
378/* AIX has a completely broken poll.h header */
379# undef EV_USE_POLL
380# define EV_USE_POLL 0
381#endif
196 382
197#ifndef CLOCK_MONOTONIC 383#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 384# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 385# define EV_USE_MONOTONIC 0
200#endif 386#endif
202#ifndef CLOCK_REALTIME 388#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 389# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 390# define EV_USE_REALTIME 0
205#endif 391#endif
206 392
393#if !EV_STAT_ENABLE
394# undef EV_USE_INOTIFY
395# define EV_USE_INOTIFY 0
396#endif
397
398#if !EV_USE_NANOSLEEP
399/* hp-ux has it in sys/time.h, which we unconditionally include above */
400# if !defined _WIN32 && !defined __hpux
401# include <sys/select.h>
402# endif
403#endif
404
405#if EV_USE_INOTIFY
406# include <sys/statfs.h>
407# include <sys/inotify.h>
408/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
409# ifndef IN_DONT_FOLLOW
410# undef EV_USE_INOTIFY
411# define EV_USE_INOTIFY 0
412# endif
413#endif
414
207#if EV_SELECT_IS_WINSOCKET 415#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 416# include <winsock.h>
209#endif 417#endif
210 418
211#if !EV_STAT_ENABLE 419#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 420/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
421# include <stdint.h>
422# ifndef EFD_NONBLOCK
423# define EFD_NONBLOCK O_NONBLOCK
213#endif 424# endif
425# ifndef EFD_CLOEXEC
426# ifdef O_CLOEXEC
427# define EFD_CLOEXEC O_CLOEXEC
428# else
429# define EFD_CLOEXEC 02000000
430# endif
431# endif
432EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433#endif
214 434
215#if EV_USE_INOTIFY 435#if EV_USE_SIGNALFD
436/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
216# include <sys/inotify.h> 437# include <stdint.h>
438# ifndef SFD_NONBLOCK
439# define SFD_NONBLOCK O_NONBLOCK
440# endif
441# ifndef SFD_CLOEXEC
442# ifdef O_CLOEXEC
443# define SFD_CLOEXEC O_CLOEXEC
444# else
445# define SFD_CLOEXEC 02000000
446# endif
447# endif
448EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449
450struct signalfd_siginfo
451{
452 uint32_t ssi_signo;
453 char pad[128 - sizeof (uint32_t)];
454};
217#endif 455#endif
218 456
219/**/ 457/**/
220 458
459#if EV_VERIFY >= 3
460# define EV_FREQUENT_CHECK ev_verify (EV_A)
461#else
462# define EV_FREQUENT_CHECK do { } while (0)
463#endif
464
221/* 465/*
222 * This is used to avoid floating point rounding problems. 466 * This is used to work around floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000 467 * This value is good at least till the year 4000.
227 * and intervals up to 20 years.
228 * Better solutions welcome.
229 */ 468 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 469#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
231 471
232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
235 474
475#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
477
478/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479/* ECB.H BEGIN */
480/*
481 * libecb - http://software.schmorp.de/pkg/libecb
482 *
483 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 * Copyright (©) 2011 Emanuele Giaquinta
485 * All rights reserved.
486 *
487 * Redistribution and use in source and binary forms, with or without modifica-
488 * tion, are permitted provided that the following conditions are met:
489 *
490 * 1. Redistributions of source code must retain the above copyright notice,
491 * this list of conditions and the following disclaimer.
492 *
493 * 2. Redistributions in binary form must reproduce the above copyright
494 * notice, this list of conditions and the following disclaimer in the
495 * documentation and/or other materials provided with the distribution.
496 *
497 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506 * OF THE POSSIBILITY OF SUCH DAMAGE.
507 */
508
509#ifndef ECB_H
510#define ECB_H
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
236#if __GNUC__ >= 3 519 #if __GNUC__
237# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
238# define noinline __attribute__ ((noinline)) 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
239#else 526#else
240# define expect(expr,value) (expr) 527 #include <inttypes.h>
241# define noinline
242# if __STDC_VERSION__ < 199901L
243# define inline
244# endif 528#endif
529
530/* many compilers define _GNUC_ to some versions but then only implement
531 * what their idiot authors think are the "more important" extensions,
532 * causing enormous grief in return for some better fake benchmark numbers.
533 * or so.
534 * we try to detect these and simply assume they are not gcc - if they have
535 * an issue with that they should have done it right in the first place.
536 */
537#ifndef ECB_GCC_VERSION
538 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
539 #define ECB_GCC_VERSION(major,minor) 0
540 #else
541 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
245#endif 542 #endif
543#endif
246 544
545/*****************************************************************************/
546
547/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549
550#if ECB_NO_THREADS
551# define ECB_NO_SMP 1
552#endif
553
554#if ECB_NO_THREADS || ECB_NO_SMP
555 #define ECB_MEMORY_FENCE do { } while (0)
556#endif
557
558#ifndef ECB_MEMORY_FENCE
559 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 #if __i386 || __i386__
561 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
571 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
574 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
575 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 #elif __sparc || __sparc__
577 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 #elif defined __s390__ || defined __s390x__
581 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 #elif defined __mips__
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
584 #elif defined __alpha__
585 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
586 #endif
587 #endif
588#endif
589
590#ifndef ECB_MEMORY_FENCE
591 #if ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
592 #define ECB_MEMORY_FENCE __sync_synchronize ()
593 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
594 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
595 #elif _MSC_VER >= 1400 /* VC++ 2005 */
596 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
597 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
598 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
599 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
600 #elif defined _WIN32
601 #include <WinNT.h>
602 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
603 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
604 #include <mbarrier.h>
605 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
606 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
607 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
608 #elif __xlC__
609 #define ECB_MEMORY_FENCE __sync ()
610 #endif
611#endif
612
613#ifndef ECB_MEMORY_FENCE
614 #if !ECB_AVOID_PTHREADS
615 /*
616 * if you get undefined symbol references to pthread_mutex_lock,
617 * or failure to find pthread.h, then you should implement
618 * the ECB_MEMORY_FENCE operations for your cpu/compiler
619 * OR provide pthread.h and link against the posix thread library
620 * of your system.
621 */
622 #include <pthread.h>
623 #define ECB_NEEDS_PTHREADS 1
624 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
625
626 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
627 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
628 #endif
629#endif
630
631#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
632 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
633#endif
634
635#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
636 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
637#endif
638
639/*****************************************************************************/
640
641#define ECB_C99 (__STDC_VERSION__ >= 199901L)
642
643#if __cplusplus
644 #define ecb_inline static inline
645#elif ECB_GCC_VERSION(2,5)
646 #define ecb_inline static __inline__
647#elif ECB_C99
648 #define ecb_inline static inline
649#else
650 #define ecb_inline static
651#endif
652
653#if ECB_GCC_VERSION(3,3)
654 #define ecb_restrict __restrict__
655#elif ECB_C99
656 #define ecb_restrict restrict
657#else
658 #define ecb_restrict
659#endif
660
661typedef int ecb_bool;
662
663#define ECB_CONCAT_(a, b) a ## b
664#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
665#define ECB_STRINGIFY_(a) # a
666#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
667
668#define ecb_function_ ecb_inline
669
670#if ECB_GCC_VERSION(3,1)
671 #define ecb_attribute(attrlist) __attribute__(attrlist)
672 #define ecb_is_constant(expr) __builtin_constant_p (expr)
673 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
674 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
675#else
676 #define ecb_attribute(attrlist)
677 #define ecb_is_constant(expr) 0
678 #define ecb_expect(expr,value) (expr)
679 #define ecb_prefetch(addr,rw,locality)
680#endif
681
682/* no emulation for ecb_decltype */
683#if ECB_GCC_VERSION(4,5)
684 #define ecb_decltype(x) __decltype(x)
685#elif ECB_GCC_VERSION(3,0)
686 #define ecb_decltype(x) __typeof(x)
687#endif
688
689#define ecb_noinline ecb_attribute ((__noinline__))
690#define ecb_noreturn ecb_attribute ((__noreturn__))
691#define ecb_unused ecb_attribute ((__unused__))
692#define ecb_const ecb_attribute ((__const__))
693#define ecb_pure ecb_attribute ((__pure__))
694
695#if ECB_GCC_VERSION(4,3)
696 #define ecb_artificial ecb_attribute ((__artificial__))
697 #define ecb_hot ecb_attribute ((__hot__))
698 #define ecb_cold ecb_attribute ((__cold__))
699#else
700 #define ecb_artificial
701 #define ecb_hot
702 #define ecb_cold
703#endif
704
705/* put around conditional expressions if you are very sure that the */
706/* expression is mostly true or mostly false. note that these return */
707/* booleans, not the expression. */
247#define expect_false(expr) expect ((expr) != 0, 0) 708#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
248#define expect_true(expr) expect ((expr) != 0, 1) 709#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
710/* for compatibility to the rest of the world */
711#define ecb_likely(expr) ecb_expect_true (expr)
712#define ecb_unlikely(expr) ecb_expect_false (expr)
713
714/* count trailing zero bits and count # of one bits */
715#if ECB_GCC_VERSION(3,4)
716 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
717 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
718 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
719 #define ecb_ctz32(x) __builtin_ctz (x)
720 #define ecb_ctz64(x) __builtin_ctzll (x)
721 #define ecb_popcount32(x) __builtin_popcount (x)
722 /* no popcountll */
723#else
724 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
725 ecb_function_ int
726 ecb_ctz32 (uint32_t x)
727 {
728 int r = 0;
729
730 x &= ~x + 1; /* this isolates the lowest bit */
731
732#if ECB_branchless_on_i386
733 r += !!(x & 0xaaaaaaaa) << 0;
734 r += !!(x & 0xcccccccc) << 1;
735 r += !!(x & 0xf0f0f0f0) << 2;
736 r += !!(x & 0xff00ff00) << 3;
737 r += !!(x & 0xffff0000) << 4;
738#else
739 if (x & 0xaaaaaaaa) r += 1;
740 if (x & 0xcccccccc) r += 2;
741 if (x & 0xf0f0f0f0) r += 4;
742 if (x & 0xff00ff00) r += 8;
743 if (x & 0xffff0000) r += 16;
744#endif
745
746 return r;
747 }
748
749 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
750 ecb_function_ int
751 ecb_ctz64 (uint64_t x)
752 {
753 int shift = x & 0xffffffffU ? 0 : 32;
754 return ecb_ctz32 (x >> shift) + shift;
755 }
756
757 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
758 ecb_function_ int
759 ecb_popcount32 (uint32_t x)
760 {
761 x -= (x >> 1) & 0x55555555;
762 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
763 x = ((x >> 4) + x) & 0x0f0f0f0f;
764 x *= 0x01010101;
765
766 return x >> 24;
767 }
768
769 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
770 ecb_function_ int ecb_ld32 (uint32_t x)
771 {
772 int r = 0;
773
774 if (x >> 16) { x >>= 16; r += 16; }
775 if (x >> 8) { x >>= 8; r += 8; }
776 if (x >> 4) { x >>= 4; r += 4; }
777 if (x >> 2) { x >>= 2; r += 2; }
778 if (x >> 1) { r += 1; }
779
780 return r;
781 }
782
783 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
784 ecb_function_ int ecb_ld64 (uint64_t x)
785 {
786 int r = 0;
787
788 if (x >> 32) { x >>= 32; r += 32; }
789
790 return r + ecb_ld32 (x);
791 }
792#endif
793
794ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
795ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
796{
797 return ( (x * 0x0802U & 0x22110U)
798 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
799}
800
801ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
802ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
803{
804 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
805 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
806 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
807 x = ( x >> 8 ) | ( x << 8);
808
809 return x;
810}
811
812ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
813ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
814{
815 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
816 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
817 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
818 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
819 x = ( x >> 16 ) | ( x << 16);
820
821 return x;
822}
823
824/* popcount64 is only available on 64 bit cpus as gcc builtin */
825/* so for this version we are lazy */
826ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
827ecb_function_ int
828ecb_popcount64 (uint64_t x)
829{
830 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
831}
832
833ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
834ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
835ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
836ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
837ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
838ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
839ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
840ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
841
842ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
843ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
844ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
845ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
846ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
847ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
848ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
849ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
850
851#if ECB_GCC_VERSION(4,3)
852 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
853 #define ecb_bswap32(x) __builtin_bswap32 (x)
854 #define ecb_bswap64(x) __builtin_bswap64 (x)
855#else
856 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
857 ecb_function_ uint16_t
858 ecb_bswap16 (uint16_t x)
859 {
860 return ecb_rotl16 (x, 8);
861 }
862
863 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
864 ecb_function_ uint32_t
865 ecb_bswap32 (uint32_t x)
866 {
867 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
868 }
869
870 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
871 ecb_function_ uint64_t
872 ecb_bswap64 (uint64_t x)
873 {
874 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
875 }
876#endif
877
878#if ECB_GCC_VERSION(4,5)
879 #define ecb_unreachable() __builtin_unreachable ()
880#else
881 /* this seems to work fine, but gcc always emits a warning for it :/ */
882 ecb_inline void ecb_unreachable (void) ecb_noreturn;
883 ecb_inline void ecb_unreachable (void) { }
884#endif
885
886/* try to tell the compiler that some condition is definitely true */
887#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
888
889ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
890ecb_inline unsigned char
891ecb_byteorder_helper (void)
892{
893 const uint32_t u = 0x11223344;
894 return *(unsigned char *)&u;
895}
896
897ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
898ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
899ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
900ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
901
902#if ECB_GCC_VERSION(3,0) || ECB_C99
903 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
904#else
905 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
906#endif
907
908#if __cplusplus
909 template<typename T>
910 static inline T ecb_div_rd (T val, T div)
911 {
912 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
913 }
914 template<typename T>
915 static inline T ecb_div_ru (T val, T div)
916 {
917 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
918 }
919#else
920 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
921 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
922#endif
923
924#if ecb_cplusplus_does_not_suck
925 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
926 template<typename T, int N>
927 static inline int ecb_array_length (const T (&arr)[N])
928 {
929 return N;
930 }
931#else
932 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
933#endif
934
935#endif
936
937/* ECB.H END */
938
939#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
940/* if your architecture doesn't need memory fences, e.g. because it is
941 * single-cpu/core, or if you use libev in a project that doesn't use libev
942 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
943 * libev, in which cases the memory fences become nops.
944 * alternatively, you can remove this #error and link against libpthread,
945 * which will then provide the memory fences.
946 */
947# error "memory fences not defined for your architecture, please report"
948#endif
949
950#ifndef ECB_MEMORY_FENCE
951# define ECB_MEMORY_FENCE do { } while (0)
952# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
953# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
954#endif
955
956#define expect_false(cond) ecb_expect_false (cond)
957#define expect_true(cond) ecb_expect_true (cond)
958#define noinline ecb_noinline
959
249#define inline_size static inline 960#define inline_size ecb_inline
250 961
251#if EV_MINIMAL 962#if EV_FEATURE_CODE
963# define inline_speed ecb_inline
964#else
252# define inline_speed static noinline 965# define inline_speed static noinline
966#endif
967
968#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
969
970#if EV_MINPRI == EV_MAXPRI
971# define ABSPRI(w) (((W)w), 0)
253#else 972#else
254# define inline_speed static inline
255#endif
256
257#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
258#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 973# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
974#endif
259 975
260#define EMPTY /* required for microsofts broken pseudo-c compiler */ 976#define EMPTY /* required for microsofts broken pseudo-c compiler */
261#define EMPTY2(a,b) /* used to suppress some warnings */ 977#define EMPTY2(a,b) /* used to suppress some warnings */
262 978
263typedef ev_watcher *W; 979typedef ev_watcher *W;
264typedef ev_watcher_list *WL; 980typedef ev_watcher_list *WL;
265typedef ev_watcher_time *WT; 981typedef ev_watcher_time *WT;
266 982
983#define ev_active(w) ((W)(w))->active
984#define ev_at(w) ((WT)(w))->at
985
986#if EV_USE_REALTIME
987/* sig_atomic_t is used to avoid per-thread variables or locking but still */
988/* giving it a reasonably high chance of working on typical architectures */
989static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
990#endif
991
992#if EV_USE_MONOTONIC
267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 993static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
994#endif
995
996#ifndef EV_FD_TO_WIN32_HANDLE
997# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
998#endif
999#ifndef EV_WIN32_HANDLE_TO_FD
1000# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1001#endif
1002#ifndef EV_WIN32_CLOSE_FD
1003# define EV_WIN32_CLOSE_FD(fd) close (fd)
1004#endif
268 1005
269#ifdef _WIN32 1006#ifdef _WIN32
270# include "ev_win32.c" 1007# include "ev_win32.c"
271#endif 1008#endif
272 1009
273/*****************************************************************************/ 1010/*****************************************************************************/
274 1011
1012/* define a suitable floor function (only used by periodics atm) */
1013
1014#if EV_USE_FLOOR
1015# include <math.h>
1016# define ev_floor(v) floor (v)
1017#else
1018
1019#include <float.h>
1020
1021/* a floor() replacement function, should be independent of ev_tstamp type */
1022static ev_tstamp noinline
1023ev_floor (ev_tstamp v)
1024{
1025 /* the choice of shift factor is not terribly important */
1026#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1027 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1028#else
1029 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1030#endif
1031
1032 /* argument too large for an unsigned long? */
1033 if (expect_false (v >= shift))
1034 {
1035 ev_tstamp f;
1036
1037 if (v == v - 1.)
1038 return v; /* very large number */
1039
1040 f = shift * ev_floor (v * (1. / shift));
1041 return f + ev_floor (v - f);
1042 }
1043
1044 /* special treatment for negative args? */
1045 if (expect_false (v < 0.))
1046 {
1047 ev_tstamp f = -ev_floor (-v);
1048
1049 return f - (f == v ? 0 : 1);
1050 }
1051
1052 /* fits into an unsigned long */
1053 return (unsigned long)v;
1054}
1055
1056#endif
1057
1058/*****************************************************************************/
1059
1060#ifdef __linux
1061# include <sys/utsname.h>
1062#endif
1063
1064static unsigned int noinline ecb_cold
1065ev_linux_version (void)
1066{
1067#ifdef __linux
1068 unsigned int v = 0;
1069 struct utsname buf;
1070 int i;
1071 char *p = buf.release;
1072
1073 if (uname (&buf))
1074 return 0;
1075
1076 for (i = 3+1; --i; )
1077 {
1078 unsigned int c = 0;
1079
1080 for (;;)
1081 {
1082 if (*p >= '0' && *p <= '9')
1083 c = c * 10 + *p++ - '0';
1084 else
1085 {
1086 p += *p == '.';
1087 break;
1088 }
1089 }
1090
1091 v = (v << 8) | c;
1092 }
1093
1094 return v;
1095#else
1096 return 0;
1097#endif
1098}
1099
1100/*****************************************************************************/
1101
1102#if EV_AVOID_STDIO
1103static void noinline ecb_cold
1104ev_printerr (const char *msg)
1105{
1106 write (STDERR_FILENO, msg, strlen (msg));
1107}
1108#endif
1109
275static void (*syserr_cb)(const char *msg); 1110static void (*syserr_cb)(const char *msg) EV_THROW;
276 1111
277void 1112void ecb_cold
278ev_set_syserr_cb (void (*cb)(const char *msg)) 1113ev_set_syserr_cb (void (*cb)(const char *msg)) EV_THROW
279{ 1114{
280 syserr_cb = cb; 1115 syserr_cb = cb;
281} 1116}
282 1117
283static void noinline 1118static void noinline ecb_cold
284syserr (const char *msg) 1119ev_syserr (const char *msg)
285{ 1120{
286 if (!msg) 1121 if (!msg)
287 msg = "(libev) system error"; 1122 msg = "(libev) system error";
288 1123
289 if (syserr_cb) 1124 if (syserr_cb)
290 syserr_cb (msg); 1125 syserr_cb (msg);
291 else 1126 else
292 { 1127 {
1128#if EV_AVOID_STDIO
1129 ev_printerr (msg);
1130 ev_printerr (": ");
1131 ev_printerr (strerror (errno));
1132 ev_printerr ("\n");
1133#else
293 perror (msg); 1134 perror (msg);
1135#endif
294 abort (); 1136 abort ();
295 } 1137 }
296} 1138}
297 1139
1140static void *
1141ev_realloc_emul (void *ptr, long size)
1142{
1143#if __GLIBC__
1144 return realloc (ptr, size);
1145#else
1146 /* some systems, notably openbsd and darwin, fail to properly
1147 * implement realloc (x, 0) (as required by both ansi c-89 and
1148 * the single unix specification, so work around them here.
1149 */
1150
1151 if (size)
1152 return realloc (ptr, size);
1153
1154 free (ptr);
1155 return 0;
1156#endif
1157}
1158
298static void *(*alloc)(void *ptr, long size); 1159static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
299 1160
300void 1161void ecb_cold
301ev_set_allocator (void *(*cb)(void *ptr, long size)) 1162ev_set_allocator (void *(*cb)(void *ptr, long size)) EV_THROW
302{ 1163{
303 alloc = cb; 1164 alloc = cb;
304} 1165}
305 1166
306inline_speed void * 1167inline_speed void *
307ev_realloc (void *ptr, long size) 1168ev_realloc (void *ptr, long size)
308{ 1169{
309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 1170 ptr = alloc (ptr, size);
310 1171
311 if (!ptr && size) 1172 if (!ptr && size)
312 { 1173 {
1174#if EV_AVOID_STDIO
1175 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1176#else
313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1177 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1178#endif
314 abort (); 1179 abort ();
315 } 1180 }
316 1181
317 return ptr; 1182 return ptr;
318} 1183}
320#define ev_malloc(size) ev_realloc (0, (size)) 1185#define ev_malloc(size) ev_realloc (0, (size))
321#define ev_free(ptr) ev_realloc ((ptr), 0) 1186#define ev_free(ptr) ev_realloc ((ptr), 0)
322 1187
323/*****************************************************************************/ 1188/*****************************************************************************/
324 1189
1190/* set in reify when reification needed */
1191#define EV_ANFD_REIFY 1
1192
1193/* file descriptor info structure */
325typedef struct 1194typedef struct
326{ 1195{
327 WL head; 1196 WL head;
328 unsigned char events; 1197 unsigned char events; /* the events watched for */
1198 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1199 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
329 unsigned char reify; 1200 unsigned char unused;
1201#if EV_USE_EPOLL
1202 unsigned int egen; /* generation counter to counter epoll bugs */
1203#endif
330#if EV_SELECT_IS_WINSOCKET 1204#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
331 SOCKET handle; 1205 SOCKET handle;
332#endif 1206#endif
1207#if EV_USE_IOCP
1208 OVERLAPPED or, ow;
1209#endif
333} ANFD; 1210} ANFD;
334 1211
1212/* stores the pending event set for a given watcher */
335typedef struct 1213typedef struct
336{ 1214{
337 W w; 1215 W w;
338 int events; 1216 int events; /* the pending event set for the given watcher */
339} ANPENDING; 1217} ANPENDING;
340 1218
341#if EV_USE_INOTIFY 1219#if EV_USE_INOTIFY
1220/* hash table entry per inotify-id */
342typedef struct 1221typedef struct
343{ 1222{
344 WL head; 1223 WL head;
345} ANFS; 1224} ANFS;
1225#endif
1226
1227/* Heap Entry */
1228#if EV_HEAP_CACHE_AT
1229 /* a heap element */
1230 typedef struct {
1231 ev_tstamp at;
1232 WT w;
1233 } ANHE;
1234
1235 #define ANHE_w(he) (he).w /* access watcher, read-write */
1236 #define ANHE_at(he) (he).at /* access cached at, read-only */
1237 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1238#else
1239 /* a heap element */
1240 typedef WT ANHE;
1241
1242 #define ANHE_w(he) (he)
1243 #define ANHE_at(he) (he)->at
1244 #define ANHE_at_cache(he)
346#endif 1245#endif
347 1246
348#if EV_MULTIPLICITY 1247#if EV_MULTIPLICITY
349 1248
350 struct ev_loop 1249 struct ev_loop
356 #undef VAR 1255 #undef VAR
357 }; 1256 };
358 #include "ev_wrap.h" 1257 #include "ev_wrap.h"
359 1258
360 static struct ev_loop default_loop_struct; 1259 static struct ev_loop default_loop_struct;
361 struct ev_loop *ev_default_loop_ptr; 1260 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
362 1261
363#else 1262#else
364 1263
365 ev_tstamp ev_rt_now; 1264 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
366 #define VAR(name,decl) static decl; 1265 #define VAR(name,decl) static decl;
367 #include "ev_vars.h" 1266 #include "ev_vars.h"
368 #undef VAR 1267 #undef VAR
369 1268
370 static int ev_default_loop_ptr; 1269 static int ev_default_loop_ptr;
371 1270
372#endif 1271#endif
373 1272
1273#if EV_FEATURE_API
1274# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1275# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1276# define EV_INVOKE_PENDING invoke_cb (EV_A)
1277#else
1278# define EV_RELEASE_CB (void)0
1279# define EV_ACQUIRE_CB (void)0
1280# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1281#endif
1282
1283#define EVBREAK_RECURSE 0x80
1284
374/*****************************************************************************/ 1285/*****************************************************************************/
375 1286
1287#ifndef EV_HAVE_EV_TIME
376ev_tstamp 1288ev_tstamp
377ev_time (void) 1289ev_time (void) EV_THROW
378{ 1290{
379#if EV_USE_REALTIME 1291#if EV_USE_REALTIME
1292 if (expect_true (have_realtime))
1293 {
380 struct timespec ts; 1294 struct timespec ts;
381 clock_gettime (CLOCK_REALTIME, &ts); 1295 clock_gettime (CLOCK_REALTIME, &ts);
382 return ts.tv_sec + ts.tv_nsec * 1e-9; 1296 return ts.tv_sec + ts.tv_nsec * 1e-9;
383#else 1297 }
1298#endif
1299
384 struct timeval tv; 1300 struct timeval tv;
385 gettimeofday (&tv, 0); 1301 gettimeofday (&tv, 0);
386 return tv.tv_sec + tv.tv_usec * 1e-6; 1302 return tv.tv_sec + tv.tv_usec * 1e-6;
387#endif
388} 1303}
1304#endif
389 1305
390ev_tstamp inline_size 1306inline_size ev_tstamp
391get_clock (void) 1307get_clock (void)
392{ 1308{
393#if EV_USE_MONOTONIC 1309#if EV_USE_MONOTONIC
394 if (expect_true (have_monotonic)) 1310 if (expect_true (have_monotonic))
395 { 1311 {
402 return ev_time (); 1318 return ev_time ();
403} 1319}
404 1320
405#if EV_MULTIPLICITY 1321#if EV_MULTIPLICITY
406ev_tstamp 1322ev_tstamp
407ev_now (EV_P) 1323ev_now (EV_P) EV_THROW
408{ 1324{
409 return ev_rt_now; 1325 return ev_rt_now;
410} 1326}
411#endif 1327#endif
412 1328
413int inline_size 1329void
1330ev_sleep (ev_tstamp delay) EV_THROW
1331{
1332 if (delay > 0.)
1333 {
1334#if EV_USE_NANOSLEEP
1335 struct timespec ts;
1336
1337 EV_TS_SET (ts, delay);
1338 nanosleep (&ts, 0);
1339#elif defined _WIN32
1340 Sleep ((unsigned long)(delay * 1e3));
1341#else
1342 struct timeval tv;
1343
1344 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
1345 /* something not guaranteed by newer posix versions, but guaranteed */
1346 /* by older ones */
1347 EV_TV_SET (tv, delay);
1348 select (0, 0, 0, 0, &tv);
1349#endif
1350 }
1351}
1352
1353/*****************************************************************************/
1354
1355#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1356
1357/* find a suitable new size for the given array, */
1358/* hopefully by rounding to a nice-to-malloc size */
1359inline_size int
414array_nextsize (int elem, int cur, int cnt) 1360array_nextsize (int elem, int cur, int cnt)
415{ 1361{
416 int ncur = cur + 1; 1362 int ncur = cur + 1;
417 1363
418 do 1364 do
419 ncur <<= 1; 1365 ncur <<= 1;
420 while (cnt > ncur); 1366 while (cnt > ncur);
421 1367
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1368 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
423 if (elem * ncur > 4096) 1369 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
424 { 1370 {
425 ncur *= elem; 1371 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1372 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
427 ncur = ncur - sizeof (void *) * 4; 1373 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem; 1374 ncur /= elem;
429 } 1375 }
430 1376
431 return ncur; 1377 return ncur;
432} 1378}
433 1379
434static noinline void * 1380static void * noinline ecb_cold
435array_realloc (int elem, void *base, int *cur, int cnt) 1381array_realloc (int elem, void *base, int *cur, int cnt)
436{ 1382{
437 *cur = array_nextsize (elem, *cur, cnt); 1383 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur); 1384 return ev_realloc (base, elem * *cur);
439} 1385}
1386
1387#define array_init_zero(base,count) \
1388 memset ((void *)(base), 0, sizeof (*(base)) * (count))
440 1389
441#define array_needsize(type,base,cur,cnt,init) \ 1390#define array_needsize(type,base,cur,cnt,init) \
442 if (expect_false ((cnt) > (cur))) \ 1391 if (expect_false ((cnt) > (cur))) \
443 { \ 1392 { \
444 int ocur_ = (cur); \ 1393 int ecb_unused ocur_ = (cur); \
445 (base) = (type *)array_realloc \ 1394 (base) = (type *)array_realloc \
446 (sizeof (type), (base), &(cur), (cnt)); \ 1395 (sizeof (type), (base), &(cur), (cnt)); \
447 init ((base) + (ocur_), (cur) - ocur_); \ 1396 init ((base) + (ocur_), (cur) - ocur_); \
448 } 1397 }
449 1398
456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1405 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
457 } 1406 }
458#endif 1407#endif
459 1408
460#define array_free(stem, idx) \ 1409#define array_free(stem, idx) \
461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1410 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
462 1411
463/*****************************************************************************/ 1412/*****************************************************************************/
464 1413
1414/* dummy callback for pending events */
1415static void noinline
1416pendingcb (EV_P_ ev_prepare *w, int revents)
1417{
1418}
1419
465void noinline 1420void noinline
466ev_feed_event (EV_P_ void *w, int revents) 1421ev_feed_event (EV_P_ void *w, int revents) EV_THROW
467{ 1422{
468 W w_ = (W)w; 1423 W w_ = (W)w;
469 int pri = ABSPRI (w_); 1424 int pri = ABSPRI (w_);
470 1425
471 if (expect_false (w_->pending)) 1426 if (expect_false (w_->pending))
475 w_->pending = ++pendingcnt [pri]; 1430 w_->pending = ++pendingcnt [pri];
476 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1431 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
477 pendings [pri][w_->pending - 1].w = w_; 1432 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents; 1433 pendings [pri][w_->pending - 1].events = revents;
479 } 1434 }
480}
481 1435
482void inline_size 1436 pendingpri = NUMPRI - 1;
1437}
1438
1439inline_speed void
1440feed_reverse (EV_P_ W w)
1441{
1442 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1443 rfeeds [rfeedcnt++] = w;
1444}
1445
1446inline_size void
1447feed_reverse_done (EV_P_ int revents)
1448{
1449 do
1450 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1451 while (rfeedcnt);
1452}
1453
1454inline_speed void
483queue_events (EV_P_ W *events, int eventcnt, int type) 1455queue_events (EV_P_ W *events, int eventcnt, int type)
484{ 1456{
485 int i; 1457 int i;
486 1458
487 for (i = 0; i < eventcnt; ++i) 1459 for (i = 0; i < eventcnt; ++i)
488 ev_feed_event (EV_A_ events [i], type); 1460 ev_feed_event (EV_A_ events [i], type);
489} 1461}
490 1462
491/*****************************************************************************/ 1463/*****************************************************************************/
492 1464
493void inline_size 1465inline_speed void
494anfds_init (ANFD *base, int count)
495{
496 while (count--)
497 {
498 base->head = 0;
499 base->events = EV_NONE;
500 base->reify = 0;
501
502 ++base;
503 }
504}
505
506void inline_speed
507fd_event (EV_P_ int fd, int revents) 1466fd_event_nocheck (EV_P_ int fd, int revents)
508{ 1467{
509 ANFD *anfd = anfds + fd; 1468 ANFD *anfd = anfds + fd;
510 ev_io *w; 1469 ev_io *w;
511 1470
512 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1471 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
516 if (ev) 1475 if (ev)
517 ev_feed_event (EV_A_ (W)w, ev); 1476 ev_feed_event (EV_A_ (W)w, ev);
518 } 1477 }
519} 1478}
520 1479
1480/* do not submit kernel events for fds that have reify set */
1481/* because that means they changed while we were polling for new events */
1482inline_speed void
1483fd_event (EV_P_ int fd, int revents)
1484{
1485 ANFD *anfd = anfds + fd;
1486
1487 if (expect_true (!anfd->reify))
1488 fd_event_nocheck (EV_A_ fd, revents);
1489}
1490
521void 1491void
522ev_feed_fd_event (EV_P_ int fd, int revents) 1492ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
523{ 1493{
524 if (fd >= 0 && fd < anfdmax) 1494 if (fd >= 0 && fd < anfdmax)
525 fd_event (EV_A_ fd, revents); 1495 fd_event_nocheck (EV_A_ fd, revents);
526} 1496}
527 1497
528void inline_size 1498/* make sure the external fd watch events are in-sync */
1499/* with the kernel/libev internal state */
1500inline_size void
529fd_reify (EV_P) 1501fd_reify (EV_P)
530{ 1502{
531 int i; 1503 int i;
1504
1505#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1506 for (i = 0; i < fdchangecnt; ++i)
1507 {
1508 int fd = fdchanges [i];
1509 ANFD *anfd = anfds + fd;
1510
1511 if (anfd->reify & EV__IOFDSET && anfd->head)
1512 {
1513 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1514
1515 if (handle != anfd->handle)
1516 {
1517 unsigned long arg;
1518
1519 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1520
1521 /* handle changed, but fd didn't - we need to do it in two steps */
1522 backend_modify (EV_A_ fd, anfd->events, 0);
1523 anfd->events = 0;
1524 anfd->handle = handle;
1525 }
1526 }
1527 }
1528#endif
532 1529
533 for (i = 0; i < fdchangecnt; ++i) 1530 for (i = 0; i < fdchangecnt; ++i)
534 { 1531 {
535 int fd = fdchanges [i]; 1532 int fd = fdchanges [i];
536 ANFD *anfd = anfds + fd; 1533 ANFD *anfd = anfds + fd;
537 ev_io *w; 1534 ev_io *w;
538 1535
539 int events = 0; 1536 unsigned char o_events = anfd->events;
1537 unsigned char o_reify = anfd->reify;
540 1538
541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1539 anfd->reify = 0;
542 events |= w->events;
543 1540
544#if EV_SELECT_IS_WINSOCKET 1541 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
545 if (events)
546 { 1542 {
547 unsigned long argp; 1543 anfd->events = 0;
548 anfd->handle = _get_osfhandle (fd); 1544
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1545 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
1546 anfd->events |= (unsigned char)w->events;
1547
1548 if (o_events != anfd->events)
1549 o_reify = EV__IOFDSET; /* actually |= */
550 } 1550 }
551#endif
552 1551
553 anfd->reify = 0; 1552 if (o_reify & EV__IOFDSET)
554
555 backend_modify (EV_A_ fd, anfd->events, events); 1553 backend_modify (EV_A_ fd, o_events, anfd->events);
556 anfd->events = events;
557 } 1554 }
558 1555
559 fdchangecnt = 0; 1556 fdchangecnt = 0;
560} 1557}
561 1558
562void inline_size 1559/* something about the given fd changed */
1560inline_size void
563fd_change (EV_P_ int fd) 1561fd_change (EV_P_ int fd, int flags)
564{ 1562{
565 if (expect_false (anfds [fd].reify)) 1563 unsigned char reify = anfds [fd].reify;
566 return;
567
568 anfds [fd].reify = 1; 1564 anfds [fd].reify |= flags;
569 1565
1566 if (expect_true (!reify))
1567 {
570 ++fdchangecnt; 1568 ++fdchangecnt;
571 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1569 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
572 fdchanges [fdchangecnt - 1] = fd; 1570 fdchanges [fdchangecnt - 1] = fd;
1571 }
573} 1572}
574 1573
575void inline_speed 1574/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1575inline_speed void ecb_cold
576fd_kill (EV_P_ int fd) 1576fd_kill (EV_P_ int fd)
577{ 1577{
578 ev_io *w; 1578 ev_io *w;
579 1579
580 while ((w = (ev_io *)anfds [fd].head)) 1580 while ((w = (ev_io *)anfds [fd].head))
582 ev_io_stop (EV_A_ w); 1582 ev_io_stop (EV_A_ w);
583 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1583 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
584 } 1584 }
585} 1585}
586 1586
587int inline_size 1587/* check whether the given fd is actually valid, for error recovery */
1588inline_size int ecb_cold
588fd_valid (int fd) 1589fd_valid (int fd)
589{ 1590{
590#ifdef _WIN32 1591#ifdef _WIN32
591 return _get_osfhandle (fd) != -1; 1592 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
592#else 1593#else
593 return fcntl (fd, F_GETFD) != -1; 1594 return fcntl (fd, F_GETFD) != -1;
594#endif 1595#endif
595} 1596}
596 1597
597/* called on EBADF to verify fds */ 1598/* called on EBADF to verify fds */
598static void noinline 1599static void noinline ecb_cold
599fd_ebadf (EV_P) 1600fd_ebadf (EV_P)
600{ 1601{
601 int fd; 1602 int fd;
602 1603
603 for (fd = 0; fd < anfdmax; ++fd) 1604 for (fd = 0; fd < anfdmax; ++fd)
604 if (anfds [fd].events) 1605 if (anfds [fd].events)
605 if (!fd_valid (fd) == -1 && errno == EBADF) 1606 if (!fd_valid (fd) && errno == EBADF)
606 fd_kill (EV_A_ fd); 1607 fd_kill (EV_A_ fd);
607} 1608}
608 1609
609/* called on ENOMEM in select/poll to kill some fds and retry */ 1610/* called on ENOMEM in select/poll to kill some fds and retry */
610static void noinline 1611static void noinline ecb_cold
611fd_enomem (EV_P) 1612fd_enomem (EV_P)
612{ 1613{
613 int fd; 1614 int fd;
614 1615
615 for (fd = anfdmax; fd--; ) 1616 for (fd = anfdmax; fd--; )
616 if (anfds [fd].events) 1617 if (anfds [fd].events)
617 { 1618 {
618 fd_kill (EV_A_ fd); 1619 fd_kill (EV_A_ fd);
619 return; 1620 break;
620 } 1621 }
621} 1622}
622 1623
623/* usually called after fork if backend needs to re-arm all fds from scratch */ 1624/* usually called after fork if backend needs to re-arm all fds from scratch */
624static void noinline 1625static void noinline
628 1629
629 for (fd = 0; fd < anfdmax; ++fd) 1630 for (fd = 0; fd < anfdmax; ++fd)
630 if (anfds [fd].events) 1631 if (anfds [fd].events)
631 { 1632 {
632 anfds [fd].events = 0; 1633 anfds [fd].events = 0;
633 fd_change (EV_A_ fd); 1634 anfds [fd].emask = 0;
1635 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
634 } 1636 }
635} 1637}
636 1638
637/*****************************************************************************/ 1639/* used to prepare libev internal fd's */
638 1640/* this is not fork-safe */
639void inline_speed 1641inline_speed void
640upheap (WT *heap, int k)
641{
642 WT w = heap [k];
643
644 while (k && heap [k >> 1]->at > w->at)
645 {
646 heap [k] = heap [k >> 1];
647 ((W)heap [k])->active = k + 1;
648 k >>= 1;
649 }
650
651 heap [k] = w;
652 ((W)heap [k])->active = k + 1;
653
654}
655
656void inline_speed
657downheap (WT *heap, int N, int k)
658{
659 WT w = heap [k];
660
661 while (k < (N >> 1))
662 {
663 int j = k << 1;
664
665 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
666 ++j;
667
668 if (w->at <= heap [j]->at)
669 break;
670
671 heap [k] = heap [j];
672 ((W)heap [k])->active = k + 1;
673 k = j;
674 }
675
676 heap [k] = w;
677 ((W)heap [k])->active = k + 1;
678}
679
680void inline_size
681adjustheap (WT *heap, int N, int k)
682{
683 upheap (heap, k);
684 downheap (heap, N, k);
685}
686
687/*****************************************************************************/
688
689typedef struct
690{
691 WL head;
692 sig_atomic_t volatile gotsig;
693} ANSIG;
694
695static ANSIG *signals;
696static int signalmax;
697
698static int sigpipe [2];
699static sig_atomic_t volatile gotsig;
700static ev_io sigev;
701
702void inline_size
703signals_init (ANSIG *base, int count)
704{
705 while (count--)
706 {
707 base->head = 0;
708 base->gotsig = 0;
709
710 ++base;
711 }
712}
713
714static void
715sighandler (int signum)
716{
717#if _WIN32
718 signal (signum, sighandler);
719#endif
720
721 signals [signum - 1].gotsig = 1;
722
723 if (!gotsig)
724 {
725 int old_errno = errno;
726 gotsig = 1;
727 write (sigpipe [1], &signum, 1);
728 errno = old_errno;
729 }
730}
731
732void noinline
733ev_feed_signal_event (EV_P_ int signum)
734{
735 WL w;
736
737#if EV_MULTIPLICITY
738 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
739#endif
740
741 --signum;
742
743 if (signum < 0 || signum >= signalmax)
744 return;
745
746 signals [signum].gotsig = 0;
747
748 for (w = signals [signum].head; w; w = w->next)
749 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
750}
751
752static void
753sigcb (EV_P_ ev_io *iow, int revents)
754{
755 int signum;
756
757 read (sigpipe [0], &revents, 1);
758 gotsig = 0;
759
760 for (signum = signalmax; signum--; )
761 if (signals [signum].gotsig)
762 ev_feed_signal_event (EV_A_ signum + 1);
763}
764
765void inline_speed
766fd_intern (int fd) 1642fd_intern (int fd)
767{ 1643{
768#ifdef _WIN32 1644#ifdef _WIN32
769 int arg = 1; 1645 unsigned long arg = 1;
770 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1646 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
771#else 1647#else
772 fcntl (fd, F_SETFD, FD_CLOEXEC); 1648 fcntl (fd, F_SETFD, FD_CLOEXEC);
773 fcntl (fd, F_SETFL, O_NONBLOCK); 1649 fcntl (fd, F_SETFL, O_NONBLOCK);
774#endif 1650#endif
775} 1651}
776 1652
777static void noinline
778siginit (EV_P)
779{
780 fd_intern (sigpipe [0]);
781 fd_intern (sigpipe [1]);
782
783 ev_io_set (&sigev, sigpipe [0], EV_READ);
784 ev_io_start (EV_A_ &sigev);
785 ev_unref (EV_A); /* child watcher should not keep loop alive */
786}
787
788/*****************************************************************************/ 1653/*****************************************************************************/
789 1654
790static ev_child *childs [EV_PID_HASHSIZE]; 1655/*
1656 * the heap functions want a real array index. array index 0 is guaranteed to not
1657 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1658 * the branching factor of the d-tree.
1659 */
791 1660
1661/*
1662 * at the moment we allow libev the luxury of two heaps,
1663 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1664 * which is more cache-efficient.
1665 * the difference is about 5% with 50000+ watchers.
1666 */
1667#if EV_USE_4HEAP
1668
1669#define DHEAP 4
1670#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1671#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1672#define UPHEAP_DONE(p,k) ((p) == (k))
1673
1674/* away from the root */
1675inline_speed void
1676downheap (ANHE *heap, int N, int k)
1677{
1678 ANHE he = heap [k];
1679 ANHE *E = heap + N + HEAP0;
1680
1681 for (;;)
1682 {
1683 ev_tstamp minat;
1684 ANHE *minpos;
1685 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1686
1687 /* find minimum child */
1688 if (expect_true (pos + DHEAP - 1 < E))
1689 {
1690 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1691 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1692 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1693 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1694 }
1695 else if (pos < E)
1696 {
1697 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1698 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1699 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1700 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1701 }
1702 else
1703 break;
1704
1705 if (ANHE_at (he) <= minat)
1706 break;
1707
1708 heap [k] = *minpos;
1709 ev_active (ANHE_w (*minpos)) = k;
1710
1711 k = minpos - heap;
1712 }
1713
1714 heap [k] = he;
1715 ev_active (ANHE_w (he)) = k;
1716}
1717
1718#else /* 4HEAP */
1719
1720#define HEAP0 1
1721#define HPARENT(k) ((k) >> 1)
1722#define UPHEAP_DONE(p,k) (!(p))
1723
1724/* away from the root */
1725inline_speed void
1726downheap (ANHE *heap, int N, int k)
1727{
1728 ANHE he = heap [k];
1729
1730 for (;;)
1731 {
1732 int c = k << 1;
1733
1734 if (c >= N + HEAP0)
1735 break;
1736
1737 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1738 ? 1 : 0;
1739
1740 if (ANHE_at (he) <= ANHE_at (heap [c]))
1741 break;
1742
1743 heap [k] = heap [c];
1744 ev_active (ANHE_w (heap [k])) = k;
1745
1746 k = c;
1747 }
1748
1749 heap [k] = he;
1750 ev_active (ANHE_w (he)) = k;
1751}
1752#endif
1753
1754/* towards the root */
1755inline_speed void
1756upheap (ANHE *heap, int k)
1757{
1758 ANHE he = heap [k];
1759
1760 for (;;)
1761 {
1762 int p = HPARENT (k);
1763
1764 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1765 break;
1766
1767 heap [k] = heap [p];
1768 ev_active (ANHE_w (heap [k])) = k;
1769 k = p;
1770 }
1771
1772 heap [k] = he;
1773 ev_active (ANHE_w (he)) = k;
1774}
1775
1776/* move an element suitably so it is in a correct place */
1777inline_size void
1778adjustheap (ANHE *heap, int N, int k)
1779{
1780 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1781 upheap (heap, k);
1782 else
1783 downheap (heap, N, k);
1784}
1785
1786/* rebuild the heap: this function is used only once and executed rarely */
1787inline_size void
1788reheap (ANHE *heap, int N)
1789{
1790 int i;
1791
1792 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1793 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1794 for (i = 0; i < N; ++i)
1795 upheap (heap, i + HEAP0);
1796}
1797
1798/*****************************************************************************/
1799
1800/* associate signal watchers to a signal signal */
1801typedef struct
1802{
1803 EV_ATOMIC_T pending;
1804#if EV_MULTIPLICITY
1805 EV_P;
1806#endif
1807 WL head;
1808} ANSIG;
1809
1810static ANSIG signals [EV_NSIG - 1];
1811
1812/*****************************************************************************/
1813
1814#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1815
1816static void noinline ecb_cold
1817evpipe_init (EV_P)
1818{
1819 if (!ev_is_active (&pipe_w))
1820 {
1821# if EV_USE_EVENTFD
1822 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1823 if (evfd < 0 && errno == EINVAL)
1824 evfd = eventfd (0, 0);
1825
1826 if (evfd >= 0)
1827 {
1828 evpipe [0] = -1;
1829 fd_intern (evfd); /* doing it twice doesn't hurt */
1830 ev_io_set (&pipe_w, evfd, EV_READ);
1831 }
1832 else
1833# endif
1834 {
1835 while (pipe (evpipe))
1836 ev_syserr ("(libev) error creating signal/async pipe");
1837
1838 fd_intern (evpipe [0]);
1839 fd_intern (evpipe [1]);
1840 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1841 }
1842
1843 ev_io_start (EV_A_ &pipe_w);
1844 ev_unref (EV_A); /* watcher should not keep loop alive */
1845 }
1846}
1847
1848inline_speed void
1849evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1850{
1851 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1852
1853 if (expect_true (*flag))
1854 return;
1855
1856 *flag = 1;
1857
1858 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1859
1860 pipe_write_skipped = 1;
1861
1862 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1863
1864 if (pipe_write_wanted)
1865 {
1866 int old_errno;
1867
1868 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1869
1870 old_errno = errno; /* save errno because write will clobber it */
1871
1872#if EV_USE_EVENTFD
1873 if (evfd >= 0)
1874 {
1875 uint64_t counter = 1;
1876 write (evfd, &counter, sizeof (uint64_t));
1877 }
1878 else
1879#endif
1880 {
1881 /* win32 people keep sending patches that change this write() to send() */
1882 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1883 /* so when you think this write should be a send instead, please find out */
1884 /* where your send() is from - it's definitely not the microsoft send, and */
1885 /* tell me. thank you. */
1886 /* it might be that your problem is that your environment needs EV_USE_WSASOCKET */
1887 /* check the ev documentation on how to use this flag */
1888 write (evpipe [1], &(evpipe [1]), 1);
1889 }
1890
1891 errno = old_errno;
1892 }
1893}
1894
1895/* called whenever the libev signal pipe */
1896/* got some events (signal, async) */
1897static void
1898pipecb (EV_P_ ev_io *iow, int revents)
1899{
1900 int i;
1901
1902 if (revents & EV_READ)
1903 {
1904#if EV_USE_EVENTFD
1905 if (evfd >= 0)
1906 {
1907 uint64_t counter;
1908 read (evfd, &counter, sizeof (uint64_t));
1909 }
1910 else
1911#endif
1912 {
1913 char dummy;
1914 /* see discussion in evpipe_write when you think this read should be recv in win32 */
1915 read (evpipe [0], &dummy, 1);
1916 }
1917 }
1918
1919 pipe_write_skipped = 0;
1920
1921 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1922
1923#if EV_SIGNAL_ENABLE
1924 if (sig_pending)
1925 {
1926 sig_pending = 0;
1927
1928 ECB_MEMORY_FENCE_RELEASE;
1929
1930 for (i = EV_NSIG - 1; i--; )
1931 if (expect_false (signals [i].pending))
1932 ev_feed_signal_event (EV_A_ i + 1);
1933 }
1934#endif
1935
1936#if EV_ASYNC_ENABLE
1937 if (async_pending)
1938 {
1939 async_pending = 0;
1940
1941 ECB_MEMORY_FENCE_RELEASE;
1942
1943 for (i = asynccnt; i--; )
1944 if (asyncs [i]->sent)
1945 {
1946 asyncs [i]->sent = 0;
1947 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1948 }
1949 }
1950#endif
1951}
1952
1953/*****************************************************************************/
1954
1955void
1956ev_feed_signal (int signum) EV_THROW
1957{
1958#if EV_MULTIPLICITY
1959 EV_P = signals [signum - 1].loop;
1960
1961 if (!EV_A)
1962 return;
1963#endif
1964
1965 if (!ev_active (&pipe_w))
1966 return;
1967
1968 signals [signum - 1].pending = 1;
1969 evpipe_write (EV_A_ &sig_pending);
1970}
1971
1972static void
1973ev_sighandler (int signum)
1974{
792#ifndef _WIN32 1975#ifdef _WIN32
1976 signal (signum, ev_sighandler);
1977#endif
1978
1979 ev_feed_signal (signum);
1980}
1981
1982void noinline
1983ev_feed_signal_event (EV_P_ int signum) EV_THROW
1984{
1985 WL w;
1986
1987 if (expect_false (signum <= 0 || signum > EV_NSIG))
1988 return;
1989
1990 --signum;
1991
1992#if EV_MULTIPLICITY
1993 /* it is permissible to try to feed a signal to the wrong loop */
1994 /* or, likely more useful, feeding a signal nobody is waiting for */
1995
1996 if (expect_false (signals [signum].loop != EV_A))
1997 return;
1998#endif
1999
2000 signals [signum].pending = 0;
2001
2002 for (w = signals [signum].head; w; w = w->next)
2003 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
2004}
2005
2006#if EV_USE_SIGNALFD
2007static void
2008sigfdcb (EV_P_ ev_io *iow, int revents)
2009{
2010 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2011
2012 for (;;)
2013 {
2014 ssize_t res = read (sigfd, si, sizeof (si));
2015
2016 /* not ISO-C, as res might be -1, but works with SuS */
2017 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2018 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2019
2020 if (res < (ssize_t)sizeof (si))
2021 break;
2022 }
2023}
2024#endif
2025
2026#endif
2027
2028/*****************************************************************************/
2029
2030#if EV_CHILD_ENABLE
2031static WL childs [EV_PID_HASHSIZE];
793 2032
794static ev_signal childev; 2033static ev_signal childev;
795 2034
796void inline_speed 2035#ifndef WIFCONTINUED
2036# define WIFCONTINUED(status) 0
2037#endif
2038
2039/* handle a single child status event */
2040inline_speed void
797child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 2041child_reap (EV_P_ int chain, int pid, int status)
798{ 2042{
799 ev_child *w; 2043 ev_child *w;
2044 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
800 2045
801 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2046 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2047 {
802 if (w->pid == pid || !w->pid) 2048 if ((w->pid == pid || !w->pid)
2049 && (!traced || (w->flags & 1)))
803 { 2050 {
804 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 2051 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
805 w->rpid = pid; 2052 w->rpid = pid;
806 w->rstatus = status; 2053 w->rstatus = status;
807 ev_feed_event (EV_A_ (W)w, EV_CHILD); 2054 ev_feed_event (EV_A_ (W)w, EV_CHILD);
808 } 2055 }
2056 }
809} 2057}
810 2058
811#ifndef WCONTINUED 2059#ifndef WCONTINUED
812# define WCONTINUED 0 2060# define WCONTINUED 0
813#endif 2061#endif
814 2062
2063/* called on sigchld etc., calls waitpid */
815static void 2064static void
816childcb (EV_P_ ev_signal *sw, int revents) 2065childcb (EV_P_ ev_signal *sw, int revents)
817{ 2066{
818 int pid, status; 2067 int pid, status;
819 2068
822 if (!WCONTINUED 2071 if (!WCONTINUED
823 || errno != EINVAL 2072 || errno != EINVAL
824 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 2073 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
825 return; 2074 return;
826 2075
827 /* make sure we are called again until all childs have been reaped */ 2076 /* make sure we are called again until all children have been reaped */
828 /* we need to do it this way so that the callback gets called before we continue */ 2077 /* we need to do it this way so that the callback gets called before we continue */
829 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2078 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
830 2079
831 child_reap (EV_A_ sw, pid, pid, status); 2080 child_reap (EV_A_ pid, pid, status);
832 if (EV_PID_HASHSIZE > 1) 2081 if ((EV_PID_HASHSIZE) > 1)
833 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2082 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
834} 2083}
835 2084
836#endif 2085#endif
837 2086
838/*****************************************************************************/ 2087/*****************************************************************************/
839 2088
2089#if EV_USE_IOCP
2090# include "ev_iocp.c"
2091#endif
840#if EV_USE_PORT 2092#if EV_USE_PORT
841# include "ev_port.c" 2093# include "ev_port.c"
842#endif 2094#endif
843#if EV_USE_KQUEUE 2095#if EV_USE_KQUEUE
844# include "ev_kqueue.c" 2096# include "ev_kqueue.c"
851#endif 2103#endif
852#if EV_USE_SELECT 2104#if EV_USE_SELECT
853# include "ev_select.c" 2105# include "ev_select.c"
854#endif 2106#endif
855 2107
856int 2108int ecb_cold
857ev_version_major (void) 2109ev_version_major (void) EV_THROW
858{ 2110{
859 return EV_VERSION_MAJOR; 2111 return EV_VERSION_MAJOR;
860} 2112}
861 2113
862int 2114int ecb_cold
863ev_version_minor (void) 2115ev_version_minor (void) EV_THROW
864{ 2116{
865 return EV_VERSION_MINOR; 2117 return EV_VERSION_MINOR;
866} 2118}
867 2119
868/* return true if we are running with elevated privileges and should ignore env variables */ 2120/* return true if we are running with elevated privileges and should ignore env variables */
869int inline_size 2121int inline_size ecb_cold
870enable_secure (void) 2122enable_secure (void)
871{ 2123{
872#ifdef _WIN32 2124#ifdef _WIN32
873 return 0; 2125 return 0;
874#else 2126#else
875 return getuid () != geteuid () 2127 return getuid () != geteuid ()
876 || getgid () != getegid (); 2128 || getgid () != getegid ();
877#endif 2129#endif
878} 2130}
879 2131
880unsigned int 2132unsigned int ecb_cold
881ev_supported_backends (void) 2133ev_supported_backends (void) EV_THROW
882{ 2134{
883 unsigned int flags = 0; 2135 unsigned int flags = 0;
884 2136
885 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2137 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
886 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2138 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
889 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2141 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
890 2142
891 return flags; 2143 return flags;
892} 2144}
893 2145
894unsigned int 2146unsigned int ecb_cold
895ev_recommended_backends (void) 2147ev_recommended_backends (void) EV_THROW
896{ 2148{
897 unsigned int flags = ev_supported_backends (); 2149 unsigned int flags = ev_supported_backends ();
898 2150
899#ifndef __NetBSD__ 2151#ifndef __NetBSD__
900 /* kqueue is borked on everything but netbsd apparently */ 2152 /* kqueue is borked on everything but netbsd apparently */
901 /* it usually doesn't work correctly on anything but sockets and pipes */ 2153 /* it usually doesn't work correctly on anything but sockets and pipes */
902 flags &= ~EVBACKEND_KQUEUE; 2154 flags &= ~EVBACKEND_KQUEUE;
903#endif 2155#endif
904#ifdef __APPLE__ 2156#ifdef __APPLE__
905 // flags &= ~EVBACKEND_KQUEUE; for documentation 2157 /* only select works correctly on that "unix-certified" platform */
906 flags &= ~EVBACKEND_POLL; 2158 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2159 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2160#endif
2161#ifdef __FreeBSD__
2162 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
907#endif 2163#endif
908 2164
909 return flags; 2165 return flags;
910} 2166}
911 2167
2168unsigned int ecb_cold
2169ev_embeddable_backends (void) EV_THROW
2170{
2171 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2172
2173 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2174 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2175 flags &= ~EVBACKEND_EPOLL;
2176
2177 return flags;
2178}
2179
912unsigned int 2180unsigned int
913ev_embeddable_backends (void) 2181ev_backend (EV_P) EV_THROW
914{ 2182{
915 return EVBACKEND_EPOLL 2183 return backend;
916 | EVBACKEND_KQUEUE
917 | EVBACKEND_PORT;
918} 2184}
919 2185
2186#if EV_FEATURE_API
920unsigned int 2187unsigned int
921ev_backend (EV_P) 2188ev_iteration (EV_P) EV_THROW
922{ 2189{
923 return backend; 2190 return loop_count;
924} 2191}
925 2192
926unsigned int 2193unsigned int
927ev_loop_count (EV_P) 2194ev_depth (EV_P) EV_THROW
928{ 2195{
929 return loop_count; 2196 return loop_depth;
930} 2197}
931 2198
2199void
2200ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2201{
2202 io_blocktime = interval;
2203}
2204
2205void
2206ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
2207{
2208 timeout_blocktime = interval;
2209}
2210
2211void
2212ev_set_userdata (EV_P_ void *data) EV_THROW
2213{
2214 userdata = data;
2215}
2216
2217void *
2218ev_userdata (EV_P) EV_THROW
2219{
2220 return userdata;
2221}
2222
2223void
2224ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2225{
2226 invoke_cb = invoke_pending_cb;
2227}
2228
2229void
2230ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2231{
2232 release_cb = release;
2233 acquire_cb = acquire;
2234}
2235#endif
2236
2237/* initialise a loop structure, must be zero-initialised */
932static void noinline 2238static void noinline ecb_cold
933loop_init (EV_P_ unsigned int flags) 2239loop_init (EV_P_ unsigned int flags) EV_THROW
934{ 2240{
935 if (!backend) 2241 if (!backend)
936 { 2242 {
2243 origflags = flags;
2244
2245#if EV_USE_REALTIME
2246 if (!have_realtime)
2247 {
2248 struct timespec ts;
2249
2250 if (!clock_gettime (CLOCK_REALTIME, &ts))
2251 have_realtime = 1;
2252 }
2253#endif
2254
937#if EV_USE_MONOTONIC 2255#if EV_USE_MONOTONIC
2256 if (!have_monotonic)
938 { 2257 {
939 struct timespec ts; 2258 struct timespec ts;
2259
940 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2260 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
941 have_monotonic = 1; 2261 have_monotonic = 1;
942 } 2262 }
943#endif 2263#endif
944
945 ev_rt_now = ev_time ();
946 mn_now = get_clock ();
947 now_floor = mn_now;
948 rtmn_diff = ev_rt_now - mn_now;
949 2264
950 /* pid check not overridable via env */ 2265 /* pid check not overridable via env */
951#ifndef _WIN32 2266#ifndef _WIN32
952 if (flags & EVFLAG_FORKCHECK) 2267 if (flags & EVFLAG_FORKCHECK)
953 curpid = getpid (); 2268 curpid = getpid ();
956 if (!(flags & EVFLAG_NOENV) 2271 if (!(flags & EVFLAG_NOENV)
957 && !enable_secure () 2272 && !enable_secure ()
958 && getenv ("LIBEV_FLAGS")) 2273 && getenv ("LIBEV_FLAGS"))
959 flags = atoi (getenv ("LIBEV_FLAGS")); 2274 flags = atoi (getenv ("LIBEV_FLAGS"));
960 2275
961 if (!(flags & 0x0000ffffUL)) 2276 ev_rt_now = ev_time ();
2277 mn_now = get_clock ();
2278 now_floor = mn_now;
2279 rtmn_diff = ev_rt_now - mn_now;
2280#if EV_FEATURE_API
2281 invoke_cb = ev_invoke_pending;
2282#endif
2283
2284 io_blocktime = 0.;
2285 timeout_blocktime = 0.;
2286 backend = 0;
2287 backend_fd = -1;
2288 sig_pending = 0;
2289#if EV_ASYNC_ENABLE
2290 async_pending = 0;
2291#endif
2292 pipe_write_skipped = 0;
2293 pipe_write_wanted = 0;
2294#if EV_USE_INOTIFY
2295 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2296#endif
2297#if EV_USE_SIGNALFD
2298 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2299#endif
2300
2301 if (!(flags & EVBACKEND_MASK))
962 flags |= ev_recommended_backends (); 2302 flags |= ev_recommended_backends ();
963 2303
964 backend = 0;
965 backend_fd = -1;
966#if EV_USE_INOTIFY 2304#if EV_USE_IOCP
967 fs_fd = -2; 2305 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
968#endif 2306#endif
969
970#if EV_USE_PORT 2307#if EV_USE_PORT
971 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2308 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
972#endif 2309#endif
973#if EV_USE_KQUEUE 2310#if EV_USE_KQUEUE
974 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2311 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
981#endif 2318#endif
982#if EV_USE_SELECT 2319#if EV_USE_SELECT
983 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2320 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
984#endif 2321#endif
985 2322
2323 ev_prepare_init (&pending_w, pendingcb);
2324
2325#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
986 ev_init (&sigev, sigcb); 2326 ev_init (&pipe_w, pipecb);
987 ev_set_priority (&sigev, EV_MAXPRI); 2327 ev_set_priority (&pipe_w, EV_MAXPRI);
2328#endif
988 } 2329 }
989} 2330}
990 2331
991static void noinline 2332/* free up a loop structure */
2333void ecb_cold
992loop_destroy (EV_P) 2334ev_loop_destroy (EV_P)
993{ 2335{
994 int i; 2336 int i;
2337
2338#if EV_MULTIPLICITY
2339 /* mimic free (0) */
2340 if (!EV_A)
2341 return;
2342#endif
2343
2344#if EV_CLEANUP_ENABLE
2345 /* queue cleanup watchers (and execute them) */
2346 if (expect_false (cleanupcnt))
2347 {
2348 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2349 EV_INVOKE_PENDING;
2350 }
2351#endif
2352
2353#if EV_CHILD_ENABLE
2354 if (ev_is_active (&childev))
2355 {
2356 ev_ref (EV_A); /* child watcher */
2357 ev_signal_stop (EV_A_ &childev);
2358 }
2359#endif
2360
2361 if (ev_is_active (&pipe_w))
2362 {
2363 /*ev_ref (EV_A);*/
2364 /*ev_io_stop (EV_A_ &pipe_w);*/
2365
2366#if EV_USE_EVENTFD
2367 if (evfd >= 0)
2368 close (evfd);
2369#endif
2370
2371 if (evpipe [0] >= 0)
2372 {
2373 EV_WIN32_CLOSE_FD (evpipe [0]);
2374 EV_WIN32_CLOSE_FD (evpipe [1]);
2375 }
2376 }
2377
2378#if EV_USE_SIGNALFD
2379 if (ev_is_active (&sigfd_w))
2380 close (sigfd);
2381#endif
995 2382
996#if EV_USE_INOTIFY 2383#if EV_USE_INOTIFY
997 if (fs_fd >= 0) 2384 if (fs_fd >= 0)
998 close (fs_fd); 2385 close (fs_fd);
999#endif 2386#endif
1000 2387
1001 if (backend_fd >= 0) 2388 if (backend_fd >= 0)
1002 close (backend_fd); 2389 close (backend_fd);
1003 2390
2391#if EV_USE_IOCP
2392 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2393#endif
1004#if EV_USE_PORT 2394#if EV_USE_PORT
1005 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2395 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1006#endif 2396#endif
1007#if EV_USE_KQUEUE 2397#if EV_USE_KQUEUE
1008 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2398 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1023#if EV_IDLE_ENABLE 2413#if EV_IDLE_ENABLE
1024 array_free (idle, [i]); 2414 array_free (idle, [i]);
1025#endif 2415#endif
1026 } 2416 }
1027 2417
2418 ev_free (anfds); anfds = 0; anfdmax = 0;
2419
1028 /* have to use the microsoft-never-gets-it-right macro */ 2420 /* have to use the microsoft-never-gets-it-right macro */
2421 array_free (rfeed, EMPTY);
1029 array_free (fdchange, EMPTY); 2422 array_free (fdchange, EMPTY);
1030 array_free (timer, EMPTY); 2423 array_free (timer, EMPTY);
1031#if EV_PERIODIC_ENABLE 2424#if EV_PERIODIC_ENABLE
1032 array_free (periodic, EMPTY); 2425 array_free (periodic, EMPTY);
1033#endif 2426#endif
2427#if EV_FORK_ENABLE
2428 array_free (fork, EMPTY);
2429#endif
2430#if EV_CLEANUP_ENABLE
2431 array_free (cleanup, EMPTY);
2432#endif
1034 array_free (prepare, EMPTY); 2433 array_free (prepare, EMPTY);
1035 array_free (check, EMPTY); 2434 array_free (check, EMPTY);
2435#if EV_ASYNC_ENABLE
2436 array_free (async, EMPTY);
2437#endif
1036 2438
1037 backend = 0; 2439 backend = 0;
1038}
1039 2440
2441#if EV_MULTIPLICITY
2442 if (ev_is_default_loop (EV_A))
2443#endif
2444 ev_default_loop_ptr = 0;
2445#if EV_MULTIPLICITY
2446 else
2447 ev_free (EV_A);
2448#endif
2449}
2450
2451#if EV_USE_INOTIFY
1040void inline_size infy_fork (EV_P); 2452inline_size void infy_fork (EV_P);
2453#endif
1041 2454
1042void inline_size 2455inline_size void
1043loop_fork (EV_P) 2456loop_fork (EV_P)
1044{ 2457{
1045#if EV_USE_PORT 2458#if EV_USE_PORT
1046 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2459 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1047#endif 2460#endif
1053#endif 2466#endif
1054#if EV_USE_INOTIFY 2467#if EV_USE_INOTIFY
1055 infy_fork (EV_A); 2468 infy_fork (EV_A);
1056#endif 2469#endif
1057 2470
1058 if (ev_is_active (&sigev)) 2471 if (ev_is_active (&pipe_w))
1059 { 2472 {
1060 /* default loop */ 2473 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1061 2474
1062 ev_ref (EV_A); 2475 ev_ref (EV_A);
1063 ev_io_stop (EV_A_ &sigev); 2476 ev_io_stop (EV_A_ &pipe_w);
1064 close (sigpipe [0]);
1065 close (sigpipe [1]);
1066 2477
1067 while (pipe (sigpipe)) 2478#if EV_USE_EVENTFD
1068 syserr ("(libev) error creating pipe"); 2479 if (evfd >= 0)
2480 close (evfd);
2481#endif
1069 2482
2483 if (evpipe [0] >= 0)
2484 {
2485 EV_WIN32_CLOSE_FD (evpipe [0]);
2486 EV_WIN32_CLOSE_FD (evpipe [1]);
2487 }
2488
2489#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1070 siginit (EV_A); 2490 evpipe_init (EV_A);
2491 /* now iterate over everything, in case we missed something */
2492 pipecb (EV_A_ &pipe_w, EV_READ);
2493#endif
1071 } 2494 }
1072 2495
1073 postfork = 0; 2496 postfork = 0;
1074} 2497}
1075 2498
1076#if EV_MULTIPLICITY 2499#if EV_MULTIPLICITY
2500
1077struct ev_loop * 2501struct ev_loop * ecb_cold
1078ev_loop_new (unsigned int flags) 2502ev_loop_new (unsigned int flags) EV_THROW
1079{ 2503{
1080 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2504 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1081 2505
1082 memset (loop, 0, sizeof (struct ev_loop)); 2506 memset (EV_A, 0, sizeof (struct ev_loop));
1083
1084 loop_init (EV_A_ flags); 2507 loop_init (EV_A_ flags);
1085 2508
1086 if (ev_backend (EV_A)) 2509 if (ev_backend (EV_A))
1087 return loop; 2510 return EV_A;
1088 2511
2512 ev_free (EV_A);
1089 return 0; 2513 return 0;
1090} 2514}
1091 2515
1092void 2516#endif /* multiplicity */
1093ev_loop_destroy (EV_P)
1094{
1095 loop_destroy (EV_A);
1096 ev_free (loop);
1097}
1098 2517
1099void 2518#if EV_VERIFY
1100ev_loop_fork (EV_P) 2519static void noinline ecb_cold
2520verify_watcher (EV_P_ W w)
1101{ 2521{
1102 postfork = 1; 2522 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1103}
1104 2523
2524 if (w->pending)
2525 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2526}
2527
2528static void noinline ecb_cold
2529verify_heap (EV_P_ ANHE *heap, int N)
2530{
2531 int i;
2532
2533 for (i = HEAP0; i < N + HEAP0; ++i)
2534 {
2535 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2536 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2537 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2538
2539 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2540 }
2541}
2542
2543static void noinline ecb_cold
2544array_verify (EV_P_ W *ws, int cnt)
2545{
2546 while (cnt--)
2547 {
2548 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2549 verify_watcher (EV_A_ ws [cnt]);
2550 }
2551}
2552#endif
2553
2554#if EV_FEATURE_API
2555void ecb_cold
2556ev_verify (EV_P) EV_THROW
2557{
2558#if EV_VERIFY
2559 int i;
2560 WL w;
2561
2562 assert (activecnt >= -1);
2563
2564 assert (fdchangemax >= fdchangecnt);
2565 for (i = 0; i < fdchangecnt; ++i)
2566 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2567
2568 assert (anfdmax >= 0);
2569 for (i = 0; i < anfdmax; ++i)
2570 for (w = anfds [i].head; w; w = w->next)
2571 {
2572 verify_watcher (EV_A_ (W)w);
2573 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2574 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2575 }
2576
2577 assert (timermax >= timercnt);
2578 verify_heap (EV_A_ timers, timercnt);
2579
2580#if EV_PERIODIC_ENABLE
2581 assert (periodicmax >= periodiccnt);
2582 verify_heap (EV_A_ periodics, periodiccnt);
2583#endif
2584
2585 for (i = NUMPRI; i--; )
2586 {
2587 assert (pendingmax [i] >= pendingcnt [i]);
2588#if EV_IDLE_ENABLE
2589 assert (idleall >= 0);
2590 assert (idlemax [i] >= idlecnt [i]);
2591 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2592#endif
2593 }
2594
2595#if EV_FORK_ENABLE
2596 assert (forkmax >= forkcnt);
2597 array_verify (EV_A_ (W *)forks, forkcnt);
2598#endif
2599
2600#if EV_CLEANUP_ENABLE
2601 assert (cleanupmax >= cleanupcnt);
2602 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2603#endif
2604
2605#if EV_ASYNC_ENABLE
2606 assert (asyncmax >= asynccnt);
2607 array_verify (EV_A_ (W *)asyncs, asynccnt);
2608#endif
2609
2610#if EV_PREPARE_ENABLE
2611 assert (preparemax >= preparecnt);
2612 array_verify (EV_A_ (W *)prepares, preparecnt);
2613#endif
2614
2615#if EV_CHECK_ENABLE
2616 assert (checkmax >= checkcnt);
2617 array_verify (EV_A_ (W *)checks, checkcnt);
2618#endif
2619
2620# if 0
2621#if EV_CHILD_ENABLE
2622 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2623 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2624#endif
2625# endif
2626#endif
2627}
1105#endif 2628#endif
1106 2629
1107#if EV_MULTIPLICITY 2630#if EV_MULTIPLICITY
1108struct ev_loop * 2631struct ev_loop * ecb_cold
1109ev_default_loop_init (unsigned int flags)
1110#else 2632#else
1111int 2633int
2634#endif
1112ev_default_loop (unsigned int flags) 2635ev_default_loop (unsigned int flags) EV_THROW
1113#endif
1114{ 2636{
1115 if (sigpipe [0] == sigpipe [1])
1116 if (pipe (sigpipe))
1117 return 0;
1118
1119 if (!ev_default_loop_ptr) 2637 if (!ev_default_loop_ptr)
1120 { 2638 {
1121#if EV_MULTIPLICITY 2639#if EV_MULTIPLICITY
1122 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2640 EV_P = ev_default_loop_ptr = &default_loop_struct;
1123#else 2641#else
1124 ev_default_loop_ptr = 1; 2642 ev_default_loop_ptr = 1;
1125#endif 2643#endif
1126 2644
1127 loop_init (EV_A_ flags); 2645 loop_init (EV_A_ flags);
1128 2646
1129 if (ev_backend (EV_A)) 2647 if (ev_backend (EV_A))
1130 { 2648 {
1131 siginit (EV_A); 2649#if EV_CHILD_ENABLE
1132
1133#ifndef _WIN32
1134 ev_signal_init (&childev, childcb, SIGCHLD); 2650 ev_signal_init (&childev, childcb, SIGCHLD);
1135 ev_set_priority (&childev, EV_MAXPRI); 2651 ev_set_priority (&childev, EV_MAXPRI);
1136 ev_signal_start (EV_A_ &childev); 2652 ev_signal_start (EV_A_ &childev);
1137 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2653 ev_unref (EV_A); /* child watcher should not keep loop alive */
1138#endif 2654#endif
1143 2659
1144 return ev_default_loop_ptr; 2660 return ev_default_loop_ptr;
1145} 2661}
1146 2662
1147void 2663void
1148ev_default_destroy (void) 2664ev_loop_fork (EV_P) EV_THROW
1149{ 2665{
1150#if EV_MULTIPLICITY 2666 postfork = 1; /* must be in line with ev_default_fork */
1151 struct ev_loop *loop = ev_default_loop_ptr;
1152#endif
1153
1154#ifndef _WIN32
1155 ev_ref (EV_A); /* child watcher */
1156 ev_signal_stop (EV_A_ &childev);
1157#endif
1158
1159 ev_ref (EV_A); /* signal watcher */
1160 ev_io_stop (EV_A_ &sigev);
1161
1162 close (sigpipe [0]); sigpipe [0] = 0;
1163 close (sigpipe [1]); sigpipe [1] = 0;
1164
1165 loop_destroy (EV_A);
1166}
1167
1168void
1169ev_default_fork (void)
1170{
1171#if EV_MULTIPLICITY
1172 struct ev_loop *loop = ev_default_loop_ptr;
1173#endif
1174
1175 if (backend)
1176 postfork = 1;
1177} 2667}
1178 2668
1179/*****************************************************************************/ 2669/*****************************************************************************/
1180 2670
1181void 2671void
1182ev_invoke (EV_P_ void *w, int revents) 2672ev_invoke (EV_P_ void *w, int revents)
1183{ 2673{
1184 EV_CB_INVOKE ((W)w, revents); 2674 EV_CB_INVOKE ((W)w, revents);
1185} 2675}
1186 2676
1187void inline_speed 2677unsigned int
1188call_pending (EV_P) 2678ev_pending_count (EV_P) EV_THROW
1189{ 2679{
1190 int pri; 2680 int pri;
2681 unsigned int count = 0;
1191 2682
1192 for (pri = NUMPRI; pri--; ) 2683 for (pri = NUMPRI; pri--; )
2684 count += pendingcnt [pri];
2685
2686 return count;
2687}
2688
2689void noinline
2690ev_invoke_pending (EV_P)
2691{
2692 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
1193 while (pendingcnt [pri]) 2693 while (pendingcnt [pendingpri])
1194 { 2694 {
1195 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2695 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1196 2696
1197 if (expect_true (p->w))
1198 {
1199 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1200
1201 p->w->pending = 0; 2697 p->w->pending = 0;
1202 EV_CB_INVOKE (p->w, p->events); 2698 EV_CB_INVOKE (p->w, p->events);
1203 } 2699 EV_FREQUENT_CHECK;
1204 } 2700 }
1205} 2701}
1206 2702
1207void inline_size
1208timers_reify (EV_P)
1209{
1210 while (timercnt && ((WT)timers [0])->at <= mn_now)
1211 {
1212 ev_timer *w = timers [0];
1213
1214 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1215
1216 /* first reschedule or stop timer */
1217 if (w->repeat)
1218 {
1219 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1220
1221 ((WT)w)->at += w->repeat;
1222 if (((WT)w)->at < mn_now)
1223 ((WT)w)->at = mn_now;
1224
1225 downheap ((WT *)timers, timercnt, 0);
1226 }
1227 else
1228 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1229
1230 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1231 }
1232}
1233
1234#if EV_PERIODIC_ENABLE
1235void inline_size
1236periodics_reify (EV_P)
1237{
1238 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1239 {
1240 ev_periodic *w = periodics [0];
1241
1242 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1243
1244 /* first reschedule or stop timer */
1245 if (w->reschedule_cb)
1246 {
1247 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1248 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1249 downheap ((WT *)periodics, periodiccnt, 0);
1250 }
1251 else if (w->interval)
1252 {
1253 ((WT)w)->at = w->offset + floor ((ev_rt_now + TIME_EPSILON - w->offset) / w->interval + 1.) * w->interval;
1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1255 downheap ((WT *)periodics, periodiccnt, 0);
1256 }
1257 else
1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1259
1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1261 }
1262}
1263
1264static void noinline
1265periodics_reschedule (EV_P)
1266{
1267 int i;
1268
1269 /* adjust periodics after time jump */
1270 for (i = 0; i < periodiccnt; ++i)
1271 {
1272 ev_periodic *w = periodics [i];
1273
1274 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1276 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 }
1279
1280 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i);
1283}
1284#endif
1285
1286#if EV_IDLE_ENABLE 2703#if EV_IDLE_ENABLE
1287void inline_size 2704/* make idle watchers pending. this handles the "call-idle */
2705/* only when higher priorities are idle" logic */
2706inline_size void
1288idle_reify (EV_P) 2707idle_reify (EV_P)
1289{ 2708{
1290 if (expect_false (idleall)) 2709 if (expect_false (idleall))
1291 { 2710 {
1292 int pri; 2711 int pri;
1304 } 2723 }
1305 } 2724 }
1306} 2725}
1307#endif 2726#endif
1308 2727
1309int inline_size 2728/* make timers pending */
1310time_update_monotonic (EV_P) 2729inline_size void
2730timers_reify (EV_P)
1311{ 2731{
2732 EV_FREQUENT_CHECK;
2733
2734 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2735 {
2736 do
2737 {
2738 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2739
2740 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2741
2742 /* first reschedule or stop timer */
2743 if (w->repeat)
2744 {
2745 ev_at (w) += w->repeat;
2746 if (ev_at (w) < mn_now)
2747 ev_at (w) = mn_now;
2748
2749 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2750
2751 ANHE_at_cache (timers [HEAP0]);
2752 downheap (timers, timercnt, HEAP0);
2753 }
2754 else
2755 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2756
2757 EV_FREQUENT_CHECK;
2758 feed_reverse (EV_A_ (W)w);
2759 }
2760 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2761
2762 feed_reverse_done (EV_A_ EV_TIMER);
2763 }
2764}
2765
2766#if EV_PERIODIC_ENABLE
2767
2768static void noinline
2769periodic_recalc (EV_P_ ev_periodic *w)
2770{
2771 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2772 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2773
2774 /* the above almost always errs on the low side */
2775 while (at <= ev_rt_now)
2776 {
2777 ev_tstamp nat = at + w->interval;
2778
2779 /* when resolution fails us, we use ev_rt_now */
2780 if (expect_false (nat == at))
2781 {
2782 at = ev_rt_now;
2783 break;
2784 }
2785
2786 at = nat;
2787 }
2788
2789 ev_at (w) = at;
2790}
2791
2792/* make periodics pending */
2793inline_size void
2794periodics_reify (EV_P)
2795{
2796 EV_FREQUENT_CHECK;
2797
2798 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2799 {
2800 int feed_count = 0;
2801
2802 do
2803 {
2804 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2805
2806 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2807
2808 /* first reschedule or stop timer */
2809 if (w->reschedule_cb)
2810 {
2811 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2812
2813 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2814
2815 ANHE_at_cache (periodics [HEAP0]);
2816 downheap (periodics, periodiccnt, HEAP0);
2817 }
2818 else if (w->interval)
2819 {
2820 periodic_recalc (EV_A_ w);
2821 ANHE_at_cache (periodics [HEAP0]);
2822 downheap (periodics, periodiccnt, HEAP0);
2823 }
2824 else
2825 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2826
2827 EV_FREQUENT_CHECK;
2828 feed_reverse (EV_A_ (W)w);
2829 }
2830 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2831
2832 feed_reverse_done (EV_A_ EV_PERIODIC);
2833 }
2834}
2835
2836/* simply recalculate all periodics */
2837/* TODO: maybe ensure that at least one event happens when jumping forward? */
2838static void noinline ecb_cold
2839periodics_reschedule (EV_P)
2840{
2841 int i;
2842
2843 /* adjust periodics after time jump */
2844 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2845 {
2846 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2847
2848 if (w->reschedule_cb)
2849 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2850 else if (w->interval)
2851 periodic_recalc (EV_A_ w);
2852
2853 ANHE_at_cache (periodics [i]);
2854 }
2855
2856 reheap (periodics, periodiccnt);
2857}
2858#endif
2859
2860/* adjust all timers by a given offset */
2861static void noinline ecb_cold
2862timers_reschedule (EV_P_ ev_tstamp adjust)
2863{
2864 int i;
2865
2866 for (i = 0; i < timercnt; ++i)
2867 {
2868 ANHE *he = timers + i + HEAP0;
2869 ANHE_w (*he)->at += adjust;
2870 ANHE_at_cache (*he);
2871 }
2872}
2873
2874/* fetch new monotonic and realtime times from the kernel */
2875/* also detect if there was a timejump, and act accordingly */
2876inline_speed void
2877time_update (EV_P_ ev_tstamp max_block)
2878{
2879#if EV_USE_MONOTONIC
2880 if (expect_true (have_monotonic))
2881 {
2882 int i;
2883 ev_tstamp odiff = rtmn_diff;
2884
1312 mn_now = get_clock (); 2885 mn_now = get_clock ();
1313 2886
2887 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2888 /* interpolate in the meantime */
1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2889 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1315 { 2890 {
1316 ev_rt_now = rtmn_diff + mn_now; 2891 ev_rt_now = rtmn_diff + mn_now;
1317 return 0; 2892 return;
1318 } 2893 }
1319 else 2894
1320 {
1321 now_floor = mn_now; 2895 now_floor = mn_now;
1322 ev_rt_now = ev_time (); 2896 ev_rt_now = ev_time ();
1323 return 1;
1324 }
1325}
1326 2897
1327void inline_size 2898 /* loop a few times, before making important decisions.
1328time_update (EV_P) 2899 * on the choice of "4": one iteration isn't enough,
1329{ 2900 * in case we get preempted during the calls to
1330 int i; 2901 * ev_time and get_clock. a second call is almost guaranteed
1331 2902 * to succeed in that case, though. and looping a few more times
1332#if EV_USE_MONOTONIC 2903 * doesn't hurt either as we only do this on time-jumps or
1333 if (expect_true (have_monotonic)) 2904 * in the unlikely event of having been preempted here.
1334 { 2905 */
1335 if (time_update_monotonic (EV_A)) 2906 for (i = 4; --i; )
1336 { 2907 {
1337 ev_tstamp odiff = rtmn_diff; 2908 ev_tstamp diff;
1338
1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1348 {
1349 rtmn_diff = ev_rt_now - mn_now; 2909 rtmn_diff = ev_rt_now - mn_now;
1350 2910
1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2911 diff = odiff - rtmn_diff;
2912
2913 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1352 return; /* all is well */ 2914 return; /* all is well */
1353 2915
1354 ev_rt_now = ev_time (); 2916 ev_rt_now = ev_time ();
1355 mn_now = get_clock (); 2917 mn_now = get_clock ();
1356 now_floor = mn_now; 2918 now_floor = mn_now;
1357 } 2919 }
1358 2920
2921 /* no timer adjustment, as the monotonic clock doesn't jump */
2922 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1359# if EV_PERIODIC_ENABLE 2923# if EV_PERIODIC_ENABLE
1360 periodics_reschedule (EV_A); 2924 periodics_reschedule (EV_A);
1361# endif 2925# endif
1362 /* no timer adjustment, as the monotonic clock doesn't jump */
1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1364 }
1365 } 2926 }
1366 else 2927 else
1367#endif 2928#endif
1368 { 2929 {
1369 ev_rt_now = ev_time (); 2930 ev_rt_now = ev_time ();
1370 2931
1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2932 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 { 2933 {
2934 /* adjust timers. this is easy, as the offset is the same for all of them */
2935 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1373#if EV_PERIODIC_ENABLE 2936#if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 2937 periodics_reschedule (EV_A);
1375#endif 2938#endif
1376
1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i)
1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1380 } 2939 }
1381 2940
1382 mn_now = ev_rt_now; 2941 mn_now = ev_rt_now;
1383 } 2942 }
1384} 2943}
1385 2944
1386void 2945int
1387ev_ref (EV_P)
1388{
1389 ++activecnt;
1390}
1391
1392void
1393ev_unref (EV_P)
1394{
1395 --activecnt;
1396}
1397
1398static int loop_done;
1399
1400void
1401ev_loop (EV_P_ int flags) 2946ev_run (EV_P_ int flags)
1402{ 2947{
1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2948#if EV_FEATURE_API
1404 ? EVUNLOOP_ONE 2949 ++loop_depth;
1405 : EVUNLOOP_CANCEL; 2950#endif
1406 2951
2952 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2953
2954 loop_done = EVBREAK_CANCEL;
2955
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2956 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1408 2957
1409 do 2958 do
1410 { 2959 {
2960#if EV_VERIFY >= 2
2961 ev_verify (EV_A);
2962#endif
2963
1411#ifndef _WIN32 2964#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */ 2965 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid)) 2966 if (expect_false (getpid () != curpid))
1414 { 2967 {
1415 curpid = getpid (); 2968 curpid = getpid ();
1421 /* we might have forked, so queue fork handlers */ 2974 /* we might have forked, so queue fork handlers */
1422 if (expect_false (postfork)) 2975 if (expect_false (postfork))
1423 if (forkcnt) 2976 if (forkcnt)
1424 { 2977 {
1425 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2978 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1426 call_pending (EV_A); 2979 EV_INVOKE_PENDING;
1427 } 2980 }
1428#endif 2981#endif
1429 2982
2983#if EV_PREPARE_ENABLE
1430 /* queue prepare watchers (and execute them) */ 2984 /* queue prepare watchers (and execute them) */
1431 if (expect_false (preparecnt)) 2985 if (expect_false (preparecnt))
1432 { 2986 {
1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2987 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1434 call_pending (EV_A); 2988 EV_INVOKE_PENDING;
1435 } 2989 }
2990#endif
1436 2991
1437 if (expect_false (!activecnt)) 2992 if (expect_false (loop_done))
1438 break; 2993 break;
1439 2994
1440 /* we might have forked, so reify kernel state if necessary */ 2995 /* we might have forked, so reify kernel state if necessary */
1441 if (expect_false (postfork)) 2996 if (expect_false (postfork))
1442 loop_fork (EV_A); 2997 loop_fork (EV_A);
1444 /* update fd-related kernel structures */ 2999 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 3000 fd_reify (EV_A);
1446 3001
1447 /* calculate blocking time */ 3002 /* calculate blocking time */
1448 { 3003 {
1449 ev_tstamp block; 3004 ev_tstamp waittime = 0.;
3005 ev_tstamp sleeptime = 0.;
1450 3006
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 3007 /* remember old timestamp for io_blocktime calculation */
1452 block = 0.; /* do not block at all */ 3008 ev_tstamp prev_mn_now = mn_now;
1453 else 3009
3010 /* update time to cancel out callback processing overhead */
3011 time_update (EV_A_ 1e100);
3012
3013 /* from now on, we want a pipe-wake-up */
3014 pipe_write_wanted = 1;
3015
3016 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3017
3018 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1454 { 3019 {
1455 /* update time to cancel out callback processing overhead */
1456#if EV_USE_MONOTONIC
1457 if (expect_true (have_monotonic))
1458 time_update_monotonic (EV_A);
1459 else
1460#endif
1461 {
1462 ev_rt_now = ev_time ();
1463 mn_now = ev_rt_now;
1464 }
1465
1466 block = MAX_BLOCKTIME; 3020 waittime = MAX_BLOCKTIME;
1467 3021
1468 if (timercnt) 3022 if (timercnt)
1469 { 3023 {
1470 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 3024 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1471 if (block > to) block = to; 3025 if (waittime > to) waittime = to;
1472 } 3026 }
1473 3027
1474#if EV_PERIODIC_ENABLE 3028#if EV_PERIODIC_ENABLE
1475 if (periodiccnt) 3029 if (periodiccnt)
1476 { 3030 {
1477 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 3031 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1478 if (block > to) block = to; 3032 if (waittime > to) waittime = to;
1479 } 3033 }
1480#endif 3034#endif
1481 3035
3036 /* don't let timeouts decrease the waittime below timeout_blocktime */
3037 if (expect_false (waittime < timeout_blocktime))
3038 waittime = timeout_blocktime;
3039
3040 /* at this point, we NEED to wait, so we have to ensure */
3041 /* to pass a minimum nonzero value to the backend */
3042 if (expect_false (waittime < backend_mintime))
3043 waittime = backend_mintime;
3044
3045 /* extra check because io_blocktime is commonly 0 */
1482 if (expect_false (block < 0.)) block = 0.; 3046 if (expect_false (io_blocktime))
3047 {
3048 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3049
3050 if (sleeptime > waittime - backend_mintime)
3051 sleeptime = waittime - backend_mintime;
3052
3053 if (expect_true (sleeptime > 0.))
3054 {
3055 ev_sleep (sleeptime);
3056 waittime -= sleeptime;
3057 }
3058 }
1483 } 3059 }
1484 3060
3061#if EV_FEATURE_API
1485 ++loop_count; 3062 ++loop_count;
3063#endif
3064 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1486 backend_poll (EV_A_ block); 3065 backend_poll (EV_A_ waittime);
3066 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3067
3068 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3069
3070 if (pipe_write_skipped)
3071 {
3072 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3073 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3074 }
3075
3076
3077 /* update ev_rt_now, do magic */
3078 time_update (EV_A_ waittime + sleeptime);
1487 } 3079 }
1488
1489 /* update ev_rt_now, do magic */
1490 time_update (EV_A);
1491 3080
1492 /* queue pending timers and reschedule them */ 3081 /* queue pending timers and reschedule them */
1493 timers_reify (EV_A); /* relative timers called last */ 3082 timers_reify (EV_A); /* relative timers called last */
1494#if EV_PERIODIC_ENABLE 3083#if EV_PERIODIC_ENABLE
1495 periodics_reify (EV_A); /* absolute timers called first */ 3084 periodics_reify (EV_A); /* absolute timers called first */
1498#if EV_IDLE_ENABLE 3087#if EV_IDLE_ENABLE
1499 /* queue idle watchers unless other events are pending */ 3088 /* queue idle watchers unless other events are pending */
1500 idle_reify (EV_A); 3089 idle_reify (EV_A);
1501#endif 3090#endif
1502 3091
3092#if EV_CHECK_ENABLE
1503 /* queue check watchers, to be executed first */ 3093 /* queue check watchers, to be executed first */
1504 if (expect_false (checkcnt)) 3094 if (expect_false (checkcnt))
1505 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3095 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3096#endif
1506 3097
1507 call_pending (EV_A); 3098 EV_INVOKE_PENDING;
1508
1509 } 3099 }
1510 while (expect_true (activecnt && !loop_done)); 3100 while (expect_true (
3101 activecnt
3102 && !loop_done
3103 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
3104 ));
1511 3105
1512 if (loop_done == EVUNLOOP_ONE) 3106 if (loop_done == EVBREAK_ONE)
1513 loop_done = EVUNLOOP_CANCEL; 3107 loop_done = EVBREAK_CANCEL;
3108
3109#if EV_FEATURE_API
3110 --loop_depth;
3111#endif
3112
3113 return activecnt;
1514} 3114}
1515 3115
1516void 3116void
1517ev_unloop (EV_P_ int how) 3117ev_break (EV_P_ int how) EV_THROW
1518{ 3118{
1519 loop_done = how; 3119 loop_done = how;
1520} 3120}
1521 3121
3122void
3123ev_ref (EV_P) EV_THROW
3124{
3125 ++activecnt;
3126}
3127
3128void
3129ev_unref (EV_P) EV_THROW
3130{
3131 --activecnt;
3132}
3133
3134void
3135ev_now_update (EV_P) EV_THROW
3136{
3137 time_update (EV_A_ 1e100);
3138}
3139
3140void
3141ev_suspend (EV_P) EV_THROW
3142{
3143 ev_now_update (EV_A);
3144}
3145
3146void
3147ev_resume (EV_P) EV_THROW
3148{
3149 ev_tstamp mn_prev = mn_now;
3150
3151 ev_now_update (EV_A);
3152 timers_reschedule (EV_A_ mn_now - mn_prev);
3153#if EV_PERIODIC_ENABLE
3154 /* TODO: really do this? */
3155 periodics_reschedule (EV_A);
3156#endif
3157}
3158
1522/*****************************************************************************/ 3159/*****************************************************************************/
3160/* singly-linked list management, used when the expected list length is short */
1523 3161
1524void inline_size 3162inline_size void
1525wlist_add (WL *head, WL elem) 3163wlist_add (WL *head, WL elem)
1526{ 3164{
1527 elem->next = *head; 3165 elem->next = *head;
1528 *head = elem; 3166 *head = elem;
1529} 3167}
1530 3168
1531void inline_size 3169inline_size void
1532wlist_del (WL *head, WL elem) 3170wlist_del (WL *head, WL elem)
1533{ 3171{
1534 while (*head) 3172 while (*head)
1535 { 3173 {
1536 if (*head == elem) 3174 if (expect_true (*head == elem))
1537 { 3175 {
1538 *head = elem->next; 3176 *head = elem->next;
1539 return; 3177 break;
1540 } 3178 }
1541 3179
1542 head = &(*head)->next; 3180 head = &(*head)->next;
1543 } 3181 }
1544} 3182}
1545 3183
1546void inline_speed 3184/* internal, faster, version of ev_clear_pending */
3185inline_speed void
1547clear_pending (EV_P_ W w) 3186clear_pending (EV_P_ W w)
1548{ 3187{
1549 if (w->pending) 3188 if (w->pending)
1550 { 3189 {
1551 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3190 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1552 w->pending = 0; 3191 w->pending = 0;
1553 } 3192 }
1554} 3193}
1555 3194
1556int 3195int
1557ev_clear_pending (EV_P_ void *w) 3196ev_clear_pending (EV_P_ void *w) EV_THROW
1558{ 3197{
1559 W w_ = (W)w; 3198 W w_ = (W)w;
1560 int pending = w_->pending; 3199 int pending = w_->pending;
1561 3200
1562 if (expect_true (pending)) 3201 if (expect_true (pending))
1563 { 3202 {
1564 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3203 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3204 p->w = (W)&pending_w;
1565 w_->pending = 0; 3205 w_->pending = 0;
1566 p->w = 0;
1567 return p->events; 3206 return p->events;
1568 } 3207 }
1569 else 3208 else
1570 return 0; 3209 return 0;
1571} 3210}
1572 3211
1573void inline_size 3212inline_size void
1574pri_adjust (EV_P_ W w) 3213pri_adjust (EV_P_ W w)
1575{ 3214{
1576 int pri = w->priority; 3215 int pri = ev_priority (w);
1577 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3216 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1578 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3217 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1579 w->priority = pri; 3218 ev_set_priority (w, pri);
1580} 3219}
1581 3220
1582void inline_speed 3221inline_speed void
1583ev_start (EV_P_ W w, int active) 3222ev_start (EV_P_ W w, int active)
1584{ 3223{
1585 pri_adjust (EV_A_ w); 3224 pri_adjust (EV_A_ w);
1586 w->active = active; 3225 w->active = active;
1587 ev_ref (EV_A); 3226 ev_ref (EV_A);
1588} 3227}
1589 3228
1590void inline_size 3229inline_size void
1591ev_stop (EV_P_ W w) 3230ev_stop (EV_P_ W w)
1592{ 3231{
1593 ev_unref (EV_A); 3232 ev_unref (EV_A);
1594 w->active = 0; 3233 w->active = 0;
1595} 3234}
1596 3235
1597/*****************************************************************************/ 3236/*****************************************************************************/
1598 3237
1599void noinline 3238void noinline
1600ev_io_start (EV_P_ ev_io *w) 3239ev_io_start (EV_P_ ev_io *w) EV_THROW
1601{ 3240{
1602 int fd = w->fd; 3241 int fd = w->fd;
1603 3242
1604 if (expect_false (ev_is_active (w))) 3243 if (expect_false (ev_is_active (w)))
1605 return; 3244 return;
1606 3245
1607 assert (("ev_io_start called with negative fd", fd >= 0)); 3246 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3247 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3248
3249 EV_FREQUENT_CHECK;
1608 3250
1609 ev_start (EV_A_ (W)w, 1); 3251 ev_start (EV_A_ (W)w, 1);
1610 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3252 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1611 wlist_add ((WL *)&anfds[fd].head, (WL)w); 3253 wlist_add (&anfds[fd].head, (WL)w);
1612 3254
1613 fd_change (EV_A_ fd); 3255 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
3256 w->events &= ~EV__IOFDSET;
3257
3258 EV_FREQUENT_CHECK;
1614} 3259}
1615 3260
1616void noinline 3261void noinline
1617ev_io_stop (EV_P_ ev_io *w) 3262ev_io_stop (EV_P_ ev_io *w) EV_THROW
1618{ 3263{
1619 clear_pending (EV_A_ (W)w); 3264 clear_pending (EV_A_ (W)w);
1620 if (expect_false (!ev_is_active (w))) 3265 if (expect_false (!ev_is_active (w)))
1621 return; 3266 return;
1622 3267
1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3268 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1624 3269
3270 EV_FREQUENT_CHECK;
3271
1625 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 3272 wlist_del (&anfds[w->fd].head, (WL)w);
1626 ev_stop (EV_A_ (W)w); 3273 ev_stop (EV_A_ (W)w);
1627 3274
1628 fd_change (EV_A_ w->fd); 3275 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3276
3277 EV_FREQUENT_CHECK;
1629} 3278}
1630 3279
1631void noinline 3280void noinline
1632ev_timer_start (EV_P_ ev_timer *w) 3281ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1633{ 3282{
1634 if (expect_false (ev_is_active (w))) 3283 if (expect_false (ev_is_active (w)))
1635 return; 3284 return;
1636 3285
1637 ((WT)w)->at += mn_now; 3286 ev_at (w) += mn_now;
1638 3287
1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3288 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1640 3289
3290 EV_FREQUENT_CHECK;
3291
3292 ++timercnt;
1641 ev_start (EV_A_ (W)w, ++timercnt); 3293 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1642 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 3294 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1643 timers [timercnt - 1] = w; 3295 ANHE_w (timers [ev_active (w)]) = (WT)w;
1644 upheap ((WT *)timers, timercnt - 1); 3296 ANHE_at_cache (timers [ev_active (w)]);
3297 upheap (timers, ev_active (w));
1645 3298
3299 EV_FREQUENT_CHECK;
3300
1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3301 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1647} 3302}
1648 3303
1649void noinline 3304void noinline
1650ev_timer_stop (EV_P_ ev_timer *w) 3305ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1651{ 3306{
1652 clear_pending (EV_A_ (W)w); 3307 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 3308 if (expect_false (!ev_is_active (w)))
1654 return; 3309 return;
1655 3310
1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 3311 EV_FREQUENT_CHECK;
1657 3312
1658 { 3313 {
1659 int active = ((W)w)->active; 3314 int active = ev_active (w);
1660 3315
3316 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3317
3318 --timercnt;
3319
1661 if (expect_true (--active < --timercnt)) 3320 if (expect_true (active < timercnt + HEAP0))
1662 { 3321 {
1663 timers [active] = timers [timercnt]; 3322 timers [active] = timers [timercnt + HEAP0];
1664 adjustheap ((WT *)timers, timercnt, active); 3323 adjustheap (timers, timercnt, active);
1665 } 3324 }
1666 } 3325 }
1667 3326
1668 ((WT)w)->at -= mn_now; 3327 ev_at (w) -= mn_now;
1669 3328
1670 ev_stop (EV_A_ (W)w); 3329 ev_stop (EV_A_ (W)w);
3330
3331 EV_FREQUENT_CHECK;
1671} 3332}
1672 3333
1673void noinline 3334void noinline
1674ev_timer_again (EV_P_ ev_timer *w) 3335ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1675{ 3336{
3337 EV_FREQUENT_CHECK;
3338
3339 clear_pending (EV_A_ (W)w);
3340
1676 if (ev_is_active (w)) 3341 if (ev_is_active (w))
1677 { 3342 {
1678 if (w->repeat) 3343 if (w->repeat)
1679 { 3344 {
1680 ((WT)w)->at = mn_now + w->repeat; 3345 ev_at (w) = mn_now + w->repeat;
3346 ANHE_at_cache (timers [ev_active (w)]);
1681 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 3347 adjustheap (timers, timercnt, ev_active (w));
1682 } 3348 }
1683 else 3349 else
1684 ev_timer_stop (EV_A_ w); 3350 ev_timer_stop (EV_A_ w);
1685 } 3351 }
1686 else if (w->repeat) 3352 else if (w->repeat)
1687 { 3353 {
1688 w->at = w->repeat; 3354 ev_at (w) = w->repeat;
1689 ev_timer_start (EV_A_ w); 3355 ev_timer_start (EV_A_ w);
1690 } 3356 }
3357
3358 EV_FREQUENT_CHECK;
3359}
3360
3361ev_tstamp
3362ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3363{
3364 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1691} 3365}
1692 3366
1693#if EV_PERIODIC_ENABLE 3367#if EV_PERIODIC_ENABLE
1694void noinline 3368void noinline
1695ev_periodic_start (EV_P_ ev_periodic *w) 3369ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1696{ 3370{
1697 if (expect_false (ev_is_active (w))) 3371 if (expect_false (ev_is_active (w)))
1698 return; 3372 return;
1699 3373
1700 if (w->reschedule_cb) 3374 if (w->reschedule_cb)
1701 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3375 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1702 else if (w->interval) 3376 else if (w->interval)
1703 { 3377 {
1704 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3378 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1705 /* this formula differs from the one in periodic_reify because we do not always round up */ 3379 periodic_recalc (EV_A_ w);
1706 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1707 } 3380 }
1708 else 3381 else
1709 ((WT)w)->at = w->offset; 3382 ev_at (w) = w->offset;
1710 3383
3384 EV_FREQUENT_CHECK;
3385
3386 ++periodiccnt;
1711 ev_start (EV_A_ (W)w, ++periodiccnt); 3387 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1712 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 3388 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1713 periodics [periodiccnt - 1] = w; 3389 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1714 upheap ((WT *)periodics, periodiccnt - 1); 3390 ANHE_at_cache (periodics [ev_active (w)]);
3391 upheap (periodics, ev_active (w));
1715 3392
3393 EV_FREQUENT_CHECK;
3394
1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3395 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1717} 3396}
1718 3397
1719void noinline 3398void noinline
1720ev_periodic_stop (EV_P_ ev_periodic *w) 3399ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1721{ 3400{
1722 clear_pending (EV_A_ (W)w); 3401 clear_pending (EV_A_ (W)w);
1723 if (expect_false (!ev_is_active (w))) 3402 if (expect_false (!ev_is_active (w)))
1724 return; 3403 return;
1725 3404
1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 3405 EV_FREQUENT_CHECK;
1727 3406
1728 { 3407 {
1729 int active = ((W)w)->active; 3408 int active = ev_active (w);
1730 3409
3410 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3411
3412 --periodiccnt;
3413
1731 if (expect_true (--active < --periodiccnt)) 3414 if (expect_true (active < periodiccnt + HEAP0))
1732 { 3415 {
1733 periodics [active] = periodics [periodiccnt]; 3416 periodics [active] = periodics [periodiccnt + HEAP0];
1734 adjustheap ((WT *)periodics, periodiccnt, active); 3417 adjustheap (periodics, periodiccnt, active);
1735 } 3418 }
1736 } 3419 }
1737 3420
1738 ev_stop (EV_A_ (W)w); 3421 ev_stop (EV_A_ (W)w);
3422
3423 EV_FREQUENT_CHECK;
1739} 3424}
1740 3425
1741void noinline 3426void noinline
1742ev_periodic_again (EV_P_ ev_periodic *w) 3427ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
1743{ 3428{
1744 /* TODO: use adjustheap and recalculation */ 3429 /* TODO: use adjustheap and recalculation */
1745 ev_periodic_stop (EV_A_ w); 3430 ev_periodic_stop (EV_A_ w);
1746 ev_periodic_start (EV_A_ w); 3431 ev_periodic_start (EV_A_ w);
1747} 3432}
1749 3434
1750#ifndef SA_RESTART 3435#ifndef SA_RESTART
1751# define SA_RESTART 0 3436# define SA_RESTART 0
1752#endif 3437#endif
1753 3438
3439#if EV_SIGNAL_ENABLE
3440
1754void noinline 3441void noinline
1755ev_signal_start (EV_P_ ev_signal *w) 3442ev_signal_start (EV_P_ ev_signal *w) EV_THROW
1756{ 3443{
1757#if EV_MULTIPLICITY
1758 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1759#endif
1760 if (expect_false (ev_is_active (w))) 3444 if (expect_false (ev_is_active (w)))
1761 return; 3445 return;
1762 3446
1763 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3447 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
3448
3449#if EV_MULTIPLICITY
3450 assert (("libev: a signal must not be attached to two different loops",
3451 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
3452
3453 signals [w->signum - 1].loop = EV_A;
3454#endif
3455
3456 EV_FREQUENT_CHECK;
3457
3458#if EV_USE_SIGNALFD
3459 if (sigfd == -2)
3460 {
3461 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
3462 if (sigfd < 0 && errno == EINVAL)
3463 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
3464
3465 if (sigfd >= 0)
3466 {
3467 fd_intern (sigfd); /* doing it twice will not hurt */
3468
3469 sigemptyset (&sigfd_set);
3470
3471 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3472 ev_set_priority (&sigfd_w, EV_MAXPRI);
3473 ev_io_start (EV_A_ &sigfd_w);
3474 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3475 }
3476 }
3477
3478 if (sigfd >= 0)
3479 {
3480 /* TODO: check .head */
3481 sigaddset (&sigfd_set, w->signum);
3482 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3483
3484 signalfd (sigfd, &sigfd_set, 0);
3485 }
3486#endif
1764 3487
1765 ev_start (EV_A_ (W)w, 1); 3488 ev_start (EV_A_ (W)w, 1);
1766 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1767 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 3489 wlist_add (&signals [w->signum - 1].head, (WL)w);
1768 3490
1769 if (!((WL)w)->next) 3491 if (!((WL)w)->next)
3492# if EV_USE_SIGNALFD
3493 if (sigfd < 0) /*TODO*/
3494# endif
1770 { 3495 {
1771#if _WIN32 3496# ifdef _WIN32
3497 evpipe_init (EV_A);
3498
1772 signal (w->signum, sighandler); 3499 signal (w->signum, ev_sighandler);
1773#else 3500# else
1774 struct sigaction sa; 3501 struct sigaction sa;
3502
3503 evpipe_init (EV_A);
3504
1775 sa.sa_handler = sighandler; 3505 sa.sa_handler = ev_sighandler;
1776 sigfillset (&sa.sa_mask); 3506 sigfillset (&sa.sa_mask);
1777 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3507 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1778 sigaction (w->signum, &sa, 0); 3508 sigaction (w->signum, &sa, 0);
3509
3510 if (origflags & EVFLAG_NOSIGMASK)
3511 {
3512 sigemptyset (&sa.sa_mask);
3513 sigaddset (&sa.sa_mask, w->signum);
3514 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3515 }
1779#endif 3516#endif
1780 } 3517 }
3518
3519 EV_FREQUENT_CHECK;
1781} 3520}
1782 3521
1783void noinline 3522void noinline
1784ev_signal_stop (EV_P_ ev_signal *w) 3523ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
1785{ 3524{
1786 clear_pending (EV_A_ (W)w); 3525 clear_pending (EV_A_ (W)w);
1787 if (expect_false (!ev_is_active (w))) 3526 if (expect_false (!ev_is_active (w)))
1788 return; 3527 return;
1789 3528
3529 EV_FREQUENT_CHECK;
3530
1790 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 3531 wlist_del (&signals [w->signum - 1].head, (WL)w);
1791 ev_stop (EV_A_ (W)w); 3532 ev_stop (EV_A_ (W)w);
1792 3533
1793 if (!signals [w->signum - 1].head) 3534 if (!signals [w->signum - 1].head)
3535 {
3536#if EV_MULTIPLICITY
3537 signals [w->signum - 1].loop = 0; /* unattach from signal */
3538#endif
3539#if EV_USE_SIGNALFD
3540 if (sigfd >= 0)
3541 {
3542 sigset_t ss;
3543
3544 sigemptyset (&ss);
3545 sigaddset (&ss, w->signum);
3546 sigdelset (&sigfd_set, w->signum);
3547
3548 signalfd (sigfd, &sigfd_set, 0);
3549 sigprocmask (SIG_UNBLOCK, &ss, 0);
3550 }
3551 else
3552#endif
1794 signal (w->signum, SIG_DFL); 3553 signal (w->signum, SIG_DFL);
3554 }
3555
3556 EV_FREQUENT_CHECK;
1795} 3557}
3558
3559#endif
3560
3561#if EV_CHILD_ENABLE
1796 3562
1797void 3563void
1798ev_child_start (EV_P_ ev_child *w) 3564ev_child_start (EV_P_ ev_child *w) EV_THROW
1799{ 3565{
1800#if EV_MULTIPLICITY 3566#if EV_MULTIPLICITY
1801 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3567 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1802#endif 3568#endif
1803 if (expect_false (ev_is_active (w))) 3569 if (expect_false (ev_is_active (w)))
1804 return; 3570 return;
1805 3571
3572 EV_FREQUENT_CHECK;
3573
1806 ev_start (EV_A_ (W)w, 1); 3574 ev_start (EV_A_ (W)w, 1);
1807 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3575 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3576
3577 EV_FREQUENT_CHECK;
1808} 3578}
1809 3579
1810void 3580void
1811ev_child_stop (EV_P_ ev_child *w) 3581ev_child_stop (EV_P_ ev_child *w) EV_THROW
1812{ 3582{
1813 clear_pending (EV_A_ (W)w); 3583 clear_pending (EV_A_ (W)w);
1814 if (expect_false (!ev_is_active (w))) 3584 if (expect_false (!ev_is_active (w)))
1815 return; 3585 return;
1816 3586
3587 EV_FREQUENT_CHECK;
3588
1817 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3589 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
1818 ev_stop (EV_A_ (W)w); 3590 ev_stop (EV_A_ (W)w);
3591
3592 EV_FREQUENT_CHECK;
1819} 3593}
3594
3595#endif
1820 3596
1821#if EV_STAT_ENABLE 3597#if EV_STAT_ENABLE
1822 3598
1823# ifdef _WIN32 3599# ifdef _WIN32
1824# undef lstat 3600# undef lstat
1825# define lstat(a,b) _stati64 (a,b) 3601# define lstat(a,b) _stati64 (a,b)
1826# endif 3602# endif
1827 3603
1828#define DEF_STAT_INTERVAL 5.0074891 3604#define DEF_STAT_INTERVAL 5.0074891
3605#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1829#define MIN_STAT_INTERVAL 0.1074891 3606#define MIN_STAT_INTERVAL 0.1074891
1830 3607
1831static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3608static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1832 3609
1833#if EV_USE_INOTIFY 3610#if EV_USE_INOTIFY
1834# define EV_INOTIFY_BUFSIZE 8192 3611
3612/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3613# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
1835 3614
1836static void noinline 3615static void noinline
1837infy_add (EV_P_ ev_stat *w) 3616infy_add (EV_P_ ev_stat *w)
1838{ 3617{
1839 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3618 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1840 3619
1841 if (w->wd < 0) 3620 if (w->wd >= 0)
3621 {
3622 struct statfs sfs;
3623
3624 /* now local changes will be tracked by inotify, but remote changes won't */
3625 /* unless the filesystem is known to be local, we therefore still poll */
3626 /* also do poll on <2.6.25, but with normal frequency */
3627
3628 if (!fs_2625)
3629 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3630 else if (!statfs (w->path, &sfs)
3631 && (sfs.f_type == 0x1373 /* devfs */
3632 || sfs.f_type == 0xEF53 /* ext2/3 */
3633 || sfs.f_type == 0x3153464a /* jfs */
3634 || sfs.f_type == 0x52654973 /* reiser3 */
3635 || sfs.f_type == 0x01021994 /* tempfs */
3636 || sfs.f_type == 0x58465342 /* xfs */))
3637 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3638 else
3639 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
1842 { 3640 }
1843 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3641 else
3642 {
3643 /* can't use inotify, continue to stat */
3644 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1844 3645
1845 /* monitor some parent directory for speedup hints */ 3646 /* if path is not there, monitor some parent directory for speedup hints */
3647 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3648 /* but an efficiency issue only */
1846 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3649 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1847 { 3650 {
1848 char path [4096]; 3651 char path [4096];
1849 strcpy (path, w->path); 3652 strcpy (path, w->path);
1850 3653
1853 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3656 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1854 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3657 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1855 3658
1856 char *pend = strrchr (path, '/'); 3659 char *pend = strrchr (path, '/');
1857 3660
1858 if (!pend) 3661 if (!pend || pend == path)
1859 break; /* whoops, no '/', complain to your admin */ 3662 break;
1860 3663
1861 *pend = 0; 3664 *pend = 0;
1862 w->wd = inotify_add_watch (fs_fd, path, mask); 3665 w->wd = inotify_add_watch (fs_fd, path, mask);
1863 } 3666 }
1864 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3667 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1865 } 3668 }
1866 } 3669 }
1867 else
1868 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1869 3670
1870 if (w->wd >= 0) 3671 if (w->wd >= 0)
1871 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3672 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3673
3674 /* now re-arm timer, if required */
3675 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3676 ev_timer_again (EV_A_ &w->timer);
3677 if (ev_is_active (&w->timer)) ev_unref (EV_A);
1872} 3678}
1873 3679
1874static void noinline 3680static void noinline
1875infy_del (EV_P_ ev_stat *w) 3681infy_del (EV_P_ ev_stat *w)
1876{ 3682{
1879 3685
1880 if (wd < 0) 3686 if (wd < 0)
1881 return; 3687 return;
1882 3688
1883 w->wd = -2; 3689 w->wd = -2;
1884 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3690 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
1885 wlist_del (&fs_hash [slot].head, (WL)w); 3691 wlist_del (&fs_hash [slot].head, (WL)w);
1886 3692
1887 /* remove this watcher, if others are watching it, they will rearm */ 3693 /* remove this watcher, if others are watching it, they will rearm */
1888 inotify_rm_watch (fs_fd, wd); 3694 inotify_rm_watch (fs_fd, wd);
1889} 3695}
1890 3696
1891static void noinline 3697static void noinline
1892infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3698infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1893{ 3699{
1894 if (slot < 0) 3700 if (slot < 0)
1895 /* overflow, need to check for all hahs slots */ 3701 /* overflow, need to check for all hash slots */
1896 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3702 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1897 infy_wd (EV_A_ slot, wd, ev); 3703 infy_wd (EV_A_ slot, wd, ev);
1898 else 3704 else
1899 { 3705 {
1900 WL w_; 3706 WL w_;
1901 3707
1902 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3708 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
1903 { 3709 {
1904 ev_stat *w = (ev_stat *)w_; 3710 ev_stat *w = (ev_stat *)w_;
1905 w_ = w_->next; /* lets us remove this watcher and all before it */ 3711 w_ = w_->next; /* lets us remove this watcher and all before it */
1906 3712
1907 if (w->wd == wd || wd == -1) 3713 if (w->wd == wd || wd == -1)
1908 { 3714 {
1909 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3715 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1910 { 3716 {
3717 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
1911 w->wd = -1; 3718 w->wd = -1;
1912 infy_add (EV_A_ w); /* re-add, no matter what */ 3719 infy_add (EV_A_ w); /* re-add, no matter what */
1913 } 3720 }
1914 3721
1915 stat_timer_cb (EV_A_ &w->timer, 0); 3722 stat_timer_cb (EV_A_ &w->timer, 0);
1920 3727
1921static void 3728static void
1922infy_cb (EV_P_ ev_io *w, int revents) 3729infy_cb (EV_P_ ev_io *w, int revents)
1923{ 3730{
1924 char buf [EV_INOTIFY_BUFSIZE]; 3731 char buf [EV_INOTIFY_BUFSIZE];
1925 struct inotify_event *ev = (struct inotify_event *)buf;
1926 int ofs; 3732 int ofs;
1927 int len = read (fs_fd, buf, sizeof (buf)); 3733 int len = read (fs_fd, buf, sizeof (buf));
1928 3734
1929 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3735 for (ofs = 0; ofs < len; )
3736 {
3737 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
1930 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3738 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3739 ofs += sizeof (struct inotify_event) + ev->len;
3740 }
1931} 3741}
1932 3742
1933void inline_size 3743inline_size void ecb_cold
3744ev_check_2625 (EV_P)
3745{
3746 /* kernels < 2.6.25 are borked
3747 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3748 */
3749 if (ev_linux_version () < 0x020619)
3750 return;
3751
3752 fs_2625 = 1;
3753}
3754
3755inline_size int
3756infy_newfd (void)
3757{
3758#if defined IN_CLOEXEC && defined IN_NONBLOCK
3759 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3760 if (fd >= 0)
3761 return fd;
3762#endif
3763 return inotify_init ();
3764}
3765
3766inline_size void
1934infy_init (EV_P) 3767infy_init (EV_P)
1935{ 3768{
1936 if (fs_fd != -2) 3769 if (fs_fd != -2)
1937 return; 3770 return;
1938 3771
3772 fs_fd = -1;
3773
3774 ev_check_2625 (EV_A);
3775
1939 fs_fd = inotify_init (); 3776 fs_fd = infy_newfd ();
1940 3777
1941 if (fs_fd >= 0) 3778 if (fs_fd >= 0)
1942 { 3779 {
3780 fd_intern (fs_fd);
1943 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3781 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1944 ev_set_priority (&fs_w, EV_MAXPRI); 3782 ev_set_priority (&fs_w, EV_MAXPRI);
1945 ev_io_start (EV_A_ &fs_w); 3783 ev_io_start (EV_A_ &fs_w);
3784 ev_unref (EV_A);
1946 } 3785 }
1947} 3786}
1948 3787
1949void inline_size 3788inline_size void
1950infy_fork (EV_P) 3789infy_fork (EV_P)
1951{ 3790{
1952 int slot; 3791 int slot;
1953 3792
1954 if (fs_fd < 0) 3793 if (fs_fd < 0)
1955 return; 3794 return;
1956 3795
3796 ev_ref (EV_A);
3797 ev_io_stop (EV_A_ &fs_w);
1957 close (fs_fd); 3798 close (fs_fd);
1958 fs_fd = inotify_init (); 3799 fs_fd = infy_newfd ();
1959 3800
3801 if (fs_fd >= 0)
3802 {
3803 fd_intern (fs_fd);
3804 ev_io_set (&fs_w, fs_fd, EV_READ);
3805 ev_io_start (EV_A_ &fs_w);
3806 ev_unref (EV_A);
3807 }
3808
1960 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3809 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
1961 { 3810 {
1962 WL w_ = fs_hash [slot].head; 3811 WL w_ = fs_hash [slot].head;
1963 fs_hash [slot].head = 0; 3812 fs_hash [slot].head = 0;
1964 3813
1965 while (w_) 3814 while (w_)
1970 w->wd = -1; 3819 w->wd = -1;
1971 3820
1972 if (fs_fd >= 0) 3821 if (fs_fd >= 0)
1973 infy_add (EV_A_ w); /* re-add, no matter what */ 3822 infy_add (EV_A_ w); /* re-add, no matter what */
1974 else 3823 else
3824 {
3825 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3826 if (ev_is_active (&w->timer)) ev_ref (EV_A);
1975 ev_timer_start (EV_A_ &w->timer); 3827 ev_timer_again (EV_A_ &w->timer);
3828 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3829 }
1976 } 3830 }
1977
1978 } 3831 }
1979} 3832}
1980 3833
3834#endif
3835
3836#ifdef _WIN32
3837# define EV_LSTAT(p,b) _stati64 (p, b)
3838#else
3839# define EV_LSTAT(p,b) lstat (p, b)
1981#endif 3840#endif
1982 3841
1983void 3842void
1984ev_stat_stat (EV_P_ ev_stat *w) 3843ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
1985{ 3844{
1986 if (lstat (w->path, &w->attr) < 0) 3845 if (lstat (w->path, &w->attr) < 0)
1987 w->attr.st_nlink = 0; 3846 w->attr.st_nlink = 0;
1988 else if (!w->attr.st_nlink) 3847 else if (!w->attr.st_nlink)
1989 w->attr.st_nlink = 1; 3848 w->attr.st_nlink = 1;
1992static void noinline 3851static void noinline
1993stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3852stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1994{ 3853{
1995 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3854 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1996 3855
1997 /* we copy this here each the time so that */ 3856 ev_statdata prev = w->attr;
1998 /* prev has the old value when the callback gets invoked */
1999 w->prev = w->attr;
2000 ev_stat_stat (EV_A_ w); 3857 ev_stat_stat (EV_A_ w);
2001 3858
2002 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3859 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2003 if ( 3860 if (
2004 w->prev.st_dev != w->attr.st_dev 3861 prev.st_dev != w->attr.st_dev
2005 || w->prev.st_ino != w->attr.st_ino 3862 || prev.st_ino != w->attr.st_ino
2006 || w->prev.st_mode != w->attr.st_mode 3863 || prev.st_mode != w->attr.st_mode
2007 || w->prev.st_nlink != w->attr.st_nlink 3864 || prev.st_nlink != w->attr.st_nlink
2008 || w->prev.st_uid != w->attr.st_uid 3865 || prev.st_uid != w->attr.st_uid
2009 || w->prev.st_gid != w->attr.st_gid 3866 || prev.st_gid != w->attr.st_gid
2010 || w->prev.st_rdev != w->attr.st_rdev 3867 || prev.st_rdev != w->attr.st_rdev
2011 || w->prev.st_size != w->attr.st_size 3868 || prev.st_size != w->attr.st_size
2012 || w->prev.st_atime != w->attr.st_atime 3869 || prev.st_atime != w->attr.st_atime
2013 || w->prev.st_mtime != w->attr.st_mtime 3870 || prev.st_mtime != w->attr.st_mtime
2014 || w->prev.st_ctime != w->attr.st_ctime 3871 || prev.st_ctime != w->attr.st_ctime
2015 ) { 3872 ) {
3873 /* we only update w->prev on actual differences */
3874 /* in case we test more often than invoke the callback, */
3875 /* to ensure that prev is always different to attr */
3876 w->prev = prev;
3877
2016 #if EV_USE_INOTIFY 3878 #if EV_USE_INOTIFY
3879 if (fs_fd >= 0)
3880 {
2017 infy_del (EV_A_ w); 3881 infy_del (EV_A_ w);
2018 infy_add (EV_A_ w); 3882 infy_add (EV_A_ w);
2019 ev_stat_stat (EV_A_ w); /* avoid race... */ 3883 ev_stat_stat (EV_A_ w); /* avoid race... */
3884 }
2020 #endif 3885 #endif
2021 3886
2022 ev_feed_event (EV_A_ w, EV_STAT); 3887 ev_feed_event (EV_A_ w, EV_STAT);
2023 } 3888 }
2024} 3889}
2025 3890
2026void 3891void
2027ev_stat_start (EV_P_ ev_stat *w) 3892ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2028{ 3893{
2029 if (expect_false (ev_is_active (w))) 3894 if (expect_false (ev_is_active (w)))
2030 return; 3895 return;
2031 3896
2032 /* since we use memcmp, we need to clear any padding data etc. */
2033 memset (&w->prev, 0, sizeof (ev_statdata));
2034 memset (&w->attr, 0, sizeof (ev_statdata));
2035
2036 ev_stat_stat (EV_A_ w); 3897 ev_stat_stat (EV_A_ w);
2037 3898
3899 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2038 if (w->interval < MIN_STAT_INTERVAL) 3900 w->interval = MIN_STAT_INTERVAL;
2039 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2040 3901
2041 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3902 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2042 ev_set_priority (&w->timer, ev_priority (w)); 3903 ev_set_priority (&w->timer, ev_priority (w));
2043 3904
2044#if EV_USE_INOTIFY 3905#if EV_USE_INOTIFY
2045 infy_init (EV_A); 3906 infy_init (EV_A);
2046 3907
2047 if (fs_fd >= 0) 3908 if (fs_fd >= 0)
2048 infy_add (EV_A_ w); 3909 infy_add (EV_A_ w);
2049 else 3910 else
2050#endif 3911#endif
3912 {
2051 ev_timer_start (EV_A_ &w->timer); 3913 ev_timer_again (EV_A_ &w->timer);
3914 ev_unref (EV_A);
3915 }
2052 3916
2053 ev_start (EV_A_ (W)w, 1); 3917 ev_start (EV_A_ (W)w, 1);
3918
3919 EV_FREQUENT_CHECK;
2054} 3920}
2055 3921
2056void 3922void
2057ev_stat_stop (EV_P_ ev_stat *w) 3923ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2058{ 3924{
2059 clear_pending (EV_A_ (W)w); 3925 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w))) 3926 if (expect_false (!ev_is_active (w)))
2061 return; 3927 return;
2062 3928
3929 EV_FREQUENT_CHECK;
3930
2063#if EV_USE_INOTIFY 3931#if EV_USE_INOTIFY
2064 infy_del (EV_A_ w); 3932 infy_del (EV_A_ w);
2065#endif 3933#endif
3934
3935 if (ev_is_active (&w->timer))
3936 {
3937 ev_ref (EV_A);
2066 ev_timer_stop (EV_A_ &w->timer); 3938 ev_timer_stop (EV_A_ &w->timer);
3939 }
2067 3940
2068 ev_stop (EV_A_ (W)w); 3941 ev_stop (EV_A_ (W)w);
3942
3943 EV_FREQUENT_CHECK;
2069} 3944}
2070#endif 3945#endif
2071 3946
2072#if EV_IDLE_ENABLE 3947#if EV_IDLE_ENABLE
2073void 3948void
2074ev_idle_start (EV_P_ ev_idle *w) 3949ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2075{ 3950{
2076 if (expect_false (ev_is_active (w))) 3951 if (expect_false (ev_is_active (w)))
2077 return; 3952 return;
2078 3953
2079 pri_adjust (EV_A_ (W)w); 3954 pri_adjust (EV_A_ (W)w);
3955
3956 EV_FREQUENT_CHECK;
2080 3957
2081 { 3958 {
2082 int active = ++idlecnt [ABSPRI (w)]; 3959 int active = ++idlecnt [ABSPRI (w)];
2083 3960
2084 ++idleall; 3961 ++idleall;
2085 ev_start (EV_A_ (W)w, active); 3962 ev_start (EV_A_ (W)w, active);
2086 3963
2087 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3964 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2088 idles [ABSPRI (w)][active - 1] = w; 3965 idles [ABSPRI (w)][active - 1] = w;
2089 } 3966 }
3967
3968 EV_FREQUENT_CHECK;
2090} 3969}
2091 3970
2092void 3971void
2093ev_idle_stop (EV_P_ ev_idle *w) 3972ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2094{ 3973{
2095 clear_pending (EV_A_ (W)w); 3974 clear_pending (EV_A_ (W)w);
2096 if (expect_false (!ev_is_active (w))) 3975 if (expect_false (!ev_is_active (w)))
2097 return; 3976 return;
2098 3977
3978 EV_FREQUENT_CHECK;
3979
2099 { 3980 {
2100 int active = ((W)w)->active; 3981 int active = ev_active (w);
2101 3982
2102 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3983 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2103 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3984 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2104 3985
2105 ev_stop (EV_A_ (W)w); 3986 ev_stop (EV_A_ (W)w);
2106 --idleall; 3987 --idleall;
2107 } 3988 }
2108}
2109#endif
2110 3989
3990 EV_FREQUENT_CHECK;
3991}
3992#endif
3993
3994#if EV_PREPARE_ENABLE
2111void 3995void
2112ev_prepare_start (EV_P_ ev_prepare *w) 3996ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2113{ 3997{
2114 if (expect_false (ev_is_active (w))) 3998 if (expect_false (ev_is_active (w)))
2115 return; 3999 return;
4000
4001 EV_FREQUENT_CHECK;
2116 4002
2117 ev_start (EV_A_ (W)w, ++preparecnt); 4003 ev_start (EV_A_ (W)w, ++preparecnt);
2118 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4004 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2119 prepares [preparecnt - 1] = w; 4005 prepares [preparecnt - 1] = w;
4006
4007 EV_FREQUENT_CHECK;
2120} 4008}
2121 4009
2122void 4010void
2123ev_prepare_stop (EV_P_ ev_prepare *w) 4011ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2124{ 4012{
2125 clear_pending (EV_A_ (W)w); 4013 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w))) 4014 if (expect_false (!ev_is_active (w)))
2127 return; 4015 return;
2128 4016
4017 EV_FREQUENT_CHECK;
4018
2129 { 4019 {
2130 int active = ((W)w)->active; 4020 int active = ev_active (w);
4021
2131 prepares [active - 1] = prepares [--preparecnt]; 4022 prepares [active - 1] = prepares [--preparecnt];
2132 ((W)prepares [active - 1])->active = active; 4023 ev_active (prepares [active - 1]) = active;
2133 } 4024 }
2134 4025
2135 ev_stop (EV_A_ (W)w); 4026 ev_stop (EV_A_ (W)w);
2136}
2137 4027
4028 EV_FREQUENT_CHECK;
4029}
4030#endif
4031
4032#if EV_CHECK_ENABLE
2138void 4033void
2139ev_check_start (EV_P_ ev_check *w) 4034ev_check_start (EV_P_ ev_check *w) EV_THROW
2140{ 4035{
2141 if (expect_false (ev_is_active (w))) 4036 if (expect_false (ev_is_active (w)))
2142 return; 4037 return;
4038
4039 EV_FREQUENT_CHECK;
2143 4040
2144 ev_start (EV_A_ (W)w, ++checkcnt); 4041 ev_start (EV_A_ (W)w, ++checkcnt);
2145 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4042 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2146 checks [checkcnt - 1] = w; 4043 checks [checkcnt - 1] = w;
4044
4045 EV_FREQUENT_CHECK;
2147} 4046}
2148 4047
2149void 4048void
2150ev_check_stop (EV_P_ ev_check *w) 4049ev_check_stop (EV_P_ ev_check *w) EV_THROW
2151{ 4050{
2152 clear_pending (EV_A_ (W)w); 4051 clear_pending (EV_A_ (W)w);
2153 if (expect_false (!ev_is_active (w))) 4052 if (expect_false (!ev_is_active (w)))
2154 return; 4053 return;
2155 4054
4055 EV_FREQUENT_CHECK;
4056
2156 { 4057 {
2157 int active = ((W)w)->active; 4058 int active = ev_active (w);
4059
2158 checks [active - 1] = checks [--checkcnt]; 4060 checks [active - 1] = checks [--checkcnt];
2159 ((W)checks [active - 1])->active = active; 4061 ev_active (checks [active - 1]) = active;
2160 } 4062 }
2161 4063
2162 ev_stop (EV_A_ (W)w); 4064 ev_stop (EV_A_ (W)w);
4065
4066 EV_FREQUENT_CHECK;
2163} 4067}
4068#endif
2164 4069
2165#if EV_EMBED_ENABLE 4070#if EV_EMBED_ENABLE
2166void noinline 4071void noinline
2167ev_embed_sweep (EV_P_ ev_embed *w) 4072ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2168{ 4073{
2169 ev_loop (w->loop, EVLOOP_NONBLOCK); 4074 ev_run (w->other, EVRUN_NOWAIT);
2170} 4075}
2171 4076
2172static void 4077static void
2173embed_cb (EV_P_ ev_io *io, int revents) 4078embed_io_cb (EV_P_ ev_io *io, int revents)
2174{ 4079{
2175 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4080 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2176 4081
2177 if (ev_cb (w)) 4082 if (ev_cb (w))
2178 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4083 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2179 else 4084 else
2180 ev_embed_sweep (loop, w); 4085 ev_run (w->other, EVRUN_NOWAIT);
2181} 4086}
4087
4088static void
4089embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
4090{
4091 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
4092
4093 {
4094 EV_P = w->other;
4095
4096 while (fdchangecnt)
4097 {
4098 fd_reify (EV_A);
4099 ev_run (EV_A_ EVRUN_NOWAIT);
4100 }
4101 }
4102}
4103
4104static void
4105embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4106{
4107 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4108
4109 ev_embed_stop (EV_A_ w);
4110
4111 {
4112 EV_P = w->other;
4113
4114 ev_loop_fork (EV_A);
4115 ev_run (EV_A_ EVRUN_NOWAIT);
4116 }
4117
4118 ev_embed_start (EV_A_ w);
4119}
4120
4121#if 0
4122static void
4123embed_idle_cb (EV_P_ ev_idle *idle, int revents)
4124{
4125 ev_idle_stop (EV_A_ idle);
4126}
4127#endif
2182 4128
2183void 4129void
2184ev_embed_start (EV_P_ ev_embed *w) 4130ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2185{ 4131{
2186 if (expect_false (ev_is_active (w))) 4132 if (expect_false (ev_is_active (w)))
2187 return; 4133 return;
2188 4134
2189 { 4135 {
2190 struct ev_loop *loop = w->loop; 4136 EV_P = w->other;
2191 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4137 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2192 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 4138 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2193 } 4139 }
4140
4141 EV_FREQUENT_CHECK;
2194 4142
2195 ev_set_priority (&w->io, ev_priority (w)); 4143 ev_set_priority (&w->io, ev_priority (w));
2196 ev_io_start (EV_A_ &w->io); 4144 ev_io_start (EV_A_ &w->io);
2197 4145
4146 ev_prepare_init (&w->prepare, embed_prepare_cb);
4147 ev_set_priority (&w->prepare, EV_MINPRI);
4148 ev_prepare_start (EV_A_ &w->prepare);
4149
4150 ev_fork_init (&w->fork, embed_fork_cb);
4151 ev_fork_start (EV_A_ &w->fork);
4152
4153 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
4154
2198 ev_start (EV_A_ (W)w, 1); 4155 ev_start (EV_A_ (W)w, 1);
4156
4157 EV_FREQUENT_CHECK;
2199} 4158}
2200 4159
2201void 4160void
2202ev_embed_stop (EV_P_ ev_embed *w) 4161ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2203{ 4162{
2204 clear_pending (EV_A_ (W)w); 4163 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w))) 4164 if (expect_false (!ev_is_active (w)))
2206 return; 4165 return;
2207 4166
4167 EV_FREQUENT_CHECK;
4168
2208 ev_io_stop (EV_A_ &w->io); 4169 ev_io_stop (EV_A_ &w->io);
4170 ev_prepare_stop (EV_A_ &w->prepare);
4171 ev_fork_stop (EV_A_ &w->fork);
2209 4172
2210 ev_stop (EV_A_ (W)w); 4173 ev_stop (EV_A_ (W)w);
4174
4175 EV_FREQUENT_CHECK;
2211} 4176}
2212#endif 4177#endif
2213 4178
2214#if EV_FORK_ENABLE 4179#if EV_FORK_ENABLE
2215void 4180void
2216ev_fork_start (EV_P_ ev_fork *w) 4181ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2217{ 4182{
2218 if (expect_false (ev_is_active (w))) 4183 if (expect_false (ev_is_active (w)))
2219 return; 4184 return;
4185
4186 EV_FREQUENT_CHECK;
2220 4187
2221 ev_start (EV_A_ (W)w, ++forkcnt); 4188 ev_start (EV_A_ (W)w, ++forkcnt);
2222 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4189 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2223 forks [forkcnt - 1] = w; 4190 forks [forkcnt - 1] = w;
4191
4192 EV_FREQUENT_CHECK;
2224} 4193}
2225 4194
2226void 4195void
2227ev_fork_stop (EV_P_ ev_fork *w) 4196ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2228{ 4197{
2229 clear_pending (EV_A_ (W)w); 4198 clear_pending (EV_A_ (W)w);
2230 if (expect_false (!ev_is_active (w))) 4199 if (expect_false (!ev_is_active (w)))
2231 return; 4200 return;
2232 4201
4202 EV_FREQUENT_CHECK;
4203
2233 { 4204 {
2234 int active = ((W)w)->active; 4205 int active = ev_active (w);
4206
2235 forks [active - 1] = forks [--forkcnt]; 4207 forks [active - 1] = forks [--forkcnt];
2236 ((W)forks [active - 1])->active = active; 4208 ev_active (forks [active - 1]) = active;
2237 } 4209 }
2238 4210
2239 ev_stop (EV_A_ (W)w); 4211 ev_stop (EV_A_ (W)w);
4212
4213 EV_FREQUENT_CHECK;
4214}
4215#endif
4216
4217#if EV_CLEANUP_ENABLE
4218void
4219ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4220{
4221 if (expect_false (ev_is_active (w)))
4222 return;
4223
4224 EV_FREQUENT_CHECK;
4225
4226 ev_start (EV_A_ (W)w, ++cleanupcnt);
4227 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4228 cleanups [cleanupcnt - 1] = w;
4229
4230 /* cleanup watchers should never keep a refcount on the loop */
4231 ev_unref (EV_A);
4232 EV_FREQUENT_CHECK;
4233}
4234
4235void
4236ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4237{
4238 clear_pending (EV_A_ (W)w);
4239 if (expect_false (!ev_is_active (w)))
4240 return;
4241
4242 EV_FREQUENT_CHECK;
4243 ev_ref (EV_A);
4244
4245 {
4246 int active = ev_active (w);
4247
4248 cleanups [active - 1] = cleanups [--cleanupcnt];
4249 ev_active (cleanups [active - 1]) = active;
4250 }
4251
4252 ev_stop (EV_A_ (W)w);
4253
4254 EV_FREQUENT_CHECK;
4255}
4256#endif
4257
4258#if EV_ASYNC_ENABLE
4259void
4260ev_async_start (EV_P_ ev_async *w) EV_THROW
4261{
4262 if (expect_false (ev_is_active (w)))
4263 return;
4264
4265 w->sent = 0;
4266
4267 evpipe_init (EV_A);
4268
4269 EV_FREQUENT_CHECK;
4270
4271 ev_start (EV_A_ (W)w, ++asynccnt);
4272 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
4273 asyncs [asynccnt - 1] = w;
4274
4275 EV_FREQUENT_CHECK;
4276}
4277
4278void
4279ev_async_stop (EV_P_ ev_async *w) EV_THROW
4280{
4281 clear_pending (EV_A_ (W)w);
4282 if (expect_false (!ev_is_active (w)))
4283 return;
4284
4285 EV_FREQUENT_CHECK;
4286
4287 {
4288 int active = ev_active (w);
4289
4290 asyncs [active - 1] = asyncs [--asynccnt];
4291 ev_active (asyncs [active - 1]) = active;
4292 }
4293
4294 ev_stop (EV_A_ (W)w);
4295
4296 EV_FREQUENT_CHECK;
4297}
4298
4299void
4300ev_async_send (EV_P_ ev_async *w) EV_THROW
4301{
4302 w->sent = 1;
4303 evpipe_write (EV_A_ &async_pending);
2240} 4304}
2241#endif 4305#endif
2242 4306
2243/*****************************************************************************/ 4307/*****************************************************************************/
2244 4308
2254once_cb (EV_P_ struct ev_once *once, int revents) 4318once_cb (EV_P_ struct ev_once *once, int revents)
2255{ 4319{
2256 void (*cb)(int revents, void *arg) = once->cb; 4320 void (*cb)(int revents, void *arg) = once->cb;
2257 void *arg = once->arg; 4321 void *arg = once->arg;
2258 4322
2259 ev_io_stop (EV_A_ &once->io); 4323 ev_io_stop (EV_A_ &once->io);
2260 ev_timer_stop (EV_A_ &once->to); 4324 ev_timer_stop (EV_A_ &once->to);
2261 ev_free (once); 4325 ev_free (once);
2262 4326
2263 cb (revents, arg); 4327 cb (revents, arg);
2264} 4328}
2265 4329
2266static void 4330static void
2267once_cb_io (EV_P_ ev_io *w, int revents) 4331once_cb_io (EV_P_ ev_io *w, int revents)
2268{ 4332{
2269 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4333 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4334
4335 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2270} 4336}
2271 4337
2272static void 4338static void
2273once_cb_to (EV_P_ ev_timer *w, int revents) 4339once_cb_to (EV_P_ ev_timer *w, int revents)
2274{ 4340{
2275 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4341 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4342
4343 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2276} 4344}
2277 4345
2278void 4346void
2279ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4347ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2280{ 4348{
2281 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4349 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2282 4350
2283 if (expect_false (!once)) 4351 if (expect_false (!once))
2284 { 4352 {
2285 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4353 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2286 return; 4354 return;
2287 } 4355 }
2288 4356
2289 once->cb = cb; 4357 once->cb = cb;
2290 once->arg = arg; 4358 once->arg = arg;
2302 ev_timer_set (&once->to, timeout, 0.); 4370 ev_timer_set (&once->to, timeout, 0.);
2303 ev_timer_start (EV_A_ &once->to); 4371 ev_timer_start (EV_A_ &once->to);
2304 } 4372 }
2305} 4373}
2306 4374
2307#ifdef __cplusplus 4375/*****************************************************************************/
2308} 4376
4377#if EV_WALK_ENABLE
4378void ecb_cold
4379ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4380{
4381 int i, j;
4382 ev_watcher_list *wl, *wn;
4383
4384 if (types & (EV_IO | EV_EMBED))
4385 for (i = 0; i < anfdmax; ++i)
4386 for (wl = anfds [i].head; wl; )
4387 {
4388 wn = wl->next;
4389
4390#if EV_EMBED_ENABLE
4391 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4392 {
4393 if (types & EV_EMBED)
4394 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4395 }
4396 else
4397#endif
4398#if EV_USE_INOTIFY
4399 if (ev_cb ((ev_io *)wl) == infy_cb)
4400 ;
4401 else
4402#endif
4403 if ((ev_io *)wl != &pipe_w)
4404 if (types & EV_IO)
4405 cb (EV_A_ EV_IO, wl);
4406
4407 wl = wn;
4408 }
4409
4410 if (types & (EV_TIMER | EV_STAT))
4411 for (i = timercnt + HEAP0; i-- > HEAP0; )
4412#if EV_STAT_ENABLE
4413 /*TODO: timer is not always active*/
4414 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4415 {
4416 if (types & EV_STAT)
4417 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4418 }
4419 else
4420#endif
4421 if (types & EV_TIMER)
4422 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4423
4424#if EV_PERIODIC_ENABLE
4425 if (types & EV_PERIODIC)
4426 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4427 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4428#endif
4429
4430#if EV_IDLE_ENABLE
4431 if (types & EV_IDLE)
4432 for (j = NUMPRI; j--; )
4433 for (i = idlecnt [j]; i--; )
4434 cb (EV_A_ EV_IDLE, idles [j][i]);
4435#endif
4436
4437#if EV_FORK_ENABLE
4438 if (types & EV_FORK)
4439 for (i = forkcnt; i--; )
4440 if (ev_cb (forks [i]) != embed_fork_cb)
4441 cb (EV_A_ EV_FORK, forks [i]);
4442#endif
4443
4444#if EV_ASYNC_ENABLE
4445 if (types & EV_ASYNC)
4446 for (i = asynccnt; i--; )
4447 cb (EV_A_ EV_ASYNC, asyncs [i]);
4448#endif
4449
4450#if EV_PREPARE_ENABLE
4451 if (types & EV_PREPARE)
4452 for (i = preparecnt; i--; )
4453# if EV_EMBED_ENABLE
4454 if (ev_cb (prepares [i]) != embed_prepare_cb)
2309#endif 4455# endif
4456 cb (EV_A_ EV_PREPARE, prepares [i]);
4457#endif
2310 4458
4459#if EV_CHECK_ENABLE
4460 if (types & EV_CHECK)
4461 for (i = checkcnt; i--; )
4462 cb (EV_A_ EV_CHECK, checks [i]);
4463#endif
4464
4465#if EV_SIGNAL_ENABLE
4466 if (types & EV_SIGNAL)
4467 for (i = 0; i < EV_NSIG - 1; ++i)
4468 for (wl = signals [i].head; wl; )
4469 {
4470 wn = wl->next;
4471 cb (EV_A_ EV_SIGNAL, wl);
4472 wl = wn;
4473 }
4474#endif
4475
4476#if EV_CHILD_ENABLE
4477 if (types & EV_CHILD)
4478 for (i = (EV_PID_HASHSIZE); i--; )
4479 for (wl = childs [i]; wl; )
4480 {
4481 wn = wl->next;
4482 cb (EV_A_ EV_CHILD, wl);
4483 wl = wn;
4484 }
4485#endif
4486/* EV_STAT 0x00001000 /* stat data changed */
4487/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4488}
4489#endif
4490
4491#if EV_MULTIPLICITY
4492 #include "ev_wrap.h"
4493#endif
4494

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines