ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.64 by root, Sun Nov 4 23:14:11 2007 UTC vs.
Revision 1.176 by root, Tue Dec 11 04:31:55 2007 UTC

26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 30 */
31
32#ifdef __cplusplus
33extern "C" {
34#endif
35
31#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
32# include "config.h" 40# include "config.h"
41# endif
33 42
34# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
46# endif
47# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
37# endif 57# endif
38 58
59# ifndef EV_USE_SELECT
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 60# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
41# endif 65# endif
42 66
67# ifndef EV_USE_POLL
43# if HAVE_POLL && HAVE_POLL_H 68# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
45# endif 73# endif
46 74
75# ifndef EV_USE_EPOLL
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
49# endif 81# endif
50 82
83# ifndef EV_USE_KQUEUE
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
97# endif
98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
53# endif 105# endif
54 106
55#endif 107#endif
56 108
57#include <math.h> 109#include <math.h>
58#include <stdlib.h> 110#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 111#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 112#include <stddef.h>
63 113
64#include <stdio.h> 114#include <stdio.h>
65 115
66#include <assert.h> 116#include <assert.h>
67#include <errno.h> 117#include <errno.h>
68#include <sys/types.h> 118#include <sys/types.h>
119#include <time.h>
120
121#include <signal.h>
122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
69#ifndef WIN32 129#ifndef _WIN32
130# include <sys/time.h>
70# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
133#else
134# define WIN32_LEAN_AND_MEAN
135# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1
71#endif 138# endif
72#include <sys/time.h> 139#endif
73#include <time.h>
74 140
75/**/ 141/**/
76 142
77#ifndef EV_USE_MONOTONIC 143#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 144# define EV_USE_MONOTONIC 0
145#endif
146
147#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0
79#endif 149#endif
80 150
81#ifndef EV_USE_SELECT 151#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 152# define EV_USE_SELECT 1
83#endif 153#endif
84 154
85#ifndef EV_USE_POLL 155#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 156# ifdef _WIN32
157# define EV_USE_POLL 0
158# else
159# define EV_USE_POLL 1
160# endif
87#endif 161#endif
88 162
89#ifndef EV_USE_EPOLL 163#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0 164# define EV_USE_EPOLL 0
91#endif 165#endif
92 166
93#ifndef EV_USE_KQUEUE 167#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 168# define EV_USE_KQUEUE 0
95#endif 169#endif
96 170
171#ifndef EV_USE_PORT
172# define EV_USE_PORT 0
173#endif
174
97#ifndef EV_USE_WIN32 175#ifndef EV_USE_INOTIFY
98# ifdef WIN32 176# define EV_USE_INOTIFY 0
99# define EV_USE_WIN32 1 177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
100# else 182# else
101# define EV_USE_WIN32 0 183# define EV_PID_HASHSIZE 16
102# endif 184# endif
103#endif 185#endif
104 186
105#ifndef EV_USE_REALTIME 187#ifndef EV_INOTIFY_HASHSIZE
106# define EV_USE_REALTIME 1 188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
107#endif 193#endif
108 194
109/**/ 195/**/
110 196
111#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
116#ifndef CLOCK_REALTIME 202#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 203# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 204# define EV_USE_REALTIME 0
119#endif 205#endif
120 206
207#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h>
209#endif
210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
121/**/ 219/**/
122 220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000
227 * and intervals up to 20 years.
228 * Better solutions welcome.
229 */
230#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
231
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 232#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 233#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 234/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
127
128#include "ev.h"
129 235
130#if __GNUC__ >= 3 236#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value)) 237# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 238# define noinline __attribute__ ((noinline))
133#else 239#else
134# define expect(expr,value) (expr) 240# define expect(expr,value) (expr)
135# define inline static 241# define noinline
242# if __STDC_VERSION__ < 199901L
243# define inline
244# endif
136#endif 245#endif
137 246
138#define expect_false(expr) expect ((expr) != 0, 0) 247#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1) 248#define expect_true(expr) expect ((expr) != 0, 1)
249#define inline_size static inline
250
251#if EV_MINIMAL
252# define inline_speed static noinline
253#else
254# define inline_speed static inline
255#endif
140 256
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 257#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 258#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
143 259
260#define EMPTY /* required for microsofts broken pseudo-c compiler */
261#define EMPTY2(a,b) /* used to suppress some warnings */
262
144typedef struct ev_watcher *W; 263typedef ev_watcher *W;
145typedef struct ev_watcher_list *WL; 264typedef ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 265typedef ev_watcher_time *WT;
147 266
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 267static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
149 268
269#ifdef _WIN32
270# include "ev_win32.c"
271#endif
272
150/*****************************************************************************/ 273/*****************************************************************************/
151 274
275static void (*syserr_cb)(const char *msg);
276
277void
278ev_set_syserr_cb (void (*cb)(const char *msg))
279{
280 syserr_cb = cb;
281}
282
283static void noinline
284syserr (const char *msg)
285{
286 if (!msg)
287 msg = "(libev) system error";
288
289 if (syserr_cb)
290 syserr_cb (msg);
291 else
292 {
293 perror (msg);
294 abort ();
295 }
296}
297
298static void *(*alloc)(void *ptr, long size);
299
300void
301ev_set_allocator (void *(*cb)(void *ptr, long size))
302{
303 alloc = cb;
304}
305
306inline_speed void *
307ev_realloc (void *ptr, long size)
308{
309 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
310
311 if (!ptr && size)
312 {
313 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
314 abort ();
315 }
316
317 return ptr;
318}
319
320#define ev_malloc(size) ev_realloc (0, (size))
321#define ev_free(ptr) ev_realloc ((ptr), 0)
322
323/*****************************************************************************/
324
152typedef struct 325typedef struct
153{ 326{
154 struct ev_watcher_list *head; 327 WL head;
155 unsigned char events; 328 unsigned char events;
156 unsigned char reify; 329 unsigned char reify;
330#if EV_SELECT_IS_WINSOCKET
331 SOCKET handle;
332#endif
157} ANFD; 333} ANFD;
158 334
159typedef struct 335typedef struct
160{ 336{
161 W w; 337 W w;
162 int events; 338 int events;
163} ANPENDING; 339} ANPENDING;
164 340
341#if EV_USE_INOTIFY
342typedef struct
343{
344 WL head;
345} ANFS;
346#endif
347
165#if EV_MULTIPLICITY 348#if EV_MULTIPLICITY
166 349
167struct ev_loop 350 struct ev_loop
168{ 351 {
352 ev_tstamp ev_rt_now;
353 #define ev_rt_now ((loop)->ev_rt_now)
169# define VAR(name,decl) decl; 354 #define VAR(name,decl) decl;
170# include "ev_vars.h" 355 #include "ev_vars.h"
171};
172# undef VAR 356 #undef VAR
357 };
173# include "ev_wrap.h" 358 #include "ev_wrap.h"
359
360 static struct ev_loop default_loop_struct;
361 struct ev_loop *ev_default_loop_ptr;
174 362
175#else 363#else
176 364
365 ev_tstamp ev_rt_now;
177# define VAR(name,decl) static decl; 366 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 367 #include "ev_vars.h"
179# undef VAR 368 #undef VAR
369
370 static int ev_default_loop_ptr;
180 371
181#endif 372#endif
182 373
183/*****************************************************************************/ 374/*****************************************************************************/
184 375
185inline ev_tstamp 376ev_tstamp
186ev_time (void) 377ev_time (void)
187{ 378{
188#if EV_USE_REALTIME 379#if EV_USE_REALTIME
189 struct timespec ts; 380 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts); 381 clock_gettime (CLOCK_REALTIME, &ts);
194 gettimeofday (&tv, 0); 385 gettimeofday (&tv, 0);
195 return tv.tv_sec + tv.tv_usec * 1e-6; 386 return tv.tv_sec + tv.tv_usec * 1e-6;
196#endif 387#endif
197} 388}
198 389
199inline ev_tstamp 390ev_tstamp inline_size
200get_clock (void) 391get_clock (void)
201{ 392{
202#if EV_USE_MONOTONIC 393#if EV_USE_MONOTONIC
203 if (expect_true (have_monotonic)) 394 if (expect_true (have_monotonic))
204 { 395 {
209#endif 400#endif
210 401
211 return ev_time (); 402 return ev_time ();
212} 403}
213 404
405#if EV_MULTIPLICITY
214ev_tstamp 406ev_tstamp
215ev_now (EV_P) 407ev_now (EV_P)
216{ 408{
217 return rt_now; 409 return ev_rt_now;
218} 410}
411#endif
219 412
220#define array_roundsize(base,n) ((n) | 4 & ~3) 413int inline_size
414array_nextsize (int elem, int cur, int cnt)
415{
416 int ncur = cur + 1;
221 417
418 do
419 ncur <<= 1;
420 while (cnt > ncur);
421
422 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
423 if (elem * ncur > 4096)
424 {
425 ncur *= elem;
426 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
427 ncur = ncur - sizeof (void *) * 4;
428 ncur /= elem;
429 }
430
431 return ncur;
432}
433
434static noinline void *
435array_realloc (int elem, void *base, int *cur, int cnt)
436{
437 *cur = array_nextsize (elem, *cur, cnt);
438 return ev_realloc (base, elem * *cur);
439}
440
222#define array_needsize(base,cur,cnt,init) \ 441#define array_needsize(type,base,cur,cnt,init) \
223 if (expect_false ((cnt) > cur)) \ 442 if (expect_false ((cnt) > (cur))) \
224 { \ 443 { \
225 int newcnt = cur; \ 444 int ocur_ = (cur); \
226 do \ 445 (base) = (type *)array_realloc \
227 { \ 446 (sizeof (type), (base), &(cur), (cnt)); \
228 newcnt = array_roundsize (base, newcnt << 1); \ 447 init ((base) + (ocur_), (cur) - ocur_); \
229 } \ 448 }
230 while ((cnt) > newcnt); \ 449
450#if 0
451#define array_slim(type,stem) \
452 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
231 \ 453 { \
232 base = realloc (base, sizeof (*base) * (newcnt)); \ 454 stem ## max = array_roundsize (stem ## cnt >> 1); \
233 init (base + cur, newcnt - cur); \ 455 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
234 cur = newcnt; \ 456 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
235 } 457 }
458#endif
459
460#define array_free(stem, idx) \
461 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
236 462
237/*****************************************************************************/ 463/*****************************************************************************/
238 464
239static void 465void noinline
466ev_feed_event (EV_P_ void *w, int revents)
467{
468 W w_ = (W)w;
469 int pri = ABSPRI (w_);
470
471 if (expect_false (w_->pending))
472 pendings [pri][w_->pending - 1].events |= revents;
473 else
474 {
475 w_->pending = ++pendingcnt [pri];
476 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
477 pendings [pri][w_->pending - 1].w = w_;
478 pendings [pri][w_->pending - 1].events = revents;
479 }
480}
481
482void inline_size
483queue_events (EV_P_ W *events, int eventcnt, int type)
484{
485 int i;
486
487 for (i = 0; i < eventcnt; ++i)
488 ev_feed_event (EV_A_ events [i], type);
489}
490
491/*****************************************************************************/
492
493void inline_size
240anfds_init (ANFD *base, int count) 494anfds_init (ANFD *base, int count)
241{ 495{
242 while (count--) 496 while (count--)
243 { 497 {
244 base->head = 0; 498 base->head = 0;
247 501
248 ++base; 502 ++base;
249 } 503 }
250} 504}
251 505
252static void 506void inline_speed
253event (EV_P_ W w, int events)
254{
255 if (w->pending)
256 {
257 pendings [ABSPRI (w)][w->pending - 1].events |= events;
258 return;
259 }
260
261 w->pending = ++pendingcnt [ABSPRI (w)];
262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
263 pendings [ABSPRI (w)][w->pending - 1].w = w;
264 pendings [ABSPRI (w)][w->pending - 1].events = events;
265}
266
267static void
268queue_events (EV_P_ W *events, int eventcnt, int type)
269{
270 int i;
271
272 for (i = 0; i < eventcnt; ++i)
273 event (EV_A_ events [i], type);
274}
275
276static void
277fd_event (EV_P_ int fd, int events) 507fd_event (EV_P_ int fd, int revents)
278{ 508{
279 ANFD *anfd = anfds + fd; 509 ANFD *anfd = anfds + fd;
280 struct ev_io *w; 510 ev_io *w;
281 511
282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 512 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
283 { 513 {
284 int ev = w->events & events; 514 int ev = w->events & revents;
285 515
286 if (ev) 516 if (ev)
287 event (EV_A_ (W)w, ev); 517 ev_feed_event (EV_A_ (W)w, ev);
288 } 518 }
289} 519}
290 520
291/*****************************************************************************/ 521void
522ev_feed_fd_event (EV_P_ int fd, int revents)
523{
524 if (fd >= 0 && fd < anfdmax)
525 fd_event (EV_A_ fd, revents);
526}
292 527
293static void 528void inline_size
294fd_reify (EV_P) 529fd_reify (EV_P)
295{ 530{
296 int i; 531 int i;
297 532
298 for (i = 0; i < fdchangecnt; ++i) 533 for (i = 0; i < fdchangecnt; ++i)
299 { 534 {
300 int fd = fdchanges [i]; 535 int fd = fdchanges [i];
301 ANFD *anfd = anfds + fd; 536 ANFD *anfd = anfds + fd;
302 struct ev_io *w; 537 ev_io *w;
303 538
304 int events = 0; 539 int events = 0;
305 540
306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 541 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
307 events |= w->events; 542 events |= w->events;
308 543
544#if EV_SELECT_IS_WINSOCKET
545 if (events)
546 {
547 unsigned long argp;
548 anfd->handle = _get_osfhandle (fd);
549 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
550 }
551#endif
552
309 anfd->reify = 0; 553 anfd->reify = 0;
310 554
311 method_modify (EV_A_ fd, anfd->events, events); 555 backend_modify (EV_A_ fd, anfd->events, events);
312 anfd->events = events; 556 anfd->events = events;
313 } 557 }
314 558
315 fdchangecnt = 0; 559 fdchangecnt = 0;
316} 560}
317 561
318static void 562void inline_size
319fd_change (EV_P_ int fd) 563fd_change (EV_P_ int fd)
320{ 564{
321 if (anfds [fd].reify || fdchangecnt < 0) 565 if (expect_false (anfds [fd].reify))
322 return; 566 return;
323 567
324 anfds [fd].reify = 1; 568 anfds [fd].reify = 1;
325 569
326 ++fdchangecnt; 570 ++fdchangecnt;
327 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 571 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
328 fdchanges [fdchangecnt - 1] = fd; 572 fdchanges [fdchangecnt - 1] = fd;
329} 573}
330 574
331static void 575void inline_speed
332fd_kill (EV_P_ int fd) 576fd_kill (EV_P_ int fd)
333{ 577{
334 struct ev_io *w; 578 ev_io *w;
335 579
336 while ((w = (struct ev_io *)anfds [fd].head)) 580 while ((w = (ev_io *)anfds [fd].head))
337 { 581 {
338 ev_io_stop (EV_A_ w); 582 ev_io_stop (EV_A_ w);
339 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 583 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
340 } 584 }
585}
586
587int inline_size
588fd_valid (int fd)
589{
590#ifdef _WIN32
591 return _get_osfhandle (fd) != -1;
592#else
593 return fcntl (fd, F_GETFD) != -1;
594#endif
341} 595}
342 596
343/* called on EBADF to verify fds */ 597/* called on EBADF to verify fds */
344static void 598static void noinline
345fd_ebadf (EV_P) 599fd_ebadf (EV_P)
346{ 600{
347 int fd; 601 int fd;
348 602
349 for (fd = 0; fd < anfdmax; ++fd) 603 for (fd = 0; fd < anfdmax; ++fd)
350 if (anfds [fd].events) 604 if (anfds [fd].events)
351 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 605 if (!fd_valid (fd) == -1 && errno == EBADF)
352 fd_kill (EV_A_ fd); 606 fd_kill (EV_A_ fd);
353} 607}
354 608
355/* called on ENOMEM in select/poll to kill some fds and retry */ 609/* called on ENOMEM in select/poll to kill some fds and retry */
356static void 610static void noinline
357fd_enomem (EV_P) 611fd_enomem (EV_P)
358{ 612{
359 int fd; 613 int fd;
360 614
361 for (fd = anfdmax; fd--; ) 615 for (fd = anfdmax; fd--; )
362 if (anfds [fd].events) 616 if (anfds [fd].events)
363 { 617 {
364 close (fd);
365 fd_kill (EV_A_ fd); 618 fd_kill (EV_A_ fd);
366 return; 619 return;
367 } 620 }
368} 621}
369 622
370/* susually called after fork if method needs to re-arm all fds from scratch */ 623/* usually called after fork if backend needs to re-arm all fds from scratch */
371static void 624static void noinline
372fd_rearm_all (EV_P) 625fd_rearm_all (EV_P)
373{ 626{
374 int fd; 627 int fd;
375 628
376 /* this should be highly optimised to not do anything but set a flag */
377 for (fd = 0; fd < anfdmax; ++fd) 629 for (fd = 0; fd < anfdmax; ++fd)
378 if (anfds [fd].events) 630 if (anfds [fd].events)
379 { 631 {
380 anfds [fd].events = 0; 632 anfds [fd].events = 0;
381 fd_change (EV_A_ fd); 633 fd_change (EV_A_ fd);
382 } 634 }
383} 635}
384 636
385/*****************************************************************************/ 637/*****************************************************************************/
386 638
387static void 639void inline_speed
388upheap (WT *heap, int k) 640upheap (WT *heap, int k)
389{ 641{
390 WT w = heap [k]; 642 WT w = heap [k];
391 643
392 while (k && heap [k >> 1]->at > w->at) 644 while (k && heap [k >> 1]->at > w->at)
399 heap [k] = w; 651 heap [k] = w;
400 ((W)heap [k])->active = k + 1; 652 ((W)heap [k])->active = k + 1;
401 653
402} 654}
403 655
404static void 656void inline_speed
405downheap (WT *heap, int N, int k) 657downheap (WT *heap, int N, int k)
406{ 658{
407 WT w = heap [k]; 659 WT w = heap [k];
408 660
409 while (k < (N >> 1)) 661 while (k < (N >> 1))
423 675
424 heap [k] = w; 676 heap [k] = w;
425 ((W)heap [k])->active = k + 1; 677 ((W)heap [k])->active = k + 1;
426} 678}
427 679
680void inline_size
681adjustheap (WT *heap, int N, int k)
682{
683 upheap (heap, k);
684 downheap (heap, N, k);
685}
686
428/*****************************************************************************/ 687/*****************************************************************************/
429 688
430typedef struct 689typedef struct
431{ 690{
432 struct ev_watcher_list *head; 691 WL head;
433 sig_atomic_t volatile gotsig; 692 sig_atomic_t volatile gotsig;
434} ANSIG; 693} ANSIG;
435 694
436static ANSIG *signals; 695static ANSIG *signals;
437static int signalmax; 696static int signalmax;
438 697
439static int sigpipe [2]; 698static int sigpipe [2];
440static sig_atomic_t volatile gotsig; 699static sig_atomic_t volatile gotsig;
441static struct ev_io sigev; 700static ev_io sigev;
442 701
443static void 702void inline_size
444signals_init (ANSIG *base, int count) 703signals_init (ANSIG *base, int count)
445{ 704{
446 while (count--) 705 while (count--)
447 { 706 {
448 base->head = 0; 707 base->head = 0;
453} 712}
454 713
455static void 714static void
456sighandler (int signum) 715sighandler (int signum)
457{ 716{
717#if _WIN32
718 signal (signum, sighandler);
719#endif
720
458 signals [signum - 1].gotsig = 1; 721 signals [signum - 1].gotsig = 1;
459 722
460 if (!gotsig) 723 if (!gotsig)
461 { 724 {
462 int old_errno = errno; 725 int old_errno = errno;
464 write (sigpipe [1], &signum, 1); 727 write (sigpipe [1], &signum, 1);
465 errno = old_errno; 728 errno = old_errno;
466 } 729 }
467} 730}
468 731
732void noinline
733ev_feed_signal_event (EV_P_ int signum)
734{
735 WL w;
736
737#if EV_MULTIPLICITY
738 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
739#endif
740
741 --signum;
742
743 if (signum < 0 || signum >= signalmax)
744 return;
745
746 signals [signum].gotsig = 0;
747
748 for (w = signals [signum].head; w; w = w->next)
749 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
750}
751
469static void 752static void
470sigcb (EV_P_ struct ev_io *iow, int revents) 753sigcb (EV_P_ ev_io *iow, int revents)
471{ 754{
472 struct ev_watcher_list *w;
473 int signum; 755 int signum;
474 756
475 read (sigpipe [0], &revents, 1); 757 read (sigpipe [0], &revents, 1);
476 gotsig = 0; 758 gotsig = 0;
477 759
478 for (signum = signalmax; signum--; ) 760 for (signum = signalmax; signum--; )
479 if (signals [signum].gotsig) 761 if (signals [signum].gotsig)
480 { 762 ev_feed_signal_event (EV_A_ signum + 1);
481 signals [signum].gotsig = 0;
482
483 for (w = signals [signum].head; w; w = w->next)
484 event (EV_A_ (W)w, EV_SIGNAL);
485 }
486} 763}
487 764
488static void 765void inline_speed
766fd_intern (int fd)
767{
768#ifdef _WIN32
769 int arg = 1;
770 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
771#else
772 fcntl (fd, F_SETFD, FD_CLOEXEC);
773 fcntl (fd, F_SETFL, O_NONBLOCK);
774#endif
775}
776
777static void noinline
489siginit (EV_P) 778siginit (EV_P)
490{ 779{
491#ifndef WIN32 780 fd_intern (sigpipe [0]);
492 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 781 fd_intern (sigpipe [1]);
493 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
494
495 /* rather than sort out wether we really need nb, set it */
496 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
497 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
498#endif
499 782
500 ev_io_set (&sigev, sigpipe [0], EV_READ); 783 ev_io_set (&sigev, sigpipe [0], EV_READ);
501 ev_io_start (EV_A_ &sigev); 784 ev_io_start (EV_A_ &sigev);
502 ev_unref (EV_A); /* child watcher should not keep loop alive */ 785 ev_unref (EV_A); /* child watcher should not keep loop alive */
503} 786}
504 787
505/*****************************************************************************/ 788/*****************************************************************************/
506 789
790static ev_child *childs [EV_PID_HASHSIZE];
791
507#ifndef WIN32 792#ifndef _WIN32
508 793
509static struct ev_child *childs [PID_HASHSIZE];
510static struct ev_signal childev; 794static ev_signal childev;
795
796void inline_speed
797child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
798{
799 ev_child *w;
800
801 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
802 if (w->pid == pid || !w->pid)
803 {
804 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
805 w->rpid = pid;
806 w->rstatus = status;
807 ev_feed_event (EV_A_ (W)w, EV_CHILD);
808 }
809}
511 810
512#ifndef WCONTINUED 811#ifndef WCONTINUED
513# define WCONTINUED 0 812# define WCONTINUED 0
514#endif 813#endif
515 814
516static void 815static void
517child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
518{
519 struct ev_child *w;
520
521 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
522 if (w->pid == pid || !w->pid)
523 {
524 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
525 w->rpid = pid;
526 w->rstatus = status;
527 event (EV_A_ (W)w, EV_CHILD);
528 }
529}
530
531static void
532childcb (EV_P_ struct ev_signal *sw, int revents) 816childcb (EV_P_ ev_signal *sw, int revents)
533{ 817{
534 int pid, status; 818 int pid, status;
535 819
820 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
536 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 821 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
537 { 822 if (!WCONTINUED
823 || errno != EINVAL
824 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
825 return;
826
538 /* make sure we are called again until all childs have been reaped */ 827 /* make sure we are called again until all childs have been reaped */
828 /* we need to do it this way so that the callback gets called before we continue */
539 event (EV_A_ (W)sw, EV_SIGNAL); 829 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
540 830
541 child_reap (EV_A_ sw, pid, pid, status); 831 child_reap (EV_A_ sw, pid, pid, status);
832 if (EV_PID_HASHSIZE > 1)
542 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 833 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
543 }
544} 834}
545 835
546#endif 836#endif
547 837
548/*****************************************************************************/ 838/*****************************************************************************/
549 839
840#if EV_USE_PORT
841# include "ev_port.c"
842#endif
550#if EV_USE_KQUEUE 843#if EV_USE_KQUEUE
551# include "ev_kqueue.c" 844# include "ev_kqueue.c"
552#endif 845#endif
553#if EV_USE_EPOLL 846#if EV_USE_EPOLL
554# include "ev_epoll.c" 847# include "ev_epoll.c"
571{ 864{
572 return EV_VERSION_MINOR; 865 return EV_VERSION_MINOR;
573} 866}
574 867
575/* return true if we are running with elevated privileges and should ignore env variables */ 868/* return true if we are running with elevated privileges and should ignore env variables */
576static int 869int inline_size
577enable_secure (void) 870enable_secure (void)
578{ 871{
579#ifdef WIN32 872#ifdef _WIN32
580 return 0; 873 return 0;
581#else 874#else
582 return getuid () != geteuid () 875 return getuid () != geteuid ()
583 || getgid () != getegid (); 876 || getgid () != getegid ();
584#endif 877#endif
585} 878}
586 879
587int 880unsigned int
588ev_method (EV_P) 881ev_supported_backends (void)
589{ 882{
590 return method; 883 unsigned int flags = 0;
591}
592 884
593static void 885 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
594loop_init (EV_P_ int methods) 886 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
887 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
888 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
889 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
890
891 return flags;
892}
893
894unsigned int
895ev_recommended_backends (void)
595{ 896{
596 if (!method) 897 unsigned int flags = ev_supported_backends ();
898
899#ifndef __NetBSD__
900 /* kqueue is borked on everything but netbsd apparently */
901 /* it usually doesn't work correctly on anything but sockets and pipes */
902 flags &= ~EVBACKEND_KQUEUE;
903#endif
904#ifdef __APPLE__
905 // flags &= ~EVBACKEND_KQUEUE; for documentation
906 flags &= ~EVBACKEND_POLL;
907#endif
908
909 return flags;
910}
911
912unsigned int
913ev_embeddable_backends (void)
914{
915 return EVBACKEND_EPOLL
916 | EVBACKEND_KQUEUE
917 | EVBACKEND_PORT;
918}
919
920unsigned int
921ev_backend (EV_P)
922{
923 return backend;
924}
925
926unsigned int
927ev_loop_count (EV_P)
928{
929 return loop_count;
930}
931
932static void noinline
933loop_init (EV_P_ unsigned int flags)
934{
935 if (!backend)
597 { 936 {
598#if EV_USE_MONOTONIC 937#if EV_USE_MONOTONIC
599 { 938 {
600 struct timespec ts; 939 struct timespec ts;
601 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 940 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
602 have_monotonic = 1; 941 have_monotonic = 1;
603 } 942 }
604#endif 943#endif
605 944
606 rt_now = ev_time (); 945 ev_rt_now = ev_time ();
607 mn_now = get_clock (); 946 mn_now = get_clock ();
608 now_floor = mn_now; 947 now_floor = mn_now;
609 rtmn_diff = rt_now - mn_now; 948 rtmn_diff = ev_rt_now - mn_now;
610 949
611 if (methods == EVMETHOD_AUTO) 950 /* pid check not overridable via env */
612 if (!enable_secure () && getenv ("LIBEV_METHODS")) 951#ifndef _WIN32
952 if (flags & EVFLAG_FORKCHECK)
953 curpid = getpid ();
954#endif
955
956 if (!(flags & EVFLAG_NOENV)
957 && !enable_secure ()
958 && getenv ("LIBEV_FLAGS"))
613 methods = atoi (getenv ("LIBEV_METHODS")); 959 flags = atoi (getenv ("LIBEV_FLAGS"));
614 else
615 methods = EVMETHOD_ANY;
616 960
617 method = 0; 961 if (!(flags & 0x0000ffffUL))
962 flags |= ev_recommended_backends ();
963
964 backend = 0;
965 backend_fd = -1;
618#if EV_USE_WIN32 966#if EV_USE_INOTIFY
619 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 967 fs_fd = -2;
968#endif
969
970#if EV_USE_PORT
971 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
620#endif 972#endif
621#if EV_USE_KQUEUE 973#if EV_USE_KQUEUE
622 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 974 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
623#endif 975#endif
624#if EV_USE_EPOLL 976#if EV_USE_EPOLL
625 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 977 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
626#endif 978#endif
627#if EV_USE_POLL 979#if EV_USE_POLL
628 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 980 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
629#endif 981#endif
630#if EV_USE_SELECT 982#if EV_USE_SELECT
631 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 983 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
632#endif 984#endif
633 }
634}
635 985
636void 986 ev_init (&sigev, sigcb);
987 ev_set_priority (&sigev, EV_MAXPRI);
988 }
989}
990
991static void noinline
637loop_destroy (EV_P) 992loop_destroy (EV_P)
638{ 993{
994 int i;
995
639#if EV_USE_WIN32 996#if EV_USE_INOTIFY
640 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 997 if (fs_fd >= 0)
998 close (fs_fd);
999#endif
1000
1001 if (backend_fd >= 0)
1002 close (backend_fd);
1003
1004#if EV_USE_PORT
1005 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
641#endif 1006#endif
642#if EV_USE_KQUEUE 1007#if EV_USE_KQUEUE
643 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1008 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
644#endif 1009#endif
645#if EV_USE_EPOLL 1010#if EV_USE_EPOLL
646 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1011 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
647#endif 1012#endif
648#if EV_USE_POLL 1013#if EV_USE_POLL
649 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1014 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
650#endif 1015#endif
651#if EV_USE_SELECT 1016#if EV_USE_SELECT
652 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1017 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
653#endif 1018#endif
654 1019
655 method = 0; 1020 for (i = NUMPRI; i--; )
656 /*TODO*/ 1021 {
657} 1022 array_free (pending, [i]);
1023#if EV_IDLE_ENABLE
1024 array_free (idle, [i]);
1025#endif
1026 }
658 1027
659void 1028 /* have to use the microsoft-never-gets-it-right macro */
1029 array_free (fdchange, EMPTY);
1030 array_free (timer, EMPTY);
1031#if EV_PERIODIC_ENABLE
1032 array_free (periodic, EMPTY);
1033#endif
1034 array_free (prepare, EMPTY);
1035 array_free (check, EMPTY);
1036
1037 backend = 0;
1038}
1039
1040void inline_size infy_fork (EV_P);
1041
1042void inline_size
660loop_fork (EV_P) 1043loop_fork (EV_P)
661{ 1044{
662 /*TODO*/ 1045#if EV_USE_PORT
1046 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1047#endif
1048#if EV_USE_KQUEUE
1049 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1050#endif
663#if EV_USE_EPOLL 1051#if EV_USE_EPOLL
664 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1052 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
665#endif 1053#endif
666#if EV_USE_KQUEUE 1054#if EV_USE_INOTIFY
667 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1055 infy_fork (EV_A);
668#endif 1056#endif
1057
1058 if (ev_is_active (&sigev))
1059 {
1060 /* default loop */
1061
1062 ev_ref (EV_A);
1063 ev_io_stop (EV_A_ &sigev);
1064 close (sigpipe [0]);
1065 close (sigpipe [1]);
1066
1067 while (pipe (sigpipe))
1068 syserr ("(libev) error creating pipe");
1069
1070 siginit (EV_A);
1071 }
1072
1073 postfork = 0;
669} 1074}
670 1075
671#if EV_MULTIPLICITY 1076#if EV_MULTIPLICITY
672struct ev_loop * 1077struct ev_loop *
673ev_loop_new (int methods) 1078ev_loop_new (unsigned int flags)
674{ 1079{
675 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 1080 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
676 1081
1082 memset (loop, 0, sizeof (struct ev_loop));
1083
677 loop_init (EV_A_ methods); 1084 loop_init (EV_A_ flags);
678 1085
679 if (ev_method (EV_A)) 1086 if (ev_backend (EV_A))
680 return loop; 1087 return loop;
681 1088
682 return 0; 1089 return 0;
683} 1090}
684 1091
685void 1092void
686ev_loop_destroy (EV_P) 1093ev_loop_destroy (EV_P)
687{ 1094{
688 loop_destroy (EV_A); 1095 loop_destroy (EV_A);
689 free (loop); 1096 ev_free (loop);
690} 1097}
691 1098
692void 1099void
693ev_loop_fork (EV_P) 1100ev_loop_fork (EV_P)
694{ 1101{
695 loop_fork (EV_A); 1102 postfork = 1;
696} 1103}
697 1104
698#endif 1105#endif
699 1106
700#if EV_MULTIPLICITY 1107#if EV_MULTIPLICITY
701struct ev_loop default_loop_struct;
702static struct ev_loop *default_loop;
703
704struct ev_loop * 1108struct ev_loop *
1109ev_default_loop_init (unsigned int flags)
705#else 1110#else
706static int default_loop;
707
708int 1111int
1112ev_default_loop (unsigned int flags)
709#endif 1113#endif
710ev_default_loop (int methods)
711{ 1114{
712 if (sigpipe [0] == sigpipe [1]) 1115 if (sigpipe [0] == sigpipe [1])
713 if (pipe (sigpipe)) 1116 if (pipe (sigpipe))
714 return 0; 1117 return 0;
715 1118
716 if (!default_loop) 1119 if (!ev_default_loop_ptr)
717 { 1120 {
718#if EV_MULTIPLICITY 1121#if EV_MULTIPLICITY
719 struct ev_loop *loop = default_loop = &default_loop_struct; 1122 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
720#else 1123#else
721 default_loop = 1; 1124 ev_default_loop_ptr = 1;
722#endif 1125#endif
723 1126
724 loop_init (EV_A_ methods); 1127 loop_init (EV_A_ flags);
725 1128
726 if (ev_method (EV_A)) 1129 if (ev_backend (EV_A))
727 { 1130 {
728 ev_watcher_init (&sigev, sigcb);
729 ev_set_priority (&sigev, EV_MAXPRI);
730 siginit (EV_A); 1131 siginit (EV_A);
731 1132
732#ifndef WIN32 1133#ifndef _WIN32
733 ev_signal_init (&childev, childcb, SIGCHLD); 1134 ev_signal_init (&childev, childcb, SIGCHLD);
734 ev_set_priority (&childev, EV_MAXPRI); 1135 ev_set_priority (&childev, EV_MAXPRI);
735 ev_signal_start (EV_A_ &childev); 1136 ev_signal_start (EV_A_ &childev);
736 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1137 ev_unref (EV_A); /* child watcher should not keep loop alive */
737#endif 1138#endif
738 } 1139 }
739 else 1140 else
740 default_loop = 0; 1141 ev_default_loop_ptr = 0;
741 } 1142 }
742 1143
743 return default_loop; 1144 return ev_default_loop_ptr;
744} 1145}
745 1146
746void 1147void
747ev_default_destroy (void) 1148ev_default_destroy (void)
748{ 1149{
749#if EV_MULTIPLICITY 1150#if EV_MULTIPLICITY
750 struct ev_loop *loop = default_loop; 1151 struct ev_loop *loop = ev_default_loop_ptr;
751#endif 1152#endif
752 1153
1154#ifndef _WIN32
753 ev_ref (EV_A); /* child watcher */ 1155 ev_ref (EV_A); /* child watcher */
754 ev_signal_stop (EV_A_ &childev); 1156 ev_signal_stop (EV_A_ &childev);
1157#endif
755 1158
756 ev_ref (EV_A); /* signal watcher */ 1159 ev_ref (EV_A); /* signal watcher */
757 ev_io_stop (EV_A_ &sigev); 1160 ev_io_stop (EV_A_ &sigev);
758 1161
759 close (sigpipe [0]); sigpipe [0] = 0; 1162 close (sigpipe [0]); sigpipe [0] = 0;
764 1167
765void 1168void
766ev_default_fork (void) 1169ev_default_fork (void)
767{ 1170{
768#if EV_MULTIPLICITY 1171#if EV_MULTIPLICITY
769 struct ev_loop *loop = default_loop; 1172 struct ev_loop *loop = ev_default_loop_ptr;
770#endif 1173#endif
771 1174
772 loop_fork (EV_A); 1175 if (backend)
773 1176 postfork = 1;
774 ev_io_stop (EV_A_ &sigev);
775 close (sigpipe [0]);
776 close (sigpipe [1]);
777 pipe (sigpipe);
778
779 ev_ref (EV_A); /* signal watcher */
780 siginit (EV_A);
781} 1177}
782 1178
783/*****************************************************************************/ 1179/*****************************************************************************/
784 1180
785static void 1181void
1182ev_invoke (EV_P_ void *w, int revents)
1183{
1184 EV_CB_INVOKE ((W)w, revents);
1185}
1186
1187void inline_speed
786call_pending (EV_P) 1188call_pending (EV_P)
787{ 1189{
788 int pri; 1190 int pri;
789 1191
790 for (pri = NUMPRI; pri--; ) 1192 for (pri = NUMPRI; pri--; )
791 while (pendingcnt [pri]) 1193 while (pendingcnt [pri])
792 { 1194 {
793 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1195 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
794 1196
795 if (p->w) 1197 if (expect_true (p->w))
796 { 1198 {
1199 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1200
797 p->w->pending = 0; 1201 p->w->pending = 0;
798 1202 EV_CB_INVOKE (p->w, p->events);
799 (*(void (**)(EV_P_ W, int))&p->w->cb) (EV_A_ p->w, p->events);
800 } 1203 }
801 } 1204 }
802} 1205}
803 1206
804static void 1207void inline_size
805timers_reify (EV_P) 1208timers_reify (EV_P)
806{ 1209{
807 while (timercnt && ((WT)timers [0])->at <= mn_now) 1210 while (timercnt && ((WT)timers [0])->at <= mn_now)
808 { 1211 {
809 struct ev_timer *w = timers [0]; 1212 ev_timer *w = timers [0];
810 1213
811 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1214 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
812 1215
813 /* first reschedule or stop timer */ 1216 /* first reschedule or stop timer */
814 if (w->repeat) 1217 if (w->repeat)
815 { 1218 {
816 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1219 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1220
817 ((WT)w)->at = mn_now + w->repeat; 1221 ((WT)w)->at += w->repeat;
1222 if (((WT)w)->at < mn_now)
1223 ((WT)w)->at = mn_now;
1224
818 downheap ((WT *)timers, timercnt, 0); 1225 downheap ((WT *)timers, timercnt, 0);
819 } 1226 }
820 else 1227 else
821 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1228 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
822 1229
823 event (EV_A_ (W)w, EV_TIMEOUT); 1230 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
824 } 1231 }
825} 1232}
826 1233
827static void 1234#if EV_PERIODIC_ENABLE
1235void inline_size
828periodics_reify (EV_P) 1236periodics_reify (EV_P)
829{ 1237{
830 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1238 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
831 { 1239 {
832 struct ev_periodic *w = periodics [0]; 1240 ev_periodic *w = periodics [0];
833 1241
834 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1242 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
835 1243
836 /* first reschedule or stop timer */ 1244 /* first reschedule or stop timer */
837 if (w->interval) 1245 if (w->reschedule_cb)
838 { 1246 {
1247 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1248 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1249 downheap ((WT *)periodics, periodiccnt, 0);
1250 }
1251 else if (w->interval)
1252 {
839 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1253 ((WT)w)->at = w->offset + floor ((ev_rt_now + TIME_EPSILON - w->offset) / w->interval + 1.) * w->interval;
840 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
841 downheap ((WT *)periodics, periodiccnt, 0); 1255 downheap ((WT *)periodics, periodiccnt, 0);
842 } 1256 }
843 else 1257 else
844 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
845 1259
846 event (EV_A_ (W)w, EV_PERIODIC); 1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
847 } 1261 }
848} 1262}
849 1263
850static void 1264static void noinline
851periodics_reschedule (EV_P) 1265periodics_reschedule (EV_P)
852{ 1266{
853 int i; 1267 int i;
854 1268
855 /* adjust periodics after time jump */ 1269 /* adjust periodics after time jump */
856 for (i = 0; i < periodiccnt; ++i) 1270 for (i = 0; i < periodiccnt; ++i)
857 { 1271 {
858 struct ev_periodic *w = periodics [i]; 1272 ev_periodic *w = periodics [i];
859 1273
1274 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
860 if (w->interval) 1276 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 }
1279
1280 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i);
1283}
1284#endif
1285
1286#if EV_IDLE_ENABLE
1287void inline_size
1288idle_reify (EV_P)
1289{
1290 if (expect_false (idleall))
1291 {
1292 int pri;
1293
1294 for (pri = NUMPRI; pri--; )
861 { 1295 {
862 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1296 if (pendingcnt [pri])
1297 break;
863 1298
864 if (fabs (diff) >= 1e-4) 1299 if (idlecnt [pri])
865 { 1300 {
866 ev_periodic_stop (EV_A_ w); 1301 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
867 ev_periodic_start (EV_A_ w); 1302 break;
868
869 i = 0; /* restart loop, inefficient, but time jumps should be rare */
870 } 1303 }
871 } 1304 }
872 } 1305 }
873} 1306}
1307#endif
874 1308
875inline int 1309int inline_size
876time_update_monotonic (EV_P) 1310time_update_monotonic (EV_P)
877{ 1311{
878 mn_now = get_clock (); 1312 mn_now = get_clock ();
879 1313
880 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
881 { 1315 {
882 rt_now = rtmn_diff + mn_now; 1316 ev_rt_now = rtmn_diff + mn_now;
883 return 0; 1317 return 0;
884 } 1318 }
885 else 1319 else
886 { 1320 {
887 now_floor = mn_now; 1321 now_floor = mn_now;
888 rt_now = ev_time (); 1322 ev_rt_now = ev_time ();
889 return 1; 1323 return 1;
890 } 1324 }
891} 1325}
892 1326
893static void 1327void inline_size
894time_update (EV_P) 1328time_update (EV_P)
895{ 1329{
896 int i; 1330 int i;
897 1331
898#if EV_USE_MONOTONIC 1332#if EV_USE_MONOTONIC
900 { 1334 {
901 if (time_update_monotonic (EV_A)) 1335 if (time_update_monotonic (EV_A))
902 { 1336 {
903 ev_tstamp odiff = rtmn_diff; 1337 ev_tstamp odiff = rtmn_diff;
904 1338
905 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
906 { 1348 {
907 rtmn_diff = rt_now - mn_now; 1349 rtmn_diff = ev_rt_now - mn_now;
908 1350
909 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
910 return; /* all is well */ 1352 return; /* all is well */
911 1353
912 rt_now = ev_time (); 1354 ev_rt_now = ev_time ();
913 mn_now = get_clock (); 1355 mn_now = get_clock ();
914 now_floor = mn_now; 1356 now_floor = mn_now;
915 } 1357 }
916 1358
1359# if EV_PERIODIC_ENABLE
917 periodics_reschedule (EV_A); 1360 periodics_reschedule (EV_A);
1361# endif
918 /* no timer adjustment, as the monotonic clock doesn't jump */ 1362 /* no timer adjustment, as the monotonic clock doesn't jump */
919 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
920 } 1364 }
921 } 1365 }
922 else 1366 else
923#endif 1367#endif
924 { 1368 {
925 rt_now = ev_time (); 1369 ev_rt_now = ev_time ();
926 1370
927 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
928 { 1372 {
1373#if EV_PERIODIC_ENABLE
929 periodics_reschedule (EV_A); 1374 periodics_reschedule (EV_A);
1375#endif
930 1376
931 /* adjust timers. this is easy, as the offset is the same for all */ 1377 /* adjust timers. this is easy, as the offset is the same for all of them */
932 for (i = 0; i < timercnt; ++i) 1378 for (i = 0; i < timercnt; ++i)
933 ((WT)timers [i])->at += rt_now - mn_now; 1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
934 } 1380 }
935 1381
936 mn_now = rt_now; 1382 mn_now = ev_rt_now;
937 } 1383 }
938} 1384}
939 1385
940void 1386void
941ev_ref (EV_P) 1387ev_ref (EV_P)
952static int loop_done; 1398static int loop_done;
953 1399
954void 1400void
955ev_loop (EV_P_ int flags) 1401ev_loop (EV_P_ int flags)
956{ 1402{
957 double block;
958 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1404 ? EVUNLOOP_ONE
1405 : EVUNLOOP_CANCEL;
1406
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
959 1408
960 do 1409 do
961 { 1410 {
1411#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid))
1414 {
1415 curpid = getpid ();
1416 postfork = 1;
1417 }
1418#endif
1419
1420#if EV_FORK_ENABLE
1421 /* we might have forked, so queue fork handlers */
1422 if (expect_false (postfork))
1423 if (forkcnt)
1424 {
1425 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1426 call_pending (EV_A);
1427 }
1428#endif
1429
962 /* queue check watchers (and execute them) */ 1430 /* queue prepare watchers (and execute them) */
963 if (expect_false (preparecnt)) 1431 if (expect_false (preparecnt))
964 { 1432 {
965 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
966 call_pending (EV_A); 1434 call_pending (EV_A);
967 } 1435 }
968 1436
1437 if (expect_false (!activecnt))
1438 break;
1439
1440 /* we might have forked, so reify kernel state if necessary */
1441 if (expect_false (postfork))
1442 loop_fork (EV_A);
1443
969 /* update fd-related kernel structures */ 1444 /* update fd-related kernel structures */
970 fd_reify (EV_A); 1445 fd_reify (EV_A);
971 1446
972 /* calculate blocking time */ 1447 /* calculate blocking time */
1448 {
1449 ev_tstamp block;
973 1450
974 /* we only need this for !monotonic clockor timers, but as we basically 1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
975 always have timers, we just calculate it always */ 1452 block = 0.; /* do not block at all */
1453 else
1454 {
1455 /* update time to cancel out callback processing overhead */
976#if EV_USE_MONOTONIC 1456#if EV_USE_MONOTONIC
977 if (expect_true (have_monotonic)) 1457 if (expect_true (have_monotonic))
978 time_update_monotonic (EV_A); 1458 time_update_monotonic (EV_A);
979 else 1459 else
980#endif 1460#endif
981 { 1461 {
982 rt_now = ev_time (); 1462 ev_rt_now = ev_time ();
983 mn_now = rt_now; 1463 mn_now = ev_rt_now;
984 } 1464 }
985 1465
986 if (flags & EVLOOP_NONBLOCK || idlecnt)
987 block = 0.;
988 else
989 {
990 block = MAX_BLOCKTIME; 1466 block = MAX_BLOCKTIME;
991 1467
992 if (timercnt) 1468 if (timercnt)
993 { 1469 {
994 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1470 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
995 if (block > to) block = to; 1471 if (block > to) block = to;
996 } 1472 }
997 1473
1474#if EV_PERIODIC_ENABLE
998 if (periodiccnt) 1475 if (periodiccnt)
999 { 1476 {
1000 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1477 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1001 if (block > to) block = to; 1478 if (block > to) block = to;
1002 } 1479 }
1480#endif
1003 1481
1004 if (block < 0.) block = 0.; 1482 if (expect_false (block < 0.)) block = 0.;
1005 } 1483 }
1006 1484
1485 ++loop_count;
1007 method_poll (EV_A_ block); 1486 backend_poll (EV_A_ block);
1487 }
1008 1488
1009 /* update rt_now, do magic */ 1489 /* update ev_rt_now, do magic */
1010 time_update (EV_A); 1490 time_update (EV_A);
1011 1491
1012 /* queue pending timers and reschedule them */ 1492 /* queue pending timers and reschedule them */
1013 timers_reify (EV_A); /* relative timers called last */ 1493 timers_reify (EV_A); /* relative timers called last */
1494#if EV_PERIODIC_ENABLE
1014 periodics_reify (EV_A); /* absolute timers called first */ 1495 periodics_reify (EV_A); /* absolute timers called first */
1496#endif
1015 1497
1498#if EV_IDLE_ENABLE
1016 /* queue idle watchers unless io or timers are pending */ 1499 /* queue idle watchers unless other events are pending */
1017 if (!pendingcnt) 1500 idle_reify (EV_A);
1018 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1501#endif
1019 1502
1020 /* queue check watchers, to be executed first */ 1503 /* queue check watchers, to be executed first */
1021 if (checkcnt) 1504 if (expect_false (checkcnt))
1022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1505 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1023 1506
1024 call_pending (EV_A); 1507 call_pending (EV_A);
1508
1025 } 1509 }
1026 while (activecnt && !loop_done); 1510 while (expect_true (activecnt && !loop_done));
1027 1511
1028 if (loop_done != 2) 1512 if (loop_done == EVUNLOOP_ONE)
1029 loop_done = 0; 1513 loop_done = EVUNLOOP_CANCEL;
1030} 1514}
1031 1515
1032void 1516void
1033ev_unloop (EV_P_ int how) 1517ev_unloop (EV_P_ int how)
1034{ 1518{
1035 loop_done = how; 1519 loop_done = how;
1036} 1520}
1037 1521
1038/*****************************************************************************/ 1522/*****************************************************************************/
1039 1523
1040inline void 1524void inline_size
1041wlist_add (WL *head, WL elem) 1525wlist_add (WL *head, WL elem)
1042{ 1526{
1043 elem->next = *head; 1527 elem->next = *head;
1044 *head = elem; 1528 *head = elem;
1045} 1529}
1046 1530
1047inline void 1531void inline_size
1048wlist_del (WL *head, WL elem) 1532wlist_del (WL *head, WL elem)
1049{ 1533{
1050 while (*head) 1534 while (*head)
1051 { 1535 {
1052 if (*head == elem) 1536 if (*head == elem)
1057 1541
1058 head = &(*head)->next; 1542 head = &(*head)->next;
1059 } 1543 }
1060} 1544}
1061 1545
1062inline void 1546void inline_speed
1063ev_clear_pending (EV_P_ W w) 1547clear_pending (EV_P_ W w)
1064{ 1548{
1065 if (w->pending) 1549 if (w->pending)
1066 { 1550 {
1067 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1551 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1068 w->pending = 0; 1552 w->pending = 0;
1069 } 1553 }
1070} 1554}
1071 1555
1072inline void 1556int
1557ev_clear_pending (EV_P_ void *w)
1558{
1559 W w_ = (W)w;
1560 int pending = w_->pending;
1561
1562 if (expect_true (pending))
1563 {
1564 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1565 w_->pending = 0;
1566 p->w = 0;
1567 return p->events;
1568 }
1569 else
1570 return 0;
1571}
1572
1573void inline_size
1574pri_adjust (EV_P_ W w)
1575{
1576 int pri = w->priority;
1577 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1578 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1579 w->priority = pri;
1580}
1581
1582void inline_speed
1073ev_start (EV_P_ W w, int active) 1583ev_start (EV_P_ W w, int active)
1074{ 1584{
1075 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1585 pri_adjust (EV_A_ w);
1076 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1077
1078 w->active = active; 1586 w->active = active;
1079 ev_ref (EV_A); 1587 ev_ref (EV_A);
1080} 1588}
1081 1589
1082inline void 1590void inline_size
1083ev_stop (EV_P_ W w) 1591ev_stop (EV_P_ W w)
1084{ 1592{
1085 ev_unref (EV_A); 1593 ev_unref (EV_A);
1086 w->active = 0; 1594 w->active = 0;
1087} 1595}
1088 1596
1089/*****************************************************************************/ 1597/*****************************************************************************/
1090 1598
1091void 1599void noinline
1092ev_io_start (EV_P_ struct ev_io *w) 1600ev_io_start (EV_P_ ev_io *w)
1093{ 1601{
1094 int fd = w->fd; 1602 int fd = w->fd;
1095 1603
1096 if (ev_is_active (w)) 1604 if (expect_false (ev_is_active (w)))
1097 return; 1605 return;
1098 1606
1099 assert (("ev_io_start called with negative fd", fd >= 0)); 1607 assert (("ev_io_start called with negative fd", fd >= 0));
1100 1608
1101 ev_start (EV_A_ (W)w, 1); 1609 ev_start (EV_A_ (W)w, 1);
1102 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1610 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1103 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1611 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1104 1612
1105 fd_change (EV_A_ fd); 1613 fd_change (EV_A_ fd);
1106} 1614}
1107 1615
1108void 1616void noinline
1109ev_io_stop (EV_P_ struct ev_io *w) 1617ev_io_stop (EV_P_ ev_io *w)
1110{ 1618{
1111 ev_clear_pending (EV_A_ (W)w); 1619 clear_pending (EV_A_ (W)w);
1112 if (!ev_is_active (w)) 1620 if (expect_false (!ev_is_active (w)))
1113 return; 1621 return;
1622
1623 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1114 1624
1115 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1625 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1116 ev_stop (EV_A_ (W)w); 1626 ev_stop (EV_A_ (W)w);
1117 1627
1118 fd_change (EV_A_ w->fd); 1628 fd_change (EV_A_ w->fd);
1119} 1629}
1120 1630
1121void 1631void noinline
1122ev_timer_start (EV_P_ struct ev_timer *w) 1632ev_timer_start (EV_P_ ev_timer *w)
1123{ 1633{
1124 if (ev_is_active (w)) 1634 if (expect_false (ev_is_active (w)))
1125 return; 1635 return;
1126 1636
1127 ((WT)w)->at += mn_now; 1637 ((WT)w)->at += mn_now;
1128 1638
1129 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1639 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1130 1640
1131 ev_start (EV_A_ (W)w, ++timercnt); 1641 ev_start (EV_A_ (W)w, ++timercnt);
1132 array_needsize (timers, timermax, timercnt, ); 1642 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1133 timers [timercnt - 1] = w; 1643 timers [timercnt - 1] = w;
1134 upheap ((WT *)timers, timercnt - 1); 1644 upheap ((WT *)timers, timercnt - 1);
1135 1645
1646 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1647}
1648
1649void noinline
1650ev_timer_stop (EV_P_ ev_timer *w)
1651{
1652 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w)))
1654 return;
1655
1136 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1656 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1137}
1138 1657
1139void 1658 {
1140ev_timer_stop (EV_P_ struct ev_timer *w) 1659 int active = ((W)w)->active;
1141{
1142 ev_clear_pending (EV_A_ (W)w);
1143 if (!ev_is_active (w))
1144 return;
1145 1660
1146 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1661 if (expect_true (--active < --timercnt))
1147
1148 if (((W)w)->active < timercnt--)
1149 { 1662 {
1150 timers [((W)w)->active - 1] = timers [timercnt]; 1663 timers [active] = timers [timercnt];
1151 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1664 adjustheap ((WT *)timers, timercnt, active);
1152 } 1665 }
1666 }
1153 1667
1154 ((WT)w)->at = w->repeat; 1668 ((WT)w)->at -= mn_now;
1155 1669
1156 ev_stop (EV_A_ (W)w); 1670 ev_stop (EV_A_ (W)w);
1157} 1671}
1158 1672
1159void 1673void noinline
1160ev_timer_again (EV_P_ struct ev_timer *w) 1674ev_timer_again (EV_P_ ev_timer *w)
1161{ 1675{
1162 if (ev_is_active (w)) 1676 if (ev_is_active (w))
1163 { 1677 {
1164 if (w->repeat) 1678 if (w->repeat)
1165 { 1679 {
1166 ((WT)w)->at = mn_now + w->repeat; 1680 ((WT)w)->at = mn_now + w->repeat;
1167 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1681 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1168 } 1682 }
1169 else 1683 else
1170 ev_timer_stop (EV_A_ w); 1684 ev_timer_stop (EV_A_ w);
1171 } 1685 }
1172 else if (w->repeat) 1686 else if (w->repeat)
1687 {
1688 w->at = w->repeat;
1173 ev_timer_start (EV_A_ w); 1689 ev_timer_start (EV_A_ w);
1690 }
1174} 1691}
1175 1692
1176void 1693#if EV_PERIODIC_ENABLE
1694void noinline
1177ev_periodic_start (EV_P_ struct ev_periodic *w) 1695ev_periodic_start (EV_P_ ev_periodic *w)
1178{ 1696{
1179 if (ev_is_active (w)) 1697 if (expect_false (ev_is_active (w)))
1180 return; 1698 return;
1181 1699
1700 if (w->reschedule_cb)
1701 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1702 else if (w->interval)
1703 {
1182 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1704 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1183
1184 /* this formula differs from the one in periodic_reify because we do not always round up */ 1705 /* this formula differs from the one in periodic_reify because we do not always round up */
1185 if (w->interval)
1186 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1706 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1707 }
1708 else
1709 ((WT)w)->at = w->offset;
1187 1710
1188 ev_start (EV_A_ (W)w, ++periodiccnt); 1711 ev_start (EV_A_ (W)w, ++periodiccnt);
1189 array_needsize (periodics, periodicmax, periodiccnt, ); 1712 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1190 periodics [periodiccnt - 1] = w; 1713 periodics [periodiccnt - 1] = w;
1191 upheap ((WT *)periodics, periodiccnt - 1); 1714 upheap ((WT *)periodics, periodiccnt - 1);
1192 1715
1716 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1717}
1718
1719void noinline
1720ev_periodic_stop (EV_P_ ev_periodic *w)
1721{
1722 clear_pending (EV_A_ (W)w);
1723 if (expect_false (!ev_is_active (w)))
1724 return;
1725
1193 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1726 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1194}
1195 1727
1196void 1728 {
1197ev_periodic_stop (EV_P_ struct ev_periodic *w) 1729 int active = ((W)w)->active;
1198{
1199 ev_clear_pending (EV_A_ (W)w);
1200 if (!ev_is_active (w))
1201 return;
1202 1730
1203 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1731 if (expect_true (--active < --periodiccnt))
1204
1205 if (((W)w)->active < periodiccnt--)
1206 { 1732 {
1207 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1733 periodics [active] = periodics [periodiccnt];
1208 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1734 adjustheap ((WT *)periodics, periodiccnt, active);
1209 } 1735 }
1736 }
1210 1737
1211 ev_stop (EV_A_ (W)w); 1738 ev_stop (EV_A_ (W)w);
1212} 1739}
1213 1740
1214void 1741void noinline
1215ev_idle_start (EV_P_ struct ev_idle *w) 1742ev_periodic_again (EV_P_ ev_periodic *w)
1216{ 1743{
1217 if (ev_is_active (w)) 1744 /* TODO: use adjustheap and recalculation */
1218 return;
1219
1220 ev_start (EV_A_ (W)w, ++idlecnt);
1221 array_needsize (idles, idlemax, idlecnt, );
1222 idles [idlecnt - 1] = w;
1223}
1224
1225void
1226ev_idle_stop (EV_P_ struct ev_idle *w)
1227{
1228 ev_clear_pending (EV_A_ (W)w);
1229 if (ev_is_active (w))
1230 return;
1231
1232 idles [((W)w)->active - 1] = idles [--idlecnt];
1233 ev_stop (EV_A_ (W)w); 1745 ev_periodic_stop (EV_A_ w);
1746 ev_periodic_start (EV_A_ w);
1234} 1747}
1235 1748#endif
1236void
1237ev_prepare_start (EV_P_ struct ev_prepare *w)
1238{
1239 if (ev_is_active (w))
1240 return;
1241
1242 ev_start (EV_A_ (W)w, ++preparecnt);
1243 array_needsize (prepares, preparemax, preparecnt, );
1244 prepares [preparecnt - 1] = w;
1245}
1246
1247void
1248ev_prepare_stop (EV_P_ struct ev_prepare *w)
1249{
1250 ev_clear_pending (EV_A_ (W)w);
1251 if (ev_is_active (w))
1252 return;
1253
1254 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1255 ev_stop (EV_A_ (W)w);
1256}
1257
1258void
1259ev_check_start (EV_P_ struct ev_check *w)
1260{
1261 if (ev_is_active (w))
1262 return;
1263
1264 ev_start (EV_A_ (W)w, ++checkcnt);
1265 array_needsize (checks, checkmax, checkcnt, );
1266 checks [checkcnt - 1] = w;
1267}
1268
1269void
1270ev_check_stop (EV_P_ struct ev_check *w)
1271{
1272 ev_clear_pending (EV_A_ (W)w);
1273 if (ev_is_active (w))
1274 return;
1275
1276 checks [((W)w)->active - 1] = checks [--checkcnt];
1277 ev_stop (EV_A_ (W)w);
1278}
1279 1749
1280#ifndef SA_RESTART 1750#ifndef SA_RESTART
1281# define SA_RESTART 0 1751# define SA_RESTART 0
1282#endif 1752#endif
1283 1753
1284void 1754void noinline
1285ev_signal_start (EV_P_ struct ev_signal *w) 1755ev_signal_start (EV_P_ ev_signal *w)
1286{ 1756{
1287#if EV_MULTIPLICITY 1757#if EV_MULTIPLICITY
1288 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 1758 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1289#endif 1759#endif
1290 if (ev_is_active (w)) 1760 if (expect_false (ev_is_active (w)))
1291 return; 1761 return;
1292 1762
1293 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1763 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1294 1764
1295 ev_start (EV_A_ (W)w, 1); 1765 ev_start (EV_A_ (W)w, 1);
1296 array_needsize (signals, signalmax, w->signum, signals_init); 1766 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1297 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1767 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1298 1768
1299 if (!((WL)w)->next) 1769 if (!((WL)w)->next)
1300 { 1770 {
1771#if _WIN32
1772 signal (w->signum, sighandler);
1773#else
1301 struct sigaction sa; 1774 struct sigaction sa;
1302 sa.sa_handler = sighandler; 1775 sa.sa_handler = sighandler;
1303 sigfillset (&sa.sa_mask); 1776 sigfillset (&sa.sa_mask);
1304 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 1777 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1305 sigaction (w->signum, &sa, 0); 1778 sigaction (w->signum, &sa, 0);
1779#endif
1306 } 1780 }
1307} 1781}
1308 1782
1309void 1783void noinline
1310ev_signal_stop (EV_P_ struct ev_signal *w) 1784ev_signal_stop (EV_P_ ev_signal *w)
1311{ 1785{
1312 ev_clear_pending (EV_A_ (W)w); 1786 clear_pending (EV_A_ (W)w);
1313 if (!ev_is_active (w)) 1787 if (expect_false (!ev_is_active (w)))
1314 return; 1788 return;
1315 1789
1316 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1790 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1317 ev_stop (EV_A_ (W)w); 1791 ev_stop (EV_A_ (W)w);
1318 1792
1319 if (!signals [w->signum - 1].head) 1793 if (!signals [w->signum - 1].head)
1320 signal (w->signum, SIG_DFL); 1794 signal (w->signum, SIG_DFL);
1321} 1795}
1322 1796
1323void 1797void
1324ev_child_start (EV_P_ struct ev_child *w) 1798ev_child_start (EV_P_ ev_child *w)
1325{ 1799{
1326#if EV_MULTIPLICITY 1800#if EV_MULTIPLICITY
1327 assert (("child watchers are only supported in the default loop", loop == default_loop)); 1801 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1328#endif 1802#endif
1329 if (ev_is_active (w)) 1803 if (expect_false (ev_is_active (w)))
1330 return; 1804 return;
1331 1805
1332 ev_start (EV_A_ (W)w, 1); 1806 ev_start (EV_A_ (W)w, 1);
1333 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1807 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1334} 1808}
1335 1809
1336void 1810void
1337ev_child_stop (EV_P_ struct ev_child *w) 1811ev_child_stop (EV_P_ ev_child *w)
1338{ 1812{
1339 ev_clear_pending (EV_A_ (W)w); 1813 clear_pending (EV_A_ (W)w);
1340 if (ev_is_active (w)) 1814 if (expect_false (!ev_is_active (w)))
1341 return; 1815 return;
1342 1816
1343 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1817 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1344 ev_stop (EV_A_ (W)w); 1818 ev_stop (EV_A_ (W)w);
1345} 1819}
1346 1820
1821#if EV_STAT_ENABLE
1822
1823# ifdef _WIN32
1824# undef lstat
1825# define lstat(a,b) _stati64 (a,b)
1826# endif
1827
1828#define DEF_STAT_INTERVAL 5.0074891
1829#define MIN_STAT_INTERVAL 0.1074891
1830
1831static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1832
1833#if EV_USE_INOTIFY
1834# define EV_INOTIFY_BUFSIZE 8192
1835
1836static void noinline
1837infy_add (EV_P_ ev_stat *w)
1838{
1839 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1840
1841 if (w->wd < 0)
1842 {
1843 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1844
1845 /* monitor some parent directory for speedup hints */
1846 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1847 {
1848 char path [4096];
1849 strcpy (path, w->path);
1850
1851 do
1852 {
1853 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1854 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1855
1856 char *pend = strrchr (path, '/');
1857
1858 if (!pend)
1859 break; /* whoops, no '/', complain to your admin */
1860
1861 *pend = 0;
1862 w->wd = inotify_add_watch (fs_fd, path, mask);
1863 }
1864 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1865 }
1866 }
1867 else
1868 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1869
1870 if (w->wd >= 0)
1871 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1872}
1873
1874static void noinline
1875infy_del (EV_P_ ev_stat *w)
1876{
1877 int slot;
1878 int wd = w->wd;
1879
1880 if (wd < 0)
1881 return;
1882
1883 w->wd = -2;
1884 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1885 wlist_del (&fs_hash [slot].head, (WL)w);
1886
1887 /* remove this watcher, if others are watching it, they will rearm */
1888 inotify_rm_watch (fs_fd, wd);
1889}
1890
1891static void noinline
1892infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1893{
1894 if (slot < 0)
1895 /* overflow, need to check for all hahs slots */
1896 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1897 infy_wd (EV_A_ slot, wd, ev);
1898 else
1899 {
1900 WL w_;
1901
1902 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1903 {
1904 ev_stat *w = (ev_stat *)w_;
1905 w_ = w_->next; /* lets us remove this watcher and all before it */
1906
1907 if (w->wd == wd || wd == -1)
1908 {
1909 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1910 {
1911 w->wd = -1;
1912 infy_add (EV_A_ w); /* re-add, no matter what */
1913 }
1914
1915 stat_timer_cb (EV_A_ &w->timer, 0);
1916 }
1917 }
1918 }
1919}
1920
1921static void
1922infy_cb (EV_P_ ev_io *w, int revents)
1923{
1924 char buf [EV_INOTIFY_BUFSIZE];
1925 struct inotify_event *ev = (struct inotify_event *)buf;
1926 int ofs;
1927 int len = read (fs_fd, buf, sizeof (buf));
1928
1929 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1930 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1931}
1932
1933void inline_size
1934infy_init (EV_P)
1935{
1936 if (fs_fd != -2)
1937 return;
1938
1939 fs_fd = inotify_init ();
1940
1941 if (fs_fd >= 0)
1942 {
1943 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1944 ev_set_priority (&fs_w, EV_MAXPRI);
1945 ev_io_start (EV_A_ &fs_w);
1946 }
1947}
1948
1949void inline_size
1950infy_fork (EV_P)
1951{
1952 int slot;
1953
1954 if (fs_fd < 0)
1955 return;
1956
1957 close (fs_fd);
1958 fs_fd = inotify_init ();
1959
1960 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1961 {
1962 WL w_ = fs_hash [slot].head;
1963 fs_hash [slot].head = 0;
1964
1965 while (w_)
1966 {
1967 ev_stat *w = (ev_stat *)w_;
1968 w_ = w_->next; /* lets us add this watcher */
1969
1970 w->wd = -1;
1971
1972 if (fs_fd >= 0)
1973 infy_add (EV_A_ w); /* re-add, no matter what */
1974 else
1975 ev_timer_start (EV_A_ &w->timer);
1976 }
1977
1978 }
1979}
1980
1981#endif
1982
1983void
1984ev_stat_stat (EV_P_ ev_stat *w)
1985{
1986 if (lstat (w->path, &w->attr) < 0)
1987 w->attr.st_nlink = 0;
1988 else if (!w->attr.st_nlink)
1989 w->attr.st_nlink = 1;
1990}
1991
1992static void noinline
1993stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1994{
1995 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1996
1997 /* we copy this here each the time so that */
1998 /* prev has the old value when the callback gets invoked */
1999 w->prev = w->attr;
2000 ev_stat_stat (EV_A_ w);
2001
2002 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2003 if (
2004 w->prev.st_dev != w->attr.st_dev
2005 || w->prev.st_ino != w->attr.st_ino
2006 || w->prev.st_mode != w->attr.st_mode
2007 || w->prev.st_nlink != w->attr.st_nlink
2008 || w->prev.st_uid != w->attr.st_uid
2009 || w->prev.st_gid != w->attr.st_gid
2010 || w->prev.st_rdev != w->attr.st_rdev
2011 || w->prev.st_size != w->attr.st_size
2012 || w->prev.st_atime != w->attr.st_atime
2013 || w->prev.st_mtime != w->attr.st_mtime
2014 || w->prev.st_ctime != w->attr.st_ctime
2015 ) {
2016 #if EV_USE_INOTIFY
2017 infy_del (EV_A_ w);
2018 infy_add (EV_A_ w);
2019 ev_stat_stat (EV_A_ w); /* avoid race... */
2020 #endif
2021
2022 ev_feed_event (EV_A_ w, EV_STAT);
2023 }
2024}
2025
2026void
2027ev_stat_start (EV_P_ ev_stat *w)
2028{
2029 if (expect_false (ev_is_active (w)))
2030 return;
2031
2032 /* since we use memcmp, we need to clear any padding data etc. */
2033 memset (&w->prev, 0, sizeof (ev_statdata));
2034 memset (&w->attr, 0, sizeof (ev_statdata));
2035
2036 ev_stat_stat (EV_A_ w);
2037
2038 if (w->interval < MIN_STAT_INTERVAL)
2039 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2040
2041 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2042 ev_set_priority (&w->timer, ev_priority (w));
2043
2044#if EV_USE_INOTIFY
2045 infy_init (EV_A);
2046
2047 if (fs_fd >= 0)
2048 infy_add (EV_A_ w);
2049 else
2050#endif
2051 ev_timer_start (EV_A_ &w->timer);
2052
2053 ev_start (EV_A_ (W)w, 1);
2054}
2055
2056void
2057ev_stat_stop (EV_P_ ev_stat *w)
2058{
2059 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w)))
2061 return;
2062
2063#if EV_USE_INOTIFY
2064 infy_del (EV_A_ w);
2065#endif
2066 ev_timer_stop (EV_A_ &w->timer);
2067
2068 ev_stop (EV_A_ (W)w);
2069}
2070#endif
2071
2072#if EV_IDLE_ENABLE
2073void
2074ev_idle_start (EV_P_ ev_idle *w)
2075{
2076 if (expect_false (ev_is_active (w)))
2077 return;
2078
2079 pri_adjust (EV_A_ (W)w);
2080
2081 {
2082 int active = ++idlecnt [ABSPRI (w)];
2083
2084 ++idleall;
2085 ev_start (EV_A_ (W)w, active);
2086
2087 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2088 idles [ABSPRI (w)][active - 1] = w;
2089 }
2090}
2091
2092void
2093ev_idle_stop (EV_P_ ev_idle *w)
2094{
2095 clear_pending (EV_A_ (W)w);
2096 if (expect_false (!ev_is_active (w)))
2097 return;
2098
2099 {
2100 int active = ((W)w)->active;
2101
2102 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2103 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2104
2105 ev_stop (EV_A_ (W)w);
2106 --idleall;
2107 }
2108}
2109#endif
2110
2111void
2112ev_prepare_start (EV_P_ ev_prepare *w)
2113{
2114 if (expect_false (ev_is_active (w)))
2115 return;
2116
2117 ev_start (EV_A_ (W)w, ++preparecnt);
2118 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2119 prepares [preparecnt - 1] = w;
2120}
2121
2122void
2123ev_prepare_stop (EV_P_ ev_prepare *w)
2124{
2125 clear_pending (EV_A_ (W)w);
2126 if (expect_false (!ev_is_active (w)))
2127 return;
2128
2129 {
2130 int active = ((W)w)->active;
2131 prepares [active - 1] = prepares [--preparecnt];
2132 ((W)prepares [active - 1])->active = active;
2133 }
2134
2135 ev_stop (EV_A_ (W)w);
2136}
2137
2138void
2139ev_check_start (EV_P_ ev_check *w)
2140{
2141 if (expect_false (ev_is_active (w)))
2142 return;
2143
2144 ev_start (EV_A_ (W)w, ++checkcnt);
2145 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2146 checks [checkcnt - 1] = w;
2147}
2148
2149void
2150ev_check_stop (EV_P_ ev_check *w)
2151{
2152 clear_pending (EV_A_ (W)w);
2153 if (expect_false (!ev_is_active (w)))
2154 return;
2155
2156 {
2157 int active = ((W)w)->active;
2158 checks [active - 1] = checks [--checkcnt];
2159 ((W)checks [active - 1])->active = active;
2160 }
2161
2162 ev_stop (EV_A_ (W)w);
2163}
2164
2165#if EV_EMBED_ENABLE
2166void noinline
2167ev_embed_sweep (EV_P_ ev_embed *w)
2168{
2169 ev_loop (w->loop, EVLOOP_NONBLOCK);
2170}
2171
2172static void
2173embed_cb (EV_P_ ev_io *io, int revents)
2174{
2175 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2176
2177 if (ev_cb (w))
2178 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2179 else
2180 ev_embed_sweep (loop, w);
2181}
2182
2183void
2184ev_embed_start (EV_P_ ev_embed *w)
2185{
2186 if (expect_false (ev_is_active (w)))
2187 return;
2188
2189 {
2190 struct ev_loop *loop = w->loop;
2191 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2192 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
2193 }
2194
2195 ev_set_priority (&w->io, ev_priority (w));
2196 ev_io_start (EV_A_ &w->io);
2197
2198 ev_start (EV_A_ (W)w, 1);
2199}
2200
2201void
2202ev_embed_stop (EV_P_ ev_embed *w)
2203{
2204 clear_pending (EV_A_ (W)w);
2205 if (expect_false (!ev_is_active (w)))
2206 return;
2207
2208 ev_io_stop (EV_A_ &w->io);
2209
2210 ev_stop (EV_A_ (W)w);
2211}
2212#endif
2213
2214#if EV_FORK_ENABLE
2215void
2216ev_fork_start (EV_P_ ev_fork *w)
2217{
2218 if (expect_false (ev_is_active (w)))
2219 return;
2220
2221 ev_start (EV_A_ (W)w, ++forkcnt);
2222 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2223 forks [forkcnt - 1] = w;
2224}
2225
2226void
2227ev_fork_stop (EV_P_ ev_fork *w)
2228{
2229 clear_pending (EV_A_ (W)w);
2230 if (expect_false (!ev_is_active (w)))
2231 return;
2232
2233 {
2234 int active = ((W)w)->active;
2235 forks [active - 1] = forks [--forkcnt];
2236 ((W)forks [active - 1])->active = active;
2237 }
2238
2239 ev_stop (EV_A_ (W)w);
2240}
2241#endif
2242
1347/*****************************************************************************/ 2243/*****************************************************************************/
1348 2244
1349struct ev_once 2245struct ev_once
1350{ 2246{
1351 struct ev_io io; 2247 ev_io io;
1352 struct ev_timer to; 2248 ev_timer to;
1353 void (*cb)(int revents, void *arg); 2249 void (*cb)(int revents, void *arg);
1354 void *arg; 2250 void *arg;
1355}; 2251};
1356 2252
1357static void 2253static void
1360 void (*cb)(int revents, void *arg) = once->cb; 2256 void (*cb)(int revents, void *arg) = once->cb;
1361 void *arg = once->arg; 2257 void *arg = once->arg;
1362 2258
1363 ev_io_stop (EV_A_ &once->io); 2259 ev_io_stop (EV_A_ &once->io);
1364 ev_timer_stop (EV_A_ &once->to); 2260 ev_timer_stop (EV_A_ &once->to);
1365 free (once); 2261 ev_free (once);
1366 2262
1367 cb (revents, arg); 2263 cb (revents, arg);
1368} 2264}
1369 2265
1370static void 2266static void
1371once_cb_io (EV_P_ struct ev_io *w, int revents) 2267once_cb_io (EV_P_ ev_io *w, int revents)
1372{ 2268{
1373 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2269 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1374} 2270}
1375 2271
1376static void 2272static void
1377once_cb_to (EV_P_ struct ev_timer *w, int revents) 2273once_cb_to (EV_P_ ev_timer *w, int revents)
1378{ 2274{
1379 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2275 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1380} 2276}
1381 2277
1382void 2278void
1383ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2279ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1384{ 2280{
1385 struct ev_once *once = malloc (sizeof (struct ev_once)); 2281 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1386 2282
1387 if (!once) 2283 if (expect_false (!once))
2284 {
1388 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2285 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1389 else 2286 return;
1390 { 2287 }
2288
1391 once->cb = cb; 2289 once->cb = cb;
1392 once->arg = arg; 2290 once->arg = arg;
1393 2291
1394 ev_watcher_init (&once->io, once_cb_io); 2292 ev_init (&once->io, once_cb_io);
1395 if (fd >= 0) 2293 if (fd >= 0)
1396 { 2294 {
1397 ev_io_set (&once->io, fd, events); 2295 ev_io_set (&once->io, fd, events);
1398 ev_io_start (EV_A_ &once->io); 2296 ev_io_start (EV_A_ &once->io);
1399 } 2297 }
1400 2298
1401 ev_watcher_init (&once->to, once_cb_to); 2299 ev_init (&once->to, once_cb_to);
1402 if (timeout >= 0.) 2300 if (timeout >= 0.)
1403 { 2301 {
1404 ev_timer_set (&once->to, timeout, 0.); 2302 ev_timer_set (&once->to, timeout, 0.);
1405 ev_timer_start (EV_A_ &once->to); 2303 ev_timer_start (EV_A_ &once->to);
1406 }
1407 } 2304 }
1408} 2305}
1409 2306
2307#ifdef __cplusplus
2308}
2309#endif
2310

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines