ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.117 by ayin, Thu Nov 15 17:15:56 2007 UTC vs.
Revision 1.177 by root, Tue Dec 11 15:06:50 2007 UTC

32#ifdef __cplusplus 32#ifdef __cplusplus
33extern "C" { 33extern "C" {
34#endif 34#endif
35 35
36#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
37# include "config.h" 40# include "config.h"
41# endif
38 42
39# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 44# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
42# endif 46# endif
43# ifndef EV_USE_REALTIME 47# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
45# endif 49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
46# endif 57# endif
47 58
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 59# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H
49# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
50# endif 65# endif
51 66
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 67# ifndef EV_USE_POLL
68# if HAVE_POLL && HAVE_POLL_H
53# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
54# endif 73# endif
55 74
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
57# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
58# endif 81# endif
59 82
83# ifndef EV_USE_KQUEUE
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
61# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
89# endif
90
91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
97# endif
98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
62# endif 105# endif
63 106
64#endif 107#endif
65 108
66#include <math.h> 109#include <math.h>
75#include <sys/types.h> 118#include <sys/types.h>
76#include <time.h> 119#include <time.h>
77 120
78#include <signal.h> 121#include <signal.h>
79 122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
80#ifndef _WIN32 129#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 130# include <sys/time.h>
83# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
84#else 133#else
85# define WIN32_LEAN_AND_MEAN 134# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 135# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 136# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 137# define EV_SELECT_IS_WINSOCKET 1
90#endif 139#endif
91 140
92/**/ 141/**/
93 142
94#ifndef EV_USE_MONOTONIC 143#ifndef EV_USE_MONOTONIC
95# define EV_USE_MONOTONIC 1 144# define EV_USE_MONOTONIC 0
145#endif
146
147#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0
96#endif 149#endif
97 150
98#ifndef EV_USE_SELECT 151#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 152# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
101#endif 153#endif
102 154
103#ifndef EV_USE_POLL 155#ifndef EV_USE_POLL
104# ifdef _WIN32 156# ifdef _WIN32
105# define EV_USE_POLL 0 157# define EV_USE_POLL 0
114 166
115#ifndef EV_USE_KQUEUE 167#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 168# define EV_USE_KQUEUE 0
117#endif 169#endif
118 170
119#ifndef EV_USE_REALTIME 171#ifndef EV_USE_PORT
120# define EV_USE_REALTIME 1 172# define EV_USE_PORT 0
173#endif
174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
121#endif 193#endif
122 194
123/**/ 195/**/
124
125/* darwin simply cannot be helped */
126#ifdef __APPLE__
127# undef EV_USE_POLL
128# undef EV_USE_KQUEUE
129#endif
130 196
131#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
132# undef EV_USE_MONOTONIC 198# undef EV_USE_MONOTONIC
133# define EV_USE_MONOTONIC 0 199# define EV_USE_MONOTONIC 0
134#endif 200#endif
140 206
141#if EV_SELECT_IS_WINSOCKET 207#if EV_SELECT_IS_WINSOCKET
142# include <winsock.h> 208# include <winsock.h>
143#endif 209#endif
144 210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
145/**/ 219/**/
146 220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
230
147#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
148#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
149#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
150/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
151
152#ifdef EV_H
153# include EV_H
154#else
155# include "ev.h"
156#endif
157 234
158#if __GNUC__ >= 3 235#if __GNUC__ >= 3
159# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
160# define inline inline 237# define noinline __attribute__ ((noinline))
161#else 238#else
162# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
163# define inline static 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
164#endif 244#endif
165 245
166#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
167#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
168 255
169#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
170#define ABSPRI(w) ((w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
171 258
172#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 259#define EMPTY /* required for microsofts broken pseudo-c compiler */
173#define EMPTY2(a,b) /* used to suppress some warnings */ 260#define EMPTY2(a,b) /* used to suppress some warnings */
174 261
175typedef struct ev_watcher *W; 262typedef ev_watcher *W;
176typedef struct ev_watcher_list *WL; 263typedef ev_watcher_list *WL;
177typedef struct ev_watcher_time *WT; 264typedef ev_watcher_time *WT;
178 265
179static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
180 267
181#ifdef _WIN32 268#ifdef _WIN32
182# include "ev_win32.c" 269# include "ev_win32.c"
184 271
185/*****************************************************************************/ 272/*****************************************************************************/
186 273
187static void (*syserr_cb)(const char *msg); 274static void (*syserr_cb)(const char *msg);
188 275
276void
189void ev_set_syserr_cb (void (*cb)(const char *msg)) 277ev_set_syserr_cb (void (*cb)(const char *msg))
190{ 278{
191 syserr_cb = cb; 279 syserr_cb = cb;
192} 280}
193 281
194static void 282static void noinline
195syserr (const char *msg) 283syserr (const char *msg)
196{ 284{
197 if (!msg) 285 if (!msg)
198 msg = "(libev) system error"; 286 msg = "(libev) system error";
199 287
206 } 294 }
207} 295}
208 296
209static void *(*alloc)(void *ptr, long size); 297static void *(*alloc)(void *ptr, long size);
210 298
299void
211void ev_set_allocator (void *(*cb)(void *ptr, long size)) 300ev_set_allocator (void *(*cb)(void *ptr, long size))
212{ 301{
213 alloc = cb; 302 alloc = cb;
214} 303}
215 304
216static void * 305inline_speed void *
217ev_realloc (void *ptr, long size) 306ev_realloc (void *ptr, long size)
218{ 307{
219 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
220 309
221 if (!ptr && size) 310 if (!ptr && size)
245typedef struct 334typedef struct
246{ 335{
247 W w; 336 W w;
248 int events; 337 int events;
249} ANPENDING; 338} ANPENDING;
339
340#if EV_USE_INOTIFY
341typedef struct
342{
343 WL head;
344} ANFS;
345#endif
250 346
251#if EV_MULTIPLICITY 347#if EV_MULTIPLICITY
252 348
253 struct ev_loop 349 struct ev_loop
254 { 350 {
288 gettimeofday (&tv, 0); 384 gettimeofday (&tv, 0);
289 return tv.tv_sec + tv.tv_usec * 1e-6; 385 return tv.tv_sec + tv.tv_usec * 1e-6;
290#endif 386#endif
291} 387}
292 388
293inline ev_tstamp 389ev_tstamp inline_size
294get_clock (void) 390get_clock (void)
295{ 391{
296#if EV_USE_MONOTONIC 392#if EV_USE_MONOTONIC
297 if (expect_true (have_monotonic)) 393 if (expect_true (have_monotonic))
298 { 394 {
311{ 407{
312 return ev_rt_now; 408 return ev_rt_now;
313} 409}
314#endif 410#endif
315 411
316#define array_roundsize(type,n) (((n) | 4) & ~3) 412int inline_size
413array_nextsize (int elem, int cur, int cnt)
414{
415 int ncur = cur + 1;
416
417 do
418 ncur <<= 1;
419 while (cnt > ncur);
420
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096)
423 {
424 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
426 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem;
428 }
429
430 return ncur;
431}
432
433static noinline void *
434array_realloc (int elem, void *base, int *cur, int cnt)
435{
436 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur);
438}
317 439
318#define array_needsize(type,base,cur,cnt,init) \ 440#define array_needsize(type,base,cur,cnt,init) \
319 if (expect_false ((cnt) > cur)) \ 441 if (expect_false ((cnt) > (cur))) \
320 { \ 442 { \
321 int newcnt = cur; \ 443 int ocur_ = (cur); \
322 do \ 444 (base) = (type *)array_realloc \
323 { \ 445 (sizeof (type), (base), &(cur), (cnt)); \
324 newcnt = array_roundsize (type, newcnt << 1); \ 446 init ((base) + (ocur_), (cur) - ocur_); \
325 } \
326 while ((cnt) > newcnt); \
327 \
328 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
329 init (base + cur, newcnt - cur); \
330 cur = newcnt; \
331 } 447 }
332 448
449#if 0
333#define array_slim(type,stem) \ 450#define array_slim(type,stem) \
334 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 451 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
335 { \ 452 { \
336 stem ## max = array_roundsize (stem ## cnt >> 1); \ 453 stem ## max = array_roundsize (stem ## cnt >> 1); \
337 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 454 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
338 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
339 } 456 }
457#endif
340 458
341#define array_free(stem, idx) \ 459#define array_free(stem, idx) \
342 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
343 461
344/*****************************************************************************/ 462/*****************************************************************************/
345 463
346static void 464void noinline
465ev_feed_event (EV_P_ void *w, int revents)
466{
467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
469
470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents;
478 }
479}
480
481void inline_size
482queue_events (EV_P_ W *events, int eventcnt, int type)
483{
484 int i;
485
486 for (i = 0; i < eventcnt; ++i)
487 ev_feed_event (EV_A_ events [i], type);
488}
489
490/*****************************************************************************/
491
492void inline_size
347anfds_init (ANFD *base, int count) 493anfds_init (ANFD *base, int count)
348{ 494{
349 while (count--) 495 while (count--)
350 { 496 {
351 base->head = 0; 497 base->head = 0;
354 500
355 ++base; 501 ++base;
356 } 502 }
357} 503}
358 504
359void 505void inline_speed
360ev_feed_event (EV_P_ void *w, int revents)
361{
362 W w_ = (W)w;
363
364 if (w_->pending)
365 {
366 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
367 return;
368 }
369
370 w_->pending = ++pendingcnt [ABSPRI (w_)];
371 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
372 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
373 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
374}
375
376static void
377queue_events (EV_P_ W *events, int eventcnt, int type)
378{
379 int i;
380
381 for (i = 0; i < eventcnt; ++i)
382 ev_feed_event (EV_A_ events [i], type);
383}
384
385inline void
386fd_event (EV_P_ int fd, int revents) 506fd_event (EV_P_ int fd, int revents)
387{ 507{
388 ANFD *anfd = anfds + fd; 508 ANFD *anfd = anfds + fd;
389 struct ev_io *w; 509 ev_io *w;
390 510
391 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 511 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
392 { 512 {
393 int ev = w->events & revents; 513 int ev = w->events & revents;
394 514
395 if (ev) 515 if (ev)
396 ev_feed_event (EV_A_ (W)w, ev); 516 ev_feed_event (EV_A_ (W)w, ev);
398} 518}
399 519
400void 520void
401ev_feed_fd_event (EV_P_ int fd, int revents) 521ev_feed_fd_event (EV_P_ int fd, int revents)
402{ 522{
523 if (fd >= 0 && fd < anfdmax)
403 fd_event (EV_A_ fd, revents); 524 fd_event (EV_A_ fd, revents);
404} 525}
405 526
406/*****************************************************************************/ 527void inline_size
407
408static void
409fd_reify (EV_P) 528fd_reify (EV_P)
410{ 529{
411 int i; 530 int i;
412 531
413 for (i = 0; i < fdchangecnt; ++i) 532 for (i = 0; i < fdchangecnt; ++i)
414 { 533 {
415 int fd = fdchanges [i]; 534 int fd = fdchanges [i];
416 ANFD *anfd = anfds + fd; 535 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 536 ev_io *w;
418 537
419 int events = 0; 538 int events = 0;
420 539
421 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
422 events |= w->events; 541 events |= w->events;
423 542
424#if EV_SELECT_IS_WINSOCKET 543#if EV_SELECT_IS_WINSOCKET
425 if (events) 544 if (events)
426 { 545 {
430 } 549 }
431#endif 550#endif
432 551
433 anfd->reify = 0; 552 anfd->reify = 0;
434 553
435 method_modify (EV_A_ fd, anfd->events, events); 554 backend_modify (EV_A_ fd, anfd->events, events);
436 anfd->events = events; 555 anfd->events = events;
437 } 556 }
438 557
439 fdchangecnt = 0; 558 fdchangecnt = 0;
440} 559}
441 560
442static void 561void inline_size
443fd_change (EV_P_ int fd) 562fd_change (EV_P_ int fd)
444{ 563{
445 if (anfds [fd].reify) 564 if (expect_false (anfds [fd].reify))
446 return; 565 return;
447 566
448 anfds [fd].reify = 1; 567 anfds [fd].reify = 1;
449 568
450 ++fdchangecnt; 569 ++fdchangecnt;
451 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
452 fdchanges [fdchangecnt - 1] = fd; 571 fdchanges [fdchangecnt - 1] = fd;
453} 572}
454 573
455static void 574void inline_speed
456fd_kill (EV_P_ int fd) 575fd_kill (EV_P_ int fd)
457{ 576{
458 struct ev_io *w; 577 ev_io *w;
459 578
460 while ((w = (struct ev_io *)anfds [fd].head)) 579 while ((w = (ev_io *)anfds [fd].head))
461 { 580 {
462 ev_io_stop (EV_A_ w); 581 ev_io_stop (EV_A_ w);
463 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 582 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
464 } 583 }
465} 584}
466 585
467static int 586int inline_size
468fd_valid (int fd) 587fd_valid (int fd)
469{ 588{
470#ifdef _WIN32 589#ifdef _WIN32
471 return _get_osfhandle (fd) != -1; 590 return _get_osfhandle (fd) != -1;
472#else 591#else
473 return fcntl (fd, F_GETFD) != -1; 592 return fcntl (fd, F_GETFD) != -1;
474#endif 593#endif
475} 594}
476 595
477/* called on EBADF to verify fds */ 596/* called on EBADF to verify fds */
478static void 597static void noinline
479fd_ebadf (EV_P) 598fd_ebadf (EV_P)
480{ 599{
481 int fd; 600 int fd;
482 601
483 for (fd = 0; fd < anfdmax; ++fd) 602 for (fd = 0; fd < anfdmax; ++fd)
485 if (!fd_valid (fd) == -1 && errno == EBADF) 604 if (!fd_valid (fd) == -1 && errno == EBADF)
486 fd_kill (EV_A_ fd); 605 fd_kill (EV_A_ fd);
487} 606}
488 607
489/* called on ENOMEM in select/poll to kill some fds and retry */ 608/* called on ENOMEM in select/poll to kill some fds and retry */
490static void 609static void noinline
491fd_enomem (EV_P) 610fd_enomem (EV_P)
492{ 611{
493 int fd; 612 int fd;
494 613
495 for (fd = anfdmax; fd--; ) 614 for (fd = anfdmax; fd--; )
498 fd_kill (EV_A_ fd); 617 fd_kill (EV_A_ fd);
499 return; 618 return;
500 } 619 }
501} 620}
502 621
503/* usually called after fork if method needs to re-arm all fds from scratch */ 622/* usually called after fork if backend needs to re-arm all fds from scratch */
504static void 623static void noinline
505fd_rearm_all (EV_P) 624fd_rearm_all (EV_P)
506{ 625{
507 int fd; 626 int fd;
508 627
509 /* this should be highly optimised to not do anything but set a flag */
510 for (fd = 0; fd < anfdmax; ++fd) 628 for (fd = 0; fd < anfdmax; ++fd)
511 if (anfds [fd].events) 629 if (anfds [fd].events)
512 { 630 {
513 anfds [fd].events = 0; 631 anfds [fd].events = 0;
514 fd_change (EV_A_ fd); 632 fd_change (EV_A_ fd);
515 } 633 }
516} 634}
517 635
518/*****************************************************************************/ 636/*****************************************************************************/
519 637
520static void 638void inline_speed
521upheap (WT *heap, int k) 639upheap (WT *heap, int k)
522{ 640{
523 WT w = heap [k]; 641 WT w = heap [k];
524 642
525 while (k && heap [k >> 1]->at > w->at) 643 while (k && heap [k >> 1]->at > w->at)
532 heap [k] = w; 650 heap [k] = w;
533 ((W)heap [k])->active = k + 1; 651 ((W)heap [k])->active = k + 1;
534 652
535} 653}
536 654
537static void 655void inline_speed
538downheap (WT *heap, int N, int k) 656downheap (WT *heap, int N, int k)
539{ 657{
540 WT w = heap [k]; 658 WT w = heap [k];
541 659
542 while (k < (N >> 1)) 660 while (k < (N >> 1))
556 674
557 heap [k] = w; 675 heap [k] = w;
558 ((W)heap [k])->active = k + 1; 676 ((W)heap [k])->active = k + 1;
559} 677}
560 678
561inline void 679void inline_size
562adjustheap (WT *heap, int N, int k) 680adjustheap (WT *heap, int N, int k)
563{ 681{
564 upheap (heap, k); 682 upheap (heap, k);
565 downheap (heap, N, k); 683 downheap (heap, N, k);
566} 684}
576static ANSIG *signals; 694static ANSIG *signals;
577static int signalmax; 695static int signalmax;
578 696
579static int sigpipe [2]; 697static int sigpipe [2];
580static sig_atomic_t volatile gotsig; 698static sig_atomic_t volatile gotsig;
581static struct ev_io sigev; 699static ev_io sigev;
582 700
583static void 701void inline_size
584signals_init (ANSIG *base, int count) 702signals_init (ANSIG *base, int count)
585{ 703{
586 while (count--) 704 while (count--)
587 { 705 {
588 base->head = 0; 706 base->head = 0;
608 write (sigpipe [1], &signum, 1); 726 write (sigpipe [1], &signum, 1);
609 errno = old_errno; 727 errno = old_errno;
610 } 728 }
611} 729}
612 730
613void 731void noinline
614ev_feed_signal_event (EV_P_ int signum) 732ev_feed_signal_event (EV_P_ int signum)
615{ 733{
616 WL w; 734 WL w;
617 735
618#if EV_MULTIPLICITY 736#if EV_MULTIPLICITY
629 for (w = signals [signum].head; w; w = w->next) 747 for (w = signals [signum].head; w; w = w->next)
630 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 748 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
631} 749}
632 750
633static void 751static void
634sigcb (EV_P_ struct ev_io *iow, int revents) 752sigcb (EV_P_ ev_io *iow, int revents)
635{ 753{
636 int signum; 754 int signum;
637 755
638 read (sigpipe [0], &revents, 1); 756 read (sigpipe [0], &revents, 1);
639 gotsig = 0; 757 gotsig = 0;
641 for (signum = signalmax; signum--; ) 759 for (signum = signalmax; signum--; )
642 if (signals [signum].gotsig) 760 if (signals [signum].gotsig)
643 ev_feed_signal_event (EV_A_ signum + 1); 761 ev_feed_signal_event (EV_A_ signum + 1);
644} 762}
645 763
646inline void 764void inline_speed
647fd_intern (int fd) 765fd_intern (int fd)
648{ 766{
649#ifdef _WIN32 767#ifdef _WIN32
650 int arg = 1; 768 int arg = 1;
651 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 769 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
653 fcntl (fd, F_SETFD, FD_CLOEXEC); 771 fcntl (fd, F_SETFD, FD_CLOEXEC);
654 fcntl (fd, F_SETFL, O_NONBLOCK); 772 fcntl (fd, F_SETFL, O_NONBLOCK);
655#endif 773#endif
656} 774}
657 775
658static void 776static void noinline
659siginit (EV_P) 777siginit (EV_P)
660{ 778{
661 fd_intern (sigpipe [0]); 779 fd_intern (sigpipe [0]);
662 fd_intern (sigpipe [1]); 780 fd_intern (sigpipe [1]);
663 781
666 ev_unref (EV_A); /* child watcher should not keep loop alive */ 784 ev_unref (EV_A); /* child watcher should not keep loop alive */
667} 785}
668 786
669/*****************************************************************************/ 787/*****************************************************************************/
670 788
671static struct ev_child *childs [PID_HASHSIZE]; 789static ev_child *childs [EV_PID_HASHSIZE];
672 790
673#ifndef _WIN32 791#ifndef _WIN32
674 792
675static struct ev_signal childev; 793static ev_signal childev;
794
795void inline_speed
796child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
797{
798 ev_child *w;
799
800 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
801 if (w->pid == pid || !w->pid)
802 {
803 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
804 w->rpid = pid;
805 w->rstatus = status;
806 ev_feed_event (EV_A_ (W)w, EV_CHILD);
807 }
808}
676 809
677#ifndef WCONTINUED 810#ifndef WCONTINUED
678# define WCONTINUED 0 811# define WCONTINUED 0
679#endif 812#endif
680 813
681static void 814static void
682child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
683{
684 struct ev_child *w;
685
686 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
687 if (w->pid == pid || !w->pid)
688 {
689 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
690 w->rpid = pid;
691 w->rstatus = status;
692 ev_feed_event (EV_A_ (W)w, EV_CHILD);
693 }
694}
695
696static void
697childcb (EV_P_ struct ev_signal *sw, int revents) 815childcb (EV_P_ ev_signal *sw, int revents)
698{ 816{
699 int pid, status; 817 int pid, status;
700 818
819 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
701 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 820 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
702 { 821 if (!WCONTINUED
822 || errno != EINVAL
823 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
824 return;
825
703 /* make sure we are called again until all childs have been reaped */ 826 /* make sure we are called again until all childs have been reaped */
827 /* we need to do it this way so that the callback gets called before we continue */
704 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 828 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
705 829
706 child_reap (EV_A_ sw, pid, pid, status); 830 child_reap (EV_A_ sw, pid, pid, status);
831 if (EV_PID_HASHSIZE > 1)
707 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 832 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
708 }
709} 833}
710 834
711#endif 835#endif
712 836
713/*****************************************************************************/ 837/*****************************************************************************/
714 838
839#if EV_USE_PORT
840# include "ev_port.c"
841#endif
715#if EV_USE_KQUEUE 842#if EV_USE_KQUEUE
716# include "ev_kqueue.c" 843# include "ev_kqueue.c"
717#endif 844#endif
718#if EV_USE_EPOLL 845#if EV_USE_EPOLL
719# include "ev_epoll.c" 846# include "ev_epoll.c"
736{ 863{
737 return EV_VERSION_MINOR; 864 return EV_VERSION_MINOR;
738} 865}
739 866
740/* return true if we are running with elevated privileges and should ignore env variables */ 867/* return true if we are running with elevated privileges and should ignore env variables */
741static int 868int inline_size
742enable_secure (void) 869enable_secure (void)
743{ 870{
744#ifdef _WIN32 871#ifdef _WIN32
745 return 0; 872 return 0;
746#else 873#else
748 || getgid () != getegid (); 875 || getgid () != getegid ();
749#endif 876#endif
750} 877}
751 878
752unsigned int 879unsigned int
753ev_method (EV_P) 880ev_supported_backends (void)
754{ 881{
755 return method; 882 unsigned int flags = 0;
756}
757 883
758static void 884 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
885 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
886 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
887 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
888 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
889
890 return flags;
891}
892
893unsigned int
894ev_recommended_backends (void)
895{
896 unsigned int flags = ev_supported_backends ();
897
898#ifndef __NetBSD__
899 /* kqueue is borked on everything but netbsd apparently */
900 /* it usually doesn't work correctly on anything but sockets and pipes */
901 flags &= ~EVBACKEND_KQUEUE;
902#endif
903#ifdef __APPLE__
904 // flags &= ~EVBACKEND_KQUEUE; for documentation
905 flags &= ~EVBACKEND_POLL;
906#endif
907
908 return flags;
909}
910
911unsigned int
912ev_embeddable_backends (void)
913{
914 return EVBACKEND_EPOLL
915 | EVBACKEND_KQUEUE
916 | EVBACKEND_PORT;
917}
918
919unsigned int
920ev_backend (EV_P)
921{
922 return backend;
923}
924
925unsigned int
926ev_loop_count (EV_P)
927{
928 return loop_count;
929}
930
931static void noinline
759loop_init (EV_P_ unsigned int flags) 932loop_init (EV_P_ unsigned int flags)
760{ 933{
761 if (!method) 934 if (!backend)
762 { 935 {
763#if EV_USE_MONOTONIC 936#if EV_USE_MONOTONIC
764 { 937 {
765 struct timespec ts; 938 struct timespec ts;
766 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 939 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
771 ev_rt_now = ev_time (); 944 ev_rt_now = ev_time ();
772 mn_now = get_clock (); 945 mn_now = get_clock ();
773 now_floor = mn_now; 946 now_floor = mn_now;
774 rtmn_diff = ev_rt_now - mn_now; 947 rtmn_diff = ev_rt_now - mn_now;
775 948
776 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 949 /* pid check not overridable via env */
950#ifndef _WIN32
951 if (flags & EVFLAG_FORKCHECK)
952 curpid = getpid ();
953#endif
954
955 if (!(flags & EVFLAG_NOENV)
956 && !enable_secure ()
957 && getenv ("LIBEV_FLAGS"))
777 flags = atoi (getenv ("LIBEV_FLAGS")); 958 flags = atoi (getenv ("LIBEV_FLAGS"));
778 959
779 if (!(flags & 0x0000ffff)) 960 if (!(flags & 0x0000ffffUL))
780 flags |= 0x0000ffff; 961 flags |= ev_recommended_backends ();
781 962
782 method = 0; 963 backend = 0;
964 backend_fd = -1;
965#if EV_USE_INOTIFY
966 fs_fd = -2;
967#endif
968
969#if EV_USE_PORT
970 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
971#endif
783#if EV_USE_KQUEUE 972#if EV_USE_KQUEUE
784 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 973 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
785#endif 974#endif
786#if EV_USE_EPOLL 975#if EV_USE_EPOLL
787 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 976 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
788#endif 977#endif
789#if EV_USE_POLL 978#if EV_USE_POLL
790 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 979 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
791#endif 980#endif
792#if EV_USE_SELECT 981#if EV_USE_SELECT
793 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 982 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
794#endif 983#endif
795 984
796 ev_init (&sigev, sigcb); 985 ev_init (&sigev, sigcb);
797 ev_set_priority (&sigev, EV_MAXPRI); 986 ev_set_priority (&sigev, EV_MAXPRI);
798 } 987 }
799} 988}
800 989
801void 990static void noinline
802loop_destroy (EV_P) 991loop_destroy (EV_P)
803{ 992{
804 int i; 993 int i;
805 994
995#if EV_USE_INOTIFY
996 if (fs_fd >= 0)
997 close (fs_fd);
998#endif
999
1000 if (backend_fd >= 0)
1001 close (backend_fd);
1002
1003#if EV_USE_PORT
1004 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1005#endif
806#if EV_USE_KQUEUE 1006#if EV_USE_KQUEUE
807 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1007 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
808#endif 1008#endif
809#if EV_USE_EPOLL 1009#if EV_USE_EPOLL
810 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1010 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
811#endif 1011#endif
812#if EV_USE_POLL 1012#if EV_USE_POLL
813 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1013 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
814#endif 1014#endif
815#if EV_USE_SELECT 1015#if EV_USE_SELECT
816 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1016 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
817#endif 1017#endif
818 1018
819 for (i = NUMPRI; i--; ) 1019 for (i = NUMPRI; i--; )
1020 {
820 array_free (pending, [i]); 1021 array_free (pending, [i]);
1022#if EV_IDLE_ENABLE
1023 array_free (idle, [i]);
1024#endif
1025 }
821 1026
822 /* have to use the microsoft-never-gets-it-right macro */ 1027 /* have to use the microsoft-never-gets-it-right macro */
823 array_free (fdchange, EMPTY0); 1028 array_free (fdchange, EMPTY);
824 array_free (timer, EMPTY0); 1029 array_free (timer, EMPTY);
825#if EV_PERIODICS 1030#if EV_PERIODIC_ENABLE
826 array_free (periodic, EMPTY0); 1031 array_free (periodic, EMPTY);
827#endif 1032#endif
828 array_free (idle, EMPTY0);
829 array_free (prepare, EMPTY0); 1033 array_free (prepare, EMPTY);
830 array_free (check, EMPTY0); 1034 array_free (check, EMPTY);
831 1035
832 method = 0; 1036 backend = 0;
833} 1037}
834 1038
835static void 1039void inline_size infy_fork (EV_P);
1040
1041void inline_size
836loop_fork (EV_P) 1042loop_fork (EV_P)
837{ 1043{
1044#if EV_USE_PORT
1045 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1046#endif
1047#if EV_USE_KQUEUE
1048 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1049#endif
838#if EV_USE_EPOLL 1050#if EV_USE_EPOLL
839 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1051 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
840#endif 1052#endif
841#if EV_USE_KQUEUE 1053#if EV_USE_INOTIFY
842 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1054 infy_fork (EV_A);
843#endif 1055#endif
844 1056
845 if (ev_is_active (&sigev)) 1057 if (ev_is_active (&sigev))
846 { 1058 {
847 /* default loop */ 1059 /* default loop */
868 1080
869 memset (loop, 0, sizeof (struct ev_loop)); 1081 memset (loop, 0, sizeof (struct ev_loop));
870 1082
871 loop_init (EV_A_ flags); 1083 loop_init (EV_A_ flags);
872 1084
873 if (ev_method (EV_A)) 1085 if (ev_backend (EV_A))
874 return loop; 1086 return loop;
875 1087
876 return 0; 1088 return 0;
877} 1089}
878 1090
891 1103
892#endif 1104#endif
893 1105
894#if EV_MULTIPLICITY 1106#if EV_MULTIPLICITY
895struct ev_loop * 1107struct ev_loop *
896ev_default_loop_ (unsigned int flags) 1108ev_default_loop_init (unsigned int flags)
897#else 1109#else
898int 1110int
899ev_default_loop (unsigned int flags) 1111ev_default_loop (unsigned int flags)
900#endif 1112#endif
901{ 1113{
911 ev_default_loop_ptr = 1; 1123 ev_default_loop_ptr = 1;
912#endif 1124#endif
913 1125
914 loop_init (EV_A_ flags); 1126 loop_init (EV_A_ flags);
915 1127
916 if (ev_method (EV_A)) 1128 if (ev_backend (EV_A))
917 { 1129 {
918 siginit (EV_A); 1130 siginit (EV_A);
919 1131
920#ifndef _WIN32 1132#ifndef _WIN32
921 ev_signal_init (&childev, childcb, SIGCHLD); 1133 ev_signal_init (&childev, childcb, SIGCHLD);
957{ 1169{
958#if EV_MULTIPLICITY 1170#if EV_MULTIPLICITY
959 struct ev_loop *loop = ev_default_loop_ptr; 1171 struct ev_loop *loop = ev_default_loop_ptr;
960#endif 1172#endif
961 1173
962 if (method) 1174 if (backend)
963 postfork = 1; 1175 postfork = 1;
964} 1176}
965 1177
966/*****************************************************************************/ 1178/*****************************************************************************/
967 1179
968static int 1180void
969any_pending (EV_P) 1181ev_invoke (EV_P_ void *w, int revents)
970{ 1182{
971 int pri; 1183 EV_CB_INVOKE ((W)w, revents);
972
973 for (pri = NUMPRI; pri--; )
974 if (pendingcnt [pri])
975 return 1;
976
977 return 0;
978} 1184}
979 1185
980static void 1186void inline_speed
981call_pending (EV_P) 1187call_pending (EV_P)
982{ 1188{
983 int pri; 1189 int pri;
984 1190
985 for (pri = NUMPRI; pri--; ) 1191 for (pri = NUMPRI; pri--; )
986 while (pendingcnt [pri]) 1192 while (pendingcnt [pri])
987 { 1193 {
988 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1194 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
989 1195
990 if (p->w) 1196 if (expect_true (p->w))
991 { 1197 {
1198 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1199
992 p->w->pending = 0; 1200 p->w->pending = 0;
993 EV_CB_INVOKE (p->w, p->events); 1201 EV_CB_INVOKE (p->w, p->events);
994 } 1202 }
995 } 1203 }
996} 1204}
997 1205
998static void 1206void inline_size
999timers_reify (EV_P) 1207timers_reify (EV_P)
1000{ 1208{
1001 while (timercnt && ((WT)timers [0])->at <= mn_now) 1209 while (timercnt && ((WT)timers [0])->at <= mn_now)
1002 { 1210 {
1003 struct ev_timer *w = timers [0]; 1211 ev_timer *w = timers [0];
1004 1212
1005 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1213 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1006 1214
1007 /* first reschedule or stop timer */ 1215 /* first reschedule or stop timer */
1008 if (w->repeat) 1216 if (w->repeat)
1009 { 1217 {
1010 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1218 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1020 1228
1021 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1229 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1022 } 1230 }
1023} 1231}
1024 1232
1025#if EV_PERIODICS 1233#if EV_PERIODIC_ENABLE
1026static void 1234void inline_size
1027periodics_reify (EV_P) 1235periodics_reify (EV_P)
1028{ 1236{
1029 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1237 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1030 { 1238 {
1031 struct ev_periodic *w = periodics [0]; 1239 ev_periodic *w = periodics [0];
1032 1240
1033 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1241 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1034 1242
1035 /* first reschedule or stop timer */ 1243 /* first reschedule or stop timer */
1036 if (w->reschedule_cb) 1244 if (w->reschedule_cb)
1037 { 1245 {
1038 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1246 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1039 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1247 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1040 downheap ((WT *)periodics, periodiccnt, 0); 1248 downheap ((WT *)periodics, periodiccnt, 0);
1041 } 1249 }
1042 else if (w->interval) 1250 else if (w->interval)
1043 { 1251 {
1044 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1252 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1253 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1045 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1046 downheap ((WT *)periodics, periodiccnt, 0); 1255 downheap ((WT *)periodics, periodiccnt, 0);
1047 } 1256 }
1048 else 1257 else
1049 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1050 1259
1051 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1052 } 1261 }
1053} 1262}
1054 1263
1055static void 1264static void noinline
1056periodics_reschedule (EV_P) 1265periodics_reschedule (EV_P)
1057{ 1266{
1058 int i; 1267 int i;
1059 1268
1060 /* adjust periodics after time jump */ 1269 /* adjust periodics after time jump */
1061 for (i = 0; i < periodiccnt; ++i) 1270 for (i = 0; i < periodiccnt; ++i)
1062 { 1271 {
1063 struct ev_periodic *w = periodics [i]; 1272 ev_periodic *w = periodics [i];
1064 1273
1065 if (w->reschedule_cb) 1274 if (w->reschedule_cb)
1066 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1067 else if (w->interval) 1276 else if (w->interval)
1068 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1069 } 1278 }
1070 1279
1071 /* now rebuild the heap */ 1280 /* now rebuild the heap */
1072 for (i = periodiccnt >> 1; i--; ) 1281 for (i = periodiccnt >> 1; i--; )
1073 downheap ((WT *)periodics, periodiccnt, i); 1282 downheap ((WT *)periodics, periodiccnt, i);
1074} 1283}
1075#endif 1284#endif
1076 1285
1077inline int 1286#if EV_IDLE_ENABLE
1287void inline_size
1288idle_reify (EV_P)
1289{
1290 if (expect_false (idleall))
1291 {
1292 int pri;
1293
1294 for (pri = NUMPRI; pri--; )
1295 {
1296 if (pendingcnt [pri])
1297 break;
1298
1299 if (idlecnt [pri])
1300 {
1301 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1302 break;
1303 }
1304 }
1305 }
1306}
1307#endif
1308
1309int inline_size
1078time_update_monotonic (EV_P) 1310time_update_monotonic (EV_P)
1079{ 1311{
1080 mn_now = get_clock (); 1312 mn_now = get_clock ();
1081 1313
1082 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1090 ev_rt_now = ev_time (); 1322 ev_rt_now = ev_time ();
1091 return 1; 1323 return 1;
1092 } 1324 }
1093} 1325}
1094 1326
1095static void 1327void inline_size
1096time_update (EV_P) 1328time_update (EV_P)
1097{ 1329{
1098 int i; 1330 int i;
1099 1331
1100#if EV_USE_MONOTONIC 1332#if EV_USE_MONOTONIC
1102 { 1334 {
1103 if (time_update_monotonic (EV_A)) 1335 if (time_update_monotonic (EV_A))
1104 { 1336 {
1105 ev_tstamp odiff = rtmn_diff; 1337 ev_tstamp odiff = rtmn_diff;
1106 1338
1107 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1108 { 1348 {
1109 rtmn_diff = ev_rt_now - mn_now; 1349 rtmn_diff = ev_rt_now - mn_now;
1110 1350
1111 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1112 return; /* all is well */ 1352 return; /* all is well */
1114 ev_rt_now = ev_time (); 1354 ev_rt_now = ev_time ();
1115 mn_now = get_clock (); 1355 mn_now = get_clock ();
1116 now_floor = mn_now; 1356 now_floor = mn_now;
1117 } 1357 }
1118 1358
1119# if EV_PERIODICS 1359# if EV_PERIODIC_ENABLE
1120 periodics_reschedule (EV_A); 1360 periodics_reschedule (EV_A);
1121# endif 1361# endif
1122 /* no timer adjustment, as the monotonic clock doesn't jump */ 1362 /* no timer adjustment, as the monotonic clock doesn't jump */
1123 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1124 } 1364 }
1128 { 1368 {
1129 ev_rt_now = ev_time (); 1369 ev_rt_now = ev_time ();
1130 1370
1131 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1132 { 1372 {
1133#if EV_PERIODICS 1373#if EV_PERIODIC_ENABLE
1134 periodics_reschedule (EV_A); 1374 periodics_reschedule (EV_A);
1135#endif 1375#endif
1136
1137 /* adjust timers. this is easy, as the offset is the same for all */ 1376 /* adjust timers. this is easy, as the offset is the same for all of them */
1138 for (i = 0; i < timercnt; ++i) 1377 for (i = 0; i < timercnt; ++i)
1139 ((WT)timers [i])->at += ev_rt_now - mn_now; 1378 ((WT)timers [i])->at += ev_rt_now - mn_now;
1140 } 1379 }
1141 1380
1142 mn_now = ev_rt_now; 1381 mn_now = ev_rt_now;
1158static int loop_done; 1397static int loop_done;
1159 1398
1160void 1399void
1161ev_loop (EV_P_ int flags) 1400ev_loop (EV_P_ int flags)
1162{ 1401{
1163 double block;
1164 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1402 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1403 ? EVUNLOOP_ONE
1404 : EVUNLOOP_CANCEL;
1165 1405
1166 while (activecnt) 1406 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1407
1408 do
1167 { 1409 {
1410#ifndef _WIN32
1411 if (expect_false (curpid)) /* penalise the forking check even more */
1412 if (expect_false (getpid () != curpid))
1413 {
1414 curpid = getpid ();
1415 postfork = 1;
1416 }
1417#endif
1418
1419#if EV_FORK_ENABLE
1420 /* we might have forked, so queue fork handlers */
1421 if (expect_false (postfork))
1422 if (forkcnt)
1423 {
1424 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1425 call_pending (EV_A);
1426 }
1427#endif
1428
1168 /* queue check watchers (and execute them) */ 1429 /* queue prepare watchers (and execute them) */
1169 if (expect_false (preparecnt)) 1430 if (expect_false (preparecnt))
1170 { 1431 {
1171 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1432 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1172 call_pending (EV_A); 1433 call_pending (EV_A);
1173 } 1434 }
1174 1435
1436 if (expect_false (!activecnt))
1437 break;
1438
1175 /* we might have forked, so reify kernel state if necessary */ 1439 /* we might have forked, so reify kernel state if necessary */
1176 if (expect_false (postfork)) 1440 if (expect_false (postfork))
1177 loop_fork (EV_A); 1441 loop_fork (EV_A);
1178 1442
1179 /* update fd-related kernel structures */ 1443 /* update fd-related kernel structures */
1180 fd_reify (EV_A); 1444 fd_reify (EV_A);
1181 1445
1182 /* calculate blocking time */ 1446 /* calculate blocking time */
1447 {
1448 ev_tstamp block;
1183 1449
1184 /* we only need this for !monotonic clock or timers, but as we basically 1450 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1185 always have timers, we just calculate it always */ 1451 block = 0.; /* do not block at all */
1452 else
1453 {
1454 /* update time to cancel out callback processing overhead */
1186#if EV_USE_MONOTONIC 1455#if EV_USE_MONOTONIC
1187 if (expect_true (have_monotonic)) 1456 if (expect_true (have_monotonic))
1188 time_update_monotonic (EV_A); 1457 time_update_monotonic (EV_A);
1189 else 1458 else
1190#endif 1459#endif
1191 { 1460 {
1192 ev_rt_now = ev_time (); 1461 ev_rt_now = ev_time ();
1193 mn_now = ev_rt_now; 1462 mn_now = ev_rt_now;
1194 } 1463 }
1195 1464
1196 if (flags & EVLOOP_NONBLOCK || idlecnt)
1197 block = 0.;
1198 else
1199 {
1200 block = MAX_BLOCKTIME; 1465 block = MAX_BLOCKTIME;
1201 1466
1202 if (timercnt) 1467 if (timercnt)
1203 { 1468 {
1204 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1469 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1205 if (block > to) block = to; 1470 if (block > to) block = to;
1206 } 1471 }
1207 1472
1208#if EV_PERIODICS 1473#if EV_PERIODIC_ENABLE
1209 if (periodiccnt) 1474 if (periodiccnt)
1210 { 1475 {
1211 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1476 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1212 if (block > to) block = to; 1477 if (block > to) block = to;
1213 } 1478 }
1214#endif 1479#endif
1215 1480
1216 if (block < 0.) block = 0.; 1481 if (expect_false (block < 0.)) block = 0.;
1217 } 1482 }
1218 1483
1484 ++loop_count;
1219 method_poll (EV_A_ block); 1485 backend_poll (EV_A_ block);
1486 }
1220 1487
1221 /* update ev_rt_now, do magic */ 1488 /* update ev_rt_now, do magic */
1222 time_update (EV_A); 1489 time_update (EV_A);
1223 1490
1224 /* queue pending timers and reschedule them */ 1491 /* queue pending timers and reschedule them */
1225 timers_reify (EV_A); /* relative timers called last */ 1492 timers_reify (EV_A); /* relative timers called last */
1226#if EV_PERIODICS 1493#if EV_PERIODIC_ENABLE
1227 periodics_reify (EV_A); /* absolute timers called first */ 1494 periodics_reify (EV_A); /* absolute timers called first */
1228#endif 1495#endif
1229 1496
1497#if EV_IDLE_ENABLE
1230 /* queue idle watchers unless io or timers are pending */ 1498 /* queue idle watchers unless other events are pending */
1231 if (idlecnt && !any_pending (EV_A)) 1499 idle_reify (EV_A);
1232 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1500#endif
1233 1501
1234 /* queue check watchers, to be executed first */ 1502 /* queue check watchers, to be executed first */
1235 if (checkcnt) 1503 if (expect_false (checkcnt))
1236 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1504 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1237 1505
1238 call_pending (EV_A); 1506 call_pending (EV_A);
1239 1507
1240 if (loop_done)
1241 break;
1242 } 1508 }
1509 while (expect_true (activecnt && !loop_done));
1243 1510
1244 if (loop_done != 2) 1511 if (loop_done == EVUNLOOP_ONE)
1245 loop_done = 0; 1512 loop_done = EVUNLOOP_CANCEL;
1246} 1513}
1247 1514
1248void 1515void
1249ev_unloop (EV_P_ int how) 1516ev_unloop (EV_P_ int how)
1250{ 1517{
1251 loop_done = how; 1518 loop_done = how;
1252} 1519}
1253 1520
1254/*****************************************************************************/ 1521/*****************************************************************************/
1255 1522
1256inline void 1523void inline_size
1257wlist_add (WL *head, WL elem) 1524wlist_add (WL *head, WL elem)
1258{ 1525{
1259 elem->next = *head; 1526 elem->next = *head;
1260 *head = elem; 1527 *head = elem;
1261} 1528}
1262 1529
1263inline void 1530void inline_size
1264wlist_del (WL *head, WL elem) 1531wlist_del (WL *head, WL elem)
1265{ 1532{
1266 while (*head) 1533 while (*head)
1267 { 1534 {
1268 if (*head == elem) 1535 if (*head == elem)
1273 1540
1274 head = &(*head)->next; 1541 head = &(*head)->next;
1275 } 1542 }
1276} 1543}
1277 1544
1278inline void 1545void inline_speed
1279ev_clear_pending (EV_P_ W w) 1546clear_pending (EV_P_ W w)
1280{ 1547{
1281 if (w->pending) 1548 if (w->pending)
1282 { 1549 {
1283 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1550 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1284 w->pending = 0; 1551 w->pending = 0;
1285 } 1552 }
1286} 1553}
1287 1554
1288inline void 1555int
1556ev_clear_pending (EV_P_ void *w)
1557{
1558 W w_ = (W)w;
1559 int pending = w_->pending;
1560
1561 if (expect_true (pending))
1562 {
1563 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1564 w_->pending = 0;
1565 p->w = 0;
1566 return p->events;
1567 }
1568 else
1569 return 0;
1570}
1571
1572void inline_size
1573pri_adjust (EV_P_ W w)
1574{
1575 int pri = w->priority;
1576 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1577 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1578 w->priority = pri;
1579}
1580
1581void inline_speed
1289ev_start (EV_P_ W w, int active) 1582ev_start (EV_P_ W w, int active)
1290{ 1583{
1291 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1584 pri_adjust (EV_A_ w);
1292 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1293
1294 w->active = active; 1585 w->active = active;
1295 ev_ref (EV_A); 1586 ev_ref (EV_A);
1296} 1587}
1297 1588
1298inline void 1589void inline_size
1299ev_stop (EV_P_ W w) 1590ev_stop (EV_P_ W w)
1300{ 1591{
1301 ev_unref (EV_A); 1592 ev_unref (EV_A);
1302 w->active = 0; 1593 w->active = 0;
1303} 1594}
1304 1595
1305/*****************************************************************************/ 1596/*****************************************************************************/
1306 1597
1307void 1598void noinline
1308ev_io_start (EV_P_ struct ev_io *w) 1599ev_io_start (EV_P_ ev_io *w)
1309{ 1600{
1310 int fd = w->fd; 1601 int fd = w->fd;
1311 1602
1312 if (ev_is_active (w)) 1603 if (expect_false (ev_is_active (w)))
1313 return; 1604 return;
1314 1605
1315 assert (("ev_io_start called with negative fd", fd >= 0)); 1606 assert (("ev_io_start called with negative fd", fd >= 0));
1316 1607
1317 ev_start (EV_A_ (W)w, 1); 1608 ev_start (EV_A_ (W)w, 1);
1319 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1610 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1320 1611
1321 fd_change (EV_A_ fd); 1612 fd_change (EV_A_ fd);
1322} 1613}
1323 1614
1324void 1615void noinline
1325ev_io_stop (EV_P_ struct ev_io *w) 1616ev_io_stop (EV_P_ ev_io *w)
1326{ 1617{
1327 ev_clear_pending (EV_A_ (W)w); 1618 clear_pending (EV_A_ (W)w);
1328 if (!ev_is_active (w)) 1619 if (expect_false (!ev_is_active (w)))
1329 return; 1620 return;
1330 1621
1331 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1622 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1332 1623
1333 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1624 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1334 ev_stop (EV_A_ (W)w); 1625 ev_stop (EV_A_ (W)w);
1335 1626
1336 fd_change (EV_A_ w->fd); 1627 fd_change (EV_A_ w->fd);
1337} 1628}
1338 1629
1339void 1630void noinline
1340ev_timer_start (EV_P_ struct ev_timer *w) 1631ev_timer_start (EV_P_ ev_timer *w)
1341{ 1632{
1342 if (ev_is_active (w)) 1633 if (expect_false (ev_is_active (w)))
1343 return; 1634 return;
1344 1635
1345 ((WT)w)->at += mn_now; 1636 ((WT)w)->at += mn_now;
1346 1637
1347 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1638 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1348 1639
1349 ev_start (EV_A_ (W)w, ++timercnt); 1640 ev_start (EV_A_ (W)w, ++timercnt);
1350 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1641 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1351 timers [timercnt - 1] = w; 1642 timers [timercnt - 1] = w;
1352 upheap ((WT *)timers, timercnt - 1); 1643 upheap ((WT *)timers, timercnt - 1);
1353 1644
1645 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1646}
1647
1648void noinline
1649ev_timer_stop (EV_P_ ev_timer *w)
1650{
1651 clear_pending (EV_A_ (W)w);
1652 if (expect_false (!ev_is_active (w)))
1653 return;
1654
1354 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1655 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1355}
1356 1656
1357void 1657 {
1358ev_timer_stop (EV_P_ struct ev_timer *w) 1658 int active = ((W)w)->active;
1359{
1360 ev_clear_pending (EV_A_ (W)w);
1361 if (!ev_is_active (w))
1362 return;
1363 1659
1364 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1660 if (expect_true (--active < --timercnt))
1365
1366 if (((W)w)->active < timercnt--)
1367 { 1661 {
1368 timers [((W)w)->active - 1] = timers [timercnt]; 1662 timers [active] = timers [timercnt];
1369 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1663 adjustheap ((WT *)timers, timercnt, active);
1370 } 1664 }
1665 }
1371 1666
1372 ((WT)w)->at -= mn_now; 1667 ((WT)w)->at -= mn_now;
1373 1668
1374 ev_stop (EV_A_ (W)w); 1669 ev_stop (EV_A_ (W)w);
1375} 1670}
1376 1671
1377void 1672void noinline
1378ev_timer_again (EV_P_ struct ev_timer *w) 1673ev_timer_again (EV_P_ ev_timer *w)
1379{ 1674{
1380 if (ev_is_active (w)) 1675 if (ev_is_active (w))
1381 { 1676 {
1382 if (w->repeat) 1677 if (w->repeat)
1383 { 1678 {
1392 w->at = w->repeat; 1687 w->at = w->repeat;
1393 ev_timer_start (EV_A_ w); 1688 ev_timer_start (EV_A_ w);
1394 } 1689 }
1395} 1690}
1396 1691
1397#if EV_PERIODICS 1692#if EV_PERIODIC_ENABLE
1398void 1693void noinline
1399ev_periodic_start (EV_P_ struct ev_periodic *w) 1694ev_periodic_start (EV_P_ ev_periodic *w)
1400{ 1695{
1401 if (ev_is_active (w)) 1696 if (expect_false (ev_is_active (w)))
1402 return; 1697 return;
1403 1698
1404 if (w->reschedule_cb) 1699 if (w->reschedule_cb)
1405 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1700 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1406 else if (w->interval) 1701 else if (w->interval)
1407 { 1702 {
1408 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1703 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1409 /* this formula differs from the one in periodic_reify because we do not always round up */ 1704 /* this formula differs from the one in periodic_reify because we do not always round up */
1410 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1705 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1411 } 1706 }
1707 else
1708 ((WT)w)->at = w->offset;
1412 1709
1413 ev_start (EV_A_ (W)w, ++periodiccnt); 1710 ev_start (EV_A_ (W)w, ++periodiccnt);
1414 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1711 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1415 periodics [periodiccnt - 1] = w; 1712 periodics [periodiccnt - 1] = w;
1416 upheap ((WT *)periodics, periodiccnt - 1); 1713 upheap ((WT *)periodics, periodiccnt - 1);
1417 1714
1715 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1716}
1717
1718void noinline
1719ev_periodic_stop (EV_P_ ev_periodic *w)
1720{
1721 clear_pending (EV_A_ (W)w);
1722 if (expect_false (!ev_is_active (w)))
1723 return;
1724
1418 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1725 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1419}
1420 1726
1421void 1727 {
1422ev_periodic_stop (EV_P_ struct ev_periodic *w) 1728 int active = ((W)w)->active;
1423{
1424 ev_clear_pending (EV_A_ (W)w);
1425 if (!ev_is_active (w))
1426 return;
1427 1729
1428 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1730 if (expect_true (--active < --periodiccnt))
1429
1430 if (((W)w)->active < periodiccnt--)
1431 { 1731 {
1432 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1732 periodics [active] = periodics [periodiccnt];
1433 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1733 adjustheap ((WT *)periodics, periodiccnt, active);
1434 } 1734 }
1735 }
1435 1736
1436 ev_stop (EV_A_ (W)w); 1737 ev_stop (EV_A_ (W)w);
1437} 1738}
1438 1739
1439void 1740void noinline
1440ev_periodic_again (EV_P_ struct ev_periodic *w) 1741ev_periodic_again (EV_P_ ev_periodic *w)
1441{ 1742{
1442 /* TODO: use adjustheap and recalculation */ 1743 /* TODO: use adjustheap and recalculation */
1443 ev_periodic_stop (EV_A_ w); 1744 ev_periodic_stop (EV_A_ w);
1444 ev_periodic_start (EV_A_ w); 1745 ev_periodic_start (EV_A_ w);
1445} 1746}
1446#endif 1747#endif
1447 1748
1448void
1449ev_idle_start (EV_P_ struct ev_idle *w)
1450{
1451 if (ev_is_active (w))
1452 return;
1453
1454 ev_start (EV_A_ (W)w, ++idlecnt);
1455 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1456 idles [idlecnt - 1] = w;
1457}
1458
1459void
1460ev_idle_stop (EV_P_ struct ev_idle *w)
1461{
1462 ev_clear_pending (EV_A_ (W)w);
1463 if (!ev_is_active (w))
1464 return;
1465
1466 idles [((W)w)->active - 1] = idles [--idlecnt];
1467 ev_stop (EV_A_ (W)w);
1468}
1469
1470void
1471ev_prepare_start (EV_P_ struct ev_prepare *w)
1472{
1473 if (ev_is_active (w))
1474 return;
1475
1476 ev_start (EV_A_ (W)w, ++preparecnt);
1477 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1478 prepares [preparecnt - 1] = w;
1479}
1480
1481void
1482ev_prepare_stop (EV_P_ struct ev_prepare *w)
1483{
1484 ev_clear_pending (EV_A_ (W)w);
1485 if (!ev_is_active (w))
1486 return;
1487
1488 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1489 ev_stop (EV_A_ (W)w);
1490}
1491
1492void
1493ev_check_start (EV_P_ struct ev_check *w)
1494{
1495 if (ev_is_active (w))
1496 return;
1497
1498 ev_start (EV_A_ (W)w, ++checkcnt);
1499 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1500 checks [checkcnt - 1] = w;
1501}
1502
1503void
1504ev_check_stop (EV_P_ struct ev_check *w)
1505{
1506 ev_clear_pending (EV_A_ (W)w);
1507 if (!ev_is_active (w))
1508 return;
1509
1510 checks [((W)w)->active - 1] = checks [--checkcnt];
1511 ev_stop (EV_A_ (W)w);
1512}
1513
1514#ifndef SA_RESTART 1749#ifndef SA_RESTART
1515# define SA_RESTART 0 1750# define SA_RESTART 0
1516#endif 1751#endif
1517 1752
1518void 1753void noinline
1519ev_signal_start (EV_P_ struct ev_signal *w) 1754ev_signal_start (EV_P_ ev_signal *w)
1520{ 1755{
1521#if EV_MULTIPLICITY 1756#if EV_MULTIPLICITY
1522 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1757 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1523#endif 1758#endif
1524 if (ev_is_active (w)) 1759 if (expect_false (ev_is_active (w)))
1525 return; 1760 return;
1526 1761
1527 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1762 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1528 1763
1529 ev_start (EV_A_ (W)w, 1); 1764 ev_start (EV_A_ (W)w, 1);
1542 sigaction (w->signum, &sa, 0); 1777 sigaction (w->signum, &sa, 0);
1543#endif 1778#endif
1544 } 1779 }
1545} 1780}
1546 1781
1547void 1782void noinline
1548ev_signal_stop (EV_P_ struct ev_signal *w) 1783ev_signal_stop (EV_P_ ev_signal *w)
1549{ 1784{
1550 ev_clear_pending (EV_A_ (W)w); 1785 clear_pending (EV_A_ (W)w);
1551 if (!ev_is_active (w)) 1786 if (expect_false (!ev_is_active (w)))
1552 return; 1787 return;
1553 1788
1554 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1789 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1555 ev_stop (EV_A_ (W)w); 1790 ev_stop (EV_A_ (W)w);
1556 1791
1557 if (!signals [w->signum - 1].head) 1792 if (!signals [w->signum - 1].head)
1558 signal (w->signum, SIG_DFL); 1793 signal (w->signum, SIG_DFL);
1559} 1794}
1560 1795
1561void 1796void
1562ev_child_start (EV_P_ struct ev_child *w) 1797ev_child_start (EV_P_ ev_child *w)
1563{ 1798{
1564#if EV_MULTIPLICITY 1799#if EV_MULTIPLICITY
1565 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1800 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1566#endif 1801#endif
1567 if (ev_is_active (w)) 1802 if (expect_false (ev_is_active (w)))
1568 return; 1803 return;
1569 1804
1570 ev_start (EV_A_ (W)w, 1); 1805 ev_start (EV_A_ (W)w, 1);
1571 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1806 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1572} 1807}
1573 1808
1574void 1809void
1575ev_child_stop (EV_P_ struct ev_child *w) 1810ev_child_stop (EV_P_ ev_child *w)
1576{ 1811{
1577 ev_clear_pending (EV_A_ (W)w); 1812 clear_pending (EV_A_ (W)w);
1578 if (!ev_is_active (w)) 1813 if (expect_false (!ev_is_active (w)))
1579 return; 1814 return;
1580 1815
1581 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1816 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1582 ev_stop (EV_A_ (W)w); 1817 ev_stop (EV_A_ (W)w);
1583} 1818}
1584 1819
1820#if EV_STAT_ENABLE
1821
1822# ifdef _WIN32
1823# undef lstat
1824# define lstat(a,b) _stati64 (a,b)
1825# endif
1826
1827#define DEF_STAT_INTERVAL 5.0074891
1828#define MIN_STAT_INTERVAL 0.1074891
1829
1830static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1831
1832#if EV_USE_INOTIFY
1833# define EV_INOTIFY_BUFSIZE 8192
1834
1835static void noinline
1836infy_add (EV_P_ ev_stat *w)
1837{
1838 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1839
1840 if (w->wd < 0)
1841 {
1842 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1843
1844 /* monitor some parent directory for speedup hints */
1845 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1846 {
1847 char path [4096];
1848 strcpy (path, w->path);
1849
1850 do
1851 {
1852 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1853 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1854
1855 char *pend = strrchr (path, '/');
1856
1857 if (!pend)
1858 break; /* whoops, no '/', complain to your admin */
1859
1860 *pend = 0;
1861 w->wd = inotify_add_watch (fs_fd, path, mask);
1862 }
1863 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1864 }
1865 }
1866 else
1867 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1868
1869 if (w->wd >= 0)
1870 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1871}
1872
1873static void noinline
1874infy_del (EV_P_ ev_stat *w)
1875{
1876 int slot;
1877 int wd = w->wd;
1878
1879 if (wd < 0)
1880 return;
1881
1882 w->wd = -2;
1883 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1884 wlist_del (&fs_hash [slot].head, (WL)w);
1885
1886 /* remove this watcher, if others are watching it, they will rearm */
1887 inotify_rm_watch (fs_fd, wd);
1888}
1889
1890static void noinline
1891infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1892{
1893 if (slot < 0)
1894 /* overflow, need to check for all hahs slots */
1895 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1896 infy_wd (EV_A_ slot, wd, ev);
1897 else
1898 {
1899 WL w_;
1900
1901 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1902 {
1903 ev_stat *w = (ev_stat *)w_;
1904 w_ = w_->next; /* lets us remove this watcher and all before it */
1905
1906 if (w->wd == wd || wd == -1)
1907 {
1908 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1909 {
1910 w->wd = -1;
1911 infy_add (EV_A_ w); /* re-add, no matter what */
1912 }
1913
1914 stat_timer_cb (EV_A_ &w->timer, 0);
1915 }
1916 }
1917 }
1918}
1919
1920static void
1921infy_cb (EV_P_ ev_io *w, int revents)
1922{
1923 char buf [EV_INOTIFY_BUFSIZE];
1924 struct inotify_event *ev = (struct inotify_event *)buf;
1925 int ofs;
1926 int len = read (fs_fd, buf, sizeof (buf));
1927
1928 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1929 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1930}
1931
1932void inline_size
1933infy_init (EV_P)
1934{
1935 if (fs_fd != -2)
1936 return;
1937
1938 fs_fd = inotify_init ();
1939
1940 if (fs_fd >= 0)
1941 {
1942 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1943 ev_set_priority (&fs_w, EV_MAXPRI);
1944 ev_io_start (EV_A_ &fs_w);
1945 }
1946}
1947
1948void inline_size
1949infy_fork (EV_P)
1950{
1951 int slot;
1952
1953 if (fs_fd < 0)
1954 return;
1955
1956 close (fs_fd);
1957 fs_fd = inotify_init ();
1958
1959 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1960 {
1961 WL w_ = fs_hash [slot].head;
1962 fs_hash [slot].head = 0;
1963
1964 while (w_)
1965 {
1966 ev_stat *w = (ev_stat *)w_;
1967 w_ = w_->next; /* lets us add this watcher */
1968
1969 w->wd = -1;
1970
1971 if (fs_fd >= 0)
1972 infy_add (EV_A_ w); /* re-add, no matter what */
1973 else
1974 ev_timer_start (EV_A_ &w->timer);
1975 }
1976
1977 }
1978}
1979
1980#endif
1981
1982void
1983ev_stat_stat (EV_P_ ev_stat *w)
1984{
1985 if (lstat (w->path, &w->attr) < 0)
1986 w->attr.st_nlink = 0;
1987 else if (!w->attr.st_nlink)
1988 w->attr.st_nlink = 1;
1989}
1990
1991static void noinline
1992stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1993{
1994 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1995
1996 /* we copy this here each the time so that */
1997 /* prev has the old value when the callback gets invoked */
1998 w->prev = w->attr;
1999 ev_stat_stat (EV_A_ w);
2000
2001 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2002 if (
2003 w->prev.st_dev != w->attr.st_dev
2004 || w->prev.st_ino != w->attr.st_ino
2005 || w->prev.st_mode != w->attr.st_mode
2006 || w->prev.st_nlink != w->attr.st_nlink
2007 || w->prev.st_uid != w->attr.st_uid
2008 || w->prev.st_gid != w->attr.st_gid
2009 || w->prev.st_rdev != w->attr.st_rdev
2010 || w->prev.st_size != w->attr.st_size
2011 || w->prev.st_atime != w->attr.st_atime
2012 || w->prev.st_mtime != w->attr.st_mtime
2013 || w->prev.st_ctime != w->attr.st_ctime
2014 ) {
2015 #if EV_USE_INOTIFY
2016 infy_del (EV_A_ w);
2017 infy_add (EV_A_ w);
2018 ev_stat_stat (EV_A_ w); /* avoid race... */
2019 #endif
2020
2021 ev_feed_event (EV_A_ w, EV_STAT);
2022 }
2023}
2024
2025void
2026ev_stat_start (EV_P_ ev_stat *w)
2027{
2028 if (expect_false (ev_is_active (w)))
2029 return;
2030
2031 /* since we use memcmp, we need to clear any padding data etc. */
2032 memset (&w->prev, 0, sizeof (ev_statdata));
2033 memset (&w->attr, 0, sizeof (ev_statdata));
2034
2035 ev_stat_stat (EV_A_ w);
2036
2037 if (w->interval < MIN_STAT_INTERVAL)
2038 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2039
2040 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2041 ev_set_priority (&w->timer, ev_priority (w));
2042
2043#if EV_USE_INOTIFY
2044 infy_init (EV_A);
2045
2046 if (fs_fd >= 0)
2047 infy_add (EV_A_ w);
2048 else
2049#endif
2050 ev_timer_start (EV_A_ &w->timer);
2051
2052 ev_start (EV_A_ (W)w, 1);
2053}
2054
2055void
2056ev_stat_stop (EV_P_ ev_stat *w)
2057{
2058 clear_pending (EV_A_ (W)w);
2059 if (expect_false (!ev_is_active (w)))
2060 return;
2061
2062#if EV_USE_INOTIFY
2063 infy_del (EV_A_ w);
2064#endif
2065 ev_timer_stop (EV_A_ &w->timer);
2066
2067 ev_stop (EV_A_ (W)w);
2068}
2069#endif
2070
2071#if EV_IDLE_ENABLE
2072void
2073ev_idle_start (EV_P_ ev_idle *w)
2074{
2075 if (expect_false (ev_is_active (w)))
2076 return;
2077
2078 pri_adjust (EV_A_ (W)w);
2079
2080 {
2081 int active = ++idlecnt [ABSPRI (w)];
2082
2083 ++idleall;
2084 ev_start (EV_A_ (W)w, active);
2085
2086 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2087 idles [ABSPRI (w)][active - 1] = w;
2088 }
2089}
2090
2091void
2092ev_idle_stop (EV_P_ ev_idle *w)
2093{
2094 clear_pending (EV_A_ (W)w);
2095 if (expect_false (!ev_is_active (w)))
2096 return;
2097
2098 {
2099 int active = ((W)w)->active;
2100
2101 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2102 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2103
2104 ev_stop (EV_A_ (W)w);
2105 --idleall;
2106 }
2107}
2108#endif
2109
2110void
2111ev_prepare_start (EV_P_ ev_prepare *w)
2112{
2113 if (expect_false (ev_is_active (w)))
2114 return;
2115
2116 ev_start (EV_A_ (W)w, ++preparecnt);
2117 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2118 prepares [preparecnt - 1] = w;
2119}
2120
2121void
2122ev_prepare_stop (EV_P_ ev_prepare *w)
2123{
2124 clear_pending (EV_A_ (W)w);
2125 if (expect_false (!ev_is_active (w)))
2126 return;
2127
2128 {
2129 int active = ((W)w)->active;
2130 prepares [active - 1] = prepares [--preparecnt];
2131 ((W)prepares [active - 1])->active = active;
2132 }
2133
2134 ev_stop (EV_A_ (W)w);
2135}
2136
2137void
2138ev_check_start (EV_P_ ev_check *w)
2139{
2140 if (expect_false (ev_is_active (w)))
2141 return;
2142
2143 ev_start (EV_A_ (W)w, ++checkcnt);
2144 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2145 checks [checkcnt - 1] = w;
2146}
2147
2148void
2149ev_check_stop (EV_P_ ev_check *w)
2150{
2151 clear_pending (EV_A_ (W)w);
2152 if (expect_false (!ev_is_active (w)))
2153 return;
2154
2155 {
2156 int active = ((W)w)->active;
2157 checks [active - 1] = checks [--checkcnt];
2158 ((W)checks [active - 1])->active = active;
2159 }
2160
2161 ev_stop (EV_A_ (W)w);
2162}
2163
2164#if EV_EMBED_ENABLE
2165void noinline
2166ev_embed_sweep (EV_P_ ev_embed *w)
2167{
2168 ev_loop (w->loop, EVLOOP_NONBLOCK);
2169}
2170
2171static void
2172embed_cb (EV_P_ ev_io *io, int revents)
2173{
2174 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2175
2176 if (ev_cb (w))
2177 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2178 else
2179 ev_embed_sweep (loop, w);
2180}
2181
2182void
2183ev_embed_start (EV_P_ ev_embed *w)
2184{
2185 if (expect_false (ev_is_active (w)))
2186 return;
2187
2188 {
2189 struct ev_loop *loop = w->loop;
2190 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2191 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
2192 }
2193
2194 ev_set_priority (&w->io, ev_priority (w));
2195 ev_io_start (EV_A_ &w->io);
2196
2197 ev_start (EV_A_ (W)w, 1);
2198}
2199
2200void
2201ev_embed_stop (EV_P_ ev_embed *w)
2202{
2203 clear_pending (EV_A_ (W)w);
2204 if (expect_false (!ev_is_active (w)))
2205 return;
2206
2207 ev_io_stop (EV_A_ &w->io);
2208
2209 ev_stop (EV_A_ (W)w);
2210}
2211#endif
2212
2213#if EV_FORK_ENABLE
2214void
2215ev_fork_start (EV_P_ ev_fork *w)
2216{
2217 if (expect_false (ev_is_active (w)))
2218 return;
2219
2220 ev_start (EV_A_ (W)w, ++forkcnt);
2221 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2222 forks [forkcnt - 1] = w;
2223}
2224
2225void
2226ev_fork_stop (EV_P_ ev_fork *w)
2227{
2228 clear_pending (EV_A_ (W)w);
2229 if (expect_false (!ev_is_active (w)))
2230 return;
2231
2232 {
2233 int active = ((W)w)->active;
2234 forks [active - 1] = forks [--forkcnt];
2235 ((W)forks [active - 1])->active = active;
2236 }
2237
2238 ev_stop (EV_A_ (W)w);
2239}
2240#endif
2241
1585/*****************************************************************************/ 2242/*****************************************************************************/
1586 2243
1587struct ev_once 2244struct ev_once
1588{ 2245{
1589 struct ev_io io; 2246 ev_io io;
1590 struct ev_timer to; 2247 ev_timer to;
1591 void (*cb)(int revents, void *arg); 2248 void (*cb)(int revents, void *arg);
1592 void *arg; 2249 void *arg;
1593}; 2250};
1594 2251
1595static void 2252static void
1604 2261
1605 cb (revents, arg); 2262 cb (revents, arg);
1606} 2263}
1607 2264
1608static void 2265static void
1609once_cb_io (EV_P_ struct ev_io *w, int revents) 2266once_cb_io (EV_P_ ev_io *w, int revents)
1610{ 2267{
1611 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2268 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1612} 2269}
1613 2270
1614static void 2271static void
1615once_cb_to (EV_P_ struct ev_timer *w, int revents) 2272once_cb_to (EV_P_ ev_timer *w, int revents)
1616{ 2273{
1617 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2274 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1618} 2275}
1619 2276
1620void 2277void
1621ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2278ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1622{ 2279{
1623 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2280 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1624 2281
1625 if (!once) 2282 if (expect_false (!once))
2283 {
1626 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2284 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1627 else 2285 return;
1628 { 2286 }
2287
1629 once->cb = cb; 2288 once->cb = cb;
1630 once->arg = arg; 2289 once->arg = arg;
1631 2290
1632 ev_init (&once->io, once_cb_io); 2291 ev_init (&once->io, once_cb_io);
1633 if (fd >= 0) 2292 if (fd >= 0)
1634 { 2293 {
1635 ev_io_set (&once->io, fd, events); 2294 ev_io_set (&once->io, fd, events);
1636 ev_io_start (EV_A_ &once->io); 2295 ev_io_start (EV_A_ &once->io);
1637 } 2296 }
1638 2297
1639 ev_init (&once->to, once_cb_to); 2298 ev_init (&once->to, once_cb_to);
1640 if (timeout >= 0.) 2299 if (timeout >= 0.)
1641 { 2300 {
1642 ev_timer_set (&once->to, timeout, 0.); 2301 ev_timer_set (&once->to, timeout, 0.);
1643 ev_timer_start (EV_A_ &once->to); 2302 ev_timer_start (EV_A_ &once->to);
1644 }
1645 } 2303 }
1646} 2304}
1647 2305
1648#ifdef __cplusplus 2306#ifdef __cplusplus
1649} 2307}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines