ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.177 by root, Tue Dec 11 15:06:50 2007 UTC vs.
Revision 1.207 by root, Thu Jan 31 13:10:56 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
51# ifndef EV_USE_MONOTONIC 59# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 60# define EV_USE_MONOTONIC 0
53# endif 61# endif
54# ifndef EV_USE_REALTIME 62# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 63# define EV_USE_REALTIME 0
64# endif
65# endif
66
67# ifndef EV_USE_NANOSLEEP
68# if HAVE_NANOSLEEP
69# define EV_USE_NANOSLEEP 1
70# else
71# define EV_USE_NANOSLEEP 0
56# endif 72# endif
57# endif 73# endif
58 74
59# ifndef EV_USE_SELECT 75# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 76# if HAVE_SELECT && HAVE_SYS_SELECT_H
146 162
147#ifndef EV_USE_REALTIME 163#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 164# define EV_USE_REALTIME 0
149#endif 165#endif
150 166
167#ifndef EV_USE_NANOSLEEP
168# define EV_USE_NANOSLEEP 0
169#endif
170
151#ifndef EV_USE_SELECT 171#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 172# define EV_USE_SELECT 1
153#endif 173#endif
154 174
155#ifndef EV_USE_POLL 175#ifndef EV_USE_POLL
202#ifndef CLOCK_REALTIME 222#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 223# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 224# define EV_USE_REALTIME 0
205#endif 225#endif
206 226
227#if !EV_STAT_ENABLE
228# undef EV_USE_INOTIFY
229# define EV_USE_INOTIFY 0
230#endif
231
232#if !EV_USE_NANOSLEEP
233# ifndef _WIN32
234# include <sys/select.h>
235# endif
236#endif
237
238#if EV_USE_INOTIFY
239# include <sys/inotify.h>
240#endif
241
207#if EV_SELECT_IS_WINSOCKET 242#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 243# include <winsock.h>
209#endif
210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif 244#endif
218 245
219/**/ 246/**/
220 247
221/* 248/*
230 257
231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 258#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 259#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 260/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
234 261
235#if __GNUC__ >= 3 262#if __GNUC__ >= 4
236# define expect(expr,value) __builtin_expect ((expr),(value)) 263# define expect(expr,value) __builtin_expect ((expr),(value))
237# define noinline __attribute__ ((noinline)) 264# define noinline __attribute__ ((noinline))
238#else 265#else
239# define expect(expr,value) (expr) 266# define expect(expr,value) (expr)
240# define noinline 267# define noinline
261 288
262typedef ev_watcher *W; 289typedef ev_watcher *W;
263typedef ev_watcher_list *WL; 290typedef ev_watcher_list *WL;
264typedef ev_watcher_time *WT; 291typedef ev_watcher_time *WT;
265 292
293#if EV_USE_MONOTONIC
294/* sig_atomic_t is used to avoid per-thread variables or locking but still */
295/* giving it a reasonably high chance of working on typical architetcures */
266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 296static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
297#endif
267 298
268#ifdef _WIN32 299#ifdef _WIN32
269# include "ev_win32.c" 300# include "ev_win32.c"
270#endif 301#endif
271 302
407{ 438{
408 return ev_rt_now; 439 return ev_rt_now;
409} 440}
410#endif 441#endif
411 442
443void
444ev_sleep (ev_tstamp delay)
445{
446 if (delay > 0.)
447 {
448#if EV_USE_NANOSLEEP
449 struct timespec ts;
450
451 ts.tv_sec = (time_t)delay;
452 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
453
454 nanosleep (&ts, 0);
455#elif defined(_WIN32)
456 Sleep (delay * 1e3);
457#else
458 struct timeval tv;
459
460 tv.tv_sec = (time_t)delay;
461 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
462
463 select (0, 0, 0, 0, &tv);
464#endif
465 }
466}
467
468/*****************************************************************************/
469
412int inline_size 470int inline_size
413array_nextsize (int elem, int cur, int cnt) 471array_nextsize (int elem, int cur, int cnt)
414{ 472{
415 int ncur = cur + 1; 473 int ncur = cur + 1;
416 474
476 pendings [pri][w_->pending - 1].w = w_; 534 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents; 535 pendings [pri][w_->pending - 1].events = revents;
478 } 536 }
479} 537}
480 538
481void inline_size 539void inline_speed
482queue_events (EV_P_ W *events, int eventcnt, int type) 540queue_events (EV_P_ W *events, int eventcnt, int type)
483{ 541{
484 int i; 542 int i;
485 543
486 for (i = 0; i < eventcnt; ++i) 544 for (i = 0; i < eventcnt; ++i)
533 { 591 {
534 int fd = fdchanges [i]; 592 int fd = fdchanges [i];
535 ANFD *anfd = anfds + fd; 593 ANFD *anfd = anfds + fd;
536 ev_io *w; 594 ev_io *w;
537 595
538 int events = 0; 596 unsigned char events = 0;
539 597
540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 598 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
541 events |= w->events; 599 events |= (unsigned char)w->events;
542 600
543#if EV_SELECT_IS_WINSOCKET 601#if EV_SELECT_IS_WINSOCKET
544 if (events) 602 if (events)
545 { 603 {
546 unsigned long argp; 604 unsigned long argp;
605 #ifdef EV_FD_TO_WIN32_HANDLE
606 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
607 #else
547 anfd->handle = _get_osfhandle (fd); 608 anfd->handle = _get_osfhandle (fd);
609 #endif
548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 610 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
549 } 611 }
550#endif 612#endif
551 613
614 {
615 unsigned char o_events = anfd->events;
616 unsigned char o_reify = anfd->reify;
617
552 anfd->reify = 0; 618 anfd->reify = 0;
553
554 backend_modify (EV_A_ fd, anfd->events, events);
555 anfd->events = events; 619 anfd->events = events;
620
621 if (o_events != events || o_reify & EV_IOFDSET)
622 backend_modify (EV_A_ fd, o_events, events);
623 }
556 } 624 }
557 625
558 fdchangecnt = 0; 626 fdchangecnt = 0;
559} 627}
560 628
561void inline_size 629void inline_size
562fd_change (EV_P_ int fd) 630fd_change (EV_P_ int fd, int flags)
563{ 631{
564 if (expect_false (anfds [fd].reify)) 632 unsigned char reify = anfds [fd].reify;
565 return;
566
567 anfds [fd].reify = 1; 633 anfds [fd].reify |= flags;
568 634
635 if (expect_true (!reify))
636 {
569 ++fdchangecnt; 637 ++fdchangecnt;
570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 638 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
571 fdchanges [fdchangecnt - 1] = fd; 639 fdchanges [fdchangecnt - 1] = fd;
640 }
572} 641}
573 642
574void inline_speed 643void inline_speed
575fd_kill (EV_P_ int fd) 644fd_kill (EV_P_ int fd)
576{ 645{
627 696
628 for (fd = 0; fd < anfdmax; ++fd) 697 for (fd = 0; fd < anfdmax; ++fd)
629 if (anfds [fd].events) 698 if (anfds [fd].events)
630 { 699 {
631 anfds [fd].events = 0; 700 anfds [fd].events = 0;
632 fd_change (EV_A_ fd); 701 fd_change (EV_A_ fd, EV_IOFDSET | 1);
633 } 702 }
634} 703}
635 704
636/*****************************************************************************/ 705/*****************************************************************************/
637 706
638void inline_speed 707void inline_speed
639upheap (WT *heap, int k) 708upheap (WT *heap, int k)
640{ 709{
641 WT w = heap [k]; 710 WT w = heap [k];
642 711
643 while (k && heap [k >> 1]->at > w->at) 712 while (k)
644 { 713 {
714 int p = (k - 1) >> 1;
715
716 if (heap [p]->at <= w->at)
717 break;
718
645 heap [k] = heap [k >> 1]; 719 heap [k] = heap [p];
646 ((W)heap [k])->active = k + 1; 720 ((W)heap [k])->active = k + 1;
647 k >>= 1; 721 k = p;
648 } 722 }
649 723
650 heap [k] = w; 724 heap [k] = w;
651 ((W)heap [k])->active = k + 1; 725 ((W)heap [k])->active = k + 1;
652
653} 726}
654 727
655void inline_speed 728void inline_speed
656downheap (WT *heap, int N, int k) 729downheap (WT *heap, int N, int k)
657{ 730{
658 WT w = heap [k]; 731 WT w = heap [k];
659 732
660 while (k < (N >> 1)) 733 for (;;)
661 { 734 {
662 int j = k << 1; 735 int c = (k << 1) + 1;
663 736
664 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 737 if (c >= N)
665 ++j;
666
667 if (w->at <= heap [j]->at)
668 break; 738 break;
669 739
740 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
741 ? 1 : 0;
742
743 if (w->at <= heap [c]->at)
744 break;
745
670 heap [k] = heap [j]; 746 heap [k] = heap [c];
671 ((W)heap [k])->active = k + 1; 747 ((W)heap [k])->active = k + 1;
748
672 k = j; 749 k = c;
673 } 750 }
674 751
675 heap [k] = w; 752 heap [k] = w;
676 ((W)heap [k])->active = k + 1; 753 ((W)heap [k])->active = k + 1;
677} 754}
686/*****************************************************************************/ 763/*****************************************************************************/
687 764
688typedef struct 765typedef struct
689{ 766{
690 WL head; 767 WL head;
691 sig_atomic_t volatile gotsig; 768 EV_ATOMIC_T gotsig;
692} ANSIG; 769} ANSIG;
693 770
694static ANSIG *signals; 771static ANSIG *signals;
695static int signalmax; 772static int signalmax;
696 773
697static int sigpipe [2]; 774static EV_ATOMIC_T gotsig;
698static sig_atomic_t volatile gotsig;
699static ev_io sigev;
700 775
701void inline_size 776void inline_size
702signals_init (ANSIG *base, int count) 777signals_init (ANSIG *base, int count)
703{ 778{
704 while (count--) 779 while (count--)
708 783
709 ++base; 784 ++base;
710 } 785 }
711} 786}
712 787
713static void 788/*****************************************************************************/
714sighandler (int signum)
715{
716#if _WIN32
717 signal (signum, sighandler);
718#endif
719
720 signals [signum - 1].gotsig = 1;
721
722 if (!gotsig)
723 {
724 int old_errno = errno;
725 gotsig = 1;
726 write (sigpipe [1], &signum, 1);
727 errno = old_errno;
728 }
729}
730
731void noinline
732ev_feed_signal_event (EV_P_ int signum)
733{
734 WL w;
735
736#if EV_MULTIPLICITY
737 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
738#endif
739
740 --signum;
741
742 if (signum < 0 || signum >= signalmax)
743 return;
744
745 signals [signum].gotsig = 0;
746
747 for (w = signals [signum].head; w; w = w->next)
748 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
749}
750
751static void
752sigcb (EV_P_ ev_io *iow, int revents)
753{
754 int signum;
755
756 read (sigpipe [0], &revents, 1);
757 gotsig = 0;
758
759 for (signum = signalmax; signum--; )
760 if (signals [signum].gotsig)
761 ev_feed_signal_event (EV_A_ signum + 1);
762}
763 789
764void inline_speed 790void inline_speed
765fd_intern (int fd) 791fd_intern (int fd)
766{ 792{
767#ifdef _WIN32 793#ifdef _WIN32
772 fcntl (fd, F_SETFL, O_NONBLOCK); 798 fcntl (fd, F_SETFL, O_NONBLOCK);
773#endif 799#endif
774} 800}
775 801
776static void noinline 802static void noinline
777siginit (EV_P) 803evpipe_init (EV_P)
778{ 804{
805 if (!ev_is_active (&pipeev))
806 {
807 while (pipe (evpipe))
808 syserr ("(libev) error creating signal/async pipe");
809
779 fd_intern (sigpipe [0]); 810 fd_intern (evpipe [0]);
780 fd_intern (sigpipe [1]); 811 fd_intern (evpipe [1]);
781 812
782 ev_io_set (&sigev, sigpipe [0], EV_READ); 813 ev_io_set (&pipeev, evpipe [0], EV_READ);
783 ev_io_start (EV_A_ &sigev); 814 ev_io_start (EV_A_ &pipeev);
784 ev_unref (EV_A); /* child watcher should not keep loop alive */ 815 ev_unref (EV_A); /* child watcher should not keep loop alive */
816 }
817}
818
819void inline_size
820evpipe_write (EV_P_ int sig, int async)
821{
822 if (!(gotasync || gotsig))
823 {
824 int old_errno = errno;
825
826 if (sig) gotsig = 1;
827 if (async) gotasync = 1;
828
829 write (evpipe [1], &old_errno, 1);
830 errno = old_errno;
831 }
832}
833
834static void
835pipecb (EV_P_ ev_io *iow, int revents)
836{
837 {
838 int dummy;
839 read (evpipe [0], &dummy, 1);
840 }
841
842 if (gotsig)
843 {
844 int signum;
845 gotsig = 0;
846
847 for (signum = signalmax; signum--; )
848 if (signals [signum].gotsig)
849 ev_feed_signal_event (EV_A_ signum + 1);
850 }
851
852 if (gotasync)
853 {
854 int i;
855 gotasync = 0;
856
857 for (i = asynccnt; i--; )
858 if (asyncs [i]->sent)
859 {
860 asyncs [i]->sent = 0;
861 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
862 }
863 }
785} 864}
786 865
787/*****************************************************************************/ 866/*****************************************************************************/
788 867
868static void
869sighandler (int signum)
870{
871#if EV_MULTIPLICITY
872 struct ev_loop *loop = &default_loop_struct;
873#endif
874
875#if _WIN32
876 signal (signum, sighandler);
877#endif
878
879 signals [signum - 1].gotsig = 1;
880 evpipe_write (EV_A_ 1, 0);
881}
882
883void noinline
884ev_feed_signal_event (EV_P_ int signum)
885{
886 WL w;
887
888#if EV_MULTIPLICITY
889 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
890#endif
891
892 --signum;
893
894 if (signum < 0 || signum >= signalmax)
895 return;
896
897 signals [signum].gotsig = 0;
898
899 for (w = signals [signum].head; w; w = w->next)
900 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
901}
902
903/*****************************************************************************/
904
789static ev_child *childs [EV_PID_HASHSIZE]; 905static WL childs [EV_PID_HASHSIZE];
790 906
791#ifndef _WIN32 907#ifndef _WIN32
792 908
793static ev_signal childev; 909static ev_signal childev;
910
911#ifndef WIFCONTINUED
912# define WIFCONTINUED(status) 0
913#endif
794 914
795void inline_speed 915void inline_speed
796child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 916child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
797{ 917{
798 ev_child *w; 918 ev_child *w;
919 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
799 920
800 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 921 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
922 {
801 if (w->pid == pid || !w->pid) 923 if ((w->pid == pid || !w->pid)
924 && (!traced || (w->flags & 1)))
802 { 925 {
803 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 926 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
804 w->rpid = pid; 927 w->rpid = pid;
805 w->rstatus = status; 928 w->rstatus = status;
806 ev_feed_event (EV_A_ (W)w, EV_CHILD); 929 ev_feed_event (EV_A_ (W)w, EV_CHILD);
807 } 930 }
931 }
808} 932}
809 933
810#ifndef WCONTINUED 934#ifndef WCONTINUED
811# define WCONTINUED 0 935# define WCONTINUED 0
812#endif 936#endif
909} 1033}
910 1034
911unsigned int 1035unsigned int
912ev_embeddable_backends (void) 1036ev_embeddable_backends (void)
913{ 1037{
914 return EVBACKEND_EPOLL 1038 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
915 | EVBACKEND_KQUEUE 1039
916 | EVBACKEND_PORT; 1040 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1041 /* please fix it and tell me how to detect the fix */
1042 flags &= ~EVBACKEND_EPOLL;
1043
1044 return flags;
917} 1045}
918 1046
919unsigned int 1047unsigned int
920ev_backend (EV_P) 1048ev_backend (EV_P)
921{ 1049{
924 1052
925unsigned int 1053unsigned int
926ev_loop_count (EV_P) 1054ev_loop_count (EV_P)
927{ 1055{
928 return loop_count; 1056 return loop_count;
1057}
1058
1059void
1060ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1061{
1062 io_blocktime = interval;
1063}
1064
1065void
1066ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1067{
1068 timeout_blocktime = interval;
929} 1069}
930 1070
931static void noinline 1071static void noinline
932loop_init (EV_P_ unsigned int flags) 1072loop_init (EV_P_ unsigned int flags)
933{ 1073{
944 ev_rt_now = ev_time (); 1084 ev_rt_now = ev_time ();
945 mn_now = get_clock (); 1085 mn_now = get_clock ();
946 now_floor = mn_now; 1086 now_floor = mn_now;
947 rtmn_diff = ev_rt_now - mn_now; 1087 rtmn_diff = ev_rt_now - mn_now;
948 1088
1089 io_blocktime = 0.;
1090 timeout_blocktime = 0.;
1091
949 /* pid check not overridable via env */ 1092 /* pid check not overridable via env */
950#ifndef _WIN32 1093#ifndef _WIN32
951 if (flags & EVFLAG_FORKCHECK) 1094 if (flags & EVFLAG_FORKCHECK)
952 curpid = getpid (); 1095 curpid = getpid ();
953#endif 1096#endif
980#endif 1123#endif
981#if EV_USE_SELECT 1124#if EV_USE_SELECT
982 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1125 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
983#endif 1126#endif
984 1127
985 ev_init (&sigev, sigcb); 1128 ev_init (&pipeev, pipecb);
986 ev_set_priority (&sigev, EV_MAXPRI); 1129 ev_set_priority (&pipeev, EV_MAXPRI);
987 } 1130 }
988} 1131}
989 1132
990static void noinline 1133static void noinline
991loop_destroy (EV_P) 1134loop_destroy (EV_P)
992{ 1135{
993 int i; 1136 int i;
1137
1138 if (ev_is_active (&pipeev))
1139 {
1140 ev_ref (EV_A); /* signal watcher */
1141 ev_io_stop (EV_A_ &pipeev);
1142
1143 close (evpipe [0]); evpipe [0] = 0;
1144 close (evpipe [1]); evpipe [1] = 0;
1145 }
994 1146
995#if EV_USE_INOTIFY 1147#if EV_USE_INOTIFY
996 if (fs_fd >= 0) 1148 if (fs_fd >= 0)
997 close (fs_fd); 1149 close (fs_fd);
998#endif 1150#endif
1021 array_free (pending, [i]); 1173 array_free (pending, [i]);
1022#if EV_IDLE_ENABLE 1174#if EV_IDLE_ENABLE
1023 array_free (idle, [i]); 1175 array_free (idle, [i]);
1024#endif 1176#endif
1025 } 1177 }
1178
1179 ev_free (anfds); anfdmax = 0;
1026 1180
1027 /* have to use the microsoft-never-gets-it-right macro */ 1181 /* have to use the microsoft-never-gets-it-right macro */
1028 array_free (fdchange, EMPTY); 1182 array_free (fdchange, EMPTY);
1029 array_free (timer, EMPTY); 1183 array_free (timer, EMPTY);
1030#if EV_PERIODIC_ENABLE 1184#if EV_PERIODIC_ENABLE
1031 array_free (periodic, EMPTY); 1185 array_free (periodic, EMPTY);
1032#endif 1186#endif
1187#if EV_FORK_ENABLE
1188 array_free (fork, EMPTY);
1189#endif
1033 array_free (prepare, EMPTY); 1190 array_free (prepare, EMPTY);
1034 array_free (check, EMPTY); 1191 array_free (check, EMPTY);
1035 1192
1036 backend = 0; 1193 backend = 0;
1037} 1194}
1052#endif 1209#endif
1053#if EV_USE_INOTIFY 1210#if EV_USE_INOTIFY
1054 infy_fork (EV_A); 1211 infy_fork (EV_A);
1055#endif 1212#endif
1056 1213
1057 if (ev_is_active (&sigev)) 1214 if (ev_is_active (&pipeev))
1058 { 1215 {
1059 /* default loop */ 1216 /* this "locks" the handlers against writing to the pipe */
1217 gotsig = gotasync = 1;
1060 1218
1061 ev_ref (EV_A); 1219 ev_ref (EV_A);
1062 ev_io_stop (EV_A_ &sigev); 1220 ev_io_stop (EV_A_ &pipeev);
1063 close (sigpipe [0]); 1221 close (evpipe [0]);
1064 close (sigpipe [1]); 1222 close (evpipe [1]);
1065 1223
1066 while (pipe (sigpipe))
1067 syserr ("(libev) error creating pipe");
1068
1069 siginit (EV_A); 1224 evpipe_init (EV_A);
1225 /* now iterate over everything */
1226 evcb (EV_A_ &pipeev, EV_READ);
1070 } 1227 }
1071 1228
1072 postfork = 0; 1229 postfork = 0;
1073} 1230}
1074 1231
1096} 1253}
1097 1254
1098void 1255void
1099ev_loop_fork (EV_P) 1256ev_loop_fork (EV_P)
1100{ 1257{
1101 postfork = 1; 1258 postfork = 1; /* must be in line with ev_default_fork */
1102} 1259}
1103 1260
1104#endif 1261#endif
1105 1262
1106#if EV_MULTIPLICITY 1263#if EV_MULTIPLICITY
1109#else 1266#else
1110int 1267int
1111ev_default_loop (unsigned int flags) 1268ev_default_loop (unsigned int flags)
1112#endif 1269#endif
1113{ 1270{
1114 if (sigpipe [0] == sigpipe [1])
1115 if (pipe (sigpipe))
1116 return 0;
1117
1118 if (!ev_default_loop_ptr) 1271 if (!ev_default_loop_ptr)
1119 { 1272 {
1120#if EV_MULTIPLICITY 1273#if EV_MULTIPLICITY
1121 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1274 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1122#else 1275#else
1125 1278
1126 loop_init (EV_A_ flags); 1279 loop_init (EV_A_ flags);
1127 1280
1128 if (ev_backend (EV_A)) 1281 if (ev_backend (EV_A))
1129 { 1282 {
1130 siginit (EV_A);
1131
1132#ifndef _WIN32 1283#ifndef _WIN32
1133 ev_signal_init (&childev, childcb, SIGCHLD); 1284 ev_signal_init (&childev, childcb, SIGCHLD);
1134 ev_set_priority (&childev, EV_MAXPRI); 1285 ev_set_priority (&childev, EV_MAXPRI);
1135 ev_signal_start (EV_A_ &childev); 1286 ev_signal_start (EV_A_ &childev);
1136 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1287 ev_unref (EV_A); /* child watcher should not keep loop alive */
1153#ifndef _WIN32 1304#ifndef _WIN32
1154 ev_ref (EV_A); /* child watcher */ 1305 ev_ref (EV_A); /* child watcher */
1155 ev_signal_stop (EV_A_ &childev); 1306 ev_signal_stop (EV_A_ &childev);
1156#endif 1307#endif
1157 1308
1158 ev_ref (EV_A); /* signal watcher */
1159 ev_io_stop (EV_A_ &sigev);
1160
1161 close (sigpipe [0]); sigpipe [0] = 0;
1162 close (sigpipe [1]); sigpipe [1] = 0;
1163
1164 loop_destroy (EV_A); 1309 loop_destroy (EV_A);
1165} 1310}
1166 1311
1167void 1312void
1168ev_default_fork (void) 1313ev_default_fork (void)
1170#if EV_MULTIPLICITY 1315#if EV_MULTIPLICITY
1171 struct ev_loop *loop = ev_default_loop_ptr; 1316 struct ev_loop *loop = ev_default_loop_ptr;
1172#endif 1317#endif
1173 1318
1174 if (backend) 1319 if (backend)
1175 postfork = 1; 1320 postfork = 1; /* must be in line with ev_loop_fork */
1176} 1321}
1177 1322
1178/*****************************************************************************/ 1323/*****************************************************************************/
1179 1324
1180void 1325void
1206void inline_size 1351void inline_size
1207timers_reify (EV_P) 1352timers_reify (EV_P)
1208{ 1353{
1209 while (timercnt && ((WT)timers [0])->at <= mn_now) 1354 while (timercnt && ((WT)timers [0])->at <= mn_now)
1210 { 1355 {
1211 ev_timer *w = timers [0]; 1356 ev_timer *w = (ev_timer *)timers [0];
1212 1357
1213 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1358 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1214 1359
1215 /* first reschedule or stop timer */ 1360 /* first reschedule or stop timer */
1216 if (w->repeat) 1361 if (w->repeat)
1219 1364
1220 ((WT)w)->at += w->repeat; 1365 ((WT)w)->at += w->repeat;
1221 if (((WT)w)->at < mn_now) 1366 if (((WT)w)->at < mn_now)
1222 ((WT)w)->at = mn_now; 1367 ((WT)w)->at = mn_now;
1223 1368
1224 downheap ((WT *)timers, timercnt, 0); 1369 downheap (timers, timercnt, 0);
1225 } 1370 }
1226 else 1371 else
1227 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1372 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1228 1373
1229 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1374 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1234void inline_size 1379void inline_size
1235periodics_reify (EV_P) 1380periodics_reify (EV_P)
1236{ 1381{
1237 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1382 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1238 { 1383 {
1239 ev_periodic *w = periodics [0]; 1384 ev_periodic *w = (ev_periodic *)periodics [0];
1240 1385
1241 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1386 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1242 1387
1243 /* first reschedule or stop timer */ 1388 /* first reschedule or stop timer */
1244 if (w->reschedule_cb) 1389 if (w->reschedule_cb)
1245 { 1390 {
1246 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1391 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1247 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1392 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1248 downheap ((WT *)periodics, periodiccnt, 0); 1393 downheap (periodics, periodiccnt, 0);
1249 } 1394 }
1250 else if (w->interval) 1395 else if (w->interval)
1251 { 1396 {
1252 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1397 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1253 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval; 1398 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1399 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1255 downheap ((WT *)periodics, periodiccnt, 0); 1400 downheap (periodics, periodiccnt, 0);
1256 } 1401 }
1257 else 1402 else
1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1403 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1259 1404
1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1405 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1267 int i; 1412 int i;
1268 1413
1269 /* adjust periodics after time jump */ 1414 /* adjust periodics after time jump */
1270 for (i = 0; i < periodiccnt; ++i) 1415 for (i = 0; i < periodiccnt; ++i)
1271 { 1416 {
1272 ev_periodic *w = periodics [i]; 1417 ev_periodic *w = (ev_periodic *)periodics [i];
1273 1418
1274 if (w->reschedule_cb) 1419 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1420 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1276 else if (w->interval) 1421 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1422 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 } 1423 }
1279 1424
1280 /* now rebuild the heap */ 1425 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; ) 1426 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i); 1427 downheap (periodics, periodiccnt, i);
1283} 1428}
1284#endif 1429#endif
1285 1430
1286#if EV_IDLE_ENABLE 1431#if EV_IDLE_ENABLE
1287void inline_size 1432void inline_size
1304 } 1449 }
1305 } 1450 }
1306} 1451}
1307#endif 1452#endif
1308 1453
1309int inline_size 1454void inline_speed
1310time_update_monotonic (EV_P) 1455time_update (EV_P_ ev_tstamp max_block)
1311{ 1456{
1457 int i;
1458
1459#if EV_USE_MONOTONIC
1460 if (expect_true (have_monotonic))
1461 {
1462 ev_tstamp odiff = rtmn_diff;
1463
1312 mn_now = get_clock (); 1464 mn_now = get_clock ();
1313 1465
1466 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1467 /* interpolate in the meantime */
1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1468 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1315 { 1469 {
1316 ev_rt_now = rtmn_diff + mn_now; 1470 ev_rt_now = rtmn_diff + mn_now;
1317 return 0; 1471 return;
1318 } 1472 }
1319 else 1473
1320 {
1321 now_floor = mn_now; 1474 now_floor = mn_now;
1322 ev_rt_now = ev_time (); 1475 ev_rt_now = ev_time ();
1323 return 1;
1324 }
1325}
1326 1476
1327void inline_size 1477 /* loop a few times, before making important decisions.
1328time_update (EV_P) 1478 * on the choice of "4": one iteration isn't enough,
1329{ 1479 * in case we get preempted during the calls to
1330 int i; 1480 * ev_time and get_clock. a second call is almost guaranteed
1331 1481 * to succeed in that case, though. and looping a few more times
1332#if EV_USE_MONOTONIC 1482 * doesn't hurt either as we only do this on time-jumps or
1333 if (expect_true (have_monotonic)) 1483 * in the unlikely event of having been preempted here.
1334 { 1484 */
1335 if (time_update_monotonic (EV_A)) 1485 for (i = 4; --i; )
1336 { 1486 {
1337 ev_tstamp odiff = rtmn_diff;
1338
1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1348 {
1349 rtmn_diff = ev_rt_now - mn_now; 1487 rtmn_diff = ev_rt_now - mn_now;
1350 1488
1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1489 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1352 return; /* all is well */ 1490 return; /* all is well */
1353 1491
1354 ev_rt_now = ev_time (); 1492 ev_rt_now = ev_time ();
1355 mn_now = get_clock (); 1493 mn_now = get_clock ();
1356 now_floor = mn_now; 1494 now_floor = mn_now;
1357 } 1495 }
1358 1496
1359# if EV_PERIODIC_ENABLE 1497# if EV_PERIODIC_ENABLE
1360 periodics_reschedule (EV_A); 1498 periodics_reschedule (EV_A);
1361# endif 1499# endif
1362 /* no timer adjustment, as the monotonic clock doesn't jump */ 1500 /* no timer adjustment, as the monotonic clock doesn't jump */
1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1501 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1364 }
1365 } 1502 }
1366 else 1503 else
1367#endif 1504#endif
1368 { 1505 {
1369 ev_rt_now = ev_time (); 1506 ev_rt_now = ev_time ();
1370 1507
1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1508 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 { 1509 {
1373#if EV_PERIODIC_ENABLE 1510#if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 1511 periodics_reschedule (EV_A);
1375#endif 1512#endif
1376 /* adjust timers. this is easy, as the offset is the same for all of them */ 1513 /* adjust timers. this is easy, as the offset is the same for all of them */
1443 /* update fd-related kernel structures */ 1580 /* update fd-related kernel structures */
1444 fd_reify (EV_A); 1581 fd_reify (EV_A);
1445 1582
1446 /* calculate blocking time */ 1583 /* calculate blocking time */
1447 { 1584 {
1448 ev_tstamp block; 1585 ev_tstamp waittime = 0.;
1586 ev_tstamp sleeptime = 0.;
1449 1587
1450 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1588 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1451 block = 0.; /* do not block at all */
1452 else
1453 { 1589 {
1454 /* update time to cancel out callback processing overhead */ 1590 /* update time to cancel out callback processing overhead */
1455#if EV_USE_MONOTONIC
1456 if (expect_true (have_monotonic))
1457 time_update_monotonic (EV_A); 1591 time_update (EV_A_ 1e100);
1458 else
1459#endif
1460 {
1461 ev_rt_now = ev_time ();
1462 mn_now = ev_rt_now;
1463 }
1464 1592
1465 block = MAX_BLOCKTIME; 1593 waittime = MAX_BLOCKTIME;
1466 1594
1467 if (timercnt) 1595 if (timercnt)
1468 { 1596 {
1469 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1597 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1470 if (block > to) block = to; 1598 if (waittime > to) waittime = to;
1471 } 1599 }
1472 1600
1473#if EV_PERIODIC_ENABLE 1601#if EV_PERIODIC_ENABLE
1474 if (periodiccnt) 1602 if (periodiccnt)
1475 { 1603 {
1476 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1604 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1477 if (block > to) block = to; 1605 if (waittime > to) waittime = to;
1478 } 1606 }
1479#endif 1607#endif
1480 1608
1481 if (expect_false (block < 0.)) block = 0.; 1609 if (expect_false (waittime < timeout_blocktime))
1610 waittime = timeout_blocktime;
1611
1612 sleeptime = waittime - backend_fudge;
1613
1614 if (expect_true (sleeptime > io_blocktime))
1615 sleeptime = io_blocktime;
1616
1617 if (sleeptime)
1618 {
1619 ev_sleep (sleeptime);
1620 waittime -= sleeptime;
1621 }
1482 } 1622 }
1483 1623
1484 ++loop_count; 1624 ++loop_count;
1485 backend_poll (EV_A_ block); 1625 backend_poll (EV_A_ waittime);
1626
1627 /* update ev_rt_now, do magic */
1628 time_update (EV_A_ waittime + sleeptime);
1486 } 1629 }
1487
1488 /* update ev_rt_now, do magic */
1489 time_update (EV_A);
1490 1630
1491 /* queue pending timers and reschedule them */ 1631 /* queue pending timers and reschedule them */
1492 timers_reify (EV_A); /* relative timers called last */ 1632 timers_reify (EV_A); /* relative timers called last */
1493#if EV_PERIODIC_ENABLE 1633#if EV_PERIODIC_ENABLE
1494 periodics_reify (EV_A); /* absolute timers called first */ 1634 periodics_reify (EV_A); /* absolute timers called first */
1605 1745
1606 assert (("ev_io_start called with negative fd", fd >= 0)); 1746 assert (("ev_io_start called with negative fd", fd >= 0));
1607 1747
1608 ev_start (EV_A_ (W)w, 1); 1748 ev_start (EV_A_ (W)w, 1);
1609 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1749 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1610 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1750 wlist_add (&anfds[fd].head, (WL)w);
1611 1751
1612 fd_change (EV_A_ fd); 1752 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1753 w->events &= ~EV_IOFDSET;
1613} 1754}
1614 1755
1615void noinline 1756void noinline
1616ev_io_stop (EV_P_ ev_io *w) 1757ev_io_stop (EV_P_ ev_io *w)
1617{ 1758{
1619 if (expect_false (!ev_is_active (w))) 1760 if (expect_false (!ev_is_active (w)))
1620 return; 1761 return;
1621 1762
1622 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1763 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1623 1764
1624 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1765 wlist_del (&anfds[w->fd].head, (WL)w);
1625 ev_stop (EV_A_ (W)w); 1766 ev_stop (EV_A_ (W)w);
1626 1767
1627 fd_change (EV_A_ w->fd); 1768 fd_change (EV_A_ w->fd, 1);
1628} 1769}
1629 1770
1630void noinline 1771void noinline
1631ev_timer_start (EV_P_ ev_timer *w) 1772ev_timer_start (EV_P_ ev_timer *w)
1632{ 1773{
1636 ((WT)w)->at += mn_now; 1777 ((WT)w)->at += mn_now;
1637 1778
1638 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1779 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1639 1780
1640 ev_start (EV_A_ (W)w, ++timercnt); 1781 ev_start (EV_A_ (W)w, ++timercnt);
1641 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1782 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1642 timers [timercnt - 1] = w; 1783 timers [timercnt - 1] = (WT)w;
1643 upheap ((WT *)timers, timercnt - 1); 1784 upheap (timers, timercnt - 1);
1644 1785
1645 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1786 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1646} 1787}
1647 1788
1648void noinline 1789void noinline
1650{ 1791{
1651 clear_pending (EV_A_ (W)w); 1792 clear_pending (EV_A_ (W)w);
1652 if (expect_false (!ev_is_active (w))) 1793 if (expect_false (!ev_is_active (w)))
1653 return; 1794 return;
1654 1795
1655 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1796 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1656 1797
1657 { 1798 {
1658 int active = ((W)w)->active; 1799 int active = ((W)w)->active;
1659 1800
1660 if (expect_true (--active < --timercnt)) 1801 if (expect_true (--active < --timercnt))
1661 { 1802 {
1662 timers [active] = timers [timercnt]; 1803 timers [active] = timers [timercnt];
1663 adjustheap ((WT *)timers, timercnt, active); 1804 adjustheap (timers, timercnt, active);
1664 } 1805 }
1665 } 1806 }
1666 1807
1667 ((WT)w)->at -= mn_now; 1808 ((WT)w)->at -= mn_now;
1668 1809
1675 if (ev_is_active (w)) 1816 if (ev_is_active (w))
1676 { 1817 {
1677 if (w->repeat) 1818 if (w->repeat)
1678 { 1819 {
1679 ((WT)w)->at = mn_now + w->repeat; 1820 ((WT)w)->at = mn_now + w->repeat;
1680 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1821 adjustheap (timers, timercnt, ((W)w)->active - 1);
1681 } 1822 }
1682 else 1823 else
1683 ev_timer_stop (EV_A_ w); 1824 ev_timer_stop (EV_A_ w);
1684 } 1825 }
1685 else if (w->repeat) 1826 else if (w->repeat)
1706 } 1847 }
1707 else 1848 else
1708 ((WT)w)->at = w->offset; 1849 ((WT)w)->at = w->offset;
1709 1850
1710 ev_start (EV_A_ (W)w, ++periodiccnt); 1851 ev_start (EV_A_ (W)w, ++periodiccnt);
1711 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1852 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1712 periodics [periodiccnt - 1] = w; 1853 periodics [periodiccnt - 1] = (WT)w;
1713 upheap ((WT *)periodics, periodiccnt - 1); 1854 upheap (periodics, periodiccnt - 1);
1714 1855
1715 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1856 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1716} 1857}
1717 1858
1718void noinline 1859void noinline
1720{ 1861{
1721 clear_pending (EV_A_ (W)w); 1862 clear_pending (EV_A_ (W)w);
1722 if (expect_false (!ev_is_active (w))) 1863 if (expect_false (!ev_is_active (w)))
1723 return; 1864 return;
1724 1865
1725 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1866 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1726 1867
1727 { 1868 {
1728 int active = ((W)w)->active; 1869 int active = ((W)w)->active;
1729 1870
1730 if (expect_true (--active < --periodiccnt)) 1871 if (expect_true (--active < --periodiccnt))
1731 { 1872 {
1732 periodics [active] = periodics [periodiccnt]; 1873 periodics [active] = periodics [periodiccnt];
1733 adjustheap ((WT *)periodics, periodiccnt, active); 1874 adjustheap (periodics, periodiccnt, active);
1734 } 1875 }
1735 } 1876 }
1736 1877
1737 ev_stop (EV_A_ (W)w); 1878 ev_stop (EV_A_ (W)w);
1738} 1879}
1759 if (expect_false (ev_is_active (w))) 1900 if (expect_false (ev_is_active (w)))
1760 return; 1901 return;
1761 1902
1762 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1903 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1763 1904
1905 evpipe_init (EV_A);
1906
1907 {
1908#ifndef _WIN32
1909 sigset_t full, prev;
1910 sigfillset (&full);
1911 sigprocmask (SIG_SETMASK, &full, &prev);
1912#endif
1913
1914 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1915
1916#ifndef _WIN32
1917 sigprocmask (SIG_SETMASK, &prev, 0);
1918#endif
1919 }
1920
1764 ev_start (EV_A_ (W)w, 1); 1921 ev_start (EV_A_ (W)w, 1);
1765 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1766 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1922 wlist_add (&signals [w->signum - 1].head, (WL)w);
1767 1923
1768 if (!((WL)w)->next) 1924 if (!((WL)w)->next)
1769 { 1925 {
1770#if _WIN32 1926#if _WIN32
1771 signal (w->signum, sighandler); 1927 signal (w->signum, sighandler);
1784{ 1940{
1785 clear_pending (EV_A_ (W)w); 1941 clear_pending (EV_A_ (W)w);
1786 if (expect_false (!ev_is_active (w))) 1942 if (expect_false (!ev_is_active (w)))
1787 return; 1943 return;
1788 1944
1789 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1945 wlist_del (&signals [w->signum - 1].head, (WL)w);
1790 ev_stop (EV_A_ (W)w); 1946 ev_stop (EV_A_ (W)w);
1791 1947
1792 if (!signals [w->signum - 1].head) 1948 if (!signals [w->signum - 1].head)
1793 signal (w->signum, SIG_DFL); 1949 signal (w->signum, SIG_DFL);
1794} 1950}
1801#endif 1957#endif
1802 if (expect_false (ev_is_active (w))) 1958 if (expect_false (ev_is_active (w)))
1803 return; 1959 return;
1804 1960
1805 ev_start (EV_A_ (W)w, 1); 1961 ev_start (EV_A_ (W)w, 1);
1806 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1962 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1807} 1963}
1808 1964
1809void 1965void
1810ev_child_stop (EV_P_ ev_child *w) 1966ev_child_stop (EV_P_ ev_child *w)
1811{ 1967{
1812 clear_pending (EV_A_ (W)w); 1968 clear_pending (EV_A_ (W)w);
1813 if (expect_false (!ev_is_active (w))) 1969 if (expect_false (!ev_is_active (w)))
1814 return; 1970 return;
1815 1971
1816 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1972 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1817 ev_stop (EV_A_ (W)w); 1973 ev_stop (EV_A_ (W)w);
1818} 1974}
1819 1975
1820#if EV_STAT_ENABLE 1976#if EV_STAT_ENABLE
1821 1977
2163 2319
2164#if EV_EMBED_ENABLE 2320#if EV_EMBED_ENABLE
2165void noinline 2321void noinline
2166ev_embed_sweep (EV_P_ ev_embed *w) 2322ev_embed_sweep (EV_P_ ev_embed *w)
2167{ 2323{
2168 ev_loop (w->loop, EVLOOP_NONBLOCK); 2324 ev_loop (w->other, EVLOOP_NONBLOCK);
2169} 2325}
2170 2326
2171static void 2327static void
2172embed_cb (EV_P_ ev_io *io, int revents) 2328embed_io_cb (EV_P_ ev_io *io, int revents)
2173{ 2329{
2174 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2330 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2175 2331
2176 if (ev_cb (w)) 2332 if (ev_cb (w))
2177 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2333 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2178 else 2334 else
2179 ev_embed_sweep (loop, w); 2335 ev_loop (w->other, EVLOOP_NONBLOCK);
2180} 2336}
2337
2338static void
2339embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2340{
2341 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2342
2343 {
2344 struct ev_loop *loop = w->other;
2345
2346 while (fdchangecnt)
2347 {
2348 fd_reify (EV_A);
2349 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2350 }
2351 }
2352}
2353
2354#if 0
2355static void
2356embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2357{
2358 ev_idle_stop (EV_A_ idle);
2359}
2360#endif
2181 2361
2182void 2362void
2183ev_embed_start (EV_P_ ev_embed *w) 2363ev_embed_start (EV_P_ ev_embed *w)
2184{ 2364{
2185 if (expect_false (ev_is_active (w))) 2365 if (expect_false (ev_is_active (w)))
2186 return; 2366 return;
2187 2367
2188 { 2368 {
2189 struct ev_loop *loop = w->loop; 2369 struct ev_loop *loop = w->other;
2190 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2370 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2191 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2371 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2192 } 2372 }
2193 2373
2194 ev_set_priority (&w->io, ev_priority (w)); 2374 ev_set_priority (&w->io, ev_priority (w));
2195 ev_io_start (EV_A_ &w->io); 2375 ev_io_start (EV_A_ &w->io);
2196 2376
2377 ev_prepare_init (&w->prepare, embed_prepare_cb);
2378 ev_set_priority (&w->prepare, EV_MINPRI);
2379 ev_prepare_start (EV_A_ &w->prepare);
2380
2381 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2382
2197 ev_start (EV_A_ (W)w, 1); 2383 ev_start (EV_A_ (W)w, 1);
2198} 2384}
2199 2385
2200void 2386void
2201ev_embed_stop (EV_P_ ev_embed *w) 2387ev_embed_stop (EV_P_ ev_embed *w)
2203 clear_pending (EV_A_ (W)w); 2389 clear_pending (EV_A_ (W)w);
2204 if (expect_false (!ev_is_active (w))) 2390 if (expect_false (!ev_is_active (w)))
2205 return; 2391 return;
2206 2392
2207 ev_io_stop (EV_A_ &w->io); 2393 ev_io_stop (EV_A_ &w->io);
2394 ev_prepare_stop (EV_A_ &w->prepare);
2208 2395
2209 ev_stop (EV_A_ (W)w); 2396 ev_stop (EV_A_ (W)w);
2210} 2397}
2211#endif 2398#endif
2212 2399
2237 2424
2238 ev_stop (EV_A_ (W)w); 2425 ev_stop (EV_A_ (W)w);
2239} 2426}
2240#endif 2427#endif
2241 2428
2429#if EV_ASYNC_ENABLE
2430void
2431ev_async_start (EV_P_ ev_async *w)
2432{
2433 if (expect_false (ev_is_active (w)))
2434 return;
2435
2436 evpipe_init (EV_A);
2437
2438 ev_start (EV_A_ (W)w, ++asynccnt);
2439 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2440 asyncs [asynccnt - 1] = w;
2441}
2442
2443void
2444ev_async_stop (EV_P_ ev_async *w)
2445{
2446 clear_pending (EV_A_ (W)w);
2447 if (expect_false (!ev_is_active (w)))
2448 return;
2449
2450 {
2451 int active = ((W)w)->active;
2452 asyncs [active - 1] = asyncs [--asynccnt];
2453 ((W)asyncs [active - 1])->active = active;
2454 }
2455
2456 ev_stop (EV_A_ (W)w);
2457}
2458
2459void
2460ev_async_send (EV_P_ ev_async *w)
2461{
2462 w->sent = 1;
2463 evpipe_write (EV_A_ 0, 1);
2464}
2465#endif
2466
2242/*****************************************************************************/ 2467/*****************************************************************************/
2243 2468
2244struct ev_once 2469struct ev_once
2245{ 2470{
2246 ev_io io; 2471 ev_io io;
2301 ev_timer_set (&once->to, timeout, 0.); 2526 ev_timer_set (&once->to, timeout, 0.);
2302 ev_timer_start (EV_A_ &once->to); 2527 ev_timer_start (EV_A_ &once->to);
2303 } 2528 }
2304} 2529}
2305 2530
2531#if EV_MULTIPLICITY
2532 #include "ev_wrap.h"
2533#endif
2534
2306#ifdef __cplusplus 2535#ifdef __cplusplus
2307} 2536}
2308#endif 2537#endif
2309 2538

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines