ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.177 by root, Tue Dec 11 15:06:50 2007 UTC vs.
Revision 1.230 by root, Fri May 2 08:13:16 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 241
197#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
200#endif 245#endif
202#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
205#endif 250#endif
206 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
207#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 268# include <winsock.h>
209#endif 269#endif
210 270
211#if !EV_STAT_ENABLE 271#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
213#endif 276# endif
214 277int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 278# ifdef __cplusplus
216# include <sys/inotify.h> 279}
280# endif
217#endif 281#endif
218 282
219/**/ 283/**/
220 284
221/* 285/*
230 294
231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
234 298
235#if __GNUC__ >= 3 299#if __GNUC__ >= 4
236# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
237# define noinline __attribute__ ((noinline)) 301# define noinline __attribute__ ((noinline))
238#else 302#else
239# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
240# define noinline 304# define noinline
241# if __STDC_VERSION__ < 199901L 305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
242# define inline 306# define inline
243# endif 307# endif
244#endif 308#endif
245 309
246#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
261 325
262typedef ev_watcher *W; 326typedef ev_watcher *W;
263typedef ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
264typedef ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
265 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
267 338
268#ifdef _WIN32 339#ifdef _WIN32
269# include "ev_win32.c" 340# include "ev_win32.c"
270#endif 341#endif
271 342
292 perror (msg); 363 perror (msg);
293 abort (); 364 abort ();
294 } 365 }
295} 366}
296 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
297static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
298 384
299void 385void
300ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
301{ 387{
302 alloc = cb; 388 alloc = cb;
303} 389}
304 390
305inline_speed void * 391inline_speed void *
306ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
307{ 393{
308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
309 395
310 if (!ptr && size) 396 if (!ptr && size)
311 { 397 {
312 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
313 abort (); 399 abort ();
407{ 493{
408 return ev_rt_now; 494 return ev_rt_now;
409} 495}
410#endif 496#endif
411 497
498void
499ev_sleep (ev_tstamp delay)
500{
501 if (delay > 0.)
502 {
503#if EV_USE_NANOSLEEP
504 struct timespec ts;
505
506 ts.tv_sec = (time_t)delay;
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0);
510#elif defined(_WIN32)
511 Sleep ((unsigned long)(delay * 1e3));
512#else
513 struct timeval tv;
514
515 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517
518 select (0, 0, 0, 0, &tv);
519#endif
520 }
521}
522
523/*****************************************************************************/
524
412int inline_size 525int inline_size
413array_nextsize (int elem, int cur, int cnt) 526array_nextsize (int elem, int cur, int cnt)
414{ 527{
415 int ncur = cur + 1; 528 int ncur = cur + 1;
416 529
476 pendings [pri][w_->pending - 1].w = w_; 589 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents; 590 pendings [pri][w_->pending - 1].events = revents;
478 } 591 }
479} 592}
480 593
481void inline_size 594void inline_speed
482queue_events (EV_P_ W *events, int eventcnt, int type) 595queue_events (EV_P_ W *events, int eventcnt, int type)
483{ 596{
484 int i; 597 int i;
485 598
486 for (i = 0; i < eventcnt; ++i) 599 for (i = 0; i < eventcnt; ++i)
533 { 646 {
534 int fd = fdchanges [i]; 647 int fd = fdchanges [i];
535 ANFD *anfd = anfds + fd; 648 ANFD *anfd = anfds + fd;
536 ev_io *w; 649 ev_io *w;
537 650
538 int events = 0; 651 unsigned char events = 0;
539 652
540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
541 events |= w->events; 654 events |= (unsigned char)w->events;
542 655
543#if EV_SELECT_IS_WINSOCKET 656#if EV_SELECT_IS_WINSOCKET
544 if (events) 657 if (events)
545 { 658 {
546 unsigned long argp; 659 unsigned long argp;
660 #ifdef EV_FD_TO_WIN32_HANDLE
661 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
662 #else
547 anfd->handle = _get_osfhandle (fd); 663 anfd->handle = _get_osfhandle (fd);
664 #endif
548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 665 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
549 } 666 }
550#endif 667#endif
551 668
669 {
670 unsigned char o_events = anfd->events;
671 unsigned char o_reify = anfd->reify;
672
552 anfd->reify = 0; 673 anfd->reify = 0;
553
554 backend_modify (EV_A_ fd, anfd->events, events);
555 anfd->events = events; 674 anfd->events = events;
675
676 if (o_events != events || o_reify & EV_IOFDSET)
677 backend_modify (EV_A_ fd, o_events, events);
678 }
556 } 679 }
557 680
558 fdchangecnt = 0; 681 fdchangecnt = 0;
559} 682}
560 683
561void inline_size 684void inline_size
562fd_change (EV_P_ int fd) 685fd_change (EV_P_ int fd, int flags)
563{ 686{
564 if (expect_false (anfds [fd].reify)) 687 unsigned char reify = anfds [fd].reify;
565 return;
566
567 anfds [fd].reify = 1; 688 anfds [fd].reify |= flags;
568 689
690 if (expect_true (!reify))
691 {
569 ++fdchangecnt; 692 ++fdchangecnt;
570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 693 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
571 fdchanges [fdchangecnt - 1] = fd; 694 fdchanges [fdchangecnt - 1] = fd;
695 }
572} 696}
573 697
574void inline_speed 698void inline_speed
575fd_kill (EV_P_ int fd) 699fd_kill (EV_P_ int fd)
576{ 700{
627 751
628 for (fd = 0; fd < anfdmax; ++fd) 752 for (fd = 0; fd < anfdmax; ++fd)
629 if (anfds [fd].events) 753 if (anfds [fd].events)
630 { 754 {
631 anfds [fd].events = 0; 755 anfds [fd].events = 0;
632 fd_change (EV_A_ fd); 756 fd_change (EV_A_ fd, EV_IOFDSET | 1);
633 } 757 }
634} 758}
635 759
636/*****************************************************************************/ 760/*****************************************************************************/
637 761
762/* towards the root */
638void inline_speed 763void inline_speed
639upheap (WT *heap, int k) 764upheap (WT *heap, int k)
640{ 765{
641 WT w = heap [k]; 766 WT w = heap [k];
642 767
643 while (k && heap [k >> 1]->at > w->at) 768 for (;;)
644 { 769 {
770 int p = k >> 1;
771
772 /* maybe we could use a dummy element at heap [0]? */
773 if (!p || heap [p]->at <= w->at)
774 break;
775
645 heap [k] = heap [k >> 1]; 776 heap [k] = heap [p];
646 ((W)heap [k])->active = k + 1; 777 ev_active (heap [k]) = k;
647 k >>= 1; 778 k = p;
648 } 779 }
649 780
650 heap [k] = w; 781 heap [k] = w;
651 ((W)heap [k])->active = k + 1; 782 ev_active (heap [k]) = k;
652
653} 783}
654 784
785/* away from the root */
655void inline_speed 786void inline_speed
656downheap (WT *heap, int N, int k) 787downheap (WT *heap, int N, int k)
657{ 788{
658 WT w = heap [k]; 789 WT w = heap [k];
659 790
660 while (k < (N >> 1)) 791 for (;;)
661 { 792 {
662 int j = k << 1; 793 int c = k << 1;
663 794
664 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 795 if (c > N)
665 ++j;
666
667 if (w->at <= heap [j]->at)
668 break; 796 break;
669 797
798 c += c < N && heap [c]->at > heap [c + 1]->at
799 ? 1 : 0;
800
801 if (w->at <= heap [c]->at)
802 break;
803
670 heap [k] = heap [j]; 804 heap [k] = heap [c];
671 ((W)heap [k])->active = k + 1; 805 ev_active (heap [k]) = k;
806
672 k = j; 807 k = c;
673 } 808 }
674 809
675 heap [k] = w; 810 heap [k] = w;
676 ((W)heap [k])->active = k + 1; 811 ev_active (heap [k]) = k;
677} 812}
678 813
679void inline_size 814void inline_size
680adjustheap (WT *heap, int N, int k) 815adjustheap (WT *heap, int N, int k)
681{ 816{
686/*****************************************************************************/ 821/*****************************************************************************/
687 822
688typedef struct 823typedef struct
689{ 824{
690 WL head; 825 WL head;
691 sig_atomic_t volatile gotsig; 826 EV_ATOMIC_T gotsig;
692} ANSIG; 827} ANSIG;
693 828
694static ANSIG *signals; 829static ANSIG *signals;
695static int signalmax; 830static int signalmax;
696 831
697static int sigpipe [2]; 832static EV_ATOMIC_T gotsig;
698static sig_atomic_t volatile gotsig;
699static ev_io sigev;
700 833
701void inline_size 834void inline_size
702signals_init (ANSIG *base, int count) 835signals_init (ANSIG *base, int count)
703{ 836{
704 while (count--) 837 while (count--)
708 841
709 ++base; 842 ++base;
710 } 843 }
711} 844}
712 845
713static void 846/*****************************************************************************/
714sighandler (int signum)
715{
716#if _WIN32
717 signal (signum, sighandler);
718#endif
719
720 signals [signum - 1].gotsig = 1;
721
722 if (!gotsig)
723 {
724 int old_errno = errno;
725 gotsig = 1;
726 write (sigpipe [1], &signum, 1);
727 errno = old_errno;
728 }
729}
730
731void noinline
732ev_feed_signal_event (EV_P_ int signum)
733{
734 WL w;
735
736#if EV_MULTIPLICITY
737 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
738#endif
739
740 --signum;
741
742 if (signum < 0 || signum >= signalmax)
743 return;
744
745 signals [signum].gotsig = 0;
746
747 for (w = signals [signum].head; w; w = w->next)
748 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
749}
750
751static void
752sigcb (EV_P_ ev_io *iow, int revents)
753{
754 int signum;
755
756 read (sigpipe [0], &revents, 1);
757 gotsig = 0;
758
759 for (signum = signalmax; signum--; )
760 if (signals [signum].gotsig)
761 ev_feed_signal_event (EV_A_ signum + 1);
762}
763 847
764void inline_speed 848void inline_speed
765fd_intern (int fd) 849fd_intern (int fd)
766{ 850{
767#ifdef _WIN32 851#ifdef _WIN32
772 fcntl (fd, F_SETFL, O_NONBLOCK); 856 fcntl (fd, F_SETFL, O_NONBLOCK);
773#endif 857#endif
774} 858}
775 859
776static void noinline 860static void noinline
777siginit (EV_P) 861evpipe_init (EV_P)
778{ 862{
863 if (!ev_is_active (&pipeev))
864 {
865#if EV_USE_EVENTFD
866 if ((evfd = eventfd (0, 0)) >= 0)
867 {
868 evpipe [0] = -1;
869 fd_intern (evfd);
870 ev_io_set (&pipeev, evfd, EV_READ);
871 }
872 else
873#endif
874 {
875 while (pipe (evpipe))
876 syserr ("(libev) error creating signal/async pipe");
877
779 fd_intern (sigpipe [0]); 878 fd_intern (evpipe [0]);
780 fd_intern (sigpipe [1]); 879 fd_intern (evpipe [1]);
880 ev_io_set (&pipeev, evpipe [0], EV_READ);
881 }
781 882
782 ev_io_set (&sigev, sigpipe [0], EV_READ);
783 ev_io_start (EV_A_ &sigev); 883 ev_io_start (EV_A_ &pipeev);
784 ev_unref (EV_A); /* child watcher should not keep loop alive */ 884 ev_unref (EV_A); /* watcher should not keep loop alive */
885 }
886}
887
888void inline_size
889evpipe_write (EV_P_ EV_ATOMIC_T *flag)
890{
891 if (!*flag)
892 {
893 int old_errno = errno; /* save errno because write might clobber it */
894
895 *flag = 1;
896
897#if EV_USE_EVENTFD
898 if (evfd >= 0)
899 {
900 uint64_t counter = 1;
901 write (evfd, &counter, sizeof (uint64_t));
902 }
903 else
904#endif
905 write (evpipe [1], &old_errno, 1);
906
907 errno = old_errno;
908 }
909}
910
911static void
912pipecb (EV_P_ ev_io *iow, int revents)
913{
914#if EV_USE_EVENTFD
915 if (evfd >= 0)
916 {
917 uint64_t counter = 1;
918 read (evfd, &counter, sizeof (uint64_t));
919 }
920 else
921#endif
922 {
923 char dummy;
924 read (evpipe [0], &dummy, 1);
925 }
926
927 if (gotsig && ev_is_default_loop (EV_A))
928 {
929 int signum;
930 gotsig = 0;
931
932 for (signum = signalmax; signum--; )
933 if (signals [signum].gotsig)
934 ev_feed_signal_event (EV_A_ signum + 1);
935 }
936
937#if EV_ASYNC_ENABLE
938 if (gotasync)
939 {
940 int i;
941 gotasync = 0;
942
943 for (i = asynccnt; i--; )
944 if (asyncs [i]->sent)
945 {
946 asyncs [i]->sent = 0;
947 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
948 }
949 }
950#endif
785} 951}
786 952
787/*****************************************************************************/ 953/*****************************************************************************/
788 954
955static void
956ev_sighandler (int signum)
957{
958#if EV_MULTIPLICITY
959 struct ev_loop *loop = &default_loop_struct;
960#endif
961
962#if _WIN32
963 signal (signum, ev_sighandler);
964#endif
965
966 signals [signum - 1].gotsig = 1;
967 evpipe_write (EV_A_ &gotsig);
968}
969
970void noinline
971ev_feed_signal_event (EV_P_ int signum)
972{
973 WL w;
974
975#if EV_MULTIPLICITY
976 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
977#endif
978
979 --signum;
980
981 if (signum < 0 || signum >= signalmax)
982 return;
983
984 signals [signum].gotsig = 0;
985
986 for (w = signals [signum].head; w; w = w->next)
987 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
988}
989
990/*****************************************************************************/
991
789static ev_child *childs [EV_PID_HASHSIZE]; 992static WL childs [EV_PID_HASHSIZE];
790 993
791#ifndef _WIN32 994#ifndef _WIN32
792 995
793static ev_signal childev; 996static ev_signal childev;
794 997
998#ifndef WIFCONTINUED
999# define WIFCONTINUED(status) 0
1000#endif
1001
795void inline_speed 1002void inline_speed
796child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1003child_reap (EV_P_ int chain, int pid, int status)
797{ 1004{
798 ev_child *w; 1005 ev_child *w;
1006 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
799 1007
800 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1008 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1009 {
801 if (w->pid == pid || !w->pid) 1010 if ((w->pid == pid || !w->pid)
1011 && (!traced || (w->flags & 1)))
802 { 1012 {
803 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1013 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
804 w->rpid = pid; 1014 w->rpid = pid;
805 w->rstatus = status; 1015 w->rstatus = status;
806 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1016 ev_feed_event (EV_A_ (W)w, EV_CHILD);
807 } 1017 }
1018 }
808} 1019}
809 1020
810#ifndef WCONTINUED 1021#ifndef WCONTINUED
811# define WCONTINUED 0 1022# define WCONTINUED 0
812#endif 1023#endif
821 if (!WCONTINUED 1032 if (!WCONTINUED
822 || errno != EINVAL 1033 || errno != EINVAL
823 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1034 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
824 return; 1035 return;
825 1036
826 /* make sure we are called again until all childs have been reaped */ 1037 /* make sure we are called again until all children have been reaped */
827 /* we need to do it this way so that the callback gets called before we continue */ 1038 /* we need to do it this way so that the callback gets called before we continue */
828 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1039 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
829 1040
830 child_reap (EV_A_ sw, pid, pid, status); 1041 child_reap (EV_A_ pid, pid, status);
831 if (EV_PID_HASHSIZE > 1) 1042 if (EV_PID_HASHSIZE > 1)
832 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1043 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
833} 1044}
834 1045
835#endif 1046#endif
836 1047
837/*****************************************************************************/ 1048/*****************************************************************************/
909} 1120}
910 1121
911unsigned int 1122unsigned int
912ev_embeddable_backends (void) 1123ev_embeddable_backends (void)
913{ 1124{
914 return EVBACKEND_EPOLL 1125 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
915 | EVBACKEND_KQUEUE 1126
916 | EVBACKEND_PORT; 1127 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1128 /* please fix it and tell me how to detect the fix */
1129 flags &= ~EVBACKEND_EPOLL;
1130
1131 return flags;
917} 1132}
918 1133
919unsigned int 1134unsigned int
920ev_backend (EV_P) 1135ev_backend (EV_P)
921{ 1136{
924 1139
925unsigned int 1140unsigned int
926ev_loop_count (EV_P) 1141ev_loop_count (EV_P)
927{ 1142{
928 return loop_count; 1143 return loop_count;
1144}
1145
1146void
1147ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1148{
1149 io_blocktime = interval;
1150}
1151
1152void
1153ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1154{
1155 timeout_blocktime = interval;
929} 1156}
930 1157
931static void noinline 1158static void noinline
932loop_init (EV_P_ unsigned int flags) 1159loop_init (EV_P_ unsigned int flags)
933{ 1160{
939 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1166 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
940 have_monotonic = 1; 1167 have_monotonic = 1;
941 } 1168 }
942#endif 1169#endif
943 1170
944 ev_rt_now = ev_time (); 1171 ev_rt_now = ev_time ();
945 mn_now = get_clock (); 1172 mn_now = get_clock ();
946 now_floor = mn_now; 1173 now_floor = mn_now;
947 rtmn_diff = ev_rt_now - mn_now; 1174 rtmn_diff = ev_rt_now - mn_now;
1175
1176 io_blocktime = 0.;
1177 timeout_blocktime = 0.;
1178 backend = 0;
1179 backend_fd = -1;
1180 gotasync = 0;
1181#if EV_USE_INOTIFY
1182 fs_fd = -2;
1183#endif
948 1184
949 /* pid check not overridable via env */ 1185 /* pid check not overridable via env */
950#ifndef _WIN32 1186#ifndef _WIN32
951 if (flags & EVFLAG_FORKCHECK) 1187 if (flags & EVFLAG_FORKCHECK)
952 curpid = getpid (); 1188 curpid = getpid ();
955 if (!(flags & EVFLAG_NOENV) 1191 if (!(flags & EVFLAG_NOENV)
956 && !enable_secure () 1192 && !enable_secure ()
957 && getenv ("LIBEV_FLAGS")) 1193 && getenv ("LIBEV_FLAGS"))
958 flags = atoi (getenv ("LIBEV_FLAGS")); 1194 flags = atoi (getenv ("LIBEV_FLAGS"));
959 1195
960 if (!(flags & 0x0000ffffUL)) 1196 if (!(flags & 0x0000ffffU))
961 flags |= ev_recommended_backends (); 1197 flags |= ev_recommended_backends ();
962
963 backend = 0;
964 backend_fd = -1;
965#if EV_USE_INOTIFY
966 fs_fd = -2;
967#endif
968 1198
969#if EV_USE_PORT 1199#if EV_USE_PORT
970 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1200 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
971#endif 1201#endif
972#if EV_USE_KQUEUE 1202#if EV_USE_KQUEUE
980#endif 1210#endif
981#if EV_USE_SELECT 1211#if EV_USE_SELECT
982 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1212 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
983#endif 1213#endif
984 1214
985 ev_init (&sigev, sigcb); 1215 ev_init (&pipeev, pipecb);
986 ev_set_priority (&sigev, EV_MAXPRI); 1216 ev_set_priority (&pipeev, EV_MAXPRI);
987 } 1217 }
988} 1218}
989 1219
990static void noinline 1220static void noinline
991loop_destroy (EV_P) 1221loop_destroy (EV_P)
992{ 1222{
993 int i; 1223 int i;
1224
1225 if (ev_is_active (&pipeev))
1226 {
1227 ev_ref (EV_A); /* signal watcher */
1228 ev_io_stop (EV_A_ &pipeev);
1229
1230#if EV_USE_EVENTFD
1231 if (evfd >= 0)
1232 close (evfd);
1233#endif
1234
1235 if (evpipe [0] >= 0)
1236 {
1237 close (evpipe [0]);
1238 close (evpipe [1]);
1239 }
1240 }
994 1241
995#if EV_USE_INOTIFY 1242#if EV_USE_INOTIFY
996 if (fs_fd >= 0) 1243 if (fs_fd >= 0)
997 close (fs_fd); 1244 close (fs_fd);
998#endif 1245#endif
1021 array_free (pending, [i]); 1268 array_free (pending, [i]);
1022#if EV_IDLE_ENABLE 1269#if EV_IDLE_ENABLE
1023 array_free (idle, [i]); 1270 array_free (idle, [i]);
1024#endif 1271#endif
1025 } 1272 }
1273
1274 ev_free (anfds); anfdmax = 0;
1026 1275
1027 /* have to use the microsoft-never-gets-it-right macro */ 1276 /* have to use the microsoft-never-gets-it-right macro */
1028 array_free (fdchange, EMPTY); 1277 array_free (fdchange, EMPTY);
1029 array_free (timer, EMPTY); 1278 array_free (timer, EMPTY);
1030#if EV_PERIODIC_ENABLE 1279#if EV_PERIODIC_ENABLE
1031 array_free (periodic, EMPTY); 1280 array_free (periodic, EMPTY);
1032#endif 1281#endif
1282#if EV_FORK_ENABLE
1283 array_free (fork, EMPTY);
1284#endif
1033 array_free (prepare, EMPTY); 1285 array_free (prepare, EMPTY);
1034 array_free (check, EMPTY); 1286 array_free (check, EMPTY);
1287#if EV_ASYNC_ENABLE
1288 array_free (async, EMPTY);
1289#endif
1035 1290
1036 backend = 0; 1291 backend = 0;
1037} 1292}
1038 1293
1294#if EV_USE_INOTIFY
1039void inline_size infy_fork (EV_P); 1295void inline_size infy_fork (EV_P);
1296#endif
1040 1297
1041void inline_size 1298void inline_size
1042loop_fork (EV_P) 1299loop_fork (EV_P)
1043{ 1300{
1044#if EV_USE_PORT 1301#if EV_USE_PORT
1052#endif 1309#endif
1053#if EV_USE_INOTIFY 1310#if EV_USE_INOTIFY
1054 infy_fork (EV_A); 1311 infy_fork (EV_A);
1055#endif 1312#endif
1056 1313
1057 if (ev_is_active (&sigev)) 1314 if (ev_is_active (&pipeev))
1058 { 1315 {
1059 /* default loop */ 1316 /* this "locks" the handlers against writing to the pipe */
1317 /* while we modify the fd vars */
1318 gotsig = 1;
1319#if EV_ASYNC_ENABLE
1320 gotasync = 1;
1321#endif
1060 1322
1061 ev_ref (EV_A); 1323 ev_ref (EV_A);
1062 ev_io_stop (EV_A_ &sigev); 1324 ev_io_stop (EV_A_ &pipeev);
1325
1326#if EV_USE_EVENTFD
1327 if (evfd >= 0)
1328 close (evfd);
1329#endif
1330
1331 if (evpipe [0] >= 0)
1332 {
1063 close (sigpipe [0]); 1333 close (evpipe [0]);
1064 close (sigpipe [1]); 1334 close (evpipe [1]);
1335 }
1065 1336
1066 while (pipe (sigpipe))
1067 syserr ("(libev) error creating pipe");
1068
1069 siginit (EV_A); 1337 evpipe_init (EV_A);
1338 /* now iterate over everything, in case we missed something */
1339 pipecb (EV_A_ &pipeev, EV_READ);
1070 } 1340 }
1071 1341
1072 postfork = 0; 1342 postfork = 0;
1073} 1343}
1074 1344
1096} 1366}
1097 1367
1098void 1368void
1099ev_loop_fork (EV_P) 1369ev_loop_fork (EV_P)
1100{ 1370{
1101 postfork = 1; 1371 postfork = 1; /* must be in line with ev_default_fork */
1102} 1372}
1103 1373
1104#endif 1374#endif
1105 1375
1106#if EV_MULTIPLICITY 1376#if EV_MULTIPLICITY
1109#else 1379#else
1110int 1380int
1111ev_default_loop (unsigned int flags) 1381ev_default_loop (unsigned int flags)
1112#endif 1382#endif
1113{ 1383{
1114 if (sigpipe [0] == sigpipe [1])
1115 if (pipe (sigpipe))
1116 return 0;
1117
1118 if (!ev_default_loop_ptr) 1384 if (!ev_default_loop_ptr)
1119 { 1385 {
1120#if EV_MULTIPLICITY 1386#if EV_MULTIPLICITY
1121 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1387 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1122#else 1388#else
1125 1391
1126 loop_init (EV_A_ flags); 1392 loop_init (EV_A_ flags);
1127 1393
1128 if (ev_backend (EV_A)) 1394 if (ev_backend (EV_A))
1129 { 1395 {
1130 siginit (EV_A);
1131
1132#ifndef _WIN32 1396#ifndef _WIN32
1133 ev_signal_init (&childev, childcb, SIGCHLD); 1397 ev_signal_init (&childev, childcb, SIGCHLD);
1134 ev_set_priority (&childev, EV_MAXPRI); 1398 ev_set_priority (&childev, EV_MAXPRI);
1135 ev_signal_start (EV_A_ &childev); 1399 ev_signal_start (EV_A_ &childev);
1136 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1400 ev_unref (EV_A); /* child watcher should not keep loop alive */
1153#ifndef _WIN32 1417#ifndef _WIN32
1154 ev_ref (EV_A); /* child watcher */ 1418 ev_ref (EV_A); /* child watcher */
1155 ev_signal_stop (EV_A_ &childev); 1419 ev_signal_stop (EV_A_ &childev);
1156#endif 1420#endif
1157 1421
1158 ev_ref (EV_A); /* signal watcher */
1159 ev_io_stop (EV_A_ &sigev);
1160
1161 close (sigpipe [0]); sigpipe [0] = 0;
1162 close (sigpipe [1]); sigpipe [1] = 0;
1163
1164 loop_destroy (EV_A); 1422 loop_destroy (EV_A);
1165} 1423}
1166 1424
1167void 1425void
1168ev_default_fork (void) 1426ev_default_fork (void)
1170#if EV_MULTIPLICITY 1428#if EV_MULTIPLICITY
1171 struct ev_loop *loop = ev_default_loop_ptr; 1429 struct ev_loop *loop = ev_default_loop_ptr;
1172#endif 1430#endif
1173 1431
1174 if (backend) 1432 if (backend)
1175 postfork = 1; 1433 postfork = 1; /* must be in line with ev_loop_fork */
1176} 1434}
1177 1435
1178/*****************************************************************************/ 1436/*****************************************************************************/
1179 1437
1180void 1438void
1204} 1462}
1205 1463
1206void inline_size 1464void inline_size
1207timers_reify (EV_P) 1465timers_reify (EV_P)
1208{ 1466{
1209 while (timercnt && ((WT)timers [0])->at <= mn_now) 1467 while (timercnt && ev_at (timers [1]) <= mn_now)
1210 { 1468 {
1211 ev_timer *w = timers [0]; 1469 ev_timer *w = (ev_timer *)timers [1];
1212 1470
1213 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1471 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1214 1472
1215 /* first reschedule or stop timer */ 1473 /* first reschedule or stop timer */
1216 if (w->repeat) 1474 if (w->repeat)
1217 { 1475 {
1218 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1476 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1219 1477
1220 ((WT)w)->at += w->repeat; 1478 ev_at (w) += w->repeat;
1221 if (((WT)w)->at < mn_now) 1479 if (ev_at (w) < mn_now)
1222 ((WT)w)->at = mn_now; 1480 ev_at (w) = mn_now;
1223 1481
1224 downheap ((WT *)timers, timercnt, 0); 1482 downheap (timers, timercnt, 1);
1225 } 1483 }
1226 else 1484 else
1227 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1485 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1228 1486
1229 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1487 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1232 1490
1233#if EV_PERIODIC_ENABLE 1491#if EV_PERIODIC_ENABLE
1234void inline_size 1492void inline_size
1235periodics_reify (EV_P) 1493periodics_reify (EV_P)
1236{ 1494{
1237 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1495 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1238 { 1496 {
1239 ev_periodic *w = periodics [0]; 1497 ev_periodic *w = (ev_periodic *)periodics [1];
1240 1498
1241 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1499 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1242 1500
1243 /* first reschedule or stop timer */ 1501 /* first reschedule or stop timer */
1244 if (w->reschedule_cb) 1502 if (w->reschedule_cb)
1245 { 1503 {
1246 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1504 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1247 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1505 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1248 downheap ((WT *)periodics, periodiccnt, 0); 1506 downheap (periodics, periodiccnt, 1);
1249 } 1507 }
1250 else if (w->interval) 1508 else if (w->interval)
1251 { 1509 {
1252 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1510 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1253 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval; 1511 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1512 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1255 downheap ((WT *)periodics, periodiccnt, 0); 1513 downheap (periodics, periodiccnt, 1);
1256 } 1514 }
1257 else 1515 else
1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1516 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1259 1517
1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1518 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1267 int i; 1525 int i;
1268 1526
1269 /* adjust periodics after time jump */ 1527 /* adjust periodics after time jump */
1270 for (i = 0; i < periodiccnt; ++i) 1528 for (i = 0; i < periodiccnt; ++i)
1271 { 1529 {
1272 ev_periodic *w = periodics [i]; 1530 ev_periodic *w = (ev_periodic *)periodics [i];
1273 1531
1274 if (w->reschedule_cb) 1532 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1533 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1276 else if (w->interval) 1534 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1535 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 } 1536 }
1279 1537
1280 /* now rebuild the heap */ 1538 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; ) 1539 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i); 1540 downheap (periodics, periodiccnt, i);
1283} 1541}
1284#endif 1542#endif
1285 1543
1286#if EV_IDLE_ENABLE 1544#if EV_IDLE_ENABLE
1287void inline_size 1545void inline_size
1304 } 1562 }
1305 } 1563 }
1306} 1564}
1307#endif 1565#endif
1308 1566
1309int inline_size 1567void inline_speed
1310time_update_monotonic (EV_P) 1568time_update (EV_P_ ev_tstamp max_block)
1311{ 1569{
1570 int i;
1571
1572#if EV_USE_MONOTONIC
1573 if (expect_true (have_monotonic))
1574 {
1575 ev_tstamp odiff = rtmn_diff;
1576
1312 mn_now = get_clock (); 1577 mn_now = get_clock ();
1313 1578
1579 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1580 /* interpolate in the meantime */
1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1581 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1315 { 1582 {
1316 ev_rt_now = rtmn_diff + mn_now; 1583 ev_rt_now = rtmn_diff + mn_now;
1317 return 0; 1584 return;
1318 } 1585 }
1319 else 1586
1320 {
1321 now_floor = mn_now; 1587 now_floor = mn_now;
1322 ev_rt_now = ev_time (); 1588 ev_rt_now = ev_time ();
1323 return 1;
1324 }
1325}
1326 1589
1327void inline_size 1590 /* loop a few times, before making important decisions.
1328time_update (EV_P) 1591 * on the choice of "4": one iteration isn't enough,
1329{ 1592 * in case we get preempted during the calls to
1330 int i; 1593 * ev_time and get_clock. a second call is almost guaranteed
1331 1594 * to succeed in that case, though. and looping a few more times
1332#if EV_USE_MONOTONIC 1595 * doesn't hurt either as we only do this on time-jumps or
1333 if (expect_true (have_monotonic)) 1596 * in the unlikely event of having been preempted here.
1334 { 1597 */
1335 if (time_update_monotonic (EV_A)) 1598 for (i = 4; --i; )
1336 { 1599 {
1337 ev_tstamp odiff = rtmn_diff;
1338
1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1348 {
1349 rtmn_diff = ev_rt_now - mn_now; 1600 rtmn_diff = ev_rt_now - mn_now;
1350 1601
1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1602 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1352 return; /* all is well */ 1603 return; /* all is well */
1353 1604
1354 ev_rt_now = ev_time (); 1605 ev_rt_now = ev_time ();
1355 mn_now = get_clock (); 1606 mn_now = get_clock ();
1356 now_floor = mn_now; 1607 now_floor = mn_now;
1357 } 1608 }
1358 1609
1359# if EV_PERIODIC_ENABLE 1610# if EV_PERIODIC_ENABLE
1360 periodics_reschedule (EV_A); 1611 periodics_reschedule (EV_A);
1361# endif 1612# endif
1362 /* no timer adjustment, as the monotonic clock doesn't jump */ 1613 /* no timer adjustment, as the monotonic clock doesn't jump */
1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1614 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1364 }
1365 } 1615 }
1366 else 1616 else
1367#endif 1617#endif
1368 { 1618 {
1369 ev_rt_now = ev_time (); 1619 ev_rt_now = ev_time ();
1370 1620
1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1621 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 { 1622 {
1373#if EV_PERIODIC_ENABLE 1623#if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 1624 periodics_reschedule (EV_A);
1375#endif 1625#endif
1376 /* adjust timers. this is easy, as the offset is the same for all of them */ 1626 /* adjust timers. this is easy, as the offset is the same for all of them */
1377 for (i = 0; i < timercnt; ++i) 1627 for (i = 1; i <= timercnt; ++i)
1378 ((WT)timers [i])->at += ev_rt_now - mn_now; 1628 ev_at (timers [i]) += ev_rt_now - mn_now;
1379 } 1629 }
1380 1630
1381 mn_now = ev_rt_now; 1631 mn_now = ev_rt_now;
1382 } 1632 }
1383} 1633}
1397static int loop_done; 1647static int loop_done;
1398 1648
1399void 1649void
1400ev_loop (EV_P_ int flags) 1650ev_loop (EV_P_ int flags)
1401{ 1651{
1402 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1652 loop_done = EVUNLOOP_CANCEL;
1403 ? EVUNLOOP_ONE
1404 : EVUNLOOP_CANCEL;
1405 1653
1406 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1654 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1407 1655
1408 do 1656 do
1409 { 1657 {
1443 /* update fd-related kernel structures */ 1691 /* update fd-related kernel structures */
1444 fd_reify (EV_A); 1692 fd_reify (EV_A);
1445 1693
1446 /* calculate blocking time */ 1694 /* calculate blocking time */
1447 { 1695 {
1448 ev_tstamp block; 1696 ev_tstamp waittime = 0.;
1697 ev_tstamp sleeptime = 0.;
1449 1698
1450 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1699 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1451 block = 0.; /* do not block at all */
1452 else
1453 { 1700 {
1454 /* update time to cancel out callback processing overhead */ 1701 /* update time to cancel out callback processing overhead */
1455#if EV_USE_MONOTONIC
1456 if (expect_true (have_monotonic))
1457 time_update_monotonic (EV_A); 1702 time_update (EV_A_ 1e100);
1458 else
1459#endif
1460 {
1461 ev_rt_now = ev_time ();
1462 mn_now = ev_rt_now;
1463 }
1464 1703
1465 block = MAX_BLOCKTIME; 1704 waittime = MAX_BLOCKTIME;
1466 1705
1467 if (timercnt) 1706 if (timercnt)
1468 { 1707 {
1469 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1708 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge;
1470 if (block > to) block = to; 1709 if (waittime > to) waittime = to;
1471 } 1710 }
1472 1711
1473#if EV_PERIODIC_ENABLE 1712#if EV_PERIODIC_ENABLE
1474 if (periodiccnt) 1713 if (periodiccnt)
1475 { 1714 {
1476 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1715 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge;
1477 if (block > to) block = to; 1716 if (waittime > to) waittime = to;
1478 } 1717 }
1479#endif 1718#endif
1480 1719
1481 if (expect_false (block < 0.)) block = 0.; 1720 if (expect_false (waittime < timeout_blocktime))
1721 waittime = timeout_blocktime;
1722
1723 sleeptime = waittime - backend_fudge;
1724
1725 if (expect_true (sleeptime > io_blocktime))
1726 sleeptime = io_blocktime;
1727
1728 if (sleeptime)
1729 {
1730 ev_sleep (sleeptime);
1731 waittime -= sleeptime;
1732 }
1482 } 1733 }
1483 1734
1484 ++loop_count; 1735 ++loop_count;
1485 backend_poll (EV_A_ block); 1736 backend_poll (EV_A_ waittime);
1737
1738 /* update ev_rt_now, do magic */
1739 time_update (EV_A_ waittime + sleeptime);
1486 } 1740 }
1487
1488 /* update ev_rt_now, do magic */
1489 time_update (EV_A);
1490 1741
1491 /* queue pending timers and reschedule them */ 1742 /* queue pending timers and reschedule them */
1492 timers_reify (EV_A); /* relative timers called last */ 1743 timers_reify (EV_A); /* relative timers called last */
1493#if EV_PERIODIC_ENABLE 1744#if EV_PERIODIC_ENABLE
1494 periodics_reify (EV_A); /* absolute timers called first */ 1745 periodics_reify (EV_A); /* absolute timers called first */
1502 /* queue check watchers, to be executed first */ 1753 /* queue check watchers, to be executed first */
1503 if (expect_false (checkcnt)) 1754 if (expect_false (checkcnt))
1504 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1755 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1505 1756
1506 call_pending (EV_A); 1757 call_pending (EV_A);
1507
1508 } 1758 }
1509 while (expect_true (activecnt && !loop_done)); 1759 while (expect_true (
1760 activecnt
1761 && !loop_done
1762 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1763 ));
1510 1764
1511 if (loop_done == EVUNLOOP_ONE) 1765 if (loop_done == EVUNLOOP_ONE)
1512 loop_done = EVUNLOOP_CANCEL; 1766 loop_done = EVUNLOOP_CANCEL;
1513} 1767}
1514 1768
1605 1859
1606 assert (("ev_io_start called with negative fd", fd >= 0)); 1860 assert (("ev_io_start called with negative fd", fd >= 0));
1607 1861
1608 ev_start (EV_A_ (W)w, 1); 1862 ev_start (EV_A_ (W)w, 1);
1609 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1863 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1610 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1864 wlist_add (&anfds[fd].head, (WL)w);
1611 1865
1612 fd_change (EV_A_ fd); 1866 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1867 w->events &= ~EV_IOFDSET;
1613} 1868}
1614 1869
1615void noinline 1870void noinline
1616ev_io_stop (EV_P_ ev_io *w) 1871ev_io_stop (EV_P_ ev_io *w)
1617{ 1872{
1619 if (expect_false (!ev_is_active (w))) 1874 if (expect_false (!ev_is_active (w)))
1620 return; 1875 return;
1621 1876
1622 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1877 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1623 1878
1624 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1879 wlist_del (&anfds[w->fd].head, (WL)w);
1625 ev_stop (EV_A_ (W)w); 1880 ev_stop (EV_A_ (W)w);
1626 1881
1627 fd_change (EV_A_ w->fd); 1882 fd_change (EV_A_ w->fd, 1);
1628} 1883}
1629 1884
1630void noinline 1885void noinline
1631ev_timer_start (EV_P_ ev_timer *w) 1886ev_timer_start (EV_P_ ev_timer *w)
1632{ 1887{
1633 if (expect_false (ev_is_active (w))) 1888 if (expect_false (ev_is_active (w)))
1634 return; 1889 return;
1635 1890
1636 ((WT)w)->at += mn_now; 1891 ev_at (w) += mn_now;
1637 1892
1638 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1893 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1639 1894
1640 ev_start (EV_A_ (W)w, ++timercnt); 1895 ev_start (EV_A_ (W)w, ++timercnt);
1641 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1896 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2);
1642 timers [timercnt - 1] = w; 1897 timers [timercnt] = (WT)w;
1643 upheap ((WT *)timers, timercnt - 1); 1898 upheap (timers, timercnt);
1644 1899
1645 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1900 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1646} 1901}
1647 1902
1648void noinline 1903void noinline
1649ev_timer_stop (EV_P_ ev_timer *w) 1904ev_timer_stop (EV_P_ ev_timer *w)
1650{ 1905{
1651 clear_pending (EV_A_ (W)w); 1906 clear_pending (EV_A_ (W)w);
1652 if (expect_false (!ev_is_active (w))) 1907 if (expect_false (!ev_is_active (w)))
1653 return; 1908 return;
1654 1909
1655 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1656
1657 { 1910 {
1658 int active = ((W)w)->active; 1911 int active = ev_active (w);
1659 1912
1913 assert (("internal timer heap corruption", timers [active] == (WT)w));
1914
1660 if (expect_true (--active < --timercnt)) 1915 if (expect_true (active < timercnt))
1661 { 1916 {
1662 timers [active] = timers [timercnt]; 1917 timers [active] = timers [timercnt];
1663 adjustheap ((WT *)timers, timercnt, active); 1918 adjustheap (timers, timercnt, active);
1664 } 1919 }
1920
1921 --timercnt;
1665 } 1922 }
1666 1923
1667 ((WT)w)->at -= mn_now; 1924 ev_at (w) -= mn_now;
1668 1925
1669 ev_stop (EV_A_ (W)w); 1926 ev_stop (EV_A_ (W)w);
1670} 1927}
1671 1928
1672void noinline 1929void noinline
1674{ 1931{
1675 if (ev_is_active (w)) 1932 if (ev_is_active (w))
1676 { 1933 {
1677 if (w->repeat) 1934 if (w->repeat)
1678 { 1935 {
1679 ((WT)w)->at = mn_now + w->repeat; 1936 ev_at (w) = mn_now + w->repeat;
1680 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1937 adjustheap (timers, timercnt, ev_active (w));
1681 } 1938 }
1682 else 1939 else
1683 ev_timer_stop (EV_A_ w); 1940 ev_timer_stop (EV_A_ w);
1684 } 1941 }
1685 else if (w->repeat) 1942 else if (w->repeat)
1686 { 1943 {
1687 w->at = w->repeat; 1944 ev_at (w) = w->repeat;
1688 ev_timer_start (EV_A_ w); 1945 ev_timer_start (EV_A_ w);
1689 } 1946 }
1690} 1947}
1691 1948
1692#if EV_PERIODIC_ENABLE 1949#if EV_PERIODIC_ENABLE
1695{ 1952{
1696 if (expect_false (ev_is_active (w))) 1953 if (expect_false (ev_is_active (w)))
1697 return; 1954 return;
1698 1955
1699 if (w->reschedule_cb) 1956 if (w->reschedule_cb)
1700 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1957 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1701 else if (w->interval) 1958 else if (w->interval)
1702 { 1959 {
1703 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1960 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1704 /* this formula differs from the one in periodic_reify because we do not always round up */ 1961 /* this formula differs from the one in periodic_reify because we do not always round up */
1705 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1962 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1706 } 1963 }
1707 else 1964 else
1708 ((WT)w)->at = w->offset; 1965 ev_at (w) = w->offset;
1709 1966
1710 ev_start (EV_A_ (W)w, ++periodiccnt); 1967 ev_start (EV_A_ (W)w, ++periodiccnt);
1711 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1968 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2);
1712 periodics [periodiccnt - 1] = w; 1969 periodics [periodiccnt] = (WT)w;
1713 upheap ((WT *)periodics, periodiccnt - 1); 1970 upheap (periodics, periodiccnt);
1714 1971
1715 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1972 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/
1716} 1973}
1717 1974
1718void noinline 1975void noinline
1719ev_periodic_stop (EV_P_ ev_periodic *w) 1976ev_periodic_stop (EV_P_ ev_periodic *w)
1720{ 1977{
1721 clear_pending (EV_A_ (W)w); 1978 clear_pending (EV_A_ (W)w);
1722 if (expect_false (!ev_is_active (w))) 1979 if (expect_false (!ev_is_active (w)))
1723 return; 1980 return;
1724 1981
1725 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1726
1727 { 1982 {
1728 int active = ((W)w)->active; 1983 int active = ev_active (w);
1729 1984
1985 assert (("internal periodic heap corruption", periodics [active] == (WT)w));
1986
1730 if (expect_true (--active < --periodiccnt)) 1987 if (expect_true (active < periodiccnt))
1731 { 1988 {
1732 periodics [active] = periodics [periodiccnt]; 1989 periodics [active] = periodics [periodiccnt];
1733 adjustheap ((WT *)periodics, periodiccnt, active); 1990 adjustheap (periodics, periodiccnt, active);
1734 } 1991 }
1992
1993 --periodiccnt;
1735 } 1994 }
1736 1995
1737 ev_stop (EV_A_ (W)w); 1996 ev_stop (EV_A_ (W)w);
1738} 1997}
1739 1998
1759 if (expect_false (ev_is_active (w))) 2018 if (expect_false (ev_is_active (w)))
1760 return; 2019 return;
1761 2020
1762 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2021 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1763 2022
2023 evpipe_init (EV_A);
2024
2025 {
2026#ifndef _WIN32
2027 sigset_t full, prev;
2028 sigfillset (&full);
2029 sigprocmask (SIG_SETMASK, &full, &prev);
2030#endif
2031
2032 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2033
2034#ifndef _WIN32
2035 sigprocmask (SIG_SETMASK, &prev, 0);
2036#endif
2037 }
2038
1764 ev_start (EV_A_ (W)w, 1); 2039 ev_start (EV_A_ (W)w, 1);
1765 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1766 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2040 wlist_add (&signals [w->signum - 1].head, (WL)w);
1767 2041
1768 if (!((WL)w)->next) 2042 if (!((WL)w)->next)
1769 { 2043 {
1770#if _WIN32 2044#if _WIN32
1771 signal (w->signum, sighandler); 2045 signal (w->signum, ev_sighandler);
1772#else 2046#else
1773 struct sigaction sa; 2047 struct sigaction sa;
1774 sa.sa_handler = sighandler; 2048 sa.sa_handler = ev_sighandler;
1775 sigfillset (&sa.sa_mask); 2049 sigfillset (&sa.sa_mask);
1776 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2050 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1777 sigaction (w->signum, &sa, 0); 2051 sigaction (w->signum, &sa, 0);
1778#endif 2052#endif
1779 } 2053 }
1784{ 2058{
1785 clear_pending (EV_A_ (W)w); 2059 clear_pending (EV_A_ (W)w);
1786 if (expect_false (!ev_is_active (w))) 2060 if (expect_false (!ev_is_active (w)))
1787 return; 2061 return;
1788 2062
1789 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2063 wlist_del (&signals [w->signum - 1].head, (WL)w);
1790 ev_stop (EV_A_ (W)w); 2064 ev_stop (EV_A_ (W)w);
1791 2065
1792 if (!signals [w->signum - 1].head) 2066 if (!signals [w->signum - 1].head)
1793 signal (w->signum, SIG_DFL); 2067 signal (w->signum, SIG_DFL);
1794} 2068}
1801#endif 2075#endif
1802 if (expect_false (ev_is_active (w))) 2076 if (expect_false (ev_is_active (w)))
1803 return; 2077 return;
1804 2078
1805 ev_start (EV_A_ (W)w, 1); 2079 ev_start (EV_A_ (W)w, 1);
1806 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2080 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1807} 2081}
1808 2082
1809void 2083void
1810ev_child_stop (EV_P_ ev_child *w) 2084ev_child_stop (EV_P_ ev_child *w)
1811{ 2085{
1812 clear_pending (EV_A_ (W)w); 2086 clear_pending (EV_A_ (W)w);
1813 if (expect_false (!ev_is_active (w))) 2087 if (expect_false (!ev_is_active (w)))
1814 return; 2088 return;
1815 2089
1816 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2090 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1817 ev_stop (EV_A_ (W)w); 2091 ev_stop (EV_A_ (W)w);
1818} 2092}
1819 2093
1820#if EV_STAT_ENABLE 2094#if EV_STAT_ENABLE
1821 2095
2094 clear_pending (EV_A_ (W)w); 2368 clear_pending (EV_A_ (W)w);
2095 if (expect_false (!ev_is_active (w))) 2369 if (expect_false (!ev_is_active (w)))
2096 return; 2370 return;
2097 2371
2098 { 2372 {
2099 int active = ((W)w)->active; 2373 int active = ev_active (w);
2100 2374
2101 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2375 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2102 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2376 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2103 2377
2104 ev_stop (EV_A_ (W)w); 2378 ev_stop (EV_A_ (W)w);
2105 --idleall; 2379 --idleall;
2106 } 2380 }
2107} 2381}
2124 clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
2125 if (expect_false (!ev_is_active (w))) 2399 if (expect_false (!ev_is_active (w)))
2126 return; 2400 return;
2127 2401
2128 { 2402 {
2129 int active = ((W)w)->active; 2403 int active = ev_active (w);
2404
2130 prepares [active - 1] = prepares [--preparecnt]; 2405 prepares [active - 1] = prepares [--preparecnt];
2131 ((W)prepares [active - 1])->active = active; 2406 ev_active (prepares [active - 1]) = active;
2132 } 2407 }
2133 2408
2134 ev_stop (EV_A_ (W)w); 2409 ev_stop (EV_A_ (W)w);
2135} 2410}
2136 2411
2151 clear_pending (EV_A_ (W)w); 2426 clear_pending (EV_A_ (W)w);
2152 if (expect_false (!ev_is_active (w))) 2427 if (expect_false (!ev_is_active (w)))
2153 return; 2428 return;
2154 2429
2155 { 2430 {
2156 int active = ((W)w)->active; 2431 int active = ev_active (w);
2432
2157 checks [active - 1] = checks [--checkcnt]; 2433 checks [active - 1] = checks [--checkcnt];
2158 ((W)checks [active - 1])->active = active; 2434 ev_active (checks [active - 1]) = active;
2159 } 2435 }
2160 2436
2161 ev_stop (EV_A_ (W)w); 2437 ev_stop (EV_A_ (W)w);
2162} 2438}
2163 2439
2164#if EV_EMBED_ENABLE 2440#if EV_EMBED_ENABLE
2165void noinline 2441void noinline
2166ev_embed_sweep (EV_P_ ev_embed *w) 2442ev_embed_sweep (EV_P_ ev_embed *w)
2167{ 2443{
2168 ev_loop (w->loop, EVLOOP_NONBLOCK); 2444 ev_loop (w->other, EVLOOP_NONBLOCK);
2169} 2445}
2170 2446
2171static void 2447static void
2172embed_cb (EV_P_ ev_io *io, int revents) 2448embed_io_cb (EV_P_ ev_io *io, int revents)
2173{ 2449{
2174 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2450 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2175 2451
2176 if (ev_cb (w)) 2452 if (ev_cb (w))
2177 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2453 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2178 else 2454 else
2179 ev_embed_sweep (loop, w); 2455 ev_loop (w->other, EVLOOP_NONBLOCK);
2180} 2456}
2457
2458static void
2459embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2460{
2461 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2462
2463 {
2464 struct ev_loop *loop = w->other;
2465
2466 while (fdchangecnt)
2467 {
2468 fd_reify (EV_A);
2469 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2470 }
2471 }
2472}
2473
2474#if 0
2475static void
2476embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2477{
2478 ev_idle_stop (EV_A_ idle);
2479}
2480#endif
2181 2481
2182void 2482void
2183ev_embed_start (EV_P_ ev_embed *w) 2483ev_embed_start (EV_P_ ev_embed *w)
2184{ 2484{
2185 if (expect_false (ev_is_active (w))) 2485 if (expect_false (ev_is_active (w)))
2186 return; 2486 return;
2187 2487
2188 { 2488 {
2189 struct ev_loop *loop = w->loop; 2489 struct ev_loop *loop = w->other;
2190 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2490 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2191 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2491 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2192 } 2492 }
2193 2493
2194 ev_set_priority (&w->io, ev_priority (w)); 2494 ev_set_priority (&w->io, ev_priority (w));
2195 ev_io_start (EV_A_ &w->io); 2495 ev_io_start (EV_A_ &w->io);
2196 2496
2497 ev_prepare_init (&w->prepare, embed_prepare_cb);
2498 ev_set_priority (&w->prepare, EV_MINPRI);
2499 ev_prepare_start (EV_A_ &w->prepare);
2500
2501 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2502
2197 ev_start (EV_A_ (W)w, 1); 2503 ev_start (EV_A_ (W)w, 1);
2198} 2504}
2199 2505
2200void 2506void
2201ev_embed_stop (EV_P_ ev_embed *w) 2507ev_embed_stop (EV_P_ ev_embed *w)
2203 clear_pending (EV_A_ (W)w); 2509 clear_pending (EV_A_ (W)w);
2204 if (expect_false (!ev_is_active (w))) 2510 if (expect_false (!ev_is_active (w)))
2205 return; 2511 return;
2206 2512
2207 ev_io_stop (EV_A_ &w->io); 2513 ev_io_stop (EV_A_ &w->io);
2514 ev_prepare_stop (EV_A_ &w->prepare);
2208 2515
2209 ev_stop (EV_A_ (W)w); 2516 ev_stop (EV_A_ (W)w);
2210} 2517}
2211#endif 2518#endif
2212 2519
2228 clear_pending (EV_A_ (W)w); 2535 clear_pending (EV_A_ (W)w);
2229 if (expect_false (!ev_is_active (w))) 2536 if (expect_false (!ev_is_active (w)))
2230 return; 2537 return;
2231 2538
2232 { 2539 {
2233 int active = ((W)w)->active; 2540 int active = ev_active (w);
2541
2234 forks [active - 1] = forks [--forkcnt]; 2542 forks [active - 1] = forks [--forkcnt];
2235 ((W)forks [active - 1])->active = active; 2543 ev_active (forks [active - 1]) = active;
2236 } 2544 }
2237 2545
2238 ev_stop (EV_A_ (W)w); 2546 ev_stop (EV_A_ (W)w);
2547}
2548#endif
2549
2550#if EV_ASYNC_ENABLE
2551void
2552ev_async_start (EV_P_ ev_async *w)
2553{
2554 if (expect_false (ev_is_active (w)))
2555 return;
2556
2557 evpipe_init (EV_A);
2558
2559 ev_start (EV_A_ (W)w, ++asynccnt);
2560 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2561 asyncs [asynccnt - 1] = w;
2562}
2563
2564void
2565ev_async_stop (EV_P_ ev_async *w)
2566{
2567 clear_pending (EV_A_ (W)w);
2568 if (expect_false (!ev_is_active (w)))
2569 return;
2570
2571 {
2572 int active = ev_active (w);
2573
2574 asyncs [active - 1] = asyncs [--asynccnt];
2575 ev_active (asyncs [active - 1]) = active;
2576 }
2577
2578 ev_stop (EV_A_ (W)w);
2579}
2580
2581void
2582ev_async_send (EV_P_ ev_async *w)
2583{
2584 w->sent = 1;
2585 evpipe_write (EV_A_ &gotasync);
2239} 2586}
2240#endif 2587#endif
2241 2588
2242/*****************************************************************************/ 2589/*****************************************************************************/
2243 2590
2301 ev_timer_set (&once->to, timeout, 0.); 2648 ev_timer_set (&once->to, timeout, 0.);
2302 ev_timer_start (EV_A_ &once->to); 2649 ev_timer_start (EV_A_ &once->to);
2303 } 2650 }
2304} 2651}
2305 2652
2653#if EV_MULTIPLICITY
2654 #include "ev_wrap.h"
2655#endif
2656
2306#ifdef __cplusplus 2657#ifdef __cplusplus
2307} 2658}
2308#endif 2659#endif
2309 2660

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines