ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.177 by root, Tue Dec 11 15:06:50 2007 UTC vs.
Revision 1.246 by root, Wed May 21 12:51:38 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 249
197#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
200#endif 253#endif
202#ifndef CLOCK_REALTIME 255#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 256# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 257# define EV_USE_REALTIME 0
205#endif 258#endif
206 259
260#if !EV_STAT_ENABLE
261# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0
263#endif
264
265#if !EV_USE_NANOSLEEP
266# ifndef _WIN32
267# include <sys/select.h>
268# endif
269#endif
270
271#if EV_USE_INOTIFY
272# include <sys/inotify.h>
273#endif
274
207#if EV_SELECT_IS_WINSOCKET 275#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 276# include <winsock.h>
209#endif 277#endif
210 278
211#if !EV_STAT_ENABLE 279#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
213#endif 284# endif
214 285int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 286# ifdef __cplusplus
216# include <sys/inotify.h> 287}
288# endif
217#endif 289#endif
218 290
219/**/ 291/**/
220 292
221/* 293/*
230 302
231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
234 306
235#if __GNUC__ >= 3 307#if __GNUC__ >= 4
236# define expect(expr,value) __builtin_expect ((expr),(value)) 308# define expect(expr,value) __builtin_expect ((expr),(value))
237# define noinline __attribute__ ((noinline)) 309# define noinline __attribute__ ((noinline))
238#else 310#else
239# define expect(expr,value) (expr) 311# define expect(expr,value) (expr)
240# define noinline 312# define noinline
241# if __STDC_VERSION__ < 199901L 313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
242# define inline 314# define inline
243# endif 315# endif
244#endif 316#endif
245 317
246#define expect_false(expr) expect ((expr) != 0, 0) 318#define expect_false(expr) expect ((expr) != 0, 0)
261 333
262typedef ev_watcher *W; 334typedef ev_watcher *W;
263typedef ev_watcher_list *WL; 335typedef ev_watcher_list *WL;
264typedef ev_watcher_time *WT; 336typedef ev_watcher_time *WT;
265 337
338#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at
340
341#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
345#endif
267 346
268#ifdef _WIN32 347#ifdef _WIN32
269# include "ev_win32.c" 348# include "ev_win32.c"
270#endif 349#endif
271 350
292 perror (msg); 371 perror (msg);
293 abort (); 372 abort ();
294 } 373 }
295} 374}
296 375
376static void *
377ev_realloc_emul (void *ptr, long size)
378{
379 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and
381 * the single unix specification, so work around them here.
382 */
383
384 if (size)
385 return realloc (ptr, size);
386
387 free (ptr);
388 return 0;
389}
390
297static void *(*alloc)(void *ptr, long size); 391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
298 392
299void 393void
300ev_set_allocator (void *(*cb)(void *ptr, long size)) 394ev_set_allocator (void *(*cb)(void *ptr, long size))
301{ 395{
302 alloc = cb; 396 alloc = cb;
303} 397}
304 398
305inline_speed void * 399inline_speed void *
306ev_realloc (void *ptr, long size) 400ev_realloc (void *ptr, long size)
307{ 401{
308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 402 ptr = alloc (ptr, size);
309 403
310 if (!ptr && size) 404 if (!ptr && size)
311 { 405 {
312 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
313 abort (); 407 abort ();
336 W w; 430 W w;
337 int events; 431 int events;
338} ANPENDING; 432} ANPENDING;
339 433
340#if EV_USE_INOTIFY 434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
341typedef struct 436typedef struct
342{ 437{
343 WL head; 438 WL head;
344} ANFS; 439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
345#endif 458#endif
346 459
347#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
348 461
349 struct ev_loop 462 struct ev_loop
407{ 520{
408 return ev_rt_now; 521 return ev_rt_now;
409} 522}
410#endif 523#endif
411 524
525void
526ev_sleep (ev_tstamp delay)
527{
528 if (delay > 0.)
529 {
530#if EV_USE_NANOSLEEP
531 struct timespec ts;
532
533 ts.tv_sec = (time_t)delay;
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0);
537#elif defined(_WIN32)
538 Sleep ((unsigned long)(delay * 1e3));
539#else
540 struct timeval tv;
541
542 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544
545 select (0, 0, 0, 0, &tv);
546#endif
547 }
548}
549
550/*****************************************************************************/
551
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553
412int inline_size 554int inline_size
413array_nextsize (int elem, int cur, int cnt) 555array_nextsize (int elem, int cur, int cnt)
414{ 556{
415 int ncur = cur + 1; 557 int ncur = cur + 1;
416 558
417 do 559 do
418 ncur <<= 1; 560 ncur <<= 1;
419 while (cnt > ncur); 561 while (cnt > ncur);
420 562
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096) 564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
423 { 565 {
424 ncur *= elem; 566 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
426 ncur = ncur - sizeof (void *) * 4; 568 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem; 569 ncur /= elem;
428 } 570 }
429 571
430 return ncur; 572 return ncur;
476 pendings [pri][w_->pending - 1].w = w_; 618 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents; 619 pendings [pri][w_->pending - 1].events = revents;
478 } 620 }
479} 621}
480 622
481void inline_size 623void inline_speed
482queue_events (EV_P_ W *events, int eventcnt, int type) 624queue_events (EV_P_ W *events, int eventcnt, int type)
483{ 625{
484 int i; 626 int i;
485 627
486 for (i = 0; i < eventcnt; ++i) 628 for (i = 0; i < eventcnt; ++i)
533 { 675 {
534 int fd = fdchanges [i]; 676 int fd = fdchanges [i];
535 ANFD *anfd = anfds + fd; 677 ANFD *anfd = anfds + fd;
536 ev_io *w; 678 ev_io *w;
537 679
538 int events = 0; 680 unsigned char events = 0;
539 681
540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
541 events |= w->events; 683 events |= (unsigned char)w->events;
542 684
543#if EV_SELECT_IS_WINSOCKET 685#if EV_SELECT_IS_WINSOCKET
544 if (events) 686 if (events)
545 { 687 {
546 unsigned long argp; 688 unsigned long argp;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
547 anfd->handle = _get_osfhandle (fd); 692 anfd->handle = _get_osfhandle (fd);
693 #endif
548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
549 } 695 }
550#endif 696#endif
551 697
698 {
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
552 anfd->reify = 0; 702 anfd->reify = 0;
553
554 backend_modify (EV_A_ fd, anfd->events, events);
555 anfd->events = events; 703 anfd->events = events;
704
705 if (o_events != events || o_reify & EV_IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events);
707 }
556 } 708 }
557 709
558 fdchangecnt = 0; 710 fdchangecnt = 0;
559} 711}
560 712
561void inline_size 713void inline_size
562fd_change (EV_P_ int fd) 714fd_change (EV_P_ int fd, int flags)
563{ 715{
564 if (expect_false (anfds [fd].reify)) 716 unsigned char reify = anfds [fd].reify;
565 return;
566
567 anfds [fd].reify = 1; 717 anfds [fd].reify |= flags;
568 718
719 if (expect_true (!reify))
720 {
569 ++fdchangecnt; 721 ++fdchangecnt;
570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
571 fdchanges [fdchangecnt - 1] = fd; 723 fdchanges [fdchangecnt - 1] = fd;
724 }
572} 725}
573 726
574void inline_speed 727void inline_speed
575fd_kill (EV_P_ int fd) 728fd_kill (EV_P_ int fd)
576{ 729{
627 780
628 for (fd = 0; fd < anfdmax; ++fd) 781 for (fd = 0; fd < anfdmax; ++fd)
629 if (anfds [fd].events) 782 if (anfds [fd].events)
630 { 783 {
631 anfds [fd].events = 0; 784 anfds [fd].events = 0;
632 fd_change (EV_A_ fd); 785 fd_change (EV_A_ fd, EV_IOFDSET | 1);
633 } 786 }
634} 787}
635 788
636/*****************************************************************************/ 789/*****************************************************************************/
637 790
791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
798 * at the moment we allow libev the luxury of two heaps,
799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
800 * which is more cache-efficient.
801 * the difference is about 5% with 50000+ watchers.
802 */
803#if EV_USE_4HEAP
804
805#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807
808/* towards the root */
638void inline_speed 809void inline_speed
639upheap (WT *heap, int k) 810upheap (ANHE *heap, int k)
640{ 811{
641 WT w = heap [k]; 812 ANHE he = heap [k];
642 813
643 while (k && heap [k >> 1]->at > w->at) 814 for (;;)
644 { 815 {
816 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
817
818 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
819 break;
820
645 heap [k] = heap [k >> 1]; 821 heap [k] = heap [p];
646 ((W)heap [k])->active = k + 1; 822 ev_active (ANHE_w (heap [k])) = k;
647 k >>= 1; 823 k = p;
648 } 824 }
649 825
826 ev_active (ANHE_w (he)) = k;
650 heap [k] = w; 827 heap [k] = he;
651 ((W)heap [k])->active = k + 1;
652
653} 828}
654 829
830/* away from the root */
655void inline_speed 831void inline_speed
656downheap (WT *heap, int N, int k) 832downheap (ANHE *heap, int N, int k)
657{ 833{
658 WT w = heap [k]; 834 ANHE he = heap [k];
835 ANHE *E = heap + N + HEAP0;
659 836
660 while (k < (N >> 1)) 837 for (;;)
661 { 838 {
662 int j = k << 1; 839 ev_tstamp minat;
840 ANHE *minpos;
841 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
663 842
664 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 843 // find minimum child
844 if (expect_true (pos + DHEAP - 1 < E))
665 ++j; 845 {
666 846 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
667 if (w->at <= heap [j]->at) 847 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 }
851 else if (pos < E)
852 {
853 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
855 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
856 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
857 }
858 else
668 break; 859 break;
669 860
861 if (ANHE_at (he) <= minat)
862 break;
863
864 ev_active (ANHE_w (*minpos)) = k;
865 heap [k] = *minpos;
866
867 k = minpos - heap;
868 }
869
870 ev_active (ANHE_w (he)) = k;
871 heap [k] = he;
872}
873
874#else // 4HEAP
875
876#define HEAP0 1
877
878/* towards the root */
879void inline_speed
880upheap (ANHE *heap, int k)
881{
882 ANHE he = heap [k];
883
884 for (;;)
885 {
886 int p = k >> 1;
887
888 /* maybe we could use a dummy element at heap [0]? */
889 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
890 break;
891
670 heap [k] = heap [j]; 892 heap [k] = heap [p];
671 ((W)heap [k])->active = k + 1; 893 ev_active (ANHE_w (heap [k])) = k;
672 k = j; 894 k = p;
673 } 895 }
674 896
675 heap [k] = w; 897 heap [k] = he;
676 ((W)heap [k])->active = k + 1; 898 ev_active (ANHE_w (heap [k])) = k;
677} 899}
900
901/* away from the root */
902void inline_speed
903downheap (ANHE *heap, int N, int k)
904{
905 ANHE he = heap [k];
906
907 for (;;)
908 {
909 int c = k << 1;
910
911 if (c > N)
912 break;
913
914 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
915 ? 1 : 0;
916
917 if (ANHE_at (he) <= ANHE_at (heap [c]))
918 break;
919
920 heap [k] = heap [c];
921 ev_active (ANHE_w (heap [k])) = k;
922
923 k = c;
924 }
925
926 heap [k] = he;
927 ev_active (ANHE_w (he)) = k;
928}
929#endif
678 930
679void inline_size 931void inline_size
680adjustheap (WT *heap, int N, int k) 932adjustheap (ANHE *heap, int N, int k)
681{ 933{
682 upheap (heap, k); 934 upheap (heap, k);
683 downheap (heap, N, k); 935 downheap (heap, N, k);
684} 936}
685 937
686/*****************************************************************************/ 938/*****************************************************************************/
687 939
688typedef struct 940typedef struct
689{ 941{
690 WL head; 942 WL head;
691 sig_atomic_t volatile gotsig; 943 EV_ATOMIC_T gotsig;
692} ANSIG; 944} ANSIG;
693 945
694static ANSIG *signals; 946static ANSIG *signals;
695static int signalmax; 947static int signalmax;
696 948
697static int sigpipe [2]; 949static EV_ATOMIC_T gotsig;
698static sig_atomic_t volatile gotsig;
699static ev_io sigev;
700 950
701void inline_size 951void inline_size
702signals_init (ANSIG *base, int count) 952signals_init (ANSIG *base, int count)
703{ 953{
704 while (count--) 954 while (count--)
708 958
709 ++base; 959 ++base;
710 } 960 }
711} 961}
712 962
713static void 963/*****************************************************************************/
714sighandler (int signum)
715{
716#if _WIN32
717 signal (signum, sighandler);
718#endif
719
720 signals [signum - 1].gotsig = 1;
721
722 if (!gotsig)
723 {
724 int old_errno = errno;
725 gotsig = 1;
726 write (sigpipe [1], &signum, 1);
727 errno = old_errno;
728 }
729}
730
731void noinline
732ev_feed_signal_event (EV_P_ int signum)
733{
734 WL w;
735
736#if EV_MULTIPLICITY
737 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
738#endif
739
740 --signum;
741
742 if (signum < 0 || signum >= signalmax)
743 return;
744
745 signals [signum].gotsig = 0;
746
747 for (w = signals [signum].head; w; w = w->next)
748 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
749}
750
751static void
752sigcb (EV_P_ ev_io *iow, int revents)
753{
754 int signum;
755
756 read (sigpipe [0], &revents, 1);
757 gotsig = 0;
758
759 for (signum = signalmax; signum--; )
760 if (signals [signum].gotsig)
761 ev_feed_signal_event (EV_A_ signum + 1);
762}
763 964
764void inline_speed 965void inline_speed
765fd_intern (int fd) 966fd_intern (int fd)
766{ 967{
767#ifdef _WIN32 968#ifdef _WIN32
772 fcntl (fd, F_SETFL, O_NONBLOCK); 973 fcntl (fd, F_SETFL, O_NONBLOCK);
773#endif 974#endif
774} 975}
775 976
776static void noinline 977static void noinline
777siginit (EV_P) 978evpipe_init (EV_P)
778{ 979{
980 if (!ev_is_active (&pipeev))
981 {
982#if EV_USE_EVENTFD
983 if ((evfd = eventfd (0, 0)) >= 0)
984 {
985 evpipe [0] = -1;
986 fd_intern (evfd);
987 ev_io_set (&pipeev, evfd, EV_READ);
988 }
989 else
990#endif
991 {
992 while (pipe (evpipe))
993 syserr ("(libev) error creating signal/async pipe");
994
779 fd_intern (sigpipe [0]); 995 fd_intern (evpipe [0]);
780 fd_intern (sigpipe [1]); 996 fd_intern (evpipe [1]);
997 ev_io_set (&pipeev, evpipe [0], EV_READ);
998 }
781 999
782 ev_io_set (&sigev, sigpipe [0], EV_READ);
783 ev_io_start (EV_A_ &sigev); 1000 ev_io_start (EV_A_ &pipeev);
784 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1001 ev_unref (EV_A); /* watcher should not keep loop alive */
1002 }
1003}
1004
1005void inline_size
1006evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1007{
1008 if (!*flag)
1009 {
1010 int old_errno = errno; /* save errno because write might clobber it */
1011
1012 *flag = 1;
1013
1014#if EV_USE_EVENTFD
1015 if (evfd >= 0)
1016 {
1017 uint64_t counter = 1;
1018 write (evfd, &counter, sizeof (uint64_t));
1019 }
1020 else
1021#endif
1022 write (evpipe [1], &old_errno, 1);
1023
1024 errno = old_errno;
1025 }
1026}
1027
1028static void
1029pipecb (EV_P_ ev_io *iow, int revents)
1030{
1031#if EV_USE_EVENTFD
1032 if (evfd >= 0)
1033 {
1034 uint64_t counter;
1035 read (evfd, &counter, sizeof (uint64_t));
1036 }
1037 else
1038#endif
1039 {
1040 char dummy;
1041 read (evpipe [0], &dummy, 1);
1042 }
1043
1044 if (gotsig && ev_is_default_loop (EV_A))
1045 {
1046 int signum;
1047 gotsig = 0;
1048
1049 for (signum = signalmax; signum--; )
1050 if (signals [signum].gotsig)
1051 ev_feed_signal_event (EV_A_ signum + 1);
1052 }
1053
1054#if EV_ASYNC_ENABLE
1055 if (gotasync)
1056 {
1057 int i;
1058 gotasync = 0;
1059
1060 for (i = asynccnt; i--; )
1061 if (asyncs [i]->sent)
1062 {
1063 asyncs [i]->sent = 0;
1064 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1065 }
1066 }
1067#endif
785} 1068}
786 1069
787/*****************************************************************************/ 1070/*****************************************************************************/
788 1071
1072static void
1073ev_sighandler (int signum)
1074{
1075#if EV_MULTIPLICITY
1076 struct ev_loop *loop = &default_loop_struct;
1077#endif
1078
1079#if _WIN32
1080 signal (signum, ev_sighandler);
1081#endif
1082
1083 signals [signum - 1].gotsig = 1;
1084 evpipe_write (EV_A_ &gotsig);
1085}
1086
1087void noinline
1088ev_feed_signal_event (EV_P_ int signum)
1089{
1090 WL w;
1091
1092#if EV_MULTIPLICITY
1093 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1094#endif
1095
1096 --signum;
1097
1098 if (signum < 0 || signum >= signalmax)
1099 return;
1100
1101 signals [signum].gotsig = 0;
1102
1103 for (w = signals [signum].head; w; w = w->next)
1104 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1105}
1106
1107/*****************************************************************************/
1108
789static ev_child *childs [EV_PID_HASHSIZE]; 1109static WL childs [EV_PID_HASHSIZE];
790 1110
791#ifndef _WIN32 1111#ifndef _WIN32
792 1112
793static ev_signal childev; 1113static ev_signal childev;
794 1114
1115#ifndef WIFCONTINUED
1116# define WIFCONTINUED(status) 0
1117#endif
1118
795void inline_speed 1119void inline_speed
796child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1120child_reap (EV_P_ int chain, int pid, int status)
797{ 1121{
798 ev_child *w; 1122 ev_child *w;
1123 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
799 1124
800 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1125 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1126 {
801 if (w->pid == pid || !w->pid) 1127 if ((w->pid == pid || !w->pid)
1128 && (!traced || (w->flags & 1)))
802 { 1129 {
803 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1130 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
804 w->rpid = pid; 1131 w->rpid = pid;
805 w->rstatus = status; 1132 w->rstatus = status;
806 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1133 ev_feed_event (EV_A_ (W)w, EV_CHILD);
807 } 1134 }
1135 }
808} 1136}
809 1137
810#ifndef WCONTINUED 1138#ifndef WCONTINUED
811# define WCONTINUED 0 1139# define WCONTINUED 0
812#endif 1140#endif
821 if (!WCONTINUED 1149 if (!WCONTINUED
822 || errno != EINVAL 1150 || errno != EINVAL
823 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1151 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
824 return; 1152 return;
825 1153
826 /* make sure we are called again until all childs have been reaped */ 1154 /* make sure we are called again until all children have been reaped */
827 /* we need to do it this way so that the callback gets called before we continue */ 1155 /* we need to do it this way so that the callback gets called before we continue */
828 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1156 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
829 1157
830 child_reap (EV_A_ sw, pid, pid, status); 1158 child_reap (EV_A_ pid, pid, status);
831 if (EV_PID_HASHSIZE > 1) 1159 if (EV_PID_HASHSIZE > 1)
832 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1160 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
833} 1161}
834 1162
835#endif 1163#endif
836 1164
837/*****************************************************************************/ 1165/*****************************************************************************/
909} 1237}
910 1238
911unsigned int 1239unsigned int
912ev_embeddable_backends (void) 1240ev_embeddable_backends (void)
913{ 1241{
914 return EVBACKEND_EPOLL 1242 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
915 | EVBACKEND_KQUEUE 1243
916 | EVBACKEND_PORT; 1244 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1245 /* please fix it and tell me how to detect the fix */
1246 flags &= ~EVBACKEND_EPOLL;
1247
1248 return flags;
917} 1249}
918 1250
919unsigned int 1251unsigned int
920ev_backend (EV_P) 1252ev_backend (EV_P)
921{ 1253{
924 1256
925unsigned int 1257unsigned int
926ev_loop_count (EV_P) 1258ev_loop_count (EV_P)
927{ 1259{
928 return loop_count; 1260 return loop_count;
1261}
1262
1263void
1264ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1265{
1266 io_blocktime = interval;
1267}
1268
1269void
1270ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1271{
1272 timeout_blocktime = interval;
929} 1273}
930 1274
931static void noinline 1275static void noinline
932loop_init (EV_P_ unsigned int flags) 1276loop_init (EV_P_ unsigned int flags)
933{ 1277{
939 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1283 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
940 have_monotonic = 1; 1284 have_monotonic = 1;
941 } 1285 }
942#endif 1286#endif
943 1287
944 ev_rt_now = ev_time (); 1288 ev_rt_now = ev_time ();
945 mn_now = get_clock (); 1289 mn_now = get_clock ();
946 now_floor = mn_now; 1290 now_floor = mn_now;
947 rtmn_diff = ev_rt_now - mn_now; 1291 rtmn_diff = ev_rt_now - mn_now;
1292
1293 io_blocktime = 0.;
1294 timeout_blocktime = 0.;
1295 backend = 0;
1296 backend_fd = -1;
1297 gotasync = 0;
1298#if EV_USE_INOTIFY
1299 fs_fd = -2;
1300#endif
948 1301
949 /* pid check not overridable via env */ 1302 /* pid check not overridable via env */
950#ifndef _WIN32 1303#ifndef _WIN32
951 if (flags & EVFLAG_FORKCHECK) 1304 if (flags & EVFLAG_FORKCHECK)
952 curpid = getpid (); 1305 curpid = getpid ();
955 if (!(flags & EVFLAG_NOENV) 1308 if (!(flags & EVFLAG_NOENV)
956 && !enable_secure () 1309 && !enable_secure ()
957 && getenv ("LIBEV_FLAGS")) 1310 && getenv ("LIBEV_FLAGS"))
958 flags = atoi (getenv ("LIBEV_FLAGS")); 1311 flags = atoi (getenv ("LIBEV_FLAGS"));
959 1312
960 if (!(flags & 0x0000ffffUL)) 1313 if (!(flags & 0x0000ffffU))
961 flags |= ev_recommended_backends (); 1314 flags |= ev_recommended_backends ();
962
963 backend = 0;
964 backend_fd = -1;
965#if EV_USE_INOTIFY
966 fs_fd = -2;
967#endif
968 1315
969#if EV_USE_PORT 1316#if EV_USE_PORT
970 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1317 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
971#endif 1318#endif
972#if EV_USE_KQUEUE 1319#if EV_USE_KQUEUE
980#endif 1327#endif
981#if EV_USE_SELECT 1328#if EV_USE_SELECT
982 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1329 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
983#endif 1330#endif
984 1331
985 ev_init (&sigev, sigcb); 1332 ev_init (&pipeev, pipecb);
986 ev_set_priority (&sigev, EV_MAXPRI); 1333 ev_set_priority (&pipeev, EV_MAXPRI);
987 } 1334 }
988} 1335}
989 1336
990static void noinline 1337static void noinline
991loop_destroy (EV_P) 1338loop_destroy (EV_P)
992{ 1339{
993 int i; 1340 int i;
1341
1342 if (ev_is_active (&pipeev))
1343 {
1344 ev_ref (EV_A); /* signal watcher */
1345 ev_io_stop (EV_A_ &pipeev);
1346
1347#if EV_USE_EVENTFD
1348 if (evfd >= 0)
1349 close (evfd);
1350#endif
1351
1352 if (evpipe [0] >= 0)
1353 {
1354 close (evpipe [0]);
1355 close (evpipe [1]);
1356 }
1357 }
994 1358
995#if EV_USE_INOTIFY 1359#if EV_USE_INOTIFY
996 if (fs_fd >= 0) 1360 if (fs_fd >= 0)
997 close (fs_fd); 1361 close (fs_fd);
998#endif 1362#endif
1021 array_free (pending, [i]); 1385 array_free (pending, [i]);
1022#if EV_IDLE_ENABLE 1386#if EV_IDLE_ENABLE
1023 array_free (idle, [i]); 1387 array_free (idle, [i]);
1024#endif 1388#endif
1025 } 1389 }
1390
1391 ev_free (anfds); anfdmax = 0;
1026 1392
1027 /* have to use the microsoft-never-gets-it-right macro */ 1393 /* have to use the microsoft-never-gets-it-right macro */
1028 array_free (fdchange, EMPTY); 1394 array_free (fdchange, EMPTY);
1029 array_free (timer, EMPTY); 1395 array_free (timer, EMPTY);
1030#if EV_PERIODIC_ENABLE 1396#if EV_PERIODIC_ENABLE
1031 array_free (periodic, EMPTY); 1397 array_free (periodic, EMPTY);
1032#endif 1398#endif
1399#if EV_FORK_ENABLE
1400 array_free (fork, EMPTY);
1401#endif
1033 array_free (prepare, EMPTY); 1402 array_free (prepare, EMPTY);
1034 array_free (check, EMPTY); 1403 array_free (check, EMPTY);
1404#if EV_ASYNC_ENABLE
1405 array_free (async, EMPTY);
1406#endif
1035 1407
1036 backend = 0; 1408 backend = 0;
1037} 1409}
1038 1410
1411#if EV_USE_INOTIFY
1039void inline_size infy_fork (EV_P); 1412void inline_size infy_fork (EV_P);
1413#endif
1040 1414
1041void inline_size 1415void inline_size
1042loop_fork (EV_P) 1416loop_fork (EV_P)
1043{ 1417{
1044#if EV_USE_PORT 1418#if EV_USE_PORT
1052#endif 1426#endif
1053#if EV_USE_INOTIFY 1427#if EV_USE_INOTIFY
1054 infy_fork (EV_A); 1428 infy_fork (EV_A);
1055#endif 1429#endif
1056 1430
1057 if (ev_is_active (&sigev)) 1431 if (ev_is_active (&pipeev))
1058 { 1432 {
1059 /* default loop */ 1433 /* this "locks" the handlers against writing to the pipe */
1434 /* while we modify the fd vars */
1435 gotsig = 1;
1436#if EV_ASYNC_ENABLE
1437 gotasync = 1;
1438#endif
1060 1439
1061 ev_ref (EV_A); 1440 ev_ref (EV_A);
1062 ev_io_stop (EV_A_ &sigev); 1441 ev_io_stop (EV_A_ &pipeev);
1442
1443#if EV_USE_EVENTFD
1444 if (evfd >= 0)
1445 close (evfd);
1446#endif
1447
1448 if (evpipe [0] >= 0)
1449 {
1063 close (sigpipe [0]); 1450 close (evpipe [0]);
1064 close (sigpipe [1]); 1451 close (evpipe [1]);
1452 }
1065 1453
1066 while (pipe (sigpipe))
1067 syserr ("(libev) error creating pipe");
1068
1069 siginit (EV_A); 1454 evpipe_init (EV_A);
1455 /* now iterate over everything, in case we missed something */
1456 pipecb (EV_A_ &pipeev, EV_READ);
1070 } 1457 }
1071 1458
1072 postfork = 0; 1459 postfork = 0;
1073} 1460}
1074 1461
1096} 1483}
1097 1484
1098void 1485void
1099ev_loop_fork (EV_P) 1486ev_loop_fork (EV_P)
1100{ 1487{
1101 postfork = 1; 1488 postfork = 1; /* must be in line with ev_default_fork */
1102} 1489}
1103
1104#endif 1490#endif
1105 1491
1106#if EV_MULTIPLICITY 1492#if EV_MULTIPLICITY
1107struct ev_loop * 1493struct ev_loop *
1108ev_default_loop_init (unsigned int flags) 1494ev_default_loop_init (unsigned int flags)
1109#else 1495#else
1110int 1496int
1111ev_default_loop (unsigned int flags) 1497ev_default_loop (unsigned int flags)
1112#endif 1498#endif
1113{ 1499{
1114 if (sigpipe [0] == sigpipe [1])
1115 if (pipe (sigpipe))
1116 return 0;
1117
1118 if (!ev_default_loop_ptr) 1500 if (!ev_default_loop_ptr)
1119 { 1501 {
1120#if EV_MULTIPLICITY 1502#if EV_MULTIPLICITY
1121 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1503 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1122#else 1504#else
1125 1507
1126 loop_init (EV_A_ flags); 1508 loop_init (EV_A_ flags);
1127 1509
1128 if (ev_backend (EV_A)) 1510 if (ev_backend (EV_A))
1129 { 1511 {
1130 siginit (EV_A);
1131
1132#ifndef _WIN32 1512#ifndef _WIN32
1133 ev_signal_init (&childev, childcb, SIGCHLD); 1513 ev_signal_init (&childev, childcb, SIGCHLD);
1134 ev_set_priority (&childev, EV_MAXPRI); 1514 ev_set_priority (&childev, EV_MAXPRI);
1135 ev_signal_start (EV_A_ &childev); 1515 ev_signal_start (EV_A_ &childev);
1136 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1516 ev_unref (EV_A); /* child watcher should not keep loop alive */
1153#ifndef _WIN32 1533#ifndef _WIN32
1154 ev_ref (EV_A); /* child watcher */ 1534 ev_ref (EV_A); /* child watcher */
1155 ev_signal_stop (EV_A_ &childev); 1535 ev_signal_stop (EV_A_ &childev);
1156#endif 1536#endif
1157 1537
1158 ev_ref (EV_A); /* signal watcher */
1159 ev_io_stop (EV_A_ &sigev);
1160
1161 close (sigpipe [0]); sigpipe [0] = 0;
1162 close (sigpipe [1]); sigpipe [1] = 0;
1163
1164 loop_destroy (EV_A); 1538 loop_destroy (EV_A);
1165} 1539}
1166 1540
1167void 1541void
1168ev_default_fork (void) 1542ev_default_fork (void)
1170#if EV_MULTIPLICITY 1544#if EV_MULTIPLICITY
1171 struct ev_loop *loop = ev_default_loop_ptr; 1545 struct ev_loop *loop = ev_default_loop_ptr;
1172#endif 1546#endif
1173 1547
1174 if (backend) 1548 if (backend)
1175 postfork = 1; 1549 postfork = 1; /* must be in line with ev_loop_fork */
1176} 1550}
1177 1551
1178/*****************************************************************************/ 1552/*****************************************************************************/
1179 1553
1180void 1554void
1200 p->w->pending = 0; 1574 p->w->pending = 0;
1201 EV_CB_INVOKE (p->w, p->events); 1575 EV_CB_INVOKE (p->w, p->events);
1202 } 1576 }
1203 } 1577 }
1204} 1578}
1205
1206void inline_size
1207timers_reify (EV_P)
1208{
1209 while (timercnt && ((WT)timers [0])->at <= mn_now)
1210 {
1211 ev_timer *w = timers [0];
1212
1213 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1214
1215 /* first reschedule or stop timer */
1216 if (w->repeat)
1217 {
1218 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1219
1220 ((WT)w)->at += w->repeat;
1221 if (((WT)w)->at < mn_now)
1222 ((WT)w)->at = mn_now;
1223
1224 downheap ((WT *)timers, timercnt, 0);
1225 }
1226 else
1227 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1228
1229 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1230 }
1231}
1232
1233#if EV_PERIODIC_ENABLE
1234void inline_size
1235periodics_reify (EV_P)
1236{
1237 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1238 {
1239 ev_periodic *w = periodics [0];
1240
1241 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1242
1243 /* first reschedule or stop timer */
1244 if (w->reschedule_cb)
1245 {
1246 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1247 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1248 downheap ((WT *)periodics, periodiccnt, 0);
1249 }
1250 else if (w->interval)
1251 {
1252 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1253 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1255 downheap ((WT *)periodics, periodiccnt, 0);
1256 }
1257 else
1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1259
1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1261 }
1262}
1263
1264static void noinline
1265periodics_reschedule (EV_P)
1266{
1267 int i;
1268
1269 /* adjust periodics after time jump */
1270 for (i = 0; i < periodiccnt; ++i)
1271 {
1272 ev_periodic *w = periodics [i];
1273
1274 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1276 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 }
1279
1280 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i);
1283}
1284#endif
1285 1579
1286#if EV_IDLE_ENABLE 1580#if EV_IDLE_ENABLE
1287void inline_size 1581void inline_size
1288idle_reify (EV_P) 1582idle_reify (EV_P)
1289{ 1583{
1304 } 1598 }
1305 } 1599 }
1306} 1600}
1307#endif 1601#endif
1308 1602
1309int inline_size 1603void inline_size
1310time_update_monotonic (EV_P) 1604timers_reify (EV_P)
1311{ 1605{
1606 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1607 {
1608 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1609
1610 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1611
1612 /* first reschedule or stop timer */
1613 if (w->repeat)
1614 {
1615 ev_at (w) += w->repeat;
1616 if (ev_at (w) < mn_now)
1617 ev_at (w) = mn_now;
1618
1619 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1620
1621 ANHE_at_set (timers [HEAP0]);
1622 downheap (timers, timercnt, HEAP0);
1623 }
1624 else
1625 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1626
1627 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1628 }
1629}
1630
1631#if EV_PERIODIC_ENABLE
1632void inline_size
1633periodics_reify (EV_P)
1634{
1635 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1636 {
1637 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1638
1639 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1640
1641 /* first reschedule or stop timer */
1642 if (w->reschedule_cb)
1643 {
1644 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1645
1646 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1647
1648 ANHE_at_set (periodics [HEAP0]);
1649 downheap (periodics, periodiccnt, HEAP0);
1650 }
1651 else if (w->interval)
1652 {
1653 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1654 /* if next trigger time is not sufficiently in the future, put it there */
1655 /* this might happen because of floating point inexactness */
1656 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1657 {
1658 ev_at (w) += w->interval;
1659
1660 /* if interval is unreasonably low we might still have a time in the past */
1661 /* so correct this. this will make the periodic very inexact, but the user */
1662 /* has effectively asked to get triggered more often than possible */
1663 if (ev_at (w) < ev_rt_now)
1664 ev_at (w) = ev_rt_now;
1665 }
1666
1667 ANHE_at_set (periodics [HEAP0]);
1668 downheap (periodics, periodiccnt, HEAP0);
1669 }
1670 else
1671 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1672
1673 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1674 }
1675}
1676
1677static void noinline
1678periodics_reschedule (EV_P)
1679{
1680 int i;
1681
1682 /* adjust periodics after time jump */
1683 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1684 {
1685 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1686
1687 if (w->reschedule_cb)
1688 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval)
1690 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1691
1692 ANHE_at_set (periodics [i]);
1693 }
1694
1695 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1696 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1697 for (i = 0; i < periodiccnt; ++i)
1698 upheap (periodics, i + HEAP0);
1699}
1700#endif
1701
1702void inline_speed
1703time_update (EV_P_ ev_tstamp max_block)
1704{
1705 int i;
1706
1707#if EV_USE_MONOTONIC
1708 if (expect_true (have_monotonic))
1709 {
1710 ev_tstamp odiff = rtmn_diff;
1711
1312 mn_now = get_clock (); 1712 mn_now = get_clock ();
1313 1713
1714 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1715 /* interpolate in the meantime */
1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1716 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1315 { 1717 {
1316 ev_rt_now = rtmn_diff + mn_now; 1718 ev_rt_now = rtmn_diff + mn_now;
1317 return 0; 1719 return;
1318 } 1720 }
1319 else 1721
1320 {
1321 now_floor = mn_now; 1722 now_floor = mn_now;
1322 ev_rt_now = ev_time (); 1723 ev_rt_now = ev_time ();
1323 return 1;
1324 }
1325}
1326 1724
1327void inline_size 1725 /* loop a few times, before making important decisions.
1328time_update (EV_P) 1726 * on the choice of "4": one iteration isn't enough,
1329{ 1727 * in case we get preempted during the calls to
1330 int i; 1728 * ev_time and get_clock. a second call is almost guaranteed
1331 1729 * to succeed in that case, though. and looping a few more times
1332#if EV_USE_MONOTONIC 1730 * doesn't hurt either as we only do this on time-jumps or
1333 if (expect_true (have_monotonic)) 1731 * in the unlikely event of having been preempted here.
1334 { 1732 */
1335 if (time_update_monotonic (EV_A)) 1733 for (i = 4; --i; )
1336 { 1734 {
1337 ev_tstamp odiff = rtmn_diff;
1338
1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1348 {
1349 rtmn_diff = ev_rt_now - mn_now; 1735 rtmn_diff = ev_rt_now - mn_now;
1350 1736
1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1737 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1352 return; /* all is well */ 1738 return; /* all is well */
1353 1739
1354 ev_rt_now = ev_time (); 1740 ev_rt_now = ev_time ();
1355 mn_now = get_clock (); 1741 mn_now = get_clock ();
1356 now_floor = mn_now; 1742 now_floor = mn_now;
1357 } 1743 }
1358 1744
1359# if EV_PERIODIC_ENABLE 1745# if EV_PERIODIC_ENABLE
1360 periodics_reschedule (EV_A); 1746 periodics_reschedule (EV_A);
1361# endif 1747# endif
1362 /* no timer adjustment, as the monotonic clock doesn't jump */ 1748 /* no timer adjustment, as the monotonic clock doesn't jump */
1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1749 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1364 }
1365 } 1750 }
1366 else 1751 else
1367#endif 1752#endif
1368 { 1753 {
1369 ev_rt_now = ev_time (); 1754 ev_rt_now = ev_time ();
1370 1755
1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1756 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 { 1757 {
1373#if EV_PERIODIC_ENABLE 1758#if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 1759 periodics_reschedule (EV_A);
1375#endif 1760#endif
1376 /* adjust timers. this is easy, as the offset is the same for all of them */ 1761 /* adjust timers. this is easy, as the offset is the same for all of them */
1377 for (i = 0; i < timercnt; ++i) 1762 for (i = 0; i < timercnt; ++i)
1763 {
1764 ANHE *he = timers + i + HEAP0;
1378 ((WT)timers [i])->at += ev_rt_now - mn_now; 1765 ANHE_w (*he)->at += ev_rt_now - mn_now;
1766 ANHE_at_set (*he);
1767 }
1379 } 1768 }
1380 1769
1381 mn_now = ev_rt_now; 1770 mn_now = ev_rt_now;
1382 } 1771 }
1383} 1772}
1397static int loop_done; 1786static int loop_done;
1398 1787
1399void 1788void
1400ev_loop (EV_P_ int flags) 1789ev_loop (EV_P_ int flags)
1401{ 1790{
1402 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1791 loop_done = EVUNLOOP_CANCEL;
1403 ? EVUNLOOP_ONE
1404 : EVUNLOOP_CANCEL;
1405 1792
1406 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1793 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1407 1794
1408 do 1795 do
1409 { 1796 {
1443 /* update fd-related kernel structures */ 1830 /* update fd-related kernel structures */
1444 fd_reify (EV_A); 1831 fd_reify (EV_A);
1445 1832
1446 /* calculate blocking time */ 1833 /* calculate blocking time */
1447 { 1834 {
1448 ev_tstamp block; 1835 ev_tstamp waittime = 0.;
1836 ev_tstamp sleeptime = 0.;
1449 1837
1450 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1838 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1451 block = 0.; /* do not block at all */
1452 else
1453 { 1839 {
1454 /* update time to cancel out callback processing overhead */ 1840 /* update time to cancel out callback processing overhead */
1455#if EV_USE_MONOTONIC
1456 if (expect_true (have_monotonic))
1457 time_update_monotonic (EV_A); 1841 time_update (EV_A_ 1e100);
1458 else
1459#endif
1460 {
1461 ev_rt_now = ev_time ();
1462 mn_now = ev_rt_now;
1463 }
1464 1842
1465 block = MAX_BLOCKTIME; 1843 waittime = MAX_BLOCKTIME;
1466 1844
1467 if (timercnt) 1845 if (timercnt)
1468 { 1846 {
1469 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1847 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1470 if (block > to) block = to; 1848 if (waittime > to) waittime = to;
1471 } 1849 }
1472 1850
1473#if EV_PERIODIC_ENABLE 1851#if EV_PERIODIC_ENABLE
1474 if (periodiccnt) 1852 if (periodiccnt)
1475 { 1853 {
1476 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1854 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1477 if (block > to) block = to; 1855 if (waittime > to) waittime = to;
1478 } 1856 }
1479#endif 1857#endif
1480 1858
1481 if (expect_false (block < 0.)) block = 0.; 1859 if (expect_false (waittime < timeout_blocktime))
1860 waittime = timeout_blocktime;
1861
1862 sleeptime = waittime - backend_fudge;
1863
1864 if (expect_true (sleeptime > io_blocktime))
1865 sleeptime = io_blocktime;
1866
1867 if (sleeptime)
1868 {
1869 ev_sleep (sleeptime);
1870 waittime -= sleeptime;
1871 }
1482 } 1872 }
1483 1873
1484 ++loop_count; 1874 ++loop_count;
1485 backend_poll (EV_A_ block); 1875 backend_poll (EV_A_ waittime);
1876
1877 /* update ev_rt_now, do magic */
1878 time_update (EV_A_ waittime + sleeptime);
1486 } 1879 }
1487
1488 /* update ev_rt_now, do magic */
1489 time_update (EV_A);
1490 1880
1491 /* queue pending timers and reschedule them */ 1881 /* queue pending timers and reschedule them */
1492 timers_reify (EV_A); /* relative timers called last */ 1882 timers_reify (EV_A); /* relative timers called last */
1493#if EV_PERIODIC_ENABLE 1883#if EV_PERIODIC_ENABLE
1494 periodics_reify (EV_A); /* absolute timers called first */ 1884 periodics_reify (EV_A); /* absolute timers called first */
1502 /* queue check watchers, to be executed first */ 1892 /* queue check watchers, to be executed first */
1503 if (expect_false (checkcnt)) 1893 if (expect_false (checkcnt))
1504 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1894 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1505 1895
1506 call_pending (EV_A); 1896 call_pending (EV_A);
1507
1508 } 1897 }
1509 while (expect_true (activecnt && !loop_done)); 1898 while (expect_true (
1899 activecnt
1900 && !loop_done
1901 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1902 ));
1510 1903
1511 if (loop_done == EVUNLOOP_ONE) 1904 if (loop_done == EVUNLOOP_ONE)
1512 loop_done = EVUNLOOP_CANCEL; 1905 loop_done = EVUNLOOP_CANCEL;
1513} 1906}
1514 1907
1605 1998
1606 assert (("ev_io_start called with negative fd", fd >= 0)); 1999 assert (("ev_io_start called with negative fd", fd >= 0));
1607 2000
1608 ev_start (EV_A_ (W)w, 1); 2001 ev_start (EV_A_ (W)w, 1);
1609 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2002 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1610 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2003 wlist_add (&anfds[fd].head, (WL)w);
1611 2004
1612 fd_change (EV_A_ fd); 2005 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2006 w->events &= ~EV_IOFDSET;
1613} 2007}
1614 2008
1615void noinline 2009void noinline
1616ev_io_stop (EV_P_ ev_io *w) 2010ev_io_stop (EV_P_ ev_io *w)
1617{ 2011{
1618 clear_pending (EV_A_ (W)w); 2012 clear_pending (EV_A_ (W)w);
1619 if (expect_false (!ev_is_active (w))) 2013 if (expect_false (!ev_is_active (w)))
1620 return; 2014 return;
1621 2015
1622 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2016 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1623 2017
1624 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2018 wlist_del (&anfds[w->fd].head, (WL)w);
1625 ev_stop (EV_A_ (W)w); 2019 ev_stop (EV_A_ (W)w);
1626 2020
1627 fd_change (EV_A_ w->fd); 2021 fd_change (EV_A_ w->fd, 1);
1628} 2022}
1629 2023
1630void noinline 2024void noinline
1631ev_timer_start (EV_P_ ev_timer *w) 2025ev_timer_start (EV_P_ ev_timer *w)
1632{ 2026{
1633 if (expect_false (ev_is_active (w))) 2027 if (expect_false (ev_is_active (w)))
1634 return; 2028 return;
1635 2029
1636 ((WT)w)->at += mn_now; 2030 ev_at (w) += mn_now;
1637 2031
1638 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2032 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1639 2033
1640 ev_start (EV_A_ (W)w, ++timercnt); 2034 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1641 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2035 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1642 timers [timercnt - 1] = w; 2036 ANHE_w (timers [ev_active (w)]) = (WT)w;
1643 upheap ((WT *)timers, timercnt - 1); 2037 ANHE_at_set (timers [ev_active (w)]);
2038 upheap (timers, ev_active (w));
1644 2039
1645 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2040 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1646} 2041}
1647 2042
1648void noinline 2043void noinline
1649ev_timer_stop (EV_P_ ev_timer *w) 2044ev_timer_stop (EV_P_ ev_timer *w)
1650{ 2045{
1651 clear_pending (EV_A_ (W)w); 2046 clear_pending (EV_A_ (W)w);
1652 if (expect_false (!ev_is_active (w))) 2047 if (expect_false (!ev_is_active (w)))
1653 return; 2048 return;
1654 2049
1655 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1656
1657 { 2050 {
1658 int active = ((W)w)->active; 2051 int active = ev_active (w);
1659 2052
2053 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2054
1660 if (expect_true (--active < --timercnt)) 2055 if (expect_true (active < timercnt + HEAP0 - 1))
1661 { 2056 {
1662 timers [active] = timers [timercnt]; 2057 timers [active] = timers [timercnt + HEAP0 - 1];
1663 adjustheap ((WT *)timers, timercnt, active); 2058 adjustheap (timers, timercnt, active);
1664 } 2059 }
2060
2061 --timercnt;
1665 } 2062 }
1666 2063
1667 ((WT)w)->at -= mn_now; 2064 ev_at (w) -= mn_now;
1668 2065
1669 ev_stop (EV_A_ (W)w); 2066 ev_stop (EV_A_ (W)w);
1670} 2067}
1671 2068
1672void noinline 2069void noinline
1674{ 2071{
1675 if (ev_is_active (w)) 2072 if (ev_is_active (w))
1676 { 2073 {
1677 if (w->repeat) 2074 if (w->repeat)
1678 { 2075 {
1679 ((WT)w)->at = mn_now + w->repeat; 2076 ev_at (w) = mn_now + w->repeat;
2077 ANHE_at_set (timers [ev_active (w)]);
1680 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2078 adjustheap (timers, timercnt, ev_active (w));
1681 } 2079 }
1682 else 2080 else
1683 ev_timer_stop (EV_A_ w); 2081 ev_timer_stop (EV_A_ w);
1684 } 2082 }
1685 else if (w->repeat) 2083 else if (w->repeat)
1686 { 2084 {
1687 w->at = w->repeat; 2085 ev_at (w) = w->repeat;
1688 ev_timer_start (EV_A_ w); 2086 ev_timer_start (EV_A_ w);
1689 } 2087 }
1690} 2088}
1691 2089
1692#if EV_PERIODIC_ENABLE 2090#if EV_PERIODIC_ENABLE
1695{ 2093{
1696 if (expect_false (ev_is_active (w))) 2094 if (expect_false (ev_is_active (w)))
1697 return; 2095 return;
1698 2096
1699 if (w->reschedule_cb) 2097 if (w->reschedule_cb)
1700 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2098 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1701 else if (w->interval) 2099 else if (w->interval)
1702 { 2100 {
1703 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2101 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1704 /* this formula differs from the one in periodic_reify because we do not always round up */ 2102 /* this formula differs from the one in periodic_reify because we do not always round up */
1705 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2103 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1706 } 2104 }
1707 else 2105 else
1708 ((WT)w)->at = w->offset; 2106 ev_at (w) = w->offset;
1709 2107
1710 ev_start (EV_A_ (W)w, ++periodiccnt); 2108 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1711 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2109 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1712 periodics [periodiccnt - 1] = w; 2110 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1713 upheap ((WT *)periodics, periodiccnt - 1); 2111 ANHE_at_set (periodics [ev_active (w)]);
2112 upheap (periodics, ev_active (w));
1714 2113
1715 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2114 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1716} 2115}
1717 2116
1718void noinline 2117void noinline
1719ev_periodic_stop (EV_P_ ev_periodic *w) 2118ev_periodic_stop (EV_P_ ev_periodic *w)
1720{ 2119{
1721 clear_pending (EV_A_ (W)w); 2120 clear_pending (EV_A_ (W)w);
1722 if (expect_false (!ev_is_active (w))) 2121 if (expect_false (!ev_is_active (w)))
1723 return; 2122 return;
1724 2123
1725 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1726
1727 { 2124 {
1728 int active = ((W)w)->active; 2125 int active = ev_active (w);
1729 2126
2127 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2128
1730 if (expect_true (--active < --periodiccnt)) 2129 if (expect_true (active < periodiccnt + HEAP0 - 1))
1731 { 2130 {
1732 periodics [active] = periodics [periodiccnt]; 2131 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1733 adjustheap ((WT *)periodics, periodiccnt, active); 2132 adjustheap (periodics, periodiccnt, active);
1734 } 2133 }
2134
2135 --periodiccnt;
1735 } 2136 }
1736 2137
1737 ev_stop (EV_A_ (W)w); 2138 ev_stop (EV_A_ (W)w);
1738} 2139}
1739 2140
1759 if (expect_false (ev_is_active (w))) 2160 if (expect_false (ev_is_active (w)))
1760 return; 2161 return;
1761 2162
1762 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2163 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1763 2164
2165 evpipe_init (EV_A);
2166
2167 {
2168#ifndef _WIN32
2169 sigset_t full, prev;
2170 sigfillset (&full);
2171 sigprocmask (SIG_SETMASK, &full, &prev);
2172#endif
2173
2174 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2175
2176#ifndef _WIN32
2177 sigprocmask (SIG_SETMASK, &prev, 0);
2178#endif
2179 }
2180
1764 ev_start (EV_A_ (W)w, 1); 2181 ev_start (EV_A_ (W)w, 1);
1765 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1766 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2182 wlist_add (&signals [w->signum - 1].head, (WL)w);
1767 2183
1768 if (!((WL)w)->next) 2184 if (!((WL)w)->next)
1769 { 2185 {
1770#if _WIN32 2186#if _WIN32
1771 signal (w->signum, sighandler); 2187 signal (w->signum, ev_sighandler);
1772#else 2188#else
1773 struct sigaction sa; 2189 struct sigaction sa;
1774 sa.sa_handler = sighandler; 2190 sa.sa_handler = ev_sighandler;
1775 sigfillset (&sa.sa_mask); 2191 sigfillset (&sa.sa_mask);
1776 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2192 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1777 sigaction (w->signum, &sa, 0); 2193 sigaction (w->signum, &sa, 0);
1778#endif 2194#endif
1779 } 2195 }
1784{ 2200{
1785 clear_pending (EV_A_ (W)w); 2201 clear_pending (EV_A_ (W)w);
1786 if (expect_false (!ev_is_active (w))) 2202 if (expect_false (!ev_is_active (w)))
1787 return; 2203 return;
1788 2204
1789 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2205 wlist_del (&signals [w->signum - 1].head, (WL)w);
1790 ev_stop (EV_A_ (W)w); 2206 ev_stop (EV_A_ (W)w);
1791 2207
1792 if (!signals [w->signum - 1].head) 2208 if (!signals [w->signum - 1].head)
1793 signal (w->signum, SIG_DFL); 2209 signal (w->signum, SIG_DFL);
1794} 2210}
1801#endif 2217#endif
1802 if (expect_false (ev_is_active (w))) 2218 if (expect_false (ev_is_active (w)))
1803 return; 2219 return;
1804 2220
1805 ev_start (EV_A_ (W)w, 1); 2221 ev_start (EV_A_ (W)w, 1);
1806 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2222 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1807} 2223}
1808 2224
1809void 2225void
1810ev_child_stop (EV_P_ ev_child *w) 2226ev_child_stop (EV_P_ ev_child *w)
1811{ 2227{
1812 clear_pending (EV_A_ (W)w); 2228 clear_pending (EV_A_ (W)w);
1813 if (expect_false (!ev_is_active (w))) 2229 if (expect_false (!ev_is_active (w)))
1814 return; 2230 return;
1815 2231
1816 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2232 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1817 ev_stop (EV_A_ (W)w); 2233 ev_stop (EV_A_ (W)w);
1818} 2234}
1819 2235
1820#if EV_STAT_ENABLE 2236#if EV_STAT_ENABLE
1821 2237
1840 if (w->wd < 0) 2256 if (w->wd < 0)
1841 { 2257 {
1842 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2258 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1843 2259
1844 /* monitor some parent directory for speedup hints */ 2260 /* monitor some parent directory for speedup hints */
2261 /* note that exceeding the hardcoded limit is not a correctness issue, */
2262 /* but an efficiency issue only */
1845 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2263 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1846 { 2264 {
1847 char path [4096]; 2265 char path [4096];
1848 strcpy (path, w->path); 2266 strcpy (path, w->path);
1849 2267
2094 clear_pending (EV_A_ (W)w); 2512 clear_pending (EV_A_ (W)w);
2095 if (expect_false (!ev_is_active (w))) 2513 if (expect_false (!ev_is_active (w)))
2096 return; 2514 return;
2097 2515
2098 { 2516 {
2099 int active = ((W)w)->active; 2517 int active = ev_active (w);
2100 2518
2101 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2519 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2102 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2520 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2103 2521
2104 ev_stop (EV_A_ (W)w); 2522 ev_stop (EV_A_ (W)w);
2105 --idleall; 2523 --idleall;
2106 } 2524 }
2107} 2525}
2124 clear_pending (EV_A_ (W)w); 2542 clear_pending (EV_A_ (W)w);
2125 if (expect_false (!ev_is_active (w))) 2543 if (expect_false (!ev_is_active (w)))
2126 return; 2544 return;
2127 2545
2128 { 2546 {
2129 int active = ((W)w)->active; 2547 int active = ev_active (w);
2548
2130 prepares [active - 1] = prepares [--preparecnt]; 2549 prepares [active - 1] = prepares [--preparecnt];
2131 ((W)prepares [active - 1])->active = active; 2550 ev_active (prepares [active - 1]) = active;
2132 } 2551 }
2133 2552
2134 ev_stop (EV_A_ (W)w); 2553 ev_stop (EV_A_ (W)w);
2135} 2554}
2136 2555
2151 clear_pending (EV_A_ (W)w); 2570 clear_pending (EV_A_ (W)w);
2152 if (expect_false (!ev_is_active (w))) 2571 if (expect_false (!ev_is_active (w)))
2153 return; 2572 return;
2154 2573
2155 { 2574 {
2156 int active = ((W)w)->active; 2575 int active = ev_active (w);
2576
2157 checks [active - 1] = checks [--checkcnt]; 2577 checks [active - 1] = checks [--checkcnt];
2158 ((W)checks [active - 1])->active = active; 2578 ev_active (checks [active - 1]) = active;
2159 } 2579 }
2160 2580
2161 ev_stop (EV_A_ (W)w); 2581 ev_stop (EV_A_ (W)w);
2162} 2582}
2163 2583
2164#if EV_EMBED_ENABLE 2584#if EV_EMBED_ENABLE
2165void noinline 2585void noinline
2166ev_embed_sweep (EV_P_ ev_embed *w) 2586ev_embed_sweep (EV_P_ ev_embed *w)
2167{ 2587{
2168 ev_loop (w->loop, EVLOOP_NONBLOCK); 2588 ev_loop (w->other, EVLOOP_NONBLOCK);
2169} 2589}
2170 2590
2171static void 2591static void
2172embed_cb (EV_P_ ev_io *io, int revents) 2592embed_io_cb (EV_P_ ev_io *io, int revents)
2173{ 2593{
2174 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2594 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2175 2595
2176 if (ev_cb (w)) 2596 if (ev_cb (w))
2177 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2597 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2178 else 2598 else
2179 ev_embed_sweep (loop, w); 2599 ev_loop (w->other, EVLOOP_NONBLOCK);
2180} 2600}
2601
2602static void
2603embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2604{
2605 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2606
2607 {
2608 struct ev_loop *loop = w->other;
2609
2610 while (fdchangecnt)
2611 {
2612 fd_reify (EV_A);
2613 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2614 }
2615 }
2616}
2617
2618#if 0
2619static void
2620embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2621{
2622 ev_idle_stop (EV_A_ idle);
2623}
2624#endif
2181 2625
2182void 2626void
2183ev_embed_start (EV_P_ ev_embed *w) 2627ev_embed_start (EV_P_ ev_embed *w)
2184{ 2628{
2185 if (expect_false (ev_is_active (w))) 2629 if (expect_false (ev_is_active (w)))
2186 return; 2630 return;
2187 2631
2188 { 2632 {
2189 struct ev_loop *loop = w->loop; 2633 struct ev_loop *loop = w->other;
2190 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2634 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2191 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2635 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2192 } 2636 }
2193 2637
2194 ev_set_priority (&w->io, ev_priority (w)); 2638 ev_set_priority (&w->io, ev_priority (w));
2195 ev_io_start (EV_A_ &w->io); 2639 ev_io_start (EV_A_ &w->io);
2640
2641 ev_prepare_init (&w->prepare, embed_prepare_cb);
2642 ev_set_priority (&w->prepare, EV_MINPRI);
2643 ev_prepare_start (EV_A_ &w->prepare);
2644
2645 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2196 2646
2197 ev_start (EV_A_ (W)w, 1); 2647 ev_start (EV_A_ (W)w, 1);
2198} 2648}
2199 2649
2200void 2650void
2203 clear_pending (EV_A_ (W)w); 2653 clear_pending (EV_A_ (W)w);
2204 if (expect_false (!ev_is_active (w))) 2654 if (expect_false (!ev_is_active (w)))
2205 return; 2655 return;
2206 2656
2207 ev_io_stop (EV_A_ &w->io); 2657 ev_io_stop (EV_A_ &w->io);
2658 ev_prepare_stop (EV_A_ &w->prepare);
2208 2659
2209 ev_stop (EV_A_ (W)w); 2660 ev_stop (EV_A_ (W)w);
2210} 2661}
2211#endif 2662#endif
2212 2663
2228 clear_pending (EV_A_ (W)w); 2679 clear_pending (EV_A_ (W)w);
2229 if (expect_false (!ev_is_active (w))) 2680 if (expect_false (!ev_is_active (w)))
2230 return; 2681 return;
2231 2682
2232 { 2683 {
2233 int active = ((W)w)->active; 2684 int active = ev_active (w);
2685
2234 forks [active - 1] = forks [--forkcnt]; 2686 forks [active - 1] = forks [--forkcnt];
2235 ((W)forks [active - 1])->active = active; 2687 ev_active (forks [active - 1]) = active;
2236 } 2688 }
2237 2689
2238 ev_stop (EV_A_ (W)w); 2690 ev_stop (EV_A_ (W)w);
2691}
2692#endif
2693
2694#if EV_ASYNC_ENABLE
2695void
2696ev_async_start (EV_P_ ev_async *w)
2697{
2698 if (expect_false (ev_is_active (w)))
2699 return;
2700
2701 evpipe_init (EV_A);
2702
2703 ev_start (EV_A_ (W)w, ++asynccnt);
2704 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2705 asyncs [asynccnt - 1] = w;
2706}
2707
2708void
2709ev_async_stop (EV_P_ ev_async *w)
2710{
2711 clear_pending (EV_A_ (W)w);
2712 if (expect_false (!ev_is_active (w)))
2713 return;
2714
2715 {
2716 int active = ev_active (w);
2717
2718 asyncs [active - 1] = asyncs [--asynccnt];
2719 ev_active (asyncs [active - 1]) = active;
2720 }
2721
2722 ev_stop (EV_A_ (W)w);
2723}
2724
2725void
2726ev_async_send (EV_P_ ev_async *w)
2727{
2728 w->sent = 1;
2729 evpipe_write (EV_A_ &gotasync);
2239} 2730}
2240#endif 2731#endif
2241 2732
2242/*****************************************************************************/ 2733/*****************************************************************************/
2243 2734
2301 ev_timer_set (&once->to, timeout, 0.); 2792 ev_timer_set (&once->to, timeout, 0.);
2302 ev_timer_start (EV_A_ &once->to); 2793 ev_timer_start (EV_A_ &once->to);
2303 } 2794 }
2304} 2795}
2305 2796
2797#if EV_MULTIPLICITY
2798 #include "ev_wrap.h"
2799#endif
2800
2306#ifdef __cplusplus 2801#ifdef __cplusplus
2307} 2802}
2308#endif 2803#endif
2309 2804

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines