ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.177 by root, Tue Dec 11 15:06:50 2007 UTC vs.
Revision 1.250 by root, Thu May 22 02:44:57 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 259
197#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
200#endif 263#endif
202#ifndef CLOCK_REALTIME 265#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 266# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 267# define EV_USE_REALTIME 0
205#endif 268#endif
206 269
270#if !EV_STAT_ENABLE
271# undef EV_USE_INOTIFY
272# define EV_USE_INOTIFY 0
273#endif
274
275#if !EV_USE_NANOSLEEP
276# ifndef _WIN32
277# include <sys/select.h>
278# endif
279#endif
280
281#if EV_USE_INOTIFY
282# include <sys/inotify.h>
283#endif
284
207#if EV_SELECT_IS_WINSOCKET 285#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 286# include <winsock.h>
209#endif 287#endif
210 288
211#if !EV_STAT_ENABLE 289#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h>
292# ifdef __cplusplus
293extern "C" {
213#endif 294# endif
214 295int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 296# ifdef __cplusplus
216# include <sys/inotify.h> 297}
298# endif
217#endif 299#endif
218 300
219/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
220 308
221/* 309/*
222 * This is used to avoid floating point rounding problems. 310 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 311 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 312 * to ensure progress, time-wise, even when rounding
230 318
231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 319#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 320#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 321/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
234 322
235#if __GNUC__ >= 3 323#if __GNUC__ >= 4
236# define expect(expr,value) __builtin_expect ((expr),(value)) 324# define expect(expr,value) __builtin_expect ((expr),(value))
237# define noinline __attribute__ ((noinline)) 325# define noinline __attribute__ ((noinline))
238#else 326#else
239# define expect(expr,value) (expr) 327# define expect(expr,value) (expr)
240# define noinline 328# define noinline
241# if __STDC_VERSION__ < 199901L 329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
242# define inline 330# define inline
243# endif 331# endif
244#endif 332#endif
245 333
246#define expect_false(expr) expect ((expr) != 0, 0) 334#define expect_false(expr) expect ((expr) != 0, 0)
261 349
262typedef ev_watcher *W; 350typedef ev_watcher *W;
263typedef ev_watcher_list *WL; 351typedef ev_watcher_list *WL;
264typedef ev_watcher_time *WT; 352typedef ev_watcher_time *WT;
265 353
354#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at
356
357#if EV_USE_MONOTONIC
358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
359/* giving it a reasonably high chance of working on typical architetcures */
266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
361#endif
267 362
268#ifdef _WIN32 363#ifdef _WIN32
269# include "ev_win32.c" 364# include "ev_win32.c"
270#endif 365#endif
271 366
292 perror (msg); 387 perror (msg);
293 abort (); 388 abort ();
294 } 389 }
295} 390}
296 391
392static void *
393ev_realloc_emul (void *ptr, long size)
394{
395 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and
397 * the single unix specification, so work around them here.
398 */
399
400 if (size)
401 return realloc (ptr, size);
402
403 free (ptr);
404 return 0;
405}
406
297static void *(*alloc)(void *ptr, long size); 407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
298 408
299void 409void
300ev_set_allocator (void *(*cb)(void *ptr, long size)) 410ev_set_allocator (void *(*cb)(void *ptr, long size))
301{ 411{
302 alloc = cb; 412 alloc = cb;
303} 413}
304 414
305inline_speed void * 415inline_speed void *
306ev_realloc (void *ptr, long size) 416ev_realloc (void *ptr, long size)
307{ 417{
308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 418 ptr = alloc (ptr, size);
309 419
310 if (!ptr && size) 420 if (!ptr && size)
311 { 421 {
312 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
313 abort (); 423 abort ();
336 W w; 446 W w;
337 int events; 447 int events;
338} ANPENDING; 448} ANPENDING;
339 449
340#if EV_USE_INOTIFY 450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
341typedef struct 452typedef struct
342{ 453{
343 WL head; 454 WL head;
344} ANFS; 455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
345#endif 474#endif
346 475
347#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
348 477
349 struct ev_loop 478 struct ev_loop
407{ 536{
408 return ev_rt_now; 537 return ev_rt_now;
409} 538}
410#endif 539#endif
411 540
541void
542ev_sleep (ev_tstamp delay)
543{
544 if (delay > 0.)
545 {
546#if EV_USE_NANOSLEEP
547 struct timespec ts;
548
549 ts.tv_sec = (time_t)delay;
550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
551
552 nanosleep (&ts, 0);
553#elif defined(_WIN32)
554 Sleep ((unsigned long)(delay * 1e3));
555#else
556 struct timeval tv;
557
558 tv.tv_sec = (time_t)delay;
559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
560
561 select (0, 0, 0, 0, &tv);
562#endif
563 }
564}
565
566/*****************************************************************************/
567
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569
412int inline_size 570int inline_size
413array_nextsize (int elem, int cur, int cnt) 571array_nextsize (int elem, int cur, int cnt)
414{ 572{
415 int ncur = cur + 1; 573 int ncur = cur + 1;
416 574
417 do 575 do
418 ncur <<= 1; 576 ncur <<= 1;
419 while (cnt > ncur); 577 while (cnt > ncur);
420 578
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096) 580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
423 { 581 {
424 ncur *= elem; 582 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
426 ncur = ncur - sizeof (void *) * 4; 584 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem; 585 ncur /= elem;
428 } 586 }
429 587
430 return ncur; 588 return ncur;
476 pendings [pri][w_->pending - 1].w = w_; 634 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents; 635 pendings [pri][w_->pending - 1].events = revents;
478 } 636 }
479} 637}
480 638
481void inline_size 639void inline_speed
482queue_events (EV_P_ W *events, int eventcnt, int type) 640queue_events (EV_P_ W *events, int eventcnt, int type)
483{ 641{
484 int i; 642 int i;
485 643
486 for (i = 0; i < eventcnt; ++i) 644 for (i = 0; i < eventcnt; ++i)
533 { 691 {
534 int fd = fdchanges [i]; 692 int fd = fdchanges [i];
535 ANFD *anfd = anfds + fd; 693 ANFD *anfd = anfds + fd;
536 ev_io *w; 694 ev_io *w;
537 695
538 int events = 0; 696 unsigned char events = 0;
539 697
540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 698 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
541 events |= w->events; 699 events |= (unsigned char)w->events;
542 700
543#if EV_SELECT_IS_WINSOCKET 701#if EV_SELECT_IS_WINSOCKET
544 if (events) 702 if (events)
545 { 703 {
546 unsigned long argp; 704 unsigned long argp;
705 #ifdef EV_FD_TO_WIN32_HANDLE
706 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
707 #else
547 anfd->handle = _get_osfhandle (fd); 708 anfd->handle = _get_osfhandle (fd);
709 #endif
548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 710 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
549 } 711 }
550#endif 712#endif
551 713
714 {
715 unsigned char o_events = anfd->events;
716 unsigned char o_reify = anfd->reify;
717
552 anfd->reify = 0; 718 anfd->reify = 0;
553
554 backend_modify (EV_A_ fd, anfd->events, events);
555 anfd->events = events; 719 anfd->events = events;
720
721 if (o_events != events || o_reify & EV_IOFDSET)
722 backend_modify (EV_A_ fd, o_events, events);
723 }
556 } 724 }
557 725
558 fdchangecnt = 0; 726 fdchangecnt = 0;
559} 727}
560 728
561void inline_size 729void inline_size
562fd_change (EV_P_ int fd) 730fd_change (EV_P_ int fd, int flags)
563{ 731{
564 if (expect_false (anfds [fd].reify)) 732 unsigned char reify = anfds [fd].reify;
565 return;
566
567 anfds [fd].reify = 1; 733 anfds [fd].reify |= flags;
568 734
735 if (expect_true (!reify))
736 {
569 ++fdchangecnt; 737 ++fdchangecnt;
570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 738 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
571 fdchanges [fdchangecnt - 1] = fd; 739 fdchanges [fdchangecnt - 1] = fd;
740 }
572} 741}
573 742
574void inline_speed 743void inline_speed
575fd_kill (EV_P_ int fd) 744fd_kill (EV_P_ int fd)
576{ 745{
627 796
628 for (fd = 0; fd < anfdmax; ++fd) 797 for (fd = 0; fd < anfdmax; ++fd)
629 if (anfds [fd].events) 798 if (anfds [fd].events)
630 { 799 {
631 anfds [fd].events = 0; 800 anfds [fd].events = 0;
632 fd_change (EV_A_ fd); 801 fd_change (EV_A_ fd, EV_IOFDSET | 1);
633 } 802 }
634} 803}
635 804
636/*****************************************************************************/ 805/*****************************************************************************/
637 806
807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
814 * at the moment we allow libev the luxury of two heaps,
815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
816 * which is more cache-efficient.
817 * the difference is about 5% with 50000+ watchers.
818 */
819#if EV_USE_4HEAP
820
821#define DHEAP 4
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
825
826/* away from the root */
638void inline_speed 827void inline_speed
639upheap (WT *heap, int k) 828downheap (ANHE *heap, int N, int k)
640{ 829{
641 WT w = heap [k]; 830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
642 832
643 while (k && heap [k >> 1]->at > w->at) 833 for (;;)
644 {
645 heap [k] = heap [k >> 1];
646 ((W)heap [k])->active = k + 1;
647 k >>= 1;
648 } 834 {
835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
649 838
839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
841 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
855 break;
856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
650 heap [k] = w; 866 heap [k] = he;
651 ((W)heap [k])->active = k + 1; 867 ev_active (ANHE_w (he)) = k;
652
653} 868}
654 869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
655void inline_speed 877void inline_speed
656downheap (WT *heap, int N, int k) 878downheap (ANHE *heap, int N, int k)
657{ 879{
658 WT w = heap [k]; 880 ANHE he = heap [k];
659 881
660 while (k < (N >> 1)) 882 for (;;)
661 { 883 {
662 int j = k << 1; 884 int c = k << 1;
663 885
664 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 886 if (c > N + HEAP0 - 1)
665 ++j;
666
667 if (w->at <= heap [j]->at)
668 break; 887 break;
669 888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
670 heap [k] = heap [j]; 895 heap [k] = heap [c];
671 ((W)heap [k])->active = k + 1; 896 ev_active (ANHE_w (heap [k])) = k;
897
672 k = j; 898 k = c;
673 } 899 }
674 900
675 heap [k] = w; 901 heap [k] = he;
676 ((W)heap [k])->active = k + 1; 902 ev_active (ANHE_w (he)) = k;
903}
904#endif
905
906/* towards the root */
907void inline_speed
908upheap (ANHE *heap, int k)
909{
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
919 heap [k] = heap [p];
920 ev_active (ANHE_w (heap [k])) = k;
921 k = p;
922 }
923
924 heap [k] = he;
925 ev_active (ANHE_w (he)) = k;
677} 926}
678 927
679void inline_size 928void inline_size
680adjustheap (WT *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
681{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
682 upheap (heap, k); 932 upheap (heap, k);
933 else
683 downheap (heap, N, k); 934 downheap (heap, N, k);
684} 935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
943 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
944 for (i = 0; i < N; ++i)
945 upheap (heap, i + HEAP0);
946}
947
948#if EV_VERIFY
949static void
950checkheap (ANHE *heap, int N)
951{
952 int i;
953
954 for (i = HEAP0; i < N + HEAP0; ++i)
955 {
956 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
957 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
958 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
959 }
960}
961#endif
685 962
686/*****************************************************************************/ 963/*****************************************************************************/
687 964
688typedef struct 965typedef struct
689{ 966{
690 WL head; 967 WL head;
691 sig_atomic_t volatile gotsig; 968 EV_ATOMIC_T gotsig;
692} ANSIG; 969} ANSIG;
693 970
694static ANSIG *signals; 971static ANSIG *signals;
695static int signalmax; 972static int signalmax;
696 973
697static int sigpipe [2]; 974static EV_ATOMIC_T gotsig;
698static sig_atomic_t volatile gotsig;
699static ev_io sigev;
700 975
701void inline_size 976void inline_size
702signals_init (ANSIG *base, int count) 977signals_init (ANSIG *base, int count)
703{ 978{
704 while (count--) 979 while (count--)
708 983
709 ++base; 984 ++base;
710 } 985 }
711} 986}
712 987
713static void 988/*****************************************************************************/
714sighandler (int signum)
715{
716#if _WIN32
717 signal (signum, sighandler);
718#endif
719
720 signals [signum - 1].gotsig = 1;
721
722 if (!gotsig)
723 {
724 int old_errno = errno;
725 gotsig = 1;
726 write (sigpipe [1], &signum, 1);
727 errno = old_errno;
728 }
729}
730
731void noinline
732ev_feed_signal_event (EV_P_ int signum)
733{
734 WL w;
735
736#if EV_MULTIPLICITY
737 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
738#endif
739
740 --signum;
741
742 if (signum < 0 || signum >= signalmax)
743 return;
744
745 signals [signum].gotsig = 0;
746
747 for (w = signals [signum].head; w; w = w->next)
748 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
749}
750
751static void
752sigcb (EV_P_ ev_io *iow, int revents)
753{
754 int signum;
755
756 read (sigpipe [0], &revents, 1);
757 gotsig = 0;
758
759 for (signum = signalmax; signum--; )
760 if (signals [signum].gotsig)
761 ev_feed_signal_event (EV_A_ signum + 1);
762}
763 989
764void inline_speed 990void inline_speed
765fd_intern (int fd) 991fd_intern (int fd)
766{ 992{
767#ifdef _WIN32 993#ifdef _WIN32
772 fcntl (fd, F_SETFL, O_NONBLOCK); 998 fcntl (fd, F_SETFL, O_NONBLOCK);
773#endif 999#endif
774} 1000}
775 1001
776static void noinline 1002static void noinline
777siginit (EV_P) 1003evpipe_init (EV_P)
778{ 1004{
1005 if (!ev_is_active (&pipeev))
1006 {
1007#if EV_USE_EVENTFD
1008 if ((evfd = eventfd (0, 0)) >= 0)
1009 {
1010 evpipe [0] = -1;
1011 fd_intern (evfd);
1012 ev_io_set (&pipeev, evfd, EV_READ);
1013 }
1014 else
1015#endif
1016 {
1017 while (pipe (evpipe))
1018 syserr ("(libev) error creating signal/async pipe");
1019
779 fd_intern (sigpipe [0]); 1020 fd_intern (evpipe [0]);
780 fd_intern (sigpipe [1]); 1021 fd_intern (evpipe [1]);
1022 ev_io_set (&pipeev, evpipe [0], EV_READ);
1023 }
781 1024
782 ev_io_set (&sigev, sigpipe [0], EV_READ);
783 ev_io_start (EV_A_ &sigev); 1025 ev_io_start (EV_A_ &pipeev);
784 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1026 ev_unref (EV_A); /* watcher should not keep loop alive */
1027 }
1028}
1029
1030void inline_size
1031evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1032{
1033 if (!*flag)
1034 {
1035 int old_errno = errno; /* save errno because write might clobber it */
1036
1037 *flag = 1;
1038
1039#if EV_USE_EVENTFD
1040 if (evfd >= 0)
1041 {
1042 uint64_t counter = 1;
1043 write (evfd, &counter, sizeof (uint64_t));
1044 }
1045 else
1046#endif
1047 write (evpipe [1], &old_errno, 1);
1048
1049 errno = old_errno;
1050 }
1051}
1052
1053static void
1054pipecb (EV_P_ ev_io *iow, int revents)
1055{
1056#if EV_USE_EVENTFD
1057 if (evfd >= 0)
1058 {
1059 uint64_t counter;
1060 read (evfd, &counter, sizeof (uint64_t));
1061 }
1062 else
1063#endif
1064 {
1065 char dummy;
1066 read (evpipe [0], &dummy, 1);
1067 }
1068
1069 if (gotsig && ev_is_default_loop (EV_A))
1070 {
1071 int signum;
1072 gotsig = 0;
1073
1074 for (signum = signalmax; signum--; )
1075 if (signals [signum].gotsig)
1076 ev_feed_signal_event (EV_A_ signum + 1);
1077 }
1078
1079#if EV_ASYNC_ENABLE
1080 if (gotasync)
1081 {
1082 int i;
1083 gotasync = 0;
1084
1085 for (i = asynccnt; i--; )
1086 if (asyncs [i]->sent)
1087 {
1088 asyncs [i]->sent = 0;
1089 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1090 }
1091 }
1092#endif
785} 1093}
786 1094
787/*****************************************************************************/ 1095/*****************************************************************************/
788 1096
1097static void
1098ev_sighandler (int signum)
1099{
1100#if EV_MULTIPLICITY
1101 struct ev_loop *loop = &default_loop_struct;
1102#endif
1103
1104#if _WIN32
1105 signal (signum, ev_sighandler);
1106#endif
1107
1108 signals [signum - 1].gotsig = 1;
1109 evpipe_write (EV_A_ &gotsig);
1110}
1111
1112void noinline
1113ev_feed_signal_event (EV_P_ int signum)
1114{
1115 WL w;
1116
1117#if EV_MULTIPLICITY
1118 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1119#endif
1120
1121 --signum;
1122
1123 if (signum < 0 || signum >= signalmax)
1124 return;
1125
1126 signals [signum].gotsig = 0;
1127
1128 for (w = signals [signum].head; w; w = w->next)
1129 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1130}
1131
1132/*****************************************************************************/
1133
789static ev_child *childs [EV_PID_HASHSIZE]; 1134static WL childs [EV_PID_HASHSIZE];
790 1135
791#ifndef _WIN32 1136#ifndef _WIN32
792 1137
793static ev_signal childev; 1138static ev_signal childev;
794 1139
1140#ifndef WIFCONTINUED
1141# define WIFCONTINUED(status) 0
1142#endif
1143
795void inline_speed 1144void inline_speed
796child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1145child_reap (EV_P_ int chain, int pid, int status)
797{ 1146{
798 ev_child *w; 1147 ev_child *w;
1148 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
799 1149
800 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1150 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1151 {
801 if (w->pid == pid || !w->pid) 1152 if ((w->pid == pid || !w->pid)
1153 && (!traced || (w->flags & 1)))
802 { 1154 {
803 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1155 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
804 w->rpid = pid; 1156 w->rpid = pid;
805 w->rstatus = status; 1157 w->rstatus = status;
806 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1158 ev_feed_event (EV_A_ (W)w, EV_CHILD);
807 } 1159 }
1160 }
808} 1161}
809 1162
810#ifndef WCONTINUED 1163#ifndef WCONTINUED
811# define WCONTINUED 0 1164# define WCONTINUED 0
812#endif 1165#endif
821 if (!WCONTINUED 1174 if (!WCONTINUED
822 || errno != EINVAL 1175 || errno != EINVAL
823 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1176 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
824 return; 1177 return;
825 1178
826 /* make sure we are called again until all childs have been reaped */ 1179 /* make sure we are called again until all children have been reaped */
827 /* we need to do it this way so that the callback gets called before we continue */ 1180 /* we need to do it this way so that the callback gets called before we continue */
828 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1181 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
829 1182
830 child_reap (EV_A_ sw, pid, pid, status); 1183 child_reap (EV_A_ pid, pid, status);
831 if (EV_PID_HASHSIZE > 1) 1184 if (EV_PID_HASHSIZE > 1)
832 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1185 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
833} 1186}
834 1187
835#endif 1188#endif
836 1189
837/*****************************************************************************/ 1190/*****************************************************************************/
909} 1262}
910 1263
911unsigned int 1264unsigned int
912ev_embeddable_backends (void) 1265ev_embeddable_backends (void)
913{ 1266{
914 return EVBACKEND_EPOLL 1267 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
915 | EVBACKEND_KQUEUE 1268
916 | EVBACKEND_PORT; 1269 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1270 /* please fix it and tell me how to detect the fix */
1271 flags &= ~EVBACKEND_EPOLL;
1272
1273 return flags;
917} 1274}
918 1275
919unsigned int 1276unsigned int
920ev_backend (EV_P) 1277ev_backend (EV_P)
921{ 1278{
924 1281
925unsigned int 1282unsigned int
926ev_loop_count (EV_P) 1283ev_loop_count (EV_P)
927{ 1284{
928 return loop_count; 1285 return loop_count;
1286}
1287
1288void
1289ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1290{
1291 io_blocktime = interval;
1292}
1293
1294void
1295ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1296{
1297 timeout_blocktime = interval;
929} 1298}
930 1299
931static void noinline 1300static void noinline
932loop_init (EV_P_ unsigned int flags) 1301loop_init (EV_P_ unsigned int flags)
933{ 1302{
939 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1308 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
940 have_monotonic = 1; 1309 have_monotonic = 1;
941 } 1310 }
942#endif 1311#endif
943 1312
944 ev_rt_now = ev_time (); 1313 ev_rt_now = ev_time ();
945 mn_now = get_clock (); 1314 mn_now = get_clock ();
946 now_floor = mn_now; 1315 now_floor = mn_now;
947 rtmn_diff = ev_rt_now - mn_now; 1316 rtmn_diff = ev_rt_now - mn_now;
1317
1318 io_blocktime = 0.;
1319 timeout_blocktime = 0.;
1320 backend = 0;
1321 backend_fd = -1;
1322 gotasync = 0;
1323#if EV_USE_INOTIFY
1324 fs_fd = -2;
1325#endif
948 1326
949 /* pid check not overridable via env */ 1327 /* pid check not overridable via env */
950#ifndef _WIN32 1328#ifndef _WIN32
951 if (flags & EVFLAG_FORKCHECK) 1329 if (flags & EVFLAG_FORKCHECK)
952 curpid = getpid (); 1330 curpid = getpid ();
955 if (!(flags & EVFLAG_NOENV) 1333 if (!(flags & EVFLAG_NOENV)
956 && !enable_secure () 1334 && !enable_secure ()
957 && getenv ("LIBEV_FLAGS")) 1335 && getenv ("LIBEV_FLAGS"))
958 flags = atoi (getenv ("LIBEV_FLAGS")); 1336 flags = atoi (getenv ("LIBEV_FLAGS"));
959 1337
960 if (!(flags & 0x0000ffffUL)) 1338 if (!(flags & 0x0000ffffU))
961 flags |= ev_recommended_backends (); 1339 flags |= ev_recommended_backends ();
962
963 backend = 0;
964 backend_fd = -1;
965#if EV_USE_INOTIFY
966 fs_fd = -2;
967#endif
968 1340
969#if EV_USE_PORT 1341#if EV_USE_PORT
970 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1342 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
971#endif 1343#endif
972#if EV_USE_KQUEUE 1344#if EV_USE_KQUEUE
980#endif 1352#endif
981#if EV_USE_SELECT 1353#if EV_USE_SELECT
982 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1354 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
983#endif 1355#endif
984 1356
985 ev_init (&sigev, sigcb); 1357 ev_init (&pipeev, pipecb);
986 ev_set_priority (&sigev, EV_MAXPRI); 1358 ev_set_priority (&pipeev, EV_MAXPRI);
987 } 1359 }
988} 1360}
989 1361
990static void noinline 1362static void noinline
991loop_destroy (EV_P) 1363loop_destroy (EV_P)
992{ 1364{
993 int i; 1365 int i;
1366
1367 if (ev_is_active (&pipeev))
1368 {
1369 ev_ref (EV_A); /* signal watcher */
1370 ev_io_stop (EV_A_ &pipeev);
1371
1372#if EV_USE_EVENTFD
1373 if (evfd >= 0)
1374 close (evfd);
1375#endif
1376
1377 if (evpipe [0] >= 0)
1378 {
1379 close (evpipe [0]);
1380 close (evpipe [1]);
1381 }
1382 }
994 1383
995#if EV_USE_INOTIFY 1384#if EV_USE_INOTIFY
996 if (fs_fd >= 0) 1385 if (fs_fd >= 0)
997 close (fs_fd); 1386 close (fs_fd);
998#endif 1387#endif
1021 array_free (pending, [i]); 1410 array_free (pending, [i]);
1022#if EV_IDLE_ENABLE 1411#if EV_IDLE_ENABLE
1023 array_free (idle, [i]); 1412 array_free (idle, [i]);
1024#endif 1413#endif
1025 } 1414 }
1415
1416 ev_free (anfds); anfdmax = 0;
1026 1417
1027 /* have to use the microsoft-never-gets-it-right macro */ 1418 /* have to use the microsoft-never-gets-it-right macro */
1028 array_free (fdchange, EMPTY); 1419 array_free (fdchange, EMPTY);
1029 array_free (timer, EMPTY); 1420 array_free (timer, EMPTY);
1030#if EV_PERIODIC_ENABLE 1421#if EV_PERIODIC_ENABLE
1031 array_free (periodic, EMPTY); 1422 array_free (periodic, EMPTY);
1032#endif 1423#endif
1424#if EV_FORK_ENABLE
1425 array_free (fork, EMPTY);
1426#endif
1033 array_free (prepare, EMPTY); 1427 array_free (prepare, EMPTY);
1034 array_free (check, EMPTY); 1428 array_free (check, EMPTY);
1429#if EV_ASYNC_ENABLE
1430 array_free (async, EMPTY);
1431#endif
1035 1432
1036 backend = 0; 1433 backend = 0;
1037} 1434}
1038 1435
1436#if EV_USE_INOTIFY
1039void inline_size infy_fork (EV_P); 1437void inline_size infy_fork (EV_P);
1438#endif
1040 1439
1041void inline_size 1440void inline_size
1042loop_fork (EV_P) 1441loop_fork (EV_P)
1043{ 1442{
1044#if EV_USE_PORT 1443#if EV_USE_PORT
1052#endif 1451#endif
1053#if EV_USE_INOTIFY 1452#if EV_USE_INOTIFY
1054 infy_fork (EV_A); 1453 infy_fork (EV_A);
1055#endif 1454#endif
1056 1455
1057 if (ev_is_active (&sigev)) 1456 if (ev_is_active (&pipeev))
1058 { 1457 {
1059 /* default loop */ 1458 /* this "locks" the handlers against writing to the pipe */
1459 /* while we modify the fd vars */
1460 gotsig = 1;
1461#if EV_ASYNC_ENABLE
1462 gotasync = 1;
1463#endif
1060 1464
1061 ev_ref (EV_A); 1465 ev_ref (EV_A);
1062 ev_io_stop (EV_A_ &sigev); 1466 ev_io_stop (EV_A_ &pipeev);
1467
1468#if EV_USE_EVENTFD
1469 if (evfd >= 0)
1470 close (evfd);
1471#endif
1472
1473 if (evpipe [0] >= 0)
1474 {
1063 close (sigpipe [0]); 1475 close (evpipe [0]);
1064 close (sigpipe [1]); 1476 close (evpipe [1]);
1477 }
1065 1478
1066 while (pipe (sigpipe))
1067 syserr ("(libev) error creating pipe");
1068
1069 siginit (EV_A); 1479 evpipe_init (EV_A);
1480 /* now iterate over everything, in case we missed something */
1481 pipecb (EV_A_ &pipeev, EV_READ);
1070 } 1482 }
1071 1483
1072 postfork = 0; 1484 postfork = 0;
1073} 1485}
1074 1486
1075#if EV_MULTIPLICITY 1487#if EV_MULTIPLICITY
1488
1076struct ev_loop * 1489struct ev_loop *
1077ev_loop_new (unsigned int flags) 1490ev_loop_new (unsigned int flags)
1078{ 1491{
1079 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1492 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1080 1493
1096} 1509}
1097 1510
1098void 1511void
1099ev_loop_fork (EV_P) 1512ev_loop_fork (EV_P)
1100{ 1513{
1101 postfork = 1; 1514 postfork = 1; /* must be in line with ev_default_fork */
1102} 1515}
1103 1516
1517#if EV_VERIFY
1518static void
1519array_check (W **ws, int cnt)
1520{
1521 while (cnt--)
1522 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1523}
1104#endif 1524#endif
1525
1526void
1527ev_loop_verify (EV_P)
1528{
1529#if EV_VERIFY
1530 int i;
1531
1532 checkheap (timers, timercnt);
1533#if EV_PERIODIC_ENABLE
1534 checkheap (periodics, periodiccnt);
1535#endif
1536
1537#if EV_IDLE_ENABLE
1538 for (i = NUMPRI; i--; )
1539 array_check ((W **)idles [i], idlecnt [i]);
1540#endif
1541#if EV_FORK_ENABLE
1542 array_check ((W **)forks, forkcnt);
1543#endif
1544#if EV_ASYNC_ENABLE
1545 array_check ((W **)asyncs, asynccnt);
1546#endif
1547 array_check ((W **)prepares, preparecnt);
1548 array_check ((W **)checks, checkcnt);
1549#endif
1550}
1551
1552#endif /* multiplicity */
1105 1553
1106#if EV_MULTIPLICITY 1554#if EV_MULTIPLICITY
1107struct ev_loop * 1555struct ev_loop *
1108ev_default_loop_init (unsigned int flags) 1556ev_default_loop_init (unsigned int flags)
1109#else 1557#else
1110int 1558int
1111ev_default_loop (unsigned int flags) 1559ev_default_loop (unsigned int flags)
1112#endif 1560#endif
1113{ 1561{
1114 if (sigpipe [0] == sigpipe [1])
1115 if (pipe (sigpipe))
1116 return 0;
1117
1118 if (!ev_default_loop_ptr) 1562 if (!ev_default_loop_ptr)
1119 { 1563 {
1120#if EV_MULTIPLICITY 1564#if EV_MULTIPLICITY
1121 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1565 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1122#else 1566#else
1125 1569
1126 loop_init (EV_A_ flags); 1570 loop_init (EV_A_ flags);
1127 1571
1128 if (ev_backend (EV_A)) 1572 if (ev_backend (EV_A))
1129 { 1573 {
1130 siginit (EV_A);
1131
1132#ifndef _WIN32 1574#ifndef _WIN32
1133 ev_signal_init (&childev, childcb, SIGCHLD); 1575 ev_signal_init (&childev, childcb, SIGCHLD);
1134 ev_set_priority (&childev, EV_MAXPRI); 1576 ev_set_priority (&childev, EV_MAXPRI);
1135 ev_signal_start (EV_A_ &childev); 1577 ev_signal_start (EV_A_ &childev);
1136 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1578 ev_unref (EV_A); /* child watcher should not keep loop alive */
1153#ifndef _WIN32 1595#ifndef _WIN32
1154 ev_ref (EV_A); /* child watcher */ 1596 ev_ref (EV_A); /* child watcher */
1155 ev_signal_stop (EV_A_ &childev); 1597 ev_signal_stop (EV_A_ &childev);
1156#endif 1598#endif
1157 1599
1158 ev_ref (EV_A); /* signal watcher */
1159 ev_io_stop (EV_A_ &sigev);
1160
1161 close (sigpipe [0]); sigpipe [0] = 0;
1162 close (sigpipe [1]); sigpipe [1] = 0;
1163
1164 loop_destroy (EV_A); 1600 loop_destroy (EV_A);
1165} 1601}
1166 1602
1167void 1603void
1168ev_default_fork (void) 1604ev_default_fork (void)
1170#if EV_MULTIPLICITY 1606#if EV_MULTIPLICITY
1171 struct ev_loop *loop = ev_default_loop_ptr; 1607 struct ev_loop *loop = ev_default_loop_ptr;
1172#endif 1608#endif
1173 1609
1174 if (backend) 1610 if (backend)
1175 postfork = 1; 1611 postfork = 1; /* must be in line with ev_loop_fork */
1176} 1612}
1177 1613
1178/*****************************************************************************/ 1614/*****************************************************************************/
1179 1615
1180void 1616void
1197 { 1633 {
1198 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1634 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1199 1635
1200 p->w->pending = 0; 1636 p->w->pending = 0;
1201 EV_CB_INVOKE (p->w, p->events); 1637 EV_CB_INVOKE (p->w, p->events);
1638 EV_FREQUENT_CHECK;
1202 } 1639 }
1203 } 1640 }
1204} 1641}
1205
1206void inline_size
1207timers_reify (EV_P)
1208{
1209 while (timercnt && ((WT)timers [0])->at <= mn_now)
1210 {
1211 ev_timer *w = timers [0];
1212
1213 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1214
1215 /* first reschedule or stop timer */
1216 if (w->repeat)
1217 {
1218 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1219
1220 ((WT)w)->at += w->repeat;
1221 if (((WT)w)->at < mn_now)
1222 ((WT)w)->at = mn_now;
1223
1224 downheap ((WT *)timers, timercnt, 0);
1225 }
1226 else
1227 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1228
1229 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1230 }
1231}
1232
1233#if EV_PERIODIC_ENABLE
1234void inline_size
1235periodics_reify (EV_P)
1236{
1237 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1238 {
1239 ev_periodic *w = periodics [0];
1240
1241 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1242
1243 /* first reschedule or stop timer */
1244 if (w->reschedule_cb)
1245 {
1246 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1247 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1248 downheap ((WT *)periodics, periodiccnt, 0);
1249 }
1250 else if (w->interval)
1251 {
1252 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1253 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1255 downheap ((WT *)periodics, periodiccnt, 0);
1256 }
1257 else
1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1259
1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1261 }
1262}
1263
1264static void noinline
1265periodics_reschedule (EV_P)
1266{
1267 int i;
1268
1269 /* adjust periodics after time jump */
1270 for (i = 0; i < periodiccnt; ++i)
1271 {
1272 ev_periodic *w = periodics [i];
1273
1274 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1276 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 }
1279
1280 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i);
1283}
1284#endif
1285 1642
1286#if EV_IDLE_ENABLE 1643#if EV_IDLE_ENABLE
1287void inline_size 1644void inline_size
1288idle_reify (EV_P) 1645idle_reify (EV_P)
1289{ 1646{
1304 } 1661 }
1305 } 1662 }
1306} 1663}
1307#endif 1664#endif
1308 1665
1309int inline_size 1666void inline_size
1310time_update_monotonic (EV_P) 1667timers_reify (EV_P)
1311{ 1668{
1669 EV_FREQUENT_CHECK;
1670
1671 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1672 {
1673 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1674
1675 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1676
1677 /* first reschedule or stop timer */
1678 if (w->repeat)
1679 {
1680 ev_at (w) += w->repeat;
1681 if (ev_at (w) < mn_now)
1682 ev_at (w) = mn_now;
1683
1684 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1685
1686 ANHE_at_cache (timers [HEAP0]);
1687 downheap (timers, timercnt, HEAP0);
1688 }
1689 else
1690 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1691
1692 EV_FREQUENT_CHECK;
1693 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1694 }
1695}
1696
1697#if EV_PERIODIC_ENABLE
1698void inline_size
1699periodics_reify (EV_P)
1700{
1701 EV_FREQUENT_CHECK;
1702
1703 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1704 {
1705 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1706
1707 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1708
1709 /* first reschedule or stop timer */
1710 if (w->reschedule_cb)
1711 {
1712 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1713
1714 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1715
1716 ANHE_at_cache (periodics [HEAP0]);
1717 downheap (periodics, periodiccnt, HEAP0);
1718 }
1719 else if (w->interval)
1720 {
1721 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1722 /* if next trigger time is not sufficiently in the future, put it there */
1723 /* this might happen because of floating point inexactness */
1724 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1725 {
1726 ev_at (w) += w->interval;
1727
1728 /* if interval is unreasonably low we might still have a time in the past */
1729 /* so correct this. this will make the periodic very inexact, but the user */
1730 /* has effectively asked to get triggered more often than possible */
1731 if (ev_at (w) < ev_rt_now)
1732 ev_at (w) = ev_rt_now;
1733 }
1734
1735 ANHE_at_cache (periodics [HEAP0]);
1736 downheap (periodics, periodiccnt, HEAP0);
1737 }
1738 else
1739 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1740
1741 EV_FREQUENT_CHECK;
1742 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1743 }
1744}
1745
1746static void noinline
1747periodics_reschedule (EV_P)
1748{
1749 int i;
1750
1751 /* adjust periodics after time jump */
1752 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1753 {
1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1755
1756 if (w->reschedule_cb)
1757 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1758 else if (w->interval)
1759 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1760
1761 ANHE_at_cache (periodics [i]);
1762 }
1763
1764 reheap (periodics, periodiccnt);
1765}
1766#endif
1767
1768void inline_speed
1769time_update (EV_P_ ev_tstamp max_block)
1770{
1771 int i;
1772
1773#if EV_USE_MONOTONIC
1774 if (expect_true (have_monotonic))
1775 {
1776 ev_tstamp odiff = rtmn_diff;
1777
1312 mn_now = get_clock (); 1778 mn_now = get_clock ();
1313 1779
1780 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1781 /* interpolate in the meantime */
1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1782 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1315 { 1783 {
1316 ev_rt_now = rtmn_diff + mn_now; 1784 ev_rt_now = rtmn_diff + mn_now;
1317 return 0; 1785 return;
1318 } 1786 }
1319 else 1787
1320 {
1321 now_floor = mn_now; 1788 now_floor = mn_now;
1322 ev_rt_now = ev_time (); 1789 ev_rt_now = ev_time ();
1323 return 1;
1324 }
1325}
1326 1790
1327void inline_size 1791 /* loop a few times, before making important decisions.
1328time_update (EV_P) 1792 * on the choice of "4": one iteration isn't enough,
1329{ 1793 * in case we get preempted during the calls to
1330 int i; 1794 * ev_time and get_clock. a second call is almost guaranteed
1331 1795 * to succeed in that case, though. and looping a few more times
1332#if EV_USE_MONOTONIC 1796 * doesn't hurt either as we only do this on time-jumps or
1333 if (expect_true (have_monotonic)) 1797 * in the unlikely event of having been preempted here.
1334 { 1798 */
1335 if (time_update_monotonic (EV_A)) 1799 for (i = 4; --i; )
1336 { 1800 {
1337 ev_tstamp odiff = rtmn_diff;
1338
1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1348 {
1349 rtmn_diff = ev_rt_now - mn_now; 1801 rtmn_diff = ev_rt_now - mn_now;
1350 1802
1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1803 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1352 return; /* all is well */ 1804 return; /* all is well */
1353 1805
1354 ev_rt_now = ev_time (); 1806 ev_rt_now = ev_time ();
1355 mn_now = get_clock (); 1807 mn_now = get_clock ();
1356 now_floor = mn_now; 1808 now_floor = mn_now;
1357 } 1809 }
1358 1810
1359# if EV_PERIODIC_ENABLE 1811# if EV_PERIODIC_ENABLE
1360 periodics_reschedule (EV_A); 1812 periodics_reschedule (EV_A);
1361# endif 1813# endif
1362 /* no timer adjustment, as the monotonic clock doesn't jump */ 1814 /* no timer adjustment, as the monotonic clock doesn't jump */
1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1815 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1364 }
1365 } 1816 }
1366 else 1817 else
1367#endif 1818#endif
1368 { 1819 {
1369 ev_rt_now = ev_time (); 1820 ev_rt_now = ev_time ();
1370 1821
1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1822 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 { 1823 {
1373#if EV_PERIODIC_ENABLE 1824#if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 1825 periodics_reschedule (EV_A);
1375#endif 1826#endif
1376 /* adjust timers. this is easy, as the offset is the same for all of them */ 1827 /* adjust timers. this is easy, as the offset is the same for all of them */
1377 for (i = 0; i < timercnt; ++i) 1828 for (i = 0; i < timercnt; ++i)
1829 {
1830 ANHE *he = timers + i + HEAP0;
1378 ((WT)timers [i])->at += ev_rt_now - mn_now; 1831 ANHE_w (*he)->at += ev_rt_now - mn_now;
1832 ANHE_at_cache (*he);
1833 }
1379 } 1834 }
1380 1835
1381 mn_now = ev_rt_now; 1836 mn_now = ev_rt_now;
1382 } 1837 }
1383} 1838}
1397static int loop_done; 1852static int loop_done;
1398 1853
1399void 1854void
1400ev_loop (EV_P_ int flags) 1855ev_loop (EV_P_ int flags)
1401{ 1856{
1402 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1857 loop_done = EVUNLOOP_CANCEL;
1403 ? EVUNLOOP_ONE
1404 : EVUNLOOP_CANCEL;
1405 1858
1406 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1859 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1407 1860
1408 do 1861 do
1409 { 1862 {
1863#if EV_VERIFY >= 2
1864 ev_loop_verify (EV_A);
1865#endif
1866
1410#ifndef _WIN32 1867#ifndef _WIN32
1411 if (expect_false (curpid)) /* penalise the forking check even more */ 1868 if (expect_false (curpid)) /* penalise the forking check even more */
1412 if (expect_false (getpid () != curpid)) 1869 if (expect_false (getpid () != curpid))
1413 { 1870 {
1414 curpid = getpid (); 1871 curpid = getpid ();
1443 /* update fd-related kernel structures */ 1900 /* update fd-related kernel structures */
1444 fd_reify (EV_A); 1901 fd_reify (EV_A);
1445 1902
1446 /* calculate blocking time */ 1903 /* calculate blocking time */
1447 { 1904 {
1448 ev_tstamp block; 1905 ev_tstamp waittime = 0.;
1906 ev_tstamp sleeptime = 0.;
1449 1907
1450 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1908 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1451 block = 0.; /* do not block at all */
1452 else
1453 { 1909 {
1454 /* update time to cancel out callback processing overhead */ 1910 /* update time to cancel out callback processing overhead */
1455#if EV_USE_MONOTONIC
1456 if (expect_true (have_monotonic))
1457 time_update_monotonic (EV_A); 1911 time_update (EV_A_ 1e100);
1458 else
1459#endif
1460 {
1461 ev_rt_now = ev_time ();
1462 mn_now = ev_rt_now;
1463 }
1464 1912
1465 block = MAX_BLOCKTIME; 1913 waittime = MAX_BLOCKTIME;
1466 1914
1467 if (timercnt) 1915 if (timercnt)
1468 { 1916 {
1469 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1917 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1470 if (block > to) block = to; 1918 if (waittime > to) waittime = to;
1471 } 1919 }
1472 1920
1473#if EV_PERIODIC_ENABLE 1921#if EV_PERIODIC_ENABLE
1474 if (periodiccnt) 1922 if (periodiccnt)
1475 { 1923 {
1476 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1924 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1477 if (block > to) block = to; 1925 if (waittime > to) waittime = to;
1478 } 1926 }
1479#endif 1927#endif
1480 1928
1481 if (expect_false (block < 0.)) block = 0.; 1929 if (expect_false (waittime < timeout_blocktime))
1930 waittime = timeout_blocktime;
1931
1932 sleeptime = waittime - backend_fudge;
1933
1934 if (expect_true (sleeptime > io_blocktime))
1935 sleeptime = io_blocktime;
1936
1937 if (sleeptime)
1938 {
1939 ev_sleep (sleeptime);
1940 waittime -= sleeptime;
1941 }
1482 } 1942 }
1483 1943
1484 ++loop_count; 1944 ++loop_count;
1485 backend_poll (EV_A_ block); 1945 backend_poll (EV_A_ waittime);
1946
1947 /* update ev_rt_now, do magic */
1948 time_update (EV_A_ waittime + sleeptime);
1486 } 1949 }
1487
1488 /* update ev_rt_now, do magic */
1489 time_update (EV_A);
1490 1950
1491 /* queue pending timers and reschedule them */ 1951 /* queue pending timers and reschedule them */
1492 timers_reify (EV_A); /* relative timers called last */ 1952 timers_reify (EV_A); /* relative timers called last */
1493#if EV_PERIODIC_ENABLE 1953#if EV_PERIODIC_ENABLE
1494 periodics_reify (EV_A); /* absolute timers called first */ 1954 periodics_reify (EV_A); /* absolute timers called first */
1502 /* queue check watchers, to be executed first */ 1962 /* queue check watchers, to be executed first */
1503 if (expect_false (checkcnt)) 1963 if (expect_false (checkcnt))
1504 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1964 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1505 1965
1506 call_pending (EV_A); 1966 call_pending (EV_A);
1507
1508 } 1967 }
1509 while (expect_true (activecnt && !loop_done)); 1968 while (expect_true (
1969 activecnt
1970 && !loop_done
1971 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1972 ));
1510 1973
1511 if (loop_done == EVUNLOOP_ONE) 1974 if (loop_done == EVUNLOOP_ONE)
1512 loop_done = EVUNLOOP_CANCEL; 1975 loop_done = EVUNLOOP_CANCEL;
1513} 1976}
1514 1977
1603 if (expect_false (ev_is_active (w))) 2066 if (expect_false (ev_is_active (w)))
1604 return; 2067 return;
1605 2068
1606 assert (("ev_io_start called with negative fd", fd >= 0)); 2069 assert (("ev_io_start called with negative fd", fd >= 0));
1607 2070
2071 EV_FREQUENT_CHECK;
2072
1608 ev_start (EV_A_ (W)w, 1); 2073 ev_start (EV_A_ (W)w, 1);
1609 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2074 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1610 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2075 wlist_add (&anfds[fd].head, (WL)w);
1611 2076
1612 fd_change (EV_A_ fd); 2077 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2078 w->events &= ~EV_IOFDSET;
2079
2080 EV_FREQUENT_CHECK;
1613} 2081}
1614 2082
1615void noinline 2083void noinline
1616ev_io_stop (EV_P_ ev_io *w) 2084ev_io_stop (EV_P_ ev_io *w)
1617{ 2085{
1618 clear_pending (EV_A_ (W)w); 2086 clear_pending (EV_A_ (W)w);
1619 if (expect_false (!ev_is_active (w))) 2087 if (expect_false (!ev_is_active (w)))
1620 return; 2088 return;
1621 2089
1622 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2090 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1623 2091
2092 EV_FREQUENT_CHECK;
2093
1624 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2094 wlist_del (&anfds[w->fd].head, (WL)w);
1625 ev_stop (EV_A_ (W)w); 2095 ev_stop (EV_A_ (W)w);
1626 2096
1627 fd_change (EV_A_ w->fd); 2097 fd_change (EV_A_ w->fd, 1);
2098
2099 EV_FREQUENT_CHECK;
1628} 2100}
1629 2101
1630void noinline 2102void noinline
1631ev_timer_start (EV_P_ ev_timer *w) 2103ev_timer_start (EV_P_ ev_timer *w)
1632{ 2104{
1633 if (expect_false (ev_is_active (w))) 2105 if (expect_false (ev_is_active (w)))
1634 return; 2106 return;
1635 2107
1636 ((WT)w)->at += mn_now; 2108 ev_at (w) += mn_now;
1637 2109
1638 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2110 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1639 2111
2112 EV_FREQUENT_CHECK;
2113
2114 ++timercnt;
1640 ev_start (EV_A_ (W)w, ++timercnt); 2115 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1641 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2116 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1642 timers [timercnt - 1] = w; 2117 ANHE_w (timers [ev_active (w)]) = (WT)w;
1643 upheap ((WT *)timers, timercnt - 1); 2118 ANHE_at_cache (timers [ev_active (w)]);
2119 upheap (timers, ev_active (w));
1644 2120
2121 EV_FREQUENT_CHECK;
2122
1645 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2123 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1646} 2124}
1647 2125
1648void noinline 2126void noinline
1649ev_timer_stop (EV_P_ ev_timer *w) 2127ev_timer_stop (EV_P_ ev_timer *w)
1650{ 2128{
1651 clear_pending (EV_A_ (W)w); 2129 clear_pending (EV_A_ (W)w);
1652 if (expect_false (!ev_is_active (w))) 2130 if (expect_false (!ev_is_active (w)))
1653 return; 2131 return;
1654 2132
1655 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2133 EV_FREQUENT_CHECK;
1656 2134
1657 { 2135 {
1658 int active = ((W)w)->active; 2136 int active = ev_active (w);
1659 2137
2138 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2139
2140 --timercnt;
2141
1660 if (expect_true (--active < --timercnt)) 2142 if (expect_true (active < timercnt + HEAP0))
1661 { 2143 {
1662 timers [active] = timers [timercnt]; 2144 timers [active] = timers [timercnt + HEAP0];
1663 adjustheap ((WT *)timers, timercnt, active); 2145 adjustheap (timers, timercnt, active);
1664 } 2146 }
1665 } 2147 }
1666 2148
1667 ((WT)w)->at -= mn_now; 2149 EV_FREQUENT_CHECK;
2150
2151 ev_at (w) -= mn_now;
1668 2152
1669 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1670} 2154}
1671 2155
1672void noinline 2156void noinline
1673ev_timer_again (EV_P_ ev_timer *w) 2157ev_timer_again (EV_P_ ev_timer *w)
1674{ 2158{
2159 EV_FREQUENT_CHECK;
2160
1675 if (ev_is_active (w)) 2161 if (ev_is_active (w))
1676 { 2162 {
1677 if (w->repeat) 2163 if (w->repeat)
1678 { 2164 {
1679 ((WT)w)->at = mn_now + w->repeat; 2165 ev_at (w) = mn_now + w->repeat;
2166 ANHE_at_cache (timers [ev_active (w)]);
1680 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2167 adjustheap (timers, timercnt, ev_active (w));
1681 } 2168 }
1682 else 2169 else
1683 ev_timer_stop (EV_A_ w); 2170 ev_timer_stop (EV_A_ w);
1684 } 2171 }
1685 else if (w->repeat) 2172 else if (w->repeat)
1686 { 2173 {
1687 w->at = w->repeat; 2174 ev_at (w) = w->repeat;
1688 ev_timer_start (EV_A_ w); 2175 ev_timer_start (EV_A_ w);
1689 } 2176 }
2177
2178 EV_FREQUENT_CHECK;
1690} 2179}
1691 2180
1692#if EV_PERIODIC_ENABLE 2181#if EV_PERIODIC_ENABLE
1693void noinline 2182void noinline
1694ev_periodic_start (EV_P_ ev_periodic *w) 2183ev_periodic_start (EV_P_ ev_periodic *w)
1695{ 2184{
1696 if (expect_false (ev_is_active (w))) 2185 if (expect_false (ev_is_active (w)))
1697 return; 2186 return;
1698 2187
1699 if (w->reschedule_cb) 2188 if (w->reschedule_cb)
1700 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2189 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1701 else if (w->interval) 2190 else if (w->interval)
1702 { 2191 {
1703 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2192 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1704 /* this formula differs from the one in periodic_reify because we do not always round up */ 2193 /* this formula differs from the one in periodic_reify because we do not always round up */
1705 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2194 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1706 } 2195 }
1707 else 2196 else
1708 ((WT)w)->at = w->offset; 2197 ev_at (w) = w->offset;
1709 2198
2199 EV_FREQUENT_CHECK;
2200
2201 ++periodiccnt;
1710 ev_start (EV_A_ (W)w, ++periodiccnt); 2202 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1711 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2203 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1712 periodics [periodiccnt - 1] = w; 2204 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1713 upheap ((WT *)periodics, periodiccnt - 1); 2205 ANHE_at_cache (periodics [ev_active (w)]);
2206 upheap (periodics, ev_active (w));
1714 2207
2208 EV_FREQUENT_CHECK;
2209
1715 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2210 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1716} 2211}
1717 2212
1718void noinline 2213void noinline
1719ev_periodic_stop (EV_P_ ev_periodic *w) 2214ev_periodic_stop (EV_P_ ev_periodic *w)
1720{ 2215{
1721 clear_pending (EV_A_ (W)w); 2216 clear_pending (EV_A_ (W)w);
1722 if (expect_false (!ev_is_active (w))) 2217 if (expect_false (!ev_is_active (w)))
1723 return; 2218 return;
1724 2219
1725 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2220 EV_FREQUENT_CHECK;
1726 2221
1727 { 2222 {
1728 int active = ((W)w)->active; 2223 int active = ev_active (w);
1729 2224
2225 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2226
2227 --periodiccnt;
2228
1730 if (expect_true (--active < --periodiccnt)) 2229 if (expect_true (active < periodiccnt + HEAP0))
1731 { 2230 {
1732 periodics [active] = periodics [periodiccnt]; 2231 periodics [active] = periodics [periodiccnt + HEAP0];
1733 adjustheap ((WT *)periodics, periodiccnt, active); 2232 adjustheap (periodics, periodiccnt, active);
1734 } 2233 }
1735 } 2234 }
2235
2236 EV_FREQUENT_CHECK;
1736 2237
1737 ev_stop (EV_A_ (W)w); 2238 ev_stop (EV_A_ (W)w);
1738} 2239}
1739 2240
1740void noinline 2241void noinline
1759 if (expect_false (ev_is_active (w))) 2260 if (expect_false (ev_is_active (w)))
1760 return; 2261 return;
1761 2262
1762 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2263 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1763 2264
2265 evpipe_init (EV_A);
2266
2267 EV_FREQUENT_CHECK;
2268
2269 {
2270#ifndef _WIN32
2271 sigset_t full, prev;
2272 sigfillset (&full);
2273 sigprocmask (SIG_SETMASK, &full, &prev);
2274#endif
2275
2276 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2277
2278#ifndef _WIN32
2279 sigprocmask (SIG_SETMASK, &prev, 0);
2280#endif
2281 }
2282
1764 ev_start (EV_A_ (W)w, 1); 2283 ev_start (EV_A_ (W)w, 1);
1765 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1766 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2284 wlist_add (&signals [w->signum - 1].head, (WL)w);
1767 2285
1768 if (!((WL)w)->next) 2286 if (!((WL)w)->next)
1769 { 2287 {
1770#if _WIN32 2288#if _WIN32
1771 signal (w->signum, sighandler); 2289 signal (w->signum, ev_sighandler);
1772#else 2290#else
1773 struct sigaction sa; 2291 struct sigaction sa;
1774 sa.sa_handler = sighandler; 2292 sa.sa_handler = ev_sighandler;
1775 sigfillset (&sa.sa_mask); 2293 sigfillset (&sa.sa_mask);
1776 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2294 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1777 sigaction (w->signum, &sa, 0); 2295 sigaction (w->signum, &sa, 0);
1778#endif 2296#endif
1779 } 2297 }
2298
2299 EV_FREQUENT_CHECK;
1780} 2300}
1781 2301
1782void noinline 2302void noinline
1783ev_signal_stop (EV_P_ ev_signal *w) 2303ev_signal_stop (EV_P_ ev_signal *w)
1784{ 2304{
1785 clear_pending (EV_A_ (W)w); 2305 clear_pending (EV_A_ (W)w);
1786 if (expect_false (!ev_is_active (w))) 2306 if (expect_false (!ev_is_active (w)))
1787 return; 2307 return;
1788 2308
2309 EV_FREQUENT_CHECK;
2310
1789 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2311 wlist_del (&signals [w->signum - 1].head, (WL)w);
1790 ev_stop (EV_A_ (W)w); 2312 ev_stop (EV_A_ (W)w);
1791 2313
1792 if (!signals [w->signum - 1].head) 2314 if (!signals [w->signum - 1].head)
1793 signal (w->signum, SIG_DFL); 2315 signal (w->signum, SIG_DFL);
2316
2317 EV_FREQUENT_CHECK;
1794} 2318}
1795 2319
1796void 2320void
1797ev_child_start (EV_P_ ev_child *w) 2321ev_child_start (EV_P_ ev_child *w)
1798{ 2322{
1800 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2324 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1801#endif 2325#endif
1802 if (expect_false (ev_is_active (w))) 2326 if (expect_false (ev_is_active (w)))
1803 return; 2327 return;
1804 2328
2329 EV_FREQUENT_CHECK;
2330
1805 ev_start (EV_A_ (W)w, 1); 2331 ev_start (EV_A_ (W)w, 1);
1806 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2332 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2333
2334 EV_FREQUENT_CHECK;
1807} 2335}
1808 2336
1809void 2337void
1810ev_child_stop (EV_P_ ev_child *w) 2338ev_child_stop (EV_P_ ev_child *w)
1811{ 2339{
1812 clear_pending (EV_A_ (W)w); 2340 clear_pending (EV_A_ (W)w);
1813 if (expect_false (!ev_is_active (w))) 2341 if (expect_false (!ev_is_active (w)))
1814 return; 2342 return;
1815 2343
2344 EV_FREQUENT_CHECK;
2345
1816 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2346 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1817 ev_stop (EV_A_ (W)w); 2347 ev_stop (EV_A_ (W)w);
2348
2349 EV_FREQUENT_CHECK;
1818} 2350}
1819 2351
1820#if EV_STAT_ENABLE 2352#if EV_STAT_ENABLE
1821 2353
1822# ifdef _WIN32 2354# ifdef _WIN32
1840 if (w->wd < 0) 2372 if (w->wd < 0)
1841 { 2373 {
1842 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2374 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1843 2375
1844 /* monitor some parent directory for speedup hints */ 2376 /* monitor some parent directory for speedup hints */
2377 /* note that exceeding the hardcoded limit is not a correctness issue, */
2378 /* but an efficiency issue only */
1845 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2379 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1846 { 2380 {
1847 char path [4096]; 2381 char path [4096];
1848 strcpy (path, w->path); 2382 strcpy (path, w->path);
1849 2383
2048 else 2582 else
2049#endif 2583#endif
2050 ev_timer_start (EV_A_ &w->timer); 2584 ev_timer_start (EV_A_ &w->timer);
2051 2585
2052 ev_start (EV_A_ (W)w, 1); 2586 ev_start (EV_A_ (W)w, 1);
2587
2588 EV_FREQUENT_CHECK;
2053} 2589}
2054 2590
2055void 2591void
2056ev_stat_stop (EV_P_ ev_stat *w) 2592ev_stat_stop (EV_P_ ev_stat *w)
2057{ 2593{
2058 clear_pending (EV_A_ (W)w); 2594 clear_pending (EV_A_ (W)w);
2059 if (expect_false (!ev_is_active (w))) 2595 if (expect_false (!ev_is_active (w)))
2060 return; 2596 return;
2061 2597
2598 EV_FREQUENT_CHECK;
2599
2062#if EV_USE_INOTIFY 2600#if EV_USE_INOTIFY
2063 infy_del (EV_A_ w); 2601 infy_del (EV_A_ w);
2064#endif 2602#endif
2065 ev_timer_stop (EV_A_ &w->timer); 2603 ev_timer_stop (EV_A_ &w->timer);
2066 2604
2067 ev_stop (EV_A_ (W)w); 2605 ev_stop (EV_A_ (W)w);
2606
2607 EV_FREQUENT_CHECK;
2068} 2608}
2069#endif 2609#endif
2070 2610
2071#if EV_IDLE_ENABLE 2611#if EV_IDLE_ENABLE
2072void 2612void
2074{ 2614{
2075 if (expect_false (ev_is_active (w))) 2615 if (expect_false (ev_is_active (w)))
2076 return; 2616 return;
2077 2617
2078 pri_adjust (EV_A_ (W)w); 2618 pri_adjust (EV_A_ (W)w);
2619
2620 EV_FREQUENT_CHECK;
2079 2621
2080 { 2622 {
2081 int active = ++idlecnt [ABSPRI (w)]; 2623 int active = ++idlecnt [ABSPRI (w)];
2082 2624
2083 ++idleall; 2625 ++idleall;
2084 ev_start (EV_A_ (W)w, active); 2626 ev_start (EV_A_ (W)w, active);
2085 2627
2086 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2628 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2087 idles [ABSPRI (w)][active - 1] = w; 2629 idles [ABSPRI (w)][active - 1] = w;
2088 } 2630 }
2631
2632 EV_FREQUENT_CHECK;
2089} 2633}
2090 2634
2091void 2635void
2092ev_idle_stop (EV_P_ ev_idle *w) 2636ev_idle_stop (EV_P_ ev_idle *w)
2093{ 2637{
2094 clear_pending (EV_A_ (W)w); 2638 clear_pending (EV_A_ (W)w);
2095 if (expect_false (!ev_is_active (w))) 2639 if (expect_false (!ev_is_active (w)))
2096 return; 2640 return;
2097 2641
2642 EV_FREQUENT_CHECK;
2643
2098 { 2644 {
2099 int active = ((W)w)->active; 2645 int active = ev_active (w);
2100 2646
2101 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2647 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2102 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2648 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2103 2649
2104 ev_stop (EV_A_ (W)w); 2650 ev_stop (EV_A_ (W)w);
2105 --idleall; 2651 --idleall;
2106 } 2652 }
2653
2654 EV_FREQUENT_CHECK;
2107} 2655}
2108#endif 2656#endif
2109 2657
2110void 2658void
2111ev_prepare_start (EV_P_ ev_prepare *w) 2659ev_prepare_start (EV_P_ ev_prepare *w)
2112{ 2660{
2113 if (expect_false (ev_is_active (w))) 2661 if (expect_false (ev_is_active (w)))
2114 return; 2662 return;
2663
2664 EV_FREQUENT_CHECK;
2115 2665
2116 ev_start (EV_A_ (W)w, ++preparecnt); 2666 ev_start (EV_A_ (W)w, ++preparecnt);
2117 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2667 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2118 prepares [preparecnt - 1] = w; 2668 prepares [preparecnt - 1] = w;
2669
2670 EV_FREQUENT_CHECK;
2119} 2671}
2120 2672
2121void 2673void
2122ev_prepare_stop (EV_P_ ev_prepare *w) 2674ev_prepare_stop (EV_P_ ev_prepare *w)
2123{ 2675{
2124 clear_pending (EV_A_ (W)w); 2676 clear_pending (EV_A_ (W)w);
2125 if (expect_false (!ev_is_active (w))) 2677 if (expect_false (!ev_is_active (w)))
2126 return; 2678 return;
2127 2679
2680 EV_FREQUENT_CHECK;
2681
2128 { 2682 {
2129 int active = ((W)w)->active; 2683 int active = ev_active (w);
2684
2130 prepares [active - 1] = prepares [--preparecnt]; 2685 prepares [active - 1] = prepares [--preparecnt];
2131 ((W)prepares [active - 1])->active = active; 2686 ev_active (prepares [active - 1]) = active;
2132 } 2687 }
2133 2688
2134 ev_stop (EV_A_ (W)w); 2689 ev_stop (EV_A_ (W)w);
2690
2691 EV_FREQUENT_CHECK;
2135} 2692}
2136 2693
2137void 2694void
2138ev_check_start (EV_P_ ev_check *w) 2695ev_check_start (EV_P_ ev_check *w)
2139{ 2696{
2140 if (expect_false (ev_is_active (w))) 2697 if (expect_false (ev_is_active (w)))
2141 return; 2698 return;
2699
2700 EV_FREQUENT_CHECK;
2142 2701
2143 ev_start (EV_A_ (W)w, ++checkcnt); 2702 ev_start (EV_A_ (W)w, ++checkcnt);
2144 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2703 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2145 checks [checkcnt - 1] = w; 2704 checks [checkcnt - 1] = w;
2705
2706 EV_FREQUENT_CHECK;
2146} 2707}
2147 2708
2148void 2709void
2149ev_check_stop (EV_P_ ev_check *w) 2710ev_check_stop (EV_P_ ev_check *w)
2150{ 2711{
2151 clear_pending (EV_A_ (W)w); 2712 clear_pending (EV_A_ (W)w);
2152 if (expect_false (!ev_is_active (w))) 2713 if (expect_false (!ev_is_active (w)))
2153 return; 2714 return;
2154 2715
2716 EV_FREQUENT_CHECK;
2717
2155 { 2718 {
2156 int active = ((W)w)->active; 2719 int active = ev_active (w);
2720
2157 checks [active - 1] = checks [--checkcnt]; 2721 checks [active - 1] = checks [--checkcnt];
2158 ((W)checks [active - 1])->active = active; 2722 ev_active (checks [active - 1]) = active;
2159 } 2723 }
2160 2724
2161 ev_stop (EV_A_ (W)w); 2725 ev_stop (EV_A_ (W)w);
2726
2727 EV_FREQUENT_CHECK;
2162} 2728}
2163 2729
2164#if EV_EMBED_ENABLE 2730#if EV_EMBED_ENABLE
2165void noinline 2731void noinline
2166ev_embed_sweep (EV_P_ ev_embed *w) 2732ev_embed_sweep (EV_P_ ev_embed *w)
2167{ 2733{
2168 ev_loop (w->loop, EVLOOP_NONBLOCK); 2734 ev_loop (w->other, EVLOOP_NONBLOCK);
2169} 2735}
2170 2736
2171static void 2737static void
2172embed_cb (EV_P_ ev_io *io, int revents) 2738embed_io_cb (EV_P_ ev_io *io, int revents)
2173{ 2739{
2174 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2740 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2175 2741
2176 if (ev_cb (w)) 2742 if (ev_cb (w))
2177 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2743 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2178 else 2744 else
2179 ev_embed_sweep (loop, w); 2745 ev_loop (w->other, EVLOOP_NONBLOCK);
2180} 2746}
2747
2748static void
2749embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2750{
2751 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2752
2753 {
2754 struct ev_loop *loop = w->other;
2755
2756 while (fdchangecnt)
2757 {
2758 fd_reify (EV_A);
2759 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2760 }
2761 }
2762}
2763
2764#if 0
2765static void
2766embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2767{
2768 ev_idle_stop (EV_A_ idle);
2769}
2770#endif
2181 2771
2182void 2772void
2183ev_embed_start (EV_P_ ev_embed *w) 2773ev_embed_start (EV_P_ ev_embed *w)
2184{ 2774{
2185 if (expect_false (ev_is_active (w))) 2775 if (expect_false (ev_is_active (w)))
2186 return; 2776 return;
2187 2777
2188 { 2778 {
2189 struct ev_loop *loop = w->loop; 2779 struct ev_loop *loop = w->other;
2190 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2780 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2191 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2781 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2192 } 2782 }
2783
2784 EV_FREQUENT_CHECK;
2193 2785
2194 ev_set_priority (&w->io, ev_priority (w)); 2786 ev_set_priority (&w->io, ev_priority (w));
2195 ev_io_start (EV_A_ &w->io); 2787 ev_io_start (EV_A_ &w->io);
2196 2788
2789 ev_prepare_init (&w->prepare, embed_prepare_cb);
2790 ev_set_priority (&w->prepare, EV_MINPRI);
2791 ev_prepare_start (EV_A_ &w->prepare);
2792
2793 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2794
2197 ev_start (EV_A_ (W)w, 1); 2795 ev_start (EV_A_ (W)w, 1);
2796
2797 EV_FREQUENT_CHECK;
2198} 2798}
2199 2799
2200void 2800void
2201ev_embed_stop (EV_P_ ev_embed *w) 2801ev_embed_stop (EV_P_ ev_embed *w)
2202{ 2802{
2203 clear_pending (EV_A_ (W)w); 2803 clear_pending (EV_A_ (W)w);
2204 if (expect_false (!ev_is_active (w))) 2804 if (expect_false (!ev_is_active (w)))
2205 return; 2805 return;
2206 2806
2807 EV_FREQUENT_CHECK;
2808
2207 ev_io_stop (EV_A_ &w->io); 2809 ev_io_stop (EV_A_ &w->io);
2810 ev_prepare_stop (EV_A_ &w->prepare);
2208 2811
2209 ev_stop (EV_A_ (W)w); 2812 ev_stop (EV_A_ (W)w);
2813
2814 EV_FREQUENT_CHECK;
2210} 2815}
2211#endif 2816#endif
2212 2817
2213#if EV_FORK_ENABLE 2818#if EV_FORK_ENABLE
2214void 2819void
2215ev_fork_start (EV_P_ ev_fork *w) 2820ev_fork_start (EV_P_ ev_fork *w)
2216{ 2821{
2217 if (expect_false (ev_is_active (w))) 2822 if (expect_false (ev_is_active (w)))
2218 return; 2823 return;
2824
2825 EV_FREQUENT_CHECK;
2219 2826
2220 ev_start (EV_A_ (W)w, ++forkcnt); 2827 ev_start (EV_A_ (W)w, ++forkcnt);
2221 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2828 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2222 forks [forkcnt - 1] = w; 2829 forks [forkcnt - 1] = w;
2830
2831 EV_FREQUENT_CHECK;
2223} 2832}
2224 2833
2225void 2834void
2226ev_fork_stop (EV_P_ ev_fork *w) 2835ev_fork_stop (EV_P_ ev_fork *w)
2227{ 2836{
2228 clear_pending (EV_A_ (W)w); 2837 clear_pending (EV_A_ (W)w);
2229 if (expect_false (!ev_is_active (w))) 2838 if (expect_false (!ev_is_active (w)))
2230 return; 2839 return;
2231 2840
2841 EV_FREQUENT_CHECK;
2842
2232 { 2843 {
2233 int active = ((W)w)->active; 2844 int active = ev_active (w);
2845
2234 forks [active - 1] = forks [--forkcnt]; 2846 forks [active - 1] = forks [--forkcnt];
2235 ((W)forks [active - 1])->active = active; 2847 ev_active (forks [active - 1]) = active;
2236 } 2848 }
2237 2849
2238 ev_stop (EV_A_ (W)w); 2850 ev_stop (EV_A_ (W)w);
2851
2852 EV_FREQUENT_CHECK;
2853}
2854#endif
2855
2856#if EV_ASYNC_ENABLE
2857void
2858ev_async_start (EV_P_ ev_async *w)
2859{
2860 if (expect_false (ev_is_active (w)))
2861 return;
2862
2863 evpipe_init (EV_A);
2864
2865 EV_FREQUENT_CHECK;
2866
2867 ev_start (EV_A_ (W)w, ++asynccnt);
2868 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2869 asyncs [asynccnt - 1] = w;
2870
2871 EV_FREQUENT_CHECK;
2872}
2873
2874void
2875ev_async_stop (EV_P_ ev_async *w)
2876{
2877 clear_pending (EV_A_ (W)w);
2878 if (expect_false (!ev_is_active (w)))
2879 return;
2880
2881 EV_FREQUENT_CHECK;
2882
2883 {
2884 int active = ev_active (w);
2885
2886 asyncs [active - 1] = asyncs [--asynccnt];
2887 ev_active (asyncs [active - 1]) = active;
2888 }
2889
2890 ev_stop (EV_A_ (W)w);
2891
2892 EV_FREQUENT_CHECK;
2893}
2894
2895void
2896ev_async_send (EV_P_ ev_async *w)
2897{
2898 w->sent = 1;
2899 evpipe_write (EV_A_ &gotasync);
2239} 2900}
2240#endif 2901#endif
2241 2902
2242/*****************************************************************************/ 2903/*****************************************************************************/
2243 2904
2301 ev_timer_set (&once->to, timeout, 0.); 2962 ev_timer_set (&once->to, timeout, 0.);
2302 ev_timer_start (EV_A_ &once->to); 2963 ev_timer_start (EV_A_ &once->to);
2303 } 2964 }
2304} 2965}
2305 2966
2967#if EV_MULTIPLICITY
2968 #include "ev_wrap.h"
2969#endif
2970
2306#ifdef __cplusplus 2971#ifdef __cplusplus
2307} 2972}
2308#endif 2973#endif
2309 2974

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines