ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.177 by root, Tue Dec 11 15:06:50 2007 UTC vs.
Revision 1.268 by root, Mon Oct 27 13:39:18 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
129#ifndef _WIN32 154#ifndef _WIN32
130# include <sys/time.h> 155# include <sys/time.h>
131# include <sys/wait.h> 156# include <sys/wait.h>
132# include <unistd.h> 157# include <unistd.h>
133#else 158#else
159# include <io.h>
134# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 161# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
138# endif 164# endif
139#endif 165#endif
140 166
141/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
142 168
143#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
144# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
145#endif 175#endif
146 176
147#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
149#endif 187#endif
150 188
151#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
153#endif 191#endif
159# define EV_USE_POLL 1 197# define EV_USE_POLL 1
160# endif 198# endif
161#endif 199#endif
162 200
163#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
164# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
165#endif 207#endif
166 208
167#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
169#endif 211#endif
171#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 214# define EV_USE_PORT 0
173#endif 215#endif
174 216
175#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
176# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
177#endif 223#endif
178 224
179#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 226# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
190# else 236# else
191# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
192# endif 238# endif
193#endif 239#endif
194 240
195/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 268
197#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
200#endif 272#endif
202#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
205#endif 277#endif
206 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0
297# endif
298#endif
299
207#if EV_SELECT_IS_WINSOCKET 300#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 301# include <winsock.h>
209#endif 302#endif
210 303
211#if !EV_STAT_ENABLE 304#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 305/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
306# include <stdint.h>
307# ifdef __cplusplus
308extern "C" {
213#endif 309# endif
214 310int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 311# ifdef __cplusplus
216# include <sys/inotify.h> 312}
313# endif
217#endif 314#endif
218 315
219/**/ 316/**/
317
318#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
320#else
321# define EV_FREQUENT_CHECK do { } while (0)
322#endif
220 323
221/* 324/*
222 * This is used to avoid floating point rounding problems. 325 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 326 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 327 * to ensure progress, time-wise, even when rounding
230 333
231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 334#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 335#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 336/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
234 337
235#if __GNUC__ >= 3 338#if __GNUC__ >= 4
236# define expect(expr,value) __builtin_expect ((expr),(value)) 339# define expect(expr,value) __builtin_expect ((expr),(value))
237# define noinline __attribute__ ((noinline)) 340# define noinline __attribute__ ((noinline))
238#else 341#else
239# define expect(expr,value) (expr) 342# define expect(expr,value) (expr)
240# define noinline 343# define noinline
241# if __STDC_VERSION__ < 199901L 344# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
242# define inline 345# define inline
243# endif 346# endif
244#endif 347#endif
245 348
246#define expect_false(expr) expect ((expr) != 0, 0) 349#define expect_false(expr) expect ((expr) != 0, 0)
261 364
262typedef ev_watcher *W; 365typedef ev_watcher *W;
263typedef ev_watcher_list *WL; 366typedef ev_watcher_list *WL;
264typedef ev_watcher_time *WT; 367typedef ev_watcher_time *WT;
265 368
369#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at
371
372#if EV_USE_MONOTONIC
373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
374/* giving it a reasonably high chance of working on typical architetcures */
266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
376#endif
267 377
268#ifdef _WIN32 378#ifdef _WIN32
269# include "ev_win32.c" 379# include "ev_win32.c"
270#endif 380#endif
271 381
292 perror (msg); 402 perror (msg);
293 abort (); 403 abort ();
294 } 404 }
295} 405}
296 406
407static void *
408ev_realloc_emul (void *ptr, long size)
409{
410 /* some systems, notably openbsd and darwin, fail to properly
411 * implement realloc (x, 0) (as required by both ansi c-98 and
412 * the single unix specification, so work around them here.
413 */
414
415 if (size)
416 return realloc (ptr, size);
417
418 free (ptr);
419 return 0;
420}
421
297static void *(*alloc)(void *ptr, long size); 422static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
298 423
299void 424void
300ev_set_allocator (void *(*cb)(void *ptr, long size)) 425ev_set_allocator (void *(*cb)(void *ptr, long size))
301{ 426{
302 alloc = cb; 427 alloc = cb;
303} 428}
304 429
305inline_speed void * 430inline_speed void *
306ev_realloc (void *ptr, long size) 431ev_realloc (void *ptr, long size)
307{ 432{
308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 433 ptr = alloc (ptr, size);
309 434
310 if (!ptr && size) 435 if (!ptr && size)
311 { 436 {
312 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 437 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
313 abort (); 438 abort ();
324typedef struct 449typedef struct
325{ 450{
326 WL head; 451 WL head;
327 unsigned char events; 452 unsigned char events;
328 unsigned char reify; 453 unsigned char reify;
454 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
455 unsigned char egen; /* generation counter to counter epoll bugs */
329#if EV_SELECT_IS_WINSOCKET 456#if EV_SELECT_IS_WINSOCKET
330 SOCKET handle; 457 SOCKET handle;
331#endif 458#endif
332} ANFD; 459} ANFD;
333 460
336 W w; 463 W w;
337 int events; 464 int events;
338} ANPENDING; 465} ANPENDING;
339 466
340#if EV_USE_INOTIFY 467#if EV_USE_INOTIFY
468/* hash table entry per inotify-id */
341typedef struct 469typedef struct
342{ 470{
343 WL head; 471 WL head;
344} ANFS; 472} ANFS;
473#endif
474
475/* Heap Entry */
476#if EV_HEAP_CACHE_AT
477 typedef struct {
478 ev_tstamp at;
479 WT w;
480 } ANHE;
481
482 #define ANHE_w(he) (he).w /* access watcher, read-write */
483 #define ANHE_at(he) (he).at /* access cached at, read-only */
484 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
485#else
486 typedef WT ANHE;
487
488 #define ANHE_w(he) (he)
489 #define ANHE_at(he) (he)->at
490 #define ANHE_at_cache(he)
345#endif 491#endif
346 492
347#if EV_MULTIPLICITY 493#if EV_MULTIPLICITY
348 494
349 struct ev_loop 495 struct ev_loop
407{ 553{
408 return ev_rt_now; 554 return ev_rt_now;
409} 555}
410#endif 556#endif
411 557
558void
559ev_sleep (ev_tstamp delay)
560{
561 if (delay > 0.)
562 {
563#if EV_USE_NANOSLEEP
564 struct timespec ts;
565
566 ts.tv_sec = (time_t)delay;
567 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
568
569 nanosleep (&ts, 0);
570#elif defined(_WIN32)
571 Sleep ((unsigned long)(delay * 1e3));
572#else
573 struct timeval tv;
574
575 tv.tv_sec = (time_t)delay;
576 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
577
578 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
579 /* somehting nto guaranteed by newer posix versions, but guaranteed */
580 /* by older ones */
581 select (0, 0, 0, 0, &tv);
582#endif
583 }
584}
585
586/*****************************************************************************/
587
588#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
589
412int inline_size 590int inline_size
413array_nextsize (int elem, int cur, int cnt) 591array_nextsize (int elem, int cur, int cnt)
414{ 592{
415 int ncur = cur + 1; 593 int ncur = cur + 1;
416 594
417 do 595 do
418 ncur <<= 1; 596 ncur <<= 1;
419 while (cnt > ncur); 597 while (cnt > ncur);
420 598
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 599 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096) 600 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
423 { 601 {
424 ncur *= elem; 602 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 603 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
426 ncur = ncur - sizeof (void *) * 4; 604 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem; 605 ncur /= elem;
428 } 606 }
429 607
430 return ncur; 608 return ncur;
434array_realloc (int elem, void *base, int *cur, int cnt) 612array_realloc (int elem, void *base, int *cur, int cnt)
435{ 613{
436 *cur = array_nextsize (elem, *cur, cnt); 614 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur); 615 return ev_realloc (base, elem * *cur);
438} 616}
617
618#define array_init_zero(base,count) \
619 memset ((void *)(base), 0, sizeof (*(base)) * (count))
439 620
440#define array_needsize(type,base,cur,cnt,init) \ 621#define array_needsize(type,base,cur,cnt,init) \
441 if (expect_false ((cnt) > (cur))) \ 622 if (expect_false ((cnt) > (cur))) \
442 { \ 623 { \
443 int ocur_ = (cur); \ 624 int ocur_ = (cur); \
476 pendings [pri][w_->pending - 1].w = w_; 657 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents; 658 pendings [pri][w_->pending - 1].events = revents;
478 } 659 }
479} 660}
480 661
481void inline_size 662void inline_speed
482queue_events (EV_P_ W *events, int eventcnt, int type) 663queue_events (EV_P_ W *events, int eventcnt, int type)
483{ 664{
484 int i; 665 int i;
485 666
486 for (i = 0; i < eventcnt; ++i) 667 for (i = 0; i < eventcnt; ++i)
487 ev_feed_event (EV_A_ events [i], type); 668 ev_feed_event (EV_A_ events [i], type);
488} 669}
489 670
490/*****************************************************************************/ 671/*****************************************************************************/
491
492void inline_size
493anfds_init (ANFD *base, int count)
494{
495 while (count--)
496 {
497 base->head = 0;
498 base->events = EV_NONE;
499 base->reify = 0;
500
501 ++base;
502 }
503}
504 672
505void inline_speed 673void inline_speed
506fd_event (EV_P_ int fd, int revents) 674fd_event (EV_P_ int fd, int revents)
507{ 675{
508 ANFD *anfd = anfds + fd; 676 ANFD *anfd = anfds + fd;
533 { 701 {
534 int fd = fdchanges [i]; 702 int fd = fdchanges [i];
535 ANFD *anfd = anfds + fd; 703 ANFD *anfd = anfds + fd;
536 ev_io *w; 704 ev_io *w;
537 705
538 int events = 0; 706 unsigned char events = 0;
539 707
540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 708 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
541 events |= w->events; 709 events |= (unsigned char)w->events;
542 710
543#if EV_SELECT_IS_WINSOCKET 711#if EV_SELECT_IS_WINSOCKET
544 if (events) 712 if (events)
545 { 713 {
546 unsigned long argp; 714 unsigned long arg;
715 #ifdef EV_FD_TO_WIN32_HANDLE
716 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
717 #else
547 anfd->handle = _get_osfhandle (fd); 718 anfd->handle = _get_osfhandle (fd);
719 #endif
548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 720 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
549 } 721 }
550#endif 722#endif
551 723
724 {
725 unsigned char o_events = anfd->events;
726 unsigned char o_reify = anfd->reify;
727
552 anfd->reify = 0; 728 anfd->reify = 0;
553
554 backend_modify (EV_A_ fd, anfd->events, events);
555 anfd->events = events; 729 anfd->events = events;
730
731 if (o_events != events || o_reify & EV_IOFDSET)
732 backend_modify (EV_A_ fd, o_events, events);
733 }
556 } 734 }
557 735
558 fdchangecnt = 0; 736 fdchangecnt = 0;
559} 737}
560 738
561void inline_size 739void inline_size
562fd_change (EV_P_ int fd) 740fd_change (EV_P_ int fd, int flags)
563{ 741{
564 if (expect_false (anfds [fd].reify)) 742 unsigned char reify = anfds [fd].reify;
565 return;
566
567 anfds [fd].reify = 1; 743 anfds [fd].reify |= flags;
568 744
745 if (expect_true (!reify))
746 {
569 ++fdchangecnt; 747 ++fdchangecnt;
570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 748 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
571 fdchanges [fdchangecnt - 1] = fd; 749 fdchanges [fdchangecnt - 1] = fd;
750 }
572} 751}
573 752
574void inline_speed 753void inline_speed
575fd_kill (EV_P_ int fd) 754fd_kill (EV_P_ int fd)
576{ 755{
599{ 778{
600 int fd; 779 int fd;
601 780
602 for (fd = 0; fd < anfdmax; ++fd) 781 for (fd = 0; fd < anfdmax; ++fd)
603 if (anfds [fd].events) 782 if (anfds [fd].events)
604 if (!fd_valid (fd) == -1 && errno == EBADF) 783 if (!fd_valid (fd) && errno == EBADF)
605 fd_kill (EV_A_ fd); 784 fd_kill (EV_A_ fd);
606} 785}
607 786
608/* called on ENOMEM in select/poll to kill some fds and retry */ 787/* called on ENOMEM in select/poll to kill some fds and retry */
609static void noinline 788static void noinline
627 806
628 for (fd = 0; fd < anfdmax; ++fd) 807 for (fd = 0; fd < anfdmax; ++fd)
629 if (anfds [fd].events) 808 if (anfds [fd].events)
630 { 809 {
631 anfds [fd].events = 0; 810 anfds [fd].events = 0;
811 anfds [fd].emask = 0;
632 fd_change (EV_A_ fd); 812 fd_change (EV_A_ fd, EV_IOFDSET | 1);
633 } 813 }
634} 814}
635 815
636/*****************************************************************************/ 816/*****************************************************************************/
637 817
818/*
819 * the heap functions want a real array index. array index 0 uis guaranteed to not
820 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
821 * the branching factor of the d-tree.
822 */
823
824/*
825 * at the moment we allow libev the luxury of two heaps,
826 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
827 * which is more cache-efficient.
828 * the difference is about 5% with 50000+ watchers.
829 */
830#if EV_USE_4HEAP
831
832#define DHEAP 4
833#define HEAP0 (DHEAP - 1) /* index of first element in heap */
834#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
835#define UPHEAP_DONE(p,k) ((p) == (k))
836
837/* away from the root */
638void inline_speed 838void inline_speed
639upheap (WT *heap, int k) 839downheap (ANHE *heap, int N, int k)
640{ 840{
641 WT w = heap [k]; 841 ANHE he = heap [k];
842 ANHE *E = heap + N + HEAP0;
642 843
643 while (k && heap [k >> 1]->at > w->at) 844 for (;;)
644 {
645 heap [k] = heap [k >> 1];
646 ((W)heap [k])->active = k + 1;
647 k >>= 1;
648 } 845 {
846 ev_tstamp minat;
847 ANHE *minpos;
848 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
649 849
850 /* find minimum child */
851 if (expect_true (pos + DHEAP - 1 < E))
852 {
853 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
854 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
855 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
856 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
857 }
858 else if (pos < E)
859 {
860 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
861 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
862 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
863 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
864 }
865 else
866 break;
867
868 if (ANHE_at (he) <= minat)
869 break;
870
871 heap [k] = *minpos;
872 ev_active (ANHE_w (*minpos)) = k;
873
874 k = minpos - heap;
875 }
876
650 heap [k] = w; 877 heap [k] = he;
651 ((W)heap [k])->active = k + 1; 878 ev_active (ANHE_w (he)) = k;
652
653} 879}
654 880
881#else /* 4HEAP */
882
883#define HEAP0 1
884#define HPARENT(k) ((k) >> 1)
885#define UPHEAP_DONE(p,k) (!(p))
886
887/* away from the root */
655void inline_speed 888void inline_speed
656downheap (WT *heap, int N, int k) 889downheap (ANHE *heap, int N, int k)
657{ 890{
658 WT w = heap [k]; 891 ANHE he = heap [k];
659 892
660 while (k < (N >> 1)) 893 for (;;)
661 { 894 {
662 int j = k << 1; 895 int c = k << 1;
663 896
664 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 897 if (c > N + HEAP0 - 1)
665 ++j;
666
667 if (w->at <= heap [j]->at)
668 break; 898 break;
669 899
900 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
901 ? 1 : 0;
902
903 if (ANHE_at (he) <= ANHE_at (heap [c]))
904 break;
905
670 heap [k] = heap [j]; 906 heap [k] = heap [c];
671 ((W)heap [k])->active = k + 1; 907 ev_active (ANHE_w (heap [k])) = k;
908
672 k = j; 909 k = c;
673 } 910 }
674 911
675 heap [k] = w; 912 heap [k] = he;
676 ((W)heap [k])->active = k + 1; 913 ev_active (ANHE_w (he)) = k;
914}
915#endif
916
917/* towards the root */
918void inline_speed
919upheap (ANHE *heap, int k)
920{
921 ANHE he = heap [k];
922
923 for (;;)
924 {
925 int p = HPARENT (k);
926
927 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
928 break;
929
930 heap [k] = heap [p];
931 ev_active (ANHE_w (heap [k])) = k;
932 k = p;
933 }
934
935 heap [k] = he;
936 ev_active (ANHE_w (he)) = k;
677} 937}
678 938
679void inline_size 939void inline_size
680adjustheap (WT *heap, int N, int k) 940adjustheap (ANHE *heap, int N, int k)
681{ 941{
942 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
682 upheap (heap, k); 943 upheap (heap, k);
944 else
683 downheap (heap, N, k); 945 downheap (heap, N, k);
946}
947
948/* rebuild the heap: this function is used only once and executed rarely */
949void inline_size
950reheap (ANHE *heap, int N)
951{
952 int i;
953
954 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
955 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
956 for (i = 0; i < N; ++i)
957 upheap (heap, i + HEAP0);
684} 958}
685 959
686/*****************************************************************************/ 960/*****************************************************************************/
687 961
688typedef struct 962typedef struct
689{ 963{
690 WL head; 964 WL head;
691 sig_atomic_t volatile gotsig; 965 EV_ATOMIC_T gotsig;
692} ANSIG; 966} ANSIG;
693 967
694static ANSIG *signals; 968static ANSIG *signals;
695static int signalmax; 969static int signalmax;
696 970
697static int sigpipe [2]; 971static EV_ATOMIC_T gotsig;
698static sig_atomic_t volatile gotsig;
699static ev_io sigev;
700 972
701void inline_size 973/*****************************************************************************/
702signals_init (ANSIG *base, int count)
703{
704 while (count--)
705 {
706 base->head = 0;
707 base->gotsig = 0;
708
709 ++base;
710 }
711}
712
713static void
714sighandler (int signum)
715{
716#if _WIN32
717 signal (signum, sighandler);
718#endif
719
720 signals [signum - 1].gotsig = 1;
721
722 if (!gotsig)
723 {
724 int old_errno = errno;
725 gotsig = 1;
726 write (sigpipe [1], &signum, 1);
727 errno = old_errno;
728 }
729}
730
731void noinline
732ev_feed_signal_event (EV_P_ int signum)
733{
734 WL w;
735
736#if EV_MULTIPLICITY
737 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
738#endif
739
740 --signum;
741
742 if (signum < 0 || signum >= signalmax)
743 return;
744
745 signals [signum].gotsig = 0;
746
747 for (w = signals [signum].head; w; w = w->next)
748 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
749}
750
751static void
752sigcb (EV_P_ ev_io *iow, int revents)
753{
754 int signum;
755
756 read (sigpipe [0], &revents, 1);
757 gotsig = 0;
758
759 for (signum = signalmax; signum--; )
760 if (signals [signum].gotsig)
761 ev_feed_signal_event (EV_A_ signum + 1);
762}
763 974
764void inline_speed 975void inline_speed
765fd_intern (int fd) 976fd_intern (int fd)
766{ 977{
767#ifdef _WIN32 978#ifdef _WIN32
768 int arg = 1; 979 unsigned long arg = 1;
769 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 980 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
770#else 981#else
771 fcntl (fd, F_SETFD, FD_CLOEXEC); 982 fcntl (fd, F_SETFD, FD_CLOEXEC);
772 fcntl (fd, F_SETFL, O_NONBLOCK); 983 fcntl (fd, F_SETFL, O_NONBLOCK);
773#endif 984#endif
774} 985}
775 986
776static void noinline 987static void noinline
777siginit (EV_P) 988evpipe_init (EV_P)
778{ 989{
990 if (!ev_is_active (&pipeev))
991 {
992#if EV_USE_EVENTFD
993 if ((evfd = eventfd (0, 0)) >= 0)
994 {
995 evpipe [0] = -1;
996 fd_intern (evfd);
997 ev_io_set (&pipeev, evfd, EV_READ);
998 }
999 else
1000#endif
1001 {
1002 while (pipe (evpipe))
1003 syserr ("(libev) error creating signal/async pipe");
1004
779 fd_intern (sigpipe [0]); 1005 fd_intern (evpipe [0]);
780 fd_intern (sigpipe [1]); 1006 fd_intern (evpipe [1]);
1007 ev_io_set (&pipeev, evpipe [0], EV_READ);
1008 }
781 1009
782 ev_io_set (&sigev, sigpipe [0], EV_READ);
783 ev_io_start (EV_A_ &sigev); 1010 ev_io_start (EV_A_ &pipeev);
784 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1011 ev_unref (EV_A); /* watcher should not keep loop alive */
1012 }
1013}
1014
1015void inline_size
1016evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1017{
1018 if (!*flag)
1019 {
1020 int old_errno = errno; /* save errno because write might clobber it */
1021
1022 *flag = 1;
1023
1024#if EV_USE_EVENTFD
1025 if (evfd >= 0)
1026 {
1027 uint64_t counter = 1;
1028 write (evfd, &counter, sizeof (uint64_t));
1029 }
1030 else
1031#endif
1032 write (evpipe [1], &old_errno, 1);
1033
1034 errno = old_errno;
1035 }
1036}
1037
1038static void
1039pipecb (EV_P_ ev_io *iow, int revents)
1040{
1041#if EV_USE_EVENTFD
1042 if (evfd >= 0)
1043 {
1044 uint64_t counter;
1045 read (evfd, &counter, sizeof (uint64_t));
1046 }
1047 else
1048#endif
1049 {
1050 char dummy;
1051 read (evpipe [0], &dummy, 1);
1052 }
1053
1054 if (gotsig && ev_is_default_loop (EV_A))
1055 {
1056 int signum;
1057 gotsig = 0;
1058
1059 for (signum = signalmax; signum--; )
1060 if (signals [signum].gotsig)
1061 ev_feed_signal_event (EV_A_ signum + 1);
1062 }
1063
1064#if EV_ASYNC_ENABLE
1065 if (gotasync)
1066 {
1067 int i;
1068 gotasync = 0;
1069
1070 for (i = asynccnt; i--; )
1071 if (asyncs [i]->sent)
1072 {
1073 asyncs [i]->sent = 0;
1074 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1075 }
1076 }
1077#endif
785} 1078}
786 1079
787/*****************************************************************************/ 1080/*****************************************************************************/
788 1081
1082static void
1083ev_sighandler (int signum)
1084{
1085#if EV_MULTIPLICITY
1086 struct ev_loop *loop = &default_loop_struct;
1087#endif
1088
1089#if _WIN32
1090 signal (signum, ev_sighandler);
1091#endif
1092
1093 signals [signum - 1].gotsig = 1;
1094 evpipe_write (EV_A_ &gotsig);
1095}
1096
1097void noinline
1098ev_feed_signal_event (EV_P_ int signum)
1099{
1100 WL w;
1101
1102#if EV_MULTIPLICITY
1103 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1104#endif
1105
1106 --signum;
1107
1108 if (signum < 0 || signum >= signalmax)
1109 return;
1110
1111 signals [signum].gotsig = 0;
1112
1113 for (w = signals [signum].head; w; w = w->next)
1114 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1115}
1116
1117/*****************************************************************************/
1118
789static ev_child *childs [EV_PID_HASHSIZE]; 1119static WL childs [EV_PID_HASHSIZE];
790 1120
791#ifndef _WIN32 1121#ifndef _WIN32
792 1122
793static ev_signal childev; 1123static ev_signal childev;
794 1124
1125#ifndef WIFCONTINUED
1126# define WIFCONTINUED(status) 0
1127#endif
1128
795void inline_speed 1129void inline_speed
796child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1130child_reap (EV_P_ int chain, int pid, int status)
797{ 1131{
798 ev_child *w; 1132 ev_child *w;
1133 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
799 1134
800 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1135 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1136 {
801 if (w->pid == pid || !w->pid) 1137 if ((w->pid == pid || !w->pid)
1138 && (!traced || (w->flags & 1)))
802 { 1139 {
803 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1140 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
804 w->rpid = pid; 1141 w->rpid = pid;
805 w->rstatus = status; 1142 w->rstatus = status;
806 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1143 ev_feed_event (EV_A_ (W)w, EV_CHILD);
807 } 1144 }
1145 }
808} 1146}
809 1147
810#ifndef WCONTINUED 1148#ifndef WCONTINUED
811# define WCONTINUED 0 1149# define WCONTINUED 0
812#endif 1150#endif
821 if (!WCONTINUED 1159 if (!WCONTINUED
822 || errno != EINVAL 1160 || errno != EINVAL
823 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1161 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
824 return; 1162 return;
825 1163
826 /* make sure we are called again until all childs have been reaped */ 1164 /* make sure we are called again until all children have been reaped */
827 /* we need to do it this way so that the callback gets called before we continue */ 1165 /* we need to do it this way so that the callback gets called before we continue */
828 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1166 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
829 1167
830 child_reap (EV_A_ sw, pid, pid, status); 1168 child_reap (EV_A_ pid, pid, status);
831 if (EV_PID_HASHSIZE > 1) 1169 if (EV_PID_HASHSIZE > 1)
832 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1170 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
833} 1171}
834 1172
835#endif 1173#endif
836 1174
837/*****************************************************************************/ 1175/*****************************************************************************/
909} 1247}
910 1248
911unsigned int 1249unsigned int
912ev_embeddable_backends (void) 1250ev_embeddable_backends (void)
913{ 1251{
914 return EVBACKEND_EPOLL 1252 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
915 | EVBACKEND_KQUEUE 1253
916 | EVBACKEND_PORT; 1254 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1255 /* please fix it and tell me how to detect the fix */
1256 flags &= ~EVBACKEND_EPOLL;
1257
1258 return flags;
917} 1259}
918 1260
919unsigned int 1261unsigned int
920ev_backend (EV_P) 1262ev_backend (EV_P)
921{ 1263{
924 1266
925unsigned int 1267unsigned int
926ev_loop_count (EV_P) 1268ev_loop_count (EV_P)
927{ 1269{
928 return loop_count; 1270 return loop_count;
1271}
1272
1273void
1274ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1275{
1276 io_blocktime = interval;
1277}
1278
1279void
1280ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1281{
1282 timeout_blocktime = interval;
929} 1283}
930 1284
931static void noinline 1285static void noinline
932loop_init (EV_P_ unsigned int flags) 1286loop_init (EV_P_ unsigned int flags)
933{ 1287{
939 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1293 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
940 have_monotonic = 1; 1294 have_monotonic = 1;
941 } 1295 }
942#endif 1296#endif
943 1297
944 ev_rt_now = ev_time (); 1298 ev_rt_now = ev_time ();
945 mn_now = get_clock (); 1299 mn_now = get_clock ();
946 now_floor = mn_now; 1300 now_floor = mn_now;
947 rtmn_diff = ev_rt_now - mn_now; 1301 rtmn_diff = ev_rt_now - mn_now;
1302
1303 io_blocktime = 0.;
1304 timeout_blocktime = 0.;
1305 backend = 0;
1306 backend_fd = -1;
1307 gotasync = 0;
1308#if EV_USE_INOTIFY
1309 fs_fd = -2;
1310#endif
948 1311
949 /* pid check not overridable via env */ 1312 /* pid check not overridable via env */
950#ifndef _WIN32 1313#ifndef _WIN32
951 if (flags & EVFLAG_FORKCHECK) 1314 if (flags & EVFLAG_FORKCHECK)
952 curpid = getpid (); 1315 curpid = getpid ();
955 if (!(flags & EVFLAG_NOENV) 1318 if (!(flags & EVFLAG_NOENV)
956 && !enable_secure () 1319 && !enable_secure ()
957 && getenv ("LIBEV_FLAGS")) 1320 && getenv ("LIBEV_FLAGS"))
958 flags = atoi (getenv ("LIBEV_FLAGS")); 1321 flags = atoi (getenv ("LIBEV_FLAGS"));
959 1322
960 if (!(flags & 0x0000ffffUL)) 1323 if (!(flags & 0x0000ffffU))
961 flags |= ev_recommended_backends (); 1324 flags |= ev_recommended_backends ();
962
963 backend = 0;
964 backend_fd = -1;
965#if EV_USE_INOTIFY
966 fs_fd = -2;
967#endif
968 1325
969#if EV_USE_PORT 1326#if EV_USE_PORT
970 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1327 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
971#endif 1328#endif
972#if EV_USE_KQUEUE 1329#if EV_USE_KQUEUE
980#endif 1337#endif
981#if EV_USE_SELECT 1338#if EV_USE_SELECT
982 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1339 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
983#endif 1340#endif
984 1341
985 ev_init (&sigev, sigcb); 1342 ev_init (&pipeev, pipecb);
986 ev_set_priority (&sigev, EV_MAXPRI); 1343 ev_set_priority (&pipeev, EV_MAXPRI);
987 } 1344 }
988} 1345}
989 1346
990static void noinline 1347static void noinline
991loop_destroy (EV_P) 1348loop_destroy (EV_P)
992{ 1349{
993 int i; 1350 int i;
1351
1352 if (ev_is_active (&pipeev))
1353 {
1354 ev_ref (EV_A); /* signal watcher */
1355 ev_io_stop (EV_A_ &pipeev);
1356
1357#if EV_USE_EVENTFD
1358 if (evfd >= 0)
1359 close (evfd);
1360#endif
1361
1362 if (evpipe [0] >= 0)
1363 {
1364 close (evpipe [0]);
1365 close (evpipe [1]);
1366 }
1367 }
994 1368
995#if EV_USE_INOTIFY 1369#if EV_USE_INOTIFY
996 if (fs_fd >= 0) 1370 if (fs_fd >= 0)
997 close (fs_fd); 1371 close (fs_fd);
998#endif 1372#endif
1021 array_free (pending, [i]); 1395 array_free (pending, [i]);
1022#if EV_IDLE_ENABLE 1396#if EV_IDLE_ENABLE
1023 array_free (idle, [i]); 1397 array_free (idle, [i]);
1024#endif 1398#endif
1025 } 1399 }
1400
1401 ev_free (anfds); anfdmax = 0;
1026 1402
1027 /* have to use the microsoft-never-gets-it-right macro */ 1403 /* have to use the microsoft-never-gets-it-right macro */
1028 array_free (fdchange, EMPTY); 1404 array_free (fdchange, EMPTY);
1029 array_free (timer, EMPTY); 1405 array_free (timer, EMPTY);
1030#if EV_PERIODIC_ENABLE 1406#if EV_PERIODIC_ENABLE
1031 array_free (periodic, EMPTY); 1407 array_free (periodic, EMPTY);
1032#endif 1408#endif
1409#if EV_FORK_ENABLE
1410 array_free (fork, EMPTY);
1411#endif
1033 array_free (prepare, EMPTY); 1412 array_free (prepare, EMPTY);
1034 array_free (check, EMPTY); 1413 array_free (check, EMPTY);
1414#if EV_ASYNC_ENABLE
1415 array_free (async, EMPTY);
1416#endif
1035 1417
1036 backend = 0; 1418 backend = 0;
1037} 1419}
1038 1420
1421#if EV_USE_INOTIFY
1039void inline_size infy_fork (EV_P); 1422void inline_size infy_fork (EV_P);
1423#endif
1040 1424
1041void inline_size 1425void inline_size
1042loop_fork (EV_P) 1426loop_fork (EV_P)
1043{ 1427{
1044#if EV_USE_PORT 1428#if EV_USE_PORT
1052#endif 1436#endif
1053#if EV_USE_INOTIFY 1437#if EV_USE_INOTIFY
1054 infy_fork (EV_A); 1438 infy_fork (EV_A);
1055#endif 1439#endif
1056 1440
1057 if (ev_is_active (&sigev)) 1441 if (ev_is_active (&pipeev))
1058 { 1442 {
1059 /* default loop */ 1443 /* this "locks" the handlers against writing to the pipe */
1444 /* while we modify the fd vars */
1445 gotsig = 1;
1446#if EV_ASYNC_ENABLE
1447 gotasync = 1;
1448#endif
1060 1449
1061 ev_ref (EV_A); 1450 ev_ref (EV_A);
1062 ev_io_stop (EV_A_ &sigev); 1451 ev_io_stop (EV_A_ &pipeev);
1452
1453#if EV_USE_EVENTFD
1454 if (evfd >= 0)
1455 close (evfd);
1456#endif
1457
1458 if (evpipe [0] >= 0)
1459 {
1063 close (sigpipe [0]); 1460 close (evpipe [0]);
1064 close (sigpipe [1]); 1461 close (evpipe [1]);
1462 }
1065 1463
1066 while (pipe (sigpipe))
1067 syserr ("(libev) error creating pipe");
1068
1069 siginit (EV_A); 1464 evpipe_init (EV_A);
1465 /* now iterate over everything, in case we missed something */
1466 pipecb (EV_A_ &pipeev, EV_READ);
1070 } 1467 }
1071 1468
1072 postfork = 0; 1469 postfork = 0;
1073} 1470}
1074 1471
1075#if EV_MULTIPLICITY 1472#if EV_MULTIPLICITY
1473
1076struct ev_loop * 1474struct ev_loop *
1077ev_loop_new (unsigned int flags) 1475ev_loop_new (unsigned int flags)
1078{ 1476{
1079 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1477 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1080 1478
1096} 1494}
1097 1495
1098void 1496void
1099ev_loop_fork (EV_P) 1497ev_loop_fork (EV_P)
1100{ 1498{
1101 postfork = 1; 1499 postfork = 1; /* must be in line with ev_default_fork */
1102} 1500}
1103 1501
1502#if EV_VERIFY
1503static void noinline
1504verify_watcher (EV_P_ W w)
1505{
1506 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1507
1508 if (w->pending)
1509 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1510}
1511
1512static void noinline
1513verify_heap (EV_P_ ANHE *heap, int N)
1514{
1515 int i;
1516
1517 for (i = HEAP0; i < N + HEAP0; ++i)
1518 {
1519 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1520 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1521 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1522
1523 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1524 }
1525}
1526
1527static void noinline
1528array_verify (EV_P_ W *ws, int cnt)
1529{
1530 while (cnt--)
1531 {
1532 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1533 verify_watcher (EV_A_ ws [cnt]);
1534 }
1535}
1536#endif
1537
1538void
1539ev_loop_verify (EV_P)
1540{
1541#if EV_VERIFY
1542 int i;
1543 WL w;
1544
1545 assert (activecnt >= -1);
1546
1547 assert (fdchangemax >= fdchangecnt);
1548 for (i = 0; i < fdchangecnt; ++i)
1549 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1550
1551 assert (anfdmax >= 0);
1552 for (i = 0; i < anfdmax; ++i)
1553 for (w = anfds [i].head; w; w = w->next)
1554 {
1555 verify_watcher (EV_A_ (W)w);
1556 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1557 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1558 }
1559
1560 assert (timermax >= timercnt);
1561 verify_heap (EV_A_ timers, timercnt);
1562
1563#if EV_PERIODIC_ENABLE
1564 assert (periodicmax >= periodiccnt);
1565 verify_heap (EV_A_ periodics, periodiccnt);
1566#endif
1567
1568 for (i = NUMPRI; i--; )
1569 {
1570 assert (pendingmax [i] >= pendingcnt [i]);
1571#if EV_IDLE_ENABLE
1572 assert (idleall >= 0);
1573 assert (idlemax [i] >= idlecnt [i]);
1574 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1575#endif
1576 }
1577
1578#if EV_FORK_ENABLE
1579 assert (forkmax >= forkcnt);
1580 array_verify (EV_A_ (W *)forks, forkcnt);
1581#endif
1582
1583#if EV_ASYNC_ENABLE
1584 assert (asyncmax >= asynccnt);
1585 array_verify (EV_A_ (W *)asyncs, asynccnt);
1586#endif
1587
1588 assert (preparemax >= preparecnt);
1589 array_verify (EV_A_ (W *)prepares, preparecnt);
1590
1591 assert (checkmax >= checkcnt);
1592 array_verify (EV_A_ (W *)checks, checkcnt);
1593
1594# if 0
1595 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1596 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1104#endif 1597# endif
1598#endif
1599}
1600
1601#endif /* multiplicity */
1105 1602
1106#if EV_MULTIPLICITY 1603#if EV_MULTIPLICITY
1107struct ev_loop * 1604struct ev_loop *
1108ev_default_loop_init (unsigned int flags) 1605ev_default_loop_init (unsigned int flags)
1109#else 1606#else
1110int 1607int
1111ev_default_loop (unsigned int flags) 1608ev_default_loop (unsigned int flags)
1112#endif 1609#endif
1113{ 1610{
1114 if (sigpipe [0] == sigpipe [1])
1115 if (pipe (sigpipe))
1116 return 0;
1117
1118 if (!ev_default_loop_ptr) 1611 if (!ev_default_loop_ptr)
1119 { 1612 {
1120#if EV_MULTIPLICITY 1613#if EV_MULTIPLICITY
1121 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1614 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1122#else 1615#else
1125 1618
1126 loop_init (EV_A_ flags); 1619 loop_init (EV_A_ flags);
1127 1620
1128 if (ev_backend (EV_A)) 1621 if (ev_backend (EV_A))
1129 { 1622 {
1130 siginit (EV_A);
1131
1132#ifndef _WIN32 1623#ifndef _WIN32
1133 ev_signal_init (&childev, childcb, SIGCHLD); 1624 ev_signal_init (&childev, childcb, SIGCHLD);
1134 ev_set_priority (&childev, EV_MAXPRI); 1625 ev_set_priority (&childev, EV_MAXPRI);
1135 ev_signal_start (EV_A_ &childev); 1626 ev_signal_start (EV_A_ &childev);
1136 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1627 ev_unref (EV_A); /* child watcher should not keep loop alive */
1148{ 1639{
1149#if EV_MULTIPLICITY 1640#if EV_MULTIPLICITY
1150 struct ev_loop *loop = ev_default_loop_ptr; 1641 struct ev_loop *loop = ev_default_loop_ptr;
1151#endif 1642#endif
1152 1643
1644 ev_default_loop_ptr = 0;
1645
1153#ifndef _WIN32 1646#ifndef _WIN32
1154 ev_ref (EV_A); /* child watcher */ 1647 ev_ref (EV_A); /* child watcher */
1155 ev_signal_stop (EV_A_ &childev); 1648 ev_signal_stop (EV_A_ &childev);
1156#endif 1649#endif
1157 1650
1158 ev_ref (EV_A); /* signal watcher */
1159 ev_io_stop (EV_A_ &sigev);
1160
1161 close (sigpipe [0]); sigpipe [0] = 0;
1162 close (sigpipe [1]); sigpipe [1] = 0;
1163
1164 loop_destroy (EV_A); 1651 loop_destroy (EV_A);
1165} 1652}
1166 1653
1167void 1654void
1168ev_default_fork (void) 1655ev_default_fork (void)
1170#if EV_MULTIPLICITY 1657#if EV_MULTIPLICITY
1171 struct ev_loop *loop = ev_default_loop_ptr; 1658 struct ev_loop *loop = ev_default_loop_ptr;
1172#endif 1659#endif
1173 1660
1174 if (backend) 1661 if (backend)
1175 postfork = 1; 1662 postfork = 1; /* must be in line with ev_loop_fork */
1176} 1663}
1177 1664
1178/*****************************************************************************/ 1665/*****************************************************************************/
1179 1666
1180void 1667void
1197 { 1684 {
1198 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1685 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1199 1686
1200 p->w->pending = 0; 1687 p->w->pending = 0;
1201 EV_CB_INVOKE (p->w, p->events); 1688 EV_CB_INVOKE (p->w, p->events);
1689 EV_FREQUENT_CHECK;
1202 } 1690 }
1203 } 1691 }
1204} 1692}
1205
1206void inline_size
1207timers_reify (EV_P)
1208{
1209 while (timercnt && ((WT)timers [0])->at <= mn_now)
1210 {
1211 ev_timer *w = timers [0];
1212
1213 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1214
1215 /* first reschedule or stop timer */
1216 if (w->repeat)
1217 {
1218 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1219
1220 ((WT)w)->at += w->repeat;
1221 if (((WT)w)->at < mn_now)
1222 ((WT)w)->at = mn_now;
1223
1224 downheap ((WT *)timers, timercnt, 0);
1225 }
1226 else
1227 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1228
1229 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1230 }
1231}
1232
1233#if EV_PERIODIC_ENABLE
1234void inline_size
1235periodics_reify (EV_P)
1236{
1237 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1238 {
1239 ev_periodic *w = periodics [0];
1240
1241 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1242
1243 /* first reschedule or stop timer */
1244 if (w->reschedule_cb)
1245 {
1246 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1247 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1248 downheap ((WT *)periodics, periodiccnt, 0);
1249 }
1250 else if (w->interval)
1251 {
1252 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1253 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1255 downheap ((WT *)periodics, periodiccnt, 0);
1256 }
1257 else
1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1259
1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1261 }
1262}
1263
1264static void noinline
1265periodics_reschedule (EV_P)
1266{
1267 int i;
1268
1269 /* adjust periodics after time jump */
1270 for (i = 0; i < periodiccnt; ++i)
1271 {
1272 ev_periodic *w = periodics [i];
1273
1274 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1276 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 }
1279
1280 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i);
1283}
1284#endif
1285 1693
1286#if EV_IDLE_ENABLE 1694#if EV_IDLE_ENABLE
1287void inline_size 1695void inline_size
1288idle_reify (EV_P) 1696idle_reify (EV_P)
1289{ 1697{
1304 } 1712 }
1305 } 1713 }
1306} 1714}
1307#endif 1715#endif
1308 1716
1309int inline_size 1717void inline_size
1310time_update_monotonic (EV_P) 1718timers_reify (EV_P)
1311{ 1719{
1720 EV_FREQUENT_CHECK;
1721
1722 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1723 {
1724 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1725
1726 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1727
1728 /* first reschedule or stop timer */
1729 if (w->repeat)
1730 {
1731 ev_at (w) += w->repeat;
1732 if (ev_at (w) < mn_now)
1733 ev_at (w) = mn_now;
1734
1735 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1736
1737 ANHE_at_cache (timers [HEAP0]);
1738 downheap (timers, timercnt, HEAP0);
1739 }
1740 else
1741 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1742
1743 EV_FREQUENT_CHECK;
1744 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1745 }
1746}
1747
1748#if EV_PERIODIC_ENABLE
1749void inline_size
1750periodics_reify (EV_P)
1751{
1752 EV_FREQUENT_CHECK;
1753
1754 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1755 {
1756 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1757
1758 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1759
1760 /* first reschedule or stop timer */
1761 if (w->reschedule_cb)
1762 {
1763 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1764
1765 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1766
1767 ANHE_at_cache (periodics [HEAP0]);
1768 downheap (periodics, periodiccnt, HEAP0);
1769 }
1770 else if (w->interval)
1771 {
1772 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1773 /* if next trigger time is not sufficiently in the future, put it there */
1774 /* this might happen because of floating point inexactness */
1775 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1776 {
1777 ev_at (w) += w->interval;
1778
1779 /* if interval is unreasonably low we might still have a time in the past */
1780 /* so correct this. this will make the periodic very inexact, but the user */
1781 /* has effectively asked to get triggered more often than possible */
1782 if (ev_at (w) < ev_rt_now)
1783 ev_at (w) = ev_rt_now;
1784 }
1785
1786 ANHE_at_cache (periodics [HEAP0]);
1787 downheap (periodics, periodiccnt, HEAP0);
1788 }
1789 else
1790 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1791
1792 EV_FREQUENT_CHECK;
1793 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1794 }
1795}
1796
1797static void noinline
1798periodics_reschedule (EV_P)
1799{
1800 int i;
1801
1802 /* adjust periodics after time jump */
1803 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1804 {
1805 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1806
1807 if (w->reschedule_cb)
1808 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1809 else if (w->interval)
1810 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1811
1812 ANHE_at_cache (periodics [i]);
1813 }
1814
1815 reheap (periodics, periodiccnt);
1816}
1817#endif
1818
1819void inline_speed
1820time_update (EV_P_ ev_tstamp max_block)
1821{
1822 int i;
1823
1824#if EV_USE_MONOTONIC
1825 if (expect_true (have_monotonic))
1826 {
1827 ev_tstamp odiff = rtmn_diff;
1828
1312 mn_now = get_clock (); 1829 mn_now = get_clock ();
1313 1830
1831 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1832 /* interpolate in the meantime */
1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1833 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1315 { 1834 {
1316 ev_rt_now = rtmn_diff + mn_now; 1835 ev_rt_now = rtmn_diff + mn_now;
1317 return 0; 1836 return;
1318 } 1837 }
1319 else 1838
1320 {
1321 now_floor = mn_now; 1839 now_floor = mn_now;
1322 ev_rt_now = ev_time (); 1840 ev_rt_now = ev_time ();
1323 return 1;
1324 }
1325}
1326 1841
1327void inline_size 1842 /* loop a few times, before making important decisions.
1328time_update (EV_P) 1843 * on the choice of "4": one iteration isn't enough,
1329{ 1844 * in case we get preempted during the calls to
1330 int i; 1845 * ev_time and get_clock. a second call is almost guaranteed
1331 1846 * to succeed in that case, though. and looping a few more times
1332#if EV_USE_MONOTONIC 1847 * doesn't hurt either as we only do this on time-jumps or
1333 if (expect_true (have_monotonic)) 1848 * in the unlikely event of having been preempted here.
1334 { 1849 */
1335 if (time_update_monotonic (EV_A)) 1850 for (i = 4; --i; )
1336 { 1851 {
1337 ev_tstamp odiff = rtmn_diff;
1338
1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1348 {
1349 rtmn_diff = ev_rt_now - mn_now; 1852 rtmn_diff = ev_rt_now - mn_now;
1350 1853
1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1854 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1352 return; /* all is well */ 1855 return; /* all is well */
1353 1856
1354 ev_rt_now = ev_time (); 1857 ev_rt_now = ev_time ();
1355 mn_now = get_clock (); 1858 mn_now = get_clock ();
1356 now_floor = mn_now; 1859 now_floor = mn_now;
1357 } 1860 }
1358 1861
1359# if EV_PERIODIC_ENABLE 1862# if EV_PERIODIC_ENABLE
1360 periodics_reschedule (EV_A); 1863 periodics_reschedule (EV_A);
1361# endif 1864# endif
1362 /* no timer adjustment, as the monotonic clock doesn't jump */ 1865 /* no timer adjustment, as the monotonic clock doesn't jump */
1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1866 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1364 }
1365 } 1867 }
1366 else 1868 else
1367#endif 1869#endif
1368 { 1870 {
1369 ev_rt_now = ev_time (); 1871 ev_rt_now = ev_time ();
1370 1872
1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1873 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 { 1874 {
1373#if EV_PERIODIC_ENABLE 1875#if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 1876 periodics_reschedule (EV_A);
1375#endif 1877#endif
1376 /* adjust timers. this is easy, as the offset is the same for all of them */ 1878 /* adjust timers. this is easy, as the offset is the same for all of them */
1377 for (i = 0; i < timercnt; ++i) 1879 for (i = 0; i < timercnt; ++i)
1880 {
1881 ANHE *he = timers + i + HEAP0;
1378 ((WT)timers [i])->at += ev_rt_now - mn_now; 1882 ANHE_w (*he)->at += ev_rt_now - mn_now;
1883 ANHE_at_cache (*he);
1884 }
1379 } 1885 }
1380 1886
1381 mn_now = ev_rt_now; 1887 mn_now = ev_rt_now;
1382 } 1888 }
1383} 1889}
1392ev_unref (EV_P) 1898ev_unref (EV_P)
1393{ 1899{
1394 --activecnt; 1900 --activecnt;
1395} 1901}
1396 1902
1903void
1904ev_now_update (EV_P)
1905{
1906 time_update (EV_A_ 1e100);
1907}
1908
1397static int loop_done; 1909static int loop_done;
1398 1910
1399void 1911void
1400ev_loop (EV_P_ int flags) 1912ev_loop (EV_P_ int flags)
1401{ 1913{
1402 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1914 loop_done = EVUNLOOP_CANCEL;
1403 ? EVUNLOOP_ONE
1404 : EVUNLOOP_CANCEL;
1405 1915
1406 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1916 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1407 1917
1408 do 1918 do
1409 { 1919 {
1920#if EV_VERIFY >= 2
1921 ev_loop_verify (EV_A);
1922#endif
1923
1410#ifndef _WIN32 1924#ifndef _WIN32
1411 if (expect_false (curpid)) /* penalise the forking check even more */ 1925 if (expect_false (curpid)) /* penalise the forking check even more */
1412 if (expect_false (getpid () != curpid)) 1926 if (expect_false (getpid () != curpid))
1413 { 1927 {
1414 curpid = getpid (); 1928 curpid = getpid ();
1443 /* update fd-related kernel structures */ 1957 /* update fd-related kernel structures */
1444 fd_reify (EV_A); 1958 fd_reify (EV_A);
1445 1959
1446 /* calculate blocking time */ 1960 /* calculate blocking time */
1447 { 1961 {
1448 ev_tstamp block; 1962 ev_tstamp waittime = 0.;
1963 ev_tstamp sleeptime = 0.;
1449 1964
1450 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1965 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1451 block = 0.; /* do not block at all */
1452 else
1453 { 1966 {
1454 /* update time to cancel out callback processing overhead */ 1967 /* update time to cancel out callback processing overhead */
1455#if EV_USE_MONOTONIC
1456 if (expect_true (have_monotonic))
1457 time_update_monotonic (EV_A); 1968 time_update (EV_A_ 1e100);
1458 else
1459#endif
1460 {
1461 ev_rt_now = ev_time ();
1462 mn_now = ev_rt_now;
1463 }
1464 1969
1465 block = MAX_BLOCKTIME; 1970 waittime = MAX_BLOCKTIME;
1466 1971
1467 if (timercnt) 1972 if (timercnt)
1468 { 1973 {
1469 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1974 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1470 if (block > to) block = to; 1975 if (waittime > to) waittime = to;
1471 } 1976 }
1472 1977
1473#if EV_PERIODIC_ENABLE 1978#if EV_PERIODIC_ENABLE
1474 if (periodiccnt) 1979 if (periodiccnt)
1475 { 1980 {
1476 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1981 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1477 if (block > to) block = to; 1982 if (waittime > to) waittime = to;
1478 } 1983 }
1479#endif 1984#endif
1480 1985
1481 if (expect_false (block < 0.)) block = 0.; 1986 if (expect_false (waittime < timeout_blocktime))
1987 waittime = timeout_blocktime;
1988
1989 sleeptime = waittime - backend_fudge;
1990
1991 if (expect_true (sleeptime > io_blocktime))
1992 sleeptime = io_blocktime;
1993
1994 if (sleeptime)
1995 {
1996 ev_sleep (sleeptime);
1997 waittime -= sleeptime;
1998 }
1482 } 1999 }
1483 2000
1484 ++loop_count; 2001 ++loop_count;
1485 backend_poll (EV_A_ block); 2002 backend_poll (EV_A_ waittime);
2003
2004 /* update ev_rt_now, do magic */
2005 time_update (EV_A_ waittime + sleeptime);
1486 } 2006 }
1487
1488 /* update ev_rt_now, do magic */
1489 time_update (EV_A);
1490 2007
1491 /* queue pending timers and reschedule them */ 2008 /* queue pending timers and reschedule them */
1492 timers_reify (EV_A); /* relative timers called last */ 2009 timers_reify (EV_A); /* relative timers called last */
1493#if EV_PERIODIC_ENABLE 2010#if EV_PERIODIC_ENABLE
1494 periodics_reify (EV_A); /* absolute timers called first */ 2011 periodics_reify (EV_A); /* absolute timers called first */
1502 /* queue check watchers, to be executed first */ 2019 /* queue check watchers, to be executed first */
1503 if (expect_false (checkcnt)) 2020 if (expect_false (checkcnt))
1504 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2021 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1505 2022
1506 call_pending (EV_A); 2023 call_pending (EV_A);
1507
1508 } 2024 }
1509 while (expect_true (activecnt && !loop_done)); 2025 while (expect_true (
2026 activecnt
2027 && !loop_done
2028 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2029 ));
1510 2030
1511 if (loop_done == EVUNLOOP_ONE) 2031 if (loop_done == EVUNLOOP_ONE)
1512 loop_done = EVUNLOOP_CANCEL; 2032 loop_done = EVUNLOOP_CANCEL;
1513} 2033}
1514 2034
1602 2122
1603 if (expect_false (ev_is_active (w))) 2123 if (expect_false (ev_is_active (w)))
1604 return; 2124 return;
1605 2125
1606 assert (("ev_io_start called with negative fd", fd >= 0)); 2126 assert (("ev_io_start called with negative fd", fd >= 0));
2127 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2128
2129 EV_FREQUENT_CHECK;
1607 2130
1608 ev_start (EV_A_ (W)w, 1); 2131 ev_start (EV_A_ (W)w, 1);
1609 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1610 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2133 wlist_add (&anfds[fd].head, (WL)w);
1611 2134
1612 fd_change (EV_A_ fd); 2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2136 w->events &= ~EV_IOFDSET;
2137
2138 EV_FREQUENT_CHECK;
1613} 2139}
1614 2140
1615void noinline 2141void noinline
1616ev_io_stop (EV_P_ ev_io *w) 2142ev_io_stop (EV_P_ ev_io *w)
1617{ 2143{
1618 clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
1619 if (expect_false (!ev_is_active (w))) 2145 if (expect_false (!ev_is_active (w)))
1620 return; 2146 return;
1621 2147
1622 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1623 2149
2150 EV_FREQUENT_CHECK;
2151
1624 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2152 wlist_del (&anfds[w->fd].head, (WL)w);
1625 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1626 2154
1627 fd_change (EV_A_ w->fd); 2155 fd_change (EV_A_ w->fd, 1);
2156
2157 EV_FREQUENT_CHECK;
1628} 2158}
1629 2159
1630void noinline 2160void noinline
1631ev_timer_start (EV_P_ ev_timer *w) 2161ev_timer_start (EV_P_ ev_timer *w)
1632{ 2162{
1633 if (expect_false (ev_is_active (w))) 2163 if (expect_false (ev_is_active (w)))
1634 return; 2164 return;
1635 2165
1636 ((WT)w)->at += mn_now; 2166 ev_at (w) += mn_now;
1637 2167
1638 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1639 2169
2170 EV_FREQUENT_CHECK;
2171
2172 ++timercnt;
1640 ev_start (EV_A_ (W)w, ++timercnt); 2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1641 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2174 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1642 timers [timercnt - 1] = w; 2175 ANHE_w (timers [ev_active (w)]) = (WT)w;
1643 upheap ((WT *)timers, timercnt - 1); 2176 ANHE_at_cache (timers [ev_active (w)]);
2177 upheap (timers, ev_active (w));
1644 2178
2179 EV_FREQUENT_CHECK;
2180
1645 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1646} 2182}
1647 2183
1648void noinline 2184void noinline
1649ev_timer_stop (EV_P_ ev_timer *w) 2185ev_timer_stop (EV_P_ ev_timer *w)
1650{ 2186{
1651 clear_pending (EV_A_ (W)w); 2187 clear_pending (EV_A_ (W)w);
1652 if (expect_false (!ev_is_active (w))) 2188 if (expect_false (!ev_is_active (w)))
1653 return; 2189 return;
1654 2190
1655 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2191 EV_FREQUENT_CHECK;
1656 2192
1657 { 2193 {
1658 int active = ((W)w)->active; 2194 int active = ev_active (w);
1659 2195
2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2197
2198 --timercnt;
2199
1660 if (expect_true (--active < --timercnt)) 2200 if (expect_true (active < timercnt + HEAP0))
1661 { 2201 {
1662 timers [active] = timers [timercnt]; 2202 timers [active] = timers [timercnt + HEAP0];
1663 adjustheap ((WT *)timers, timercnt, active); 2203 adjustheap (timers, timercnt, active);
1664 } 2204 }
1665 } 2205 }
1666 2206
1667 ((WT)w)->at -= mn_now; 2207 EV_FREQUENT_CHECK;
2208
2209 ev_at (w) -= mn_now;
1668 2210
1669 ev_stop (EV_A_ (W)w); 2211 ev_stop (EV_A_ (W)w);
1670} 2212}
1671 2213
1672void noinline 2214void noinline
1673ev_timer_again (EV_P_ ev_timer *w) 2215ev_timer_again (EV_P_ ev_timer *w)
1674{ 2216{
2217 EV_FREQUENT_CHECK;
2218
1675 if (ev_is_active (w)) 2219 if (ev_is_active (w))
1676 { 2220 {
1677 if (w->repeat) 2221 if (w->repeat)
1678 { 2222 {
1679 ((WT)w)->at = mn_now + w->repeat; 2223 ev_at (w) = mn_now + w->repeat;
2224 ANHE_at_cache (timers [ev_active (w)]);
1680 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2225 adjustheap (timers, timercnt, ev_active (w));
1681 } 2226 }
1682 else 2227 else
1683 ev_timer_stop (EV_A_ w); 2228 ev_timer_stop (EV_A_ w);
1684 } 2229 }
1685 else if (w->repeat) 2230 else if (w->repeat)
1686 { 2231 {
1687 w->at = w->repeat; 2232 ev_at (w) = w->repeat;
1688 ev_timer_start (EV_A_ w); 2233 ev_timer_start (EV_A_ w);
1689 } 2234 }
2235
2236 EV_FREQUENT_CHECK;
1690} 2237}
1691 2238
1692#if EV_PERIODIC_ENABLE 2239#if EV_PERIODIC_ENABLE
1693void noinline 2240void noinline
1694ev_periodic_start (EV_P_ ev_periodic *w) 2241ev_periodic_start (EV_P_ ev_periodic *w)
1695{ 2242{
1696 if (expect_false (ev_is_active (w))) 2243 if (expect_false (ev_is_active (w)))
1697 return; 2244 return;
1698 2245
1699 if (w->reschedule_cb) 2246 if (w->reschedule_cb)
1700 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2247 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1701 else if (w->interval) 2248 else if (w->interval)
1702 { 2249 {
1703 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2250 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1704 /* this formula differs from the one in periodic_reify because we do not always round up */ 2251 /* this formula differs from the one in periodic_reify because we do not always round up */
1705 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1706 } 2253 }
1707 else 2254 else
1708 ((WT)w)->at = w->offset; 2255 ev_at (w) = w->offset;
1709 2256
2257 EV_FREQUENT_CHECK;
2258
2259 ++periodiccnt;
1710 ev_start (EV_A_ (W)w, ++periodiccnt); 2260 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1711 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2261 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1712 periodics [periodiccnt - 1] = w; 2262 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1713 upheap ((WT *)periodics, periodiccnt - 1); 2263 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w));
1714 2265
2266 EV_FREQUENT_CHECK;
2267
1715 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1716} 2269}
1717 2270
1718void noinline 2271void noinline
1719ev_periodic_stop (EV_P_ ev_periodic *w) 2272ev_periodic_stop (EV_P_ ev_periodic *w)
1720{ 2273{
1721 clear_pending (EV_A_ (W)w); 2274 clear_pending (EV_A_ (W)w);
1722 if (expect_false (!ev_is_active (w))) 2275 if (expect_false (!ev_is_active (w)))
1723 return; 2276 return;
1724 2277
1725 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2278 EV_FREQUENT_CHECK;
1726 2279
1727 { 2280 {
1728 int active = ((W)w)->active; 2281 int active = ev_active (w);
1729 2282
2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2284
2285 --periodiccnt;
2286
1730 if (expect_true (--active < --periodiccnt)) 2287 if (expect_true (active < periodiccnt + HEAP0))
1731 { 2288 {
1732 periodics [active] = periodics [periodiccnt]; 2289 periodics [active] = periodics [periodiccnt + HEAP0];
1733 adjustheap ((WT *)periodics, periodiccnt, active); 2290 adjustheap (periodics, periodiccnt, active);
1734 } 2291 }
1735 } 2292 }
2293
2294 EV_FREQUENT_CHECK;
1736 2295
1737 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
1738} 2297}
1739 2298
1740void noinline 2299void noinline
1759 if (expect_false (ev_is_active (w))) 2318 if (expect_false (ev_is_active (w)))
1760 return; 2319 return;
1761 2320
1762 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1763 2322
2323 evpipe_init (EV_A);
2324
2325 EV_FREQUENT_CHECK;
2326
2327 {
2328#ifndef _WIN32
2329 sigset_t full, prev;
2330 sigfillset (&full);
2331 sigprocmask (SIG_SETMASK, &full, &prev);
2332#endif
2333
2334 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2335
2336#ifndef _WIN32
2337 sigprocmask (SIG_SETMASK, &prev, 0);
2338#endif
2339 }
2340
1764 ev_start (EV_A_ (W)w, 1); 2341 ev_start (EV_A_ (W)w, 1);
1765 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1766 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2342 wlist_add (&signals [w->signum - 1].head, (WL)w);
1767 2343
1768 if (!((WL)w)->next) 2344 if (!((WL)w)->next)
1769 { 2345 {
1770#if _WIN32 2346#if _WIN32
1771 signal (w->signum, sighandler); 2347 signal (w->signum, ev_sighandler);
1772#else 2348#else
1773 struct sigaction sa; 2349 struct sigaction sa;
1774 sa.sa_handler = sighandler; 2350 sa.sa_handler = ev_sighandler;
1775 sigfillset (&sa.sa_mask); 2351 sigfillset (&sa.sa_mask);
1776 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1777 sigaction (w->signum, &sa, 0); 2353 sigaction (w->signum, &sa, 0);
1778#endif 2354#endif
1779 } 2355 }
2356
2357 EV_FREQUENT_CHECK;
1780} 2358}
1781 2359
1782void noinline 2360void noinline
1783ev_signal_stop (EV_P_ ev_signal *w) 2361ev_signal_stop (EV_P_ ev_signal *w)
1784{ 2362{
1785 clear_pending (EV_A_ (W)w); 2363 clear_pending (EV_A_ (W)w);
1786 if (expect_false (!ev_is_active (w))) 2364 if (expect_false (!ev_is_active (w)))
1787 return; 2365 return;
1788 2366
2367 EV_FREQUENT_CHECK;
2368
1789 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2369 wlist_del (&signals [w->signum - 1].head, (WL)w);
1790 ev_stop (EV_A_ (W)w); 2370 ev_stop (EV_A_ (W)w);
1791 2371
1792 if (!signals [w->signum - 1].head) 2372 if (!signals [w->signum - 1].head)
1793 signal (w->signum, SIG_DFL); 2373 signal (w->signum, SIG_DFL);
2374
2375 EV_FREQUENT_CHECK;
1794} 2376}
1795 2377
1796void 2378void
1797ev_child_start (EV_P_ ev_child *w) 2379ev_child_start (EV_P_ ev_child *w)
1798{ 2380{
1800 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1801#endif 2383#endif
1802 if (expect_false (ev_is_active (w))) 2384 if (expect_false (ev_is_active (w)))
1803 return; 2385 return;
1804 2386
2387 EV_FREQUENT_CHECK;
2388
1805 ev_start (EV_A_ (W)w, 1); 2389 ev_start (EV_A_ (W)w, 1);
1806 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2391
2392 EV_FREQUENT_CHECK;
1807} 2393}
1808 2394
1809void 2395void
1810ev_child_stop (EV_P_ ev_child *w) 2396ev_child_stop (EV_P_ ev_child *w)
1811{ 2397{
1812 clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
1813 if (expect_false (!ev_is_active (w))) 2399 if (expect_false (!ev_is_active (w)))
1814 return; 2400 return;
1815 2401
2402 EV_FREQUENT_CHECK;
2403
1816 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1817 ev_stop (EV_A_ (W)w); 2405 ev_stop (EV_A_ (W)w);
2406
2407 EV_FREQUENT_CHECK;
1818} 2408}
1819 2409
1820#if EV_STAT_ENABLE 2410#if EV_STAT_ENABLE
1821 2411
1822# ifdef _WIN32 2412# ifdef _WIN32
1840 if (w->wd < 0) 2430 if (w->wd < 0)
1841 { 2431 {
1842 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1843 2433
1844 /* monitor some parent directory for speedup hints */ 2434 /* monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */
2436 /* but an efficiency issue only */
1845 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1846 { 2438 {
1847 char path [4096]; 2439 char path [4096];
1848 strcpy (path, w->path); 2440 strcpy (path, w->path);
1849 2441
1889 2481
1890static void noinline 2482static void noinline
1891infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2483infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1892{ 2484{
1893 if (slot < 0) 2485 if (slot < 0)
1894 /* overflow, need to check for all hahs slots */ 2486 /* overflow, need to check for all hash slots */
1895 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2487 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1896 infy_wd (EV_A_ slot, wd, ev); 2488 infy_wd (EV_A_ slot, wd, ev);
1897 else 2489 else
1898 { 2490 {
1899 WL w_; 2491 WL w_;
1933infy_init (EV_P) 2525infy_init (EV_P)
1934{ 2526{
1935 if (fs_fd != -2) 2527 if (fs_fd != -2)
1936 return; 2528 return;
1937 2529
2530 /* kernels < 2.6.25 are borked
2531 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2532 */
2533 {
2534 struct utsname buf;
2535 int major, minor, micro;
2536
2537 fs_fd = -1;
2538
2539 if (uname (&buf))
2540 return;
2541
2542 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2543 return;
2544
2545 if (major < 2
2546 || (major == 2 && minor < 6)
2547 || (major == 2 && minor == 6 && micro < 25))
2548 return;
2549 }
2550
1938 fs_fd = inotify_init (); 2551 fs_fd = inotify_init ();
1939 2552
1940 if (fs_fd >= 0) 2553 if (fs_fd >= 0)
1941 { 2554 {
1942 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 2555 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1971 if (fs_fd >= 0) 2584 if (fs_fd >= 0)
1972 infy_add (EV_A_ w); /* re-add, no matter what */ 2585 infy_add (EV_A_ w); /* re-add, no matter what */
1973 else 2586 else
1974 ev_timer_start (EV_A_ &w->timer); 2587 ev_timer_start (EV_A_ &w->timer);
1975 } 2588 }
1976
1977 } 2589 }
1978} 2590}
1979 2591
2592#endif
2593
2594#ifdef _WIN32
2595# define EV_LSTAT(p,b) _stati64 (p, b)
2596#else
2597# define EV_LSTAT(p,b) lstat (p, b)
1980#endif 2598#endif
1981 2599
1982void 2600void
1983ev_stat_stat (EV_P_ ev_stat *w) 2601ev_stat_stat (EV_P_ ev_stat *w)
1984{ 2602{
2011 || w->prev.st_atime != w->attr.st_atime 2629 || w->prev.st_atime != w->attr.st_atime
2012 || w->prev.st_mtime != w->attr.st_mtime 2630 || w->prev.st_mtime != w->attr.st_mtime
2013 || w->prev.st_ctime != w->attr.st_ctime 2631 || w->prev.st_ctime != w->attr.st_ctime
2014 ) { 2632 ) {
2015 #if EV_USE_INOTIFY 2633 #if EV_USE_INOTIFY
2634 if (fs_fd >= 0)
2635 {
2016 infy_del (EV_A_ w); 2636 infy_del (EV_A_ w);
2017 infy_add (EV_A_ w); 2637 infy_add (EV_A_ w);
2018 ev_stat_stat (EV_A_ w); /* avoid race... */ 2638 ev_stat_stat (EV_A_ w); /* avoid race... */
2639 }
2019 #endif 2640 #endif
2020 2641
2021 ev_feed_event (EV_A_ w, EV_STAT); 2642 ev_feed_event (EV_A_ w, EV_STAT);
2022 } 2643 }
2023} 2644}
2048 else 2669 else
2049#endif 2670#endif
2050 ev_timer_start (EV_A_ &w->timer); 2671 ev_timer_start (EV_A_ &w->timer);
2051 2672
2052 ev_start (EV_A_ (W)w, 1); 2673 ev_start (EV_A_ (W)w, 1);
2674
2675 EV_FREQUENT_CHECK;
2053} 2676}
2054 2677
2055void 2678void
2056ev_stat_stop (EV_P_ ev_stat *w) 2679ev_stat_stop (EV_P_ ev_stat *w)
2057{ 2680{
2058 clear_pending (EV_A_ (W)w); 2681 clear_pending (EV_A_ (W)w);
2059 if (expect_false (!ev_is_active (w))) 2682 if (expect_false (!ev_is_active (w)))
2060 return; 2683 return;
2061 2684
2685 EV_FREQUENT_CHECK;
2686
2062#if EV_USE_INOTIFY 2687#if EV_USE_INOTIFY
2063 infy_del (EV_A_ w); 2688 infy_del (EV_A_ w);
2064#endif 2689#endif
2065 ev_timer_stop (EV_A_ &w->timer); 2690 ev_timer_stop (EV_A_ &w->timer);
2066 2691
2067 ev_stop (EV_A_ (W)w); 2692 ev_stop (EV_A_ (W)w);
2693
2694 EV_FREQUENT_CHECK;
2068} 2695}
2069#endif 2696#endif
2070 2697
2071#if EV_IDLE_ENABLE 2698#if EV_IDLE_ENABLE
2072void 2699void
2074{ 2701{
2075 if (expect_false (ev_is_active (w))) 2702 if (expect_false (ev_is_active (w)))
2076 return; 2703 return;
2077 2704
2078 pri_adjust (EV_A_ (W)w); 2705 pri_adjust (EV_A_ (W)w);
2706
2707 EV_FREQUENT_CHECK;
2079 2708
2080 { 2709 {
2081 int active = ++idlecnt [ABSPRI (w)]; 2710 int active = ++idlecnt [ABSPRI (w)];
2082 2711
2083 ++idleall; 2712 ++idleall;
2084 ev_start (EV_A_ (W)w, active); 2713 ev_start (EV_A_ (W)w, active);
2085 2714
2086 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2715 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2087 idles [ABSPRI (w)][active - 1] = w; 2716 idles [ABSPRI (w)][active - 1] = w;
2088 } 2717 }
2718
2719 EV_FREQUENT_CHECK;
2089} 2720}
2090 2721
2091void 2722void
2092ev_idle_stop (EV_P_ ev_idle *w) 2723ev_idle_stop (EV_P_ ev_idle *w)
2093{ 2724{
2094 clear_pending (EV_A_ (W)w); 2725 clear_pending (EV_A_ (W)w);
2095 if (expect_false (!ev_is_active (w))) 2726 if (expect_false (!ev_is_active (w)))
2096 return; 2727 return;
2097 2728
2729 EV_FREQUENT_CHECK;
2730
2098 { 2731 {
2099 int active = ((W)w)->active; 2732 int active = ev_active (w);
2100 2733
2101 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2734 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2102 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2735 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2103 2736
2104 ev_stop (EV_A_ (W)w); 2737 ev_stop (EV_A_ (W)w);
2105 --idleall; 2738 --idleall;
2106 } 2739 }
2740
2741 EV_FREQUENT_CHECK;
2107} 2742}
2108#endif 2743#endif
2109 2744
2110void 2745void
2111ev_prepare_start (EV_P_ ev_prepare *w) 2746ev_prepare_start (EV_P_ ev_prepare *w)
2112{ 2747{
2113 if (expect_false (ev_is_active (w))) 2748 if (expect_false (ev_is_active (w)))
2114 return; 2749 return;
2750
2751 EV_FREQUENT_CHECK;
2115 2752
2116 ev_start (EV_A_ (W)w, ++preparecnt); 2753 ev_start (EV_A_ (W)w, ++preparecnt);
2117 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2754 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2118 prepares [preparecnt - 1] = w; 2755 prepares [preparecnt - 1] = w;
2756
2757 EV_FREQUENT_CHECK;
2119} 2758}
2120 2759
2121void 2760void
2122ev_prepare_stop (EV_P_ ev_prepare *w) 2761ev_prepare_stop (EV_P_ ev_prepare *w)
2123{ 2762{
2124 clear_pending (EV_A_ (W)w); 2763 clear_pending (EV_A_ (W)w);
2125 if (expect_false (!ev_is_active (w))) 2764 if (expect_false (!ev_is_active (w)))
2126 return; 2765 return;
2127 2766
2767 EV_FREQUENT_CHECK;
2768
2128 { 2769 {
2129 int active = ((W)w)->active; 2770 int active = ev_active (w);
2771
2130 prepares [active - 1] = prepares [--preparecnt]; 2772 prepares [active - 1] = prepares [--preparecnt];
2131 ((W)prepares [active - 1])->active = active; 2773 ev_active (prepares [active - 1]) = active;
2132 } 2774 }
2133 2775
2134 ev_stop (EV_A_ (W)w); 2776 ev_stop (EV_A_ (W)w);
2777
2778 EV_FREQUENT_CHECK;
2135} 2779}
2136 2780
2137void 2781void
2138ev_check_start (EV_P_ ev_check *w) 2782ev_check_start (EV_P_ ev_check *w)
2139{ 2783{
2140 if (expect_false (ev_is_active (w))) 2784 if (expect_false (ev_is_active (w)))
2141 return; 2785 return;
2786
2787 EV_FREQUENT_CHECK;
2142 2788
2143 ev_start (EV_A_ (W)w, ++checkcnt); 2789 ev_start (EV_A_ (W)w, ++checkcnt);
2144 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2790 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2145 checks [checkcnt - 1] = w; 2791 checks [checkcnt - 1] = w;
2792
2793 EV_FREQUENT_CHECK;
2146} 2794}
2147 2795
2148void 2796void
2149ev_check_stop (EV_P_ ev_check *w) 2797ev_check_stop (EV_P_ ev_check *w)
2150{ 2798{
2151 clear_pending (EV_A_ (W)w); 2799 clear_pending (EV_A_ (W)w);
2152 if (expect_false (!ev_is_active (w))) 2800 if (expect_false (!ev_is_active (w)))
2153 return; 2801 return;
2154 2802
2803 EV_FREQUENT_CHECK;
2804
2155 { 2805 {
2156 int active = ((W)w)->active; 2806 int active = ev_active (w);
2807
2157 checks [active - 1] = checks [--checkcnt]; 2808 checks [active - 1] = checks [--checkcnt];
2158 ((W)checks [active - 1])->active = active; 2809 ev_active (checks [active - 1]) = active;
2159 } 2810 }
2160 2811
2161 ev_stop (EV_A_ (W)w); 2812 ev_stop (EV_A_ (W)w);
2813
2814 EV_FREQUENT_CHECK;
2162} 2815}
2163 2816
2164#if EV_EMBED_ENABLE 2817#if EV_EMBED_ENABLE
2165void noinline 2818void noinline
2166ev_embed_sweep (EV_P_ ev_embed *w) 2819ev_embed_sweep (EV_P_ ev_embed *w)
2167{ 2820{
2168 ev_loop (w->loop, EVLOOP_NONBLOCK); 2821 ev_loop (w->other, EVLOOP_NONBLOCK);
2169} 2822}
2170 2823
2171static void 2824static void
2172embed_cb (EV_P_ ev_io *io, int revents) 2825embed_io_cb (EV_P_ ev_io *io, int revents)
2173{ 2826{
2174 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2827 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2175 2828
2176 if (ev_cb (w)) 2829 if (ev_cb (w))
2177 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2830 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2178 else 2831 else
2179 ev_embed_sweep (loop, w); 2832 ev_loop (w->other, EVLOOP_NONBLOCK);
2180} 2833}
2834
2835static void
2836embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2837{
2838 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2839
2840 {
2841 struct ev_loop *loop = w->other;
2842
2843 while (fdchangecnt)
2844 {
2845 fd_reify (EV_A);
2846 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2847 }
2848 }
2849}
2850
2851static void
2852embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2853{
2854 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2855
2856 {
2857 struct ev_loop *loop = w->other;
2858
2859 ev_loop_fork (EV_A);
2860 }
2861}
2862
2863#if 0
2864static void
2865embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2866{
2867 ev_idle_stop (EV_A_ idle);
2868}
2869#endif
2181 2870
2182void 2871void
2183ev_embed_start (EV_P_ ev_embed *w) 2872ev_embed_start (EV_P_ ev_embed *w)
2184{ 2873{
2185 if (expect_false (ev_is_active (w))) 2874 if (expect_false (ev_is_active (w)))
2186 return; 2875 return;
2187 2876
2188 { 2877 {
2189 struct ev_loop *loop = w->loop; 2878 struct ev_loop *loop = w->other;
2190 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2879 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2191 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2880 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2192 } 2881 }
2882
2883 EV_FREQUENT_CHECK;
2193 2884
2194 ev_set_priority (&w->io, ev_priority (w)); 2885 ev_set_priority (&w->io, ev_priority (w));
2195 ev_io_start (EV_A_ &w->io); 2886 ev_io_start (EV_A_ &w->io);
2196 2887
2888 ev_prepare_init (&w->prepare, embed_prepare_cb);
2889 ev_set_priority (&w->prepare, EV_MINPRI);
2890 ev_prepare_start (EV_A_ &w->prepare);
2891
2892 ev_fork_init (&w->fork, embed_fork_cb);
2893 ev_fork_start (EV_A_ &w->fork);
2894
2895 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2896
2197 ev_start (EV_A_ (W)w, 1); 2897 ev_start (EV_A_ (W)w, 1);
2898
2899 EV_FREQUENT_CHECK;
2198} 2900}
2199 2901
2200void 2902void
2201ev_embed_stop (EV_P_ ev_embed *w) 2903ev_embed_stop (EV_P_ ev_embed *w)
2202{ 2904{
2203 clear_pending (EV_A_ (W)w); 2905 clear_pending (EV_A_ (W)w);
2204 if (expect_false (!ev_is_active (w))) 2906 if (expect_false (!ev_is_active (w)))
2205 return; 2907 return;
2206 2908
2909 EV_FREQUENT_CHECK;
2910
2207 ev_io_stop (EV_A_ &w->io); 2911 ev_io_stop (EV_A_ &w->io);
2912 ev_prepare_stop (EV_A_ &w->prepare);
2913 ev_fork_stop (EV_A_ &w->fork);
2208 2914
2209 ev_stop (EV_A_ (W)w); 2915 EV_FREQUENT_CHECK;
2210} 2916}
2211#endif 2917#endif
2212 2918
2213#if EV_FORK_ENABLE 2919#if EV_FORK_ENABLE
2214void 2920void
2215ev_fork_start (EV_P_ ev_fork *w) 2921ev_fork_start (EV_P_ ev_fork *w)
2216{ 2922{
2217 if (expect_false (ev_is_active (w))) 2923 if (expect_false (ev_is_active (w)))
2218 return; 2924 return;
2925
2926 EV_FREQUENT_CHECK;
2219 2927
2220 ev_start (EV_A_ (W)w, ++forkcnt); 2928 ev_start (EV_A_ (W)w, ++forkcnt);
2221 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2929 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2222 forks [forkcnt - 1] = w; 2930 forks [forkcnt - 1] = w;
2931
2932 EV_FREQUENT_CHECK;
2223} 2933}
2224 2934
2225void 2935void
2226ev_fork_stop (EV_P_ ev_fork *w) 2936ev_fork_stop (EV_P_ ev_fork *w)
2227{ 2937{
2228 clear_pending (EV_A_ (W)w); 2938 clear_pending (EV_A_ (W)w);
2229 if (expect_false (!ev_is_active (w))) 2939 if (expect_false (!ev_is_active (w)))
2230 return; 2940 return;
2231 2941
2942 EV_FREQUENT_CHECK;
2943
2232 { 2944 {
2233 int active = ((W)w)->active; 2945 int active = ev_active (w);
2946
2234 forks [active - 1] = forks [--forkcnt]; 2947 forks [active - 1] = forks [--forkcnt];
2235 ((W)forks [active - 1])->active = active; 2948 ev_active (forks [active - 1]) = active;
2236 } 2949 }
2237 2950
2238 ev_stop (EV_A_ (W)w); 2951 ev_stop (EV_A_ (W)w);
2952
2953 EV_FREQUENT_CHECK;
2954}
2955#endif
2956
2957#if EV_ASYNC_ENABLE
2958void
2959ev_async_start (EV_P_ ev_async *w)
2960{
2961 if (expect_false (ev_is_active (w)))
2962 return;
2963
2964 evpipe_init (EV_A);
2965
2966 EV_FREQUENT_CHECK;
2967
2968 ev_start (EV_A_ (W)w, ++asynccnt);
2969 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2970 asyncs [asynccnt - 1] = w;
2971
2972 EV_FREQUENT_CHECK;
2973}
2974
2975void
2976ev_async_stop (EV_P_ ev_async *w)
2977{
2978 clear_pending (EV_A_ (W)w);
2979 if (expect_false (!ev_is_active (w)))
2980 return;
2981
2982 EV_FREQUENT_CHECK;
2983
2984 {
2985 int active = ev_active (w);
2986
2987 asyncs [active - 1] = asyncs [--asynccnt];
2988 ev_active (asyncs [active - 1]) = active;
2989 }
2990
2991 ev_stop (EV_A_ (W)w);
2992
2993 EV_FREQUENT_CHECK;
2994}
2995
2996void
2997ev_async_send (EV_P_ ev_async *w)
2998{
2999 w->sent = 1;
3000 evpipe_write (EV_A_ &gotasync);
2239} 3001}
2240#endif 3002#endif
2241 3003
2242/*****************************************************************************/ 3004/*****************************************************************************/
2243 3005
2253once_cb (EV_P_ struct ev_once *once, int revents) 3015once_cb (EV_P_ struct ev_once *once, int revents)
2254{ 3016{
2255 void (*cb)(int revents, void *arg) = once->cb; 3017 void (*cb)(int revents, void *arg) = once->cb;
2256 void *arg = once->arg; 3018 void *arg = once->arg;
2257 3019
2258 ev_io_stop (EV_A_ &once->io); 3020 ev_io_stop (EV_A_ &once->io);
2259 ev_timer_stop (EV_A_ &once->to); 3021 ev_timer_stop (EV_A_ &once->to);
2260 ev_free (once); 3022 ev_free (once);
2261 3023
2262 cb (revents, arg); 3024 cb (revents, arg);
2263} 3025}
2264 3026
2265static void 3027static void
2266once_cb_io (EV_P_ ev_io *w, int revents) 3028once_cb_io (EV_P_ ev_io *w, int revents)
2267{ 3029{
2268 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3030 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3031
3032 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2269} 3033}
2270 3034
2271static void 3035static void
2272once_cb_to (EV_P_ ev_timer *w, int revents) 3036once_cb_to (EV_P_ ev_timer *w, int revents)
2273{ 3037{
2274 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3038 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3039
3040 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2275} 3041}
2276 3042
2277void 3043void
2278ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3044ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2279{ 3045{
2301 ev_timer_set (&once->to, timeout, 0.); 3067 ev_timer_set (&once->to, timeout, 0.);
2302 ev_timer_start (EV_A_ &once->to); 3068 ev_timer_start (EV_A_ &once->to);
2303 } 3069 }
2304} 3070}
2305 3071
3072#if EV_MULTIPLICITY
3073 #include "ev_wrap.h"
3074#endif
3075
2306#ifdef __cplusplus 3076#ifdef __cplusplus
2307} 3077}
2308#endif 3078#endif
2309 3079

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines