ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.177 by root, Tue Dec 11 15:06:50 2007 UTC vs.
Revision 1.298 by root, Fri Jul 10 19:10:19 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
79# endif
80# endif
81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
56# endif 87# endif
57# endif 88# endif
58 89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_EVENTFD
139# if HAVE_EVENTFD
140# define EV_USE_EVENTFD 1
141# else
142# define EV_USE_EVENTFD 0
143# endif
144# endif
145
107#endif 146#endif
108 147
109#include <math.h> 148#include <math.h>
110#include <stdlib.h> 149#include <stdlib.h>
111#include <fcntl.h> 150#include <fcntl.h>
129#ifndef _WIN32 168#ifndef _WIN32
130# include <sys/time.h> 169# include <sys/time.h>
131# include <sys/wait.h> 170# include <sys/wait.h>
132# include <unistd.h> 171# include <unistd.h>
133#else 172#else
173# include <io.h>
134# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 175# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
138# endif 178# endif
139#endif 179#endif
140 180
141/**/ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
142 190
143#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
144# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
145#endif 197#endif
146 198
147#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
201#endif
202
203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
207# define EV_USE_NANOSLEEP 0
208# endif
149#endif 209#endif
150 210
151#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
153#endif 213#endif
159# define EV_USE_POLL 1 219# define EV_USE_POLL 1
160# endif 220# endif
161#endif 221#endif
162 222
163#ifndef EV_USE_EPOLL 223#ifndef EV_USE_EPOLL
224# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
225# define EV_USE_EPOLL 1
226# else
164# define EV_USE_EPOLL 0 227# define EV_USE_EPOLL 0
228# endif
165#endif 229#endif
166 230
167#ifndef EV_USE_KQUEUE 231#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 232# define EV_USE_KQUEUE 0
169#endif 233#endif
171#ifndef EV_USE_PORT 235#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 236# define EV_USE_PORT 0
173#endif 237#endif
174 238
175#ifndef EV_USE_INOTIFY 239#ifndef EV_USE_INOTIFY
240# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
241# define EV_USE_INOTIFY 1
242# else
176# define EV_USE_INOTIFY 0 243# define EV_USE_INOTIFY 0
244# endif
177#endif 245#endif
178 246
179#ifndef EV_PID_HASHSIZE 247#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 248# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 249# define EV_PID_HASHSIZE 1
190# else 258# else
191# define EV_INOTIFY_HASHSIZE 16 259# define EV_INOTIFY_HASHSIZE 16
192# endif 260# endif
193#endif 261#endif
194 262
195/**/ 263#ifndef EV_USE_EVENTFD
264# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
265# define EV_USE_EVENTFD 1
266# else
267# define EV_USE_EVENTFD 0
268# endif
269#endif
270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 304
197#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
200#endif 308#endif
202#ifndef CLOCK_REALTIME 310#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 311# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 312# define EV_USE_REALTIME 0
205#endif 313#endif
206 314
315#if !EV_STAT_ENABLE
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318#endif
319
320#if !EV_USE_NANOSLEEP
321# ifndef _WIN32
322# include <sys/select.h>
323# endif
324#endif
325
326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
335#endif
336
207#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 338# include <winsock.h>
209#endif 339#endif
210 340
211#if !EV_STAT_ENABLE 341#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 342/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
343# include <stdint.h>
344# ifdef __cplusplus
345extern "C" {
213#endif 346# endif
214 347int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 348# ifdef __cplusplus
216# include <sys/inotify.h> 349}
350# endif
217#endif 351#endif
218 352
219/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
220 360
221/* 361/*
222 * This is used to avoid floating point rounding problems. 362 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 363 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 364 * to ensure progress, time-wise, even when rounding
230 370
231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 371#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 372#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 373/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
234 374
235#if __GNUC__ >= 3 375#if __GNUC__ >= 4
236# define expect(expr,value) __builtin_expect ((expr),(value)) 376# define expect(expr,value) __builtin_expect ((expr),(value))
237# define noinline __attribute__ ((noinline)) 377# define noinline __attribute__ ((noinline))
238#else 378#else
239# define expect(expr,value) (expr) 379# define expect(expr,value) (expr)
240# define noinline 380# define noinline
241# if __STDC_VERSION__ < 199901L 381# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
242# define inline 382# define inline
243# endif 383# endif
244#endif 384#endif
245 385
246#define expect_false(expr) expect ((expr) != 0, 0) 386#define expect_false(expr) expect ((expr) != 0, 0)
251# define inline_speed static noinline 391# define inline_speed static noinline
252#else 392#else
253# define inline_speed static inline 393# define inline_speed static inline
254#endif 394#endif
255 395
256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
258 403
259#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
260#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
261 406
262typedef ev_watcher *W; 407typedef ev_watcher *W;
263typedef ev_watcher_list *WL; 408typedef ev_watcher_list *WL;
264typedef ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
265 410
411#define ev_active(w) ((W)(w))->active
412#define ev_at(w) ((WT)(w))->at
413
414#if EV_USE_REALTIME
415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
422#endif
267 423
268#ifdef _WIN32 424#ifdef _WIN32
269# include "ev_win32.c" 425# include "ev_win32.c"
270#endif 426#endif
271 427
278{ 434{
279 syserr_cb = cb; 435 syserr_cb = cb;
280} 436}
281 437
282static void noinline 438static void noinline
283syserr (const char *msg) 439ev_syserr (const char *msg)
284{ 440{
285 if (!msg) 441 if (!msg)
286 msg = "(libev) system error"; 442 msg = "(libev) system error";
287 443
288 if (syserr_cb) 444 if (syserr_cb)
292 perror (msg); 448 perror (msg);
293 abort (); 449 abort ();
294 } 450 }
295} 451}
296 452
453static void *
454ev_realloc_emul (void *ptr, long size)
455{
456 /* some systems, notably openbsd and darwin, fail to properly
457 * implement realloc (x, 0) (as required by both ansi c-98 and
458 * the single unix specification, so work around them here.
459 */
460
461 if (size)
462 return realloc (ptr, size);
463
464 free (ptr);
465 return 0;
466}
467
297static void *(*alloc)(void *ptr, long size); 468static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
298 469
299void 470void
300ev_set_allocator (void *(*cb)(void *ptr, long size)) 471ev_set_allocator (void *(*cb)(void *ptr, long size))
301{ 472{
302 alloc = cb; 473 alloc = cb;
303} 474}
304 475
305inline_speed void * 476inline_speed void *
306ev_realloc (void *ptr, long size) 477ev_realloc (void *ptr, long size)
307{ 478{
308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 479 ptr = alloc (ptr, size);
309 480
310 if (!ptr && size) 481 if (!ptr && size)
311 { 482 {
312 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 483 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
313 abort (); 484 abort ();
319#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
320#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
321 492
322/*****************************************************************************/ 493/*****************************************************************************/
323 494
495/* set in reify when reification needed */
496#define EV_ANFD_REIFY 1
497
498/* file descriptor info structure */
324typedef struct 499typedef struct
325{ 500{
326 WL head; 501 WL head;
327 unsigned char events; 502 unsigned char events; /* the events watched for */
503 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
504 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
328 unsigned char reify; 505 unsigned char unused;
506#if EV_USE_EPOLL
507 unsigned int egen; /* generation counter to counter epoll bugs */
508#endif
329#if EV_SELECT_IS_WINSOCKET 509#if EV_SELECT_IS_WINSOCKET
330 SOCKET handle; 510 SOCKET handle;
331#endif 511#endif
332} ANFD; 512} ANFD;
333 513
514/* stores the pending event set for a given watcher */
334typedef struct 515typedef struct
335{ 516{
336 W w; 517 W w;
337 int events; 518 int events; /* the pending event set for the given watcher */
338} ANPENDING; 519} ANPENDING;
339 520
340#if EV_USE_INOTIFY 521#if EV_USE_INOTIFY
522/* hash table entry per inotify-id */
341typedef struct 523typedef struct
342{ 524{
343 WL head; 525 WL head;
344} ANFS; 526} ANFS;
527#endif
528
529/* Heap Entry */
530#if EV_HEAP_CACHE_AT
531 /* a heap element */
532 typedef struct {
533 ev_tstamp at;
534 WT w;
535 } ANHE;
536
537 #define ANHE_w(he) (he).w /* access watcher, read-write */
538 #define ANHE_at(he) (he).at /* access cached at, read-only */
539 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
540#else
541 /* a heap element */
542 typedef WT ANHE;
543
544 #define ANHE_w(he) (he)
545 #define ANHE_at(he) (he)->at
546 #define ANHE_at_cache(he)
345#endif 547#endif
346 548
347#if EV_MULTIPLICITY 549#if EV_MULTIPLICITY
348 550
349 struct ev_loop 551 struct ev_loop
368 570
369 static int ev_default_loop_ptr; 571 static int ev_default_loop_ptr;
370 572
371#endif 573#endif
372 574
575#if EV_MINIMAL < 2
576# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
577# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
578# define EV_INVOKE_PENDING invoke_cb (EV_A)
579#else
580# define EV_RELEASE_CB (void)0
581# define EV_ACQUIRE_CB (void)0
582# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
583#endif
584
585#define EVUNLOOP_RECURSE 0x80
586
373/*****************************************************************************/ 587/*****************************************************************************/
374 588
589#ifndef EV_HAVE_EV_TIME
375ev_tstamp 590ev_tstamp
376ev_time (void) 591ev_time (void)
377{ 592{
378#if EV_USE_REALTIME 593#if EV_USE_REALTIME
594 if (expect_true (have_realtime))
595 {
379 struct timespec ts; 596 struct timespec ts;
380 clock_gettime (CLOCK_REALTIME, &ts); 597 clock_gettime (CLOCK_REALTIME, &ts);
381 return ts.tv_sec + ts.tv_nsec * 1e-9; 598 return ts.tv_sec + ts.tv_nsec * 1e-9;
382#else 599 }
600#endif
601
383 struct timeval tv; 602 struct timeval tv;
384 gettimeofday (&tv, 0); 603 gettimeofday (&tv, 0);
385 return tv.tv_sec + tv.tv_usec * 1e-6; 604 return tv.tv_sec + tv.tv_usec * 1e-6;
386#endif
387} 605}
606#endif
388 607
389ev_tstamp inline_size 608inline_size ev_tstamp
390get_clock (void) 609get_clock (void)
391{ 610{
392#if EV_USE_MONOTONIC 611#if EV_USE_MONOTONIC
393 if (expect_true (have_monotonic)) 612 if (expect_true (have_monotonic))
394 { 613 {
407{ 626{
408 return ev_rt_now; 627 return ev_rt_now;
409} 628}
410#endif 629#endif
411 630
412int inline_size 631void
632ev_sleep (ev_tstamp delay)
633{
634 if (delay > 0.)
635 {
636#if EV_USE_NANOSLEEP
637 struct timespec ts;
638
639 ts.tv_sec = (time_t)delay;
640 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
641
642 nanosleep (&ts, 0);
643#elif defined(_WIN32)
644 Sleep ((unsigned long)(delay * 1e3));
645#else
646 struct timeval tv;
647
648 tv.tv_sec = (time_t)delay;
649 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
650
651 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
652 /* somehting not guaranteed by newer posix versions, but guaranteed */
653 /* by older ones */
654 select (0, 0, 0, 0, &tv);
655#endif
656 }
657}
658
659/*****************************************************************************/
660
661#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
662
663/* find a suitable new size for the given array, */
664/* hopefully by rounding to a ncie-to-malloc size */
665inline_size int
413array_nextsize (int elem, int cur, int cnt) 666array_nextsize (int elem, int cur, int cnt)
414{ 667{
415 int ncur = cur + 1; 668 int ncur = cur + 1;
416 669
417 do 670 do
418 ncur <<= 1; 671 ncur <<= 1;
419 while (cnt > ncur); 672 while (cnt > ncur);
420 673
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 674 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096) 675 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
423 { 676 {
424 ncur *= elem; 677 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 678 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
426 ncur = ncur - sizeof (void *) * 4; 679 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem; 680 ncur /= elem;
428 } 681 }
429 682
430 return ncur; 683 return ncur;
434array_realloc (int elem, void *base, int *cur, int cnt) 687array_realloc (int elem, void *base, int *cur, int cnt)
435{ 688{
436 *cur = array_nextsize (elem, *cur, cnt); 689 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur); 690 return ev_realloc (base, elem * *cur);
438} 691}
692
693#define array_init_zero(base,count) \
694 memset ((void *)(base), 0, sizeof (*(base)) * (count))
439 695
440#define array_needsize(type,base,cur,cnt,init) \ 696#define array_needsize(type,base,cur,cnt,init) \
441 if (expect_false ((cnt) > (cur))) \ 697 if (expect_false ((cnt) > (cur))) \
442 { \ 698 { \
443 int ocur_ = (cur); \ 699 int ocur_ = (cur); \
455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 711 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
456 } 712 }
457#endif 713#endif
458 714
459#define array_free(stem, idx) \ 715#define array_free(stem, idx) \
460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 716 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
461 717
462/*****************************************************************************/ 718/*****************************************************************************/
719
720/* dummy callback for pending events */
721static void noinline
722pendingcb (EV_P_ ev_prepare *w, int revents)
723{
724}
463 725
464void noinline 726void noinline
465ev_feed_event (EV_P_ void *w, int revents) 727ev_feed_event (EV_P_ void *w, int revents)
466{ 728{
467 W w_ = (W)w; 729 W w_ = (W)w;
476 pendings [pri][w_->pending - 1].w = w_; 738 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents; 739 pendings [pri][w_->pending - 1].events = revents;
478 } 740 }
479} 741}
480 742
481void inline_size 743inline_speed void
744feed_reverse (EV_P_ W w)
745{
746 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
747 rfeeds [rfeedcnt++] = w;
748}
749
750inline_size void
751feed_reverse_done (EV_P_ int revents)
752{
753 do
754 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
755 while (rfeedcnt);
756}
757
758inline_speed void
482queue_events (EV_P_ W *events, int eventcnt, int type) 759queue_events (EV_P_ W *events, int eventcnt, int type)
483{ 760{
484 int i; 761 int i;
485 762
486 for (i = 0; i < eventcnt; ++i) 763 for (i = 0; i < eventcnt; ++i)
487 ev_feed_event (EV_A_ events [i], type); 764 ev_feed_event (EV_A_ events [i], type);
488} 765}
489 766
490/*****************************************************************************/ 767/*****************************************************************************/
491 768
492void inline_size 769inline_speed void
493anfds_init (ANFD *base, int count)
494{
495 while (count--)
496 {
497 base->head = 0;
498 base->events = EV_NONE;
499 base->reify = 0;
500
501 ++base;
502 }
503}
504
505void inline_speed
506fd_event (EV_P_ int fd, int revents) 770fd_event_nc (EV_P_ int fd, int revents)
507{ 771{
508 ANFD *anfd = anfds + fd; 772 ANFD *anfd = anfds + fd;
509 ev_io *w; 773 ev_io *w;
510 774
511 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 775 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
515 if (ev) 779 if (ev)
516 ev_feed_event (EV_A_ (W)w, ev); 780 ev_feed_event (EV_A_ (W)w, ev);
517 } 781 }
518} 782}
519 783
784/* do not submit kernel events for fds that have reify set */
785/* because that means they changed while we were polling for new events */
786inline_speed void
787fd_event (EV_P_ int fd, int revents)
788{
789 ANFD *anfd = anfds + fd;
790
791 if (expect_true (!anfd->reify))
792 fd_event_nc (EV_A_ fd, revents);
793}
794
520void 795void
521ev_feed_fd_event (EV_P_ int fd, int revents) 796ev_feed_fd_event (EV_P_ int fd, int revents)
522{ 797{
523 if (fd >= 0 && fd < anfdmax) 798 if (fd >= 0 && fd < anfdmax)
524 fd_event (EV_A_ fd, revents); 799 fd_event_nc (EV_A_ fd, revents);
525} 800}
526 801
527void inline_size 802/* make sure the external fd watch events are in-sync */
803/* with the kernel/libev internal state */
804inline_size void
528fd_reify (EV_P) 805fd_reify (EV_P)
529{ 806{
530 int i; 807 int i;
531 808
532 for (i = 0; i < fdchangecnt; ++i) 809 for (i = 0; i < fdchangecnt; ++i)
533 { 810 {
534 int fd = fdchanges [i]; 811 int fd = fdchanges [i];
535 ANFD *anfd = anfds + fd; 812 ANFD *anfd = anfds + fd;
536 ev_io *w; 813 ev_io *w;
537 814
538 int events = 0; 815 unsigned char events = 0;
539 816
540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 817 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
541 events |= w->events; 818 events |= (unsigned char)w->events;
542 819
543#if EV_SELECT_IS_WINSOCKET 820#if EV_SELECT_IS_WINSOCKET
544 if (events) 821 if (events)
545 { 822 {
546 unsigned long argp; 823 unsigned long arg;
824 #ifdef EV_FD_TO_WIN32_HANDLE
825 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
826 #else
547 anfd->handle = _get_osfhandle (fd); 827 anfd->handle = _get_osfhandle (fd);
828 #endif
548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 829 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
549 } 830 }
550#endif 831#endif
551 832
833 {
834 unsigned char o_events = anfd->events;
835 unsigned char o_reify = anfd->reify;
836
552 anfd->reify = 0; 837 anfd->reify = 0;
553
554 backend_modify (EV_A_ fd, anfd->events, events);
555 anfd->events = events; 838 anfd->events = events;
839
840 if (o_events != events || o_reify & EV__IOFDSET)
841 backend_modify (EV_A_ fd, o_events, events);
842 }
556 } 843 }
557 844
558 fdchangecnt = 0; 845 fdchangecnt = 0;
559} 846}
560 847
561void inline_size 848/* something about the given fd changed */
849inline_size void
562fd_change (EV_P_ int fd) 850fd_change (EV_P_ int fd, int flags)
563{ 851{
564 if (expect_false (anfds [fd].reify)) 852 unsigned char reify = anfds [fd].reify;
565 return;
566
567 anfds [fd].reify = 1; 853 anfds [fd].reify |= flags;
568 854
855 if (expect_true (!reify))
856 {
569 ++fdchangecnt; 857 ++fdchangecnt;
570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 858 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
571 fdchanges [fdchangecnt - 1] = fd; 859 fdchanges [fdchangecnt - 1] = fd;
860 }
572} 861}
573 862
574void inline_speed 863/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
864inline_speed void
575fd_kill (EV_P_ int fd) 865fd_kill (EV_P_ int fd)
576{ 866{
577 ev_io *w; 867 ev_io *w;
578 868
579 while ((w = (ev_io *)anfds [fd].head)) 869 while ((w = (ev_io *)anfds [fd].head))
581 ev_io_stop (EV_A_ w); 871 ev_io_stop (EV_A_ w);
582 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 872 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
583 } 873 }
584} 874}
585 875
586int inline_size 876/* check whether the given fd is atcually valid, for error recovery */
877inline_size int
587fd_valid (int fd) 878fd_valid (int fd)
588{ 879{
589#ifdef _WIN32 880#ifdef _WIN32
590 return _get_osfhandle (fd) != -1; 881 return _get_osfhandle (fd) != -1;
591#else 882#else
599{ 890{
600 int fd; 891 int fd;
601 892
602 for (fd = 0; fd < anfdmax; ++fd) 893 for (fd = 0; fd < anfdmax; ++fd)
603 if (anfds [fd].events) 894 if (anfds [fd].events)
604 if (!fd_valid (fd) == -1 && errno == EBADF) 895 if (!fd_valid (fd) && errno == EBADF)
605 fd_kill (EV_A_ fd); 896 fd_kill (EV_A_ fd);
606} 897}
607 898
608/* called on ENOMEM in select/poll to kill some fds and retry */ 899/* called on ENOMEM in select/poll to kill some fds and retry */
609static void noinline 900static void noinline
627 918
628 for (fd = 0; fd < anfdmax; ++fd) 919 for (fd = 0; fd < anfdmax; ++fd)
629 if (anfds [fd].events) 920 if (anfds [fd].events)
630 { 921 {
631 anfds [fd].events = 0; 922 anfds [fd].events = 0;
632 fd_change (EV_A_ fd); 923 anfds [fd].emask = 0;
924 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
633 } 925 }
634} 926}
635 927
636/*****************************************************************************/ 928/*****************************************************************************/
637 929
638void inline_speed 930/*
639upheap (WT *heap, int k) 931 * the heap functions want a real array index. array index 0 uis guaranteed to not
640{ 932 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
641 WT w = heap [k]; 933 * the branching factor of the d-tree.
934 */
642 935
643 while (k && heap [k >> 1]->at > w->at) 936/*
644 { 937 * at the moment we allow libev the luxury of two heaps,
645 heap [k] = heap [k >> 1]; 938 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
646 ((W)heap [k])->active = k + 1; 939 * which is more cache-efficient.
647 k >>= 1; 940 * the difference is about 5% with 50000+ watchers.
648 } 941 */
942#if EV_USE_4HEAP
649 943
650 heap [k] = w; 944#define DHEAP 4
651 ((W)heap [k])->active = k + 1; 945#define HEAP0 (DHEAP - 1) /* index of first element in heap */
946#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
947#define UPHEAP_DONE(p,k) ((p) == (k))
652 948
653} 949/* away from the root */
654 950inline_speed void
655void inline_speed
656downheap (WT *heap, int N, int k) 951downheap (ANHE *heap, int N, int k)
657{ 952{
658 WT w = heap [k]; 953 ANHE he = heap [k];
954 ANHE *E = heap + N + HEAP0;
659 955
660 while (k < (N >> 1)) 956 for (;;)
661 { 957 {
662 int j = k << 1; 958 ev_tstamp minat;
959 ANHE *minpos;
960 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
663 961
664 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 962 /* find minimum child */
963 if (expect_true (pos + DHEAP - 1 < E))
665 ++j; 964 {
666 965 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
667 if (w->at <= heap [j]->at) 966 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
967 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
968 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
969 }
970 else if (pos < E)
971 {
972 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
973 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
974 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
975 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
976 }
977 else
668 break; 978 break;
669 979
980 if (ANHE_at (he) <= minat)
981 break;
982
983 heap [k] = *minpos;
984 ev_active (ANHE_w (*minpos)) = k;
985
986 k = minpos - heap;
987 }
988
989 heap [k] = he;
990 ev_active (ANHE_w (he)) = k;
991}
992
993#else /* 4HEAP */
994
995#define HEAP0 1
996#define HPARENT(k) ((k) >> 1)
997#define UPHEAP_DONE(p,k) (!(p))
998
999/* away from the root */
1000inline_speed void
1001downheap (ANHE *heap, int N, int k)
1002{
1003 ANHE he = heap [k];
1004
1005 for (;;)
1006 {
1007 int c = k << 1;
1008
1009 if (c > N + HEAP0 - 1)
1010 break;
1011
1012 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1013 ? 1 : 0;
1014
1015 if (ANHE_at (he) <= ANHE_at (heap [c]))
1016 break;
1017
670 heap [k] = heap [j]; 1018 heap [k] = heap [c];
671 ((W)heap [k])->active = k + 1; 1019 ev_active (ANHE_w (heap [k])) = k;
1020
672 k = j; 1021 k = c;
673 } 1022 }
674 1023
675 heap [k] = w; 1024 heap [k] = he;
676 ((W)heap [k])->active = k + 1; 1025 ev_active (ANHE_w (he)) = k;
677} 1026}
1027#endif
678 1028
679void inline_size 1029/* towards the root */
1030inline_speed void
1031upheap (ANHE *heap, int k)
1032{
1033 ANHE he = heap [k];
1034
1035 for (;;)
1036 {
1037 int p = HPARENT (k);
1038
1039 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1040 break;
1041
1042 heap [k] = heap [p];
1043 ev_active (ANHE_w (heap [k])) = k;
1044 k = p;
1045 }
1046
1047 heap [k] = he;
1048 ev_active (ANHE_w (he)) = k;
1049}
1050
1051/* move an element suitably so it is in a correct place */
1052inline_size void
680adjustheap (WT *heap, int N, int k) 1053adjustheap (ANHE *heap, int N, int k)
681{ 1054{
1055 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
682 upheap (heap, k); 1056 upheap (heap, k);
1057 else
683 downheap (heap, N, k); 1058 downheap (heap, N, k);
1059}
1060
1061/* rebuild the heap: this function is used only once and executed rarely */
1062inline_size void
1063reheap (ANHE *heap, int N)
1064{
1065 int i;
1066
1067 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1068 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1069 for (i = 0; i < N; ++i)
1070 upheap (heap, i + HEAP0);
684} 1071}
685 1072
686/*****************************************************************************/ 1073/*****************************************************************************/
687 1074
1075/* associate signal watchers to a signal signal */
688typedef struct 1076typedef struct
689{ 1077{
690 WL head; 1078 WL head;
691 sig_atomic_t volatile gotsig; 1079 EV_ATOMIC_T gotsig;
692} ANSIG; 1080} ANSIG;
693 1081
694static ANSIG *signals; 1082static ANSIG *signals;
695static int signalmax; 1083static int signalmax;
696 1084
697static int sigpipe [2]; 1085static EV_ATOMIC_T gotsig;
698static sig_atomic_t volatile gotsig;
699static ev_io sigev;
700 1086
701void inline_size 1087/*****************************************************************************/
702signals_init (ANSIG *base, int count)
703{
704 while (count--)
705 {
706 base->head = 0;
707 base->gotsig = 0;
708 1088
709 ++base; 1089/* used to prepare libev internal fd's */
710 } 1090/* this is not fork-safe */
711} 1091inline_speed void
712
713static void
714sighandler (int signum)
715{
716#if _WIN32
717 signal (signum, sighandler);
718#endif
719
720 signals [signum - 1].gotsig = 1;
721
722 if (!gotsig)
723 {
724 int old_errno = errno;
725 gotsig = 1;
726 write (sigpipe [1], &signum, 1);
727 errno = old_errno;
728 }
729}
730
731void noinline
732ev_feed_signal_event (EV_P_ int signum)
733{
734 WL w;
735
736#if EV_MULTIPLICITY
737 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
738#endif
739
740 --signum;
741
742 if (signum < 0 || signum >= signalmax)
743 return;
744
745 signals [signum].gotsig = 0;
746
747 for (w = signals [signum].head; w; w = w->next)
748 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
749}
750
751static void
752sigcb (EV_P_ ev_io *iow, int revents)
753{
754 int signum;
755
756 read (sigpipe [0], &revents, 1);
757 gotsig = 0;
758
759 for (signum = signalmax; signum--; )
760 if (signals [signum].gotsig)
761 ev_feed_signal_event (EV_A_ signum + 1);
762}
763
764void inline_speed
765fd_intern (int fd) 1092fd_intern (int fd)
766{ 1093{
767#ifdef _WIN32 1094#ifdef _WIN32
768 int arg = 1; 1095 unsigned long arg = 1;
769 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1096 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
770#else 1097#else
771 fcntl (fd, F_SETFD, FD_CLOEXEC); 1098 fcntl (fd, F_SETFD, FD_CLOEXEC);
772 fcntl (fd, F_SETFL, O_NONBLOCK); 1099 fcntl (fd, F_SETFL, O_NONBLOCK);
773#endif 1100#endif
774} 1101}
775 1102
776static void noinline 1103static void noinline
777siginit (EV_P) 1104evpipe_init (EV_P)
778{ 1105{
1106 if (!ev_is_active (&pipe_w))
1107 {
1108#if EV_USE_EVENTFD
1109 if ((evfd = eventfd (0, 0)) >= 0)
1110 {
1111 evpipe [0] = -1;
1112 fd_intern (evfd);
1113 ev_io_set (&pipe_w, evfd, EV_READ);
1114 }
1115 else
1116#endif
1117 {
1118 while (pipe (evpipe))
1119 ev_syserr ("(libev) error creating signal/async pipe");
1120
779 fd_intern (sigpipe [0]); 1121 fd_intern (evpipe [0]);
780 fd_intern (sigpipe [1]); 1122 fd_intern (evpipe [1]);
1123 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1124 }
781 1125
782 ev_io_set (&sigev, sigpipe [0], EV_READ);
783 ev_io_start (EV_A_ &sigev); 1126 ev_io_start (EV_A_ &pipe_w);
784 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1127 ev_unref (EV_A); /* watcher should not keep loop alive */
1128 }
1129}
1130
1131inline_size void
1132evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1133{
1134 if (!*flag)
1135 {
1136 int old_errno = errno; /* save errno because write might clobber it */
1137
1138 *flag = 1;
1139
1140#if EV_USE_EVENTFD
1141 if (evfd >= 0)
1142 {
1143 uint64_t counter = 1;
1144 write (evfd, &counter, sizeof (uint64_t));
1145 }
1146 else
1147#endif
1148 write (evpipe [1], &old_errno, 1);
1149
1150 errno = old_errno;
1151 }
1152}
1153
1154/* called whenever the libev signal pipe */
1155/* got some events (signal, async) */
1156static void
1157pipecb (EV_P_ ev_io *iow, int revents)
1158{
1159#if EV_USE_EVENTFD
1160 if (evfd >= 0)
1161 {
1162 uint64_t counter;
1163 read (evfd, &counter, sizeof (uint64_t));
1164 }
1165 else
1166#endif
1167 {
1168 char dummy;
1169 read (evpipe [0], &dummy, 1);
1170 }
1171
1172 if (gotsig && ev_is_default_loop (EV_A))
1173 {
1174 int signum;
1175 gotsig = 0;
1176
1177 for (signum = signalmax; signum--; )
1178 if (signals [signum].gotsig)
1179 ev_feed_signal_event (EV_A_ signum + 1);
1180 }
1181
1182#if EV_ASYNC_ENABLE
1183 if (gotasync)
1184 {
1185 int i;
1186 gotasync = 0;
1187
1188 for (i = asynccnt; i--; )
1189 if (asyncs [i]->sent)
1190 {
1191 asyncs [i]->sent = 0;
1192 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1193 }
1194 }
1195#endif
785} 1196}
786 1197
787/*****************************************************************************/ 1198/*****************************************************************************/
788 1199
1200static void
1201ev_sighandler (int signum)
1202{
1203#if EV_MULTIPLICITY
1204 struct ev_loop *loop = &default_loop_struct;
1205#endif
1206
1207#if _WIN32
1208 signal (signum, ev_sighandler);
1209#endif
1210
1211 signals [signum - 1].gotsig = 1;
1212 evpipe_write (EV_A_ &gotsig);
1213}
1214
1215void noinline
1216ev_feed_signal_event (EV_P_ int signum)
1217{
1218 WL w;
1219
1220#if EV_MULTIPLICITY
1221 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1222#endif
1223
1224 --signum;
1225
1226 if (signum < 0 || signum >= signalmax)
1227 return;
1228
1229 signals [signum].gotsig = 0;
1230
1231 for (w = signals [signum].head; w; w = w->next)
1232 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1233}
1234
1235/*****************************************************************************/
1236
789static ev_child *childs [EV_PID_HASHSIZE]; 1237static WL childs [EV_PID_HASHSIZE];
790 1238
791#ifndef _WIN32 1239#ifndef _WIN32
792 1240
793static ev_signal childev; 1241static ev_signal childev;
794 1242
795void inline_speed 1243#ifndef WIFCONTINUED
1244# define WIFCONTINUED(status) 0
1245#endif
1246
1247/* handle a single child status event */
1248inline_speed void
796child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1249child_reap (EV_P_ int chain, int pid, int status)
797{ 1250{
798 ev_child *w; 1251 ev_child *w;
1252 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
799 1253
800 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1254 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1255 {
801 if (w->pid == pid || !w->pid) 1256 if ((w->pid == pid || !w->pid)
1257 && (!traced || (w->flags & 1)))
802 { 1258 {
803 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1259 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
804 w->rpid = pid; 1260 w->rpid = pid;
805 w->rstatus = status; 1261 w->rstatus = status;
806 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1262 ev_feed_event (EV_A_ (W)w, EV_CHILD);
807 } 1263 }
1264 }
808} 1265}
809 1266
810#ifndef WCONTINUED 1267#ifndef WCONTINUED
811# define WCONTINUED 0 1268# define WCONTINUED 0
812#endif 1269#endif
813 1270
1271/* called on sigchld etc., calls waitpid */
814static void 1272static void
815childcb (EV_P_ ev_signal *sw, int revents) 1273childcb (EV_P_ ev_signal *sw, int revents)
816{ 1274{
817 int pid, status; 1275 int pid, status;
818 1276
821 if (!WCONTINUED 1279 if (!WCONTINUED
822 || errno != EINVAL 1280 || errno != EINVAL
823 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1281 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
824 return; 1282 return;
825 1283
826 /* make sure we are called again until all childs have been reaped */ 1284 /* make sure we are called again until all children have been reaped */
827 /* we need to do it this way so that the callback gets called before we continue */ 1285 /* we need to do it this way so that the callback gets called before we continue */
828 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1286 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
829 1287
830 child_reap (EV_A_ sw, pid, pid, status); 1288 child_reap (EV_A_ pid, pid, status);
831 if (EV_PID_HASHSIZE > 1) 1289 if (EV_PID_HASHSIZE > 1)
832 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1290 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
833} 1291}
834 1292
835#endif 1293#endif
836 1294
837/*****************************************************************************/ 1295/*****************************************************************************/
899 /* kqueue is borked on everything but netbsd apparently */ 1357 /* kqueue is borked on everything but netbsd apparently */
900 /* it usually doesn't work correctly on anything but sockets and pipes */ 1358 /* it usually doesn't work correctly on anything but sockets and pipes */
901 flags &= ~EVBACKEND_KQUEUE; 1359 flags &= ~EVBACKEND_KQUEUE;
902#endif 1360#endif
903#ifdef __APPLE__ 1361#ifdef __APPLE__
904 // flags &= ~EVBACKEND_KQUEUE; for documentation 1362 /* only select works correctly on that "unix-certified" platform */
905 flags &= ~EVBACKEND_POLL; 1363 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1364 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
906#endif 1365#endif
907 1366
908 return flags; 1367 return flags;
909} 1368}
910 1369
911unsigned int 1370unsigned int
912ev_embeddable_backends (void) 1371ev_embeddable_backends (void)
913{ 1372{
914 return EVBACKEND_EPOLL 1373 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
915 | EVBACKEND_KQUEUE 1374
916 | EVBACKEND_PORT; 1375 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1376 /* please fix it and tell me how to detect the fix */
1377 flags &= ~EVBACKEND_EPOLL;
1378
1379 return flags;
917} 1380}
918 1381
919unsigned int 1382unsigned int
920ev_backend (EV_P) 1383ev_backend (EV_P)
921{ 1384{
922 return backend; 1385 return backend;
923} 1386}
924 1387
1388#if EV_MINIMAL < 2
925unsigned int 1389unsigned int
926ev_loop_count (EV_P) 1390ev_loop_count (EV_P)
927{ 1391{
928 return loop_count; 1392 return loop_count;
929} 1393}
930 1394
1395unsigned int
1396ev_loop_depth (EV_P)
1397{
1398 return loop_depth;
1399}
1400
1401void
1402ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1403{
1404 io_blocktime = interval;
1405}
1406
1407void
1408ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1409{
1410 timeout_blocktime = interval;
1411}
1412
1413void
1414ev_set_userdata (EV_P_ void *data)
1415{
1416 userdata = data;
1417}
1418
1419void *
1420ev_userdata (EV_P)
1421{
1422 return userdata;
1423}
1424
1425void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1426{
1427 invoke_cb = invoke_pending_cb;
1428}
1429
1430void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1431{
1432 release_cb = release;
1433 acquire_cb = acquire;
1434}
1435#endif
1436
1437/* initialise a loop structure, must be zero-initialised */
931static void noinline 1438static void noinline
932loop_init (EV_P_ unsigned int flags) 1439loop_init (EV_P_ unsigned int flags)
933{ 1440{
934 if (!backend) 1441 if (!backend)
935 { 1442 {
1443#if EV_USE_REALTIME
1444 if (!have_realtime)
1445 {
1446 struct timespec ts;
1447
1448 if (!clock_gettime (CLOCK_REALTIME, &ts))
1449 have_realtime = 1;
1450 }
1451#endif
1452
936#if EV_USE_MONOTONIC 1453#if EV_USE_MONOTONIC
1454 if (!have_monotonic)
937 { 1455 {
938 struct timespec ts; 1456 struct timespec ts;
1457
939 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1458 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
940 have_monotonic = 1; 1459 have_monotonic = 1;
941 } 1460 }
942#endif 1461#endif
943 1462
944 ev_rt_now = ev_time (); 1463 ev_rt_now = ev_time ();
945 mn_now = get_clock (); 1464 mn_now = get_clock ();
946 now_floor = mn_now; 1465 now_floor = mn_now;
947 rtmn_diff = ev_rt_now - mn_now; 1466 rtmn_diff = ev_rt_now - mn_now;
1467#if EV_MINIMAL < 2
1468 invoke_cb = ev_invoke_pending;
1469#endif
1470
1471 io_blocktime = 0.;
1472 timeout_blocktime = 0.;
1473 backend = 0;
1474 backend_fd = -1;
1475 gotasync = 0;
1476#if EV_USE_INOTIFY
1477 fs_fd = -2;
1478#endif
948 1479
949 /* pid check not overridable via env */ 1480 /* pid check not overridable via env */
950#ifndef _WIN32 1481#ifndef _WIN32
951 if (flags & EVFLAG_FORKCHECK) 1482 if (flags & EVFLAG_FORKCHECK)
952 curpid = getpid (); 1483 curpid = getpid ();
955 if (!(flags & EVFLAG_NOENV) 1486 if (!(flags & EVFLAG_NOENV)
956 && !enable_secure () 1487 && !enable_secure ()
957 && getenv ("LIBEV_FLAGS")) 1488 && getenv ("LIBEV_FLAGS"))
958 flags = atoi (getenv ("LIBEV_FLAGS")); 1489 flags = atoi (getenv ("LIBEV_FLAGS"));
959 1490
960 if (!(flags & 0x0000ffffUL)) 1491 if (!(flags & 0x0000ffffU))
961 flags |= ev_recommended_backends (); 1492 flags |= ev_recommended_backends ();
962
963 backend = 0;
964 backend_fd = -1;
965#if EV_USE_INOTIFY
966 fs_fd = -2;
967#endif
968 1493
969#if EV_USE_PORT 1494#if EV_USE_PORT
970 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1495 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
971#endif 1496#endif
972#if EV_USE_KQUEUE 1497#if EV_USE_KQUEUE
980#endif 1505#endif
981#if EV_USE_SELECT 1506#if EV_USE_SELECT
982 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1507 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
983#endif 1508#endif
984 1509
1510 ev_prepare_init (&pending_w, pendingcb);
1511
985 ev_init (&sigev, sigcb); 1512 ev_init (&pipe_w, pipecb);
986 ev_set_priority (&sigev, EV_MAXPRI); 1513 ev_set_priority (&pipe_w, EV_MAXPRI);
987 } 1514 }
988} 1515}
989 1516
1517/* free up a loop structure */
990static void noinline 1518static void noinline
991loop_destroy (EV_P) 1519loop_destroy (EV_P)
992{ 1520{
993 int i; 1521 int i;
1522
1523 if (ev_is_active (&pipe_w))
1524 {
1525 ev_ref (EV_A); /* signal watcher */
1526 ev_io_stop (EV_A_ &pipe_w);
1527
1528#if EV_USE_EVENTFD
1529 if (evfd >= 0)
1530 close (evfd);
1531#endif
1532
1533 if (evpipe [0] >= 0)
1534 {
1535 close (evpipe [0]);
1536 close (evpipe [1]);
1537 }
1538 }
994 1539
995#if EV_USE_INOTIFY 1540#if EV_USE_INOTIFY
996 if (fs_fd >= 0) 1541 if (fs_fd >= 0)
997 close (fs_fd); 1542 close (fs_fd);
998#endif 1543#endif
1022#if EV_IDLE_ENABLE 1567#if EV_IDLE_ENABLE
1023 array_free (idle, [i]); 1568 array_free (idle, [i]);
1024#endif 1569#endif
1025 } 1570 }
1026 1571
1572 ev_free (anfds); anfdmax = 0;
1573
1027 /* have to use the microsoft-never-gets-it-right macro */ 1574 /* have to use the microsoft-never-gets-it-right macro */
1575 array_free (rfeed, EMPTY);
1028 array_free (fdchange, EMPTY); 1576 array_free (fdchange, EMPTY);
1029 array_free (timer, EMPTY); 1577 array_free (timer, EMPTY);
1030#if EV_PERIODIC_ENABLE 1578#if EV_PERIODIC_ENABLE
1031 array_free (periodic, EMPTY); 1579 array_free (periodic, EMPTY);
1032#endif 1580#endif
1581#if EV_FORK_ENABLE
1582 array_free (fork, EMPTY);
1583#endif
1033 array_free (prepare, EMPTY); 1584 array_free (prepare, EMPTY);
1034 array_free (check, EMPTY); 1585 array_free (check, EMPTY);
1586#if EV_ASYNC_ENABLE
1587 array_free (async, EMPTY);
1588#endif
1035 1589
1036 backend = 0; 1590 backend = 0;
1037} 1591}
1038 1592
1593#if EV_USE_INOTIFY
1039void inline_size infy_fork (EV_P); 1594inline_size void infy_fork (EV_P);
1595#endif
1040 1596
1041void inline_size 1597inline_size void
1042loop_fork (EV_P) 1598loop_fork (EV_P)
1043{ 1599{
1044#if EV_USE_PORT 1600#if EV_USE_PORT
1045 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1601 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1046#endif 1602#endif
1052#endif 1608#endif
1053#if EV_USE_INOTIFY 1609#if EV_USE_INOTIFY
1054 infy_fork (EV_A); 1610 infy_fork (EV_A);
1055#endif 1611#endif
1056 1612
1057 if (ev_is_active (&sigev)) 1613 if (ev_is_active (&pipe_w))
1058 { 1614 {
1059 /* default loop */ 1615 /* this "locks" the handlers against writing to the pipe */
1616 /* while we modify the fd vars */
1617 gotsig = 1;
1618#if EV_ASYNC_ENABLE
1619 gotasync = 1;
1620#endif
1060 1621
1061 ev_ref (EV_A); 1622 ev_ref (EV_A);
1062 ev_io_stop (EV_A_ &sigev); 1623 ev_io_stop (EV_A_ &pipe_w);
1624
1625#if EV_USE_EVENTFD
1626 if (evfd >= 0)
1627 close (evfd);
1628#endif
1629
1630 if (evpipe [0] >= 0)
1631 {
1063 close (sigpipe [0]); 1632 close (evpipe [0]);
1064 close (sigpipe [1]); 1633 close (evpipe [1]);
1634 }
1065 1635
1066 while (pipe (sigpipe))
1067 syserr ("(libev) error creating pipe");
1068
1069 siginit (EV_A); 1636 evpipe_init (EV_A);
1637 /* now iterate over everything, in case we missed something */
1638 pipecb (EV_A_ &pipe_w, EV_READ);
1070 } 1639 }
1071 1640
1072 postfork = 0; 1641 postfork = 0;
1073} 1642}
1074 1643
1075#if EV_MULTIPLICITY 1644#if EV_MULTIPLICITY
1645
1076struct ev_loop * 1646struct ev_loop *
1077ev_loop_new (unsigned int flags) 1647ev_loop_new (unsigned int flags)
1078{ 1648{
1079 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1649 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1080 1650
1096} 1666}
1097 1667
1098void 1668void
1099ev_loop_fork (EV_P) 1669ev_loop_fork (EV_P)
1100{ 1670{
1101 postfork = 1; 1671 postfork = 1; /* must be in line with ev_default_fork */
1102} 1672}
1673#endif /* multiplicity */
1103 1674
1675#if EV_VERIFY
1676static void noinline
1677verify_watcher (EV_P_ W w)
1678{
1679 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1680
1681 if (w->pending)
1682 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1683}
1684
1685static void noinline
1686verify_heap (EV_P_ ANHE *heap, int N)
1687{
1688 int i;
1689
1690 for (i = HEAP0; i < N + HEAP0; ++i)
1691 {
1692 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1693 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1694 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1695
1696 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1697 }
1698}
1699
1700static void noinline
1701array_verify (EV_P_ W *ws, int cnt)
1702{
1703 while (cnt--)
1704 {
1705 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1706 verify_watcher (EV_A_ ws [cnt]);
1707 }
1708}
1709#endif
1710
1711#if EV_MINIMAL < 2
1712void
1713ev_loop_verify (EV_P)
1714{
1715#if EV_VERIFY
1716 int i;
1717 WL w;
1718
1719 assert (activecnt >= -1);
1720
1721 assert (fdchangemax >= fdchangecnt);
1722 for (i = 0; i < fdchangecnt; ++i)
1723 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1724
1725 assert (anfdmax >= 0);
1726 for (i = 0; i < anfdmax; ++i)
1727 for (w = anfds [i].head; w; w = w->next)
1728 {
1729 verify_watcher (EV_A_ (W)w);
1730 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1731 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1732 }
1733
1734 assert (timermax >= timercnt);
1735 verify_heap (EV_A_ timers, timercnt);
1736
1737#if EV_PERIODIC_ENABLE
1738 assert (periodicmax >= periodiccnt);
1739 verify_heap (EV_A_ periodics, periodiccnt);
1740#endif
1741
1742 for (i = NUMPRI; i--; )
1743 {
1744 assert (pendingmax [i] >= pendingcnt [i]);
1745#if EV_IDLE_ENABLE
1746 assert (idleall >= 0);
1747 assert (idlemax [i] >= idlecnt [i]);
1748 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1749#endif
1750 }
1751
1752#if EV_FORK_ENABLE
1753 assert (forkmax >= forkcnt);
1754 array_verify (EV_A_ (W *)forks, forkcnt);
1755#endif
1756
1757#if EV_ASYNC_ENABLE
1758 assert (asyncmax >= asynccnt);
1759 array_verify (EV_A_ (W *)asyncs, asynccnt);
1760#endif
1761
1762 assert (preparemax >= preparecnt);
1763 array_verify (EV_A_ (W *)prepares, preparecnt);
1764
1765 assert (checkmax >= checkcnt);
1766 array_verify (EV_A_ (W *)checks, checkcnt);
1767
1768# if 0
1769 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1770 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1771# endif
1772#endif
1773}
1104#endif 1774#endif
1105 1775
1106#if EV_MULTIPLICITY 1776#if EV_MULTIPLICITY
1107struct ev_loop * 1777struct ev_loop *
1108ev_default_loop_init (unsigned int flags) 1778ev_default_loop_init (unsigned int flags)
1109#else 1779#else
1110int 1780int
1111ev_default_loop (unsigned int flags) 1781ev_default_loop (unsigned int flags)
1112#endif 1782#endif
1113{ 1783{
1114 if (sigpipe [0] == sigpipe [1])
1115 if (pipe (sigpipe))
1116 return 0;
1117
1118 if (!ev_default_loop_ptr) 1784 if (!ev_default_loop_ptr)
1119 { 1785 {
1120#if EV_MULTIPLICITY 1786#if EV_MULTIPLICITY
1121 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1787 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1122#else 1788#else
1125 1791
1126 loop_init (EV_A_ flags); 1792 loop_init (EV_A_ flags);
1127 1793
1128 if (ev_backend (EV_A)) 1794 if (ev_backend (EV_A))
1129 { 1795 {
1130 siginit (EV_A);
1131
1132#ifndef _WIN32 1796#ifndef _WIN32
1133 ev_signal_init (&childev, childcb, SIGCHLD); 1797 ev_signal_init (&childev, childcb, SIGCHLD);
1134 ev_set_priority (&childev, EV_MAXPRI); 1798 ev_set_priority (&childev, EV_MAXPRI);
1135 ev_signal_start (EV_A_ &childev); 1799 ev_signal_start (EV_A_ &childev);
1136 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1800 ev_unref (EV_A); /* child watcher should not keep loop alive */
1148{ 1812{
1149#if EV_MULTIPLICITY 1813#if EV_MULTIPLICITY
1150 struct ev_loop *loop = ev_default_loop_ptr; 1814 struct ev_loop *loop = ev_default_loop_ptr;
1151#endif 1815#endif
1152 1816
1817 ev_default_loop_ptr = 0;
1818
1153#ifndef _WIN32 1819#ifndef _WIN32
1154 ev_ref (EV_A); /* child watcher */ 1820 ev_ref (EV_A); /* child watcher */
1155 ev_signal_stop (EV_A_ &childev); 1821 ev_signal_stop (EV_A_ &childev);
1156#endif 1822#endif
1157 1823
1158 ev_ref (EV_A); /* signal watcher */
1159 ev_io_stop (EV_A_ &sigev);
1160
1161 close (sigpipe [0]); sigpipe [0] = 0;
1162 close (sigpipe [1]); sigpipe [1] = 0;
1163
1164 loop_destroy (EV_A); 1824 loop_destroy (EV_A);
1165} 1825}
1166 1826
1167void 1827void
1168ev_default_fork (void) 1828ev_default_fork (void)
1169{ 1829{
1170#if EV_MULTIPLICITY 1830#if EV_MULTIPLICITY
1171 struct ev_loop *loop = ev_default_loop_ptr; 1831 struct ev_loop *loop = ev_default_loop_ptr;
1172#endif 1832#endif
1173 1833
1174 if (backend) 1834 postfork = 1; /* must be in line with ev_loop_fork */
1175 postfork = 1;
1176} 1835}
1177 1836
1178/*****************************************************************************/ 1837/*****************************************************************************/
1179 1838
1180void 1839void
1181ev_invoke (EV_P_ void *w, int revents) 1840ev_invoke (EV_P_ void *w, int revents)
1182{ 1841{
1183 EV_CB_INVOKE ((W)w, revents); 1842 EV_CB_INVOKE ((W)w, revents);
1184} 1843}
1185 1844
1186void inline_speed 1845void noinline
1187call_pending (EV_P) 1846ev_invoke_pending (EV_P)
1188{ 1847{
1189 int pri; 1848 int pri;
1190 1849
1191 for (pri = NUMPRI; pri--; ) 1850 for (pri = NUMPRI; pri--; )
1192 while (pendingcnt [pri]) 1851 while (pendingcnt [pri])
1193 { 1852 {
1194 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1853 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1195 1854
1196 if (expect_true (p->w))
1197 {
1198 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1855 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1856 /* ^ this is no longer true, as pending_w could be here */
1199 1857
1200 p->w->pending = 0; 1858 p->w->pending = 0;
1201 EV_CB_INVOKE (p->w, p->events); 1859 EV_CB_INVOKE (p->w, p->events);
1202 } 1860 EV_FREQUENT_CHECK;
1203 } 1861 }
1204} 1862}
1205 1863
1206void inline_size
1207timers_reify (EV_P)
1208{
1209 while (timercnt && ((WT)timers [0])->at <= mn_now)
1210 {
1211 ev_timer *w = timers [0];
1212
1213 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1214
1215 /* first reschedule or stop timer */
1216 if (w->repeat)
1217 {
1218 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1219
1220 ((WT)w)->at += w->repeat;
1221 if (((WT)w)->at < mn_now)
1222 ((WT)w)->at = mn_now;
1223
1224 downheap ((WT *)timers, timercnt, 0);
1225 }
1226 else
1227 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1228
1229 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1230 }
1231}
1232
1233#if EV_PERIODIC_ENABLE
1234void inline_size
1235periodics_reify (EV_P)
1236{
1237 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1238 {
1239 ev_periodic *w = periodics [0];
1240
1241 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1242
1243 /* first reschedule or stop timer */
1244 if (w->reschedule_cb)
1245 {
1246 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1247 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1248 downheap ((WT *)periodics, periodiccnt, 0);
1249 }
1250 else if (w->interval)
1251 {
1252 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1253 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1255 downheap ((WT *)periodics, periodiccnt, 0);
1256 }
1257 else
1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1259
1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1261 }
1262}
1263
1264static void noinline
1265periodics_reschedule (EV_P)
1266{
1267 int i;
1268
1269 /* adjust periodics after time jump */
1270 for (i = 0; i < periodiccnt; ++i)
1271 {
1272 ev_periodic *w = periodics [i];
1273
1274 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1276 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 }
1279
1280 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i);
1283}
1284#endif
1285
1286#if EV_IDLE_ENABLE 1864#if EV_IDLE_ENABLE
1287void inline_size 1865/* make idle watchers pending. this handles the "call-idle */
1866/* only when higher priorities are idle" logic */
1867inline_size void
1288idle_reify (EV_P) 1868idle_reify (EV_P)
1289{ 1869{
1290 if (expect_false (idleall)) 1870 if (expect_false (idleall))
1291 { 1871 {
1292 int pri; 1872 int pri;
1304 } 1884 }
1305 } 1885 }
1306} 1886}
1307#endif 1887#endif
1308 1888
1309int inline_size 1889/* make timers pending */
1310time_update_monotonic (EV_P) 1890inline_size void
1891timers_reify (EV_P)
1311{ 1892{
1893 EV_FREQUENT_CHECK;
1894
1895 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1896 {
1897 do
1898 {
1899 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1900
1901 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1902
1903 /* first reschedule or stop timer */
1904 if (w->repeat)
1905 {
1906 ev_at (w) += w->repeat;
1907 if (ev_at (w) < mn_now)
1908 ev_at (w) = mn_now;
1909
1910 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1911
1912 ANHE_at_cache (timers [HEAP0]);
1913 downheap (timers, timercnt, HEAP0);
1914 }
1915 else
1916 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1917
1918 EV_FREQUENT_CHECK;
1919 feed_reverse (EV_A_ (W)w);
1920 }
1921 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1922
1923 feed_reverse_done (EV_A_ EV_TIMEOUT);
1924 }
1925}
1926
1927#if EV_PERIODIC_ENABLE
1928/* make periodics pending */
1929inline_size void
1930periodics_reify (EV_P)
1931{
1932 EV_FREQUENT_CHECK;
1933
1934 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1935 {
1936 int feed_count = 0;
1937
1938 do
1939 {
1940 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1941
1942 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1943
1944 /* first reschedule or stop timer */
1945 if (w->reschedule_cb)
1946 {
1947 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1948
1949 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1950
1951 ANHE_at_cache (periodics [HEAP0]);
1952 downheap (periodics, periodiccnt, HEAP0);
1953 }
1954 else if (w->interval)
1955 {
1956 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1957 /* if next trigger time is not sufficiently in the future, put it there */
1958 /* this might happen because of floating point inexactness */
1959 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1960 {
1961 ev_at (w) += w->interval;
1962
1963 /* if interval is unreasonably low we might still have a time in the past */
1964 /* so correct this. this will make the periodic very inexact, but the user */
1965 /* has effectively asked to get triggered more often than possible */
1966 if (ev_at (w) < ev_rt_now)
1967 ev_at (w) = ev_rt_now;
1968 }
1969
1970 ANHE_at_cache (periodics [HEAP0]);
1971 downheap (periodics, periodiccnt, HEAP0);
1972 }
1973 else
1974 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1975
1976 EV_FREQUENT_CHECK;
1977 feed_reverse (EV_A_ (W)w);
1978 }
1979 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1980
1981 feed_reverse_done (EV_A_ EV_PERIODIC);
1982 }
1983}
1984
1985/* simply recalculate all periodics */
1986/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1987static void noinline
1988periodics_reschedule (EV_P)
1989{
1990 int i;
1991
1992 /* adjust periodics after time jump */
1993 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1994 {
1995 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1996
1997 if (w->reschedule_cb)
1998 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1999 else if (w->interval)
2000 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2001
2002 ANHE_at_cache (periodics [i]);
2003 }
2004
2005 reheap (periodics, periodiccnt);
2006}
2007#endif
2008
2009/* adjust all timers by a given offset */
2010static void noinline
2011timers_reschedule (EV_P_ ev_tstamp adjust)
2012{
2013 int i;
2014
2015 for (i = 0; i < timercnt; ++i)
2016 {
2017 ANHE *he = timers + i + HEAP0;
2018 ANHE_w (*he)->at += adjust;
2019 ANHE_at_cache (*he);
2020 }
2021}
2022
2023/* fetch new monotonic and realtime times from the kernel */
2024/* also detetc if there was a timejump, and act accordingly */
2025inline_speed void
2026time_update (EV_P_ ev_tstamp max_block)
2027{
2028#if EV_USE_MONOTONIC
2029 if (expect_true (have_monotonic))
2030 {
2031 int i;
2032 ev_tstamp odiff = rtmn_diff;
2033
1312 mn_now = get_clock (); 2034 mn_now = get_clock ();
1313 2035
2036 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
2037 /* interpolate in the meantime */
1314 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 2038 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1315 { 2039 {
1316 ev_rt_now = rtmn_diff + mn_now; 2040 ev_rt_now = rtmn_diff + mn_now;
1317 return 0; 2041 return;
1318 } 2042 }
1319 else 2043
1320 {
1321 now_floor = mn_now; 2044 now_floor = mn_now;
1322 ev_rt_now = ev_time (); 2045 ev_rt_now = ev_time ();
1323 return 1;
1324 }
1325}
1326 2046
1327void inline_size 2047 /* loop a few times, before making important decisions.
1328time_update (EV_P) 2048 * on the choice of "4": one iteration isn't enough,
1329{ 2049 * in case we get preempted during the calls to
1330 int i; 2050 * ev_time and get_clock. a second call is almost guaranteed
1331 2051 * to succeed in that case, though. and looping a few more times
1332#if EV_USE_MONOTONIC 2052 * doesn't hurt either as we only do this on time-jumps or
1333 if (expect_true (have_monotonic)) 2053 * in the unlikely event of having been preempted here.
1334 { 2054 */
1335 if (time_update_monotonic (EV_A)) 2055 for (i = 4; --i; )
1336 { 2056 {
1337 ev_tstamp odiff = rtmn_diff;
1338
1339 /* loop a few times, before making important decisions.
1340 * on the choice of "4": one iteration isn't enough,
1341 * in case we get preempted during the calls to
1342 * ev_time and get_clock. a second call is almost guaranteed
1343 * to succeed in that case, though. and looping a few more times
1344 * doesn't hurt either as we only do this on time-jumps or
1345 * in the unlikely event of having been preempted here.
1346 */
1347 for (i = 4; --i; )
1348 {
1349 rtmn_diff = ev_rt_now - mn_now; 2057 rtmn_diff = ev_rt_now - mn_now;
1350 2058
1351 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2059 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1352 return; /* all is well */ 2060 return; /* all is well */
1353 2061
1354 ev_rt_now = ev_time (); 2062 ev_rt_now = ev_time ();
1355 mn_now = get_clock (); 2063 mn_now = get_clock ();
1356 now_floor = mn_now; 2064 now_floor = mn_now;
1357 } 2065 }
1358 2066
2067 /* no timer adjustment, as the monotonic clock doesn't jump */
2068 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1359# if EV_PERIODIC_ENABLE 2069# if EV_PERIODIC_ENABLE
1360 periodics_reschedule (EV_A); 2070 periodics_reschedule (EV_A);
1361# endif 2071# endif
1362 /* no timer adjustment, as the monotonic clock doesn't jump */
1363 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1364 }
1365 } 2072 }
1366 else 2073 else
1367#endif 2074#endif
1368 { 2075 {
1369 ev_rt_now = ev_time (); 2076 ev_rt_now = ev_time ();
1370 2077
1371 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 2078 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 { 2079 {
2080 /* adjust timers. this is easy, as the offset is the same for all of them */
2081 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1373#if EV_PERIODIC_ENABLE 2082#if EV_PERIODIC_ENABLE
1374 periodics_reschedule (EV_A); 2083 periodics_reschedule (EV_A);
1375#endif 2084#endif
1376 /* adjust timers. this is easy, as the offset is the same for all of them */
1377 for (i = 0; i < timercnt; ++i)
1378 ((WT)timers [i])->at += ev_rt_now - mn_now;
1379 } 2085 }
1380 2086
1381 mn_now = ev_rt_now; 2087 mn_now = ev_rt_now;
1382 } 2088 }
1383} 2089}
1384 2090
1385void 2091void
1386ev_ref (EV_P)
1387{
1388 ++activecnt;
1389}
1390
1391void
1392ev_unref (EV_P)
1393{
1394 --activecnt;
1395}
1396
1397static int loop_done;
1398
1399void
1400ev_loop (EV_P_ int flags) 2092ev_loop (EV_P_ int flags)
1401{ 2093{
1402 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2094#if EV_MINIMAL < 2
1403 ? EVUNLOOP_ONE 2095 ++loop_depth;
1404 : EVUNLOOP_CANCEL; 2096#endif
1405 2097
2098 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2099
2100 loop_done = EVUNLOOP_CANCEL;
2101
1406 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2102 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1407 2103
1408 do 2104 do
1409 { 2105 {
2106#if EV_VERIFY >= 2
2107 ev_loop_verify (EV_A);
2108#endif
2109
1410#ifndef _WIN32 2110#ifndef _WIN32
1411 if (expect_false (curpid)) /* penalise the forking check even more */ 2111 if (expect_false (curpid)) /* penalise the forking check even more */
1412 if (expect_false (getpid () != curpid)) 2112 if (expect_false (getpid () != curpid))
1413 { 2113 {
1414 curpid = getpid (); 2114 curpid = getpid ();
1420 /* we might have forked, so queue fork handlers */ 2120 /* we might have forked, so queue fork handlers */
1421 if (expect_false (postfork)) 2121 if (expect_false (postfork))
1422 if (forkcnt) 2122 if (forkcnt)
1423 { 2123 {
1424 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2124 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1425 call_pending (EV_A); 2125 EV_INVOKE_PENDING;
1426 } 2126 }
1427#endif 2127#endif
1428 2128
1429 /* queue prepare watchers (and execute them) */ 2129 /* queue prepare watchers (and execute them) */
1430 if (expect_false (preparecnt)) 2130 if (expect_false (preparecnt))
1431 { 2131 {
1432 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2132 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1433 call_pending (EV_A); 2133 EV_INVOKE_PENDING;
1434 } 2134 }
1435 2135
1436 if (expect_false (!activecnt)) 2136 if (expect_false (loop_done))
1437 break; 2137 break;
1438 2138
1439 /* we might have forked, so reify kernel state if necessary */ 2139 /* we might have forked, so reify kernel state if necessary */
1440 if (expect_false (postfork)) 2140 if (expect_false (postfork))
1441 loop_fork (EV_A); 2141 loop_fork (EV_A);
1443 /* update fd-related kernel structures */ 2143 /* update fd-related kernel structures */
1444 fd_reify (EV_A); 2144 fd_reify (EV_A);
1445 2145
1446 /* calculate blocking time */ 2146 /* calculate blocking time */
1447 { 2147 {
1448 ev_tstamp block; 2148 ev_tstamp waittime = 0.;
2149 ev_tstamp sleeptime = 0.;
1449 2150
1450 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2151 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1451 block = 0.; /* do not block at all */
1452 else
1453 { 2152 {
2153 /* remember old timestamp for io_blocktime calculation */
2154 ev_tstamp prev_mn_now = mn_now;
2155
1454 /* update time to cancel out callback processing overhead */ 2156 /* update time to cancel out callback processing overhead */
1455#if EV_USE_MONOTONIC
1456 if (expect_true (have_monotonic))
1457 time_update_monotonic (EV_A); 2157 time_update (EV_A_ 1e100);
1458 else
1459#endif
1460 {
1461 ev_rt_now = ev_time ();
1462 mn_now = ev_rt_now;
1463 }
1464 2158
1465 block = MAX_BLOCKTIME; 2159 waittime = MAX_BLOCKTIME;
1466 2160
1467 if (timercnt) 2161 if (timercnt)
1468 { 2162 {
1469 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2163 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1470 if (block > to) block = to; 2164 if (waittime > to) waittime = to;
1471 } 2165 }
1472 2166
1473#if EV_PERIODIC_ENABLE 2167#if EV_PERIODIC_ENABLE
1474 if (periodiccnt) 2168 if (periodiccnt)
1475 { 2169 {
1476 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2170 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1477 if (block > to) block = to; 2171 if (waittime > to) waittime = to;
1478 } 2172 }
1479#endif 2173#endif
1480 2174
2175 /* don't let timeouts decrease the waittime below timeout_blocktime */
2176 if (expect_false (waittime < timeout_blocktime))
2177 waittime = timeout_blocktime;
2178
2179 /* extra check because io_blocktime is commonly 0 */
1481 if (expect_false (block < 0.)) block = 0.; 2180 if (expect_false (io_blocktime))
2181 {
2182 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2183
2184 if (sleeptime > waittime - backend_fudge)
2185 sleeptime = waittime - backend_fudge;
2186
2187 if (expect_true (sleeptime > 0.))
2188 {
2189 ev_sleep (sleeptime);
2190 waittime -= sleeptime;
2191 }
2192 }
1482 } 2193 }
1483 2194
2195#if EV_MINIMAL < 2
1484 ++loop_count; 2196 ++loop_count;
2197#endif
2198 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1485 backend_poll (EV_A_ block); 2199 backend_poll (EV_A_ waittime);
2200 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
2201
2202 /* update ev_rt_now, do magic */
2203 time_update (EV_A_ waittime + sleeptime);
1486 } 2204 }
1487
1488 /* update ev_rt_now, do magic */
1489 time_update (EV_A);
1490 2205
1491 /* queue pending timers and reschedule them */ 2206 /* queue pending timers and reschedule them */
1492 timers_reify (EV_A); /* relative timers called last */ 2207 timers_reify (EV_A); /* relative timers called last */
1493#if EV_PERIODIC_ENABLE 2208#if EV_PERIODIC_ENABLE
1494 periodics_reify (EV_A); /* absolute timers called first */ 2209 periodics_reify (EV_A); /* absolute timers called first */
1501 2216
1502 /* queue check watchers, to be executed first */ 2217 /* queue check watchers, to be executed first */
1503 if (expect_false (checkcnt)) 2218 if (expect_false (checkcnt))
1504 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2219 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1505 2220
1506 call_pending (EV_A); 2221 EV_INVOKE_PENDING;
1507
1508 } 2222 }
1509 while (expect_true (activecnt && !loop_done)); 2223 while (expect_true (
2224 activecnt
2225 && !loop_done
2226 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2227 ));
1510 2228
1511 if (loop_done == EVUNLOOP_ONE) 2229 if (loop_done == EVUNLOOP_ONE)
1512 loop_done = EVUNLOOP_CANCEL; 2230 loop_done = EVUNLOOP_CANCEL;
2231
2232#if EV_MINIMAL < 2
2233 --loop_depth;
2234#endif
1513} 2235}
1514 2236
1515void 2237void
1516ev_unloop (EV_P_ int how) 2238ev_unloop (EV_P_ int how)
1517{ 2239{
1518 loop_done = how; 2240 loop_done = how;
1519} 2241}
1520 2242
2243void
2244ev_ref (EV_P)
2245{
2246 ++activecnt;
2247}
2248
2249void
2250ev_unref (EV_P)
2251{
2252 --activecnt;
2253}
2254
2255void
2256ev_now_update (EV_P)
2257{
2258 time_update (EV_A_ 1e100);
2259}
2260
2261void
2262ev_suspend (EV_P)
2263{
2264 ev_now_update (EV_A);
2265}
2266
2267void
2268ev_resume (EV_P)
2269{
2270 ev_tstamp mn_prev = mn_now;
2271
2272 ev_now_update (EV_A);
2273 timers_reschedule (EV_A_ mn_now - mn_prev);
2274#if EV_PERIODIC_ENABLE
2275 /* TODO: really do this? */
2276 periodics_reschedule (EV_A);
2277#endif
2278}
2279
1521/*****************************************************************************/ 2280/*****************************************************************************/
2281/* singly-linked list management, used when the expected list length is short */
1522 2282
1523void inline_size 2283inline_size void
1524wlist_add (WL *head, WL elem) 2284wlist_add (WL *head, WL elem)
1525{ 2285{
1526 elem->next = *head; 2286 elem->next = *head;
1527 *head = elem; 2287 *head = elem;
1528} 2288}
1529 2289
1530void inline_size 2290inline_size void
1531wlist_del (WL *head, WL elem) 2291wlist_del (WL *head, WL elem)
1532{ 2292{
1533 while (*head) 2293 while (*head)
1534 { 2294 {
1535 if (*head == elem) 2295 if (*head == elem)
1540 2300
1541 head = &(*head)->next; 2301 head = &(*head)->next;
1542 } 2302 }
1543} 2303}
1544 2304
1545void inline_speed 2305/* internal, faster, version of ev_clear_pending */
2306inline_speed void
1546clear_pending (EV_P_ W w) 2307clear_pending (EV_P_ W w)
1547{ 2308{
1548 if (w->pending) 2309 if (w->pending)
1549 { 2310 {
1550 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2311 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1551 w->pending = 0; 2312 w->pending = 0;
1552 } 2313 }
1553} 2314}
1554 2315
1555int 2316int
1559 int pending = w_->pending; 2320 int pending = w_->pending;
1560 2321
1561 if (expect_true (pending)) 2322 if (expect_true (pending))
1562 { 2323 {
1563 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2324 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2325 p->w = (W)&pending_w;
1564 w_->pending = 0; 2326 w_->pending = 0;
1565 p->w = 0;
1566 return p->events; 2327 return p->events;
1567 } 2328 }
1568 else 2329 else
1569 return 0; 2330 return 0;
1570} 2331}
1571 2332
1572void inline_size 2333inline_size void
1573pri_adjust (EV_P_ W w) 2334pri_adjust (EV_P_ W w)
1574{ 2335{
1575 int pri = w->priority; 2336 int pri = ev_priority (w);
1576 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2337 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1577 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2338 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1578 w->priority = pri; 2339 ev_set_priority (w, pri);
1579} 2340}
1580 2341
1581void inline_speed 2342inline_speed void
1582ev_start (EV_P_ W w, int active) 2343ev_start (EV_P_ W w, int active)
1583{ 2344{
1584 pri_adjust (EV_A_ w); 2345 pri_adjust (EV_A_ w);
1585 w->active = active; 2346 w->active = active;
1586 ev_ref (EV_A); 2347 ev_ref (EV_A);
1587} 2348}
1588 2349
1589void inline_size 2350inline_size void
1590ev_stop (EV_P_ W w) 2351ev_stop (EV_P_ W w)
1591{ 2352{
1592 ev_unref (EV_A); 2353 ev_unref (EV_A);
1593 w->active = 0; 2354 w->active = 0;
1594} 2355}
1601 int fd = w->fd; 2362 int fd = w->fd;
1602 2363
1603 if (expect_false (ev_is_active (w))) 2364 if (expect_false (ev_is_active (w)))
1604 return; 2365 return;
1605 2366
1606 assert (("ev_io_start called with negative fd", fd >= 0)); 2367 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2368 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2369
2370 EV_FREQUENT_CHECK;
1607 2371
1608 ev_start (EV_A_ (W)w, 1); 2372 ev_start (EV_A_ (W)w, 1);
1609 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2373 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1610 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2374 wlist_add (&anfds[fd].head, (WL)w);
1611 2375
1612 fd_change (EV_A_ fd); 2376 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2377 w->events &= ~EV__IOFDSET;
2378
2379 EV_FREQUENT_CHECK;
1613} 2380}
1614 2381
1615void noinline 2382void noinline
1616ev_io_stop (EV_P_ ev_io *w) 2383ev_io_stop (EV_P_ ev_io *w)
1617{ 2384{
1618 clear_pending (EV_A_ (W)w); 2385 clear_pending (EV_A_ (W)w);
1619 if (expect_false (!ev_is_active (w))) 2386 if (expect_false (!ev_is_active (w)))
1620 return; 2387 return;
1621 2388
1622 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2389 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1623 2390
2391 EV_FREQUENT_CHECK;
2392
1624 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2393 wlist_del (&anfds[w->fd].head, (WL)w);
1625 ev_stop (EV_A_ (W)w); 2394 ev_stop (EV_A_ (W)w);
1626 2395
1627 fd_change (EV_A_ w->fd); 2396 fd_change (EV_A_ w->fd, 1);
2397
2398 EV_FREQUENT_CHECK;
1628} 2399}
1629 2400
1630void noinline 2401void noinline
1631ev_timer_start (EV_P_ ev_timer *w) 2402ev_timer_start (EV_P_ ev_timer *w)
1632{ 2403{
1633 if (expect_false (ev_is_active (w))) 2404 if (expect_false (ev_is_active (w)))
1634 return; 2405 return;
1635 2406
1636 ((WT)w)->at += mn_now; 2407 ev_at (w) += mn_now;
1637 2408
1638 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2409 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1639 2410
2411 EV_FREQUENT_CHECK;
2412
2413 ++timercnt;
1640 ev_start (EV_A_ (W)w, ++timercnt); 2414 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1641 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2415 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1642 timers [timercnt - 1] = w; 2416 ANHE_w (timers [ev_active (w)]) = (WT)w;
1643 upheap ((WT *)timers, timercnt - 1); 2417 ANHE_at_cache (timers [ev_active (w)]);
2418 upheap (timers, ev_active (w));
1644 2419
2420 EV_FREQUENT_CHECK;
2421
1645 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2422 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1646} 2423}
1647 2424
1648void noinline 2425void noinline
1649ev_timer_stop (EV_P_ ev_timer *w) 2426ev_timer_stop (EV_P_ ev_timer *w)
1650{ 2427{
1651 clear_pending (EV_A_ (W)w); 2428 clear_pending (EV_A_ (W)w);
1652 if (expect_false (!ev_is_active (w))) 2429 if (expect_false (!ev_is_active (w)))
1653 return; 2430 return;
1654 2431
1655 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2432 EV_FREQUENT_CHECK;
1656 2433
1657 { 2434 {
1658 int active = ((W)w)->active; 2435 int active = ev_active (w);
1659 2436
2437 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2438
2439 --timercnt;
2440
1660 if (expect_true (--active < --timercnt)) 2441 if (expect_true (active < timercnt + HEAP0))
1661 { 2442 {
1662 timers [active] = timers [timercnt]; 2443 timers [active] = timers [timercnt + HEAP0];
1663 adjustheap ((WT *)timers, timercnt, active); 2444 adjustheap (timers, timercnt, active);
1664 } 2445 }
1665 } 2446 }
1666 2447
1667 ((WT)w)->at -= mn_now; 2448 EV_FREQUENT_CHECK;
2449
2450 ev_at (w) -= mn_now;
1668 2451
1669 ev_stop (EV_A_ (W)w); 2452 ev_stop (EV_A_ (W)w);
1670} 2453}
1671 2454
1672void noinline 2455void noinline
1673ev_timer_again (EV_P_ ev_timer *w) 2456ev_timer_again (EV_P_ ev_timer *w)
1674{ 2457{
2458 EV_FREQUENT_CHECK;
2459
1675 if (ev_is_active (w)) 2460 if (ev_is_active (w))
1676 { 2461 {
1677 if (w->repeat) 2462 if (w->repeat)
1678 { 2463 {
1679 ((WT)w)->at = mn_now + w->repeat; 2464 ev_at (w) = mn_now + w->repeat;
2465 ANHE_at_cache (timers [ev_active (w)]);
1680 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2466 adjustheap (timers, timercnt, ev_active (w));
1681 } 2467 }
1682 else 2468 else
1683 ev_timer_stop (EV_A_ w); 2469 ev_timer_stop (EV_A_ w);
1684 } 2470 }
1685 else if (w->repeat) 2471 else if (w->repeat)
1686 { 2472 {
1687 w->at = w->repeat; 2473 ev_at (w) = w->repeat;
1688 ev_timer_start (EV_A_ w); 2474 ev_timer_start (EV_A_ w);
1689 } 2475 }
2476
2477 EV_FREQUENT_CHECK;
1690} 2478}
1691 2479
1692#if EV_PERIODIC_ENABLE 2480#if EV_PERIODIC_ENABLE
1693void noinline 2481void noinline
1694ev_periodic_start (EV_P_ ev_periodic *w) 2482ev_periodic_start (EV_P_ ev_periodic *w)
1695{ 2483{
1696 if (expect_false (ev_is_active (w))) 2484 if (expect_false (ev_is_active (w)))
1697 return; 2485 return;
1698 2486
1699 if (w->reschedule_cb) 2487 if (w->reschedule_cb)
1700 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2488 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1701 else if (w->interval) 2489 else if (w->interval)
1702 { 2490 {
1703 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2491 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1704 /* this formula differs from the one in periodic_reify because we do not always round up */ 2492 /* this formula differs from the one in periodic_reify because we do not always round up */
1705 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2493 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1706 } 2494 }
1707 else 2495 else
1708 ((WT)w)->at = w->offset; 2496 ev_at (w) = w->offset;
1709 2497
2498 EV_FREQUENT_CHECK;
2499
2500 ++periodiccnt;
1710 ev_start (EV_A_ (W)w, ++periodiccnt); 2501 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1711 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2502 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1712 periodics [periodiccnt - 1] = w; 2503 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1713 upheap ((WT *)periodics, periodiccnt - 1); 2504 ANHE_at_cache (periodics [ev_active (w)]);
2505 upheap (periodics, ev_active (w));
1714 2506
2507 EV_FREQUENT_CHECK;
2508
1715 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2509 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1716} 2510}
1717 2511
1718void noinline 2512void noinline
1719ev_periodic_stop (EV_P_ ev_periodic *w) 2513ev_periodic_stop (EV_P_ ev_periodic *w)
1720{ 2514{
1721 clear_pending (EV_A_ (W)w); 2515 clear_pending (EV_A_ (W)w);
1722 if (expect_false (!ev_is_active (w))) 2516 if (expect_false (!ev_is_active (w)))
1723 return; 2517 return;
1724 2518
1725 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2519 EV_FREQUENT_CHECK;
1726 2520
1727 { 2521 {
1728 int active = ((W)w)->active; 2522 int active = ev_active (w);
1729 2523
2524 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2525
2526 --periodiccnt;
2527
1730 if (expect_true (--active < --periodiccnt)) 2528 if (expect_true (active < periodiccnt + HEAP0))
1731 { 2529 {
1732 periodics [active] = periodics [periodiccnt]; 2530 periodics [active] = periodics [periodiccnt + HEAP0];
1733 adjustheap ((WT *)periodics, periodiccnt, active); 2531 adjustheap (periodics, periodiccnt, active);
1734 } 2532 }
1735 } 2533 }
2534
2535 EV_FREQUENT_CHECK;
1736 2536
1737 ev_stop (EV_A_ (W)w); 2537 ev_stop (EV_A_ (W)w);
1738} 2538}
1739 2539
1740void noinline 2540void noinline
1752 2552
1753void noinline 2553void noinline
1754ev_signal_start (EV_P_ ev_signal *w) 2554ev_signal_start (EV_P_ ev_signal *w)
1755{ 2555{
1756#if EV_MULTIPLICITY 2556#if EV_MULTIPLICITY
1757 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2557 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1758#endif 2558#endif
1759 if (expect_false (ev_is_active (w))) 2559 if (expect_false (ev_is_active (w)))
1760 return; 2560 return;
1761 2561
1762 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2562 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2563
2564 evpipe_init (EV_A);
2565
2566 EV_FREQUENT_CHECK;
2567
2568 {
2569#ifndef _WIN32
2570 sigset_t full, prev;
2571 sigfillset (&full);
2572 sigprocmask (SIG_SETMASK, &full, &prev);
2573#endif
2574
2575 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2576
2577#ifndef _WIN32
2578 sigprocmask (SIG_SETMASK, &prev, 0);
2579#endif
2580 }
1763 2581
1764 ev_start (EV_A_ (W)w, 1); 2582 ev_start (EV_A_ (W)w, 1);
1765 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1766 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2583 wlist_add (&signals [w->signum - 1].head, (WL)w);
1767 2584
1768 if (!((WL)w)->next) 2585 if (!((WL)w)->next)
1769 { 2586 {
1770#if _WIN32 2587#if _WIN32
1771 signal (w->signum, sighandler); 2588 signal (w->signum, ev_sighandler);
1772#else 2589#else
1773 struct sigaction sa; 2590 struct sigaction sa;
1774 sa.sa_handler = sighandler; 2591 sa.sa_handler = ev_sighandler;
1775 sigfillset (&sa.sa_mask); 2592 sigfillset (&sa.sa_mask);
1776 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2593 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1777 sigaction (w->signum, &sa, 0); 2594 sigaction (w->signum, &sa, 0);
1778#endif 2595#endif
1779 } 2596 }
2597
2598 EV_FREQUENT_CHECK;
1780} 2599}
1781 2600
1782void noinline 2601void noinline
1783ev_signal_stop (EV_P_ ev_signal *w) 2602ev_signal_stop (EV_P_ ev_signal *w)
1784{ 2603{
1785 clear_pending (EV_A_ (W)w); 2604 clear_pending (EV_A_ (W)w);
1786 if (expect_false (!ev_is_active (w))) 2605 if (expect_false (!ev_is_active (w)))
1787 return; 2606 return;
1788 2607
2608 EV_FREQUENT_CHECK;
2609
1789 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2610 wlist_del (&signals [w->signum - 1].head, (WL)w);
1790 ev_stop (EV_A_ (W)w); 2611 ev_stop (EV_A_ (W)w);
1791 2612
1792 if (!signals [w->signum - 1].head) 2613 if (!signals [w->signum - 1].head)
1793 signal (w->signum, SIG_DFL); 2614 signal (w->signum, SIG_DFL);
2615
2616 EV_FREQUENT_CHECK;
1794} 2617}
1795 2618
1796void 2619void
1797ev_child_start (EV_P_ ev_child *w) 2620ev_child_start (EV_P_ ev_child *w)
1798{ 2621{
1799#if EV_MULTIPLICITY 2622#if EV_MULTIPLICITY
1800 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2623 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1801#endif 2624#endif
1802 if (expect_false (ev_is_active (w))) 2625 if (expect_false (ev_is_active (w)))
1803 return; 2626 return;
1804 2627
2628 EV_FREQUENT_CHECK;
2629
1805 ev_start (EV_A_ (W)w, 1); 2630 ev_start (EV_A_ (W)w, 1);
1806 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2631 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2632
2633 EV_FREQUENT_CHECK;
1807} 2634}
1808 2635
1809void 2636void
1810ev_child_stop (EV_P_ ev_child *w) 2637ev_child_stop (EV_P_ ev_child *w)
1811{ 2638{
1812 clear_pending (EV_A_ (W)w); 2639 clear_pending (EV_A_ (W)w);
1813 if (expect_false (!ev_is_active (w))) 2640 if (expect_false (!ev_is_active (w)))
1814 return; 2641 return;
1815 2642
2643 EV_FREQUENT_CHECK;
2644
1816 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2645 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1817 ev_stop (EV_A_ (W)w); 2646 ev_stop (EV_A_ (W)w);
2647
2648 EV_FREQUENT_CHECK;
1818} 2649}
1819 2650
1820#if EV_STAT_ENABLE 2651#if EV_STAT_ENABLE
1821 2652
1822# ifdef _WIN32 2653# ifdef _WIN32
1823# undef lstat 2654# undef lstat
1824# define lstat(a,b) _stati64 (a,b) 2655# define lstat(a,b) _stati64 (a,b)
1825# endif 2656# endif
1826 2657
1827#define DEF_STAT_INTERVAL 5.0074891 2658#define DEF_STAT_INTERVAL 5.0074891
2659#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1828#define MIN_STAT_INTERVAL 0.1074891 2660#define MIN_STAT_INTERVAL 0.1074891
1829 2661
1830static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2662static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1831 2663
1832#if EV_USE_INOTIFY 2664#if EV_USE_INOTIFY
1833# define EV_INOTIFY_BUFSIZE 8192 2665# define EV_INOTIFY_BUFSIZE 8192
1837{ 2669{
1838 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2670 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1839 2671
1840 if (w->wd < 0) 2672 if (w->wd < 0)
1841 { 2673 {
2674 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1842 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2675 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1843 2676
1844 /* monitor some parent directory for speedup hints */ 2677 /* monitor some parent directory for speedup hints */
2678 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2679 /* but an efficiency issue only */
1845 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2680 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1846 { 2681 {
1847 char path [4096]; 2682 char path [4096];
1848 strcpy (path, w->path); 2683 strcpy (path, w->path);
1849 2684
1852 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2687 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1853 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2688 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1854 2689
1855 char *pend = strrchr (path, '/'); 2690 char *pend = strrchr (path, '/');
1856 2691
1857 if (!pend) 2692 if (!pend || pend == path)
1858 break; /* whoops, no '/', complain to your admin */ 2693 break;
1859 2694
1860 *pend = 0; 2695 *pend = 0;
1861 w->wd = inotify_add_watch (fs_fd, path, mask); 2696 w->wd = inotify_add_watch (fs_fd, path, mask);
1862 } 2697 }
1863 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2698 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1864 } 2699 }
1865 } 2700 }
1866 else
1867 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1868 2701
1869 if (w->wd >= 0) 2702 if (w->wd >= 0)
2703 {
1870 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2704 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2705
2706 /* now local changes will be tracked by inotify, but remote changes won't */
2707 /* unless the filesystem it known to be local, we therefore still poll */
2708 /* also do poll on <2.6.25, but with normal frequency */
2709 struct statfs sfs;
2710
2711 if (fs_2625 && !statfs (w->path, &sfs))
2712 if (sfs.f_type == 0x1373 /* devfs */
2713 || sfs.f_type == 0xEF53 /* ext2/3 */
2714 || sfs.f_type == 0x3153464a /* jfs */
2715 || sfs.f_type == 0x52654973 /* reiser3 */
2716 || sfs.f_type == 0x01021994 /* tempfs */
2717 || sfs.f_type == 0x58465342 /* xfs */)
2718 return;
2719
2720 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2721 ev_timer_again (EV_A_ &w->timer);
2722 }
1871} 2723}
1872 2724
1873static void noinline 2725static void noinline
1874infy_del (EV_P_ ev_stat *w) 2726infy_del (EV_P_ ev_stat *w)
1875{ 2727{
1889 2741
1890static void noinline 2742static void noinline
1891infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2743infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1892{ 2744{
1893 if (slot < 0) 2745 if (slot < 0)
1894 /* overflow, need to check for all hahs slots */ 2746 /* overflow, need to check for all hash slots */
1895 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2747 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1896 infy_wd (EV_A_ slot, wd, ev); 2748 infy_wd (EV_A_ slot, wd, ev);
1897 else 2749 else
1898 { 2750 {
1899 WL w_; 2751 WL w_;
1905 2757
1906 if (w->wd == wd || wd == -1) 2758 if (w->wd == wd || wd == -1)
1907 { 2759 {
1908 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2760 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1909 { 2761 {
2762 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1910 w->wd = -1; 2763 w->wd = -1;
1911 infy_add (EV_A_ w); /* re-add, no matter what */ 2764 infy_add (EV_A_ w); /* re-add, no matter what */
1912 } 2765 }
1913 2766
1914 stat_timer_cb (EV_A_ &w->timer, 0); 2767 stat_timer_cb (EV_A_ &w->timer, 0);
1927 2780
1928 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2781 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1929 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2782 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1930} 2783}
1931 2784
1932void inline_size 2785inline_size void
2786check_2625 (EV_P)
2787{
2788 /* kernels < 2.6.25 are borked
2789 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2790 */
2791 struct utsname buf;
2792 int major, minor, micro;
2793
2794 if (uname (&buf))
2795 return;
2796
2797 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2798 return;
2799
2800 if (major < 2
2801 || (major == 2 && minor < 6)
2802 || (major == 2 && minor == 6 && micro < 25))
2803 return;
2804
2805 fs_2625 = 1;
2806}
2807
2808inline_size void
1933infy_init (EV_P) 2809infy_init (EV_P)
1934{ 2810{
1935 if (fs_fd != -2) 2811 if (fs_fd != -2)
1936 return; 2812 return;
2813
2814 fs_fd = -1;
2815
2816 check_2625 (EV_A);
1937 2817
1938 fs_fd = inotify_init (); 2818 fs_fd = inotify_init ();
1939 2819
1940 if (fs_fd >= 0) 2820 if (fs_fd >= 0)
1941 { 2821 {
1943 ev_set_priority (&fs_w, EV_MAXPRI); 2823 ev_set_priority (&fs_w, EV_MAXPRI);
1944 ev_io_start (EV_A_ &fs_w); 2824 ev_io_start (EV_A_ &fs_w);
1945 } 2825 }
1946} 2826}
1947 2827
1948void inline_size 2828inline_size void
1949infy_fork (EV_P) 2829infy_fork (EV_P)
1950{ 2830{
1951 int slot; 2831 int slot;
1952 2832
1953 if (fs_fd < 0) 2833 if (fs_fd < 0)
1969 w->wd = -1; 2849 w->wd = -1;
1970 2850
1971 if (fs_fd >= 0) 2851 if (fs_fd >= 0)
1972 infy_add (EV_A_ w); /* re-add, no matter what */ 2852 infy_add (EV_A_ w); /* re-add, no matter what */
1973 else 2853 else
1974 ev_timer_start (EV_A_ &w->timer); 2854 ev_timer_again (EV_A_ &w->timer);
1975 } 2855 }
1976
1977 } 2856 }
1978} 2857}
1979 2858
2859#endif
2860
2861#ifdef _WIN32
2862# define EV_LSTAT(p,b) _stati64 (p, b)
2863#else
2864# define EV_LSTAT(p,b) lstat (p, b)
1980#endif 2865#endif
1981 2866
1982void 2867void
1983ev_stat_stat (EV_P_ ev_stat *w) 2868ev_stat_stat (EV_P_ ev_stat *w)
1984{ 2869{
2011 || w->prev.st_atime != w->attr.st_atime 2896 || w->prev.st_atime != w->attr.st_atime
2012 || w->prev.st_mtime != w->attr.st_mtime 2897 || w->prev.st_mtime != w->attr.st_mtime
2013 || w->prev.st_ctime != w->attr.st_ctime 2898 || w->prev.st_ctime != w->attr.st_ctime
2014 ) { 2899 ) {
2015 #if EV_USE_INOTIFY 2900 #if EV_USE_INOTIFY
2901 if (fs_fd >= 0)
2902 {
2016 infy_del (EV_A_ w); 2903 infy_del (EV_A_ w);
2017 infy_add (EV_A_ w); 2904 infy_add (EV_A_ w);
2018 ev_stat_stat (EV_A_ w); /* avoid race... */ 2905 ev_stat_stat (EV_A_ w); /* avoid race... */
2906 }
2019 #endif 2907 #endif
2020 2908
2021 ev_feed_event (EV_A_ w, EV_STAT); 2909 ev_feed_event (EV_A_ w, EV_STAT);
2022 } 2910 }
2023} 2911}
2026ev_stat_start (EV_P_ ev_stat *w) 2914ev_stat_start (EV_P_ ev_stat *w)
2027{ 2915{
2028 if (expect_false (ev_is_active (w))) 2916 if (expect_false (ev_is_active (w)))
2029 return; 2917 return;
2030 2918
2031 /* since we use memcmp, we need to clear any padding data etc. */
2032 memset (&w->prev, 0, sizeof (ev_statdata));
2033 memset (&w->attr, 0, sizeof (ev_statdata));
2034
2035 ev_stat_stat (EV_A_ w); 2919 ev_stat_stat (EV_A_ w);
2036 2920
2921 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2037 if (w->interval < MIN_STAT_INTERVAL) 2922 w->interval = MIN_STAT_INTERVAL;
2038 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2039 2923
2040 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2924 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2041 ev_set_priority (&w->timer, ev_priority (w)); 2925 ev_set_priority (&w->timer, ev_priority (w));
2042 2926
2043#if EV_USE_INOTIFY 2927#if EV_USE_INOTIFY
2044 infy_init (EV_A); 2928 infy_init (EV_A);
2045 2929
2046 if (fs_fd >= 0) 2930 if (fs_fd >= 0)
2047 infy_add (EV_A_ w); 2931 infy_add (EV_A_ w);
2048 else 2932 else
2049#endif 2933#endif
2050 ev_timer_start (EV_A_ &w->timer); 2934 ev_timer_again (EV_A_ &w->timer);
2051 2935
2052 ev_start (EV_A_ (W)w, 1); 2936 ev_start (EV_A_ (W)w, 1);
2937
2938 EV_FREQUENT_CHECK;
2053} 2939}
2054 2940
2055void 2941void
2056ev_stat_stop (EV_P_ ev_stat *w) 2942ev_stat_stop (EV_P_ ev_stat *w)
2057{ 2943{
2058 clear_pending (EV_A_ (W)w); 2944 clear_pending (EV_A_ (W)w);
2059 if (expect_false (!ev_is_active (w))) 2945 if (expect_false (!ev_is_active (w)))
2060 return; 2946 return;
2061 2947
2948 EV_FREQUENT_CHECK;
2949
2062#if EV_USE_INOTIFY 2950#if EV_USE_INOTIFY
2063 infy_del (EV_A_ w); 2951 infy_del (EV_A_ w);
2064#endif 2952#endif
2065 ev_timer_stop (EV_A_ &w->timer); 2953 ev_timer_stop (EV_A_ &w->timer);
2066 2954
2067 ev_stop (EV_A_ (W)w); 2955 ev_stop (EV_A_ (W)w);
2956
2957 EV_FREQUENT_CHECK;
2068} 2958}
2069#endif 2959#endif
2070 2960
2071#if EV_IDLE_ENABLE 2961#if EV_IDLE_ENABLE
2072void 2962void
2074{ 2964{
2075 if (expect_false (ev_is_active (w))) 2965 if (expect_false (ev_is_active (w)))
2076 return; 2966 return;
2077 2967
2078 pri_adjust (EV_A_ (W)w); 2968 pri_adjust (EV_A_ (W)w);
2969
2970 EV_FREQUENT_CHECK;
2079 2971
2080 { 2972 {
2081 int active = ++idlecnt [ABSPRI (w)]; 2973 int active = ++idlecnt [ABSPRI (w)];
2082 2974
2083 ++idleall; 2975 ++idleall;
2084 ev_start (EV_A_ (W)w, active); 2976 ev_start (EV_A_ (W)w, active);
2085 2977
2086 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2978 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2087 idles [ABSPRI (w)][active - 1] = w; 2979 idles [ABSPRI (w)][active - 1] = w;
2088 } 2980 }
2981
2982 EV_FREQUENT_CHECK;
2089} 2983}
2090 2984
2091void 2985void
2092ev_idle_stop (EV_P_ ev_idle *w) 2986ev_idle_stop (EV_P_ ev_idle *w)
2093{ 2987{
2094 clear_pending (EV_A_ (W)w); 2988 clear_pending (EV_A_ (W)w);
2095 if (expect_false (!ev_is_active (w))) 2989 if (expect_false (!ev_is_active (w)))
2096 return; 2990 return;
2097 2991
2992 EV_FREQUENT_CHECK;
2993
2098 { 2994 {
2099 int active = ((W)w)->active; 2995 int active = ev_active (w);
2100 2996
2101 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2997 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2102 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2998 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2103 2999
2104 ev_stop (EV_A_ (W)w); 3000 ev_stop (EV_A_ (W)w);
2105 --idleall; 3001 --idleall;
2106 } 3002 }
3003
3004 EV_FREQUENT_CHECK;
2107} 3005}
2108#endif 3006#endif
2109 3007
2110void 3008void
2111ev_prepare_start (EV_P_ ev_prepare *w) 3009ev_prepare_start (EV_P_ ev_prepare *w)
2112{ 3010{
2113 if (expect_false (ev_is_active (w))) 3011 if (expect_false (ev_is_active (w)))
2114 return; 3012 return;
3013
3014 EV_FREQUENT_CHECK;
2115 3015
2116 ev_start (EV_A_ (W)w, ++preparecnt); 3016 ev_start (EV_A_ (W)w, ++preparecnt);
2117 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3017 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2118 prepares [preparecnt - 1] = w; 3018 prepares [preparecnt - 1] = w;
3019
3020 EV_FREQUENT_CHECK;
2119} 3021}
2120 3022
2121void 3023void
2122ev_prepare_stop (EV_P_ ev_prepare *w) 3024ev_prepare_stop (EV_P_ ev_prepare *w)
2123{ 3025{
2124 clear_pending (EV_A_ (W)w); 3026 clear_pending (EV_A_ (W)w);
2125 if (expect_false (!ev_is_active (w))) 3027 if (expect_false (!ev_is_active (w)))
2126 return; 3028 return;
2127 3029
3030 EV_FREQUENT_CHECK;
3031
2128 { 3032 {
2129 int active = ((W)w)->active; 3033 int active = ev_active (w);
3034
2130 prepares [active - 1] = prepares [--preparecnt]; 3035 prepares [active - 1] = prepares [--preparecnt];
2131 ((W)prepares [active - 1])->active = active; 3036 ev_active (prepares [active - 1]) = active;
2132 } 3037 }
2133 3038
2134 ev_stop (EV_A_ (W)w); 3039 ev_stop (EV_A_ (W)w);
3040
3041 EV_FREQUENT_CHECK;
2135} 3042}
2136 3043
2137void 3044void
2138ev_check_start (EV_P_ ev_check *w) 3045ev_check_start (EV_P_ ev_check *w)
2139{ 3046{
2140 if (expect_false (ev_is_active (w))) 3047 if (expect_false (ev_is_active (w)))
2141 return; 3048 return;
3049
3050 EV_FREQUENT_CHECK;
2142 3051
2143 ev_start (EV_A_ (W)w, ++checkcnt); 3052 ev_start (EV_A_ (W)w, ++checkcnt);
2144 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3053 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2145 checks [checkcnt - 1] = w; 3054 checks [checkcnt - 1] = w;
3055
3056 EV_FREQUENT_CHECK;
2146} 3057}
2147 3058
2148void 3059void
2149ev_check_stop (EV_P_ ev_check *w) 3060ev_check_stop (EV_P_ ev_check *w)
2150{ 3061{
2151 clear_pending (EV_A_ (W)w); 3062 clear_pending (EV_A_ (W)w);
2152 if (expect_false (!ev_is_active (w))) 3063 if (expect_false (!ev_is_active (w)))
2153 return; 3064 return;
2154 3065
3066 EV_FREQUENT_CHECK;
3067
2155 { 3068 {
2156 int active = ((W)w)->active; 3069 int active = ev_active (w);
3070
2157 checks [active - 1] = checks [--checkcnt]; 3071 checks [active - 1] = checks [--checkcnt];
2158 ((W)checks [active - 1])->active = active; 3072 ev_active (checks [active - 1]) = active;
2159 } 3073 }
2160 3074
2161 ev_stop (EV_A_ (W)w); 3075 ev_stop (EV_A_ (W)w);
3076
3077 EV_FREQUENT_CHECK;
2162} 3078}
2163 3079
2164#if EV_EMBED_ENABLE 3080#if EV_EMBED_ENABLE
2165void noinline 3081void noinline
2166ev_embed_sweep (EV_P_ ev_embed *w) 3082ev_embed_sweep (EV_P_ ev_embed *w)
2167{ 3083{
2168 ev_loop (w->loop, EVLOOP_NONBLOCK); 3084 ev_loop (w->other, EVLOOP_NONBLOCK);
2169} 3085}
2170 3086
2171static void 3087static void
2172embed_cb (EV_P_ ev_io *io, int revents) 3088embed_io_cb (EV_P_ ev_io *io, int revents)
2173{ 3089{
2174 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3090 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2175 3091
2176 if (ev_cb (w)) 3092 if (ev_cb (w))
2177 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3093 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2178 else 3094 else
2179 ev_embed_sweep (loop, w); 3095 ev_loop (w->other, EVLOOP_NONBLOCK);
2180} 3096}
3097
3098static void
3099embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3100{
3101 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3102
3103 {
3104 struct ev_loop *loop = w->other;
3105
3106 while (fdchangecnt)
3107 {
3108 fd_reify (EV_A);
3109 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3110 }
3111 }
3112}
3113
3114static void
3115embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3116{
3117 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3118
3119 ev_embed_stop (EV_A_ w);
3120
3121 {
3122 struct ev_loop *loop = w->other;
3123
3124 ev_loop_fork (EV_A);
3125 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3126 }
3127
3128 ev_embed_start (EV_A_ w);
3129}
3130
3131#if 0
3132static void
3133embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3134{
3135 ev_idle_stop (EV_A_ idle);
3136}
3137#endif
2181 3138
2182void 3139void
2183ev_embed_start (EV_P_ ev_embed *w) 3140ev_embed_start (EV_P_ ev_embed *w)
2184{ 3141{
2185 if (expect_false (ev_is_active (w))) 3142 if (expect_false (ev_is_active (w)))
2186 return; 3143 return;
2187 3144
2188 { 3145 {
2189 struct ev_loop *loop = w->loop; 3146 struct ev_loop *loop = w->other;
2190 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3147 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2191 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3148 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2192 } 3149 }
3150
3151 EV_FREQUENT_CHECK;
2193 3152
2194 ev_set_priority (&w->io, ev_priority (w)); 3153 ev_set_priority (&w->io, ev_priority (w));
2195 ev_io_start (EV_A_ &w->io); 3154 ev_io_start (EV_A_ &w->io);
2196 3155
3156 ev_prepare_init (&w->prepare, embed_prepare_cb);
3157 ev_set_priority (&w->prepare, EV_MINPRI);
3158 ev_prepare_start (EV_A_ &w->prepare);
3159
3160 ev_fork_init (&w->fork, embed_fork_cb);
3161 ev_fork_start (EV_A_ &w->fork);
3162
3163 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3164
2197 ev_start (EV_A_ (W)w, 1); 3165 ev_start (EV_A_ (W)w, 1);
3166
3167 EV_FREQUENT_CHECK;
2198} 3168}
2199 3169
2200void 3170void
2201ev_embed_stop (EV_P_ ev_embed *w) 3171ev_embed_stop (EV_P_ ev_embed *w)
2202{ 3172{
2203 clear_pending (EV_A_ (W)w); 3173 clear_pending (EV_A_ (W)w);
2204 if (expect_false (!ev_is_active (w))) 3174 if (expect_false (!ev_is_active (w)))
2205 return; 3175 return;
2206 3176
3177 EV_FREQUENT_CHECK;
3178
2207 ev_io_stop (EV_A_ &w->io); 3179 ev_io_stop (EV_A_ &w->io);
3180 ev_prepare_stop (EV_A_ &w->prepare);
3181 ev_fork_stop (EV_A_ &w->fork);
2208 3182
2209 ev_stop (EV_A_ (W)w); 3183 EV_FREQUENT_CHECK;
2210} 3184}
2211#endif 3185#endif
2212 3186
2213#if EV_FORK_ENABLE 3187#if EV_FORK_ENABLE
2214void 3188void
2215ev_fork_start (EV_P_ ev_fork *w) 3189ev_fork_start (EV_P_ ev_fork *w)
2216{ 3190{
2217 if (expect_false (ev_is_active (w))) 3191 if (expect_false (ev_is_active (w)))
2218 return; 3192 return;
3193
3194 EV_FREQUENT_CHECK;
2219 3195
2220 ev_start (EV_A_ (W)w, ++forkcnt); 3196 ev_start (EV_A_ (W)w, ++forkcnt);
2221 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3197 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2222 forks [forkcnt - 1] = w; 3198 forks [forkcnt - 1] = w;
3199
3200 EV_FREQUENT_CHECK;
2223} 3201}
2224 3202
2225void 3203void
2226ev_fork_stop (EV_P_ ev_fork *w) 3204ev_fork_stop (EV_P_ ev_fork *w)
2227{ 3205{
2228 clear_pending (EV_A_ (W)w); 3206 clear_pending (EV_A_ (W)w);
2229 if (expect_false (!ev_is_active (w))) 3207 if (expect_false (!ev_is_active (w)))
2230 return; 3208 return;
2231 3209
3210 EV_FREQUENT_CHECK;
3211
2232 { 3212 {
2233 int active = ((W)w)->active; 3213 int active = ev_active (w);
3214
2234 forks [active - 1] = forks [--forkcnt]; 3215 forks [active - 1] = forks [--forkcnt];
2235 ((W)forks [active - 1])->active = active; 3216 ev_active (forks [active - 1]) = active;
2236 } 3217 }
2237 3218
2238 ev_stop (EV_A_ (W)w); 3219 ev_stop (EV_A_ (W)w);
3220
3221 EV_FREQUENT_CHECK;
3222}
3223#endif
3224
3225#if EV_ASYNC_ENABLE
3226void
3227ev_async_start (EV_P_ ev_async *w)
3228{
3229 if (expect_false (ev_is_active (w)))
3230 return;
3231
3232 evpipe_init (EV_A);
3233
3234 EV_FREQUENT_CHECK;
3235
3236 ev_start (EV_A_ (W)w, ++asynccnt);
3237 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3238 asyncs [asynccnt - 1] = w;
3239
3240 EV_FREQUENT_CHECK;
3241}
3242
3243void
3244ev_async_stop (EV_P_ ev_async *w)
3245{
3246 clear_pending (EV_A_ (W)w);
3247 if (expect_false (!ev_is_active (w)))
3248 return;
3249
3250 EV_FREQUENT_CHECK;
3251
3252 {
3253 int active = ev_active (w);
3254
3255 asyncs [active - 1] = asyncs [--asynccnt];
3256 ev_active (asyncs [active - 1]) = active;
3257 }
3258
3259 ev_stop (EV_A_ (W)w);
3260
3261 EV_FREQUENT_CHECK;
3262}
3263
3264void
3265ev_async_send (EV_P_ ev_async *w)
3266{
3267 w->sent = 1;
3268 evpipe_write (EV_A_ &gotasync);
2239} 3269}
2240#endif 3270#endif
2241 3271
2242/*****************************************************************************/ 3272/*****************************************************************************/
2243 3273
2253once_cb (EV_P_ struct ev_once *once, int revents) 3283once_cb (EV_P_ struct ev_once *once, int revents)
2254{ 3284{
2255 void (*cb)(int revents, void *arg) = once->cb; 3285 void (*cb)(int revents, void *arg) = once->cb;
2256 void *arg = once->arg; 3286 void *arg = once->arg;
2257 3287
2258 ev_io_stop (EV_A_ &once->io); 3288 ev_io_stop (EV_A_ &once->io);
2259 ev_timer_stop (EV_A_ &once->to); 3289 ev_timer_stop (EV_A_ &once->to);
2260 ev_free (once); 3290 ev_free (once);
2261 3291
2262 cb (revents, arg); 3292 cb (revents, arg);
2263} 3293}
2264 3294
2265static void 3295static void
2266once_cb_io (EV_P_ ev_io *w, int revents) 3296once_cb_io (EV_P_ ev_io *w, int revents)
2267{ 3297{
2268 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3298 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3299
3300 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2269} 3301}
2270 3302
2271static void 3303static void
2272once_cb_to (EV_P_ ev_timer *w, int revents) 3304once_cb_to (EV_P_ ev_timer *w, int revents)
2273{ 3305{
2274 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3306 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3307
3308 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2275} 3309}
2276 3310
2277void 3311void
2278ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3312ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2279{ 3313{
2301 ev_timer_set (&once->to, timeout, 0.); 3335 ev_timer_set (&once->to, timeout, 0.);
2302 ev_timer_start (EV_A_ &once->to); 3336 ev_timer_start (EV_A_ &once->to);
2303 } 3337 }
2304} 3338}
2305 3339
3340/*****************************************************************************/
3341
3342#if EV_WALK_ENABLE
3343void
3344ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3345{
3346 int i, j;
3347 ev_watcher_list *wl, *wn;
3348
3349 if (types & (EV_IO | EV_EMBED))
3350 for (i = 0; i < anfdmax; ++i)
3351 for (wl = anfds [i].head; wl; )
3352 {
3353 wn = wl->next;
3354
3355#if EV_EMBED_ENABLE
3356 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3357 {
3358 if (types & EV_EMBED)
3359 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3360 }
3361 else
3362#endif
3363#if EV_USE_INOTIFY
3364 if (ev_cb ((ev_io *)wl) == infy_cb)
3365 ;
3366 else
3367#endif
3368 if ((ev_io *)wl != &pipe_w)
3369 if (types & EV_IO)
3370 cb (EV_A_ EV_IO, wl);
3371
3372 wl = wn;
3373 }
3374
3375 if (types & (EV_TIMER | EV_STAT))
3376 for (i = timercnt + HEAP0; i-- > HEAP0; )
3377#if EV_STAT_ENABLE
3378 /*TODO: timer is not always active*/
3379 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3380 {
3381 if (types & EV_STAT)
3382 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3383 }
3384 else
3385#endif
3386 if (types & EV_TIMER)
3387 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3388
3389#if EV_PERIODIC_ENABLE
3390 if (types & EV_PERIODIC)
3391 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3392 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3393#endif
3394
3395#if EV_IDLE_ENABLE
3396 if (types & EV_IDLE)
3397 for (j = NUMPRI; i--; )
3398 for (i = idlecnt [j]; i--; )
3399 cb (EV_A_ EV_IDLE, idles [j][i]);
3400#endif
3401
3402#if EV_FORK_ENABLE
3403 if (types & EV_FORK)
3404 for (i = forkcnt; i--; )
3405 if (ev_cb (forks [i]) != embed_fork_cb)
3406 cb (EV_A_ EV_FORK, forks [i]);
3407#endif
3408
3409#if EV_ASYNC_ENABLE
3410 if (types & EV_ASYNC)
3411 for (i = asynccnt; i--; )
3412 cb (EV_A_ EV_ASYNC, asyncs [i]);
3413#endif
3414
3415 if (types & EV_PREPARE)
3416 for (i = preparecnt; i--; )
3417#if EV_EMBED_ENABLE
3418 if (ev_cb (prepares [i]) != embed_prepare_cb)
3419#endif
3420 cb (EV_A_ EV_PREPARE, prepares [i]);
3421
3422 if (types & EV_CHECK)
3423 for (i = checkcnt; i--; )
3424 cb (EV_A_ EV_CHECK, checks [i]);
3425
3426 if (types & EV_SIGNAL)
3427 for (i = 0; i < signalmax; ++i)
3428 for (wl = signals [i].head; wl; )
3429 {
3430 wn = wl->next;
3431 cb (EV_A_ EV_SIGNAL, wl);
3432 wl = wn;
3433 }
3434
3435 if (types & EV_CHILD)
3436 for (i = EV_PID_HASHSIZE; i--; )
3437 for (wl = childs [i]; wl; )
3438 {
3439 wn = wl->next;
3440 cb (EV_A_ EV_CHILD, wl);
3441 wl = wn;
3442 }
3443/* EV_STAT 0x00001000 /* stat data changed */
3444/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3445}
3446#endif
3447
3448#if EV_MULTIPLICITY
3449 #include "ev_wrap.h"
3450#endif
3451
2306#ifdef __cplusplus 3452#ifdef __cplusplus
2307} 3453}
2308#endif 3454#endif
2309 3455

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines