ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.125 by root, Sat Nov 17 02:28:43 2007 UTC vs.
Revision 1.178 by root, Tue Dec 11 18:36:11 2007 UTC

32#ifdef __cplusplus 32#ifdef __cplusplus
33extern "C" { 33extern "C" {
34#endif 34#endif
35 35
36#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
37# include "config.h" 40# include "config.h"
41# endif
38 42
39# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 44# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
42# endif 46# endif
43# ifndef EV_USE_REALTIME 47# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
45# endif 49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
46# endif 57# endif
47 58
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 59# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H
49# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
50# endif 65# endif
51 66
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 67# ifndef EV_USE_POLL
68# if HAVE_POLL && HAVE_POLL_H
53# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
54# endif 73# endif
55 74
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
57# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
58# endif 81# endif
59 82
83# ifndef EV_USE_KQUEUE
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
61# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
62# endif 89# endif
63 90
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
65# define EV_USE_PORT 1 93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
97# endif
98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
66# endif 105# endif
67 106
68#endif 107#endif
69 108
70#include <math.h> 109#include <math.h>
79#include <sys/types.h> 118#include <sys/types.h>
80#include <time.h> 119#include <time.h>
81 120
82#include <signal.h> 121#include <signal.h>
83 122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
84#ifndef _WIN32 129#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 130# include <sys/time.h>
87# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
88#else 133#else
89# define WIN32_LEAN_AND_MEAN 134# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 135# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 136# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 137# define EV_SELECT_IS_WINSOCKET 1
125 170
126#ifndef EV_USE_PORT 171#ifndef EV_USE_PORT
127# define EV_USE_PORT 0 172# define EV_USE_PORT 0
128#endif 173#endif
129 174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
130/**/ 195/**/
131
132/* darwin simply cannot be helped */
133#ifdef __APPLE__
134# undef EV_USE_POLL
135# undef EV_USE_KQUEUE
136#endif
137 196
138#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
139# undef EV_USE_MONOTONIC 198# undef EV_USE_MONOTONIC
140# define EV_USE_MONOTONIC 0 199# define EV_USE_MONOTONIC 0
141#endif 200#endif
147 206
148#if EV_SELECT_IS_WINSOCKET 207#if EV_SELECT_IS_WINSOCKET
149# include <winsock.h> 208# include <winsock.h>
150#endif 209#endif
151 210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
152/**/ 219/**/
220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
153 230
154#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
155#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
156#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
157/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
158
159#ifdef EV_H
160# include EV_H
161#else
162# include "ev.h"
163#endif
164 234
165#if __GNUC__ >= 3 235#if __GNUC__ >= 3
166# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
167# define inline static inline 237# define noinline __attribute__ ((noinline))
168#else 238#else
169# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
170# define inline static 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
171#endif 244#endif
172 245
173#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
174#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
175 255
176#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
177#define ABSPRI(w) ((w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
178 258
179#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 259#define EMPTY /* required for microsofts broken pseudo-c compiler */
180#define EMPTY2(a,b) /* used to suppress some warnings */ 260#define EMPTY2(a,b) /* used to suppress some warnings */
181 261
182typedef struct ev_watcher *W; 262typedef ev_watcher *W;
183typedef struct ev_watcher_list *WL; 263typedef ev_watcher_list *WL;
184typedef struct ev_watcher_time *WT; 264typedef ev_watcher_time *WT;
185 265
186static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
187 267
188#ifdef _WIN32 268#ifdef _WIN32
189# include "ev_win32.c" 269# include "ev_win32.c"
191 271
192/*****************************************************************************/ 272/*****************************************************************************/
193 273
194static void (*syserr_cb)(const char *msg); 274static void (*syserr_cb)(const char *msg);
195 275
276void
196void ev_set_syserr_cb (void (*cb)(const char *msg)) 277ev_set_syserr_cb (void (*cb)(const char *msg))
197{ 278{
198 syserr_cb = cb; 279 syserr_cb = cb;
199} 280}
200 281
201static void 282static void noinline
202syserr (const char *msg) 283syserr (const char *msg)
203{ 284{
204 if (!msg) 285 if (!msg)
205 msg = "(libev) system error"; 286 msg = "(libev) system error";
206 287
213 } 294 }
214} 295}
215 296
216static void *(*alloc)(void *ptr, long size); 297static void *(*alloc)(void *ptr, long size);
217 298
299void
218void ev_set_allocator (void *(*cb)(void *ptr, long size)) 300ev_set_allocator (void *(*cb)(void *ptr, long size))
219{ 301{
220 alloc = cb; 302 alloc = cb;
221} 303}
222 304
223static void * 305inline_speed void *
224ev_realloc (void *ptr, long size) 306ev_realloc (void *ptr, long size)
225{ 307{
226 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
227 309
228 if (!ptr && size) 310 if (!ptr && size)
252typedef struct 334typedef struct
253{ 335{
254 W w; 336 W w;
255 int events; 337 int events;
256} ANPENDING; 338} ANPENDING;
339
340#if EV_USE_INOTIFY
341typedef struct
342{
343 WL head;
344} ANFS;
345#endif
257 346
258#if EV_MULTIPLICITY 347#if EV_MULTIPLICITY
259 348
260 struct ev_loop 349 struct ev_loop
261 { 350 {
295 gettimeofday (&tv, 0); 384 gettimeofday (&tv, 0);
296 return tv.tv_sec + tv.tv_usec * 1e-6; 385 return tv.tv_sec + tv.tv_usec * 1e-6;
297#endif 386#endif
298} 387}
299 388
300inline ev_tstamp 389ev_tstamp inline_size
301get_clock (void) 390get_clock (void)
302{ 391{
303#if EV_USE_MONOTONIC 392#if EV_USE_MONOTONIC
304 if (expect_true (have_monotonic)) 393 if (expect_true (have_monotonic))
305 { 394 {
318{ 407{
319 return ev_rt_now; 408 return ev_rt_now;
320} 409}
321#endif 410#endif
322 411
323#define array_roundsize(type,n) (((n) | 4) & ~3) 412int inline_size
413array_nextsize (int elem, int cur, int cnt)
414{
415 int ncur = cur + 1;
416
417 do
418 ncur <<= 1;
419 while (cnt > ncur);
420
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096)
423 {
424 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
426 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem;
428 }
429
430 return ncur;
431}
432
433static noinline void *
434array_realloc (int elem, void *base, int *cur, int cnt)
435{
436 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur);
438}
324 439
325#define array_needsize(type,base,cur,cnt,init) \ 440#define array_needsize(type,base,cur,cnt,init) \
326 if (expect_false ((cnt) > cur)) \ 441 if (expect_false ((cnt) > (cur))) \
327 { \ 442 { \
328 int newcnt = cur; \ 443 int ocur_ = (cur); \
329 do \ 444 (base) = (type *)array_realloc \
330 { \ 445 (sizeof (type), (base), &(cur), (cnt)); \
331 newcnt = array_roundsize (type, newcnt << 1); \ 446 init ((base) + (ocur_), (cur) - ocur_); \
332 } \
333 while ((cnt) > newcnt); \
334 \
335 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
336 init (base + cur, newcnt - cur); \
337 cur = newcnt; \
338 } 447 }
339 448
449#if 0
340#define array_slim(type,stem) \ 450#define array_slim(type,stem) \
341 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 451 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
342 { \ 452 { \
343 stem ## max = array_roundsize (stem ## cnt >> 1); \ 453 stem ## max = array_roundsize (stem ## cnt >> 1); \
344 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 454 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
345 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
346 } 456 }
457#endif
347 458
348#define array_free(stem, idx) \ 459#define array_free(stem, idx) \
349 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
350 461
351/*****************************************************************************/ 462/*****************************************************************************/
352 463
353static void 464void noinline
465ev_feed_event (EV_P_ void *w, int revents)
466{
467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
469
470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents;
478 }
479}
480
481void inline_size
482queue_events (EV_P_ W *events, int eventcnt, int type)
483{
484 int i;
485
486 for (i = 0; i < eventcnt; ++i)
487 ev_feed_event (EV_A_ events [i], type);
488}
489
490/*****************************************************************************/
491
492void inline_size
354anfds_init (ANFD *base, int count) 493anfds_init (ANFD *base, int count)
355{ 494{
356 while (count--) 495 while (count--)
357 { 496 {
358 base->head = 0; 497 base->head = 0;
361 500
362 ++base; 501 ++base;
363 } 502 }
364} 503}
365 504
366void 505void inline_speed
367ev_feed_event (EV_P_ void *w, int revents)
368{
369 W w_ = (W)w;
370
371 if (expect_false (w_->pending))
372 {
373 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
374 return;
375 }
376
377 w_->pending = ++pendingcnt [ABSPRI (w_)];
378 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
379 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
380 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
381}
382
383static void
384queue_events (EV_P_ W *events, int eventcnt, int type)
385{
386 int i;
387
388 for (i = 0; i < eventcnt; ++i)
389 ev_feed_event (EV_A_ events [i], type);
390}
391
392inline void
393fd_event (EV_P_ int fd, int revents) 506fd_event (EV_P_ int fd, int revents)
394{ 507{
395 ANFD *anfd = anfds + fd; 508 ANFD *anfd = anfds + fd;
396 struct ev_io *w; 509 ev_io *w;
397 510
398 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 511 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
399 { 512 {
400 int ev = w->events & revents; 513 int ev = w->events & revents;
401 514
402 if (ev) 515 if (ev)
403 ev_feed_event (EV_A_ (W)w, ev); 516 ev_feed_event (EV_A_ (W)w, ev);
405} 518}
406 519
407void 520void
408ev_feed_fd_event (EV_P_ int fd, int revents) 521ev_feed_fd_event (EV_P_ int fd, int revents)
409{ 522{
523 if (fd >= 0 && fd < anfdmax)
410 fd_event (EV_A_ fd, revents); 524 fd_event (EV_A_ fd, revents);
411} 525}
412 526
413/*****************************************************************************/ 527void inline_size
414
415inline void
416fd_reify (EV_P) 528fd_reify (EV_P)
417{ 529{
418 int i; 530 int i;
419 531
420 for (i = 0; i < fdchangecnt; ++i) 532 for (i = 0; i < fdchangecnt; ++i)
421 { 533 {
422 int fd = fdchanges [i]; 534 int fd = fdchanges [i];
423 ANFD *anfd = anfds + fd; 535 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 536 ev_io *w;
425 537
426 int events = 0; 538 int events = 0;
427 539
428 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
429 events |= w->events; 541 events |= w->events;
430 542
431#if EV_SELECT_IS_WINSOCKET 543#if EV_SELECT_IS_WINSOCKET
432 if (events) 544 if (events)
433 { 545 {
437 } 549 }
438#endif 550#endif
439 551
440 anfd->reify = 0; 552 anfd->reify = 0;
441 553
442 method_modify (EV_A_ fd, anfd->events, events); 554 backend_modify (EV_A_ fd, anfd->events, events);
443 anfd->events = events; 555 anfd->events = events;
444 } 556 }
445 557
446 fdchangecnt = 0; 558 fdchangecnt = 0;
447} 559}
448 560
449static void 561void inline_size
450fd_change (EV_P_ int fd) 562fd_change (EV_P_ int fd)
451{ 563{
452 if (expect_false (anfds [fd].reify)) 564 if (expect_false (anfds [fd].reify))
453 return; 565 return;
454 566
457 ++fdchangecnt; 569 ++fdchangecnt;
458 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
459 fdchanges [fdchangecnt - 1] = fd; 571 fdchanges [fdchangecnt - 1] = fd;
460} 572}
461 573
462static void 574void inline_speed
463fd_kill (EV_P_ int fd) 575fd_kill (EV_P_ int fd)
464{ 576{
465 struct ev_io *w; 577 ev_io *w;
466 578
467 while ((w = (struct ev_io *)anfds [fd].head)) 579 while ((w = (ev_io *)anfds [fd].head))
468 { 580 {
469 ev_io_stop (EV_A_ w); 581 ev_io_stop (EV_A_ w);
470 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 582 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
471 } 583 }
472} 584}
473 585
474inline int 586int inline_size
475fd_valid (int fd) 587fd_valid (int fd)
476{ 588{
477#ifdef _WIN32 589#ifdef _WIN32
478 return _get_osfhandle (fd) != -1; 590 return _get_osfhandle (fd) != -1;
479#else 591#else
480 return fcntl (fd, F_GETFD) != -1; 592 return fcntl (fd, F_GETFD) != -1;
481#endif 593#endif
482} 594}
483 595
484/* called on EBADF to verify fds */ 596/* called on EBADF to verify fds */
485static void 597static void noinline
486fd_ebadf (EV_P) 598fd_ebadf (EV_P)
487{ 599{
488 int fd; 600 int fd;
489 601
490 for (fd = 0; fd < anfdmax; ++fd) 602 for (fd = 0; fd < anfdmax; ++fd)
492 if (!fd_valid (fd) == -1 && errno == EBADF) 604 if (!fd_valid (fd) == -1 && errno == EBADF)
493 fd_kill (EV_A_ fd); 605 fd_kill (EV_A_ fd);
494} 606}
495 607
496/* called on ENOMEM in select/poll to kill some fds and retry */ 608/* called on ENOMEM in select/poll to kill some fds and retry */
497static void 609static void noinline
498fd_enomem (EV_P) 610fd_enomem (EV_P)
499{ 611{
500 int fd; 612 int fd;
501 613
502 for (fd = anfdmax; fd--; ) 614 for (fd = anfdmax; fd--; )
505 fd_kill (EV_A_ fd); 617 fd_kill (EV_A_ fd);
506 return; 618 return;
507 } 619 }
508} 620}
509 621
510/* usually called after fork if method needs to re-arm all fds from scratch */ 622/* usually called after fork if backend needs to re-arm all fds from scratch */
511static void 623static void noinline
512fd_rearm_all (EV_P) 624fd_rearm_all (EV_P)
513{ 625{
514 int fd; 626 int fd;
515 627
516 /* this should be highly optimised to not do anything but set a flag */
517 for (fd = 0; fd < anfdmax; ++fd) 628 for (fd = 0; fd < anfdmax; ++fd)
518 if (anfds [fd].events) 629 if (anfds [fd].events)
519 { 630 {
520 anfds [fd].events = 0; 631 anfds [fd].events = 0;
521 fd_change (EV_A_ fd); 632 fd_change (EV_A_ fd);
522 } 633 }
523} 634}
524 635
525/*****************************************************************************/ 636/*****************************************************************************/
526 637
527static void 638void inline_speed
528upheap (WT *heap, int k) 639upheap (WT *heap, int k)
529{ 640{
530 WT w = heap [k]; 641 WT w = heap [k];
531 642
532 while (k && heap [k >> 1]->at > w->at) 643 while (k && heap [k >> 1]->at > w->at)
539 heap [k] = w; 650 heap [k] = w;
540 ((W)heap [k])->active = k + 1; 651 ((W)heap [k])->active = k + 1;
541 652
542} 653}
543 654
544static void 655void inline_speed
545downheap (WT *heap, int N, int k) 656downheap (WT *heap, int N, int k)
546{ 657{
547 WT w = heap [k]; 658 WT w = heap [k];
548 659
549 while (k < (N >> 1)) 660 while (k < (N >> 1))
563 674
564 heap [k] = w; 675 heap [k] = w;
565 ((W)heap [k])->active = k + 1; 676 ((W)heap [k])->active = k + 1;
566} 677}
567 678
568inline void 679void inline_size
569adjustheap (WT *heap, int N, int k) 680adjustheap (WT *heap, int N, int k)
570{ 681{
571 upheap (heap, k); 682 upheap (heap, k);
572 downheap (heap, N, k); 683 downheap (heap, N, k);
573} 684}
583static ANSIG *signals; 694static ANSIG *signals;
584static int signalmax; 695static int signalmax;
585 696
586static int sigpipe [2]; 697static int sigpipe [2];
587static sig_atomic_t volatile gotsig; 698static sig_atomic_t volatile gotsig;
588static struct ev_io sigev; 699static ev_io sigev;
589 700
590static void 701void inline_size
591signals_init (ANSIG *base, int count) 702signals_init (ANSIG *base, int count)
592{ 703{
593 while (count--) 704 while (count--)
594 { 705 {
595 base->head = 0; 706 base->head = 0;
615 write (sigpipe [1], &signum, 1); 726 write (sigpipe [1], &signum, 1);
616 errno = old_errno; 727 errno = old_errno;
617 } 728 }
618} 729}
619 730
620void 731void noinline
621ev_feed_signal_event (EV_P_ int signum) 732ev_feed_signal_event (EV_P_ int signum)
622{ 733{
623 WL w; 734 WL w;
624 735
625#if EV_MULTIPLICITY 736#if EV_MULTIPLICITY
636 for (w = signals [signum].head; w; w = w->next) 747 for (w = signals [signum].head; w; w = w->next)
637 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 748 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
638} 749}
639 750
640static void 751static void
641sigcb (EV_P_ struct ev_io *iow, int revents) 752sigcb (EV_P_ ev_io *iow, int revents)
642{ 753{
643 int signum; 754 int signum;
644 755
645 read (sigpipe [0], &revents, 1); 756 read (sigpipe [0], &revents, 1);
646 gotsig = 0; 757 gotsig = 0;
648 for (signum = signalmax; signum--; ) 759 for (signum = signalmax; signum--; )
649 if (signals [signum].gotsig) 760 if (signals [signum].gotsig)
650 ev_feed_signal_event (EV_A_ signum + 1); 761 ev_feed_signal_event (EV_A_ signum + 1);
651} 762}
652 763
653static void 764void inline_speed
654fd_intern (int fd) 765fd_intern (int fd)
655{ 766{
656#ifdef _WIN32 767#ifdef _WIN32
657 int arg = 1; 768 int arg = 1;
658 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 769 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
660 fcntl (fd, F_SETFD, FD_CLOEXEC); 771 fcntl (fd, F_SETFD, FD_CLOEXEC);
661 fcntl (fd, F_SETFL, O_NONBLOCK); 772 fcntl (fd, F_SETFL, O_NONBLOCK);
662#endif 773#endif
663} 774}
664 775
665static void 776static void noinline
666siginit (EV_P) 777siginit (EV_P)
667{ 778{
668 fd_intern (sigpipe [0]); 779 fd_intern (sigpipe [0]);
669 fd_intern (sigpipe [1]); 780 fd_intern (sigpipe [1]);
670 781
673 ev_unref (EV_A); /* child watcher should not keep loop alive */ 784 ev_unref (EV_A); /* child watcher should not keep loop alive */
674} 785}
675 786
676/*****************************************************************************/ 787/*****************************************************************************/
677 788
678static struct ev_child *childs [PID_HASHSIZE]; 789static ev_child *childs [EV_PID_HASHSIZE];
679 790
680#ifndef _WIN32 791#ifndef _WIN32
681 792
682static struct ev_signal childev; 793static ev_signal childev;
794
795void inline_speed
796child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
797{
798 ev_child *w;
799
800 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
801 if (w->pid == pid || !w->pid)
802 {
803 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
804 w->rpid = pid;
805 w->rstatus = status;
806 ev_feed_event (EV_A_ (W)w, EV_CHILD);
807 }
808}
683 809
684#ifndef WCONTINUED 810#ifndef WCONTINUED
685# define WCONTINUED 0 811# define WCONTINUED 0
686#endif 812#endif
687 813
688static void 814static void
689child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
690{
691 struct ev_child *w;
692
693 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
694 if (w->pid == pid || !w->pid)
695 {
696 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
697 w->rpid = pid;
698 w->rstatus = status;
699 ev_feed_event (EV_A_ (W)w, EV_CHILD);
700 }
701}
702
703static void
704childcb (EV_P_ struct ev_signal *sw, int revents) 815childcb (EV_P_ ev_signal *sw, int revents)
705{ 816{
706 int pid, status; 817 int pid, status;
707 818
819 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
708 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 820 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
709 { 821 if (!WCONTINUED
822 || errno != EINVAL
823 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
824 return;
825
710 /* make sure we are called again until all childs have been reaped */ 826 /* make sure we are called again until all childs have been reaped */
827 /* we need to do it this way so that the callback gets called before we continue */
711 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 828 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
712 829
713 child_reap (EV_A_ sw, pid, pid, status); 830 child_reap (EV_A_ sw, pid, pid, status);
831 if (EV_PID_HASHSIZE > 1)
714 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 832 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
715 }
716} 833}
717 834
718#endif 835#endif
719 836
720/*****************************************************************************/ 837/*****************************************************************************/
746{ 863{
747 return EV_VERSION_MINOR; 864 return EV_VERSION_MINOR;
748} 865}
749 866
750/* return true if we are running with elevated privileges and should ignore env variables */ 867/* return true if we are running with elevated privileges and should ignore env variables */
751static int 868int inline_size
752enable_secure (void) 869enable_secure (void)
753{ 870{
754#ifdef _WIN32 871#ifdef _WIN32
755 return 0; 872 return 0;
756#else 873#else
758 || getgid () != getegid (); 875 || getgid () != getegid ();
759#endif 876#endif
760} 877}
761 878
762unsigned int 879unsigned int
763ev_method (EV_P) 880ev_supported_backends (void)
764{ 881{
765 return method; 882 unsigned int flags = 0;
766}
767 883
768static void 884 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
885 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
886 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
887 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
888 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
889
890 return flags;
891}
892
893unsigned int
894ev_recommended_backends (void)
895{
896 unsigned int flags = ev_supported_backends ();
897
898#ifndef __NetBSD__
899 /* kqueue is borked on everything but netbsd apparently */
900 /* it usually doesn't work correctly on anything but sockets and pipes */
901 flags &= ~EVBACKEND_KQUEUE;
902#endif
903#ifdef __APPLE__
904 // flags &= ~EVBACKEND_KQUEUE; for documentation
905 flags &= ~EVBACKEND_POLL;
906#endif
907
908 return flags;
909}
910
911unsigned int
912ev_embeddable_backends (void)
913{
914 return EVBACKEND_EPOLL
915 | EVBACKEND_KQUEUE
916 | EVBACKEND_PORT;
917}
918
919unsigned int
920ev_backend (EV_P)
921{
922 return backend;
923}
924
925unsigned int
926ev_loop_count (EV_P)
927{
928 return loop_count;
929}
930
931static void noinline
769loop_init (EV_P_ unsigned int flags) 932loop_init (EV_P_ unsigned int flags)
770{ 933{
771 if (!method) 934 if (!backend)
772 { 935 {
773#if EV_USE_MONOTONIC 936#if EV_USE_MONOTONIC
774 { 937 {
775 struct timespec ts; 938 struct timespec ts;
776 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 939 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
781 ev_rt_now = ev_time (); 944 ev_rt_now = ev_time ();
782 mn_now = get_clock (); 945 mn_now = get_clock ();
783 now_floor = mn_now; 946 now_floor = mn_now;
784 rtmn_diff = ev_rt_now - mn_now; 947 rtmn_diff = ev_rt_now - mn_now;
785 948
786 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 949 /* pid check not overridable via env */
950#ifndef _WIN32
951 if (flags & EVFLAG_FORKCHECK)
952 curpid = getpid ();
953#endif
954
955 if (!(flags & EVFLAG_NOENV)
956 && !enable_secure ()
957 && getenv ("LIBEV_FLAGS"))
787 flags = atoi (getenv ("LIBEV_FLAGS")); 958 flags = atoi (getenv ("LIBEV_FLAGS"));
788 959
789 if (!(flags & 0x0000ffff)) 960 if (!(flags & 0x0000ffffUL))
790 flags |= 0x0000ffff; 961 flags |= ev_recommended_backends ();
791 962
792 method = 0; 963 backend = 0;
964 backend_fd = -1;
965#if EV_USE_INOTIFY
966 fs_fd = -2;
967#endif
968
793#if EV_USE_PORT 969#if EV_USE_PORT
794 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 970 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
795#endif 971#endif
796#if EV_USE_KQUEUE 972#if EV_USE_KQUEUE
797 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 973 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
798#endif 974#endif
799#if EV_USE_EPOLL 975#if EV_USE_EPOLL
800 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 976 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
801#endif 977#endif
802#if EV_USE_POLL 978#if EV_USE_POLL
803 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 979 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
804#endif 980#endif
805#if EV_USE_SELECT 981#if EV_USE_SELECT
806 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 982 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
807#endif 983#endif
808 984
809 ev_init (&sigev, sigcb); 985 ev_init (&sigev, sigcb);
810 ev_set_priority (&sigev, EV_MAXPRI); 986 ev_set_priority (&sigev, EV_MAXPRI);
811 } 987 }
812} 988}
813 989
814static void 990static void noinline
815loop_destroy (EV_P) 991loop_destroy (EV_P)
816{ 992{
817 int i; 993 int i;
818 994
995#if EV_USE_INOTIFY
996 if (fs_fd >= 0)
997 close (fs_fd);
998#endif
999
1000 if (backend_fd >= 0)
1001 close (backend_fd);
1002
819#if EV_USE_PORT 1003#if EV_USE_PORT
820 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1004 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
821#endif 1005#endif
822#if EV_USE_KQUEUE 1006#if EV_USE_KQUEUE
823 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1007 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
824#endif 1008#endif
825#if EV_USE_EPOLL 1009#if EV_USE_EPOLL
826 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1010 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
827#endif 1011#endif
828#if EV_USE_POLL 1012#if EV_USE_POLL
829 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1013 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
830#endif 1014#endif
831#if EV_USE_SELECT 1015#if EV_USE_SELECT
832 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1016 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
833#endif 1017#endif
834 1018
835 for (i = NUMPRI; i--; ) 1019 for (i = NUMPRI; i--; )
1020 {
836 array_free (pending, [i]); 1021 array_free (pending, [i]);
1022#if EV_IDLE_ENABLE
1023 array_free (idle, [i]);
1024#endif
1025 }
837 1026
838 /* have to use the microsoft-never-gets-it-right macro */ 1027 /* have to use the microsoft-never-gets-it-right macro */
839 array_free (fdchange, EMPTY0); 1028 array_free (fdchange, EMPTY);
840 array_free (timer, EMPTY0); 1029 array_free (timer, EMPTY);
841#if EV_PERIODICS 1030#if EV_PERIODIC_ENABLE
842 array_free (periodic, EMPTY0); 1031 array_free (periodic, EMPTY);
843#endif 1032#endif
844 array_free (idle, EMPTY0);
845 array_free (prepare, EMPTY0); 1033 array_free (prepare, EMPTY);
846 array_free (check, EMPTY0); 1034 array_free (check, EMPTY);
847 1035
848 method = 0; 1036 backend = 0;
849} 1037}
850 1038
851static void 1039void inline_size infy_fork (EV_P);
1040
1041void inline_size
852loop_fork (EV_P) 1042loop_fork (EV_P)
853{ 1043{
854#if EV_USE_PORT 1044#if EV_USE_PORT
855 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1045 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
856#endif 1046#endif
857#if EV_USE_KQUEUE 1047#if EV_USE_KQUEUE
858 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1048 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
859#endif 1049#endif
860#if EV_USE_EPOLL 1050#if EV_USE_EPOLL
861 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1051 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1052#endif
1053#if EV_USE_INOTIFY
1054 infy_fork (EV_A);
862#endif 1055#endif
863 1056
864 if (ev_is_active (&sigev)) 1057 if (ev_is_active (&sigev))
865 { 1058 {
866 /* default loop */ 1059 /* default loop */
887 1080
888 memset (loop, 0, sizeof (struct ev_loop)); 1081 memset (loop, 0, sizeof (struct ev_loop));
889 1082
890 loop_init (EV_A_ flags); 1083 loop_init (EV_A_ flags);
891 1084
892 if (ev_method (EV_A)) 1085 if (ev_backend (EV_A))
893 return loop; 1086 return loop;
894 1087
895 return 0; 1088 return 0;
896} 1089}
897 1090
930 ev_default_loop_ptr = 1; 1123 ev_default_loop_ptr = 1;
931#endif 1124#endif
932 1125
933 loop_init (EV_A_ flags); 1126 loop_init (EV_A_ flags);
934 1127
935 if (ev_method (EV_A)) 1128 if (ev_backend (EV_A))
936 { 1129 {
937 siginit (EV_A); 1130 siginit (EV_A);
938 1131
939#ifndef _WIN32 1132#ifndef _WIN32
940 ev_signal_init (&childev, childcb, SIGCHLD); 1133 ev_signal_init (&childev, childcb, SIGCHLD);
976{ 1169{
977#if EV_MULTIPLICITY 1170#if EV_MULTIPLICITY
978 struct ev_loop *loop = ev_default_loop_ptr; 1171 struct ev_loop *loop = ev_default_loop_ptr;
979#endif 1172#endif
980 1173
981 if (method) 1174 if (backend)
982 postfork = 1; 1175 postfork = 1;
983} 1176}
984 1177
985/*****************************************************************************/ 1178/*****************************************************************************/
986 1179
987static int 1180void
988any_pending (EV_P) 1181ev_invoke (EV_P_ void *w, int revents)
989{ 1182{
990 int pri; 1183 EV_CB_INVOKE ((W)w, revents);
991
992 for (pri = NUMPRI; pri--; )
993 if (pendingcnt [pri])
994 return 1;
995
996 return 0;
997} 1184}
998 1185
999inline void 1186void inline_speed
1000call_pending (EV_P) 1187call_pending (EV_P)
1001{ 1188{
1002 int pri; 1189 int pri;
1003 1190
1004 for (pri = NUMPRI; pri--; ) 1191 for (pri = NUMPRI; pri--; )
1006 { 1193 {
1007 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1194 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1008 1195
1009 if (expect_true (p->w)) 1196 if (expect_true (p->w))
1010 { 1197 {
1198 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1199
1011 p->w->pending = 0; 1200 p->w->pending = 0;
1012 EV_CB_INVOKE (p->w, p->events); 1201 EV_CB_INVOKE (p->w, p->events);
1013 } 1202 }
1014 } 1203 }
1015} 1204}
1016 1205
1017inline void 1206void inline_size
1018timers_reify (EV_P) 1207timers_reify (EV_P)
1019{ 1208{
1020 while (timercnt && ((WT)timers [0])->at <= mn_now) 1209 while (timercnt && ((WT)timers [0])->at <= mn_now)
1021 { 1210 {
1022 struct ev_timer *w = timers [0]; 1211 ev_timer *w = timers [0];
1023 1212
1024 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1213 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1025 1214
1026 /* first reschedule or stop timer */ 1215 /* first reschedule or stop timer */
1027 if (w->repeat) 1216 if (w->repeat)
1028 { 1217 {
1029 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1218 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1039 1228
1040 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1229 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1041 } 1230 }
1042} 1231}
1043 1232
1044#if EV_PERIODICS 1233#if EV_PERIODIC_ENABLE
1045inline void 1234void inline_size
1046periodics_reify (EV_P) 1235periodics_reify (EV_P)
1047{ 1236{
1048 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1237 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1049 { 1238 {
1050 struct ev_periodic *w = periodics [0]; 1239 ev_periodic *w = periodics [0];
1051 1240
1052 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1241 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1053 1242
1054 /* first reschedule or stop timer */ 1243 /* first reschedule or stop timer */
1055 if (w->reschedule_cb) 1244 if (w->reschedule_cb)
1056 { 1245 {
1057 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1246 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1058 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1247 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1059 downheap ((WT *)periodics, periodiccnt, 0); 1248 downheap ((WT *)periodics, periodiccnt, 0);
1060 } 1249 }
1061 else if (w->interval) 1250 else if (w->interval)
1062 { 1251 {
1063 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1252 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1253 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1064 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1065 downheap ((WT *)periodics, periodiccnt, 0); 1255 downheap ((WT *)periodics, periodiccnt, 0);
1066 } 1256 }
1067 else 1257 else
1068 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1069 1259
1070 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1071 } 1261 }
1072} 1262}
1073 1263
1074static void 1264static void noinline
1075periodics_reschedule (EV_P) 1265periodics_reschedule (EV_P)
1076{ 1266{
1077 int i; 1267 int i;
1078 1268
1079 /* adjust periodics after time jump */ 1269 /* adjust periodics after time jump */
1080 for (i = 0; i < periodiccnt; ++i) 1270 for (i = 0; i < periodiccnt; ++i)
1081 { 1271 {
1082 struct ev_periodic *w = periodics [i]; 1272 ev_periodic *w = periodics [i];
1083 1273
1084 if (w->reschedule_cb) 1274 if (w->reschedule_cb)
1085 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1086 else if (w->interval) 1276 else if (w->interval)
1087 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1088 } 1278 }
1089 1279
1090 /* now rebuild the heap */ 1280 /* now rebuild the heap */
1091 for (i = periodiccnt >> 1; i--; ) 1281 for (i = periodiccnt >> 1; i--; )
1092 downheap ((WT *)periodics, periodiccnt, i); 1282 downheap ((WT *)periodics, periodiccnt, i);
1093} 1283}
1094#endif 1284#endif
1095 1285
1096inline int 1286#if EV_IDLE_ENABLE
1097time_update_monotonic (EV_P) 1287void inline_size
1288idle_reify (EV_P)
1098{ 1289{
1290 if (expect_false (idleall))
1291 {
1292 int pri;
1293
1294 for (pri = NUMPRI; pri--; )
1295 {
1296 if (pendingcnt [pri])
1297 break;
1298
1299 if (idlecnt [pri])
1300 {
1301 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1302 break;
1303 }
1304 }
1305 }
1306}
1307#endif
1308
1309void inline_speed
1310time_update (EV_P_ ev_tstamp max_block)
1311{
1312 int i;
1313
1314#if EV_USE_MONOTONIC
1315 if (expect_true (have_monotonic))
1316 {
1317 ev_tstamp odiff = rtmn_diff;
1318
1099 mn_now = get_clock (); 1319 mn_now = get_clock ();
1100 1320
1321 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1322 /* interpolate in the meantime */
1101 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1323 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1102 { 1324 {
1103 ev_rt_now = rtmn_diff + mn_now; 1325 ev_rt_now = rtmn_diff + mn_now;
1104 return 0; 1326 return;
1105 } 1327 }
1106 else 1328
1107 {
1108 now_floor = mn_now; 1329 now_floor = mn_now;
1109 ev_rt_now = ev_time (); 1330 ev_rt_now = ev_time ();
1110 return 1;
1111 }
1112}
1113 1331
1114inline void 1332 /* loop a few times, before making important decisions.
1115time_update (EV_P) 1333 * on the choice of "4": one iteration isn't enough,
1116{ 1334 * in case we get preempted during the calls to
1117 int i; 1335 * ev_time and get_clock. a second call is almost guaranteed
1118 1336 * to succeed in that case, though. and looping a few more times
1119#if EV_USE_MONOTONIC 1337 * doesn't hurt either as we only do this on time-jumps or
1120 if (expect_true (have_monotonic)) 1338 * in the unlikely event of having been preempted here.
1121 { 1339 */
1122 if (time_update_monotonic (EV_A)) 1340 for (i = 4; --i; )
1123 { 1341 {
1124 ev_tstamp odiff = rtmn_diff;
1125
1126 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1127 {
1128 rtmn_diff = ev_rt_now - mn_now; 1342 rtmn_diff = ev_rt_now - mn_now;
1129 1343
1130 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1344 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1131 return; /* all is well */ 1345 return; /* all is well */
1132 1346
1133 ev_rt_now = ev_time (); 1347 ev_rt_now = ev_time ();
1134 mn_now = get_clock (); 1348 mn_now = get_clock ();
1135 now_floor = mn_now; 1349 now_floor = mn_now;
1136 } 1350 }
1137 1351
1138# if EV_PERIODICS 1352# if EV_PERIODIC_ENABLE
1353 periodics_reschedule (EV_A);
1354# endif
1355 /* no timer adjustment, as the monotonic clock doesn't jump */
1356 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1357 }
1358 else
1359#endif
1360 {
1361 ev_rt_now = ev_time ();
1362
1363 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1364 {
1365#if EV_PERIODIC_ENABLE
1139 periodics_reschedule (EV_A); 1366 periodics_reschedule (EV_A);
1140# endif 1367#endif
1141 /* no timer adjustment, as the monotonic clock doesn't jump */
1142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1143 }
1144 }
1145 else
1146#endif
1147 {
1148 ev_rt_now = ev_time ();
1149
1150 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1151 {
1152#if EV_PERIODICS
1153 periodics_reschedule (EV_A);
1154#endif
1155
1156 /* adjust timers. this is easy, as the offset is the same for all */ 1368 /* adjust timers. this is easy, as the offset is the same for all of them */
1157 for (i = 0; i < timercnt; ++i) 1369 for (i = 0; i < timercnt; ++i)
1158 ((WT)timers [i])->at += ev_rt_now - mn_now; 1370 ((WT)timers [i])->at += ev_rt_now - mn_now;
1159 } 1371 }
1160 1372
1161 mn_now = ev_rt_now; 1373 mn_now = ev_rt_now;
1177static int loop_done; 1389static int loop_done;
1178 1390
1179void 1391void
1180ev_loop (EV_P_ int flags) 1392ev_loop (EV_P_ int flags)
1181{ 1393{
1182 double block;
1183 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1394 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1395 ? EVUNLOOP_ONE
1396 : EVUNLOOP_CANCEL;
1184 1397
1185 while (activecnt) 1398 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1399
1400 do
1186 { 1401 {
1402#ifndef _WIN32
1403 if (expect_false (curpid)) /* penalise the forking check even more */
1404 if (expect_false (getpid () != curpid))
1405 {
1406 curpid = getpid ();
1407 postfork = 1;
1408 }
1409#endif
1410
1411#if EV_FORK_ENABLE
1412 /* we might have forked, so queue fork handlers */
1413 if (expect_false (postfork))
1414 if (forkcnt)
1415 {
1416 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1417 call_pending (EV_A);
1418 }
1419#endif
1420
1187 /* queue check watchers (and execute them) */ 1421 /* queue prepare watchers (and execute them) */
1188 if (expect_false (preparecnt)) 1422 if (expect_false (preparecnt))
1189 { 1423 {
1190 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1424 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1191 call_pending (EV_A); 1425 call_pending (EV_A);
1192 } 1426 }
1193 1427
1428 if (expect_false (!activecnt))
1429 break;
1430
1194 /* we might have forked, so reify kernel state if necessary */ 1431 /* we might have forked, so reify kernel state if necessary */
1195 if (expect_false (postfork)) 1432 if (expect_false (postfork))
1196 loop_fork (EV_A); 1433 loop_fork (EV_A);
1197 1434
1198 /* update fd-related kernel structures */ 1435 /* update fd-related kernel structures */
1199 fd_reify (EV_A); 1436 fd_reify (EV_A);
1200 1437
1201 /* calculate blocking time */ 1438 /* calculate blocking time */
1439 {
1440 ev_tstamp block;
1202 1441
1203 /* we only need this for !monotonic clock or timers, but as we basically 1442 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1204 always have timers, we just calculate it always */ 1443 block = 0.; /* do not block at all */
1205#if EV_USE_MONOTONIC
1206 if (expect_true (have_monotonic))
1207 time_update_monotonic (EV_A);
1208 else 1444 else
1209#endif
1210 { 1445 {
1211 ev_rt_now = ev_time (); 1446 /* update time to cancel out callback processing overhead */
1212 mn_now = ev_rt_now; 1447 time_update (EV_A_ 1e100);
1213 }
1214 1448
1215 if (flags & EVLOOP_NONBLOCK || idlecnt)
1216 block = 0.;
1217 else
1218 {
1219 block = MAX_BLOCKTIME; 1449 block = MAX_BLOCKTIME;
1220 1450
1221 if (timercnt) 1451 if (timercnt)
1222 { 1452 {
1223 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1453 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1224 if (block > to) block = to; 1454 if (block > to) block = to;
1225 } 1455 }
1226 1456
1227#if EV_PERIODICS 1457#if EV_PERIODIC_ENABLE
1228 if (periodiccnt) 1458 if (periodiccnt)
1229 { 1459 {
1230 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1460 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1231 if (block > to) block = to; 1461 if (block > to) block = to;
1232 } 1462 }
1233#endif 1463#endif
1234 1464
1235 if (expect_false (block < 0.)) block = 0.; 1465 if (expect_false (block < 0.)) block = 0.;
1236 } 1466 }
1237 1467
1468 ++loop_count;
1238 method_poll (EV_A_ block); 1469 backend_poll (EV_A_ block);
1239 1470
1240 /* update ev_rt_now, do magic */ 1471 /* update ev_rt_now, do magic */
1241 time_update (EV_A); 1472 time_update (EV_A_ block);
1473 }
1242 1474
1243 /* queue pending timers and reschedule them */ 1475 /* queue pending timers and reschedule them */
1244 timers_reify (EV_A); /* relative timers called last */ 1476 timers_reify (EV_A); /* relative timers called last */
1245#if EV_PERIODICS 1477#if EV_PERIODIC_ENABLE
1246 periodics_reify (EV_A); /* absolute timers called first */ 1478 periodics_reify (EV_A); /* absolute timers called first */
1247#endif 1479#endif
1248 1480
1481#if EV_IDLE_ENABLE
1249 /* queue idle watchers unless io or timers are pending */ 1482 /* queue idle watchers unless other events are pending */
1250 if (idlecnt && !any_pending (EV_A)) 1483 idle_reify (EV_A);
1251 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1484#endif
1252 1485
1253 /* queue check watchers, to be executed first */ 1486 /* queue check watchers, to be executed first */
1254 if (expect_false (checkcnt)) 1487 if (expect_false (checkcnt))
1255 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1488 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1256 1489
1257 call_pending (EV_A); 1490 call_pending (EV_A);
1258 1491
1259 if (expect_false (loop_done))
1260 break;
1261 } 1492 }
1493 while (expect_true (activecnt && !loop_done));
1262 1494
1263 if (loop_done != 2) 1495 if (loop_done == EVUNLOOP_ONE)
1264 loop_done = 0; 1496 loop_done = EVUNLOOP_CANCEL;
1265} 1497}
1266 1498
1267void 1499void
1268ev_unloop (EV_P_ int how) 1500ev_unloop (EV_P_ int how)
1269{ 1501{
1270 loop_done = how; 1502 loop_done = how;
1271} 1503}
1272 1504
1273/*****************************************************************************/ 1505/*****************************************************************************/
1274 1506
1275inline void 1507void inline_size
1276wlist_add (WL *head, WL elem) 1508wlist_add (WL *head, WL elem)
1277{ 1509{
1278 elem->next = *head; 1510 elem->next = *head;
1279 *head = elem; 1511 *head = elem;
1280} 1512}
1281 1513
1282inline void 1514void inline_size
1283wlist_del (WL *head, WL elem) 1515wlist_del (WL *head, WL elem)
1284{ 1516{
1285 while (*head) 1517 while (*head)
1286 { 1518 {
1287 if (*head == elem) 1519 if (*head == elem)
1292 1524
1293 head = &(*head)->next; 1525 head = &(*head)->next;
1294 } 1526 }
1295} 1527}
1296 1528
1297inline void 1529void inline_speed
1298ev_clear_pending (EV_P_ W w) 1530clear_pending (EV_P_ W w)
1299{ 1531{
1300 if (w->pending) 1532 if (w->pending)
1301 { 1533 {
1302 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1534 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1303 w->pending = 0; 1535 w->pending = 0;
1304 } 1536 }
1305} 1537}
1306 1538
1307inline void 1539int
1540ev_clear_pending (EV_P_ void *w)
1541{
1542 W w_ = (W)w;
1543 int pending = w_->pending;
1544
1545 if (expect_true (pending))
1546 {
1547 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1548 w_->pending = 0;
1549 p->w = 0;
1550 return p->events;
1551 }
1552 else
1553 return 0;
1554}
1555
1556void inline_size
1557pri_adjust (EV_P_ W w)
1558{
1559 int pri = w->priority;
1560 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1561 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1562 w->priority = pri;
1563}
1564
1565void inline_speed
1308ev_start (EV_P_ W w, int active) 1566ev_start (EV_P_ W w, int active)
1309{ 1567{
1310 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1568 pri_adjust (EV_A_ w);
1311 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1312
1313 w->active = active; 1569 w->active = active;
1314 ev_ref (EV_A); 1570 ev_ref (EV_A);
1315} 1571}
1316 1572
1317inline void 1573void inline_size
1318ev_stop (EV_P_ W w) 1574ev_stop (EV_P_ W w)
1319{ 1575{
1320 ev_unref (EV_A); 1576 ev_unref (EV_A);
1321 w->active = 0; 1577 w->active = 0;
1322} 1578}
1323 1579
1324/*****************************************************************************/ 1580/*****************************************************************************/
1325 1581
1326void 1582void noinline
1327ev_io_start (EV_P_ struct ev_io *w) 1583ev_io_start (EV_P_ ev_io *w)
1328{ 1584{
1329 int fd = w->fd; 1585 int fd = w->fd;
1330 1586
1331 if (expect_false (ev_is_active (w))) 1587 if (expect_false (ev_is_active (w)))
1332 return; 1588 return;
1338 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1594 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1339 1595
1340 fd_change (EV_A_ fd); 1596 fd_change (EV_A_ fd);
1341} 1597}
1342 1598
1343void 1599void noinline
1344ev_io_stop (EV_P_ struct ev_io *w) 1600ev_io_stop (EV_P_ ev_io *w)
1345{ 1601{
1346 ev_clear_pending (EV_A_ (W)w); 1602 clear_pending (EV_A_ (W)w);
1347 if (expect_false (!ev_is_active (w))) 1603 if (expect_false (!ev_is_active (w)))
1348 return; 1604 return;
1349 1605
1350 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1606 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1351 1607
1353 ev_stop (EV_A_ (W)w); 1609 ev_stop (EV_A_ (W)w);
1354 1610
1355 fd_change (EV_A_ w->fd); 1611 fd_change (EV_A_ w->fd);
1356} 1612}
1357 1613
1358void 1614void noinline
1359ev_timer_start (EV_P_ struct ev_timer *w) 1615ev_timer_start (EV_P_ ev_timer *w)
1360{ 1616{
1361 if (expect_false (ev_is_active (w))) 1617 if (expect_false (ev_is_active (w)))
1362 return; 1618 return;
1363 1619
1364 ((WT)w)->at += mn_now; 1620 ((WT)w)->at += mn_now;
1365 1621
1366 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1622 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1367 1623
1368 ev_start (EV_A_ (W)w, ++timercnt); 1624 ev_start (EV_A_ (W)w, ++timercnt);
1369 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1625 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1370 timers [timercnt - 1] = w; 1626 timers [timercnt - 1] = w;
1371 upheap ((WT *)timers, timercnt - 1); 1627 upheap ((WT *)timers, timercnt - 1);
1372 1628
1629 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1630}
1631
1632void noinline
1633ev_timer_stop (EV_P_ ev_timer *w)
1634{
1635 clear_pending (EV_A_ (W)w);
1636 if (expect_false (!ev_is_active (w)))
1637 return;
1638
1373 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1639 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1374}
1375 1640
1376void 1641 {
1377ev_timer_stop (EV_P_ struct ev_timer *w) 1642 int active = ((W)w)->active;
1378{
1379 ev_clear_pending (EV_A_ (W)w);
1380 if (expect_false (!ev_is_active (w)))
1381 return;
1382 1643
1383 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1384
1385 if (expect_true (((W)w)->active < timercnt--)) 1644 if (expect_true (--active < --timercnt))
1386 { 1645 {
1387 timers [((W)w)->active - 1] = timers [timercnt]; 1646 timers [active] = timers [timercnt];
1388 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1647 adjustheap ((WT *)timers, timercnt, active);
1389 } 1648 }
1649 }
1390 1650
1391 ((WT)w)->at -= mn_now; 1651 ((WT)w)->at -= mn_now;
1392 1652
1393 ev_stop (EV_A_ (W)w); 1653 ev_stop (EV_A_ (W)w);
1394} 1654}
1395 1655
1396void 1656void noinline
1397ev_timer_again (EV_P_ struct ev_timer *w) 1657ev_timer_again (EV_P_ ev_timer *w)
1398{ 1658{
1399 if (ev_is_active (w)) 1659 if (ev_is_active (w))
1400 { 1660 {
1401 if (w->repeat) 1661 if (w->repeat)
1402 { 1662 {
1411 w->at = w->repeat; 1671 w->at = w->repeat;
1412 ev_timer_start (EV_A_ w); 1672 ev_timer_start (EV_A_ w);
1413 } 1673 }
1414} 1674}
1415 1675
1416#if EV_PERIODICS 1676#if EV_PERIODIC_ENABLE
1417void 1677void noinline
1418ev_periodic_start (EV_P_ struct ev_periodic *w) 1678ev_periodic_start (EV_P_ ev_periodic *w)
1419{ 1679{
1420 if (expect_false (ev_is_active (w))) 1680 if (expect_false (ev_is_active (w)))
1421 return; 1681 return;
1422 1682
1423 if (w->reschedule_cb) 1683 if (w->reschedule_cb)
1424 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1684 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1425 else if (w->interval) 1685 else if (w->interval)
1426 { 1686 {
1427 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1687 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1428 /* this formula differs from the one in periodic_reify because we do not always round up */ 1688 /* this formula differs from the one in periodic_reify because we do not always round up */
1429 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1689 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1430 } 1690 }
1691 else
1692 ((WT)w)->at = w->offset;
1431 1693
1432 ev_start (EV_A_ (W)w, ++periodiccnt); 1694 ev_start (EV_A_ (W)w, ++periodiccnt);
1433 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1695 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1434 periodics [periodiccnt - 1] = w; 1696 periodics [periodiccnt - 1] = w;
1435 upheap ((WT *)periodics, periodiccnt - 1); 1697 upheap ((WT *)periodics, periodiccnt - 1);
1436 1698
1699 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1700}
1701
1702void noinline
1703ev_periodic_stop (EV_P_ ev_periodic *w)
1704{
1705 clear_pending (EV_A_ (W)w);
1706 if (expect_false (!ev_is_active (w)))
1707 return;
1708
1437 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1709 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1438}
1439 1710
1440void 1711 {
1441ev_periodic_stop (EV_P_ struct ev_periodic *w) 1712 int active = ((W)w)->active;
1442{
1443 ev_clear_pending (EV_A_ (W)w);
1444 if (expect_false (!ev_is_active (w)))
1445 return;
1446 1713
1447 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1448
1449 if (expect_true (((W)w)->active < periodiccnt--)) 1714 if (expect_true (--active < --periodiccnt))
1450 { 1715 {
1451 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1716 periodics [active] = periodics [periodiccnt];
1452 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1717 adjustheap ((WT *)periodics, periodiccnt, active);
1453 } 1718 }
1719 }
1454 1720
1455 ev_stop (EV_A_ (W)w); 1721 ev_stop (EV_A_ (W)w);
1456} 1722}
1457 1723
1458void 1724void noinline
1459ev_periodic_again (EV_P_ struct ev_periodic *w) 1725ev_periodic_again (EV_P_ ev_periodic *w)
1460{ 1726{
1461 /* TODO: use adjustheap and recalculation */ 1727 /* TODO: use adjustheap and recalculation */
1462 ev_periodic_stop (EV_A_ w); 1728 ev_periodic_stop (EV_A_ w);
1463 ev_periodic_start (EV_A_ w); 1729 ev_periodic_start (EV_A_ w);
1464} 1730}
1465#endif 1731#endif
1466 1732
1467void
1468ev_idle_start (EV_P_ struct ev_idle *w)
1469{
1470 if (expect_false (ev_is_active (w)))
1471 return;
1472
1473 ev_start (EV_A_ (W)w, ++idlecnt);
1474 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1475 idles [idlecnt - 1] = w;
1476}
1477
1478void
1479ev_idle_stop (EV_P_ struct ev_idle *w)
1480{
1481 ev_clear_pending (EV_A_ (W)w);
1482 if (expect_false (!ev_is_active (w)))
1483 return;
1484
1485 idles [((W)w)->active - 1] = idles [--idlecnt];
1486 ev_stop (EV_A_ (W)w);
1487}
1488
1489void
1490ev_prepare_start (EV_P_ struct ev_prepare *w)
1491{
1492 if (expect_false (ev_is_active (w)))
1493 return;
1494
1495 ev_start (EV_A_ (W)w, ++preparecnt);
1496 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1497 prepares [preparecnt - 1] = w;
1498}
1499
1500void
1501ev_prepare_stop (EV_P_ struct ev_prepare *w)
1502{
1503 ev_clear_pending (EV_A_ (W)w);
1504 if (expect_false (!ev_is_active (w)))
1505 return;
1506
1507 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1508 ev_stop (EV_A_ (W)w);
1509}
1510
1511void
1512ev_check_start (EV_P_ struct ev_check *w)
1513{
1514 if (expect_false (ev_is_active (w)))
1515 return;
1516
1517 ev_start (EV_A_ (W)w, ++checkcnt);
1518 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1519 checks [checkcnt - 1] = w;
1520}
1521
1522void
1523ev_check_stop (EV_P_ struct ev_check *w)
1524{
1525 ev_clear_pending (EV_A_ (W)w);
1526 if (expect_false (!ev_is_active (w)))
1527 return;
1528
1529 checks [((W)w)->active - 1] = checks [--checkcnt];
1530 ev_stop (EV_A_ (W)w);
1531}
1532
1533#ifndef SA_RESTART 1733#ifndef SA_RESTART
1534# define SA_RESTART 0 1734# define SA_RESTART 0
1535#endif 1735#endif
1536 1736
1537void 1737void noinline
1538ev_signal_start (EV_P_ struct ev_signal *w) 1738ev_signal_start (EV_P_ ev_signal *w)
1539{ 1739{
1540#if EV_MULTIPLICITY 1740#if EV_MULTIPLICITY
1541 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1741 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1542#endif 1742#endif
1543 if (expect_false (ev_is_active (w))) 1743 if (expect_false (ev_is_active (w)))
1561 sigaction (w->signum, &sa, 0); 1761 sigaction (w->signum, &sa, 0);
1562#endif 1762#endif
1563 } 1763 }
1564} 1764}
1565 1765
1566void 1766void noinline
1567ev_signal_stop (EV_P_ struct ev_signal *w) 1767ev_signal_stop (EV_P_ ev_signal *w)
1568{ 1768{
1569 ev_clear_pending (EV_A_ (W)w); 1769 clear_pending (EV_A_ (W)w);
1570 if (expect_false (!ev_is_active (w))) 1770 if (expect_false (!ev_is_active (w)))
1571 return; 1771 return;
1572 1772
1573 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1773 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1574 ev_stop (EV_A_ (W)w); 1774 ev_stop (EV_A_ (W)w);
1576 if (!signals [w->signum - 1].head) 1776 if (!signals [w->signum - 1].head)
1577 signal (w->signum, SIG_DFL); 1777 signal (w->signum, SIG_DFL);
1578} 1778}
1579 1779
1580void 1780void
1581ev_child_start (EV_P_ struct ev_child *w) 1781ev_child_start (EV_P_ ev_child *w)
1582{ 1782{
1583#if EV_MULTIPLICITY 1783#if EV_MULTIPLICITY
1584 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1784 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1585#endif 1785#endif
1586 if (expect_false (ev_is_active (w))) 1786 if (expect_false (ev_is_active (w)))
1587 return; 1787 return;
1588 1788
1589 ev_start (EV_A_ (W)w, 1); 1789 ev_start (EV_A_ (W)w, 1);
1590 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1790 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1591} 1791}
1592 1792
1593void 1793void
1594ev_child_stop (EV_P_ struct ev_child *w) 1794ev_child_stop (EV_P_ ev_child *w)
1595{ 1795{
1596 ev_clear_pending (EV_A_ (W)w); 1796 clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w))) 1797 if (expect_false (!ev_is_active (w)))
1598 return; 1798 return;
1599 1799
1600 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1800 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1601 ev_stop (EV_A_ (W)w); 1801 ev_stop (EV_A_ (W)w);
1602} 1802}
1603 1803
1804#if EV_STAT_ENABLE
1805
1806# ifdef _WIN32
1807# undef lstat
1808# define lstat(a,b) _stati64 (a,b)
1809# endif
1810
1811#define DEF_STAT_INTERVAL 5.0074891
1812#define MIN_STAT_INTERVAL 0.1074891
1813
1814static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1815
1816#if EV_USE_INOTIFY
1817# define EV_INOTIFY_BUFSIZE 8192
1818
1819static void noinline
1820infy_add (EV_P_ ev_stat *w)
1821{
1822 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1823
1824 if (w->wd < 0)
1825 {
1826 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1827
1828 /* monitor some parent directory for speedup hints */
1829 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1830 {
1831 char path [4096];
1832 strcpy (path, w->path);
1833
1834 do
1835 {
1836 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1837 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1838
1839 char *pend = strrchr (path, '/');
1840
1841 if (!pend)
1842 break; /* whoops, no '/', complain to your admin */
1843
1844 *pend = 0;
1845 w->wd = inotify_add_watch (fs_fd, path, mask);
1846 }
1847 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1848 }
1849 }
1850 else
1851 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1852
1853 if (w->wd >= 0)
1854 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1855}
1856
1857static void noinline
1858infy_del (EV_P_ ev_stat *w)
1859{
1860 int slot;
1861 int wd = w->wd;
1862
1863 if (wd < 0)
1864 return;
1865
1866 w->wd = -2;
1867 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1868 wlist_del (&fs_hash [slot].head, (WL)w);
1869
1870 /* remove this watcher, if others are watching it, they will rearm */
1871 inotify_rm_watch (fs_fd, wd);
1872}
1873
1874static void noinline
1875infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1876{
1877 if (slot < 0)
1878 /* overflow, need to check for all hahs slots */
1879 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1880 infy_wd (EV_A_ slot, wd, ev);
1881 else
1882 {
1883 WL w_;
1884
1885 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1886 {
1887 ev_stat *w = (ev_stat *)w_;
1888 w_ = w_->next; /* lets us remove this watcher and all before it */
1889
1890 if (w->wd == wd || wd == -1)
1891 {
1892 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1893 {
1894 w->wd = -1;
1895 infy_add (EV_A_ w); /* re-add, no matter what */
1896 }
1897
1898 stat_timer_cb (EV_A_ &w->timer, 0);
1899 }
1900 }
1901 }
1902}
1903
1904static void
1905infy_cb (EV_P_ ev_io *w, int revents)
1906{
1907 char buf [EV_INOTIFY_BUFSIZE];
1908 struct inotify_event *ev = (struct inotify_event *)buf;
1909 int ofs;
1910 int len = read (fs_fd, buf, sizeof (buf));
1911
1912 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1913 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1914}
1915
1916void inline_size
1917infy_init (EV_P)
1918{
1919 if (fs_fd != -2)
1920 return;
1921
1922 fs_fd = inotify_init ();
1923
1924 if (fs_fd >= 0)
1925 {
1926 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1927 ev_set_priority (&fs_w, EV_MAXPRI);
1928 ev_io_start (EV_A_ &fs_w);
1929 }
1930}
1931
1932void inline_size
1933infy_fork (EV_P)
1934{
1935 int slot;
1936
1937 if (fs_fd < 0)
1938 return;
1939
1940 close (fs_fd);
1941 fs_fd = inotify_init ();
1942
1943 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1944 {
1945 WL w_ = fs_hash [slot].head;
1946 fs_hash [slot].head = 0;
1947
1948 while (w_)
1949 {
1950 ev_stat *w = (ev_stat *)w_;
1951 w_ = w_->next; /* lets us add this watcher */
1952
1953 w->wd = -1;
1954
1955 if (fs_fd >= 0)
1956 infy_add (EV_A_ w); /* re-add, no matter what */
1957 else
1958 ev_timer_start (EV_A_ &w->timer);
1959 }
1960
1961 }
1962}
1963
1964#endif
1965
1966void
1967ev_stat_stat (EV_P_ ev_stat *w)
1968{
1969 if (lstat (w->path, &w->attr) < 0)
1970 w->attr.st_nlink = 0;
1971 else if (!w->attr.st_nlink)
1972 w->attr.st_nlink = 1;
1973}
1974
1975static void noinline
1976stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1977{
1978 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1979
1980 /* we copy this here each the time so that */
1981 /* prev has the old value when the callback gets invoked */
1982 w->prev = w->attr;
1983 ev_stat_stat (EV_A_ w);
1984
1985 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1986 if (
1987 w->prev.st_dev != w->attr.st_dev
1988 || w->prev.st_ino != w->attr.st_ino
1989 || w->prev.st_mode != w->attr.st_mode
1990 || w->prev.st_nlink != w->attr.st_nlink
1991 || w->prev.st_uid != w->attr.st_uid
1992 || w->prev.st_gid != w->attr.st_gid
1993 || w->prev.st_rdev != w->attr.st_rdev
1994 || w->prev.st_size != w->attr.st_size
1995 || w->prev.st_atime != w->attr.st_atime
1996 || w->prev.st_mtime != w->attr.st_mtime
1997 || w->prev.st_ctime != w->attr.st_ctime
1998 ) {
1999 #if EV_USE_INOTIFY
2000 infy_del (EV_A_ w);
2001 infy_add (EV_A_ w);
2002 ev_stat_stat (EV_A_ w); /* avoid race... */
2003 #endif
2004
2005 ev_feed_event (EV_A_ w, EV_STAT);
2006 }
2007}
2008
2009void
2010ev_stat_start (EV_P_ ev_stat *w)
2011{
2012 if (expect_false (ev_is_active (w)))
2013 return;
2014
2015 /* since we use memcmp, we need to clear any padding data etc. */
2016 memset (&w->prev, 0, sizeof (ev_statdata));
2017 memset (&w->attr, 0, sizeof (ev_statdata));
2018
2019 ev_stat_stat (EV_A_ w);
2020
2021 if (w->interval < MIN_STAT_INTERVAL)
2022 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2023
2024 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2025 ev_set_priority (&w->timer, ev_priority (w));
2026
2027#if EV_USE_INOTIFY
2028 infy_init (EV_A);
2029
2030 if (fs_fd >= 0)
2031 infy_add (EV_A_ w);
2032 else
2033#endif
2034 ev_timer_start (EV_A_ &w->timer);
2035
2036 ev_start (EV_A_ (W)w, 1);
2037}
2038
2039void
2040ev_stat_stop (EV_P_ ev_stat *w)
2041{
2042 clear_pending (EV_A_ (W)w);
2043 if (expect_false (!ev_is_active (w)))
2044 return;
2045
2046#if EV_USE_INOTIFY
2047 infy_del (EV_A_ w);
2048#endif
2049 ev_timer_stop (EV_A_ &w->timer);
2050
2051 ev_stop (EV_A_ (W)w);
2052}
2053#endif
2054
2055#if EV_IDLE_ENABLE
2056void
2057ev_idle_start (EV_P_ ev_idle *w)
2058{
2059 if (expect_false (ev_is_active (w)))
2060 return;
2061
2062 pri_adjust (EV_A_ (W)w);
2063
2064 {
2065 int active = ++idlecnt [ABSPRI (w)];
2066
2067 ++idleall;
2068 ev_start (EV_A_ (W)w, active);
2069
2070 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2071 idles [ABSPRI (w)][active - 1] = w;
2072 }
2073}
2074
2075void
2076ev_idle_stop (EV_P_ ev_idle *w)
2077{
2078 clear_pending (EV_A_ (W)w);
2079 if (expect_false (!ev_is_active (w)))
2080 return;
2081
2082 {
2083 int active = ((W)w)->active;
2084
2085 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2086 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2087
2088 ev_stop (EV_A_ (W)w);
2089 --idleall;
2090 }
2091}
2092#endif
2093
2094void
2095ev_prepare_start (EV_P_ ev_prepare *w)
2096{
2097 if (expect_false (ev_is_active (w)))
2098 return;
2099
2100 ev_start (EV_A_ (W)w, ++preparecnt);
2101 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2102 prepares [preparecnt - 1] = w;
2103}
2104
2105void
2106ev_prepare_stop (EV_P_ ev_prepare *w)
2107{
2108 clear_pending (EV_A_ (W)w);
2109 if (expect_false (!ev_is_active (w)))
2110 return;
2111
2112 {
2113 int active = ((W)w)->active;
2114 prepares [active - 1] = prepares [--preparecnt];
2115 ((W)prepares [active - 1])->active = active;
2116 }
2117
2118 ev_stop (EV_A_ (W)w);
2119}
2120
2121void
2122ev_check_start (EV_P_ ev_check *w)
2123{
2124 if (expect_false (ev_is_active (w)))
2125 return;
2126
2127 ev_start (EV_A_ (W)w, ++checkcnt);
2128 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2129 checks [checkcnt - 1] = w;
2130}
2131
2132void
2133ev_check_stop (EV_P_ ev_check *w)
2134{
2135 clear_pending (EV_A_ (W)w);
2136 if (expect_false (!ev_is_active (w)))
2137 return;
2138
2139 {
2140 int active = ((W)w)->active;
2141 checks [active - 1] = checks [--checkcnt];
2142 ((W)checks [active - 1])->active = active;
2143 }
2144
2145 ev_stop (EV_A_ (W)w);
2146}
2147
2148#if EV_EMBED_ENABLE
2149void noinline
2150ev_embed_sweep (EV_P_ ev_embed *w)
2151{
2152 ev_loop (w->loop, EVLOOP_NONBLOCK);
2153}
2154
2155static void
2156embed_cb (EV_P_ ev_io *io, int revents)
2157{
2158 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2159
2160 if (ev_cb (w))
2161 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2162 else
2163 ev_embed_sweep (loop, w);
2164}
2165
2166void
2167ev_embed_start (EV_P_ ev_embed *w)
2168{
2169 if (expect_false (ev_is_active (w)))
2170 return;
2171
2172 {
2173 struct ev_loop *loop = w->loop;
2174 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2175 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
2176 }
2177
2178 ev_set_priority (&w->io, ev_priority (w));
2179 ev_io_start (EV_A_ &w->io);
2180
2181 ev_start (EV_A_ (W)w, 1);
2182}
2183
2184void
2185ev_embed_stop (EV_P_ ev_embed *w)
2186{
2187 clear_pending (EV_A_ (W)w);
2188 if (expect_false (!ev_is_active (w)))
2189 return;
2190
2191 ev_io_stop (EV_A_ &w->io);
2192
2193 ev_stop (EV_A_ (W)w);
2194}
2195#endif
2196
2197#if EV_FORK_ENABLE
2198void
2199ev_fork_start (EV_P_ ev_fork *w)
2200{
2201 if (expect_false (ev_is_active (w)))
2202 return;
2203
2204 ev_start (EV_A_ (W)w, ++forkcnt);
2205 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2206 forks [forkcnt - 1] = w;
2207}
2208
2209void
2210ev_fork_stop (EV_P_ ev_fork *w)
2211{
2212 clear_pending (EV_A_ (W)w);
2213 if (expect_false (!ev_is_active (w)))
2214 return;
2215
2216 {
2217 int active = ((W)w)->active;
2218 forks [active - 1] = forks [--forkcnt];
2219 ((W)forks [active - 1])->active = active;
2220 }
2221
2222 ev_stop (EV_A_ (W)w);
2223}
2224#endif
2225
1604/*****************************************************************************/ 2226/*****************************************************************************/
1605 2227
1606struct ev_once 2228struct ev_once
1607{ 2229{
1608 struct ev_io io; 2230 ev_io io;
1609 struct ev_timer to; 2231 ev_timer to;
1610 void (*cb)(int revents, void *arg); 2232 void (*cb)(int revents, void *arg);
1611 void *arg; 2233 void *arg;
1612}; 2234};
1613 2235
1614static void 2236static void
1623 2245
1624 cb (revents, arg); 2246 cb (revents, arg);
1625} 2247}
1626 2248
1627static void 2249static void
1628once_cb_io (EV_P_ struct ev_io *w, int revents) 2250once_cb_io (EV_P_ ev_io *w, int revents)
1629{ 2251{
1630 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2252 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1631} 2253}
1632 2254
1633static void 2255static void
1634once_cb_to (EV_P_ struct ev_timer *w, int revents) 2256once_cb_to (EV_P_ ev_timer *w, int revents)
1635{ 2257{
1636 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2258 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1637} 2259}
1638 2260
1639void 2261void

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines