ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.130 by root, Fri Nov 23 05:13:48 2007 UTC vs.
Revision 1.178 by root, Tue Dec 11 18:36:11 2007 UTC

32#ifdef __cplusplus 32#ifdef __cplusplus
33extern "C" { 33extern "C" {
34#endif 34#endif
35 35
36#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
37# include "config.h" 40# include "config.h"
41# endif
38 42
39# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 44# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
42# endif 46# endif
90# else 94# else
91# define EV_USE_PORT 0 95# define EV_USE_PORT 0
92# endif 96# endif
93# endif 97# endif
94 98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
105# endif
106
95#endif 107#endif
96 108
97#include <math.h> 109#include <math.h>
98#include <stdlib.h> 110#include <stdlib.h>
99#include <fcntl.h> 111#include <fcntl.h>
106#include <sys/types.h> 118#include <sys/types.h>
107#include <time.h> 119#include <time.h>
108 120
109#include <signal.h> 121#include <signal.h>
110 122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
111#ifndef _WIN32 129#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 130# include <sys/time.h>
114# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
115#else 133#else
116# define WIN32_LEAN_AND_MEAN 134# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 135# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 136# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 137# define EV_SELECT_IS_WINSOCKET 1
152 170
153#ifndef EV_USE_PORT 171#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 172# define EV_USE_PORT 0
155#endif 173#endif
156 174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
157/**/ 195/**/
158 196
159#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 198# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 199# define EV_USE_MONOTONIC 0
168 206
169#if EV_SELECT_IS_WINSOCKET 207#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 208# include <winsock.h>
171#endif 209#endif
172 210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
173/**/ 219/**/
220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
174 230
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
179
180#ifdef EV_H
181# include EV_H
182#else
183# include "ev.h"
184#endif
185 234
186#if __GNUC__ >= 3 235#if __GNUC__ >= 3
187# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
188# define inline static inline 237# define noinline __attribute__ ((noinline))
189#else 238#else
190# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
191# define inline static 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
192#endif 244#endif
193 245
194#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
196 255
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
199 258
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 259#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 260#define EMPTY2(a,b) /* used to suppress some warnings */
202 261
203typedef struct ev_watcher *W; 262typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 263typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 264typedef ev_watcher_time *WT;
206 265
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
208 267
209#ifdef _WIN32 268#ifdef _WIN32
210# include "ev_win32.c" 269# include "ev_win32.c"
212 271
213/*****************************************************************************/ 272/*****************************************************************************/
214 273
215static void (*syserr_cb)(const char *msg); 274static void (*syserr_cb)(const char *msg);
216 275
276void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 277ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 278{
219 syserr_cb = cb; 279 syserr_cb = cb;
220} 280}
221 281
222static void 282static void noinline
223syserr (const char *msg) 283syserr (const char *msg)
224{ 284{
225 if (!msg) 285 if (!msg)
226 msg = "(libev) system error"; 286 msg = "(libev) system error";
227 287
234 } 294 }
235} 295}
236 296
237static void *(*alloc)(void *ptr, long size); 297static void *(*alloc)(void *ptr, long size);
238 298
299void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 300ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 301{
241 alloc = cb; 302 alloc = cb;
242} 303}
243 304
244static void * 305inline_speed void *
245ev_realloc (void *ptr, long size) 306ev_realloc (void *ptr, long size)
246{ 307{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
248 309
249 if (!ptr && size) 310 if (!ptr && size)
273typedef struct 334typedef struct
274{ 335{
275 W w; 336 W w;
276 int events; 337 int events;
277} ANPENDING; 338} ANPENDING;
339
340#if EV_USE_INOTIFY
341typedef struct
342{
343 WL head;
344} ANFS;
345#endif
278 346
279#if EV_MULTIPLICITY 347#if EV_MULTIPLICITY
280 348
281 struct ev_loop 349 struct ev_loop
282 { 350 {
316 gettimeofday (&tv, 0); 384 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 385 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif 386#endif
319} 387}
320 388
321inline ev_tstamp 389ev_tstamp inline_size
322get_clock (void) 390get_clock (void)
323{ 391{
324#if EV_USE_MONOTONIC 392#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 393 if (expect_true (have_monotonic))
326 { 394 {
339{ 407{
340 return ev_rt_now; 408 return ev_rt_now;
341} 409}
342#endif 410#endif
343 411
344#define array_roundsize(type,n) (((n) | 4) & ~3) 412int inline_size
413array_nextsize (int elem, int cur, int cnt)
414{
415 int ncur = cur + 1;
416
417 do
418 ncur <<= 1;
419 while (cnt > ncur);
420
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096)
423 {
424 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
426 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem;
428 }
429
430 return ncur;
431}
432
433static noinline void *
434array_realloc (int elem, void *base, int *cur, int cnt)
435{
436 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur);
438}
345 439
346#define array_needsize(type,base,cur,cnt,init) \ 440#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 441 if (expect_false ((cnt) > (cur))) \
348 { \ 442 { \
349 int newcnt = cur; \ 443 int ocur_ = (cur); \
350 do \ 444 (base) = (type *)array_realloc \
351 { \ 445 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 446 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 447 }
360 448
449#if 0
361#define array_slim(type,stem) \ 450#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 451 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 452 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 453 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 454 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 456 }
457#endif
368 458
369#define array_free(stem, idx) \ 459#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
371 461
372/*****************************************************************************/ 462/*****************************************************************************/
373 463
374static void 464void noinline
465ev_feed_event (EV_P_ void *w, int revents)
466{
467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
469
470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents;
478 }
479}
480
481void inline_size
482queue_events (EV_P_ W *events, int eventcnt, int type)
483{
484 int i;
485
486 for (i = 0; i < eventcnt; ++i)
487 ev_feed_event (EV_A_ events [i], type);
488}
489
490/*****************************************************************************/
491
492void inline_size
375anfds_init (ANFD *base, int count) 493anfds_init (ANFD *base, int count)
376{ 494{
377 while (count--) 495 while (count--)
378 { 496 {
379 base->head = 0; 497 base->head = 0;
382 500
383 ++base; 501 ++base;
384 } 502 }
385} 503}
386 504
387void 505void inline_speed
388ev_feed_event (EV_P_ void *w, int revents)
389{
390 W w_ = (W)w;
391
392 if (expect_false (w_->pending))
393 {
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
395 return;
396 }
397
398 w_->pending = ++pendingcnt [ABSPRI (w_)];
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402}
403
404static void
405queue_events (EV_P_ W *events, int eventcnt, int type)
406{
407 int i;
408
409 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type);
411}
412
413inline void
414fd_event (EV_P_ int fd, int revents) 506fd_event (EV_P_ int fd, int revents)
415{ 507{
416 ANFD *anfd = anfds + fd; 508 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 509 ev_io *w;
418 510
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 511 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 512 {
421 int ev = w->events & revents; 513 int ev = w->events & revents;
422 514
423 if (ev) 515 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 516 ev_feed_event (EV_A_ (W)w, ev);
426} 518}
427 519
428void 520void
429ev_feed_fd_event (EV_P_ int fd, int revents) 521ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 522{
523 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 524 fd_event (EV_A_ fd, revents);
432} 525}
433 526
434/*****************************************************************************/ 527void inline_size
435
436inline void
437fd_reify (EV_P) 528fd_reify (EV_P)
438{ 529{
439 int i; 530 int i;
440 531
441 for (i = 0; i < fdchangecnt; ++i) 532 for (i = 0; i < fdchangecnt; ++i)
442 { 533 {
443 int fd = fdchanges [i]; 534 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 535 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 536 ev_io *w;
446 537
447 int events = 0; 538 int events = 0;
448 539
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 541 events |= w->events;
451 542
452#if EV_SELECT_IS_WINSOCKET 543#if EV_SELECT_IS_WINSOCKET
453 if (events) 544 if (events)
454 { 545 {
465 } 556 }
466 557
467 fdchangecnt = 0; 558 fdchangecnt = 0;
468} 559}
469 560
470static void 561void inline_size
471fd_change (EV_P_ int fd) 562fd_change (EV_P_ int fd)
472{ 563{
473 if (expect_false (anfds [fd].reify)) 564 if (expect_false (anfds [fd].reify))
474 return; 565 return;
475 566
478 ++fdchangecnt; 569 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 571 fdchanges [fdchangecnt - 1] = fd;
481} 572}
482 573
483static void 574void inline_speed
484fd_kill (EV_P_ int fd) 575fd_kill (EV_P_ int fd)
485{ 576{
486 struct ev_io *w; 577 ev_io *w;
487 578
488 while ((w = (struct ev_io *)anfds [fd].head)) 579 while ((w = (ev_io *)anfds [fd].head))
489 { 580 {
490 ev_io_stop (EV_A_ w); 581 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 582 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 583 }
493} 584}
494 585
495inline int 586int inline_size
496fd_valid (int fd) 587fd_valid (int fd)
497{ 588{
498#ifdef _WIN32 589#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 590 return _get_osfhandle (fd) != -1;
500#else 591#else
501 return fcntl (fd, F_GETFD) != -1; 592 return fcntl (fd, F_GETFD) != -1;
502#endif 593#endif
503} 594}
504 595
505/* called on EBADF to verify fds */ 596/* called on EBADF to verify fds */
506static void 597static void noinline
507fd_ebadf (EV_P) 598fd_ebadf (EV_P)
508{ 599{
509 int fd; 600 int fd;
510 601
511 for (fd = 0; fd < anfdmax; ++fd) 602 for (fd = 0; fd < anfdmax; ++fd)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 604 if (!fd_valid (fd) == -1 && errno == EBADF)
514 fd_kill (EV_A_ fd); 605 fd_kill (EV_A_ fd);
515} 606}
516 607
517/* called on ENOMEM in select/poll to kill some fds and retry */ 608/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 609static void noinline
519fd_enomem (EV_P) 610fd_enomem (EV_P)
520{ 611{
521 int fd; 612 int fd;
522 613
523 for (fd = anfdmax; fd--; ) 614 for (fd = anfdmax; fd--; )
527 return; 618 return;
528 } 619 }
529} 620}
530 621
531/* usually called after fork if backend needs to re-arm all fds from scratch */ 622/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 623static void noinline
533fd_rearm_all (EV_P) 624fd_rearm_all (EV_P)
534{ 625{
535 int fd; 626 int fd;
536 627
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 628 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 629 if (anfds [fd].events)
540 { 630 {
541 anfds [fd].events = 0; 631 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 632 fd_change (EV_A_ fd);
543 } 633 }
544} 634}
545 635
546/*****************************************************************************/ 636/*****************************************************************************/
547 637
548static void 638void inline_speed
549upheap (WT *heap, int k) 639upheap (WT *heap, int k)
550{ 640{
551 WT w = heap [k]; 641 WT w = heap [k];
552 642
553 while (k && heap [k >> 1]->at > w->at) 643 while (k && heap [k >> 1]->at > w->at)
560 heap [k] = w; 650 heap [k] = w;
561 ((W)heap [k])->active = k + 1; 651 ((W)heap [k])->active = k + 1;
562 652
563} 653}
564 654
565static void 655void inline_speed
566downheap (WT *heap, int N, int k) 656downheap (WT *heap, int N, int k)
567{ 657{
568 WT w = heap [k]; 658 WT w = heap [k];
569 659
570 while (k < (N >> 1)) 660 while (k < (N >> 1))
584 674
585 heap [k] = w; 675 heap [k] = w;
586 ((W)heap [k])->active = k + 1; 676 ((W)heap [k])->active = k + 1;
587} 677}
588 678
589inline void 679void inline_size
590adjustheap (WT *heap, int N, int k) 680adjustheap (WT *heap, int N, int k)
591{ 681{
592 upheap (heap, k); 682 upheap (heap, k);
593 downheap (heap, N, k); 683 downheap (heap, N, k);
594} 684}
604static ANSIG *signals; 694static ANSIG *signals;
605static int signalmax; 695static int signalmax;
606 696
607static int sigpipe [2]; 697static int sigpipe [2];
608static sig_atomic_t volatile gotsig; 698static sig_atomic_t volatile gotsig;
609static struct ev_io sigev; 699static ev_io sigev;
610 700
611static void 701void inline_size
612signals_init (ANSIG *base, int count) 702signals_init (ANSIG *base, int count)
613{ 703{
614 while (count--) 704 while (count--)
615 { 705 {
616 base->head = 0; 706 base->head = 0;
636 write (sigpipe [1], &signum, 1); 726 write (sigpipe [1], &signum, 1);
637 errno = old_errno; 727 errno = old_errno;
638 } 728 }
639} 729}
640 730
641void 731void noinline
642ev_feed_signal_event (EV_P_ int signum) 732ev_feed_signal_event (EV_P_ int signum)
643{ 733{
644 WL w; 734 WL w;
645 735
646#if EV_MULTIPLICITY 736#if EV_MULTIPLICITY
657 for (w = signals [signum].head; w; w = w->next) 747 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 748 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659} 749}
660 750
661static void 751static void
662sigcb (EV_P_ struct ev_io *iow, int revents) 752sigcb (EV_P_ ev_io *iow, int revents)
663{ 753{
664 int signum; 754 int signum;
665 755
666 read (sigpipe [0], &revents, 1); 756 read (sigpipe [0], &revents, 1);
667 gotsig = 0; 757 gotsig = 0;
669 for (signum = signalmax; signum--; ) 759 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig) 760 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1); 761 ev_feed_signal_event (EV_A_ signum + 1);
672} 762}
673 763
674static void 764void inline_speed
675fd_intern (int fd) 765fd_intern (int fd)
676{ 766{
677#ifdef _WIN32 767#ifdef _WIN32
678 int arg = 1; 768 int arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 769 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 771 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 772 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 773#endif
684} 774}
685 775
686static void 776static void noinline
687siginit (EV_P) 777siginit (EV_P)
688{ 778{
689 fd_intern (sigpipe [0]); 779 fd_intern (sigpipe [0]);
690 fd_intern (sigpipe [1]); 780 fd_intern (sigpipe [1]);
691 781
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 784 ev_unref (EV_A); /* child watcher should not keep loop alive */
695} 785}
696 786
697/*****************************************************************************/ 787/*****************************************************************************/
698 788
699static struct ev_child *childs [PID_HASHSIZE]; 789static ev_child *childs [EV_PID_HASHSIZE];
700 790
701#ifndef _WIN32 791#ifndef _WIN32
702 792
703static struct ev_signal childev; 793static ev_signal childev;
794
795void inline_speed
796child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
797{
798 ev_child *w;
799
800 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
801 if (w->pid == pid || !w->pid)
802 {
803 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
804 w->rpid = pid;
805 w->rstatus = status;
806 ev_feed_event (EV_A_ (W)w, EV_CHILD);
807 }
808}
704 809
705#ifndef WCONTINUED 810#ifndef WCONTINUED
706# define WCONTINUED 0 811# define WCONTINUED 0
707#endif 812#endif
708 813
709static void 814static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 815childcb (EV_P_ ev_signal *sw, int revents)
726{ 816{
727 int pid, status; 817 int pid, status;
728 818
819 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 820 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 821 if (!WCONTINUED
822 || errno != EINVAL
823 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
824 return;
825
731 /* make sure we are called again until all childs have been reaped */ 826 /* make sure we are called again until all childs have been reaped */
827 /* we need to do it this way so that the callback gets called before we continue */
732 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 828 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
733 829
734 child_reap (EV_A_ sw, pid, pid, status); 830 child_reap (EV_A_ sw, pid, pid, status);
831 if (EV_PID_HASHSIZE > 1)
735 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 832 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
736 }
737} 833}
738 834
739#endif 835#endif
740 836
741/*****************************************************************************/ 837/*****************************************************************************/
767{ 863{
768 return EV_VERSION_MINOR; 864 return EV_VERSION_MINOR;
769} 865}
770 866
771/* return true if we are running with elevated privileges and should ignore env variables */ 867/* return true if we are running with elevated privileges and should ignore env variables */
772static int 868int inline_size
773enable_secure (void) 869enable_secure (void)
774{ 870{
775#ifdef _WIN32 871#ifdef _WIN32
776 return 0; 872 return 0;
777#else 873#else
795} 891}
796 892
797unsigned int 893unsigned int
798ev_recommended_backends (void) 894ev_recommended_backends (void)
799{ 895{
800 unsigned int flags = ev_recommended_backends (); 896 unsigned int flags = ev_supported_backends ();
801 897
802#ifndef __NetBSD__ 898#ifndef __NetBSD__
803 /* kqueue is borked on everything but netbsd apparently */ 899 /* kqueue is borked on everything but netbsd apparently */
804 /* it usually doesn't work correctly on anything but sockets and pipes */ 900 /* it usually doesn't work correctly on anything but sockets and pipes */
805 flags &= ~EVBACKEND_KQUEUE; 901 flags &= ~EVBACKEND_KQUEUE;
811 907
812 return flags; 908 return flags;
813} 909}
814 910
815unsigned int 911unsigned int
912ev_embeddable_backends (void)
913{
914 return EVBACKEND_EPOLL
915 | EVBACKEND_KQUEUE
916 | EVBACKEND_PORT;
917}
918
919unsigned int
816ev_backend (EV_P) 920ev_backend (EV_P)
817{ 921{
818 return backend; 922 return backend;
819} 923}
820 924
821static void 925unsigned int
926ev_loop_count (EV_P)
927{
928 return loop_count;
929}
930
931static void noinline
822loop_init (EV_P_ unsigned int flags) 932loop_init (EV_P_ unsigned int flags)
823{ 933{
824 if (!backend) 934 if (!backend)
825 { 935 {
826#if EV_USE_MONOTONIC 936#if EV_USE_MONOTONIC
834 ev_rt_now = ev_time (); 944 ev_rt_now = ev_time ();
835 mn_now = get_clock (); 945 mn_now = get_clock ();
836 now_floor = mn_now; 946 now_floor = mn_now;
837 rtmn_diff = ev_rt_now - mn_now; 947 rtmn_diff = ev_rt_now - mn_now;
838 948
949 /* pid check not overridable via env */
950#ifndef _WIN32
951 if (flags & EVFLAG_FORKCHECK)
952 curpid = getpid ();
953#endif
954
839 if (!(flags & EVFLAG_NOENV) 955 if (!(flags & EVFLAG_NOENV)
840 && !enable_secure () 956 && !enable_secure ()
841 && getenv ("LIBEV_FLAGS")) 957 && getenv ("LIBEV_FLAGS"))
842 flags = atoi (getenv ("LIBEV_FLAGS")); 958 flags = atoi (getenv ("LIBEV_FLAGS"));
843 959
844 if (!(flags & 0x0000ffffUL)) 960 if (!(flags & 0x0000ffffUL))
845 flags |= ev_recommended_backends (); 961 flags |= ev_recommended_backends ();
846 962
847 backend = 0; 963 backend = 0;
964 backend_fd = -1;
965#if EV_USE_INOTIFY
966 fs_fd = -2;
967#endif
968
848#if EV_USE_PORT 969#if EV_USE_PORT
849 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 970 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
850#endif 971#endif
851#if EV_USE_KQUEUE 972#if EV_USE_KQUEUE
852 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 973 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
864 ev_init (&sigev, sigcb); 985 ev_init (&sigev, sigcb);
865 ev_set_priority (&sigev, EV_MAXPRI); 986 ev_set_priority (&sigev, EV_MAXPRI);
866 } 987 }
867} 988}
868 989
869static void 990static void noinline
870loop_destroy (EV_P) 991loop_destroy (EV_P)
871{ 992{
872 int i; 993 int i;
994
995#if EV_USE_INOTIFY
996 if (fs_fd >= 0)
997 close (fs_fd);
998#endif
999
1000 if (backend_fd >= 0)
1001 close (backend_fd);
873 1002
874#if EV_USE_PORT 1003#if EV_USE_PORT
875 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1004 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
876#endif 1005#endif
877#if EV_USE_KQUEUE 1006#if EV_USE_KQUEUE
886#if EV_USE_SELECT 1015#if EV_USE_SELECT
887 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1016 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
888#endif 1017#endif
889 1018
890 for (i = NUMPRI; i--; ) 1019 for (i = NUMPRI; i--; )
1020 {
891 array_free (pending, [i]); 1021 array_free (pending, [i]);
1022#if EV_IDLE_ENABLE
1023 array_free (idle, [i]);
1024#endif
1025 }
892 1026
893 /* have to use the microsoft-never-gets-it-right macro */ 1027 /* have to use the microsoft-never-gets-it-right macro */
894 array_free (fdchange, EMPTY0); 1028 array_free (fdchange, EMPTY);
895 array_free (timer, EMPTY0); 1029 array_free (timer, EMPTY);
896#if EV_PERIODICS 1030#if EV_PERIODIC_ENABLE
897 array_free (periodic, EMPTY0); 1031 array_free (periodic, EMPTY);
898#endif 1032#endif
899 array_free (idle, EMPTY0);
900 array_free (prepare, EMPTY0); 1033 array_free (prepare, EMPTY);
901 array_free (check, EMPTY0); 1034 array_free (check, EMPTY);
902 1035
903 backend = 0; 1036 backend = 0;
904} 1037}
905 1038
906static void 1039void inline_size infy_fork (EV_P);
1040
1041void inline_size
907loop_fork (EV_P) 1042loop_fork (EV_P)
908{ 1043{
909#if EV_USE_PORT 1044#if EV_USE_PORT
910 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1045 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
911#endif 1046#endif
912#if EV_USE_KQUEUE 1047#if EV_USE_KQUEUE
913 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1048 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
914#endif 1049#endif
915#if EV_USE_EPOLL 1050#if EV_USE_EPOLL
916 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1051 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1052#endif
1053#if EV_USE_INOTIFY
1054 infy_fork (EV_A);
917#endif 1055#endif
918 1056
919 if (ev_is_active (&sigev)) 1057 if (ev_is_active (&sigev))
920 { 1058 {
921 /* default loop */ 1059 /* default loop */
1037 postfork = 1; 1175 postfork = 1;
1038} 1176}
1039 1177
1040/*****************************************************************************/ 1178/*****************************************************************************/
1041 1179
1042static int 1180void
1043any_pending (EV_P) 1181ev_invoke (EV_P_ void *w, int revents)
1044{ 1182{
1045 int pri; 1183 EV_CB_INVOKE ((W)w, revents);
1046
1047 for (pri = NUMPRI; pri--; )
1048 if (pendingcnt [pri])
1049 return 1;
1050
1051 return 0;
1052} 1184}
1053 1185
1054inline void 1186void inline_speed
1055call_pending (EV_P) 1187call_pending (EV_P)
1056{ 1188{
1057 int pri; 1189 int pri;
1058 1190
1059 for (pri = NUMPRI; pri--; ) 1191 for (pri = NUMPRI; pri--; )
1061 { 1193 {
1062 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1194 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1063 1195
1064 if (expect_true (p->w)) 1196 if (expect_true (p->w))
1065 { 1197 {
1198 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1199
1066 p->w->pending = 0; 1200 p->w->pending = 0;
1067 EV_CB_INVOKE (p->w, p->events); 1201 EV_CB_INVOKE (p->w, p->events);
1068 } 1202 }
1069 } 1203 }
1070} 1204}
1071 1205
1072inline void 1206void inline_size
1073timers_reify (EV_P) 1207timers_reify (EV_P)
1074{ 1208{
1075 while (timercnt && ((WT)timers [0])->at <= mn_now) 1209 while (timercnt && ((WT)timers [0])->at <= mn_now)
1076 { 1210 {
1077 struct ev_timer *w = timers [0]; 1211 ev_timer *w = timers [0];
1078 1212
1079 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1213 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1080 1214
1081 /* first reschedule or stop timer */ 1215 /* first reschedule or stop timer */
1082 if (w->repeat) 1216 if (w->repeat)
1083 { 1217 {
1084 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1218 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1094 1228
1095 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1229 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1096 } 1230 }
1097} 1231}
1098 1232
1099#if EV_PERIODICS 1233#if EV_PERIODIC_ENABLE
1100inline void 1234void inline_size
1101periodics_reify (EV_P) 1235periodics_reify (EV_P)
1102{ 1236{
1103 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1237 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1104 { 1238 {
1105 struct ev_periodic *w = periodics [0]; 1239 ev_periodic *w = periodics [0];
1106 1240
1107 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1241 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1108 1242
1109 /* first reschedule or stop timer */ 1243 /* first reschedule or stop timer */
1110 if (w->reschedule_cb) 1244 if (w->reschedule_cb)
1111 { 1245 {
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1246 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1113 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1247 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1114 downheap ((WT *)periodics, periodiccnt, 0); 1248 downheap ((WT *)periodics, periodiccnt, 0);
1115 } 1249 }
1116 else if (w->interval) 1250 else if (w->interval)
1117 { 1251 {
1118 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1252 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1253 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1119 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1120 downheap ((WT *)periodics, periodiccnt, 0); 1255 downheap ((WT *)periodics, periodiccnt, 0);
1121 } 1256 }
1122 else 1257 else
1123 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1124 1259
1125 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1126 } 1261 }
1127} 1262}
1128 1263
1129static void 1264static void noinline
1130periodics_reschedule (EV_P) 1265periodics_reschedule (EV_P)
1131{ 1266{
1132 int i; 1267 int i;
1133 1268
1134 /* adjust periodics after time jump */ 1269 /* adjust periodics after time jump */
1135 for (i = 0; i < periodiccnt; ++i) 1270 for (i = 0; i < periodiccnt; ++i)
1136 { 1271 {
1137 struct ev_periodic *w = periodics [i]; 1272 ev_periodic *w = periodics [i];
1138 1273
1139 if (w->reschedule_cb) 1274 if (w->reschedule_cb)
1140 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1141 else if (w->interval) 1276 else if (w->interval)
1142 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1143 } 1278 }
1144 1279
1145 /* now rebuild the heap */ 1280 /* now rebuild the heap */
1146 for (i = periodiccnt >> 1; i--; ) 1281 for (i = periodiccnt >> 1; i--; )
1147 downheap ((WT *)periodics, periodiccnt, i); 1282 downheap ((WT *)periodics, periodiccnt, i);
1148} 1283}
1149#endif 1284#endif
1150 1285
1151inline int 1286#if EV_IDLE_ENABLE
1152time_update_monotonic (EV_P) 1287void inline_size
1288idle_reify (EV_P)
1153{ 1289{
1290 if (expect_false (idleall))
1291 {
1292 int pri;
1293
1294 for (pri = NUMPRI; pri--; )
1295 {
1296 if (pendingcnt [pri])
1297 break;
1298
1299 if (idlecnt [pri])
1300 {
1301 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1302 break;
1303 }
1304 }
1305 }
1306}
1307#endif
1308
1309void inline_speed
1310time_update (EV_P_ ev_tstamp max_block)
1311{
1312 int i;
1313
1314#if EV_USE_MONOTONIC
1315 if (expect_true (have_monotonic))
1316 {
1317 ev_tstamp odiff = rtmn_diff;
1318
1154 mn_now = get_clock (); 1319 mn_now = get_clock ();
1155 1320
1321 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1322 /* interpolate in the meantime */
1156 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1323 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1157 { 1324 {
1158 ev_rt_now = rtmn_diff + mn_now; 1325 ev_rt_now = rtmn_diff + mn_now;
1159 return 0; 1326 return;
1160 } 1327 }
1161 else 1328
1162 {
1163 now_floor = mn_now; 1329 now_floor = mn_now;
1164 ev_rt_now = ev_time (); 1330 ev_rt_now = ev_time ();
1165 return 1;
1166 }
1167}
1168 1331
1169inline void 1332 /* loop a few times, before making important decisions.
1170time_update (EV_P) 1333 * on the choice of "4": one iteration isn't enough,
1171{ 1334 * in case we get preempted during the calls to
1172 int i; 1335 * ev_time and get_clock. a second call is almost guaranteed
1173 1336 * to succeed in that case, though. and looping a few more times
1174#if EV_USE_MONOTONIC 1337 * doesn't hurt either as we only do this on time-jumps or
1175 if (expect_true (have_monotonic)) 1338 * in the unlikely event of having been preempted here.
1176 { 1339 */
1177 if (time_update_monotonic (EV_A)) 1340 for (i = 4; --i; )
1178 { 1341 {
1179 ev_tstamp odiff = rtmn_diff;
1180
1181 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1182 {
1183 rtmn_diff = ev_rt_now - mn_now; 1342 rtmn_diff = ev_rt_now - mn_now;
1184 1343
1185 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1344 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1186 return; /* all is well */ 1345 return; /* all is well */
1187 1346
1188 ev_rt_now = ev_time (); 1347 ev_rt_now = ev_time ();
1189 mn_now = get_clock (); 1348 mn_now = get_clock ();
1190 now_floor = mn_now; 1349 now_floor = mn_now;
1191 } 1350 }
1192 1351
1193# if EV_PERIODICS 1352# if EV_PERIODIC_ENABLE
1353 periodics_reschedule (EV_A);
1354# endif
1355 /* no timer adjustment, as the monotonic clock doesn't jump */
1356 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1357 }
1358 else
1359#endif
1360 {
1361 ev_rt_now = ev_time ();
1362
1363 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1364 {
1365#if EV_PERIODIC_ENABLE
1194 periodics_reschedule (EV_A); 1366 periodics_reschedule (EV_A);
1195# endif 1367#endif
1196 /* no timer adjustment, as the monotonic clock doesn't jump */
1197 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1198 }
1199 }
1200 else
1201#endif
1202 {
1203 ev_rt_now = ev_time ();
1204
1205 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1206 {
1207#if EV_PERIODICS
1208 periodics_reschedule (EV_A);
1209#endif
1210
1211 /* adjust timers. this is easy, as the offset is the same for all */ 1368 /* adjust timers. this is easy, as the offset is the same for all of them */
1212 for (i = 0; i < timercnt; ++i) 1369 for (i = 0; i < timercnt; ++i)
1213 ((WT)timers [i])->at += ev_rt_now - mn_now; 1370 ((WT)timers [i])->at += ev_rt_now - mn_now;
1214 } 1371 }
1215 1372
1216 mn_now = ev_rt_now; 1373 mn_now = ev_rt_now;
1232static int loop_done; 1389static int loop_done;
1233 1390
1234void 1391void
1235ev_loop (EV_P_ int flags) 1392ev_loop (EV_P_ int flags)
1236{ 1393{
1237 double block;
1238 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1394 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1395 ? EVUNLOOP_ONE
1396 : EVUNLOOP_CANCEL;
1239 1397
1240 while (activecnt) 1398 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1399
1400 do
1241 { 1401 {
1402#ifndef _WIN32
1403 if (expect_false (curpid)) /* penalise the forking check even more */
1404 if (expect_false (getpid () != curpid))
1405 {
1406 curpid = getpid ();
1407 postfork = 1;
1408 }
1409#endif
1410
1411#if EV_FORK_ENABLE
1412 /* we might have forked, so queue fork handlers */
1413 if (expect_false (postfork))
1414 if (forkcnt)
1415 {
1416 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1417 call_pending (EV_A);
1418 }
1419#endif
1420
1242 /* queue check watchers (and execute them) */ 1421 /* queue prepare watchers (and execute them) */
1243 if (expect_false (preparecnt)) 1422 if (expect_false (preparecnt))
1244 { 1423 {
1245 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1424 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1246 call_pending (EV_A); 1425 call_pending (EV_A);
1247 } 1426 }
1248 1427
1428 if (expect_false (!activecnt))
1429 break;
1430
1249 /* we might have forked, so reify kernel state if necessary */ 1431 /* we might have forked, so reify kernel state if necessary */
1250 if (expect_false (postfork)) 1432 if (expect_false (postfork))
1251 loop_fork (EV_A); 1433 loop_fork (EV_A);
1252 1434
1253 /* update fd-related kernel structures */ 1435 /* update fd-related kernel structures */
1254 fd_reify (EV_A); 1436 fd_reify (EV_A);
1255 1437
1256 /* calculate blocking time */ 1438 /* calculate blocking time */
1439 {
1440 ev_tstamp block;
1257 1441
1258 /* we only need this for !monotonic clock or timers, but as we basically 1442 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1259 always have timers, we just calculate it always */ 1443 block = 0.; /* do not block at all */
1260#if EV_USE_MONOTONIC
1261 if (expect_true (have_monotonic))
1262 time_update_monotonic (EV_A);
1263 else 1444 else
1264#endif
1265 { 1445 {
1266 ev_rt_now = ev_time (); 1446 /* update time to cancel out callback processing overhead */
1267 mn_now = ev_rt_now; 1447 time_update (EV_A_ 1e100);
1268 }
1269 1448
1270 if (flags & EVLOOP_NONBLOCK || idlecnt)
1271 block = 0.;
1272 else
1273 {
1274 block = MAX_BLOCKTIME; 1449 block = MAX_BLOCKTIME;
1275 1450
1276 if (timercnt) 1451 if (timercnt)
1277 { 1452 {
1278 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1453 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1279 if (block > to) block = to; 1454 if (block > to) block = to;
1280 } 1455 }
1281 1456
1282#if EV_PERIODICS 1457#if EV_PERIODIC_ENABLE
1283 if (periodiccnt) 1458 if (periodiccnt)
1284 { 1459 {
1285 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1460 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1286 if (block > to) block = to; 1461 if (block > to) block = to;
1287 } 1462 }
1288#endif 1463#endif
1289 1464
1290 if (expect_false (block < 0.)) block = 0.; 1465 if (expect_false (block < 0.)) block = 0.;
1291 } 1466 }
1292 1467
1468 ++loop_count;
1293 backend_poll (EV_A_ block); 1469 backend_poll (EV_A_ block);
1294 1470
1295 /* update ev_rt_now, do magic */ 1471 /* update ev_rt_now, do magic */
1296 time_update (EV_A); 1472 time_update (EV_A_ block);
1473 }
1297 1474
1298 /* queue pending timers and reschedule them */ 1475 /* queue pending timers and reschedule them */
1299 timers_reify (EV_A); /* relative timers called last */ 1476 timers_reify (EV_A); /* relative timers called last */
1300#if EV_PERIODICS 1477#if EV_PERIODIC_ENABLE
1301 periodics_reify (EV_A); /* absolute timers called first */ 1478 periodics_reify (EV_A); /* absolute timers called first */
1302#endif 1479#endif
1303 1480
1481#if EV_IDLE_ENABLE
1304 /* queue idle watchers unless io or timers are pending */ 1482 /* queue idle watchers unless other events are pending */
1305 if (idlecnt && !any_pending (EV_A)) 1483 idle_reify (EV_A);
1306 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1484#endif
1307 1485
1308 /* queue check watchers, to be executed first */ 1486 /* queue check watchers, to be executed first */
1309 if (expect_false (checkcnt)) 1487 if (expect_false (checkcnt))
1310 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1488 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1311 1489
1312 call_pending (EV_A); 1490 call_pending (EV_A);
1313 1491
1314 if (expect_false (loop_done))
1315 break;
1316 } 1492 }
1493 while (expect_true (activecnt && !loop_done));
1317 1494
1318 if (loop_done != 2) 1495 if (loop_done == EVUNLOOP_ONE)
1319 loop_done = 0; 1496 loop_done = EVUNLOOP_CANCEL;
1320} 1497}
1321 1498
1322void 1499void
1323ev_unloop (EV_P_ int how) 1500ev_unloop (EV_P_ int how)
1324{ 1501{
1325 loop_done = how; 1502 loop_done = how;
1326} 1503}
1327 1504
1328/*****************************************************************************/ 1505/*****************************************************************************/
1329 1506
1330inline void 1507void inline_size
1331wlist_add (WL *head, WL elem) 1508wlist_add (WL *head, WL elem)
1332{ 1509{
1333 elem->next = *head; 1510 elem->next = *head;
1334 *head = elem; 1511 *head = elem;
1335} 1512}
1336 1513
1337inline void 1514void inline_size
1338wlist_del (WL *head, WL elem) 1515wlist_del (WL *head, WL elem)
1339{ 1516{
1340 while (*head) 1517 while (*head)
1341 { 1518 {
1342 if (*head == elem) 1519 if (*head == elem)
1347 1524
1348 head = &(*head)->next; 1525 head = &(*head)->next;
1349 } 1526 }
1350} 1527}
1351 1528
1352inline void 1529void inline_speed
1353ev_clear_pending (EV_P_ W w) 1530clear_pending (EV_P_ W w)
1354{ 1531{
1355 if (w->pending) 1532 if (w->pending)
1356 { 1533 {
1357 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1534 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1358 w->pending = 0; 1535 w->pending = 0;
1359 } 1536 }
1360} 1537}
1361 1538
1362inline void 1539int
1540ev_clear_pending (EV_P_ void *w)
1541{
1542 W w_ = (W)w;
1543 int pending = w_->pending;
1544
1545 if (expect_true (pending))
1546 {
1547 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1548 w_->pending = 0;
1549 p->w = 0;
1550 return p->events;
1551 }
1552 else
1553 return 0;
1554}
1555
1556void inline_size
1557pri_adjust (EV_P_ W w)
1558{
1559 int pri = w->priority;
1560 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1561 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1562 w->priority = pri;
1563}
1564
1565void inline_speed
1363ev_start (EV_P_ W w, int active) 1566ev_start (EV_P_ W w, int active)
1364{ 1567{
1365 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1568 pri_adjust (EV_A_ w);
1366 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1367
1368 w->active = active; 1569 w->active = active;
1369 ev_ref (EV_A); 1570 ev_ref (EV_A);
1370} 1571}
1371 1572
1372inline void 1573void inline_size
1373ev_stop (EV_P_ W w) 1574ev_stop (EV_P_ W w)
1374{ 1575{
1375 ev_unref (EV_A); 1576 ev_unref (EV_A);
1376 w->active = 0; 1577 w->active = 0;
1377} 1578}
1378 1579
1379/*****************************************************************************/ 1580/*****************************************************************************/
1380 1581
1381void 1582void noinline
1382ev_io_start (EV_P_ struct ev_io *w) 1583ev_io_start (EV_P_ ev_io *w)
1383{ 1584{
1384 int fd = w->fd; 1585 int fd = w->fd;
1385 1586
1386 if (expect_false (ev_is_active (w))) 1587 if (expect_false (ev_is_active (w)))
1387 return; 1588 return;
1393 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1594 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1394 1595
1395 fd_change (EV_A_ fd); 1596 fd_change (EV_A_ fd);
1396} 1597}
1397 1598
1398void 1599void noinline
1399ev_io_stop (EV_P_ struct ev_io *w) 1600ev_io_stop (EV_P_ ev_io *w)
1400{ 1601{
1401 ev_clear_pending (EV_A_ (W)w); 1602 clear_pending (EV_A_ (W)w);
1402 if (expect_false (!ev_is_active (w))) 1603 if (expect_false (!ev_is_active (w)))
1403 return; 1604 return;
1404 1605
1405 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1606 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1406 1607
1408 ev_stop (EV_A_ (W)w); 1609 ev_stop (EV_A_ (W)w);
1409 1610
1410 fd_change (EV_A_ w->fd); 1611 fd_change (EV_A_ w->fd);
1411} 1612}
1412 1613
1413void 1614void noinline
1414ev_timer_start (EV_P_ struct ev_timer *w) 1615ev_timer_start (EV_P_ ev_timer *w)
1415{ 1616{
1416 if (expect_false (ev_is_active (w))) 1617 if (expect_false (ev_is_active (w)))
1417 return; 1618 return;
1418 1619
1419 ((WT)w)->at += mn_now; 1620 ((WT)w)->at += mn_now;
1420 1621
1421 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1622 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1422 1623
1423 ev_start (EV_A_ (W)w, ++timercnt); 1624 ev_start (EV_A_ (W)w, ++timercnt);
1424 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1625 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1425 timers [timercnt - 1] = w; 1626 timers [timercnt - 1] = w;
1426 upheap ((WT *)timers, timercnt - 1); 1627 upheap ((WT *)timers, timercnt - 1);
1427 1628
1629 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1630}
1631
1632void noinline
1633ev_timer_stop (EV_P_ ev_timer *w)
1634{
1635 clear_pending (EV_A_ (W)w);
1636 if (expect_false (!ev_is_active (w)))
1637 return;
1638
1428 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1639 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1429}
1430 1640
1431void 1641 {
1432ev_timer_stop (EV_P_ struct ev_timer *w) 1642 int active = ((W)w)->active;
1433{
1434 ev_clear_pending (EV_A_ (W)w);
1435 if (expect_false (!ev_is_active (w)))
1436 return;
1437 1643
1438 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1439
1440 if (expect_true (((W)w)->active < timercnt--)) 1644 if (expect_true (--active < --timercnt))
1441 { 1645 {
1442 timers [((W)w)->active - 1] = timers [timercnt]; 1646 timers [active] = timers [timercnt];
1443 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1647 adjustheap ((WT *)timers, timercnt, active);
1444 } 1648 }
1649 }
1445 1650
1446 ((WT)w)->at -= mn_now; 1651 ((WT)w)->at -= mn_now;
1447 1652
1448 ev_stop (EV_A_ (W)w); 1653 ev_stop (EV_A_ (W)w);
1449} 1654}
1450 1655
1451void 1656void noinline
1452ev_timer_again (EV_P_ struct ev_timer *w) 1657ev_timer_again (EV_P_ ev_timer *w)
1453{ 1658{
1454 if (ev_is_active (w)) 1659 if (ev_is_active (w))
1455 { 1660 {
1456 if (w->repeat) 1661 if (w->repeat)
1457 { 1662 {
1466 w->at = w->repeat; 1671 w->at = w->repeat;
1467 ev_timer_start (EV_A_ w); 1672 ev_timer_start (EV_A_ w);
1468 } 1673 }
1469} 1674}
1470 1675
1471#if EV_PERIODICS 1676#if EV_PERIODIC_ENABLE
1472void 1677void noinline
1473ev_periodic_start (EV_P_ struct ev_periodic *w) 1678ev_periodic_start (EV_P_ ev_periodic *w)
1474{ 1679{
1475 if (expect_false (ev_is_active (w))) 1680 if (expect_false (ev_is_active (w)))
1476 return; 1681 return;
1477 1682
1478 if (w->reschedule_cb) 1683 if (w->reschedule_cb)
1479 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1684 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1480 else if (w->interval) 1685 else if (w->interval)
1481 { 1686 {
1482 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1687 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1483 /* this formula differs from the one in periodic_reify because we do not always round up */ 1688 /* this formula differs from the one in periodic_reify because we do not always round up */
1484 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1689 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1485 } 1690 }
1691 else
1692 ((WT)w)->at = w->offset;
1486 1693
1487 ev_start (EV_A_ (W)w, ++periodiccnt); 1694 ev_start (EV_A_ (W)w, ++periodiccnt);
1488 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1695 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1489 periodics [periodiccnt - 1] = w; 1696 periodics [periodiccnt - 1] = w;
1490 upheap ((WT *)periodics, periodiccnt - 1); 1697 upheap ((WT *)periodics, periodiccnt - 1);
1491 1698
1699 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1700}
1701
1702void noinline
1703ev_periodic_stop (EV_P_ ev_periodic *w)
1704{
1705 clear_pending (EV_A_ (W)w);
1706 if (expect_false (!ev_is_active (w)))
1707 return;
1708
1492 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1709 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1493}
1494 1710
1495void 1711 {
1496ev_periodic_stop (EV_P_ struct ev_periodic *w) 1712 int active = ((W)w)->active;
1497{
1498 ev_clear_pending (EV_A_ (W)w);
1499 if (expect_false (!ev_is_active (w)))
1500 return;
1501 1713
1502 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1503
1504 if (expect_true (((W)w)->active < periodiccnt--)) 1714 if (expect_true (--active < --periodiccnt))
1505 { 1715 {
1506 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1716 periodics [active] = periodics [periodiccnt];
1507 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1717 adjustheap ((WT *)periodics, periodiccnt, active);
1508 } 1718 }
1719 }
1509 1720
1510 ev_stop (EV_A_ (W)w); 1721 ev_stop (EV_A_ (W)w);
1511} 1722}
1512 1723
1513void 1724void noinline
1514ev_periodic_again (EV_P_ struct ev_periodic *w) 1725ev_periodic_again (EV_P_ ev_periodic *w)
1515{ 1726{
1516 /* TODO: use adjustheap and recalculation */ 1727 /* TODO: use adjustheap and recalculation */
1517 ev_periodic_stop (EV_A_ w); 1728 ev_periodic_stop (EV_A_ w);
1518 ev_periodic_start (EV_A_ w); 1729 ev_periodic_start (EV_A_ w);
1519} 1730}
1520#endif 1731#endif
1521 1732
1522void
1523ev_idle_start (EV_P_ struct ev_idle *w)
1524{
1525 if (expect_false (ev_is_active (w)))
1526 return;
1527
1528 ev_start (EV_A_ (W)w, ++idlecnt);
1529 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1530 idles [idlecnt - 1] = w;
1531}
1532
1533void
1534ev_idle_stop (EV_P_ struct ev_idle *w)
1535{
1536 ev_clear_pending (EV_A_ (W)w);
1537 if (expect_false (!ev_is_active (w)))
1538 return;
1539
1540 idles [((W)w)->active - 1] = idles [--idlecnt];
1541 ev_stop (EV_A_ (W)w);
1542}
1543
1544void
1545ev_prepare_start (EV_P_ struct ev_prepare *w)
1546{
1547 if (expect_false (ev_is_active (w)))
1548 return;
1549
1550 ev_start (EV_A_ (W)w, ++preparecnt);
1551 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1552 prepares [preparecnt - 1] = w;
1553}
1554
1555void
1556ev_prepare_stop (EV_P_ struct ev_prepare *w)
1557{
1558 ev_clear_pending (EV_A_ (W)w);
1559 if (expect_false (!ev_is_active (w)))
1560 return;
1561
1562 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1563 ev_stop (EV_A_ (W)w);
1564}
1565
1566void
1567ev_check_start (EV_P_ struct ev_check *w)
1568{
1569 if (expect_false (ev_is_active (w)))
1570 return;
1571
1572 ev_start (EV_A_ (W)w, ++checkcnt);
1573 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1574 checks [checkcnt - 1] = w;
1575}
1576
1577void
1578ev_check_stop (EV_P_ struct ev_check *w)
1579{
1580 ev_clear_pending (EV_A_ (W)w);
1581 if (expect_false (!ev_is_active (w)))
1582 return;
1583
1584 checks [((W)w)->active - 1] = checks [--checkcnt];
1585 ev_stop (EV_A_ (W)w);
1586}
1587
1588#ifndef SA_RESTART 1733#ifndef SA_RESTART
1589# define SA_RESTART 0 1734# define SA_RESTART 0
1590#endif 1735#endif
1591 1736
1592void 1737void noinline
1593ev_signal_start (EV_P_ struct ev_signal *w) 1738ev_signal_start (EV_P_ ev_signal *w)
1594{ 1739{
1595#if EV_MULTIPLICITY 1740#if EV_MULTIPLICITY
1596 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1741 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1597#endif 1742#endif
1598 if (expect_false (ev_is_active (w))) 1743 if (expect_false (ev_is_active (w)))
1616 sigaction (w->signum, &sa, 0); 1761 sigaction (w->signum, &sa, 0);
1617#endif 1762#endif
1618 } 1763 }
1619} 1764}
1620 1765
1621void 1766void noinline
1622ev_signal_stop (EV_P_ struct ev_signal *w) 1767ev_signal_stop (EV_P_ ev_signal *w)
1623{ 1768{
1624 ev_clear_pending (EV_A_ (W)w); 1769 clear_pending (EV_A_ (W)w);
1625 if (expect_false (!ev_is_active (w))) 1770 if (expect_false (!ev_is_active (w)))
1626 return; 1771 return;
1627 1772
1628 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1773 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1629 ev_stop (EV_A_ (W)w); 1774 ev_stop (EV_A_ (W)w);
1631 if (!signals [w->signum - 1].head) 1776 if (!signals [w->signum - 1].head)
1632 signal (w->signum, SIG_DFL); 1777 signal (w->signum, SIG_DFL);
1633} 1778}
1634 1779
1635void 1780void
1636ev_child_start (EV_P_ struct ev_child *w) 1781ev_child_start (EV_P_ ev_child *w)
1637{ 1782{
1638#if EV_MULTIPLICITY 1783#if EV_MULTIPLICITY
1639 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1784 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1640#endif 1785#endif
1641 if (expect_false (ev_is_active (w))) 1786 if (expect_false (ev_is_active (w)))
1642 return; 1787 return;
1643 1788
1644 ev_start (EV_A_ (W)w, 1); 1789 ev_start (EV_A_ (W)w, 1);
1645 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1790 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1646} 1791}
1647 1792
1648void 1793void
1649ev_child_stop (EV_P_ struct ev_child *w) 1794ev_child_stop (EV_P_ ev_child *w)
1650{ 1795{
1651 ev_clear_pending (EV_A_ (W)w); 1796 clear_pending (EV_A_ (W)w);
1652 if (expect_false (!ev_is_active (w))) 1797 if (expect_false (!ev_is_active (w)))
1653 return; 1798 return;
1654 1799
1655 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1800 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1656 ev_stop (EV_A_ (W)w); 1801 ev_stop (EV_A_ (W)w);
1657} 1802}
1658 1803
1804#if EV_STAT_ENABLE
1805
1806# ifdef _WIN32
1807# undef lstat
1808# define lstat(a,b) _stati64 (a,b)
1809# endif
1810
1811#define DEF_STAT_INTERVAL 5.0074891
1812#define MIN_STAT_INTERVAL 0.1074891
1813
1814static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1815
1816#if EV_USE_INOTIFY
1817# define EV_INOTIFY_BUFSIZE 8192
1818
1819static void noinline
1820infy_add (EV_P_ ev_stat *w)
1821{
1822 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1823
1824 if (w->wd < 0)
1825 {
1826 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1827
1828 /* monitor some parent directory for speedup hints */
1829 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1830 {
1831 char path [4096];
1832 strcpy (path, w->path);
1833
1834 do
1835 {
1836 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1837 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1838
1839 char *pend = strrchr (path, '/');
1840
1841 if (!pend)
1842 break; /* whoops, no '/', complain to your admin */
1843
1844 *pend = 0;
1845 w->wd = inotify_add_watch (fs_fd, path, mask);
1846 }
1847 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1848 }
1849 }
1850 else
1851 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1852
1853 if (w->wd >= 0)
1854 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1855}
1856
1857static void noinline
1858infy_del (EV_P_ ev_stat *w)
1859{
1860 int slot;
1861 int wd = w->wd;
1862
1863 if (wd < 0)
1864 return;
1865
1866 w->wd = -2;
1867 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1868 wlist_del (&fs_hash [slot].head, (WL)w);
1869
1870 /* remove this watcher, if others are watching it, they will rearm */
1871 inotify_rm_watch (fs_fd, wd);
1872}
1873
1874static void noinline
1875infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1876{
1877 if (slot < 0)
1878 /* overflow, need to check for all hahs slots */
1879 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1880 infy_wd (EV_A_ slot, wd, ev);
1881 else
1882 {
1883 WL w_;
1884
1885 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1886 {
1887 ev_stat *w = (ev_stat *)w_;
1888 w_ = w_->next; /* lets us remove this watcher and all before it */
1889
1890 if (w->wd == wd || wd == -1)
1891 {
1892 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1893 {
1894 w->wd = -1;
1895 infy_add (EV_A_ w); /* re-add, no matter what */
1896 }
1897
1898 stat_timer_cb (EV_A_ &w->timer, 0);
1899 }
1900 }
1901 }
1902}
1903
1904static void
1905infy_cb (EV_P_ ev_io *w, int revents)
1906{
1907 char buf [EV_INOTIFY_BUFSIZE];
1908 struct inotify_event *ev = (struct inotify_event *)buf;
1909 int ofs;
1910 int len = read (fs_fd, buf, sizeof (buf));
1911
1912 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1913 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1914}
1915
1916void inline_size
1917infy_init (EV_P)
1918{
1919 if (fs_fd != -2)
1920 return;
1921
1922 fs_fd = inotify_init ();
1923
1924 if (fs_fd >= 0)
1925 {
1926 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1927 ev_set_priority (&fs_w, EV_MAXPRI);
1928 ev_io_start (EV_A_ &fs_w);
1929 }
1930}
1931
1932void inline_size
1933infy_fork (EV_P)
1934{
1935 int slot;
1936
1937 if (fs_fd < 0)
1938 return;
1939
1940 close (fs_fd);
1941 fs_fd = inotify_init ();
1942
1943 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1944 {
1945 WL w_ = fs_hash [slot].head;
1946 fs_hash [slot].head = 0;
1947
1948 while (w_)
1949 {
1950 ev_stat *w = (ev_stat *)w_;
1951 w_ = w_->next; /* lets us add this watcher */
1952
1953 w->wd = -1;
1954
1955 if (fs_fd >= 0)
1956 infy_add (EV_A_ w); /* re-add, no matter what */
1957 else
1958 ev_timer_start (EV_A_ &w->timer);
1959 }
1960
1961 }
1962}
1963
1964#endif
1965
1966void
1967ev_stat_stat (EV_P_ ev_stat *w)
1968{
1969 if (lstat (w->path, &w->attr) < 0)
1970 w->attr.st_nlink = 0;
1971 else if (!w->attr.st_nlink)
1972 w->attr.st_nlink = 1;
1973}
1974
1975static void noinline
1976stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1977{
1978 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1979
1980 /* we copy this here each the time so that */
1981 /* prev has the old value when the callback gets invoked */
1982 w->prev = w->attr;
1983 ev_stat_stat (EV_A_ w);
1984
1985 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1986 if (
1987 w->prev.st_dev != w->attr.st_dev
1988 || w->prev.st_ino != w->attr.st_ino
1989 || w->prev.st_mode != w->attr.st_mode
1990 || w->prev.st_nlink != w->attr.st_nlink
1991 || w->prev.st_uid != w->attr.st_uid
1992 || w->prev.st_gid != w->attr.st_gid
1993 || w->prev.st_rdev != w->attr.st_rdev
1994 || w->prev.st_size != w->attr.st_size
1995 || w->prev.st_atime != w->attr.st_atime
1996 || w->prev.st_mtime != w->attr.st_mtime
1997 || w->prev.st_ctime != w->attr.st_ctime
1998 ) {
1999 #if EV_USE_INOTIFY
2000 infy_del (EV_A_ w);
2001 infy_add (EV_A_ w);
2002 ev_stat_stat (EV_A_ w); /* avoid race... */
2003 #endif
2004
2005 ev_feed_event (EV_A_ w, EV_STAT);
2006 }
2007}
2008
2009void
2010ev_stat_start (EV_P_ ev_stat *w)
2011{
2012 if (expect_false (ev_is_active (w)))
2013 return;
2014
2015 /* since we use memcmp, we need to clear any padding data etc. */
2016 memset (&w->prev, 0, sizeof (ev_statdata));
2017 memset (&w->attr, 0, sizeof (ev_statdata));
2018
2019 ev_stat_stat (EV_A_ w);
2020
2021 if (w->interval < MIN_STAT_INTERVAL)
2022 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2023
2024 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2025 ev_set_priority (&w->timer, ev_priority (w));
2026
2027#if EV_USE_INOTIFY
2028 infy_init (EV_A);
2029
2030 if (fs_fd >= 0)
2031 infy_add (EV_A_ w);
2032 else
2033#endif
2034 ev_timer_start (EV_A_ &w->timer);
2035
2036 ev_start (EV_A_ (W)w, 1);
2037}
2038
2039void
2040ev_stat_stop (EV_P_ ev_stat *w)
2041{
2042 clear_pending (EV_A_ (W)w);
2043 if (expect_false (!ev_is_active (w)))
2044 return;
2045
2046#if EV_USE_INOTIFY
2047 infy_del (EV_A_ w);
2048#endif
2049 ev_timer_stop (EV_A_ &w->timer);
2050
2051 ev_stop (EV_A_ (W)w);
2052}
2053#endif
2054
2055#if EV_IDLE_ENABLE
2056void
2057ev_idle_start (EV_P_ ev_idle *w)
2058{
2059 if (expect_false (ev_is_active (w)))
2060 return;
2061
2062 pri_adjust (EV_A_ (W)w);
2063
2064 {
2065 int active = ++idlecnt [ABSPRI (w)];
2066
2067 ++idleall;
2068 ev_start (EV_A_ (W)w, active);
2069
2070 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2071 idles [ABSPRI (w)][active - 1] = w;
2072 }
2073}
2074
2075void
2076ev_idle_stop (EV_P_ ev_idle *w)
2077{
2078 clear_pending (EV_A_ (W)w);
2079 if (expect_false (!ev_is_active (w)))
2080 return;
2081
2082 {
2083 int active = ((W)w)->active;
2084
2085 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2086 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2087
2088 ev_stop (EV_A_ (W)w);
2089 --idleall;
2090 }
2091}
2092#endif
2093
2094void
2095ev_prepare_start (EV_P_ ev_prepare *w)
2096{
2097 if (expect_false (ev_is_active (w)))
2098 return;
2099
2100 ev_start (EV_A_ (W)w, ++preparecnt);
2101 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2102 prepares [preparecnt - 1] = w;
2103}
2104
2105void
2106ev_prepare_stop (EV_P_ ev_prepare *w)
2107{
2108 clear_pending (EV_A_ (W)w);
2109 if (expect_false (!ev_is_active (w)))
2110 return;
2111
2112 {
2113 int active = ((W)w)->active;
2114 prepares [active - 1] = prepares [--preparecnt];
2115 ((W)prepares [active - 1])->active = active;
2116 }
2117
2118 ev_stop (EV_A_ (W)w);
2119}
2120
2121void
2122ev_check_start (EV_P_ ev_check *w)
2123{
2124 if (expect_false (ev_is_active (w)))
2125 return;
2126
2127 ev_start (EV_A_ (W)w, ++checkcnt);
2128 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2129 checks [checkcnt - 1] = w;
2130}
2131
2132void
2133ev_check_stop (EV_P_ ev_check *w)
2134{
2135 clear_pending (EV_A_ (W)w);
2136 if (expect_false (!ev_is_active (w)))
2137 return;
2138
2139 {
2140 int active = ((W)w)->active;
2141 checks [active - 1] = checks [--checkcnt];
2142 ((W)checks [active - 1])->active = active;
2143 }
2144
2145 ev_stop (EV_A_ (W)w);
2146}
2147
2148#if EV_EMBED_ENABLE
2149void noinline
2150ev_embed_sweep (EV_P_ ev_embed *w)
2151{
2152 ev_loop (w->loop, EVLOOP_NONBLOCK);
2153}
2154
2155static void
2156embed_cb (EV_P_ ev_io *io, int revents)
2157{
2158 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2159
2160 if (ev_cb (w))
2161 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2162 else
2163 ev_embed_sweep (loop, w);
2164}
2165
2166void
2167ev_embed_start (EV_P_ ev_embed *w)
2168{
2169 if (expect_false (ev_is_active (w)))
2170 return;
2171
2172 {
2173 struct ev_loop *loop = w->loop;
2174 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2175 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
2176 }
2177
2178 ev_set_priority (&w->io, ev_priority (w));
2179 ev_io_start (EV_A_ &w->io);
2180
2181 ev_start (EV_A_ (W)w, 1);
2182}
2183
2184void
2185ev_embed_stop (EV_P_ ev_embed *w)
2186{
2187 clear_pending (EV_A_ (W)w);
2188 if (expect_false (!ev_is_active (w)))
2189 return;
2190
2191 ev_io_stop (EV_A_ &w->io);
2192
2193 ev_stop (EV_A_ (W)w);
2194}
2195#endif
2196
2197#if EV_FORK_ENABLE
2198void
2199ev_fork_start (EV_P_ ev_fork *w)
2200{
2201 if (expect_false (ev_is_active (w)))
2202 return;
2203
2204 ev_start (EV_A_ (W)w, ++forkcnt);
2205 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2206 forks [forkcnt - 1] = w;
2207}
2208
2209void
2210ev_fork_stop (EV_P_ ev_fork *w)
2211{
2212 clear_pending (EV_A_ (W)w);
2213 if (expect_false (!ev_is_active (w)))
2214 return;
2215
2216 {
2217 int active = ((W)w)->active;
2218 forks [active - 1] = forks [--forkcnt];
2219 ((W)forks [active - 1])->active = active;
2220 }
2221
2222 ev_stop (EV_A_ (W)w);
2223}
2224#endif
2225
1659/*****************************************************************************/ 2226/*****************************************************************************/
1660 2227
1661struct ev_once 2228struct ev_once
1662{ 2229{
1663 struct ev_io io; 2230 ev_io io;
1664 struct ev_timer to; 2231 ev_timer to;
1665 void (*cb)(int revents, void *arg); 2232 void (*cb)(int revents, void *arg);
1666 void *arg; 2233 void *arg;
1667}; 2234};
1668 2235
1669static void 2236static void
1678 2245
1679 cb (revents, arg); 2246 cb (revents, arg);
1680} 2247}
1681 2248
1682static void 2249static void
1683once_cb_io (EV_P_ struct ev_io *w, int revents) 2250once_cb_io (EV_P_ ev_io *w, int revents)
1684{ 2251{
1685 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2252 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1686} 2253}
1687 2254
1688static void 2255static void
1689once_cb_to (EV_P_ struct ev_timer *w, int revents) 2256once_cb_to (EV_P_ ev_timer *w, int revents)
1690{ 2257{
1691 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2258 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1692} 2259}
1693 2260
1694void 2261void

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines