ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.134 by root, Fri Nov 23 19:13:33 2007 UTC vs.
Revision 1.178 by root, Tue Dec 11 18:36:11 2007 UTC

94# else 94# else
95# define EV_USE_PORT 0 95# define EV_USE_PORT 0
96# endif 96# endif
97# endif 97# endif
98 98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
105# endif
106
99#endif 107#endif
100 108
101#include <math.h> 109#include <math.h>
102#include <stdlib.h> 110#include <stdlib.h>
103#include <fcntl.h> 111#include <fcntl.h>
110#include <sys/types.h> 118#include <sys/types.h>
111#include <time.h> 119#include <time.h>
112 120
113#include <signal.h> 121#include <signal.h>
114 122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
115#ifndef _WIN32 129#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 130# include <sys/time.h>
118# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
119#else 133#else
120# define WIN32_LEAN_AND_MEAN 134# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 135# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 136# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 137# define EV_SELECT_IS_WINSOCKET 1
156 170
157#ifndef EV_USE_PORT 171#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 172# define EV_USE_PORT 0
159#endif 173#endif
160 174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
161/**/ 195/**/
162 196
163#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 198# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 199# define EV_USE_MONOTONIC 0
172 206
173#if EV_SELECT_IS_WINSOCKET 207#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 208# include <winsock.h>
175#endif 209#endif
176 210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
177/**/ 219/**/
220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 230
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189 234
190#if __GNUC__ >= 3 235#if __GNUC__ >= 3
191# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline static inline 237# define noinline __attribute__ ((noinline))
193#else 238#else
194# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
195# define inline static 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
196#endif 244#endif
197 245
198#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
200 255
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
203 258
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 259#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 260#define EMPTY2(a,b) /* used to suppress some warnings */
206 261
207typedef struct ev_watcher *W; 262typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 263typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 264typedef ev_watcher_time *WT;
210 265
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
212 267
213#ifdef _WIN32 268#ifdef _WIN32
214# include "ev_win32.c" 269# include "ev_win32.c"
216 271
217/*****************************************************************************/ 272/*****************************************************************************/
218 273
219static void (*syserr_cb)(const char *msg); 274static void (*syserr_cb)(const char *msg);
220 275
276void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 277ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 278{
223 syserr_cb = cb; 279 syserr_cb = cb;
224} 280}
225 281
226static void 282static void noinline
227syserr (const char *msg) 283syserr (const char *msg)
228{ 284{
229 if (!msg) 285 if (!msg)
230 msg = "(libev) system error"; 286 msg = "(libev) system error";
231 287
238 } 294 }
239} 295}
240 296
241static void *(*alloc)(void *ptr, long size); 297static void *(*alloc)(void *ptr, long size);
242 298
299void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 300ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 301{
245 alloc = cb; 302 alloc = cb;
246} 303}
247 304
248static void * 305inline_speed void *
249ev_realloc (void *ptr, long size) 306ev_realloc (void *ptr, long size)
250{ 307{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
252 309
253 if (!ptr && size) 310 if (!ptr && size)
277typedef struct 334typedef struct
278{ 335{
279 W w; 336 W w;
280 int events; 337 int events;
281} ANPENDING; 338} ANPENDING;
339
340#if EV_USE_INOTIFY
341typedef struct
342{
343 WL head;
344} ANFS;
345#endif
282 346
283#if EV_MULTIPLICITY 347#if EV_MULTIPLICITY
284 348
285 struct ev_loop 349 struct ev_loop
286 { 350 {
320 gettimeofday (&tv, 0); 384 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 385 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif 386#endif
323} 387}
324 388
325inline ev_tstamp 389ev_tstamp inline_size
326get_clock (void) 390get_clock (void)
327{ 391{
328#if EV_USE_MONOTONIC 392#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 393 if (expect_true (have_monotonic))
330 { 394 {
343{ 407{
344 return ev_rt_now; 408 return ev_rt_now;
345} 409}
346#endif 410#endif
347 411
348#define array_roundsize(type,n) (((n) | 4) & ~3) 412int inline_size
413array_nextsize (int elem, int cur, int cnt)
414{
415 int ncur = cur + 1;
416
417 do
418 ncur <<= 1;
419 while (cnt > ncur);
420
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096)
423 {
424 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
426 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem;
428 }
429
430 return ncur;
431}
432
433static noinline void *
434array_realloc (int elem, void *base, int *cur, int cnt)
435{
436 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur);
438}
349 439
350#define array_needsize(type,base,cur,cnt,init) \ 440#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 441 if (expect_false ((cnt) > (cur))) \
352 { \ 442 { \
353 int newcnt = cur; \ 443 int ocur_ = (cur); \
354 do \ 444 (base) = (type *)array_realloc \
355 { \ 445 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 446 init ((base) + (ocur_), (cur) - ocur_); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 447 }
364 448
449#if 0
365#define array_slim(type,stem) \ 450#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 451 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 452 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 453 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 454 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 456 }
457#endif
372 458
373#define array_free(stem, idx) \ 459#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
375 461
376/*****************************************************************************/ 462/*****************************************************************************/
377 463
378static void 464void noinline
465ev_feed_event (EV_P_ void *w, int revents)
466{
467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
469
470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents;
478 }
479}
480
481void inline_size
482queue_events (EV_P_ W *events, int eventcnt, int type)
483{
484 int i;
485
486 for (i = 0; i < eventcnt; ++i)
487 ev_feed_event (EV_A_ events [i], type);
488}
489
490/*****************************************************************************/
491
492void inline_size
379anfds_init (ANFD *base, int count) 493anfds_init (ANFD *base, int count)
380{ 494{
381 while (count--) 495 while (count--)
382 { 496 {
383 base->head = 0; 497 base->head = 0;
386 500
387 ++base; 501 ++base;
388 } 502 }
389} 503}
390 504
391void 505void inline_speed
392ev_feed_event (EV_P_ void *w, int revents)
393{
394 W w_ = (W)w;
395
396 if (expect_false (w_->pending))
397 {
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
399 return;
400 }
401
402 if (expect_false (!w_->cb))
403 return;
404
405 w_->pending = ++pendingcnt [ABSPRI (w_)];
406 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
407 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
408 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
409}
410
411static void
412queue_events (EV_P_ W *events, int eventcnt, int type)
413{
414 int i;
415
416 for (i = 0; i < eventcnt; ++i)
417 ev_feed_event (EV_A_ events [i], type);
418}
419
420inline void
421fd_event (EV_P_ int fd, int revents) 506fd_event (EV_P_ int fd, int revents)
422{ 507{
423 ANFD *anfd = anfds + fd; 508 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 509 ev_io *w;
425 510
426 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 511 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
427 { 512 {
428 int ev = w->events & revents; 513 int ev = w->events & revents;
429 514
430 if (ev) 515 if (ev)
431 ev_feed_event (EV_A_ (W)w, ev); 516 ev_feed_event (EV_A_ (W)w, ev);
433} 518}
434 519
435void 520void
436ev_feed_fd_event (EV_P_ int fd, int revents) 521ev_feed_fd_event (EV_P_ int fd, int revents)
437{ 522{
523 if (fd >= 0 && fd < anfdmax)
438 fd_event (EV_A_ fd, revents); 524 fd_event (EV_A_ fd, revents);
439} 525}
440 526
441/*****************************************************************************/ 527void inline_size
442
443inline void
444fd_reify (EV_P) 528fd_reify (EV_P)
445{ 529{
446 int i; 530 int i;
447 531
448 for (i = 0; i < fdchangecnt; ++i) 532 for (i = 0; i < fdchangecnt; ++i)
449 { 533 {
450 int fd = fdchanges [i]; 534 int fd = fdchanges [i];
451 ANFD *anfd = anfds + fd; 535 ANFD *anfd = anfds + fd;
452 struct ev_io *w; 536 ev_io *w;
453 537
454 int events = 0; 538 int events = 0;
455 539
456 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
457 events |= w->events; 541 events |= w->events;
458 542
459#if EV_SELECT_IS_WINSOCKET 543#if EV_SELECT_IS_WINSOCKET
460 if (events) 544 if (events)
461 { 545 {
472 } 556 }
473 557
474 fdchangecnt = 0; 558 fdchangecnt = 0;
475} 559}
476 560
477static void 561void inline_size
478fd_change (EV_P_ int fd) 562fd_change (EV_P_ int fd)
479{ 563{
480 if (expect_false (anfds [fd].reify)) 564 if (expect_false (anfds [fd].reify))
481 return; 565 return;
482 566
485 ++fdchangecnt; 569 ++fdchangecnt;
486 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
487 fdchanges [fdchangecnt - 1] = fd; 571 fdchanges [fdchangecnt - 1] = fd;
488} 572}
489 573
490static void 574void inline_speed
491fd_kill (EV_P_ int fd) 575fd_kill (EV_P_ int fd)
492{ 576{
493 struct ev_io *w; 577 ev_io *w;
494 578
495 while ((w = (struct ev_io *)anfds [fd].head)) 579 while ((w = (ev_io *)anfds [fd].head))
496 { 580 {
497 ev_io_stop (EV_A_ w); 581 ev_io_stop (EV_A_ w);
498 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 582 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
499 } 583 }
500} 584}
501 585
502inline int 586int inline_size
503fd_valid (int fd) 587fd_valid (int fd)
504{ 588{
505#ifdef _WIN32 589#ifdef _WIN32
506 return _get_osfhandle (fd) != -1; 590 return _get_osfhandle (fd) != -1;
507#else 591#else
508 return fcntl (fd, F_GETFD) != -1; 592 return fcntl (fd, F_GETFD) != -1;
509#endif 593#endif
510} 594}
511 595
512/* called on EBADF to verify fds */ 596/* called on EBADF to verify fds */
513static void 597static void noinline
514fd_ebadf (EV_P) 598fd_ebadf (EV_P)
515{ 599{
516 int fd; 600 int fd;
517 601
518 for (fd = 0; fd < anfdmax; ++fd) 602 for (fd = 0; fd < anfdmax; ++fd)
520 if (!fd_valid (fd) == -1 && errno == EBADF) 604 if (!fd_valid (fd) == -1 && errno == EBADF)
521 fd_kill (EV_A_ fd); 605 fd_kill (EV_A_ fd);
522} 606}
523 607
524/* called on ENOMEM in select/poll to kill some fds and retry */ 608/* called on ENOMEM in select/poll to kill some fds and retry */
525static void 609static void noinline
526fd_enomem (EV_P) 610fd_enomem (EV_P)
527{ 611{
528 int fd; 612 int fd;
529 613
530 for (fd = anfdmax; fd--; ) 614 for (fd = anfdmax; fd--; )
534 return; 618 return;
535 } 619 }
536} 620}
537 621
538/* usually called after fork if backend needs to re-arm all fds from scratch */ 622/* usually called after fork if backend needs to re-arm all fds from scratch */
539static void 623static void noinline
540fd_rearm_all (EV_P) 624fd_rearm_all (EV_P)
541{ 625{
542 int fd; 626 int fd;
543 627
544 /* this should be highly optimised to not do anything but set a flag */
545 for (fd = 0; fd < anfdmax; ++fd) 628 for (fd = 0; fd < anfdmax; ++fd)
546 if (anfds [fd].events) 629 if (anfds [fd].events)
547 { 630 {
548 anfds [fd].events = 0; 631 anfds [fd].events = 0;
549 fd_change (EV_A_ fd); 632 fd_change (EV_A_ fd);
550 } 633 }
551} 634}
552 635
553/*****************************************************************************/ 636/*****************************************************************************/
554 637
555static void 638void inline_speed
556upheap (WT *heap, int k) 639upheap (WT *heap, int k)
557{ 640{
558 WT w = heap [k]; 641 WT w = heap [k];
559 642
560 while (k && heap [k >> 1]->at > w->at) 643 while (k && heap [k >> 1]->at > w->at)
567 heap [k] = w; 650 heap [k] = w;
568 ((W)heap [k])->active = k + 1; 651 ((W)heap [k])->active = k + 1;
569 652
570} 653}
571 654
572static void 655void inline_speed
573downheap (WT *heap, int N, int k) 656downheap (WT *heap, int N, int k)
574{ 657{
575 WT w = heap [k]; 658 WT w = heap [k];
576 659
577 while (k < (N >> 1)) 660 while (k < (N >> 1))
591 674
592 heap [k] = w; 675 heap [k] = w;
593 ((W)heap [k])->active = k + 1; 676 ((W)heap [k])->active = k + 1;
594} 677}
595 678
596inline void 679void inline_size
597adjustheap (WT *heap, int N, int k) 680adjustheap (WT *heap, int N, int k)
598{ 681{
599 upheap (heap, k); 682 upheap (heap, k);
600 downheap (heap, N, k); 683 downheap (heap, N, k);
601} 684}
611static ANSIG *signals; 694static ANSIG *signals;
612static int signalmax; 695static int signalmax;
613 696
614static int sigpipe [2]; 697static int sigpipe [2];
615static sig_atomic_t volatile gotsig; 698static sig_atomic_t volatile gotsig;
616static struct ev_io sigev; 699static ev_io sigev;
617 700
618static void 701void inline_size
619signals_init (ANSIG *base, int count) 702signals_init (ANSIG *base, int count)
620{ 703{
621 while (count--) 704 while (count--)
622 { 705 {
623 base->head = 0; 706 base->head = 0;
643 write (sigpipe [1], &signum, 1); 726 write (sigpipe [1], &signum, 1);
644 errno = old_errno; 727 errno = old_errno;
645 } 728 }
646} 729}
647 730
648void 731void noinline
649ev_feed_signal_event (EV_P_ int signum) 732ev_feed_signal_event (EV_P_ int signum)
650{ 733{
651 WL w; 734 WL w;
652 735
653#if EV_MULTIPLICITY 736#if EV_MULTIPLICITY
664 for (w = signals [signum].head; w; w = w->next) 747 for (w = signals [signum].head; w; w = w->next)
665 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 748 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
666} 749}
667 750
668static void 751static void
669sigcb (EV_P_ struct ev_io *iow, int revents) 752sigcb (EV_P_ ev_io *iow, int revents)
670{ 753{
671 int signum; 754 int signum;
672 755
673 read (sigpipe [0], &revents, 1); 756 read (sigpipe [0], &revents, 1);
674 gotsig = 0; 757 gotsig = 0;
676 for (signum = signalmax; signum--; ) 759 for (signum = signalmax; signum--; )
677 if (signals [signum].gotsig) 760 if (signals [signum].gotsig)
678 ev_feed_signal_event (EV_A_ signum + 1); 761 ev_feed_signal_event (EV_A_ signum + 1);
679} 762}
680 763
681static void 764void inline_speed
682fd_intern (int fd) 765fd_intern (int fd)
683{ 766{
684#ifdef _WIN32 767#ifdef _WIN32
685 int arg = 1; 768 int arg = 1;
686 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 769 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
688 fcntl (fd, F_SETFD, FD_CLOEXEC); 771 fcntl (fd, F_SETFD, FD_CLOEXEC);
689 fcntl (fd, F_SETFL, O_NONBLOCK); 772 fcntl (fd, F_SETFL, O_NONBLOCK);
690#endif 773#endif
691} 774}
692 775
693static void 776static void noinline
694siginit (EV_P) 777siginit (EV_P)
695{ 778{
696 fd_intern (sigpipe [0]); 779 fd_intern (sigpipe [0]);
697 fd_intern (sigpipe [1]); 780 fd_intern (sigpipe [1]);
698 781
701 ev_unref (EV_A); /* child watcher should not keep loop alive */ 784 ev_unref (EV_A); /* child watcher should not keep loop alive */
702} 785}
703 786
704/*****************************************************************************/ 787/*****************************************************************************/
705 788
706static struct ev_child *childs [PID_HASHSIZE]; 789static ev_child *childs [EV_PID_HASHSIZE];
707 790
708#ifndef _WIN32 791#ifndef _WIN32
709 792
710static struct ev_signal childev; 793static ev_signal childev;
794
795void inline_speed
796child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
797{
798 ev_child *w;
799
800 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
801 if (w->pid == pid || !w->pid)
802 {
803 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
804 w->rpid = pid;
805 w->rstatus = status;
806 ev_feed_event (EV_A_ (W)w, EV_CHILD);
807 }
808}
711 809
712#ifndef WCONTINUED 810#ifndef WCONTINUED
713# define WCONTINUED 0 811# define WCONTINUED 0
714#endif 812#endif
715 813
716static void 814static void
717child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
718{
719 struct ev_child *w;
720
721 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
722 if (w->pid == pid || !w->pid)
723 {
724 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
725 w->rpid = pid;
726 w->rstatus = status;
727 ev_feed_event (EV_A_ (W)w, EV_CHILD);
728 }
729}
730
731static void
732childcb (EV_P_ struct ev_signal *sw, int revents) 815childcb (EV_P_ ev_signal *sw, int revents)
733{ 816{
734 int pid, status; 817 int pid, status;
735 818
819 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
736 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 820 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
737 { 821 if (!WCONTINUED
822 || errno != EINVAL
823 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
824 return;
825
738 /* make sure we are called again until all childs have been reaped */ 826 /* make sure we are called again until all childs have been reaped */
739 /* we need to do it this way so that the callback gets called before we continue */ 827 /* we need to do it this way so that the callback gets called before we continue */
740 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 828 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
741 829
742 child_reap (EV_A_ sw, pid, pid, status); 830 child_reap (EV_A_ sw, pid, pid, status);
831 if (EV_PID_HASHSIZE > 1)
743 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 832 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
744 }
745} 833}
746 834
747#endif 835#endif
748 836
749/*****************************************************************************/ 837/*****************************************************************************/
775{ 863{
776 return EV_VERSION_MINOR; 864 return EV_VERSION_MINOR;
777} 865}
778 866
779/* return true if we are running with elevated privileges and should ignore env variables */ 867/* return true if we are running with elevated privileges and should ignore env variables */
780static int 868int inline_size
781enable_secure (void) 869enable_secure (void)
782{ 870{
783#ifdef _WIN32 871#ifdef _WIN32
784 return 0; 872 return 0;
785#else 873#else
832ev_backend (EV_P) 920ev_backend (EV_P)
833{ 921{
834 return backend; 922 return backend;
835} 923}
836 924
837static void 925unsigned int
926ev_loop_count (EV_P)
927{
928 return loop_count;
929}
930
931static void noinline
838loop_init (EV_P_ unsigned int flags) 932loop_init (EV_P_ unsigned int flags)
839{ 933{
840 if (!backend) 934 if (!backend)
841 { 935 {
842#if EV_USE_MONOTONIC 936#if EV_USE_MONOTONIC
850 ev_rt_now = ev_time (); 944 ev_rt_now = ev_time ();
851 mn_now = get_clock (); 945 mn_now = get_clock ();
852 now_floor = mn_now; 946 now_floor = mn_now;
853 rtmn_diff = ev_rt_now - mn_now; 947 rtmn_diff = ev_rt_now - mn_now;
854 948
949 /* pid check not overridable via env */
950#ifndef _WIN32
951 if (flags & EVFLAG_FORKCHECK)
952 curpid = getpid ();
953#endif
954
855 if (!(flags & EVFLAG_NOENV) 955 if (!(flags & EVFLAG_NOENV)
856 && !enable_secure () 956 && !enable_secure ()
857 && getenv ("LIBEV_FLAGS")) 957 && getenv ("LIBEV_FLAGS"))
858 flags = atoi (getenv ("LIBEV_FLAGS")); 958 flags = atoi (getenv ("LIBEV_FLAGS"));
859 959
860 if (!(flags & 0x0000ffffUL)) 960 if (!(flags & 0x0000ffffUL))
861 flags |= ev_recommended_backends (); 961 flags |= ev_recommended_backends ();
862 962
863 backend = 0; 963 backend = 0;
964 backend_fd = -1;
965#if EV_USE_INOTIFY
966 fs_fd = -2;
967#endif
968
864#if EV_USE_PORT 969#if EV_USE_PORT
865 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 970 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
866#endif 971#endif
867#if EV_USE_KQUEUE 972#if EV_USE_KQUEUE
868 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 973 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
880 ev_init (&sigev, sigcb); 985 ev_init (&sigev, sigcb);
881 ev_set_priority (&sigev, EV_MAXPRI); 986 ev_set_priority (&sigev, EV_MAXPRI);
882 } 987 }
883} 988}
884 989
885static void 990static void noinline
886loop_destroy (EV_P) 991loop_destroy (EV_P)
887{ 992{
888 int i; 993 int i;
994
995#if EV_USE_INOTIFY
996 if (fs_fd >= 0)
997 close (fs_fd);
998#endif
999
1000 if (backend_fd >= 0)
1001 close (backend_fd);
889 1002
890#if EV_USE_PORT 1003#if EV_USE_PORT
891 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1004 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
892#endif 1005#endif
893#if EV_USE_KQUEUE 1006#if EV_USE_KQUEUE
902#if EV_USE_SELECT 1015#if EV_USE_SELECT
903 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1016 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
904#endif 1017#endif
905 1018
906 for (i = NUMPRI; i--; ) 1019 for (i = NUMPRI; i--; )
1020 {
907 array_free (pending, [i]); 1021 array_free (pending, [i]);
1022#if EV_IDLE_ENABLE
1023 array_free (idle, [i]);
1024#endif
1025 }
908 1026
909 /* have to use the microsoft-never-gets-it-right macro */ 1027 /* have to use the microsoft-never-gets-it-right macro */
910 array_free (fdchange, EMPTY0); 1028 array_free (fdchange, EMPTY);
911 array_free (timer, EMPTY0); 1029 array_free (timer, EMPTY);
912#if EV_PERIODICS 1030#if EV_PERIODIC_ENABLE
913 array_free (periodic, EMPTY0); 1031 array_free (periodic, EMPTY);
914#endif 1032#endif
915 array_free (idle, EMPTY0);
916 array_free (prepare, EMPTY0); 1033 array_free (prepare, EMPTY);
917 array_free (check, EMPTY0); 1034 array_free (check, EMPTY);
918 1035
919 backend = 0; 1036 backend = 0;
920} 1037}
921 1038
922static void 1039void inline_size infy_fork (EV_P);
1040
1041void inline_size
923loop_fork (EV_P) 1042loop_fork (EV_P)
924{ 1043{
925#if EV_USE_PORT 1044#if EV_USE_PORT
926 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1045 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
927#endif 1046#endif
928#if EV_USE_KQUEUE 1047#if EV_USE_KQUEUE
929 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1048 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
930#endif 1049#endif
931#if EV_USE_EPOLL 1050#if EV_USE_EPOLL
932 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1051 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1052#endif
1053#if EV_USE_INOTIFY
1054 infy_fork (EV_A);
933#endif 1055#endif
934 1056
935 if (ev_is_active (&sigev)) 1057 if (ev_is_active (&sigev))
936 { 1058 {
937 /* default loop */ 1059 /* default loop */
1053 postfork = 1; 1175 postfork = 1;
1054} 1176}
1055 1177
1056/*****************************************************************************/ 1178/*****************************************************************************/
1057 1179
1058static int 1180void
1059any_pending (EV_P) 1181ev_invoke (EV_P_ void *w, int revents)
1060{ 1182{
1061 int pri; 1183 EV_CB_INVOKE ((W)w, revents);
1062
1063 for (pri = NUMPRI; pri--; )
1064 if (pendingcnt [pri])
1065 return 1;
1066
1067 return 0;
1068} 1184}
1069 1185
1070inline void 1186void inline_speed
1071call_pending (EV_P) 1187call_pending (EV_P)
1072{ 1188{
1073 int pri; 1189 int pri;
1074 1190
1075 for (pri = NUMPRI; pri--; ) 1191 for (pri = NUMPRI; pri--; )
1077 { 1193 {
1078 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1194 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1079 1195
1080 if (expect_true (p->w)) 1196 if (expect_true (p->w))
1081 { 1197 {
1198 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1199
1082 p->w->pending = 0; 1200 p->w->pending = 0;
1083 EV_CB_INVOKE (p->w, p->events); 1201 EV_CB_INVOKE (p->w, p->events);
1084 } 1202 }
1085 } 1203 }
1086} 1204}
1087 1205
1088inline void 1206void inline_size
1089timers_reify (EV_P) 1207timers_reify (EV_P)
1090{ 1208{
1091 while (timercnt && ((WT)timers [0])->at <= mn_now) 1209 while (timercnt && ((WT)timers [0])->at <= mn_now)
1092 { 1210 {
1093 struct ev_timer *w = timers [0]; 1211 ev_timer *w = timers [0];
1094 1212
1095 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1213 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1096 1214
1097 /* first reschedule or stop timer */ 1215 /* first reschedule or stop timer */
1098 if (w->repeat) 1216 if (w->repeat)
1099 { 1217 {
1100 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1218 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1110 1228
1111 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1229 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1112 } 1230 }
1113} 1231}
1114 1232
1115#if EV_PERIODICS 1233#if EV_PERIODIC_ENABLE
1116inline void 1234void inline_size
1117periodics_reify (EV_P) 1235periodics_reify (EV_P)
1118{ 1236{
1119 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1237 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1120 { 1238 {
1121 struct ev_periodic *w = periodics [0]; 1239 ev_periodic *w = periodics [0];
1122 1240
1123 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1241 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1124 1242
1125 /* first reschedule or stop timer */ 1243 /* first reschedule or stop timer */
1126 if (w->reschedule_cb) 1244 if (w->reschedule_cb)
1127 { 1245 {
1128 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1246 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1129 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1247 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1130 downheap ((WT *)periodics, periodiccnt, 0); 1248 downheap ((WT *)periodics, periodiccnt, 0);
1131 } 1249 }
1132 else if (w->interval) 1250 else if (w->interval)
1133 { 1251 {
1134 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1252 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1253 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1135 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1136 downheap ((WT *)periodics, periodiccnt, 0); 1255 downheap ((WT *)periodics, periodiccnt, 0);
1137 } 1256 }
1138 else 1257 else
1139 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1140 1259
1141 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1142 } 1261 }
1143} 1262}
1144 1263
1145static void 1264static void noinline
1146periodics_reschedule (EV_P) 1265periodics_reschedule (EV_P)
1147{ 1266{
1148 int i; 1267 int i;
1149 1268
1150 /* adjust periodics after time jump */ 1269 /* adjust periodics after time jump */
1151 for (i = 0; i < periodiccnt; ++i) 1270 for (i = 0; i < periodiccnt; ++i)
1152 { 1271 {
1153 struct ev_periodic *w = periodics [i]; 1272 ev_periodic *w = periodics [i];
1154 1273
1155 if (w->reschedule_cb) 1274 if (w->reschedule_cb)
1156 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1157 else if (w->interval) 1276 else if (w->interval)
1158 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1159 } 1278 }
1160 1279
1161 /* now rebuild the heap */ 1280 /* now rebuild the heap */
1162 for (i = periodiccnt >> 1; i--; ) 1281 for (i = periodiccnt >> 1; i--; )
1163 downheap ((WT *)periodics, periodiccnt, i); 1282 downheap ((WT *)periodics, periodiccnt, i);
1164} 1283}
1165#endif 1284#endif
1166 1285
1167inline int 1286#if EV_IDLE_ENABLE
1168time_update_monotonic (EV_P) 1287void inline_size
1288idle_reify (EV_P)
1169{ 1289{
1290 if (expect_false (idleall))
1291 {
1292 int pri;
1293
1294 for (pri = NUMPRI; pri--; )
1295 {
1296 if (pendingcnt [pri])
1297 break;
1298
1299 if (idlecnt [pri])
1300 {
1301 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1302 break;
1303 }
1304 }
1305 }
1306}
1307#endif
1308
1309void inline_speed
1310time_update (EV_P_ ev_tstamp max_block)
1311{
1312 int i;
1313
1314#if EV_USE_MONOTONIC
1315 if (expect_true (have_monotonic))
1316 {
1317 ev_tstamp odiff = rtmn_diff;
1318
1170 mn_now = get_clock (); 1319 mn_now = get_clock ();
1171 1320
1321 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1322 /* interpolate in the meantime */
1172 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1323 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1173 { 1324 {
1174 ev_rt_now = rtmn_diff + mn_now; 1325 ev_rt_now = rtmn_diff + mn_now;
1175 return 0; 1326 return;
1176 } 1327 }
1177 else 1328
1178 {
1179 now_floor = mn_now; 1329 now_floor = mn_now;
1180 ev_rt_now = ev_time (); 1330 ev_rt_now = ev_time ();
1181 return 1;
1182 }
1183}
1184 1331
1185inline void 1332 /* loop a few times, before making important decisions.
1186time_update (EV_P) 1333 * on the choice of "4": one iteration isn't enough,
1187{ 1334 * in case we get preempted during the calls to
1188 int i; 1335 * ev_time and get_clock. a second call is almost guaranteed
1189 1336 * to succeed in that case, though. and looping a few more times
1190#if EV_USE_MONOTONIC 1337 * doesn't hurt either as we only do this on time-jumps or
1191 if (expect_true (have_monotonic)) 1338 * in the unlikely event of having been preempted here.
1192 { 1339 */
1193 if (time_update_monotonic (EV_A)) 1340 for (i = 4; --i; )
1194 { 1341 {
1195 ev_tstamp odiff = rtmn_diff;
1196
1197 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1198 {
1199 rtmn_diff = ev_rt_now - mn_now; 1342 rtmn_diff = ev_rt_now - mn_now;
1200 1343
1201 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1344 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1202 return; /* all is well */ 1345 return; /* all is well */
1203 1346
1204 ev_rt_now = ev_time (); 1347 ev_rt_now = ev_time ();
1205 mn_now = get_clock (); 1348 mn_now = get_clock ();
1206 now_floor = mn_now; 1349 now_floor = mn_now;
1207 } 1350 }
1208 1351
1209# if EV_PERIODICS 1352# if EV_PERIODIC_ENABLE
1353 periodics_reschedule (EV_A);
1354# endif
1355 /* no timer adjustment, as the monotonic clock doesn't jump */
1356 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1357 }
1358 else
1359#endif
1360 {
1361 ev_rt_now = ev_time ();
1362
1363 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1364 {
1365#if EV_PERIODIC_ENABLE
1210 periodics_reschedule (EV_A); 1366 periodics_reschedule (EV_A);
1211# endif 1367#endif
1212 /* no timer adjustment, as the monotonic clock doesn't jump */
1213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1214 }
1215 }
1216 else
1217#endif
1218 {
1219 ev_rt_now = ev_time ();
1220
1221 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1222 {
1223#if EV_PERIODICS
1224 periodics_reschedule (EV_A);
1225#endif
1226
1227 /* adjust timers. this is easy, as the offset is the same for all */ 1368 /* adjust timers. this is easy, as the offset is the same for all of them */
1228 for (i = 0; i < timercnt; ++i) 1369 for (i = 0; i < timercnt; ++i)
1229 ((WT)timers [i])->at += ev_rt_now - mn_now; 1370 ((WT)timers [i])->at += ev_rt_now - mn_now;
1230 } 1371 }
1231 1372
1232 mn_now = ev_rt_now; 1373 mn_now = ev_rt_now;
1248static int loop_done; 1389static int loop_done;
1249 1390
1250void 1391void
1251ev_loop (EV_P_ int flags) 1392ev_loop (EV_P_ int flags)
1252{ 1393{
1253 double block;
1254 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1394 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1395 ? EVUNLOOP_ONE
1396 : EVUNLOOP_CANCEL;
1255 1397
1256 while (activecnt) 1398 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1399
1400 do
1257 { 1401 {
1402#ifndef _WIN32
1403 if (expect_false (curpid)) /* penalise the forking check even more */
1404 if (expect_false (getpid () != curpid))
1405 {
1406 curpid = getpid ();
1407 postfork = 1;
1408 }
1409#endif
1410
1411#if EV_FORK_ENABLE
1412 /* we might have forked, so queue fork handlers */
1413 if (expect_false (postfork))
1414 if (forkcnt)
1415 {
1416 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1417 call_pending (EV_A);
1418 }
1419#endif
1420
1258 /* queue check watchers (and execute them) */ 1421 /* queue prepare watchers (and execute them) */
1259 if (expect_false (preparecnt)) 1422 if (expect_false (preparecnt))
1260 { 1423 {
1261 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1424 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1262 call_pending (EV_A); 1425 call_pending (EV_A);
1263 } 1426 }
1264 1427
1428 if (expect_false (!activecnt))
1429 break;
1430
1265 /* we might have forked, so reify kernel state if necessary */ 1431 /* we might have forked, so reify kernel state if necessary */
1266 if (expect_false (postfork)) 1432 if (expect_false (postfork))
1267 loop_fork (EV_A); 1433 loop_fork (EV_A);
1268 1434
1269 /* update fd-related kernel structures */ 1435 /* update fd-related kernel structures */
1270 fd_reify (EV_A); 1436 fd_reify (EV_A);
1271 1437
1272 /* calculate blocking time */ 1438 /* calculate blocking time */
1439 {
1440 ev_tstamp block;
1273 1441
1274 /* we only need this for !monotonic clock or timers, but as we basically 1442 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1275 always have timers, we just calculate it always */ 1443 block = 0.; /* do not block at all */
1276#if EV_USE_MONOTONIC
1277 if (expect_true (have_monotonic))
1278 time_update_monotonic (EV_A);
1279 else 1444 else
1280#endif
1281 { 1445 {
1282 ev_rt_now = ev_time (); 1446 /* update time to cancel out callback processing overhead */
1283 mn_now = ev_rt_now; 1447 time_update (EV_A_ 1e100);
1284 }
1285 1448
1286 if (flags & EVLOOP_NONBLOCK || idlecnt)
1287 block = 0.;
1288 else
1289 {
1290 block = MAX_BLOCKTIME; 1449 block = MAX_BLOCKTIME;
1291 1450
1292 if (timercnt) 1451 if (timercnt)
1293 { 1452 {
1294 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1453 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1295 if (block > to) block = to; 1454 if (block > to) block = to;
1296 } 1455 }
1297 1456
1298#if EV_PERIODICS 1457#if EV_PERIODIC_ENABLE
1299 if (periodiccnt) 1458 if (periodiccnt)
1300 { 1459 {
1301 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1460 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1302 if (block > to) block = to; 1461 if (block > to) block = to;
1303 } 1462 }
1304#endif 1463#endif
1305 1464
1306 if (expect_false (block < 0.)) block = 0.; 1465 if (expect_false (block < 0.)) block = 0.;
1307 } 1466 }
1308 1467
1468 ++loop_count;
1309 backend_poll (EV_A_ block); 1469 backend_poll (EV_A_ block);
1310 1470
1311 /* update ev_rt_now, do magic */ 1471 /* update ev_rt_now, do magic */
1312 time_update (EV_A); 1472 time_update (EV_A_ block);
1473 }
1313 1474
1314 /* queue pending timers and reschedule them */ 1475 /* queue pending timers and reschedule them */
1315 timers_reify (EV_A); /* relative timers called last */ 1476 timers_reify (EV_A); /* relative timers called last */
1316#if EV_PERIODICS 1477#if EV_PERIODIC_ENABLE
1317 periodics_reify (EV_A); /* absolute timers called first */ 1478 periodics_reify (EV_A); /* absolute timers called first */
1318#endif 1479#endif
1319 1480
1481#if EV_IDLE_ENABLE
1320 /* queue idle watchers unless io or timers are pending */ 1482 /* queue idle watchers unless other events are pending */
1321 if (idlecnt && !any_pending (EV_A)) 1483 idle_reify (EV_A);
1322 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1484#endif
1323 1485
1324 /* queue check watchers, to be executed first */ 1486 /* queue check watchers, to be executed first */
1325 if (expect_false (checkcnt)) 1487 if (expect_false (checkcnt))
1326 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1488 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1327 1489
1328 call_pending (EV_A); 1490 call_pending (EV_A);
1329 1491
1330 if (expect_false (loop_done))
1331 break;
1332 } 1492 }
1493 while (expect_true (activecnt && !loop_done));
1333 1494
1334 if (loop_done != 2) 1495 if (loop_done == EVUNLOOP_ONE)
1335 loop_done = 0; 1496 loop_done = EVUNLOOP_CANCEL;
1336} 1497}
1337 1498
1338void 1499void
1339ev_unloop (EV_P_ int how) 1500ev_unloop (EV_P_ int how)
1340{ 1501{
1341 loop_done = how; 1502 loop_done = how;
1342} 1503}
1343 1504
1344/*****************************************************************************/ 1505/*****************************************************************************/
1345 1506
1346inline void 1507void inline_size
1347wlist_add (WL *head, WL elem) 1508wlist_add (WL *head, WL elem)
1348{ 1509{
1349 elem->next = *head; 1510 elem->next = *head;
1350 *head = elem; 1511 *head = elem;
1351} 1512}
1352 1513
1353inline void 1514void inline_size
1354wlist_del (WL *head, WL elem) 1515wlist_del (WL *head, WL elem)
1355{ 1516{
1356 while (*head) 1517 while (*head)
1357 { 1518 {
1358 if (*head == elem) 1519 if (*head == elem)
1363 1524
1364 head = &(*head)->next; 1525 head = &(*head)->next;
1365 } 1526 }
1366} 1527}
1367 1528
1368inline void 1529void inline_speed
1369ev_clear_pending (EV_P_ W w) 1530clear_pending (EV_P_ W w)
1370{ 1531{
1371 if (w->pending) 1532 if (w->pending)
1372 { 1533 {
1373 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1534 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1374 w->pending = 0; 1535 w->pending = 0;
1375 } 1536 }
1376} 1537}
1377 1538
1378inline void 1539int
1540ev_clear_pending (EV_P_ void *w)
1541{
1542 W w_ = (W)w;
1543 int pending = w_->pending;
1544
1545 if (expect_true (pending))
1546 {
1547 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1548 w_->pending = 0;
1549 p->w = 0;
1550 return p->events;
1551 }
1552 else
1553 return 0;
1554}
1555
1556void inline_size
1557pri_adjust (EV_P_ W w)
1558{
1559 int pri = w->priority;
1560 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1561 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1562 w->priority = pri;
1563}
1564
1565void inline_speed
1379ev_start (EV_P_ W w, int active) 1566ev_start (EV_P_ W w, int active)
1380{ 1567{
1381 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1568 pri_adjust (EV_A_ w);
1382 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1383
1384 w->active = active; 1569 w->active = active;
1385 ev_ref (EV_A); 1570 ev_ref (EV_A);
1386} 1571}
1387 1572
1388inline void 1573void inline_size
1389ev_stop (EV_P_ W w) 1574ev_stop (EV_P_ W w)
1390{ 1575{
1391 ev_unref (EV_A); 1576 ev_unref (EV_A);
1392 w->active = 0; 1577 w->active = 0;
1393} 1578}
1394 1579
1395/*****************************************************************************/ 1580/*****************************************************************************/
1396 1581
1397void 1582void noinline
1398ev_io_start (EV_P_ struct ev_io *w) 1583ev_io_start (EV_P_ ev_io *w)
1399{ 1584{
1400 int fd = w->fd; 1585 int fd = w->fd;
1401 1586
1402 if (expect_false (ev_is_active (w))) 1587 if (expect_false (ev_is_active (w)))
1403 return; 1588 return;
1409 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1594 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1410 1595
1411 fd_change (EV_A_ fd); 1596 fd_change (EV_A_ fd);
1412} 1597}
1413 1598
1414void 1599void noinline
1415ev_io_stop (EV_P_ struct ev_io *w) 1600ev_io_stop (EV_P_ ev_io *w)
1416{ 1601{
1417 ev_clear_pending (EV_A_ (W)w); 1602 clear_pending (EV_A_ (W)w);
1418 if (expect_false (!ev_is_active (w))) 1603 if (expect_false (!ev_is_active (w)))
1419 return; 1604 return;
1420 1605
1421 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1606 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1422 1607
1424 ev_stop (EV_A_ (W)w); 1609 ev_stop (EV_A_ (W)w);
1425 1610
1426 fd_change (EV_A_ w->fd); 1611 fd_change (EV_A_ w->fd);
1427} 1612}
1428 1613
1429void 1614void noinline
1430ev_timer_start (EV_P_ struct ev_timer *w) 1615ev_timer_start (EV_P_ ev_timer *w)
1431{ 1616{
1432 if (expect_false (ev_is_active (w))) 1617 if (expect_false (ev_is_active (w)))
1433 return; 1618 return;
1434 1619
1435 ((WT)w)->at += mn_now; 1620 ((WT)w)->at += mn_now;
1436 1621
1437 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1622 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1438 1623
1439 ev_start (EV_A_ (W)w, ++timercnt); 1624 ev_start (EV_A_ (W)w, ++timercnt);
1440 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1625 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1441 timers [timercnt - 1] = w; 1626 timers [timercnt - 1] = w;
1442 upheap ((WT *)timers, timercnt - 1); 1627 upheap ((WT *)timers, timercnt - 1);
1443 1628
1629 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1630}
1631
1632void noinline
1633ev_timer_stop (EV_P_ ev_timer *w)
1634{
1635 clear_pending (EV_A_ (W)w);
1636 if (expect_false (!ev_is_active (w)))
1637 return;
1638
1444 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1639 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1445}
1446 1640
1447void 1641 {
1448ev_timer_stop (EV_P_ struct ev_timer *w) 1642 int active = ((W)w)->active;
1449{
1450 ev_clear_pending (EV_A_ (W)w);
1451 if (expect_false (!ev_is_active (w)))
1452 return;
1453 1643
1454 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1455
1456 if (expect_true (((W)w)->active < timercnt--)) 1644 if (expect_true (--active < --timercnt))
1457 { 1645 {
1458 timers [((W)w)->active - 1] = timers [timercnt]; 1646 timers [active] = timers [timercnt];
1459 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1647 adjustheap ((WT *)timers, timercnt, active);
1460 } 1648 }
1649 }
1461 1650
1462 ((WT)w)->at -= mn_now; 1651 ((WT)w)->at -= mn_now;
1463 1652
1464 ev_stop (EV_A_ (W)w); 1653 ev_stop (EV_A_ (W)w);
1465} 1654}
1466 1655
1467void 1656void noinline
1468ev_timer_again (EV_P_ struct ev_timer *w) 1657ev_timer_again (EV_P_ ev_timer *w)
1469{ 1658{
1470 if (ev_is_active (w)) 1659 if (ev_is_active (w))
1471 { 1660 {
1472 if (w->repeat) 1661 if (w->repeat)
1473 { 1662 {
1482 w->at = w->repeat; 1671 w->at = w->repeat;
1483 ev_timer_start (EV_A_ w); 1672 ev_timer_start (EV_A_ w);
1484 } 1673 }
1485} 1674}
1486 1675
1487#if EV_PERIODICS 1676#if EV_PERIODIC_ENABLE
1488void 1677void noinline
1489ev_periodic_start (EV_P_ struct ev_periodic *w) 1678ev_periodic_start (EV_P_ ev_periodic *w)
1490{ 1679{
1491 if (expect_false (ev_is_active (w))) 1680 if (expect_false (ev_is_active (w)))
1492 return; 1681 return;
1493 1682
1494 if (w->reschedule_cb) 1683 if (w->reschedule_cb)
1495 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1684 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1496 else if (w->interval) 1685 else if (w->interval)
1497 { 1686 {
1498 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1687 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1499 /* this formula differs from the one in periodic_reify because we do not always round up */ 1688 /* this formula differs from the one in periodic_reify because we do not always round up */
1500 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1689 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1501 } 1690 }
1691 else
1692 ((WT)w)->at = w->offset;
1502 1693
1503 ev_start (EV_A_ (W)w, ++periodiccnt); 1694 ev_start (EV_A_ (W)w, ++periodiccnt);
1504 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1695 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1505 periodics [periodiccnt - 1] = w; 1696 periodics [periodiccnt - 1] = w;
1506 upheap ((WT *)periodics, periodiccnt - 1); 1697 upheap ((WT *)periodics, periodiccnt - 1);
1507 1698
1699 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1700}
1701
1702void noinline
1703ev_periodic_stop (EV_P_ ev_periodic *w)
1704{
1705 clear_pending (EV_A_ (W)w);
1706 if (expect_false (!ev_is_active (w)))
1707 return;
1708
1508 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1709 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1509}
1510 1710
1511void 1711 {
1512ev_periodic_stop (EV_P_ struct ev_periodic *w) 1712 int active = ((W)w)->active;
1513{
1514 ev_clear_pending (EV_A_ (W)w);
1515 if (expect_false (!ev_is_active (w)))
1516 return;
1517 1713
1518 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1519
1520 if (expect_true (((W)w)->active < periodiccnt--)) 1714 if (expect_true (--active < --periodiccnt))
1521 { 1715 {
1522 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1716 periodics [active] = periodics [periodiccnt];
1523 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1717 adjustheap ((WT *)periodics, periodiccnt, active);
1524 } 1718 }
1719 }
1525 1720
1526 ev_stop (EV_A_ (W)w); 1721 ev_stop (EV_A_ (W)w);
1527} 1722}
1528 1723
1529void 1724void noinline
1530ev_periodic_again (EV_P_ struct ev_periodic *w) 1725ev_periodic_again (EV_P_ ev_periodic *w)
1531{ 1726{
1532 /* TODO: use adjustheap and recalculation */ 1727 /* TODO: use adjustheap and recalculation */
1533 ev_periodic_stop (EV_A_ w); 1728 ev_periodic_stop (EV_A_ w);
1534 ev_periodic_start (EV_A_ w); 1729 ev_periodic_start (EV_A_ w);
1535} 1730}
1536#endif 1731#endif
1537 1732
1538void
1539ev_idle_start (EV_P_ struct ev_idle *w)
1540{
1541 if (expect_false (ev_is_active (w)))
1542 return;
1543
1544 ev_start (EV_A_ (W)w, ++idlecnt);
1545 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1546 idles [idlecnt - 1] = w;
1547}
1548
1549void
1550ev_idle_stop (EV_P_ struct ev_idle *w)
1551{
1552 ev_clear_pending (EV_A_ (W)w);
1553 if (expect_false (!ev_is_active (w)))
1554 return;
1555
1556 idles [((W)w)->active - 1] = idles [--idlecnt];
1557 ev_stop (EV_A_ (W)w);
1558}
1559
1560void
1561ev_prepare_start (EV_P_ struct ev_prepare *w)
1562{
1563 if (expect_false (ev_is_active (w)))
1564 return;
1565
1566 ev_start (EV_A_ (W)w, ++preparecnt);
1567 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1568 prepares [preparecnt - 1] = w;
1569}
1570
1571void
1572ev_prepare_stop (EV_P_ struct ev_prepare *w)
1573{
1574 ev_clear_pending (EV_A_ (W)w);
1575 if (expect_false (!ev_is_active (w)))
1576 return;
1577
1578 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1579 ev_stop (EV_A_ (W)w);
1580}
1581
1582void
1583ev_check_start (EV_P_ struct ev_check *w)
1584{
1585 if (expect_false (ev_is_active (w)))
1586 return;
1587
1588 ev_start (EV_A_ (W)w, ++checkcnt);
1589 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1590 checks [checkcnt - 1] = w;
1591}
1592
1593void
1594ev_check_stop (EV_P_ struct ev_check *w)
1595{
1596 ev_clear_pending (EV_A_ (W)w);
1597 if (expect_false (!ev_is_active (w)))
1598 return;
1599
1600 checks [((W)w)->active - 1] = checks [--checkcnt];
1601 ev_stop (EV_A_ (W)w);
1602}
1603
1604#ifndef SA_RESTART 1733#ifndef SA_RESTART
1605# define SA_RESTART 0 1734# define SA_RESTART 0
1606#endif 1735#endif
1607 1736
1608void 1737void noinline
1609ev_signal_start (EV_P_ struct ev_signal *w) 1738ev_signal_start (EV_P_ ev_signal *w)
1610{ 1739{
1611#if EV_MULTIPLICITY 1740#if EV_MULTIPLICITY
1612 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1741 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1613#endif 1742#endif
1614 if (expect_false (ev_is_active (w))) 1743 if (expect_false (ev_is_active (w)))
1632 sigaction (w->signum, &sa, 0); 1761 sigaction (w->signum, &sa, 0);
1633#endif 1762#endif
1634 } 1763 }
1635} 1764}
1636 1765
1637void 1766void noinline
1638ev_signal_stop (EV_P_ struct ev_signal *w) 1767ev_signal_stop (EV_P_ ev_signal *w)
1639{ 1768{
1640 ev_clear_pending (EV_A_ (W)w); 1769 clear_pending (EV_A_ (W)w);
1641 if (expect_false (!ev_is_active (w))) 1770 if (expect_false (!ev_is_active (w)))
1642 return; 1771 return;
1643 1772
1644 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1773 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1645 ev_stop (EV_A_ (W)w); 1774 ev_stop (EV_A_ (W)w);
1647 if (!signals [w->signum - 1].head) 1776 if (!signals [w->signum - 1].head)
1648 signal (w->signum, SIG_DFL); 1777 signal (w->signum, SIG_DFL);
1649} 1778}
1650 1779
1651void 1780void
1652ev_child_start (EV_P_ struct ev_child *w) 1781ev_child_start (EV_P_ ev_child *w)
1653{ 1782{
1654#if EV_MULTIPLICITY 1783#if EV_MULTIPLICITY
1655 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1784 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1656#endif 1785#endif
1657 if (expect_false (ev_is_active (w))) 1786 if (expect_false (ev_is_active (w)))
1658 return; 1787 return;
1659 1788
1660 ev_start (EV_A_ (W)w, 1); 1789 ev_start (EV_A_ (W)w, 1);
1661 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1790 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1662} 1791}
1663 1792
1664void 1793void
1665ev_child_stop (EV_P_ struct ev_child *w) 1794ev_child_stop (EV_P_ ev_child *w)
1666{ 1795{
1667 ev_clear_pending (EV_A_ (W)w); 1796 clear_pending (EV_A_ (W)w);
1668 if (expect_false (!ev_is_active (w))) 1797 if (expect_false (!ev_is_active (w)))
1669 return; 1798 return;
1670 1799
1671 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1800 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1672 ev_stop (EV_A_ (W)w); 1801 ev_stop (EV_A_ (W)w);
1673} 1802}
1674 1803
1675#if EV_MULTIPLICITY 1804#if EV_STAT_ENABLE
1805
1806# ifdef _WIN32
1807# undef lstat
1808# define lstat(a,b) _stati64 (a,b)
1809# endif
1810
1811#define DEF_STAT_INTERVAL 5.0074891
1812#define MIN_STAT_INTERVAL 0.1074891
1813
1814static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1815
1816#if EV_USE_INOTIFY
1817# define EV_INOTIFY_BUFSIZE 8192
1818
1819static void noinline
1820infy_add (EV_P_ ev_stat *w)
1821{
1822 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1823
1824 if (w->wd < 0)
1825 {
1826 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1827
1828 /* monitor some parent directory for speedup hints */
1829 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1830 {
1831 char path [4096];
1832 strcpy (path, w->path);
1833
1834 do
1835 {
1836 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1837 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1838
1839 char *pend = strrchr (path, '/');
1840
1841 if (!pend)
1842 break; /* whoops, no '/', complain to your admin */
1843
1844 *pend = 0;
1845 w->wd = inotify_add_watch (fs_fd, path, mask);
1846 }
1847 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1848 }
1849 }
1850 else
1851 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1852
1853 if (w->wd >= 0)
1854 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1855}
1856
1857static void noinline
1858infy_del (EV_P_ ev_stat *w)
1859{
1860 int slot;
1861 int wd = w->wd;
1862
1863 if (wd < 0)
1864 return;
1865
1866 w->wd = -2;
1867 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1868 wlist_del (&fs_hash [slot].head, (WL)w);
1869
1870 /* remove this watcher, if others are watching it, they will rearm */
1871 inotify_rm_watch (fs_fd, wd);
1872}
1873
1874static void noinline
1875infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1876{
1877 if (slot < 0)
1878 /* overflow, need to check for all hahs slots */
1879 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1880 infy_wd (EV_A_ slot, wd, ev);
1881 else
1882 {
1883 WL w_;
1884
1885 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1886 {
1887 ev_stat *w = (ev_stat *)w_;
1888 w_ = w_->next; /* lets us remove this watcher and all before it */
1889
1890 if (w->wd == wd || wd == -1)
1891 {
1892 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1893 {
1894 w->wd = -1;
1895 infy_add (EV_A_ w); /* re-add, no matter what */
1896 }
1897
1898 stat_timer_cb (EV_A_ &w->timer, 0);
1899 }
1900 }
1901 }
1902}
1903
1676static void 1904static void
1677embed_cb (EV_P_ struct ev_io *io, int revents) 1905infy_cb (EV_P_ ev_io *w, int revents)
1678{ 1906{
1679 struct ev_embed *w = (struct ev_embed *)(((char *)io) - offsetof (struct ev_embed, io)); 1907 char buf [EV_INOTIFY_BUFSIZE];
1908 struct inotify_event *ev = (struct inotify_event *)buf;
1909 int ofs;
1910 int len = read (fs_fd, buf, sizeof (buf));
1680 1911
1912 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1913 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1914}
1915
1916void inline_size
1917infy_init (EV_P)
1918{
1919 if (fs_fd != -2)
1920 return;
1921
1922 fs_fd = inotify_init ();
1923
1924 if (fs_fd >= 0)
1925 {
1926 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1927 ev_set_priority (&fs_w, EV_MAXPRI);
1928 ev_io_start (EV_A_ &fs_w);
1929 }
1930}
1931
1932void inline_size
1933infy_fork (EV_P)
1934{
1935 int slot;
1936
1937 if (fs_fd < 0)
1938 return;
1939
1940 close (fs_fd);
1941 fs_fd = inotify_init ();
1942
1943 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1944 {
1945 WL w_ = fs_hash [slot].head;
1946 fs_hash [slot].head = 0;
1947
1948 while (w_)
1949 {
1950 ev_stat *w = (ev_stat *)w_;
1951 w_ = w_->next; /* lets us add this watcher */
1952
1953 w->wd = -1;
1954
1955 if (fs_fd >= 0)
1956 infy_add (EV_A_ w); /* re-add, no matter what */
1957 else
1958 ev_timer_start (EV_A_ &w->timer);
1959 }
1960
1961 }
1962}
1963
1964#endif
1965
1966void
1967ev_stat_stat (EV_P_ ev_stat *w)
1968{
1969 if (lstat (w->path, &w->attr) < 0)
1970 w->attr.st_nlink = 0;
1971 else if (!w->attr.st_nlink)
1972 w->attr.st_nlink = 1;
1973}
1974
1975static void noinline
1976stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1977{
1978 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1979
1980 /* we copy this here each the time so that */
1981 /* prev has the old value when the callback gets invoked */
1982 w->prev = w->attr;
1983 ev_stat_stat (EV_A_ w);
1984
1985 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1986 if (
1987 w->prev.st_dev != w->attr.st_dev
1988 || w->prev.st_ino != w->attr.st_ino
1989 || w->prev.st_mode != w->attr.st_mode
1990 || w->prev.st_nlink != w->attr.st_nlink
1991 || w->prev.st_uid != w->attr.st_uid
1992 || w->prev.st_gid != w->attr.st_gid
1993 || w->prev.st_rdev != w->attr.st_rdev
1994 || w->prev.st_size != w->attr.st_size
1995 || w->prev.st_atime != w->attr.st_atime
1996 || w->prev.st_mtime != w->attr.st_mtime
1997 || w->prev.st_ctime != w->attr.st_ctime
1998 ) {
1999 #if EV_USE_INOTIFY
2000 infy_del (EV_A_ w);
2001 infy_add (EV_A_ w);
2002 ev_stat_stat (EV_A_ w); /* avoid race... */
2003 #endif
2004
1681 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2005 ev_feed_event (EV_A_ w, EV_STAT);
2006 }
2007}
2008
2009void
2010ev_stat_start (EV_P_ ev_stat *w)
2011{
2012 if (expect_false (ev_is_active (w)))
2013 return;
2014
2015 /* since we use memcmp, we need to clear any padding data etc. */
2016 memset (&w->prev, 0, sizeof (ev_statdata));
2017 memset (&w->attr, 0, sizeof (ev_statdata));
2018
2019 ev_stat_stat (EV_A_ w);
2020
2021 if (w->interval < MIN_STAT_INTERVAL)
2022 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2023
2024 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2025 ev_set_priority (&w->timer, ev_priority (w));
2026
2027#if EV_USE_INOTIFY
2028 infy_init (EV_A);
2029
2030 if (fs_fd >= 0)
2031 infy_add (EV_A_ w);
2032 else
2033#endif
2034 ev_timer_start (EV_A_ &w->timer);
2035
2036 ev_start (EV_A_ (W)w, 1);
2037}
2038
2039void
2040ev_stat_stop (EV_P_ ev_stat *w)
2041{
2042 clear_pending (EV_A_ (W)w);
2043 if (expect_false (!ev_is_active (w)))
2044 return;
2045
2046#if EV_USE_INOTIFY
2047 infy_del (EV_A_ w);
2048#endif
2049 ev_timer_stop (EV_A_ &w->timer);
2050
2051 ev_stop (EV_A_ (W)w);
2052}
2053#endif
2054
2055#if EV_IDLE_ENABLE
2056void
2057ev_idle_start (EV_P_ ev_idle *w)
2058{
2059 if (expect_false (ev_is_active (w)))
2060 return;
2061
2062 pri_adjust (EV_A_ (W)w);
2063
2064 {
2065 int active = ++idlecnt [ABSPRI (w)];
2066
2067 ++idleall;
2068 ev_start (EV_A_ (W)w, active);
2069
2070 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2071 idles [ABSPRI (w)][active - 1] = w;
2072 }
2073}
2074
2075void
2076ev_idle_stop (EV_P_ ev_idle *w)
2077{
2078 clear_pending (EV_A_ (W)w);
2079 if (expect_false (!ev_is_active (w)))
2080 return;
2081
2082 {
2083 int active = ((W)w)->active;
2084
2085 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2086 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2087
2088 ev_stop (EV_A_ (W)w);
2089 --idleall;
2090 }
2091}
2092#endif
2093
2094void
2095ev_prepare_start (EV_P_ ev_prepare *w)
2096{
2097 if (expect_false (ev_is_active (w)))
2098 return;
2099
2100 ev_start (EV_A_ (W)w, ++preparecnt);
2101 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2102 prepares [preparecnt - 1] = w;
2103}
2104
2105void
2106ev_prepare_stop (EV_P_ ev_prepare *w)
2107{
2108 clear_pending (EV_A_ (W)w);
2109 if (expect_false (!ev_is_active (w)))
2110 return;
2111
2112 {
2113 int active = ((W)w)->active;
2114 prepares [active - 1] = prepares [--preparecnt];
2115 ((W)prepares [active - 1])->active = active;
2116 }
2117
2118 ev_stop (EV_A_ (W)w);
2119}
2120
2121void
2122ev_check_start (EV_P_ ev_check *w)
2123{
2124 if (expect_false (ev_is_active (w)))
2125 return;
2126
2127 ev_start (EV_A_ (W)w, ++checkcnt);
2128 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2129 checks [checkcnt - 1] = w;
2130}
2131
2132void
2133ev_check_stop (EV_P_ ev_check *w)
2134{
2135 clear_pending (EV_A_ (W)w);
2136 if (expect_false (!ev_is_active (w)))
2137 return;
2138
2139 {
2140 int active = ((W)w)->active;
2141 checks [active - 1] = checks [--checkcnt];
2142 ((W)checks [active - 1])->active = active;
2143 }
2144
2145 ev_stop (EV_A_ (W)w);
2146}
2147
2148#if EV_EMBED_ENABLE
2149void noinline
2150ev_embed_sweep (EV_P_ ev_embed *w)
2151{
1682 ev_loop (w->loop, EVLOOP_NONBLOCK); 2152 ev_loop (w->loop, EVLOOP_NONBLOCK);
1683} 2153}
1684 2154
2155static void
2156embed_cb (EV_P_ ev_io *io, int revents)
2157{
2158 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2159
2160 if (ev_cb (w))
2161 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2162 else
2163 ev_embed_sweep (loop, w);
2164}
2165
1685void 2166void
1686ev_embed_start (EV_P_ struct ev_embed *w) 2167ev_embed_start (EV_P_ ev_embed *w)
1687{ 2168{
1688 if (expect_false (ev_is_active (w))) 2169 if (expect_false (ev_is_active (w)))
1689 return; 2170 return;
1690 2171
1691 { 2172 {
1692 struct ev_loop *loop = w->loop; 2173 struct ev_loop *loop = w->loop;
1693 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2174 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1694 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2175 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1695 } 2176 }
1696 2177
2178 ev_set_priority (&w->io, ev_priority (w));
1697 ev_io_start (EV_A_ &w->io); 2179 ev_io_start (EV_A_ &w->io);
2180
1698 ev_start (EV_A_ (W)w, 1); 2181 ev_start (EV_A_ (W)w, 1);
1699} 2182}
1700 2183
1701void 2184void
1702ev_embed_stop (EV_P_ struct ev_embed *w) 2185ev_embed_stop (EV_P_ ev_embed *w)
1703{ 2186{
1704 ev_clear_pending (EV_A_ (W)w); 2187 clear_pending (EV_A_ (W)w);
1705 if (expect_false (!ev_is_active (w))) 2188 if (expect_false (!ev_is_active (w)))
1706 return; 2189 return;
1707 2190
1708 ev_io_stop (EV_A_ &w->io); 2191 ev_io_stop (EV_A_ &w->io);
2192
1709 ev_stop (EV_A_ (W)w); 2193 ev_stop (EV_A_ (W)w);
1710} 2194}
1711#endif 2195#endif
1712 2196
2197#if EV_FORK_ENABLE
2198void
2199ev_fork_start (EV_P_ ev_fork *w)
2200{
2201 if (expect_false (ev_is_active (w)))
2202 return;
2203
2204 ev_start (EV_A_ (W)w, ++forkcnt);
2205 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2206 forks [forkcnt - 1] = w;
2207}
2208
2209void
2210ev_fork_stop (EV_P_ ev_fork *w)
2211{
2212 clear_pending (EV_A_ (W)w);
2213 if (expect_false (!ev_is_active (w)))
2214 return;
2215
2216 {
2217 int active = ((W)w)->active;
2218 forks [active - 1] = forks [--forkcnt];
2219 ((W)forks [active - 1])->active = active;
2220 }
2221
2222 ev_stop (EV_A_ (W)w);
2223}
2224#endif
2225
1713/*****************************************************************************/ 2226/*****************************************************************************/
1714 2227
1715struct ev_once 2228struct ev_once
1716{ 2229{
1717 struct ev_io io; 2230 ev_io io;
1718 struct ev_timer to; 2231 ev_timer to;
1719 void (*cb)(int revents, void *arg); 2232 void (*cb)(int revents, void *arg);
1720 void *arg; 2233 void *arg;
1721}; 2234};
1722 2235
1723static void 2236static void
1732 2245
1733 cb (revents, arg); 2246 cb (revents, arg);
1734} 2247}
1735 2248
1736static void 2249static void
1737once_cb_io (EV_P_ struct ev_io *w, int revents) 2250once_cb_io (EV_P_ ev_io *w, int revents)
1738{ 2251{
1739 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2252 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1740} 2253}
1741 2254
1742static void 2255static void
1743once_cb_to (EV_P_ struct ev_timer *w, int revents) 2256once_cb_to (EV_P_ ev_timer *w, int revents)
1744{ 2257{
1745 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2258 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1746} 2259}
1747 2260
1748void 2261void

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines