ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.140 by root, Mon Nov 26 19:49:36 2007 UTC vs.
Revision 1.178 by root, Tue Dec 11 18:36:11 2007 UTC

94# else 94# else
95# define EV_USE_PORT 0 95# define EV_USE_PORT 0
96# endif 96# endif
97# endif 97# endif
98 98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
105# endif
106
99#endif 107#endif
100 108
101#include <math.h> 109#include <math.h>
102#include <stdlib.h> 110#include <stdlib.h>
103#include <fcntl.h> 111#include <fcntl.h>
109#include <errno.h> 117#include <errno.h>
110#include <sys/types.h> 118#include <sys/types.h>
111#include <time.h> 119#include <time.h>
112 120
113#include <signal.h> 121#include <signal.h>
122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
114 128
115#ifndef _WIN32 129#ifndef _WIN32
116# include <sys/time.h> 130# include <sys/time.h>
117# include <sys/wait.h> 131# include <sys/wait.h>
118# include <unistd.h> 132# include <unistd.h>
156 170
157#ifndef EV_USE_PORT 171#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 172# define EV_USE_PORT 0
159#endif 173#endif
160 174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
161/**/ 195/**/
162 196
163#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 198# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 199# define EV_USE_MONOTONIC 0
172 206
173#if EV_SELECT_IS_WINSOCKET 207#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 208# include <winsock.h>
175#endif 209#endif
176 210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
177/**/ 219/**/
220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 230
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189 234
190#if __GNUC__ >= 3 235#if __GNUC__ >= 3
191# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline_size static inline /* inline for codesize */
193# if EV_MINIMAL
194# define noinline __attribute__ ((noinline)) 237# define noinline __attribute__ ((noinline))
195# define inline_speed static noinline
196# else
197# define noinline
198# define inline_speed static inline
199# endif
200#else 238#else
201# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
202# define inline_speed static
203# define inline_minimal static
204# define noinline 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
205#endif 244#endif
206 245
207#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
208#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
209 255
210#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
211#define ABSPRI(w) ((w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
212 258
213#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 259#define EMPTY /* required for microsofts broken pseudo-c compiler */
214#define EMPTY2(a,b) /* used to suppress some warnings */ 260#define EMPTY2(a,b) /* used to suppress some warnings */
215 261
216typedef ev_watcher *W; 262typedef ev_watcher *W;
217typedef ev_watcher_list *WL; 263typedef ev_watcher_list *WL;
218typedef ev_watcher_time *WT; 264typedef ev_watcher_time *WT;
225 271
226/*****************************************************************************/ 272/*****************************************************************************/
227 273
228static void (*syserr_cb)(const char *msg); 274static void (*syserr_cb)(const char *msg);
229 275
276void
230void ev_set_syserr_cb (void (*cb)(const char *msg)) 277ev_set_syserr_cb (void (*cb)(const char *msg))
231{ 278{
232 syserr_cb = cb; 279 syserr_cb = cb;
233} 280}
234 281
235static void 282static void noinline
236syserr (const char *msg) 283syserr (const char *msg)
237{ 284{
238 if (!msg) 285 if (!msg)
239 msg = "(libev) system error"; 286 msg = "(libev) system error";
240 287
247 } 294 }
248} 295}
249 296
250static void *(*alloc)(void *ptr, long size); 297static void *(*alloc)(void *ptr, long size);
251 298
299void
252void ev_set_allocator (void *(*cb)(void *ptr, long size)) 300ev_set_allocator (void *(*cb)(void *ptr, long size))
253{ 301{
254 alloc = cb; 302 alloc = cb;
255} 303}
256 304
257static void * 305inline_speed void *
258ev_realloc (void *ptr, long size) 306ev_realloc (void *ptr, long size)
259{ 307{
260 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
261 309
262 if (!ptr && size) 310 if (!ptr && size)
286typedef struct 334typedef struct
287{ 335{
288 W w; 336 W w;
289 int events; 337 int events;
290} ANPENDING; 338} ANPENDING;
339
340#if EV_USE_INOTIFY
341typedef struct
342{
343 WL head;
344} ANFS;
345#endif
291 346
292#if EV_MULTIPLICITY 347#if EV_MULTIPLICITY
293 348
294 struct ev_loop 349 struct ev_loop
295 { 350 {
315 370
316#endif 371#endif
317 372
318/*****************************************************************************/ 373/*****************************************************************************/
319 374
320ev_tstamp noinline 375ev_tstamp
321ev_time (void) 376ev_time (void)
322{ 377{
323#if EV_USE_REALTIME 378#if EV_USE_REALTIME
324 struct timespec ts; 379 struct timespec ts;
325 clock_gettime (CLOCK_REALTIME, &ts); 380 clock_gettime (CLOCK_REALTIME, &ts);
352{ 407{
353 return ev_rt_now; 408 return ev_rt_now;
354} 409}
355#endif 410#endif
356 411
357#define array_roundsize(type,n) (((n) | 4) & ~3) 412int inline_size
413array_nextsize (int elem, int cur, int cnt)
414{
415 int ncur = cur + 1;
416
417 do
418 ncur <<= 1;
419 while (cnt > ncur);
420
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096)
423 {
424 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
426 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem;
428 }
429
430 return ncur;
431}
432
433static noinline void *
434array_realloc (int elem, void *base, int *cur, int cnt)
435{
436 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur);
438}
358 439
359#define array_needsize(type,base,cur,cnt,init) \ 440#define array_needsize(type,base,cur,cnt,init) \
360 if (expect_false ((cnt) > cur)) \ 441 if (expect_false ((cnt) > (cur))) \
361 { \ 442 { \
362 int newcnt = cur; \ 443 int ocur_ = (cur); \
363 do \ 444 (base) = (type *)array_realloc \
364 { \ 445 (sizeof (type), (base), &(cur), (cnt)); \
365 newcnt = array_roundsize (type, newcnt << 1); \ 446 init ((base) + (ocur_), (cur) - ocur_); \
366 } \
367 while ((cnt) > newcnt); \
368 \
369 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
370 init (base + cur, newcnt - cur); \
371 cur = newcnt; \
372 } 447 }
373 448
449#if 0
374#define array_slim(type,stem) \ 450#define array_slim(type,stem) \
375 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 451 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
376 { \ 452 { \
377 stem ## max = array_roundsize (stem ## cnt >> 1); \ 453 stem ## max = array_roundsize (stem ## cnt >> 1); \
378 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 454 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
379 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
380 } 456 }
457#endif
381 458
382#define array_free(stem, idx) \ 459#define array_free(stem, idx) \
383 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
461
462/*****************************************************************************/
463
464void noinline
465ev_feed_event (EV_P_ void *w, int revents)
466{
467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
469
470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents;
478 }
479}
480
481void inline_size
482queue_events (EV_P_ W *events, int eventcnt, int type)
483{
484 int i;
485
486 for (i = 0; i < eventcnt; ++i)
487 ev_feed_event (EV_A_ events [i], type);
488}
384 489
385/*****************************************************************************/ 490/*****************************************************************************/
386 491
387void inline_size 492void inline_size
388anfds_init (ANFD *base, int count) 493anfds_init (ANFD *base, int count)
395 500
396 ++base; 501 ++base;
397 } 502 }
398} 503}
399 504
400void noinline
401ev_feed_event (EV_P_ void *w, int revents)
402{
403 W w_ = (W)w;
404
405 if (expect_false (w_->pending))
406 {
407 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
408 return;
409 }
410
411 w_->pending = ++pendingcnt [ABSPRI (w_)];
412 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
413 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
414 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
415}
416
417static void
418queue_events (EV_P_ W *events, int eventcnt, int type)
419{
420 int i;
421
422 for (i = 0; i < eventcnt; ++i)
423 ev_feed_event (EV_A_ events [i], type);
424}
425
426void inline_speed 505void inline_speed
427fd_event (EV_P_ int fd, int revents) 506fd_event (EV_P_ int fd, int revents)
428{ 507{
429 ANFD *anfd = anfds + fd; 508 ANFD *anfd = anfds + fd;
430 ev_io *w; 509 ev_io *w;
439} 518}
440 519
441void 520void
442ev_feed_fd_event (EV_P_ int fd, int revents) 521ev_feed_fd_event (EV_P_ int fd, int revents)
443{ 522{
523 if (fd >= 0 && fd < anfdmax)
444 fd_event (EV_A_ fd, revents); 524 fd_event (EV_A_ fd, revents);
445} 525}
446
447/*****************************************************************************/
448 526
449void inline_size 527void inline_size
450fd_reify (EV_P) 528fd_reify (EV_P)
451{ 529{
452 int i; 530 int i;
545static void noinline 623static void noinline
546fd_rearm_all (EV_P) 624fd_rearm_all (EV_P)
547{ 625{
548 int fd; 626 int fd;
549 627
550 /* this should be highly optimised to not do anything but set a flag */
551 for (fd = 0; fd < anfdmax; ++fd) 628 for (fd = 0; fd < anfdmax; ++fd)
552 if (anfds [fd].events) 629 if (anfds [fd].events)
553 { 630 {
554 anfds [fd].events = 0; 631 anfds [fd].events = 0;
555 fd_change (EV_A_ fd); 632 fd_change (EV_A_ fd);
682 for (signum = signalmax; signum--; ) 759 for (signum = signalmax; signum--; )
683 if (signals [signum].gotsig) 760 if (signals [signum].gotsig)
684 ev_feed_signal_event (EV_A_ signum + 1); 761 ev_feed_signal_event (EV_A_ signum + 1);
685} 762}
686 763
687void inline_size 764void inline_speed
688fd_intern (int fd) 765fd_intern (int fd)
689{ 766{
690#ifdef _WIN32 767#ifdef _WIN32
691 int arg = 1; 768 int arg = 1;
692 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 769 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
707 ev_unref (EV_A); /* child watcher should not keep loop alive */ 784 ev_unref (EV_A); /* child watcher should not keep loop alive */
708} 785}
709 786
710/*****************************************************************************/ 787/*****************************************************************************/
711 788
712static ev_child *childs [PID_HASHSIZE]; 789static ev_child *childs [EV_PID_HASHSIZE];
713 790
714#ifndef _WIN32 791#ifndef _WIN32
715 792
716static ev_signal childev; 793static ev_signal childev;
794
795void inline_speed
796child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
797{
798 ev_child *w;
799
800 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
801 if (w->pid == pid || !w->pid)
802 {
803 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
804 w->rpid = pid;
805 w->rstatus = status;
806 ev_feed_event (EV_A_ (W)w, EV_CHILD);
807 }
808}
717 809
718#ifndef WCONTINUED 810#ifndef WCONTINUED
719# define WCONTINUED 0 811# define WCONTINUED 0
720#endif 812#endif
721 813
722void inline_speed
723child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
724{
725 ev_child *w;
726
727 for (w = (ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
728 if (w->pid == pid || !w->pid)
729 {
730 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
731 w->rpid = pid;
732 w->rstatus = status;
733 ev_feed_event (EV_A_ (W)w, EV_CHILD);
734 }
735}
736
737static void 814static void
738childcb (EV_P_ ev_signal *sw, int revents) 815childcb (EV_P_ ev_signal *sw, int revents)
739{ 816{
740 int pid, status; 817 int pid, status;
741 818
819 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
742 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 820 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
743 { 821 if (!WCONTINUED
822 || errno != EINVAL
823 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
824 return;
825
744 /* make sure we are called again until all childs have been reaped */ 826 /* make sure we are called again until all childs have been reaped */
745 /* we need to do it this way so that the callback gets called before we continue */ 827 /* we need to do it this way so that the callback gets called before we continue */
746 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 828 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
747 829
748 child_reap (EV_A_ sw, pid, pid, status); 830 child_reap (EV_A_ sw, pid, pid, status);
831 if (EV_PID_HASHSIZE > 1)
749 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 832 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
750 }
751} 833}
752 834
753#endif 835#endif
754 836
755/*****************************************************************************/ 837/*****************************************************************************/
838ev_backend (EV_P) 920ev_backend (EV_P)
839{ 921{
840 return backend; 922 return backend;
841} 923}
842 924
843static void 925unsigned int
926ev_loop_count (EV_P)
927{
928 return loop_count;
929}
930
931static void noinline
844loop_init (EV_P_ unsigned int flags) 932loop_init (EV_P_ unsigned int flags)
845{ 933{
846 if (!backend) 934 if (!backend)
847 { 935 {
848#if EV_USE_MONOTONIC 936#if EV_USE_MONOTONIC
856 ev_rt_now = ev_time (); 944 ev_rt_now = ev_time ();
857 mn_now = get_clock (); 945 mn_now = get_clock ();
858 now_floor = mn_now; 946 now_floor = mn_now;
859 rtmn_diff = ev_rt_now - mn_now; 947 rtmn_diff = ev_rt_now - mn_now;
860 948
949 /* pid check not overridable via env */
950#ifndef _WIN32
951 if (flags & EVFLAG_FORKCHECK)
952 curpid = getpid ();
953#endif
954
861 if (!(flags & EVFLAG_NOENV) 955 if (!(flags & EVFLAG_NOENV)
862 && !enable_secure () 956 && !enable_secure ()
863 && getenv ("LIBEV_FLAGS")) 957 && getenv ("LIBEV_FLAGS"))
864 flags = atoi (getenv ("LIBEV_FLAGS")); 958 flags = atoi (getenv ("LIBEV_FLAGS"));
865 959
866 if (!(flags & 0x0000ffffUL)) 960 if (!(flags & 0x0000ffffUL))
867 flags |= ev_recommended_backends (); 961 flags |= ev_recommended_backends ();
868 962
869 backend = 0; 963 backend = 0;
964 backend_fd = -1;
965#if EV_USE_INOTIFY
966 fs_fd = -2;
967#endif
968
870#if EV_USE_PORT 969#if EV_USE_PORT
871 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 970 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
872#endif 971#endif
873#if EV_USE_KQUEUE 972#if EV_USE_KQUEUE
874 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 973 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
886 ev_init (&sigev, sigcb); 985 ev_init (&sigev, sigcb);
887 ev_set_priority (&sigev, EV_MAXPRI); 986 ev_set_priority (&sigev, EV_MAXPRI);
888 } 987 }
889} 988}
890 989
891static void 990static void noinline
892loop_destroy (EV_P) 991loop_destroy (EV_P)
893{ 992{
894 int i; 993 int i;
994
995#if EV_USE_INOTIFY
996 if (fs_fd >= 0)
997 close (fs_fd);
998#endif
999
1000 if (backend_fd >= 0)
1001 close (backend_fd);
895 1002
896#if EV_USE_PORT 1003#if EV_USE_PORT
897 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1004 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
898#endif 1005#endif
899#if EV_USE_KQUEUE 1006#if EV_USE_KQUEUE
908#if EV_USE_SELECT 1015#if EV_USE_SELECT
909 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1016 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
910#endif 1017#endif
911 1018
912 for (i = NUMPRI; i--; ) 1019 for (i = NUMPRI; i--; )
1020 {
913 array_free (pending, [i]); 1021 array_free (pending, [i]);
1022#if EV_IDLE_ENABLE
1023 array_free (idle, [i]);
1024#endif
1025 }
914 1026
915 /* have to use the microsoft-never-gets-it-right macro */ 1027 /* have to use the microsoft-never-gets-it-right macro */
916 array_free (fdchange, EMPTY0); 1028 array_free (fdchange, EMPTY);
917 array_free (timer, EMPTY0); 1029 array_free (timer, EMPTY);
918#if EV_PERIODIC_ENABLE 1030#if EV_PERIODIC_ENABLE
919 array_free (periodic, EMPTY0); 1031 array_free (periodic, EMPTY);
920#endif 1032#endif
921 array_free (idle, EMPTY0);
922 array_free (prepare, EMPTY0); 1033 array_free (prepare, EMPTY);
923 array_free (check, EMPTY0); 1034 array_free (check, EMPTY);
924 1035
925 backend = 0; 1036 backend = 0;
926} 1037}
927 1038
928static void 1039void inline_size infy_fork (EV_P);
1040
1041void inline_size
929loop_fork (EV_P) 1042loop_fork (EV_P)
930{ 1043{
931#if EV_USE_PORT 1044#if EV_USE_PORT
932 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1045 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
933#endif 1046#endif
934#if EV_USE_KQUEUE 1047#if EV_USE_KQUEUE
935 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1048 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
936#endif 1049#endif
937#if EV_USE_EPOLL 1050#if EV_USE_EPOLL
938 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1051 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1052#endif
1053#if EV_USE_INOTIFY
1054 infy_fork (EV_A);
939#endif 1055#endif
940 1056
941 if (ev_is_active (&sigev)) 1057 if (ev_is_active (&sigev))
942 { 1058 {
943 /* default loop */ 1059 /* default loop */
1059 postfork = 1; 1175 postfork = 1;
1060} 1176}
1061 1177
1062/*****************************************************************************/ 1178/*****************************************************************************/
1063 1179
1064int inline_size 1180void
1065any_pending (EV_P) 1181ev_invoke (EV_P_ void *w, int revents)
1066{ 1182{
1067 int pri; 1183 EV_CB_INVOKE ((W)w, revents);
1068
1069 for (pri = NUMPRI; pri--; )
1070 if (pendingcnt [pri])
1071 return 1;
1072
1073 return 0;
1074} 1184}
1075 1185
1076void inline_speed 1186void inline_speed
1077call_pending (EV_P) 1187call_pending (EV_P)
1078{ 1188{
1083 { 1193 {
1084 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1194 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1085 1195
1086 if (expect_true (p->w)) 1196 if (expect_true (p->w))
1087 { 1197 {
1088 assert (("non-pending watcher on pending list", p->w->pending)); 1198 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1089 1199
1090 p->w->pending = 0; 1200 p->w->pending = 0;
1091 EV_CB_INVOKE (p->w, p->events); 1201 EV_CB_INVOKE (p->w, p->events);
1092 } 1202 }
1093 } 1203 }
1098{ 1208{
1099 while (timercnt && ((WT)timers [0])->at <= mn_now) 1209 while (timercnt && ((WT)timers [0])->at <= mn_now)
1100 { 1210 {
1101 ev_timer *w = timers [0]; 1211 ev_timer *w = timers [0];
1102 1212
1103 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1213 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1104 1214
1105 /* first reschedule or stop timer */ 1215 /* first reschedule or stop timer */
1106 if (w->repeat) 1216 if (w->repeat)
1107 { 1217 {
1108 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1218 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1126{ 1236{
1127 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1237 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1128 { 1238 {
1129 ev_periodic *w = periodics [0]; 1239 ev_periodic *w = periodics [0];
1130 1240
1131 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1241 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1132 1242
1133 /* first reschedule or stop timer */ 1243 /* first reschedule or stop timer */
1134 if (w->reschedule_cb) 1244 if (w->reschedule_cb)
1135 { 1245 {
1136 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1246 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1137 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1247 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1138 downheap ((WT *)periodics, periodiccnt, 0); 1248 downheap ((WT *)periodics, periodiccnt, 0);
1139 } 1249 }
1140 else if (w->interval) 1250 else if (w->interval)
1141 { 1251 {
1142 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1252 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1253 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1143 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1144 downheap ((WT *)periodics, periodiccnt, 0); 1255 downheap ((WT *)periodics, periodiccnt, 0);
1145 } 1256 }
1146 else 1257 else
1147 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1161 ev_periodic *w = periodics [i]; 1272 ev_periodic *w = periodics [i];
1162 1273
1163 if (w->reschedule_cb) 1274 if (w->reschedule_cb)
1164 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1165 else if (w->interval) 1276 else if (w->interval)
1166 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1167 } 1278 }
1168 1279
1169 /* now rebuild the heap */ 1280 /* now rebuild the heap */
1170 for (i = periodiccnt >> 1; i--; ) 1281 for (i = periodiccnt >> 1; i--; )
1171 downheap ((WT *)periodics, periodiccnt, i); 1282 downheap ((WT *)periodics, periodiccnt, i);
1172} 1283}
1173#endif 1284#endif
1174 1285
1286#if EV_IDLE_ENABLE
1175int inline_size 1287void inline_size
1176time_update_monotonic (EV_P) 1288idle_reify (EV_P)
1177{ 1289{
1290 if (expect_false (idleall))
1291 {
1292 int pri;
1293
1294 for (pri = NUMPRI; pri--; )
1295 {
1296 if (pendingcnt [pri])
1297 break;
1298
1299 if (idlecnt [pri])
1300 {
1301 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1302 break;
1303 }
1304 }
1305 }
1306}
1307#endif
1308
1309void inline_speed
1310time_update (EV_P_ ev_tstamp max_block)
1311{
1312 int i;
1313
1314#if EV_USE_MONOTONIC
1315 if (expect_true (have_monotonic))
1316 {
1317 ev_tstamp odiff = rtmn_diff;
1318
1178 mn_now = get_clock (); 1319 mn_now = get_clock ();
1179 1320
1321 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1322 /* interpolate in the meantime */
1180 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1323 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1181 { 1324 {
1182 ev_rt_now = rtmn_diff + mn_now; 1325 ev_rt_now = rtmn_diff + mn_now;
1183 return 0; 1326 return;
1184 } 1327 }
1185 else 1328
1186 {
1187 now_floor = mn_now; 1329 now_floor = mn_now;
1188 ev_rt_now = ev_time (); 1330 ev_rt_now = ev_time ();
1189 return 1;
1190 }
1191}
1192 1331
1193void inline_size 1332 /* loop a few times, before making important decisions.
1194time_update (EV_P) 1333 * on the choice of "4": one iteration isn't enough,
1195{ 1334 * in case we get preempted during the calls to
1196 int i; 1335 * ev_time and get_clock. a second call is almost guaranteed
1197 1336 * to succeed in that case, though. and looping a few more times
1198#if EV_USE_MONOTONIC 1337 * doesn't hurt either as we only do this on time-jumps or
1199 if (expect_true (have_monotonic)) 1338 * in the unlikely event of having been preempted here.
1200 { 1339 */
1201 if (time_update_monotonic (EV_A)) 1340 for (i = 4; --i; )
1202 { 1341 {
1203 ev_tstamp odiff = rtmn_diff;
1204
1205 /* loop a few times, before making important decisions.
1206 * on the choice of "4": one iteration isn't enough,
1207 * in case we get preempted during the calls to
1208 * ev_time and get_clock. a second call is almost guarenteed
1209 * to succeed in that case, though. and looping a few more times
1210 * doesn't hurt either as we only do this on time-jumps or
1211 * in the unlikely event of getting preempted here.
1212 */
1213 for (i = 4; --i; )
1214 {
1215 rtmn_diff = ev_rt_now - mn_now; 1342 rtmn_diff = ev_rt_now - mn_now;
1216 1343
1217 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1344 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1218 return; /* all is well */ 1345 return; /* all is well */
1219 1346
1220 ev_rt_now = ev_time (); 1347 ev_rt_now = ev_time ();
1221 mn_now = get_clock (); 1348 mn_now = get_clock ();
1222 now_floor = mn_now; 1349 now_floor = mn_now;
1223 } 1350 }
1224 1351
1225# if EV_PERIODIC_ENABLE 1352# if EV_PERIODIC_ENABLE
1226 periodics_reschedule (EV_A); 1353 periodics_reschedule (EV_A);
1227# endif 1354# endif
1228 /* no timer adjustment, as the monotonic clock doesn't jump */ 1355 /* no timer adjustment, as the monotonic clock doesn't jump */
1229 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1356 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1230 }
1231 } 1357 }
1232 else 1358 else
1233#endif 1359#endif
1234 { 1360 {
1235 ev_rt_now = ev_time (); 1361 ev_rt_now = ev_time ();
1236 1362
1237 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1363 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1238 { 1364 {
1239#if EV_PERIODIC_ENABLE 1365#if EV_PERIODIC_ENABLE
1240 periodics_reschedule (EV_A); 1366 periodics_reschedule (EV_A);
1241#endif 1367#endif
1242
1243 /* adjust timers. this is easy, as the offset is the same for all */ 1368 /* adjust timers. this is easy, as the offset is the same for all of them */
1244 for (i = 0; i < timercnt; ++i) 1369 for (i = 0; i < timercnt; ++i)
1245 ((WT)timers [i])->at += ev_rt_now - mn_now; 1370 ((WT)timers [i])->at += ev_rt_now - mn_now;
1246 } 1371 }
1247 1372
1248 mn_now = ev_rt_now; 1373 mn_now = ev_rt_now;
1268{ 1393{
1269 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1394 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1270 ? EVUNLOOP_ONE 1395 ? EVUNLOOP_ONE
1271 : EVUNLOOP_CANCEL; 1396 : EVUNLOOP_CANCEL;
1272 1397
1273 while (activecnt) 1398 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1399
1400 do
1274 { 1401 {
1402#ifndef _WIN32
1403 if (expect_false (curpid)) /* penalise the forking check even more */
1404 if (expect_false (getpid () != curpid))
1405 {
1406 curpid = getpid ();
1407 postfork = 1;
1408 }
1409#endif
1410
1411#if EV_FORK_ENABLE
1412 /* we might have forked, so queue fork handlers */
1413 if (expect_false (postfork))
1414 if (forkcnt)
1415 {
1416 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1417 call_pending (EV_A);
1418 }
1419#endif
1420
1275 /* queue check watchers (and execute them) */ 1421 /* queue prepare watchers (and execute them) */
1276 if (expect_false (preparecnt)) 1422 if (expect_false (preparecnt))
1277 { 1423 {
1278 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1424 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1279 call_pending (EV_A); 1425 call_pending (EV_A);
1280 } 1426 }
1281 1427
1428 if (expect_false (!activecnt))
1429 break;
1430
1282 /* we might have forked, so reify kernel state if necessary */ 1431 /* we might have forked, so reify kernel state if necessary */
1283 if (expect_false (postfork)) 1432 if (expect_false (postfork))
1284 loop_fork (EV_A); 1433 loop_fork (EV_A);
1285 1434
1286 /* update fd-related kernel structures */ 1435 /* update fd-related kernel structures */
1287 fd_reify (EV_A); 1436 fd_reify (EV_A);
1288 1437
1289 /* calculate blocking time */ 1438 /* calculate blocking time */
1290 { 1439 {
1291 double block; 1440 ev_tstamp block;
1292 1441
1293 if (flags & EVLOOP_NONBLOCK || idlecnt) 1442 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1294 block = 0.; /* do not block at all */ 1443 block = 0.; /* do not block at all */
1295 else 1444 else
1296 { 1445 {
1297 /* update time to cancel out callback processing overhead */ 1446 /* update time to cancel out callback processing overhead */
1298#if EV_USE_MONOTONIC
1299 if (expect_true (have_monotonic))
1300 time_update_monotonic (EV_A); 1447 time_update (EV_A_ 1e100);
1301 else
1302#endif
1303 {
1304 ev_rt_now = ev_time ();
1305 mn_now = ev_rt_now;
1306 }
1307 1448
1308 block = MAX_BLOCKTIME; 1449 block = MAX_BLOCKTIME;
1309 1450
1310 if (timercnt) 1451 if (timercnt)
1311 { 1452 {
1322#endif 1463#endif
1323 1464
1324 if (expect_false (block < 0.)) block = 0.; 1465 if (expect_false (block < 0.)) block = 0.;
1325 } 1466 }
1326 1467
1468 ++loop_count;
1327 backend_poll (EV_A_ block); 1469 backend_poll (EV_A_ block);
1470
1471 /* update ev_rt_now, do magic */
1472 time_update (EV_A_ block);
1328 } 1473 }
1329
1330 /* update ev_rt_now, do magic */
1331 time_update (EV_A);
1332 1474
1333 /* queue pending timers and reschedule them */ 1475 /* queue pending timers and reschedule them */
1334 timers_reify (EV_A); /* relative timers called last */ 1476 timers_reify (EV_A); /* relative timers called last */
1335#if EV_PERIODIC_ENABLE 1477#if EV_PERIODIC_ENABLE
1336 periodics_reify (EV_A); /* absolute timers called first */ 1478 periodics_reify (EV_A); /* absolute timers called first */
1337#endif 1479#endif
1338 1480
1481#if EV_IDLE_ENABLE
1339 /* queue idle watchers unless other events are pending */ 1482 /* queue idle watchers unless other events are pending */
1340 if (idlecnt && !any_pending (EV_A)) 1483 idle_reify (EV_A);
1341 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1484#endif
1342 1485
1343 /* queue check watchers, to be executed first */ 1486 /* queue check watchers, to be executed first */
1344 if (expect_false (checkcnt)) 1487 if (expect_false (checkcnt))
1345 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1488 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1346 1489
1347 call_pending (EV_A); 1490 call_pending (EV_A);
1348 1491
1349 if (expect_false (loop_done))
1350 break;
1351 } 1492 }
1493 while (expect_true (activecnt && !loop_done));
1352 1494
1353 if (loop_done == EVUNLOOP_ONE) 1495 if (loop_done == EVUNLOOP_ONE)
1354 loop_done = EVUNLOOP_CANCEL; 1496 loop_done = EVUNLOOP_CANCEL;
1355} 1497}
1356 1498
1383 head = &(*head)->next; 1525 head = &(*head)->next;
1384 } 1526 }
1385} 1527}
1386 1528
1387void inline_speed 1529void inline_speed
1388ev_clear_pending (EV_P_ W w) 1530clear_pending (EV_P_ W w)
1389{ 1531{
1390 if (w->pending) 1532 if (w->pending)
1391 { 1533 {
1392 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1534 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1393 w->pending = 0; 1535 w->pending = 0;
1394 } 1536 }
1395} 1537}
1396 1538
1539int
1540ev_clear_pending (EV_P_ void *w)
1541{
1542 W w_ = (W)w;
1543 int pending = w_->pending;
1544
1545 if (expect_true (pending))
1546 {
1547 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1548 w_->pending = 0;
1549 p->w = 0;
1550 return p->events;
1551 }
1552 else
1553 return 0;
1554}
1555
1556void inline_size
1557pri_adjust (EV_P_ W w)
1558{
1559 int pri = w->priority;
1560 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1561 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1562 w->priority = pri;
1563}
1564
1397void inline_speed 1565void inline_speed
1398ev_start (EV_P_ W w, int active) 1566ev_start (EV_P_ W w, int active)
1399{ 1567{
1400 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1568 pri_adjust (EV_A_ w);
1401 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1402
1403 w->active = active; 1569 w->active = active;
1404 ev_ref (EV_A); 1570 ev_ref (EV_A);
1405} 1571}
1406 1572
1407void inline_size 1573void inline_size
1411 w->active = 0; 1577 w->active = 0;
1412} 1578}
1413 1579
1414/*****************************************************************************/ 1580/*****************************************************************************/
1415 1581
1416void 1582void noinline
1417ev_io_start (EV_P_ ev_io *w) 1583ev_io_start (EV_P_ ev_io *w)
1418{ 1584{
1419 int fd = w->fd; 1585 int fd = w->fd;
1420 1586
1421 if (expect_false (ev_is_active (w))) 1587 if (expect_false (ev_is_active (w)))
1428 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1594 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1429 1595
1430 fd_change (EV_A_ fd); 1596 fd_change (EV_A_ fd);
1431} 1597}
1432 1598
1433void 1599void noinline
1434ev_io_stop (EV_P_ ev_io *w) 1600ev_io_stop (EV_P_ ev_io *w)
1435{ 1601{
1436 ev_clear_pending (EV_A_ (W)w); 1602 clear_pending (EV_A_ (W)w);
1437 if (expect_false (!ev_is_active (w))) 1603 if (expect_false (!ev_is_active (w)))
1438 return; 1604 return;
1439 1605
1440 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1606 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1441 1607
1443 ev_stop (EV_A_ (W)w); 1609 ev_stop (EV_A_ (W)w);
1444 1610
1445 fd_change (EV_A_ w->fd); 1611 fd_change (EV_A_ w->fd);
1446} 1612}
1447 1613
1448void 1614void noinline
1449ev_timer_start (EV_P_ ev_timer *w) 1615ev_timer_start (EV_P_ ev_timer *w)
1450{ 1616{
1451 if (expect_false (ev_is_active (w))) 1617 if (expect_false (ev_is_active (w)))
1452 return; 1618 return;
1453 1619
1458 ev_start (EV_A_ (W)w, ++timercnt); 1624 ev_start (EV_A_ (W)w, ++timercnt);
1459 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1625 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1460 timers [timercnt - 1] = w; 1626 timers [timercnt - 1] = w;
1461 upheap ((WT *)timers, timercnt - 1); 1627 upheap ((WT *)timers, timercnt - 1);
1462 1628
1629 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1630}
1631
1632void noinline
1633ev_timer_stop (EV_P_ ev_timer *w)
1634{
1635 clear_pending (EV_A_ (W)w);
1636 if (expect_false (!ev_is_active (w)))
1637 return;
1638
1463 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1639 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1464}
1465 1640
1466void 1641 {
1467ev_timer_stop (EV_P_ ev_timer *w) 1642 int active = ((W)w)->active;
1468{
1469 ev_clear_pending (EV_A_ (W)w);
1470 if (expect_false (!ev_is_active (w)))
1471 return;
1472 1643
1473 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1474
1475 if (expect_true (((W)w)->active < timercnt--)) 1644 if (expect_true (--active < --timercnt))
1476 { 1645 {
1477 timers [((W)w)->active - 1] = timers [timercnt]; 1646 timers [active] = timers [timercnt];
1478 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1647 adjustheap ((WT *)timers, timercnt, active);
1479 } 1648 }
1649 }
1480 1650
1481 ((WT)w)->at -= mn_now; 1651 ((WT)w)->at -= mn_now;
1482 1652
1483 ev_stop (EV_A_ (W)w); 1653 ev_stop (EV_A_ (W)w);
1484} 1654}
1485 1655
1486void 1656void noinline
1487ev_timer_again (EV_P_ ev_timer *w) 1657ev_timer_again (EV_P_ ev_timer *w)
1488{ 1658{
1489 if (ev_is_active (w)) 1659 if (ev_is_active (w))
1490 { 1660 {
1491 if (w->repeat) 1661 if (w->repeat)
1502 ev_timer_start (EV_A_ w); 1672 ev_timer_start (EV_A_ w);
1503 } 1673 }
1504} 1674}
1505 1675
1506#if EV_PERIODIC_ENABLE 1676#if EV_PERIODIC_ENABLE
1507void 1677void noinline
1508ev_periodic_start (EV_P_ ev_periodic *w) 1678ev_periodic_start (EV_P_ ev_periodic *w)
1509{ 1679{
1510 if (expect_false (ev_is_active (w))) 1680 if (expect_false (ev_is_active (w)))
1511 return; 1681 return;
1512 1682
1514 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1684 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1515 else if (w->interval) 1685 else if (w->interval)
1516 { 1686 {
1517 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1687 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1518 /* this formula differs from the one in periodic_reify because we do not always round up */ 1688 /* this formula differs from the one in periodic_reify because we do not always round up */
1519 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1689 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1520 } 1690 }
1691 else
1692 ((WT)w)->at = w->offset;
1521 1693
1522 ev_start (EV_A_ (W)w, ++periodiccnt); 1694 ev_start (EV_A_ (W)w, ++periodiccnt);
1523 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1695 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1524 periodics [periodiccnt - 1] = w; 1696 periodics [periodiccnt - 1] = w;
1525 upheap ((WT *)periodics, periodiccnt - 1); 1697 upheap ((WT *)periodics, periodiccnt - 1);
1526 1698
1699 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1700}
1701
1702void noinline
1703ev_periodic_stop (EV_P_ ev_periodic *w)
1704{
1705 clear_pending (EV_A_ (W)w);
1706 if (expect_false (!ev_is_active (w)))
1707 return;
1708
1527 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1709 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1528}
1529 1710
1530void 1711 {
1531ev_periodic_stop (EV_P_ ev_periodic *w) 1712 int active = ((W)w)->active;
1532{
1533 ev_clear_pending (EV_A_ (W)w);
1534 if (expect_false (!ev_is_active (w)))
1535 return;
1536 1713
1537 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1538
1539 if (expect_true (((W)w)->active < periodiccnt--)) 1714 if (expect_true (--active < --periodiccnt))
1540 { 1715 {
1541 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1716 periodics [active] = periodics [periodiccnt];
1542 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1717 adjustheap ((WT *)periodics, periodiccnt, active);
1543 } 1718 }
1719 }
1544 1720
1545 ev_stop (EV_A_ (W)w); 1721 ev_stop (EV_A_ (W)w);
1546} 1722}
1547 1723
1548void 1724void noinline
1549ev_periodic_again (EV_P_ ev_periodic *w) 1725ev_periodic_again (EV_P_ ev_periodic *w)
1550{ 1726{
1551 /* TODO: use adjustheap and recalculation */ 1727 /* TODO: use adjustheap and recalculation */
1552 ev_periodic_stop (EV_A_ w); 1728 ev_periodic_stop (EV_A_ w);
1553 ev_periodic_start (EV_A_ w); 1729 ev_periodic_start (EV_A_ w);
1554} 1730}
1555#endif 1731#endif
1556 1732
1557void
1558ev_idle_start (EV_P_ ev_idle *w)
1559{
1560 if (expect_false (ev_is_active (w)))
1561 return;
1562
1563 ev_start (EV_A_ (W)w, ++idlecnt);
1564 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1565 idles [idlecnt - 1] = w;
1566}
1567
1568void
1569ev_idle_stop (EV_P_ ev_idle *w)
1570{
1571 ev_clear_pending (EV_A_ (W)w);
1572 if (expect_false (!ev_is_active (w)))
1573 return;
1574
1575 {
1576 int active = ((W)w)->active;
1577 idles [active - 1] = idles [--idlecnt];
1578 ((W)idles [active - 1])->active = active;
1579 }
1580
1581 ev_stop (EV_A_ (W)w);
1582}
1583
1584void
1585ev_prepare_start (EV_P_ ev_prepare *w)
1586{
1587 if (expect_false (ev_is_active (w)))
1588 return;
1589
1590 ev_start (EV_A_ (W)w, ++preparecnt);
1591 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1592 prepares [preparecnt - 1] = w;
1593}
1594
1595void
1596ev_prepare_stop (EV_P_ ev_prepare *w)
1597{
1598 ev_clear_pending (EV_A_ (W)w);
1599 if (expect_false (!ev_is_active (w)))
1600 return;
1601
1602 {
1603 int active = ((W)w)->active;
1604 prepares [active - 1] = prepares [--preparecnt];
1605 ((W)prepares [active - 1])->active = active;
1606 }
1607
1608 ev_stop (EV_A_ (W)w);
1609}
1610
1611void
1612ev_check_start (EV_P_ ev_check *w)
1613{
1614 if (expect_false (ev_is_active (w)))
1615 return;
1616
1617 ev_start (EV_A_ (W)w, ++checkcnt);
1618 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1619 checks [checkcnt - 1] = w;
1620}
1621
1622void
1623ev_check_stop (EV_P_ ev_check *w)
1624{
1625 ev_clear_pending (EV_A_ (W)w);
1626 if (expect_false (!ev_is_active (w)))
1627 return;
1628
1629 {
1630 int active = ((W)w)->active;
1631 checks [active - 1] = checks [--checkcnt];
1632 ((W)checks [active - 1])->active = active;
1633 }
1634
1635 ev_stop (EV_A_ (W)w);
1636}
1637
1638#ifndef SA_RESTART 1733#ifndef SA_RESTART
1639# define SA_RESTART 0 1734# define SA_RESTART 0
1640#endif 1735#endif
1641 1736
1642void 1737void noinline
1643ev_signal_start (EV_P_ ev_signal *w) 1738ev_signal_start (EV_P_ ev_signal *w)
1644{ 1739{
1645#if EV_MULTIPLICITY 1740#if EV_MULTIPLICITY
1646 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1741 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1647#endif 1742#endif
1666 sigaction (w->signum, &sa, 0); 1761 sigaction (w->signum, &sa, 0);
1667#endif 1762#endif
1668 } 1763 }
1669} 1764}
1670 1765
1671void 1766void noinline
1672ev_signal_stop (EV_P_ ev_signal *w) 1767ev_signal_stop (EV_P_ ev_signal *w)
1673{ 1768{
1674 ev_clear_pending (EV_A_ (W)w); 1769 clear_pending (EV_A_ (W)w);
1675 if (expect_false (!ev_is_active (w))) 1770 if (expect_false (!ev_is_active (w)))
1676 return; 1771 return;
1677 1772
1678 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1773 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1679 ev_stop (EV_A_ (W)w); 1774 ev_stop (EV_A_ (W)w);
1690#endif 1785#endif
1691 if (expect_false (ev_is_active (w))) 1786 if (expect_false (ev_is_active (w)))
1692 return; 1787 return;
1693 1788
1694 ev_start (EV_A_ (W)w, 1); 1789 ev_start (EV_A_ (W)w, 1);
1695 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1790 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1696} 1791}
1697 1792
1698void 1793void
1699ev_child_stop (EV_P_ ev_child *w) 1794ev_child_stop (EV_P_ ev_child *w)
1700{ 1795{
1701 ev_clear_pending (EV_A_ (W)w); 1796 clear_pending (EV_A_ (W)w);
1702 if (expect_false (!ev_is_active (w))) 1797 if (expect_false (!ev_is_active (w)))
1703 return; 1798 return;
1704 1799
1705 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1800 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1801 ev_stop (EV_A_ (W)w);
1802}
1803
1804#if EV_STAT_ENABLE
1805
1806# ifdef _WIN32
1807# undef lstat
1808# define lstat(a,b) _stati64 (a,b)
1809# endif
1810
1811#define DEF_STAT_INTERVAL 5.0074891
1812#define MIN_STAT_INTERVAL 0.1074891
1813
1814static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1815
1816#if EV_USE_INOTIFY
1817# define EV_INOTIFY_BUFSIZE 8192
1818
1819static void noinline
1820infy_add (EV_P_ ev_stat *w)
1821{
1822 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1823
1824 if (w->wd < 0)
1825 {
1826 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1827
1828 /* monitor some parent directory for speedup hints */
1829 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1830 {
1831 char path [4096];
1832 strcpy (path, w->path);
1833
1834 do
1835 {
1836 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1837 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1838
1839 char *pend = strrchr (path, '/');
1840
1841 if (!pend)
1842 break; /* whoops, no '/', complain to your admin */
1843
1844 *pend = 0;
1845 w->wd = inotify_add_watch (fs_fd, path, mask);
1846 }
1847 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1848 }
1849 }
1850 else
1851 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1852
1853 if (w->wd >= 0)
1854 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1855}
1856
1857static void noinline
1858infy_del (EV_P_ ev_stat *w)
1859{
1860 int slot;
1861 int wd = w->wd;
1862
1863 if (wd < 0)
1864 return;
1865
1866 w->wd = -2;
1867 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1868 wlist_del (&fs_hash [slot].head, (WL)w);
1869
1870 /* remove this watcher, if others are watching it, they will rearm */
1871 inotify_rm_watch (fs_fd, wd);
1872}
1873
1874static void noinline
1875infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1876{
1877 if (slot < 0)
1878 /* overflow, need to check for all hahs slots */
1879 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1880 infy_wd (EV_A_ slot, wd, ev);
1881 else
1882 {
1883 WL w_;
1884
1885 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1886 {
1887 ev_stat *w = (ev_stat *)w_;
1888 w_ = w_->next; /* lets us remove this watcher and all before it */
1889
1890 if (w->wd == wd || wd == -1)
1891 {
1892 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1893 {
1894 w->wd = -1;
1895 infy_add (EV_A_ w); /* re-add, no matter what */
1896 }
1897
1898 stat_timer_cb (EV_A_ &w->timer, 0);
1899 }
1900 }
1901 }
1902}
1903
1904static void
1905infy_cb (EV_P_ ev_io *w, int revents)
1906{
1907 char buf [EV_INOTIFY_BUFSIZE];
1908 struct inotify_event *ev = (struct inotify_event *)buf;
1909 int ofs;
1910 int len = read (fs_fd, buf, sizeof (buf));
1911
1912 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1913 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1914}
1915
1916void inline_size
1917infy_init (EV_P)
1918{
1919 if (fs_fd != -2)
1920 return;
1921
1922 fs_fd = inotify_init ();
1923
1924 if (fs_fd >= 0)
1925 {
1926 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1927 ev_set_priority (&fs_w, EV_MAXPRI);
1928 ev_io_start (EV_A_ &fs_w);
1929 }
1930}
1931
1932void inline_size
1933infy_fork (EV_P)
1934{
1935 int slot;
1936
1937 if (fs_fd < 0)
1938 return;
1939
1940 close (fs_fd);
1941 fs_fd = inotify_init ();
1942
1943 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1944 {
1945 WL w_ = fs_hash [slot].head;
1946 fs_hash [slot].head = 0;
1947
1948 while (w_)
1949 {
1950 ev_stat *w = (ev_stat *)w_;
1951 w_ = w_->next; /* lets us add this watcher */
1952
1953 w->wd = -1;
1954
1955 if (fs_fd >= 0)
1956 infy_add (EV_A_ w); /* re-add, no matter what */
1957 else
1958 ev_timer_start (EV_A_ &w->timer);
1959 }
1960
1961 }
1962}
1963
1964#endif
1965
1966void
1967ev_stat_stat (EV_P_ ev_stat *w)
1968{
1969 if (lstat (w->path, &w->attr) < 0)
1970 w->attr.st_nlink = 0;
1971 else if (!w->attr.st_nlink)
1972 w->attr.st_nlink = 1;
1973}
1974
1975static void noinline
1976stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1977{
1978 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1979
1980 /* we copy this here each the time so that */
1981 /* prev has the old value when the callback gets invoked */
1982 w->prev = w->attr;
1983 ev_stat_stat (EV_A_ w);
1984
1985 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
1986 if (
1987 w->prev.st_dev != w->attr.st_dev
1988 || w->prev.st_ino != w->attr.st_ino
1989 || w->prev.st_mode != w->attr.st_mode
1990 || w->prev.st_nlink != w->attr.st_nlink
1991 || w->prev.st_uid != w->attr.st_uid
1992 || w->prev.st_gid != w->attr.st_gid
1993 || w->prev.st_rdev != w->attr.st_rdev
1994 || w->prev.st_size != w->attr.st_size
1995 || w->prev.st_atime != w->attr.st_atime
1996 || w->prev.st_mtime != w->attr.st_mtime
1997 || w->prev.st_ctime != w->attr.st_ctime
1998 ) {
1999 #if EV_USE_INOTIFY
2000 infy_del (EV_A_ w);
2001 infy_add (EV_A_ w);
2002 ev_stat_stat (EV_A_ w); /* avoid race... */
2003 #endif
2004
2005 ev_feed_event (EV_A_ w, EV_STAT);
2006 }
2007}
2008
2009void
2010ev_stat_start (EV_P_ ev_stat *w)
2011{
2012 if (expect_false (ev_is_active (w)))
2013 return;
2014
2015 /* since we use memcmp, we need to clear any padding data etc. */
2016 memset (&w->prev, 0, sizeof (ev_statdata));
2017 memset (&w->attr, 0, sizeof (ev_statdata));
2018
2019 ev_stat_stat (EV_A_ w);
2020
2021 if (w->interval < MIN_STAT_INTERVAL)
2022 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2023
2024 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2025 ev_set_priority (&w->timer, ev_priority (w));
2026
2027#if EV_USE_INOTIFY
2028 infy_init (EV_A);
2029
2030 if (fs_fd >= 0)
2031 infy_add (EV_A_ w);
2032 else
2033#endif
2034 ev_timer_start (EV_A_ &w->timer);
2035
2036 ev_start (EV_A_ (W)w, 1);
2037}
2038
2039void
2040ev_stat_stop (EV_P_ ev_stat *w)
2041{
2042 clear_pending (EV_A_ (W)w);
2043 if (expect_false (!ev_is_active (w)))
2044 return;
2045
2046#if EV_USE_INOTIFY
2047 infy_del (EV_A_ w);
2048#endif
2049 ev_timer_stop (EV_A_ &w->timer);
2050
2051 ev_stop (EV_A_ (W)w);
2052}
2053#endif
2054
2055#if EV_IDLE_ENABLE
2056void
2057ev_idle_start (EV_P_ ev_idle *w)
2058{
2059 if (expect_false (ev_is_active (w)))
2060 return;
2061
2062 pri_adjust (EV_A_ (W)w);
2063
2064 {
2065 int active = ++idlecnt [ABSPRI (w)];
2066
2067 ++idleall;
2068 ev_start (EV_A_ (W)w, active);
2069
2070 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2071 idles [ABSPRI (w)][active - 1] = w;
2072 }
2073}
2074
2075void
2076ev_idle_stop (EV_P_ ev_idle *w)
2077{
2078 clear_pending (EV_A_ (W)w);
2079 if (expect_false (!ev_is_active (w)))
2080 return;
2081
2082 {
2083 int active = ((W)w)->active;
2084
2085 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2086 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2087
2088 ev_stop (EV_A_ (W)w);
2089 --idleall;
2090 }
2091}
2092#endif
2093
2094void
2095ev_prepare_start (EV_P_ ev_prepare *w)
2096{
2097 if (expect_false (ev_is_active (w)))
2098 return;
2099
2100 ev_start (EV_A_ (W)w, ++preparecnt);
2101 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2102 prepares [preparecnt - 1] = w;
2103}
2104
2105void
2106ev_prepare_stop (EV_P_ ev_prepare *w)
2107{
2108 clear_pending (EV_A_ (W)w);
2109 if (expect_false (!ev_is_active (w)))
2110 return;
2111
2112 {
2113 int active = ((W)w)->active;
2114 prepares [active - 1] = prepares [--preparecnt];
2115 ((W)prepares [active - 1])->active = active;
2116 }
2117
2118 ev_stop (EV_A_ (W)w);
2119}
2120
2121void
2122ev_check_start (EV_P_ ev_check *w)
2123{
2124 if (expect_false (ev_is_active (w)))
2125 return;
2126
2127 ev_start (EV_A_ (W)w, ++checkcnt);
2128 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2129 checks [checkcnt - 1] = w;
2130}
2131
2132void
2133ev_check_stop (EV_P_ ev_check *w)
2134{
2135 clear_pending (EV_A_ (W)w);
2136 if (expect_false (!ev_is_active (w)))
2137 return;
2138
2139 {
2140 int active = ((W)w)->active;
2141 checks [active - 1] = checks [--checkcnt];
2142 ((W)checks [active - 1])->active = active;
2143 }
2144
1706 ev_stop (EV_A_ (W)w); 2145 ev_stop (EV_A_ (W)w);
1707} 2146}
1708 2147
1709#if EV_EMBED_ENABLE 2148#if EV_EMBED_ENABLE
1710void noinline 2149void noinline
1743} 2182}
1744 2183
1745void 2184void
1746ev_embed_stop (EV_P_ ev_embed *w) 2185ev_embed_stop (EV_P_ ev_embed *w)
1747{ 2186{
1748 ev_clear_pending (EV_A_ (W)w); 2187 clear_pending (EV_A_ (W)w);
1749 if (expect_false (!ev_is_active (w))) 2188 if (expect_false (!ev_is_active (w)))
1750 return; 2189 return;
1751 2190
1752 ev_io_stop (EV_A_ &w->io); 2191 ev_io_stop (EV_A_ &w->io);
1753 2192
1754 ev_stop (EV_A_ (W)w); 2193 ev_stop (EV_A_ (W)w);
1755} 2194}
1756#endif 2195#endif
1757 2196
1758#if EV_STAT_ENABLE 2197#if EV_FORK_ENABLE
1759
1760# ifdef _WIN32
1761# define lstat(a,b) stat(a,b)
1762# endif
1763
1764void 2198void
1765ev_stat_stat (EV_P_ ev_stat *w)
1766{
1767 if (lstat (w->path, &w->attr) < 0)
1768 w->attr.st_nlink = 0;
1769 else if (!w->attr.st_nlink)
1770 w->attr.st_nlink = 1;
1771}
1772
1773static void
1774stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1775{
1776 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1777
1778 /* we copy this here each the time so that */
1779 /* prev has the old value when the callback gets invoked */
1780 w->prev = w->attr;
1781 ev_stat_stat (EV_A_ w);
1782
1783 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata)))
1784 ev_feed_event (EV_A_ w, EV_STAT);
1785}
1786
1787void
1788ev_stat_start (EV_P_ ev_stat *w) 2199ev_fork_start (EV_P_ ev_fork *w)
1789{ 2200{
1790 if (expect_false (ev_is_active (w))) 2201 if (expect_false (ev_is_active (w)))
1791 return; 2202 return;
1792 2203
1793 /* since we use memcmp, we need to clear any padding data etc. */
1794 memset (&w->prev, 0, sizeof (ev_statdata));
1795 memset (&w->attr, 0, sizeof (ev_statdata));
1796
1797 ev_stat_stat (EV_A_ w);
1798
1799 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1800 ev_set_priority (&w->timer, ev_priority (w));
1801 ev_timer_start (EV_A_ &w->timer);
1802
1803 ev_start (EV_A_ (W)w, 1); 2204 ev_start (EV_A_ (W)w, ++forkcnt);
2205 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2206 forks [forkcnt - 1] = w;
1804} 2207}
1805 2208
1806void 2209void
1807ev_stat_stop (EV_P_ ev_stat *w) 2210ev_fork_stop (EV_P_ ev_fork *w)
1808{ 2211{
1809 ev_clear_pending (EV_A_ (W)w); 2212 clear_pending (EV_A_ (W)w);
1810 if (expect_false (!ev_is_active (w))) 2213 if (expect_false (!ev_is_active (w)))
1811 return; 2214 return;
1812 2215
1813 ev_timer_stop (EV_A_ &w->timer); 2216 {
2217 int active = ((W)w)->active;
2218 forks [active - 1] = forks [--forkcnt];
2219 ((W)forks [active - 1])->active = active;
2220 }
1814 2221
1815 ev_stop (EV_A_ (W)w); 2222 ev_stop (EV_A_ (W)w);
1816} 2223}
1817#endif 2224#endif
1818 2225

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines