ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.159 by root, Sat Dec 1 19:48:36 2007 UTC vs.
Revision 1.178 by root, Tue Dec 11 18:36:11 2007 UTC

216# include <sys/inotify.h> 216# include <sys/inotify.h>
217#endif 217#endif
218 218
219/**/ 219/**/
220 220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
230
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 234
225#if __GNUC__ >= 3 235#if __GNUC__ >= 3
226# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 237# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 238#else
236# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
240#endif 244#endif
241 245
242#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
244 255
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 258
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 259#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 260#define EMPTY2(a,b) /* used to suppress some warnings */
250 261
251typedef ev_watcher *W; 262typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 263typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 264typedef ev_watcher_time *WT;
396{ 407{
397 return ev_rt_now; 408 return ev_rt_now;
398} 409}
399#endif 410#endif
400 411
401#define array_roundsize(type,n) (((n) | 4) & ~3) 412int inline_size
413array_nextsize (int elem, int cur, int cnt)
414{
415 int ncur = cur + 1;
416
417 do
418 ncur <<= 1;
419 while (cnt > ncur);
420
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096)
423 {
424 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
426 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem;
428 }
429
430 return ncur;
431}
432
433static noinline void *
434array_realloc (int elem, void *base, int *cur, int cnt)
435{
436 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur);
438}
402 439
403#define array_needsize(type,base,cur,cnt,init) \ 440#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 441 if (expect_false ((cnt) > (cur))) \
405 { \ 442 { \
406 int newcnt = cur; \ 443 int ocur_ = (cur); \
407 do \ 444 (base) = (type *)array_realloc \
408 { \ 445 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 446 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 447 }
417 448
449#if 0
418#define array_slim(type,stem) \ 450#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 451 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 452 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 453 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 454 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 456 }
457#endif
425 458
426#define array_free(stem, idx) \ 459#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 461
429/*****************************************************************************/ 462/*****************************************************************************/
430 463
431void noinline 464void noinline
432ev_feed_event (EV_P_ void *w, int revents) 465ev_feed_event (EV_P_ void *w, int revents)
433{ 466{
434 W w_ = (W)w; 467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
435 469
436 if (expect_false (w_->pending)) 470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
437 { 473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 477 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 478 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 479}
447 480
448void inline_size 481void inline_size
449queue_events (EV_P_ W *events, int eventcnt, int type) 482queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 483{
485} 518}
486 519
487void 520void
488ev_feed_fd_event (EV_P_ int fd, int revents) 521ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 522{
523 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 524 fd_event (EV_A_ fd, revents);
491} 525}
492 526
493void inline_size 527void inline_size
494fd_reify (EV_P) 528fd_reify (EV_P)
495{ 529{
725 for (signum = signalmax; signum--; ) 759 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig) 760 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1); 761 ev_feed_signal_event (EV_A_ signum + 1);
728} 762}
729 763
730void inline_size 764void inline_speed
731fd_intern (int fd) 765fd_intern (int fd)
732{ 766{
733#ifdef _WIN32 767#ifdef _WIN32
734 int arg = 1; 768 int arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 769 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
764 ev_child *w; 798 ev_child *w;
765 799
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 800 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
767 if (w->pid == pid || !w->pid) 801 if (w->pid == pid || !w->pid)
768 { 802 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 803 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
770 w->rpid = pid; 804 w->rpid = pid;
771 w->rstatus = status; 805 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 806 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 807 }
774} 808}
775 809
776#ifndef WCONTINUED 810#ifndef WCONTINUED
886ev_backend (EV_P) 920ev_backend (EV_P)
887{ 921{
888 return backend; 922 return backend;
889} 923}
890 924
925unsigned int
926ev_loop_count (EV_P)
927{
928 return loop_count;
929}
930
891static void noinline 931static void noinline
892loop_init (EV_P_ unsigned int flags) 932loop_init (EV_P_ unsigned int flags)
893{ 933{
894 if (!backend) 934 if (!backend)
895 { 935 {
975#if EV_USE_SELECT 1015#if EV_USE_SELECT
976 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1016 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
977#endif 1017#endif
978 1018
979 for (i = NUMPRI; i--; ) 1019 for (i = NUMPRI; i--; )
1020 {
980 array_free (pending, [i]); 1021 array_free (pending, [i]);
1022#if EV_IDLE_ENABLE
1023 array_free (idle, [i]);
1024#endif
1025 }
981 1026
982 /* have to use the microsoft-never-gets-it-right macro */ 1027 /* have to use the microsoft-never-gets-it-right macro */
983 array_free (fdchange, EMPTY0); 1028 array_free (fdchange, EMPTY);
984 array_free (timer, EMPTY0); 1029 array_free (timer, EMPTY);
985#if EV_PERIODIC_ENABLE 1030#if EV_PERIODIC_ENABLE
986 array_free (periodic, EMPTY0); 1031 array_free (periodic, EMPTY);
987#endif 1032#endif
988 array_free (idle, EMPTY0);
989 array_free (prepare, EMPTY0); 1033 array_free (prepare, EMPTY);
990 array_free (check, EMPTY0); 1034 array_free (check, EMPTY);
991 1035
992 backend = 0; 1036 backend = 0;
993} 1037}
994 1038
995void inline_size infy_fork (EV_P); 1039void inline_size infy_fork (EV_P);
1131 postfork = 1; 1175 postfork = 1;
1132} 1176}
1133 1177
1134/*****************************************************************************/ 1178/*****************************************************************************/
1135 1179
1136int inline_size 1180void
1137any_pending (EV_P) 1181ev_invoke (EV_P_ void *w, int revents)
1138{ 1182{
1139 int pri; 1183 EV_CB_INVOKE ((W)w, revents);
1140
1141 for (pri = NUMPRI; pri--; )
1142 if (pendingcnt [pri])
1143 return 1;
1144
1145 return 0;
1146} 1184}
1147 1185
1148void inline_speed 1186void inline_speed
1149call_pending (EV_P) 1187call_pending (EV_P)
1150{ 1188{
1203 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1241 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1204 1242
1205 /* first reschedule or stop timer */ 1243 /* first reschedule or stop timer */
1206 if (w->reschedule_cb) 1244 if (w->reschedule_cb)
1207 { 1245 {
1208 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1246 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1209 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1247 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1210 downheap ((WT *)periodics, periodiccnt, 0); 1248 downheap ((WT *)periodics, periodiccnt, 0);
1211 } 1249 }
1212 else if (w->interval) 1250 else if (w->interval)
1213 { 1251 {
1214 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1252 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1253 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1215 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1216 downheap ((WT *)periodics, periodiccnt, 0); 1255 downheap ((WT *)periodics, periodiccnt, 0);
1217 } 1256 }
1218 else 1257 else
1219 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1233 ev_periodic *w = periodics [i]; 1272 ev_periodic *w = periodics [i];
1234 1273
1235 if (w->reschedule_cb) 1274 if (w->reschedule_cb)
1236 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1237 else if (w->interval) 1276 else if (w->interval)
1238 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1239 } 1278 }
1240 1279
1241 /* now rebuild the heap */ 1280 /* now rebuild the heap */
1242 for (i = periodiccnt >> 1; i--; ) 1281 for (i = periodiccnt >> 1; i--; )
1243 downheap ((WT *)periodics, periodiccnt, i); 1282 downheap ((WT *)periodics, periodiccnt, i);
1244} 1283}
1245#endif 1284#endif
1246 1285
1286#if EV_IDLE_ENABLE
1247int inline_size 1287void inline_size
1248time_update_monotonic (EV_P) 1288idle_reify (EV_P)
1249{ 1289{
1290 if (expect_false (idleall))
1291 {
1292 int pri;
1293
1294 for (pri = NUMPRI; pri--; )
1295 {
1296 if (pendingcnt [pri])
1297 break;
1298
1299 if (idlecnt [pri])
1300 {
1301 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1302 break;
1303 }
1304 }
1305 }
1306}
1307#endif
1308
1309void inline_speed
1310time_update (EV_P_ ev_tstamp max_block)
1311{
1312 int i;
1313
1314#if EV_USE_MONOTONIC
1315 if (expect_true (have_monotonic))
1316 {
1317 ev_tstamp odiff = rtmn_diff;
1318
1250 mn_now = get_clock (); 1319 mn_now = get_clock ();
1251 1320
1321 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1322 /* interpolate in the meantime */
1252 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1323 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1253 { 1324 {
1254 ev_rt_now = rtmn_diff + mn_now; 1325 ev_rt_now = rtmn_diff + mn_now;
1255 return 0; 1326 return;
1256 } 1327 }
1257 else 1328
1258 {
1259 now_floor = mn_now; 1329 now_floor = mn_now;
1260 ev_rt_now = ev_time (); 1330 ev_rt_now = ev_time ();
1261 return 1;
1262 }
1263}
1264 1331
1265void inline_size 1332 /* loop a few times, before making important decisions.
1266time_update (EV_P) 1333 * on the choice of "4": one iteration isn't enough,
1267{ 1334 * in case we get preempted during the calls to
1268 int i; 1335 * ev_time and get_clock. a second call is almost guaranteed
1269 1336 * to succeed in that case, though. and looping a few more times
1270#if EV_USE_MONOTONIC 1337 * doesn't hurt either as we only do this on time-jumps or
1271 if (expect_true (have_monotonic)) 1338 * in the unlikely event of having been preempted here.
1272 { 1339 */
1273 if (time_update_monotonic (EV_A)) 1340 for (i = 4; --i; )
1274 { 1341 {
1275 ev_tstamp odiff = rtmn_diff;
1276
1277 /* loop a few times, before making important decisions.
1278 * on the choice of "4": one iteration isn't enough,
1279 * in case we get preempted during the calls to
1280 * ev_time and get_clock. a second call is almost guaranteed
1281 * to succeed in that case, though. and looping a few more times
1282 * doesn't hurt either as we only do this on time-jumps or
1283 * in the unlikely event of having been preempted here.
1284 */
1285 for (i = 4; --i; )
1286 {
1287 rtmn_diff = ev_rt_now - mn_now; 1342 rtmn_diff = ev_rt_now - mn_now;
1288 1343
1289 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1344 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1290 return; /* all is well */ 1345 return; /* all is well */
1291 1346
1292 ev_rt_now = ev_time (); 1347 ev_rt_now = ev_time ();
1293 mn_now = get_clock (); 1348 mn_now = get_clock ();
1294 now_floor = mn_now; 1349 now_floor = mn_now;
1295 } 1350 }
1296 1351
1297# if EV_PERIODIC_ENABLE 1352# if EV_PERIODIC_ENABLE
1298 periodics_reschedule (EV_A); 1353 periodics_reschedule (EV_A);
1299# endif 1354# endif
1300 /* no timer adjustment, as the monotonic clock doesn't jump */ 1355 /* no timer adjustment, as the monotonic clock doesn't jump */
1301 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1356 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1302 }
1303 } 1357 }
1304 else 1358 else
1305#endif 1359#endif
1306 { 1360 {
1307 ev_rt_now = ev_time (); 1361 ev_rt_now = ev_time ();
1308 1362
1309 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1363 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1310 { 1364 {
1311#if EV_PERIODIC_ENABLE 1365#if EV_PERIODIC_ENABLE
1312 periodics_reschedule (EV_A); 1366 periodics_reschedule (EV_A);
1313#endif 1367#endif
1314
1315 /* adjust timers. this is easy, as the offset is the same for all of them */ 1368 /* adjust timers. this is easy, as the offset is the same for all of them */
1316 for (i = 0; i < timercnt; ++i) 1369 for (i = 0; i < timercnt; ++i)
1317 ((WT)timers [i])->at += ev_rt_now - mn_now; 1370 ((WT)timers [i])->at += ev_rt_now - mn_now;
1318 } 1371 }
1319 1372
1342 ? EVUNLOOP_ONE 1395 ? EVUNLOOP_ONE
1343 : EVUNLOOP_CANCEL; 1396 : EVUNLOOP_CANCEL;
1344 1397
1345 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1398 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1346 1399
1347 for (;;) 1400 do
1348 { 1401 {
1349#ifndef _WIN32 1402#ifndef _WIN32
1350 if (expect_false (curpid)) /* penalise the forking check even more */ 1403 if (expect_false (curpid)) /* penalise the forking check even more */
1351 if (expect_false (getpid () != curpid)) 1404 if (expect_false (getpid () != curpid))
1352 { 1405 {
1363 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1416 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1364 call_pending (EV_A); 1417 call_pending (EV_A);
1365 } 1418 }
1366#endif 1419#endif
1367 1420
1368 /* queue check watchers (and execute them) */ 1421 /* queue prepare watchers (and execute them) */
1369 if (expect_false (preparecnt)) 1422 if (expect_false (preparecnt))
1370 { 1423 {
1371 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1424 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1372 call_pending (EV_A); 1425 call_pending (EV_A);
1373 } 1426 }
1384 1437
1385 /* calculate blocking time */ 1438 /* calculate blocking time */
1386 { 1439 {
1387 ev_tstamp block; 1440 ev_tstamp block;
1388 1441
1389 if (flags & EVLOOP_NONBLOCK || idlecnt) 1442 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1390 block = 0.; /* do not block at all */ 1443 block = 0.; /* do not block at all */
1391 else 1444 else
1392 { 1445 {
1393 /* update time to cancel out callback processing overhead */ 1446 /* update time to cancel out callback processing overhead */
1394#if EV_USE_MONOTONIC
1395 if (expect_true (have_monotonic))
1396 time_update_monotonic (EV_A); 1447 time_update (EV_A_ 1e100);
1397 else
1398#endif
1399 {
1400 ev_rt_now = ev_time ();
1401 mn_now = ev_rt_now;
1402 }
1403 1448
1404 block = MAX_BLOCKTIME; 1449 block = MAX_BLOCKTIME;
1405 1450
1406 if (timercnt) 1451 if (timercnt)
1407 { 1452 {
1418#endif 1463#endif
1419 1464
1420 if (expect_false (block < 0.)) block = 0.; 1465 if (expect_false (block < 0.)) block = 0.;
1421 } 1466 }
1422 1467
1468 ++loop_count;
1423 backend_poll (EV_A_ block); 1469 backend_poll (EV_A_ block);
1470
1471 /* update ev_rt_now, do magic */
1472 time_update (EV_A_ block);
1424 } 1473 }
1425
1426 /* update ev_rt_now, do magic */
1427 time_update (EV_A);
1428 1474
1429 /* queue pending timers and reschedule them */ 1475 /* queue pending timers and reschedule them */
1430 timers_reify (EV_A); /* relative timers called last */ 1476 timers_reify (EV_A); /* relative timers called last */
1431#if EV_PERIODIC_ENABLE 1477#if EV_PERIODIC_ENABLE
1432 periodics_reify (EV_A); /* absolute timers called first */ 1478 periodics_reify (EV_A); /* absolute timers called first */
1433#endif 1479#endif
1434 1480
1481#if EV_IDLE_ENABLE
1435 /* queue idle watchers unless other events are pending */ 1482 /* queue idle watchers unless other events are pending */
1436 if (idlecnt && !any_pending (EV_A)) 1483 idle_reify (EV_A);
1437 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1484#endif
1438 1485
1439 /* queue check watchers, to be executed first */ 1486 /* queue check watchers, to be executed first */
1440 if (expect_false (checkcnt)) 1487 if (expect_false (checkcnt))
1441 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1488 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1442 1489
1443 call_pending (EV_A); 1490 call_pending (EV_A);
1444 1491
1445 if (expect_false (loop_done))
1446 break;
1447 } 1492 }
1493 while (expect_true (activecnt && !loop_done));
1448 1494
1449 if (loop_done == EVUNLOOP_ONE) 1495 if (loop_done == EVUNLOOP_ONE)
1450 loop_done = EVUNLOOP_CANCEL; 1496 loop_done = EVUNLOOP_CANCEL;
1451} 1497}
1452 1498
1479 head = &(*head)->next; 1525 head = &(*head)->next;
1480 } 1526 }
1481} 1527}
1482 1528
1483void inline_speed 1529void inline_speed
1484ev_clear_pending (EV_P_ W w) 1530clear_pending (EV_P_ W w)
1485{ 1531{
1486 if (w->pending) 1532 if (w->pending)
1487 { 1533 {
1488 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1534 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1489 w->pending = 0; 1535 w->pending = 0;
1490 } 1536 }
1491} 1537}
1492 1538
1539int
1540ev_clear_pending (EV_P_ void *w)
1541{
1542 W w_ = (W)w;
1543 int pending = w_->pending;
1544
1545 if (expect_true (pending))
1546 {
1547 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1548 w_->pending = 0;
1549 p->w = 0;
1550 return p->events;
1551 }
1552 else
1553 return 0;
1554}
1555
1556void inline_size
1557pri_adjust (EV_P_ W w)
1558{
1559 int pri = w->priority;
1560 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1561 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1562 w->priority = pri;
1563}
1564
1493void inline_speed 1565void inline_speed
1494ev_start (EV_P_ W w, int active) 1566ev_start (EV_P_ W w, int active)
1495{ 1567{
1496 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1568 pri_adjust (EV_A_ w);
1497 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1498
1499 w->active = active; 1569 w->active = active;
1500 ev_ref (EV_A); 1570 ev_ref (EV_A);
1501} 1571}
1502 1572
1503void inline_size 1573void inline_size
1507 w->active = 0; 1577 w->active = 0;
1508} 1578}
1509 1579
1510/*****************************************************************************/ 1580/*****************************************************************************/
1511 1581
1512void 1582void noinline
1513ev_io_start (EV_P_ ev_io *w) 1583ev_io_start (EV_P_ ev_io *w)
1514{ 1584{
1515 int fd = w->fd; 1585 int fd = w->fd;
1516 1586
1517 if (expect_false (ev_is_active (w))) 1587 if (expect_false (ev_is_active (w)))
1524 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1594 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1525 1595
1526 fd_change (EV_A_ fd); 1596 fd_change (EV_A_ fd);
1527} 1597}
1528 1598
1529void 1599void noinline
1530ev_io_stop (EV_P_ ev_io *w) 1600ev_io_stop (EV_P_ ev_io *w)
1531{ 1601{
1532 ev_clear_pending (EV_A_ (W)w); 1602 clear_pending (EV_A_ (W)w);
1533 if (expect_false (!ev_is_active (w))) 1603 if (expect_false (!ev_is_active (w)))
1534 return; 1604 return;
1535 1605
1536 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1606 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1537 1607
1539 ev_stop (EV_A_ (W)w); 1609 ev_stop (EV_A_ (W)w);
1540 1610
1541 fd_change (EV_A_ w->fd); 1611 fd_change (EV_A_ w->fd);
1542} 1612}
1543 1613
1544void 1614void noinline
1545ev_timer_start (EV_P_ ev_timer *w) 1615ev_timer_start (EV_P_ ev_timer *w)
1546{ 1616{
1547 if (expect_false (ev_is_active (w))) 1617 if (expect_false (ev_is_active (w)))
1548 return; 1618 return;
1549 1619
1557 upheap ((WT *)timers, timercnt - 1); 1627 upheap ((WT *)timers, timercnt - 1);
1558 1628
1559 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1629 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1560} 1630}
1561 1631
1562void 1632void noinline
1563ev_timer_stop (EV_P_ ev_timer *w) 1633ev_timer_stop (EV_P_ ev_timer *w)
1564{ 1634{
1565 ev_clear_pending (EV_A_ (W)w); 1635 clear_pending (EV_A_ (W)w);
1566 if (expect_false (!ev_is_active (w))) 1636 if (expect_false (!ev_is_active (w)))
1567 return; 1637 return;
1568 1638
1569 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1639 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1570 1640
1581 ((WT)w)->at -= mn_now; 1651 ((WT)w)->at -= mn_now;
1582 1652
1583 ev_stop (EV_A_ (W)w); 1653 ev_stop (EV_A_ (W)w);
1584} 1654}
1585 1655
1586void 1656void noinline
1587ev_timer_again (EV_P_ ev_timer *w) 1657ev_timer_again (EV_P_ ev_timer *w)
1588{ 1658{
1589 if (ev_is_active (w)) 1659 if (ev_is_active (w))
1590 { 1660 {
1591 if (w->repeat) 1661 if (w->repeat)
1602 ev_timer_start (EV_A_ w); 1672 ev_timer_start (EV_A_ w);
1603 } 1673 }
1604} 1674}
1605 1675
1606#if EV_PERIODIC_ENABLE 1676#if EV_PERIODIC_ENABLE
1607void 1677void noinline
1608ev_periodic_start (EV_P_ ev_periodic *w) 1678ev_periodic_start (EV_P_ ev_periodic *w)
1609{ 1679{
1610 if (expect_false (ev_is_active (w))) 1680 if (expect_false (ev_is_active (w)))
1611 return; 1681 return;
1612 1682
1614 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1684 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1615 else if (w->interval) 1685 else if (w->interval)
1616 { 1686 {
1617 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1687 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1618 /* this formula differs from the one in periodic_reify because we do not always round up */ 1688 /* this formula differs from the one in periodic_reify because we do not always round up */
1619 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1689 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1620 } 1690 }
1691 else
1692 ((WT)w)->at = w->offset;
1621 1693
1622 ev_start (EV_A_ (W)w, ++periodiccnt); 1694 ev_start (EV_A_ (W)w, ++periodiccnt);
1623 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1695 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1624 periodics [periodiccnt - 1] = w; 1696 periodics [periodiccnt - 1] = w;
1625 upheap ((WT *)periodics, periodiccnt - 1); 1697 upheap ((WT *)periodics, periodiccnt - 1);
1626 1698
1627 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1699 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1628} 1700}
1629 1701
1630void 1702void noinline
1631ev_periodic_stop (EV_P_ ev_periodic *w) 1703ev_periodic_stop (EV_P_ ev_periodic *w)
1632{ 1704{
1633 ev_clear_pending (EV_A_ (W)w); 1705 clear_pending (EV_A_ (W)w);
1634 if (expect_false (!ev_is_active (w))) 1706 if (expect_false (!ev_is_active (w)))
1635 return; 1707 return;
1636 1708
1637 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1709 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1638 1710
1647 } 1719 }
1648 1720
1649 ev_stop (EV_A_ (W)w); 1721 ev_stop (EV_A_ (W)w);
1650} 1722}
1651 1723
1652void 1724void noinline
1653ev_periodic_again (EV_P_ ev_periodic *w) 1725ev_periodic_again (EV_P_ ev_periodic *w)
1654{ 1726{
1655 /* TODO: use adjustheap and recalculation */ 1727 /* TODO: use adjustheap and recalculation */
1656 ev_periodic_stop (EV_A_ w); 1728 ev_periodic_stop (EV_A_ w);
1657 ev_periodic_start (EV_A_ w); 1729 ev_periodic_start (EV_A_ w);
1660 1732
1661#ifndef SA_RESTART 1733#ifndef SA_RESTART
1662# define SA_RESTART 0 1734# define SA_RESTART 0
1663#endif 1735#endif
1664 1736
1665void 1737void noinline
1666ev_signal_start (EV_P_ ev_signal *w) 1738ev_signal_start (EV_P_ ev_signal *w)
1667{ 1739{
1668#if EV_MULTIPLICITY 1740#if EV_MULTIPLICITY
1669 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1741 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1670#endif 1742#endif
1689 sigaction (w->signum, &sa, 0); 1761 sigaction (w->signum, &sa, 0);
1690#endif 1762#endif
1691 } 1763 }
1692} 1764}
1693 1765
1694void 1766void noinline
1695ev_signal_stop (EV_P_ ev_signal *w) 1767ev_signal_stop (EV_P_ ev_signal *w)
1696{ 1768{
1697 ev_clear_pending (EV_A_ (W)w); 1769 clear_pending (EV_A_ (W)w);
1698 if (expect_false (!ev_is_active (w))) 1770 if (expect_false (!ev_is_active (w)))
1699 return; 1771 return;
1700 1772
1701 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1773 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1702 ev_stop (EV_A_ (W)w); 1774 ev_stop (EV_A_ (W)w);
1719} 1791}
1720 1792
1721void 1793void
1722ev_child_stop (EV_P_ ev_child *w) 1794ev_child_stop (EV_P_ ev_child *w)
1723{ 1795{
1724 ev_clear_pending (EV_A_ (W)w); 1796 clear_pending (EV_A_ (W)w);
1725 if (expect_false (!ev_is_active (w))) 1797 if (expect_false (!ev_is_active (w)))
1726 return; 1798 return;
1727 1799
1728 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1800 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1729 ev_stop (EV_A_ (W)w); 1801 ev_stop (EV_A_ (W)w);
1965} 2037}
1966 2038
1967void 2039void
1968ev_stat_stop (EV_P_ ev_stat *w) 2040ev_stat_stop (EV_P_ ev_stat *w)
1969{ 2041{
1970 ev_clear_pending (EV_A_ (W)w); 2042 clear_pending (EV_A_ (W)w);
1971 if (expect_false (!ev_is_active (w))) 2043 if (expect_false (!ev_is_active (w)))
1972 return; 2044 return;
1973 2045
1974#if EV_USE_INOTIFY 2046#if EV_USE_INOTIFY
1975 infy_del (EV_A_ w); 2047 infy_del (EV_A_ w);
1978 2050
1979 ev_stop (EV_A_ (W)w); 2051 ev_stop (EV_A_ (W)w);
1980} 2052}
1981#endif 2053#endif
1982 2054
2055#if EV_IDLE_ENABLE
1983void 2056void
1984ev_idle_start (EV_P_ ev_idle *w) 2057ev_idle_start (EV_P_ ev_idle *w)
1985{ 2058{
1986 if (expect_false (ev_is_active (w))) 2059 if (expect_false (ev_is_active (w)))
1987 return; 2060 return;
1988 2061
2062 pri_adjust (EV_A_ (W)w);
2063
2064 {
2065 int active = ++idlecnt [ABSPRI (w)];
2066
2067 ++idleall;
1989 ev_start (EV_A_ (W)w, ++idlecnt); 2068 ev_start (EV_A_ (W)w, active);
2069
1990 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2070 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1991 idles [idlecnt - 1] = w; 2071 idles [ABSPRI (w)][active - 1] = w;
2072 }
1992} 2073}
1993 2074
1994void 2075void
1995ev_idle_stop (EV_P_ ev_idle *w) 2076ev_idle_stop (EV_P_ ev_idle *w)
1996{ 2077{
1997 ev_clear_pending (EV_A_ (W)w); 2078 clear_pending (EV_A_ (W)w);
1998 if (expect_false (!ev_is_active (w))) 2079 if (expect_false (!ev_is_active (w)))
1999 return; 2080 return;
2000 2081
2001 { 2082 {
2002 int active = ((W)w)->active; 2083 int active = ((W)w)->active;
2003 idles [active - 1] = idles [--idlecnt]; 2084
2085 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2004 ((W)idles [active - 1])->active = active; 2086 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2087
2088 ev_stop (EV_A_ (W)w);
2089 --idleall;
2005 } 2090 }
2006
2007 ev_stop (EV_A_ (W)w);
2008} 2091}
2092#endif
2009 2093
2010void 2094void
2011ev_prepare_start (EV_P_ ev_prepare *w) 2095ev_prepare_start (EV_P_ ev_prepare *w)
2012{ 2096{
2013 if (expect_false (ev_is_active (w))) 2097 if (expect_false (ev_is_active (w)))
2019} 2103}
2020 2104
2021void 2105void
2022ev_prepare_stop (EV_P_ ev_prepare *w) 2106ev_prepare_stop (EV_P_ ev_prepare *w)
2023{ 2107{
2024 ev_clear_pending (EV_A_ (W)w); 2108 clear_pending (EV_A_ (W)w);
2025 if (expect_false (!ev_is_active (w))) 2109 if (expect_false (!ev_is_active (w)))
2026 return; 2110 return;
2027 2111
2028 { 2112 {
2029 int active = ((W)w)->active; 2113 int active = ((W)w)->active;
2046} 2130}
2047 2131
2048void 2132void
2049ev_check_stop (EV_P_ ev_check *w) 2133ev_check_stop (EV_P_ ev_check *w)
2050{ 2134{
2051 ev_clear_pending (EV_A_ (W)w); 2135 clear_pending (EV_A_ (W)w);
2052 if (expect_false (!ev_is_active (w))) 2136 if (expect_false (!ev_is_active (w)))
2053 return; 2137 return;
2054 2138
2055 { 2139 {
2056 int active = ((W)w)->active; 2140 int active = ((W)w)->active;
2098} 2182}
2099 2183
2100void 2184void
2101ev_embed_stop (EV_P_ ev_embed *w) 2185ev_embed_stop (EV_P_ ev_embed *w)
2102{ 2186{
2103 ev_clear_pending (EV_A_ (W)w); 2187 clear_pending (EV_A_ (W)w);
2104 if (expect_false (!ev_is_active (w))) 2188 if (expect_false (!ev_is_active (w)))
2105 return; 2189 return;
2106 2190
2107 ev_io_stop (EV_A_ &w->io); 2191 ev_io_stop (EV_A_ &w->io);
2108 2192
2123} 2207}
2124 2208
2125void 2209void
2126ev_fork_stop (EV_P_ ev_fork *w) 2210ev_fork_stop (EV_P_ ev_fork *w)
2127{ 2211{
2128 ev_clear_pending (EV_A_ (W)w); 2212 clear_pending (EV_A_ (W)w);
2129 if (expect_false (!ev_is_active (w))) 2213 if (expect_false (!ev_is_active (w)))
2130 return; 2214 return;
2131 2215
2132 { 2216 {
2133 int active = ((W)w)->active; 2217 int active = ((W)w)->active;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines