ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.178 by root, Tue Dec 11 18:36:11 2007 UTC vs.
Revision 1.273 by root, Mon Nov 3 14:27:06 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
129#ifndef _WIN32 154#ifndef _WIN32
130# include <sys/time.h> 155# include <sys/time.h>
131# include <sys/wait.h> 156# include <sys/wait.h>
132# include <unistd.h> 157# include <unistd.h>
133#else 158#else
159# include <io.h>
134# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 161# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
138# endif 164# endif
139#endif 165#endif
140 166
141/**/ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
142 168
143#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
144# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
145#endif 175#endif
146 176
147#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
179#endif
180
181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
185# define EV_USE_NANOSLEEP 0
186# endif
149#endif 187#endif
150 188
151#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
153#endif 191#endif
159# define EV_USE_POLL 1 197# define EV_USE_POLL 1
160# endif 198# endif
161#endif 199#endif
162 200
163#ifndef EV_USE_EPOLL 201#ifndef EV_USE_EPOLL
202# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
203# define EV_USE_EPOLL 1
204# else
164# define EV_USE_EPOLL 0 205# define EV_USE_EPOLL 0
206# endif
165#endif 207#endif
166 208
167#ifndef EV_USE_KQUEUE 209#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 210# define EV_USE_KQUEUE 0
169#endif 211#endif
171#ifndef EV_USE_PORT 213#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 214# define EV_USE_PORT 0
173#endif 215#endif
174 216
175#ifndef EV_USE_INOTIFY 217#ifndef EV_USE_INOTIFY
218# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
219# define EV_USE_INOTIFY 1
220# else
176# define EV_USE_INOTIFY 0 221# define EV_USE_INOTIFY 0
222# endif
177#endif 223#endif
178 224
179#ifndef EV_PID_HASHSIZE 225#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 226# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 227# define EV_PID_HASHSIZE 1
190# else 236# else
191# define EV_INOTIFY_HASHSIZE 16 237# define EV_INOTIFY_HASHSIZE 16
192# endif 238# endif
193#endif 239#endif
194 240
195/**/ 241#ifndef EV_USE_EVENTFD
242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
243# define EV_USE_EVENTFD 1
244# else
245# define EV_USE_EVENTFD 0
246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 268
197#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
200#endif 272#endif
202#ifndef CLOCK_REALTIME 274#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 275# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 276# define EV_USE_REALTIME 0
205#endif 277#endif
206 278
279#if !EV_STAT_ENABLE
280# undef EV_USE_INOTIFY
281# define EV_USE_INOTIFY 0
282#endif
283
284#if !EV_USE_NANOSLEEP
285# ifndef _WIN32
286# include <sys/select.h>
287# endif
288#endif
289
290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
292# include <sys/statfs.h>
293# include <sys/inotify.h>
294/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
295# ifndef IN_DONT_FOLLOW
296# undef EV_USE_INOTIFY
297# define EV_USE_INOTIFY 0
298# endif
299#endif
300
207#if EV_SELECT_IS_WINSOCKET 301#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 302# include <winsock.h>
209#endif 303#endif
210 304
211#if !EV_STAT_ENABLE 305#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 306/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
307# include <stdint.h>
308# ifdef __cplusplus
309extern "C" {
213#endif 310# endif
214 311int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 312# ifdef __cplusplus
216# include <sys/inotify.h> 313}
314# endif
217#endif 315#endif
218 316
219/**/ 317/**/
318
319#if EV_VERIFY >= 3
320# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
321#else
322# define EV_FREQUENT_CHECK do { } while (0)
323#endif
220 324
221/* 325/*
222 * This is used to avoid floating point rounding problems. 326 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 327 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 328 * to ensure progress, time-wise, even when rounding
230 334
231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 335#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 336#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 337/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
234 338
235#if __GNUC__ >= 3 339#if __GNUC__ >= 4
236# define expect(expr,value) __builtin_expect ((expr),(value)) 340# define expect(expr,value) __builtin_expect ((expr),(value))
237# define noinline __attribute__ ((noinline)) 341# define noinline __attribute__ ((noinline))
238#else 342#else
239# define expect(expr,value) (expr) 343# define expect(expr,value) (expr)
240# define noinline 344# define noinline
241# if __STDC_VERSION__ < 199901L 345# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
242# define inline 346# define inline
243# endif 347# endif
244#endif 348#endif
245 349
246#define expect_false(expr) expect ((expr) != 0, 0) 350#define expect_false(expr) expect ((expr) != 0, 0)
261 365
262typedef ev_watcher *W; 366typedef ev_watcher *W;
263typedef ev_watcher_list *WL; 367typedef ev_watcher_list *WL;
264typedef ev_watcher_time *WT; 368typedef ev_watcher_time *WT;
265 369
370#define ev_active(w) ((W)(w))->active
371#define ev_at(w) ((WT)(w))->at
372
373#if EV_USE_MONOTONIC
374/* sig_atomic_t is used to avoid per-thread variables or locking but still */
375/* giving it a reasonably high chance of working on typical architetcures */
266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 376static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
377#endif
267 378
268#ifdef _WIN32 379#ifdef _WIN32
269# include "ev_win32.c" 380# include "ev_win32.c"
270#endif 381#endif
271 382
278{ 389{
279 syserr_cb = cb; 390 syserr_cb = cb;
280} 391}
281 392
282static void noinline 393static void noinline
283syserr (const char *msg) 394ev_syserr (const char *msg)
284{ 395{
285 if (!msg) 396 if (!msg)
286 msg = "(libev) system error"; 397 msg = "(libev) system error";
287 398
288 if (syserr_cb) 399 if (syserr_cb)
292 perror (msg); 403 perror (msg);
293 abort (); 404 abort ();
294 } 405 }
295} 406}
296 407
408static void *
409ev_realloc_emul (void *ptr, long size)
410{
411 /* some systems, notably openbsd and darwin, fail to properly
412 * implement realloc (x, 0) (as required by both ansi c-98 and
413 * the single unix specification, so work around them here.
414 */
415
416 if (size)
417 return realloc (ptr, size);
418
419 free (ptr);
420 return 0;
421}
422
297static void *(*alloc)(void *ptr, long size); 423static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
298 424
299void 425void
300ev_set_allocator (void *(*cb)(void *ptr, long size)) 426ev_set_allocator (void *(*cb)(void *ptr, long size))
301{ 427{
302 alloc = cb; 428 alloc = cb;
303} 429}
304 430
305inline_speed void * 431inline_speed void *
306ev_realloc (void *ptr, long size) 432ev_realloc (void *ptr, long size)
307{ 433{
308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 434 ptr = alloc (ptr, size);
309 435
310 if (!ptr && size) 436 if (!ptr && size)
311 { 437 {
312 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 438 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
313 abort (); 439 abort ();
324typedef struct 450typedef struct
325{ 451{
326 WL head; 452 WL head;
327 unsigned char events; 453 unsigned char events;
328 unsigned char reify; 454 unsigned char reify;
455 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
456 unsigned char unused;
457#if EV_USE_EPOLL
458 unsigned int egen; /* generation counter to counter epoll bugs */
459#endif
329#if EV_SELECT_IS_WINSOCKET 460#if EV_SELECT_IS_WINSOCKET
330 SOCKET handle; 461 SOCKET handle;
331#endif 462#endif
332} ANFD; 463} ANFD;
333 464
336 W w; 467 W w;
337 int events; 468 int events;
338} ANPENDING; 469} ANPENDING;
339 470
340#if EV_USE_INOTIFY 471#if EV_USE_INOTIFY
472/* hash table entry per inotify-id */
341typedef struct 473typedef struct
342{ 474{
343 WL head; 475 WL head;
344} ANFS; 476} ANFS;
477#endif
478
479/* Heap Entry */
480#if EV_HEAP_CACHE_AT
481 typedef struct {
482 ev_tstamp at;
483 WT w;
484 } ANHE;
485
486 #define ANHE_w(he) (he).w /* access watcher, read-write */
487 #define ANHE_at(he) (he).at /* access cached at, read-only */
488 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
489#else
490 typedef WT ANHE;
491
492 #define ANHE_w(he) (he)
493 #define ANHE_at(he) (he)->at
494 #define ANHE_at_cache(he)
345#endif 495#endif
346 496
347#if EV_MULTIPLICITY 497#if EV_MULTIPLICITY
348 498
349 struct ev_loop 499 struct ev_loop
407{ 557{
408 return ev_rt_now; 558 return ev_rt_now;
409} 559}
410#endif 560#endif
411 561
562void
563ev_sleep (ev_tstamp delay)
564{
565 if (delay > 0.)
566 {
567#if EV_USE_NANOSLEEP
568 struct timespec ts;
569
570 ts.tv_sec = (time_t)delay;
571 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
572
573 nanosleep (&ts, 0);
574#elif defined(_WIN32)
575 Sleep ((unsigned long)(delay * 1e3));
576#else
577 struct timeval tv;
578
579 tv.tv_sec = (time_t)delay;
580 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
581
582 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
583 /* somehting nto guaranteed by newer posix versions, but guaranteed */
584 /* by older ones */
585 select (0, 0, 0, 0, &tv);
586#endif
587 }
588}
589
590/*****************************************************************************/
591
592#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
593
412int inline_size 594int inline_size
413array_nextsize (int elem, int cur, int cnt) 595array_nextsize (int elem, int cur, int cnt)
414{ 596{
415 int ncur = cur + 1; 597 int ncur = cur + 1;
416 598
417 do 599 do
418 ncur <<= 1; 600 ncur <<= 1;
419 while (cnt > ncur); 601 while (cnt > ncur);
420 602
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 603 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096) 604 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
423 { 605 {
424 ncur *= elem; 606 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 607 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
426 ncur = ncur - sizeof (void *) * 4; 608 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem; 609 ncur /= elem;
428 } 610 }
429 611
430 return ncur; 612 return ncur;
434array_realloc (int elem, void *base, int *cur, int cnt) 616array_realloc (int elem, void *base, int *cur, int cnt)
435{ 617{
436 *cur = array_nextsize (elem, *cur, cnt); 618 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur); 619 return ev_realloc (base, elem * *cur);
438} 620}
621
622#define array_init_zero(base,count) \
623 memset ((void *)(base), 0, sizeof (*(base)) * (count))
439 624
440#define array_needsize(type,base,cur,cnt,init) \ 625#define array_needsize(type,base,cur,cnt,init) \
441 if (expect_false ((cnt) > (cur))) \ 626 if (expect_false ((cnt) > (cur))) \
442 { \ 627 { \
443 int ocur_ = (cur); \ 628 int ocur_ = (cur); \
476 pendings [pri][w_->pending - 1].w = w_; 661 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents; 662 pendings [pri][w_->pending - 1].events = revents;
478 } 663 }
479} 664}
480 665
481void inline_size 666void inline_speed
482queue_events (EV_P_ W *events, int eventcnt, int type) 667queue_events (EV_P_ W *events, int eventcnt, int type)
483{ 668{
484 int i; 669 int i;
485 670
486 for (i = 0; i < eventcnt; ++i) 671 for (i = 0; i < eventcnt; ++i)
487 ev_feed_event (EV_A_ events [i], type); 672 ev_feed_event (EV_A_ events [i], type);
488} 673}
489 674
490/*****************************************************************************/ 675/*****************************************************************************/
491
492void inline_size
493anfds_init (ANFD *base, int count)
494{
495 while (count--)
496 {
497 base->head = 0;
498 base->events = EV_NONE;
499 base->reify = 0;
500
501 ++base;
502 }
503}
504 676
505void inline_speed 677void inline_speed
506fd_event (EV_P_ int fd, int revents) 678fd_event (EV_P_ int fd, int revents)
507{ 679{
508 ANFD *anfd = anfds + fd; 680 ANFD *anfd = anfds + fd;
533 { 705 {
534 int fd = fdchanges [i]; 706 int fd = fdchanges [i];
535 ANFD *anfd = anfds + fd; 707 ANFD *anfd = anfds + fd;
536 ev_io *w; 708 ev_io *w;
537 709
538 int events = 0; 710 unsigned char events = 0;
539 711
540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 712 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
541 events |= w->events; 713 events |= (unsigned char)w->events;
542 714
543#if EV_SELECT_IS_WINSOCKET 715#if EV_SELECT_IS_WINSOCKET
544 if (events) 716 if (events)
545 { 717 {
546 unsigned long argp; 718 unsigned long arg;
719 #ifdef EV_FD_TO_WIN32_HANDLE
720 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
721 #else
547 anfd->handle = _get_osfhandle (fd); 722 anfd->handle = _get_osfhandle (fd);
723 #endif
548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 724 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
549 } 725 }
550#endif 726#endif
551 727
728 {
729 unsigned char o_events = anfd->events;
730 unsigned char o_reify = anfd->reify;
731
552 anfd->reify = 0; 732 anfd->reify = 0;
553
554 backend_modify (EV_A_ fd, anfd->events, events);
555 anfd->events = events; 733 anfd->events = events;
734
735 if (o_events != events || o_reify & EV_IOFDSET)
736 backend_modify (EV_A_ fd, o_events, events);
737 }
556 } 738 }
557 739
558 fdchangecnt = 0; 740 fdchangecnt = 0;
559} 741}
560 742
561void inline_size 743void inline_size
562fd_change (EV_P_ int fd) 744fd_change (EV_P_ int fd, int flags)
563{ 745{
564 if (expect_false (anfds [fd].reify)) 746 unsigned char reify = anfds [fd].reify;
565 return;
566
567 anfds [fd].reify = 1; 747 anfds [fd].reify |= flags;
568 748
749 if (expect_true (!reify))
750 {
569 ++fdchangecnt; 751 ++fdchangecnt;
570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 752 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
571 fdchanges [fdchangecnt - 1] = fd; 753 fdchanges [fdchangecnt - 1] = fd;
754 }
572} 755}
573 756
574void inline_speed 757void inline_speed
575fd_kill (EV_P_ int fd) 758fd_kill (EV_P_ int fd)
576{ 759{
599{ 782{
600 int fd; 783 int fd;
601 784
602 for (fd = 0; fd < anfdmax; ++fd) 785 for (fd = 0; fd < anfdmax; ++fd)
603 if (anfds [fd].events) 786 if (anfds [fd].events)
604 if (!fd_valid (fd) == -1 && errno == EBADF) 787 if (!fd_valid (fd) && errno == EBADF)
605 fd_kill (EV_A_ fd); 788 fd_kill (EV_A_ fd);
606} 789}
607 790
608/* called on ENOMEM in select/poll to kill some fds and retry */ 791/* called on ENOMEM in select/poll to kill some fds and retry */
609static void noinline 792static void noinline
627 810
628 for (fd = 0; fd < anfdmax; ++fd) 811 for (fd = 0; fd < anfdmax; ++fd)
629 if (anfds [fd].events) 812 if (anfds [fd].events)
630 { 813 {
631 anfds [fd].events = 0; 814 anfds [fd].events = 0;
815 anfds [fd].emask = 0;
632 fd_change (EV_A_ fd); 816 fd_change (EV_A_ fd, EV_IOFDSET | 1);
633 } 817 }
634} 818}
635 819
636/*****************************************************************************/ 820/*****************************************************************************/
637 821
822/*
823 * the heap functions want a real array index. array index 0 uis guaranteed to not
824 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
825 * the branching factor of the d-tree.
826 */
827
828/*
829 * at the moment we allow libev the luxury of two heaps,
830 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
831 * which is more cache-efficient.
832 * the difference is about 5% with 50000+ watchers.
833 */
834#if EV_USE_4HEAP
835
836#define DHEAP 4
837#define HEAP0 (DHEAP - 1) /* index of first element in heap */
838#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
839#define UPHEAP_DONE(p,k) ((p) == (k))
840
841/* away from the root */
638void inline_speed 842void inline_speed
639upheap (WT *heap, int k) 843downheap (ANHE *heap, int N, int k)
640{ 844{
641 WT w = heap [k]; 845 ANHE he = heap [k];
846 ANHE *E = heap + N + HEAP0;
642 847
643 while (k && heap [k >> 1]->at > w->at) 848 for (;;)
644 {
645 heap [k] = heap [k >> 1];
646 ((W)heap [k])->active = k + 1;
647 k >>= 1;
648 } 849 {
850 ev_tstamp minat;
851 ANHE *minpos;
852 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
649 853
854 /* find minimum child */
855 if (expect_true (pos + DHEAP - 1 < E))
856 {
857 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
858 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
860 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
861 }
862 else if (pos < E)
863 {
864 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
865 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
866 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
867 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
868 }
869 else
870 break;
871
872 if (ANHE_at (he) <= minat)
873 break;
874
875 heap [k] = *minpos;
876 ev_active (ANHE_w (*minpos)) = k;
877
878 k = minpos - heap;
879 }
880
650 heap [k] = w; 881 heap [k] = he;
651 ((W)heap [k])->active = k + 1; 882 ev_active (ANHE_w (he)) = k;
652
653} 883}
654 884
885#else /* 4HEAP */
886
887#define HEAP0 1
888#define HPARENT(k) ((k) >> 1)
889#define UPHEAP_DONE(p,k) (!(p))
890
891/* away from the root */
655void inline_speed 892void inline_speed
656downheap (WT *heap, int N, int k) 893downheap (ANHE *heap, int N, int k)
657{ 894{
658 WT w = heap [k]; 895 ANHE he = heap [k];
659 896
660 while (k < (N >> 1)) 897 for (;;)
661 { 898 {
662 int j = k << 1; 899 int c = k << 1;
663 900
664 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 901 if (c > N + HEAP0 - 1)
665 ++j;
666
667 if (w->at <= heap [j]->at)
668 break; 902 break;
669 903
904 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
905 ? 1 : 0;
906
907 if (ANHE_at (he) <= ANHE_at (heap [c]))
908 break;
909
670 heap [k] = heap [j]; 910 heap [k] = heap [c];
671 ((W)heap [k])->active = k + 1; 911 ev_active (ANHE_w (heap [k])) = k;
912
672 k = j; 913 k = c;
673 } 914 }
674 915
675 heap [k] = w; 916 heap [k] = he;
676 ((W)heap [k])->active = k + 1; 917 ev_active (ANHE_w (he)) = k;
918}
919#endif
920
921/* towards the root */
922void inline_speed
923upheap (ANHE *heap, int k)
924{
925 ANHE he = heap [k];
926
927 for (;;)
928 {
929 int p = HPARENT (k);
930
931 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
932 break;
933
934 heap [k] = heap [p];
935 ev_active (ANHE_w (heap [k])) = k;
936 k = p;
937 }
938
939 heap [k] = he;
940 ev_active (ANHE_w (he)) = k;
677} 941}
678 942
679void inline_size 943void inline_size
680adjustheap (WT *heap, int N, int k) 944adjustheap (ANHE *heap, int N, int k)
681{ 945{
946 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
682 upheap (heap, k); 947 upheap (heap, k);
948 else
683 downheap (heap, N, k); 949 downheap (heap, N, k);
950}
951
952/* rebuild the heap: this function is used only once and executed rarely */
953void inline_size
954reheap (ANHE *heap, int N)
955{
956 int i;
957
958 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
959 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
960 for (i = 0; i < N; ++i)
961 upheap (heap, i + HEAP0);
684} 962}
685 963
686/*****************************************************************************/ 964/*****************************************************************************/
687 965
688typedef struct 966typedef struct
689{ 967{
690 WL head; 968 WL head;
691 sig_atomic_t volatile gotsig; 969 EV_ATOMIC_T gotsig;
692} ANSIG; 970} ANSIG;
693 971
694static ANSIG *signals; 972static ANSIG *signals;
695static int signalmax; 973static int signalmax;
696 974
697static int sigpipe [2]; 975static EV_ATOMIC_T gotsig;
698static sig_atomic_t volatile gotsig;
699static ev_io sigev;
700 976
701void inline_size 977/*****************************************************************************/
702signals_init (ANSIG *base, int count)
703{
704 while (count--)
705 {
706 base->head = 0;
707 base->gotsig = 0;
708
709 ++base;
710 }
711}
712
713static void
714sighandler (int signum)
715{
716#if _WIN32
717 signal (signum, sighandler);
718#endif
719
720 signals [signum - 1].gotsig = 1;
721
722 if (!gotsig)
723 {
724 int old_errno = errno;
725 gotsig = 1;
726 write (sigpipe [1], &signum, 1);
727 errno = old_errno;
728 }
729}
730
731void noinline
732ev_feed_signal_event (EV_P_ int signum)
733{
734 WL w;
735
736#if EV_MULTIPLICITY
737 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
738#endif
739
740 --signum;
741
742 if (signum < 0 || signum >= signalmax)
743 return;
744
745 signals [signum].gotsig = 0;
746
747 for (w = signals [signum].head; w; w = w->next)
748 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
749}
750
751static void
752sigcb (EV_P_ ev_io *iow, int revents)
753{
754 int signum;
755
756 read (sigpipe [0], &revents, 1);
757 gotsig = 0;
758
759 for (signum = signalmax; signum--; )
760 if (signals [signum].gotsig)
761 ev_feed_signal_event (EV_A_ signum + 1);
762}
763 978
764void inline_speed 979void inline_speed
765fd_intern (int fd) 980fd_intern (int fd)
766{ 981{
767#ifdef _WIN32 982#ifdef _WIN32
768 int arg = 1; 983 unsigned long arg = 1;
769 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 984 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
770#else 985#else
771 fcntl (fd, F_SETFD, FD_CLOEXEC); 986 fcntl (fd, F_SETFD, FD_CLOEXEC);
772 fcntl (fd, F_SETFL, O_NONBLOCK); 987 fcntl (fd, F_SETFL, O_NONBLOCK);
773#endif 988#endif
774} 989}
775 990
776static void noinline 991static void noinline
777siginit (EV_P) 992evpipe_init (EV_P)
778{ 993{
994 if (!ev_is_active (&pipeev))
995 {
996#if EV_USE_EVENTFD
997 if ((evfd = eventfd (0, 0)) >= 0)
998 {
999 evpipe [0] = -1;
1000 fd_intern (evfd);
1001 ev_io_set (&pipeev, evfd, EV_READ);
1002 }
1003 else
1004#endif
1005 {
1006 while (pipe (evpipe))
1007 ev_syserr ("(libev) error creating signal/async pipe");
1008
779 fd_intern (sigpipe [0]); 1009 fd_intern (evpipe [0]);
780 fd_intern (sigpipe [1]); 1010 fd_intern (evpipe [1]);
1011 ev_io_set (&pipeev, evpipe [0], EV_READ);
1012 }
781 1013
782 ev_io_set (&sigev, sigpipe [0], EV_READ);
783 ev_io_start (EV_A_ &sigev); 1014 ev_io_start (EV_A_ &pipeev);
784 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1015 ev_unref (EV_A); /* watcher should not keep loop alive */
1016 }
1017}
1018
1019void inline_size
1020evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1021{
1022 if (!*flag)
1023 {
1024 int old_errno = errno; /* save errno because write might clobber it */
1025
1026 *flag = 1;
1027
1028#if EV_USE_EVENTFD
1029 if (evfd >= 0)
1030 {
1031 uint64_t counter = 1;
1032 write (evfd, &counter, sizeof (uint64_t));
1033 }
1034 else
1035#endif
1036 write (evpipe [1], &old_errno, 1);
1037
1038 errno = old_errno;
1039 }
1040}
1041
1042static void
1043pipecb (EV_P_ ev_io *iow, int revents)
1044{
1045#if EV_USE_EVENTFD
1046 if (evfd >= 0)
1047 {
1048 uint64_t counter;
1049 read (evfd, &counter, sizeof (uint64_t));
1050 }
1051 else
1052#endif
1053 {
1054 char dummy;
1055 read (evpipe [0], &dummy, 1);
1056 }
1057
1058 if (gotsig && ev_is_default_loop (EV_A))
1059 {
1060 int signum;
1061 gotsig = 0;
1062
1063 for (signum = signalmax; signum--; )
1064 if (signals [signum].gotsig)
1065 ev_feed_signal_event (EV_A_ signum + 1);
1066 }
1067
1068#if EV_ASYNC_ENABLE
1069 if (gotasync)
1070 {
1071 int i;
1072 gotasync = 0;
1073
1074 for (i = asynccnt; i--; )
1075 if (asyncs [i]->sent)
1076 {
1077 asyncs [i]->sent = 0;
1078 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1079 }
1080 }
1081#endif
785} 1082}
786 1083
787/*****************************************************************************/ 1084/*****************************************************************************/
788 1085
1086static void
1087ev_sighandler (int signum)
1088{
1089#if EV_MULTIPLICITY
1090 struct ev_loop *loop = &default_loop_struct;
1091#endif
1092
1093#if _WIN32
1094 signal (signum, ev_sighandler);
1095#endif
1096
1097 signals [signum - 1].gotsig = 1;
1098 evpipe_write (EV_A_ &gotsig);
1099}
1100
1101void noinline
1102ev_feed_signal_event (EV_P_ int signum)
1103{
1104 WL w;
1105
1106#if EV_MULTIPLICITY
1107 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1108#endif
1109
1110 --signum;
1111
1112 if (signum < 0 || signum >= signalmax)
1113 return;
1114
1115 signals [signum].gotsig = 0;
1116
1117 for (w = signals [signum].head; w; w = w->next)
1118 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1119}
1120
1121/*****************************************************************************/
1122
789static ev_child *childs [EV_PID_HASHSIZE]; 1123static WL childs [EV_PID_HASHSIZE];
790 1124
791#ifndef _WIN32 1125#ifndef _WIN32
792 1126
793static ev_signal childev; 1127static ev_signal childev;
794 1128
1129#ifndef WIFCONTINUED
1130# define WIFCONTINUED(status) 0
1131#endif
1132
795void inline_speed 1133void inline_speed
796child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1134child_reap (EV_P_ int chain, int pid, int status)
797{ 1135{
798 ev_child *w; 1136 ev_child *w;
1137 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
799 1138
800 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1139 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1140 {
801 if (w->pid == pid || !w->pid) 1141 if ((w->pid == pid || !w->pid)
1142 && (!traced || (w->flags & 1)))
802 { 1143 {
803 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1144 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
804 w->rpid = pid; 1145 w->rpid = pid;
805 w->rstatus = status; 1146 w->rstatus = status;
806 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1147 ev_feed_event (EV_A_ (W)w, EV_CHILD);
807 } 1148 }
1149 }
808} 1150}
809 1151
810#ifndef WCONTINUED 1152#ifndef WCONTINUED
811# define WCONTINUED 0 1153# define WCONTINUED 0
812#endif 1154#endif
821 if (!WCONTINUED 1163 if (!WCONTINUED
822 || errno != EINVAL 1164 || errno != EINVAL
823 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1165 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
824 return; 1166 return;
825 1167
826 /* make sure we are called again until all childs have been reaped */ 1168 /* make sure we are called again until all children have been reaped */
827 /* we need to do it this way so that the callback gets called before we continue */ 1169 /* we need to do it this way so that the callback gets called before we continue */
828 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1170 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
829 1171
830 child_reap (EV_A_ sw, pid, pid, status); 1172 child_reap (EV_A_ pid, pid, status);
831 if (EV_PID_HASHSIZE > 1) 1173 if (EV_PID_HASHSIZE > 1)
832 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1174 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
833} 1175}
834 1176
835#endif 1177#endif
836 1178
837/*****************************************************************************/ 1179/*****************************************************************************/
909} 1251}
910 1252
911unsigned int 1253unsigned int
912ev_embeddable_backends (void) 1254ev_embeddable_backends (void)
913{ 1255{
914 return EVBACKEND_EPOLL 1256 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
915 | EVBACKEND_KQUEUE 1257
916 | EVBACKEND_PORT; 1258 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1259 /* please fix it and tell me how to detect the fix */
1260 flags &= ~EVBACKEND_EPOLL;
1261
1262 return flags;
917} 1263}
918 1264
919unsigned int 1265unsigned int
920ev_backend (EV_P) 1266ev_backend (EV_P)
921{ 1267{
924 1270
925unsigned int 1271unsigned int
926ev_loop_count (EV_P) 1272ev_loop_count (EV_P)
927{ 1273{
928 return loop_count; 1274 return loop_count;
1275}
1276
1277void
1278ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1279{
1280 io_blocktime = interval;
1281}
1282
1283void
1284ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1285{
1286 timeout_blocktime = interval;
929} 1287}
930 1288
931static void noinline 1289static void noinline
932loop_init (EV_P_ unsigned int flags) 1290loop_init (EV_P_ unsigned int flags)
933{ 1291{
939 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1297 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
940 have_monotonic = 1; 1298 have_monotonic = 1;
941 } 1299 }
942#endif 1300#endif
943 1301
944 ev_rt_now = ev_time (); 1302 ev_rt_now = ev_time ();
945 mn_now = get_clock (); 1303 mn_now = get_clock ();
946 now_floor = mn_now; 1304 now_floor = mn_now;
947 rtmn_diff = ev_rt_now - mn_now; 1305 rtmn_diff = ev_rt_now - mn_now;
1306
1307 io_blocktime = 0.;
1308 timeout_blocktime = 0.;
1309 backend = 0;
1310 backend_fd = -1;
1311 gotasync = 0;
1312#if EV_USE_INOTIFY
1313 fs_fd = -2;
1314#endif
948 1315
949 /* pid check not overridable via env */ 1316 /* pid check not overridable via env */
950#ifndef _WIN32 1317#ifndef _WIN32
951 if (flags & EVFLAG_FORKCHECK) 1318 if (flags & EVFLAG_FORKCHECK)
952 curpid = getpid (); 1319 curpid = getpid ();
955 if (!(flags & EVFLAG_NOENV) 1322 if (!(flags & EVFLAG_NOENV)
956 && !enable_secure () 1323 && !enable_secure ()
957 && getenv ("LIBEV_FLAGS")) 1324 && getenv ("LIBEV_FLAGS"))
958 flags = atoi (getenv ("LIBEV_FLAGS")); 1325 flags = atoi (getenv ("LIBEV_FLAGS"));
959 1326
960 if (!(flags & 0x0000ffffUL)) 1327 if (!(flags & 0x0000ffffU))
961 flags |= ev_recommended_backends (); 1328 flags |= ev_recommended_backends ();
962
963 backend = 0;
964 backend_fd = -1;
965#if EV_USE_INOTIFY
966 fs_fd = -2;
967#endif
968 1329
969#if EV_USE_PORT 1330#if EV_USE_PORT
970 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1331 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
971#endif 1332#endif
972#if EV_USE_KQUEUE 1333#if EV_USE_KQUEUE
980#endif 1341#endif
981#if EV_USE_SELECT 1342#if EV_USE_SELECT
982 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1343 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
983#endif 1344#endif
984 1345
985 ev_init (&sigev, sigcb); 1346 ev_init (&pipeev, pipecb);
986 ev_set_priority (&sigev, EV_MAXPRI); 1347 ev_set_priority (&pipeev, EV_MAXPRI);
987 } 1348 }
988} 1349}
989 1350
990static void noinline 1351static void noinline
991loop_destroy (EV_P) 1352loop_destroy (EV_P)
992{ 1353{
993 int i; 1354 int i;
1355
1356 if (ev_is_active (&pipeev))
1357 {
1358 ev_ref (EV_A); /* signal watcher */
1359 ev_io_stop (EV_A_ &pipeev);
1360
1361#if EV_USE_EVENTFD
1362 if (evfd >= 0)
1363 close (evfd);
1364#endif
1365
1366 if (evpipe [0] >= 0)
1367 {
1368 close (evpipe [0]);
1369 close (evpipe [1]);
1370 }
1371 }
994 1372
995#if EV_USE_INOTIFY 1373#if EV_USE_INOTIFY
996 if (fs_fd >= 0) 1374 if (fs_fd >= 0)
997 close (fs_fd); 1375 close (fs_fd);
998#endif 1376#endif
1021 array_free (pending, [i]); 1399 array_free (pending, [i]);
1022#if EV_IDLE_ENABLE 1400#if EV_IDLE_ENABLE
1023 array_free (idle, [i]); 1401 array_free (idle, [i]);
1024#endif 1402#endif
1025 } 1403 }
1404
1405 ev_free (anfds); anfdmax = 0;
1026 1406
1027 /* have to use the microsoft-never-gets-it-right macro */ 1407 /* have to use the microsoft-never-gets-it-right macro */
1028 array_free (fdchange, EMPTY); 1408 array_free (fdchange, EMPTY);
1029 array_free (timer, EMPTY); 1409 array_free (timer, EMPTY);
1030#if EV_PERIODIC_ENABLE 1410#if EV_PERIODIC_ENABLE
1031 array_free (periodic, EMPTY); 1411 array_free (periodic, EMPTY);
1032#endif 1412#endif
1413#if EV_FORK_ENABLE
1414 array_free (fork, EMPTY);
1415#endif
1033 array_free (prepare, EMPTY); 1416 array_free (prepare, EMPTY);
1034 array_free (check, EMPTY); 1417 array_free (check, EMPTY);
1418#if EV_ASYNC_ENABLE
1419 array_free (async, EMPTY);
1420#endif
1035 1421
1036 backend = 0; 1422 backend = 0;
1037} 1423}
1038 1424
1425#if EV_USE_INOTIFY
1039void inline_size infy_fork (EV_P); 1426void inline_size infy_fork (EV_P);
1427#endif
1040 1428
1041void inline_size 1429void inline_size
1042loop_fork (EV_P) 1430loop_fork (EV_P)
1043{ 1431{
1044#if EV_USE_PORT 1432#if EV_USE_PORT
1052#endif 1440#endif
1053#if EV_USE_INOTIFY 1441#if EV_USE_INOTIFY
1054 infy_fork (EV_A); 1442 infy_fork (EV_A);
1055#endif 1443#endif
1056 1444
1057 if (ev_is_active (&sigev)) 1445 if (ev_is_active (&pipeev))
1058 { 1446 {
1059 /* default loop */ 1447 /* this "locks" the handlers against writing to the pipe */
1448 /* while we modify the fd vars */
1449 gotsig = 1;
1450#if EV_ASYNC_ENABLE
1451 gotasync = 1;
1452#endif
1060 1453
1061 ev_ref (EV_A); 1454 ev_ref (EV_A);
1062 ev_io_stop (EV_A_ &sigev); 1455 ev_io_stop (EV_A_ &pipeev);
1456
1457#if EV_USE_EVENTFD
1458 if (evfd >= 0)
1459 close (evfd);
1460#endif
1461
1462 if (evpipe [0] >= 0)
1463 {
1063 close (sigpipe [0]); 1464 close (evpipe [0]);
1064 close (sigpipe [1]); 1465 close (evpipe [1]);
1466 }
1065 1467
1066 while (pipe (sigpipe))
1067 syserr ("(libev) error creating pipe");
1068
1069 siginit (EV_A); 1468 evpipe_init (EV_A);
1469 /* now iterate over everything, in case we missed something */
1470 pipecb (EV_A_ &pipeev, EV_READ);
1070 } 1471 }
1071 1472
1072 postfork = 0; 1473 postfork = 0;
1073} 1474}
1074 1475
1075#if EV_MULTIPLICITY 1476#if EV_MULTIPLICITY
1477
1076struct ev_loop * 1478struct ev_loop *
1077ev_loop_new (unsigned int flags) 1479ev_loop_new (unsigned int flags)
1078{ 1480{
1079 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1481 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1080 1482
1096} 1498}
1097 1499
1098void 1500void
1099ev_loop_fork (EV_P) 1501ev_loop_fork (EV_P)
1100{ 1502{
1101 postfork = 1; 1503 postfork = 1; /* must be in line with ev_default_fork */
1102} 1504}
1103 1505
1506#if EV_VERIFY
1507static void noinline
1508verify_watcher (EV_P_ W w)
1509{
1510 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1511
1512 if (w->pending)
1513 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1514}
1515
1516static void noinline
1517verify_heap (EV_P_ ANHE *heap, int N)
1518{
1519 int i;
1520
1521 for (i = HEAP0; i < N + HEAP0; ++i)
1522 {
1523 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1524 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1525 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1526
1527 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1528 }
1529}
1530
1531static void noinline
1532array_verify (EV_P_ W *ws, int cnt)
1533{
1534 while (cnt--)
1535 {
1536 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1537 verify_watcher (EV_A_ ws [cnt]);
1538 }
1539}
1540#endif
1541
1542void
1543ev_loop_verify (EV_P)
1544{
1545#if EV_VERIFY
1546 int i;
1547 WL w;
1548
1549 assert (activecnt >= -1);
1550
1551 assert (fdchangemax >= fdchangecnt);
1552 for (i = 0; i < fdchangecnt; ++i)
1553 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1554
1555 assert (anfdmax >= 0);
1556 for (i = 0; i < anfdmax; ++i)
1557 for (w = anfds [i].head; w; w = w->next)
1558 {
1559 verify_watcher (EV_A_ (W)w);
1560 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1561 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1562 }
1563
1564 assert (timermax >= timercnt);
1565 verify_heap (EV_A_ timers, timercnt);
1566
1567#if EV_PERIODIC_ENABLE
1568 assert (periodicmax >= periodiccnt);
1569 verify_heap (EV_A_ periodics, periodiccnt);
1570#endif
1571
1572 for (i = NUMPRI; i--; )
1573 {
1574 assert (pendingmax [i] >= pendingcnt [i]);
1575#if EV_IDLE_ENABLE
1576 assert (idleall >= 0);
1577 assert (idlemax [i] >= idlecnt [i]);
1578 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1579#endif
1580 }
1581
1582#if EV_FORK_ENABLE
1583 assert (forkmax >= forkcnt);
1584 array_verify (EV_A_ (W *)forks, forkcnt);
1585#endif
1586
1587#if EV_ASYNC_ENABLE
1588 assert (asyncmax >= asynccnt);
1589 array_verify (EV_A_ (W *)asyncs, asynccnt);
1590#endif
1591
1592 assert (preparemax >= preparecnt);
1593 array_verify (EV_A_ (W *)prepares, preparecnt);
1594
1595 assert (checkmax >= checkcnt);
1596 array_verify (EV_A_ (W *)checks, checkcnt);
1597
1598# if 0
1599 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1600 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1104#endif 1601# endif
1602#endif
1603}
1604
1605#endif /* multiplicity */
1105 1606
1106#if EV_MULTIPLICITY 1607#if EV_MULTIPLICITY
1107struct ev_loop * 1608struct ev_loop *
1108ev_default_loop_init (unsigned int flags) 1609ev_default_loop_init (unsigned int flags)
1109#else 1610#else
1110int 1611int
1111ev_default_loop (unsigned int flags) 1612ev_default_loop (unsigned int flags)
1112#endif 1613#endif
1113{ 1614{
1114 if (sigpipe [0] == sigpipe [1])
1115 if (pipe (sigpipe))
1116 return 0;
1117
1118 if (!ev_default_loop_ptr) 1615 if (!ev_default_loop_ptr)
1119 { 1616 {
1120#if EV_MULTIPLICITY 1617#if EV_MULTIPLICITY
1121 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1618 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1122#else 1619#else
1125 1622
1126 loop_init (EV_A_ flags); 1623 loop_init (EV_A_ flags);
1127 1624
1128 if (ev_backend (EV_A)) 1625 if (ev_backend (EV_A))
1129 { 1626 {
1130 siginit (EV_A);
1131
1132#ifndef _WIN32 1627#ifndef _WIN32
1133 ev_signal_init (&childev, childcb, SIGCHLD); 1628 ev_signal_init (&childev, childcb, SIGCHLD);
1134 ev_set_priority (&childev, EV_MAXPRI); 1629 ev_set_priority (&childev, EV_MAXPRI);
1135 ev_signal_start (EV_A_ &childev); 1630 ev_signal_start (EV_A_ &childev);
1136 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1631 ev_unref (EV_A); /* child watcher should not keep loop alive */
1148{ 1643{
1149#if EV_MULTIPLICITY 1644#if EV_MULTIPLICITY
1150 struct ev_loop *loop = ev_default_loop_ptr; 1645 struct ev_loop *loop = ev_default_loop_ptr;
1151#endif 1646#endif
1152 1647
1648 ev_default_loop_ptr = 0;
1649
1153#ifndef _WIN32 1650#ifndef _WIN32
1154 ev_ref (EV_A); /* child watcher */ 1651 ev_ref (EV_A); /* child watcher */
1155 ev_signal_stop (EV_A_ &childev); 1652 ev_signal_stop (EV_A_ &childev);
1156#endif 1653#endif
1157 1654
1158 ev_ref (EV_A); /* signal watcher */
1159 ev_io_stop (EV_A_ &sigev);
1160
1161 close (sigpipe [0]); sigpipe [0] = 0;
1162 close (sigpipe [1]); sigpipe [1] = 0;
1163
1164 loop_destroy (EV_A); 1655 loop_destroy (EV_A);
1165} 1656}
1166 1657
1167void 1658void
1168ev_default_fork (void) 1659ev_default_fork (void)
1169{ 1660{
1170#if EV_MULTIPLICITY 1661#if EV_MULTIPLICITY
1171 struct ev_loop *loop = ev_default_loop_ptr; 1662 struct ev_loop *loop = ev_default_loop_ptr;
1172#endif 1663#endif
1173 1664
1174 if (backend) 1665 postfork = 1; /* must be in line with ev_loop_fork */
1175 postfork = 1;
1176} 1666}
1177 1667
1178/*****************************************************************************/ 1668/*****************************************************************************/
1179 1669
1180void 1670void
1197 { 1687 {
1198 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1688 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1199 1689
1200 p->w->pending = 0; 1690 p->w->pending = 0;
1201 EV_CB_INVOKE (p->w, p->events); 1691 EV_CB_INVOKE (p->w, p->events);
1692 EV_FREQUENT_CHECK;
1202 } 1693 }
1203 } 1694 }
1204} 1695}
1205
1206void inline_size
1207timers_reify (EV_P)
1208{
1209 while (timercnt && ((WT)timers [0])->at <= mn_now)
1210 {
1211 ev_timer *w = timers [0];
1212
1213 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1214
1215 /* first reschedule or stop timer */
1216 if (w->repeat)
1217 {
1218 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1219
1220 ((WT)w)->at += w->repeat;
1221 if (((WT)w)->at < mn_now)
1222 ((WT)w)->at = mn_now;
1223
1224 downheap ((WT *)timers, timercnt, 0);
1225 }
1226 else
1227 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1228
1229 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1230 }
1231}
1232
1233#if EV_PERIODIC_ENABLE
1234void inline_size
1235periodics_reify (EV_P)
1236{
1237 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1238 {
1239 ev_periodic *w = periodics [0];
1240
1241 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1242
1243 /* first reschedule or stop timer */
1244 if (w->reschedule_cb)
1245 {
1246 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1247 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1248 downheap ((WT *)periodics, periodiccnt, 0);
1249 }
1250 else if (w->interval)
1251 {
1252 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1253 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1254 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1255 downheap ((WT *)periodics, periodiccnt, 0);
1256 }
1257 else
1258 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1259
1260 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1261 }
1262}
1263
1264static void noinline
1265periodics_reschedule (EV_P)
1266{
1267 int i;
1268
1269 /* adjust periodics after time jump */
1270 for (i = 0; i < periodiccnt; ++i)
1271 {
1272 ev_periodic *w = periodics [i];
1273
1274 if (w->reschedule_cb)
1275 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1276 else if (w->interval)
1277 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1278 }
1279
1280 /* now rebuild the heap */
1281 for (i = periodiccnt >> 1; i--; )
1282 downheap ((WT *)periodics, periodiccnt, i);
1283}
1284#endif
1285 1696
1286#if EV_IDLE_ENABLE 1697#if EV_IDLE_ENABLE
1287void inline_size 1698void inline_size
1288idle_reify (EV_P) 1699idle_reify (EV_P)
1289{ 1700{
1301 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1712 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1302 break; 1713 break;
1303 } 1714 }
1304 } 1715 }
1305 } 1716 }
1717}
1718#endif
1719
1720void inline_size
1721timers_reify (EV_P)
1722{
1723 EV_FREQUENT_CHECK;
1724
1725 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1726 {
1727 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1728
1729 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1730
1731 /* first reschedule or stop timer */
1732 if (w->repeat)
1733 {
1734 ev_at (w) += w->repeat;
1735 if (ev_at (w) < mn_now)
1736 ev_at (w) = mn_now;
1737
1738 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1739
1740 ANHE_at_cache (timers [HEAP0]);
1741 downheap (timers, timercnt, HEAP0);
1742 }
1743 else
1744 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1745
1746 EV_FREQUENT_CHECK;
1747 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1748 }
1749}
1750
1751#if EV_PERIODIC_ENABLE
1752void inline_size
1753periodics_reify (EV_P)
1754{
1755 EV_FREQUENT_CHECK;
1756
1757 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1758 {
1759 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1760
1761 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1762
1763 /* first reschedule or stop timer */
1764 if (w->reschedule_cb)
1765 {
1766 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1767
1768 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1769
1770 ANHE_at_cache (periodics [HEAP0]);
1771 downheap (periodics, periodiccnt, HEAP0);
1772 }
1773 else if (w->interval)
1774 {
1775 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1776 /* if next trigger time is not sufficiently in the future, put it there */
1777 /* this might happen because of floating point inexactness */
1778 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1779 {
1780 ev_at (w) += w->interval;
1781
1782 /* if interval is unreasonably low we might still have a time in the past */
1783 /* so correct this. this will make the periodic very inexact, but the user */
1784 /* has effectively asked to get triggered more often than possible */
1785 if (ev_at (w) < ev_rt_now)
1786 ev_at (w) = ev_rt_now;
1787 }
1788
1789 ANHE_at_cache (periodics [HEAP0]);
1790 downheap (periodics, periodiccnt, HEAP0);
1791 }
1792 else
1793 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1794
1795 EV_FREQUENT_CHECK;
1796 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1797 }
1798}
1799
1800static void noinline
1801periodics_reschedule (EV_P)
1802{
1803 int i;
1804
1805 /* adjust periodics after time jump */
1806 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1807 {
1808 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1809
1810 if (w->reschedule_cb)
1811 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1812 else if (w->interval)
1813 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1814
1815 ANHE_at_cache (periodics [i]);
1816 }
1817
1818 reheap (periodics, periodiccnt);
1306} 1819}
1307#endif 1820#endif
1308 1821
1309void inline_speed 1822void inline_speed
1310time_update (EV_P_ ev_tstamp max_block) 1823time_update (EV_P_ ev_tstamp max_block)
1339 */ 1852 */
1340 for (i = 4; --i; ) 1853 for (i = 4; --i; )
1341 { 1854 {
1342 rtmn_diff = ev_rt_now - mn_now; 1855 rtmn_diff = ev_rt_now - mn_now;
1343 1856
1344 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1857 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1345 return; /* all is well */ 1858 return; /* all is well */
1346 1859
1347 ev_rt_now = ev_time (); 1860 ev_rt_now = ev_time ();
1348 mn_now = get_clock (); 1861 mn_now = get_clock ();
1349 now_floor = mn_now; 1862 now_floor = mn_now;
1365#if EV_PERIODIC_ENABLE 1878#if EV_PERIODIC_ENABLE
1366 periodics_reschedule (EV_A); 1879 periodics_reschedule (EV_A);
1367#endif 1880#endif
1368 /* adjust timers. this is easy, as the offset is the same for all of them */ 1881 /* adjust timers. this is easy, as the offset is the same for all of them */
1369 for (i = 0; i < timercnt; ++i) 1882 for (i = 0; i < timercnt; ++i)
1883 {
1884 ANHE *he = timers + i + HEAP0;
1370 ((WT)timers [i])->at += ev_rt_now - mn_now; 1885 ANHE_w (*he)->at += ev_rt_now - mn_now;
1886 ANHE_at_cache (*he);
1887 }
1371 } 1888 }
1372 1889
1373 mn_now = ev_rt_now; 1890 mn_now = ev_rt_now;
1374 } 1891 }
1375} 1892}
1384ev_unref (EV_P) 1901ev_unref (EV_P)
1385{ 1902{
1386 --activecnt; 1903 --activecnt;
1387} 1904}
1388 1905
1906void
1907ev_now_update (EV_P)
1908{
1909 time_update (EV_A_ 1e100);
1910}
1911
1389static int loop_done; 1912static int loop_done;
1390 1913
1391void 1914void
1392ev_loop (EV_P_ int flags) 1915ev_loop (EV_P_ int flags)
1393{ 1916{
1394 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1917 loop_done = EVUNLOOP_CANCEL;
1395 ? EVUNLOOP_ONE
1396 : EVUNLOOP_CANCEL;
1397 1918
1398 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1919 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1399 1920
1400 do 1921 do
1401 { 1922 {
1923#if EV_VERIFY >= 2
1924 ev_loop_verify (EV_A);
1925#endif
1926
1402#ifndef _WIN32 1927#ifndef _WIN32
1403 if (expect_false (curpid)) /* penalise the forking check even more */ 1928 if (expect_false (curpid)) /* penalise the forking check even more */
1404 if (expect_false (getpid () != curpid)) 1929 if (expect_false (getpid () != curpid))
1405 { 1930 {
1406 curpid = getpid (); 1931 curpid = getpid ();
1435 /* update fd-related kernel structures */ 1960 /* update fd-related kernel structures */
1436 fd_reify (EV_A); 1961 fd_reify (EV_A);
1437 1962
1438 /* calculate blocking time */ 1963 /* calculate blocking time */
1439 { 1964 {
1440 ev_tstamp block; 1965 ev_tstamp waittime = 0.;
1966 ev_tstamp sleeptime = 0.;
1441 1967
1442 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1968 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1443 block = 0.; /* do not block at all */
1444 else
1445 { 1969 {
1446 /* update time to cancel out callback processing overhead */ 1970 /* update time to cancel out callback processing overhead */
1447 time_update (EV_A_ 1e100); 1971 time_update (EV_A_ 1e100);
1448 1972
1449 block = MAX_BLOCKTIME; 1973 waittime = MAX_BLOCKTIME;
1450 1974
1451 if (timercnt) 1975 if (timercnt)
1452 { 1976 {
1453 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1977 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1454 if (block > to) block = to; 1978 if (waittime > to) waittime = to;
1455 } 1979 }
1456 1980
1457#if EV_PERIODIC_ENABLE 1981#if EV_PERIODIC_ENABLE
1458 if (periodiccnt) 1982 if (periodiccnt)
1459 { 1983 {
1460 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1984 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1461 if (block > to) block = to; 1985 if (waittime > to) waittime = to;
1462 } 1986 }
1463#endif 1987#endif
1464 1988
1465 if (expect_false (block < 0.)) block = 0.; 1989 if (expect_false (waittime < timeout_blocktime))
1990 waittime = timeout_blocktime;
1991
1992 sleeptime = waittime - backend_fudge;
1993
1994 if (expect_true (sleeptime > io_blocktime))
1995 sleeptime = io_blocktime;
1996
1997 if (sleeptime)
1998 {
1999 ev_sleep (sleeptime);
2000 waittime -= sleeptime;
2001 }
1466 } 2002 }
1467 2003
1468 ++loop_count; 2004 ++loop_count;
1469 backend_poll (EV_A_ block); 2005 backend_poll (EV_A_ waittime);
1470 2006
1471 /* update ev_rt_now, do magic */ 2007 /* update ev_rt_now, do magic */
1472 time_update (EV_A_ block); 2008 time_update (EV_A_ waittime + sleeptime);
1473 } 2009 }
1474 2010
1475 /* queue pending timers and reschedule them */ 2011 /* queue pending timers and reschedule them */
1476 timers_reify (EV_A); /* relative timers called last */ 2012 timers_reify (EV_A); /* relative timers called last */
1477#if EV_PERIODIC_ENABLE 2013#if EV_PERIODIC_ENABLE
1486 /* queue check watchers, to be executed first */ 2022 /* queue check watchers, to be executed first */
1487 if (expect_false (checkcnt)) 2023 if (expect_false (checkcnt))
1488 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1489 2025
1490 call_pending (EV_A); 2026 call_pending (EV_A);
1491
1492 } 2027 }
1493 while (expect_true (activecnt && !loop_done)); 2028 while (expect_true (
2029 activecnt
2030 && !loop_done
2031 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2032 ));
1494 2033
1495 if (loop_done == EVUNLOOP_ONE) 2034 if (loop_done == EVUNLOOP_ONE)
1496 loop_done = EVUNLOOP_CANCEL; 2035 loop_done = EVUNLOOP_CANCEL;
1497} 2036}
1498 2037
1586 2125
1587 if (expect_false (ev_is_active (w))) 2126 if (expect_false (ev_is_active (w)))
1588 return; 2127 return;
1589 2128
1590 assert (("ev_io_start called with negative fd", fd >= 0)); 2129 assert (("ev_io_start called with negative fd", fd >= 0));
2130 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2131
2132 EV_FREQUENT_CHECK;
1591 2133
1592 ev_start (EV_A_ (W)w, 1); 2134 ev_start (EV_A_ (W)w, 1);
1593 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2135 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1594 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2136 wlist_add (&anfds[fd].head, (WL)w);
1595 2137
1596 fd_change (EV_A_ fd); 2138 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2139 w->events &= ~EV_IOFDSET;
2140
2141 EV_FREQUENT_CHECK;
1597} 2142}
1598 2143
1599void noinline 2144void noinline
1600ev_io_stop (EV_P_ ev_io *w) 2145ev_io_stop (EV_P_ ev_io *w)
1601{ 2146{
1602 clear_pending (EV_A_ (W)w); 2147 clear_pending (EV_A_ (W)w);
1603 if (expect_false (!ev_is_active (w))) 2148 if (expect_false (!ev_is_active (w)))
1604 return; 2149 return;
1605 2150
1606 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2151 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1607 2152
2153 EV_FREQUENT_CHECK;
2154
1608 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2155 wlist_del (&anfds[w->fd].head, (WL)w);
1609 ev_stop (EV_A_ (W)w); 2156 ev_stop (EV_A_ (W)w);
1610 2157
1611 fd_change (EV_A_ w->fd); 2158 fd_change (EV_A_ w->fd, 1);
2159
2160 EV_FREQUENT_CHECK;
1612} 2161}
1613 2162
1614void noinline 2163void noinline
1615ev_timer_start (EV_P_ ev_timer *w) 2164ev_timer_start (EV_P_ ev_timer *w)
1616{ 2165{
1617 if (expect_false (ev_is_active (w))) 2166 if (expect_false (ev_is_active (w)))
1618 return; 2167 return;
1619 2168
1620 ((WT)w)->at += mn_now; 2169 ev_at (w) += mn_now;
1621 2170
1622 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2171 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1623 2172
2173 EV_FREQUENT_CHECK;
2174
2175 ++timercnt;
1624 ev_start (EV_A_ (W)w, ++timercnt); 2176 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1625 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2177 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1626 timers [timercnt - 1] = w; 2178 ANHE_w (timers [ev_active (w)]) = (WT)w;
1627 upheap ((WT *)timers, timercnt - 1); 2179 ANHE_at_cache (timers [ev_active (w)]);
2180 upheap (timers, ev_active (w));
1628 2181
2182 EV_FREQUENT_CHECK;
2183
1629 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2184 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1630} 2185}
1631 2186
1632void noinline 2187void noinline
1633ev_timer_stop (EV_P_ ev_timer *w) 2188ev_timer_stop (EV_P_ ev_timer *w)
1634{ 2189{
1635 clear_pending (EV_A_ (W)w); 2190 clear_pending (EV_A_ (W)w);
1636 if (expect_false (!ev_is_active (w))) 2191 if (expect_false (!ev_is_active (w)))
1637 return; 2192 return;
1638 2193
1639 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2194 EV_FREQUENT_CHECK;
1640 2195
1641 { 2196 {
1642 int active = ((W)w)->active; 2197 int active = ev_active (w);
1643 2198
2199 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2200
2201 --timercnt;
2202
1644 if (expect_true (--active < --timercnt)) 2203 if (expect_true (active < timercnt + HEAP0))
1645 { 2204 {
1646 timers [active] = timers [timercnt]; 2205 timers [active] = timers [timercnt + HEAP0];
1647 adjustheap ((WT *)timers, timercnt, active); 2206 adjustheap (timers, timercnt, active);
1648 } 2207 }
1649 } 2208 }
1650 2209
1651 ((WT)w)->at -= mn_now; 2210 EV_FREQUENT_CHECK;
2211
2212 ev_at (w) -= mn_now;
1652 2213
1653 ev_stop (EV_A_ (W)w); 2214 ev_stop (EV_A_ (W)w);
1654} 2215}
1655 2216
1656void noinline 2217void noinline
1657ev_timer_again (EV_P_ ev_timer *w) 2218ev_timer_again (EV_P_ ev_timer *w)
1658{ 2219{
2220 EV_FREQUENT_CHECK;
2221
1659 if (ev_is_active (w)) 2222 if (ev_is_active (w))
1660 { 2223 {
1661 if (w->repeat) 2224 if (w->repeat)
1662 { 2225 {
1663 ((WT)w)->at = mn_now + w->repeat; 2226 ev_at (w) = mn_now + w->repeat;
2227 ANHE_at_cache (timers [ev_active (w)]);
1664 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2228 adjustheap (timers, timercnt, ev_active (w));
1665 } 2229 }
1666 else 2230 else
1667 ev_timer_stop (EV_A_ w); 2231 ev_timer_stop (EV_A_ w);
1668 } 2232 }
1669 else if (w->repeat) 2233 else if (w->repeat)
1670 { 2234 {
1671 w->at = w->repeat; 2235 ev_at (w) = w->repeat;
1672 ev_timer_start (EV_A_ w); 2236 ev_timer_start (EV_A_ w);
1673 } 2237 }
2238
2239 EV_FREQUENT_CHECK;
1674} 2240}
1675 2241
1676#if EV_PERIODIC_ENABLE 2242#if EV_PERIODIC_ENABLE
1677void noinline 2243void noinline
1678ev_periodic_start (EV_P_ ev_periodic *w) 2244ev_periodic_start (EV_P_ ev_periodic *w)
1679{ 2245{
1680 if (expect_false (ev_is_active (w))) 2246 if (expect_false (ev_is_active (w)))
1681 return; 2247 return;
1682 2248
1683 if (w->reschedule_cb) 2249 if (w->reschedule_cb)
1684 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2250 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1685 else if (w->interval) 2251 else if (w->interval)
1686 { 2252 {
1687 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2253 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1688 /* this formula differs from the one in periodic_reify because we do not always round up */ 2254 /* this formula differs from the one in periodic_reify because we do not always round up */
1689 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2255 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1690 } 2256 }
1691 else 2257 else
1692 ((WT)w)->at = w->offset; 2258 ev_at (w) = w->offset;
1693 2259
2260 EV_FREQUENT_CHECK;
2261
2262 ++periodiccnt;
1694 ev_start (EV_A_ (W)w, ++periodiccnt); 2263 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1695 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2264 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1696 periodics [periodiccnt - 1] = w; 2265 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1697 upheap ((WT *)periodics, periodiccnt - 1); 2266 ANHE_at_cache (periodics [ev_active (w)]);
2267 upheap (periodics, ev_active (w));
1698 2268
2269 EV_FREQUENT_CHECK;
2270
1699 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2271 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1700} 2272}
1701 2273
1702void noinline 2274void noinline
1703ev_periodic_stop (EV_P_ ev_periodic *w) 2275ev_periodic_stop (EV_P_ ev_periodic *w)
1704{ 2276{
1705 clear_pending (EV_A_ (W)w); 2277 clear_pending (EV_A_ (W)w);
1706 if (expect_false (!ev_is_active (w))) 2278 if (expect_false (!ev_is_active (w)))
1707 return; 2279 return;
1708 2280
1709 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2281 EV_FREQUENT_CHECK;
1710 2282
1711 { 2283 {
1712 int active = ((W)w)->active; 2284 int active = ev_active (w);
1713 2285
2286 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2287
2288 --periodiccnt;
2289
1714 if (expect_true (--active < --periodiccnt)) 2290 if (expect_true (active < periodiccnt + HEAP0))
1715 { 2291 {
1716 periodics [active] = periodics [periodiccnt]; 2292 periodics [active] = periodics [periodiccnt + HEAP0];
1717 adjustheap ((WT *)periodics, periodiccnt, active); 2293 adjustheap (periodics, periodiccnt, active);
1718 } 2294 }
1719 } 2295 }
2296
2297 EV_FREQUENT_CHECK;
1720 2298
1721 ev_stop (EV_A_ (W)w); 2299 ev_stop (EV_A_ (W)w);
1722} 2300}
1723 2301
1724void noinline 2302void noinline
1743 if (expect_false (ev_is_active (w))) 2321 if (expect_false (ev_is_active (w)))
1744 return; 2322 return;
1745 2323
1746 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2324 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1747 2325
2326 evpipe_init (EV_A);
2327
2328 EV_FREQUENT_CHECK;
2329
2330 {
2331#ifndef _WIN32
2332 sigset_t full, prev;
2333 sigfillset (&full);
2334 sigprocmask (SIG_SETMASK, &full, &prev);
2335#endif
2336
2337 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2338
2339#ifndef _WIN32
2340 sigprocmask (SIG_SETMASK, &prev, 0);
2341#endif
2342 }
2343
1748 ev_start (EV_A_ (W)w, 1); 2344 ev_start (EV_A_ (W)w, 1);
1749 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1750 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2345 wlist_add (&signals [w->signum - 1].head, (WL)w);
1751 2346
1752 if (!((WL)w)->next) 2347 if (!((WL)w)->next)
1753 { 2348 {
1754#if _WIN32 2349#if _WIN32
1755 signal (w->signum, sighandler); 2350 signal (w->signum, ev_sighandler);
1756#else 2351#else
1757 struct sigaction sa; 2352 struct sigaction sa;
1758 sa.sa_handler = sighandler; 2353 sa.sa_handler = ev_sighandler;
1759 sigfillset (&sa.sa_mask); 2354 sigfillset (&sa.sa_mask);
1760 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2355 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1761 sigaction (w->signum, &sa, 0); 2356 sigaction (w->signum, &sa, 0);
1762#endif 2357#endif
1763 } 2358 }
2359
2360 EV_FREQUENT_CHECK;
1764} 2361}
1765 2362
1766void noinline 2363void noinline
1767ev_signal_stop (EV_P_ ev_signal *w) 2364ev_signal_stop (EV_P_ ev_signal *w)
1768{ 2365{
1769 clear_pending (EV_A_ (W)w); 2366 clear_pending (EV_A_ (W)w);
1770 if (expect_false (!ev_is_active (w))) 2367 if (expect_false (!ev_is_active (w)))
1771 return; 2368 return;
1772 2369
2370 EV_FREQUENT_CHECK;
2371
1773 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2372 wlist_del (&signals [w->signum - 1].head, (WL)w);
1774 ev_stop (EV_A_ (W)w); 2373 ev_stop (EV_A_ (W)w);
1775 2374
1776 if (!signals [w->signum - 1].head) 2375 if (!signals [w->signum - 1].head)
1777 signal (w->signum, SIG_DFL); 2376 signal (w->signum, SIG_DFL);
2377
2378 EV_FREQUENT_CHECK;
1778} 2379}
1779 2380
1780void 2381void
1781ev_child_start (EV_P_ ev_child *w) 2382ev_child_start (EV_P_ ev_child *w)
1782{ 2383{
1784 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2385 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1785#endif 2386#endif
1786 if (expect_false (ev_is_active (w))) 2387 if (expect_false (ev_is_active (w)))
1787 return; 2388 return;
1788 2389
2390 EV_FREQUENT_CHECK;
2391
1789 ev_start (EV_A_ (W)w, 1); 2392 ev_start (EV_A_ (W)w, 1);
1790 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2393 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2394
2395 EV_FREQUENT_CHECK;
1791} 2396}
1792 2397
1793void 2398void
1794ev_child_stop (EV_P_ ev_child *w) 2399ev_child_stop (EV_P_ ev_child *w)
1795{ 2400{
1796 clear_pending (EV_A_ (W)w); 2401 clear_pending (EV_A_ (W)w);
1797 if (expect_false (!ev_is_active (w))) 2402 if (expect_false (!ev_is_active (w)))
1798 return; 2403 return;
1799 2404
2405 EV_FREQUENT_CHECK;
2406
1800 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2407 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1801 ev_stop (EV_A_ (W)w); 2408 ev_stop (EV_A_ (W)w);
2409
2410 EV_FREQUENT_CHECK;
1802} 2411}
1803 2412
1804#if EV_STAT_ENABLE 2413#if EV_STAT_ENABLE
1805 2414
1806# ifdef _WIN32 2415# ifdef _WIN32
1807# undef lstat 2416# undef lstat
1808# define lstat(a,b) _stati64 (a,b) 2417# define lstat(a,b) _stati64 (a,b)
1809# endif 2418# endif
1810 2419
1811#define DEF_STAT_INTERVAL 5.0074891 2420#define DEF_STAT_INTERVAL 5.0074891
2421#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1812#define MIN_STAT_INTERVAL 0.1074891 2422#define MIN_STAT_INTERVAL 0.1074891
1813 2423
1814static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2424static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1815 2425
1816#if EV_USE_INOTIFY 2426#if EV_USE_INOTIFY
1817# define EV_INOTIFY_BUFSIZE 8192 2427# define EV_INOTIFY_BUFSIZE 8192
1821{ 2431{
1822 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2432 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1823 2433
1824 if (w->wd < 0) 2434 if (w->wd < 0)
1825 { 2435 {
2436 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1826 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2437 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1827 2438
1828 /* monitor some parent directory for speedup hints */ 2439 /* monitor some parent directory for speedup hints */
2440 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2441 /* but an efficiency issue only */
1829 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2442 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1830 { 2443 {
1831 char path [4096]; 2444 char path [4096];
1832 strcpy (path, w->path); 2445 strcpy (path, w->path);
1833 2446
1846 } 2459 }
1847 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2460 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1848 } 2461 }
1849 } 2462 }
1850 else 2463 else
1851 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */ 2464 {
1852
1853 if (w->wd >= 0)
1854 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2465 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2466
2467 /* now local changes will be tracked by inotify, but remote changes won't */
2468 /* unless the filesystem it known to be local, we therefore still poll */
2469 /* also do poll on <2.6.25, but with normal frequency */
2470 struct statfs sfs;
2471
2472 if (fs_2625 && !statfs (w->path, &sfs))
2473 if (sfs.f_type == 0x1373 /* devfs */
2474 || sfs.f_type == 0xEF53 /* ext2/3 */
2475 || sfs.f_type == 0x3153464a /* jfs */
2476 || sfs.f_type == 0x52654973 /* reiser3 */
2477 || sfs.f_type == 0x01021994 /* tempfs */
2478 || sfs.f_type == 0x58465342 /* xfs */)
2479 return;
2480
2481 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2482 ev_timer_again (EV_A_ &w->timer);
2483 }
1855} 2484}
1856 2485
1857static void noinline 2486static void noinline
1858infy_del (EV_P_ ev_stat *w) 2487infy_del (EV_P_ ev_stat *w)
1859{ 2488{
1873 2502
1874static void noinline 2503static void noinline
1875infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2504infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1876{ 2505{
1877 if (slot < 0) 2506 if (slot < 0)
1878 /* overflow, need to check for all hahs slots */ 2507 /* overflow, need to check for all hash slots */
1879 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2508 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1880 infy_wd (EV_A_ slot, wd, ev); 2509 infy_wd (EV_A_ slot, wd, ev);
1881 else 2510 else
1882 { 2511 {
1883 WL w_; 2512 WL w_;
1912 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2541 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1913 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2542 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1914} 2543}
1915 2544
1916void inline_size 2545void inline_size
2546check_2625 (EV_P)
2547{
2548 /* kernels < 2.6.25 are borked
2549 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2550 */
2551 struct utsname buf;
2552 int major, minor, micro;
2553
2554 if (uname (&buf))
2555 return;
2556
2557 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2558 return;
2559
2560 if (major < 2
2561 || (major == 2 && minor < 6)
2562 || (major == 2 && minor == 6 && micro < 25))
2563 return;
2564
2565 fs_2625 = 1;
2566}
2567
2568void inline_size
1917infy_init (EV_P) 2569infy_init (EV_P)
1918{ 2570{
1919 if (fs_fd != -2) 2571 if (fs_fd != -2)
1920 return; 2572 return;
2573
2574 fs_fd = -1;
2575
2576 check_2625 (EV_A);
1921 2577
1922 fs_fd = inotify_init (); 2578 fs_fd = inotify_init ();
1923 2579
1924 if (fs_fd >= 0) 2580 if (fs_fd >= 0)
1925 { 2581 {
1953 w->wd = -1; 2609 w->wd = -1;
1954 2610
1955 if (fs_fd >= 0) 2611 if (fs_fd >= 0)
1956 infy_add (EV_A_ w); /* re-add, no matter what */ 2612 infy_add (EV_A_ w); /* re-add, no matter what */
1957 else 2613 else
1958 ev_timer_start (EV_A_ &w->timer); 2614 ev_timer_again (EV_A_ &w->timer);
1959 } 2615 }
1960
1961 } 2616 }
1962} 2617}
1963 2618
2619#endif
2620
2621#ifdef _WIN32
2622# define EV_LSTAT(p,b) _stati64 (p, b)
2623#else
2624# define EV_LSTAT(p,b) lstat (p, b)
1964#endif 2625#endif
1965 2626
1966void 2627void
1967ev_stat_stat (EV_P_ ev_stat *w) 2628ev_stat_stat (EV_P_ ev_stat *w)
1968{ 2629{
1995 || w->prev.st_atime != w->attr.st_atime 2656 || w->prev.st_atime != w->attr.st_atime
1996 || w->prev.st_mtime != w->attr.st_mtime 2657 || w->prev.st_mtime != w->attr.st_mtime
1997 || w->prev.st_ctime != w->attr.st_ctime 2658 || w->prev.st_ctime != w->attr.st_ctime
1998 ) { 2659 ) {
1999 #if EV_USE_INOTIFY 2660 #if EV_USE_INOTIFY
2661 if (fs_fd >= 0)
2662 {
2000 infy_del (EV_A_ w); 2663 infy_del (EV_A_ w);
2001 infy_add (EV_A_ w); 2664 infy_add (EV_A_ w);
2002 ev_stat_stat (EV_A_ w); /* avoid race... */ 2665 ev_stat_stat (EV_A_ w); /* avoid race... */
2666 }
2003 #endif 2667 #endif
2004 2668
2005 ev_feed_event (EV_A_ w, EV_STAT); 2669 ev_feed_event (EV_A_ w, EV_STAT);
2006 } 2670 }
2007} 2671}
2010ev_stat_start (EV_P_ ev_stat *w) 2674ev_stat_start (EV_P_ ev_stat *w)
2011{ 2675{
2012 if (expect_false (ev_is_active (w))) 2676 if (expect_false (ev_is_active (w)))
2013 return; 2677 return;
2014 2678
2015 /* since we use memcmp, we need to clear any padding data etc. */
2016 memset (&w->prev, 0, sizeof (ev_statdata));
2017 memset (&w->attr, 0, sizeof (ev_statdata));
2018
2019 ev_stat_stat (EV_A_ w); 2679 ev_stat_stat (EV_A_ w);
2020 2680
2681 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2021 if (w->interval < MIN_STAT_INTERVAL) 2682 w->interval = MIN_STAT_INTERVAL;
2022 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2023 2683
2024 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2684 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2025 ev_set_priority (&w->timer, ev_priority (w)); 2685 ev_set_priority (&w->timer, ev_priority (w));
2026 2686
2027#if EV_USE_INOTIFY 2687#if EV_USE_INOTIFY
2028 infy_init (EV_A); 2688 infy_init (EV_A);
2029 2689
2030 if (fs_fd >= 0) 2690 if (fs_fd >= 0)
2031 infy_add (EV_A_ w); 2691 infy_add (EV_A_ w);
2032 else 2692 else
2033#endif 2693#endif
2034 ev_timer_start (EV_A_ &w->timer); 2694 ev_timer_again (EV_A_ &w->timer);
2035 2695
2036 ev_start (EV_A_ (W)w, 1); 2696 ev_start (EV_A_ (W)w, 1);
2697
2698 EV_FREQUENT_CHECK;
2037} 2699}
2038 2700
2039void 2701void
2040ev_stat_stop (EV_P_ ev_stat *w) 2702ev_stat_stop (EV_P_ ev_stat *w)
2041{ 2703{
2042 clear_pending (EV_A_ (W)w); 2704 clear_pending (EV_A_ (W)w);
2043 if (expect_false (!ev_is_active (w))) 2705 if (expect_false (!ev_is_active (w)))
2044 return; 2706 return;
2045 2707
2708 EV_FREQUENT_CHECK;
2709
2046#if EV_USE_INOTIFY 2710#if EV_USE_INOTIFY
2047 infy_del (EV_A_ w); 2711 infy_del (EV_A_ w);
2048#endif 2712#endif
2049 ev_timer_stop (EV_A_ &w->timer); 2713 ev_timer_stop (EV_A_ &w->timer);
2050 2714
2051 ev_stop (EV_A_ (W)w); 2715 ev_stop (EV_A_ (W)w);
2716
2717 EV_FREQUENT_CHECK;
2052} 2718}
2053#endif 2719#endif
2054 2720
2055#if EV_IDLE_ENABLE 2721#if EV_IDLE_ENABLE
2056void 2722void
2058{ 2724{
2059 if (expect_false (ev_is_active (w))) 2725 if (expect_false (ev_is_active (w)))
2060 return; 2726 return;
2061 2727
2062 pri_adjust (EV_A_ (W)w); 2728 pri_adjust (EV_A_ (W)w);
2729
2730 EV_FREQUENT_CHECK;
2063 2731
2064 { 2732 {
2065 int active = ++idlecnt [ABSPRI (w)]; 2733 int active = ++idlecnt [ABSPRI (w)];
2066 2734
2067 ++idleall; 2735 ++idleall;
2068 ev_start (EV_A_ (W)w, active); 2736 ev_start (EV_A_ (W)w, active);
2069 2737
2070 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2738 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2071 idles [ABSPRI (w)][active - 1] = w; 2739 idles [ABSPRI (w)][active - 1] = w;
2072 } 2740 }
2741
2742 EV_FREQUENT_CHECK;
2073} 2743}
2074 2744
2075void 2745void
2076ev_idle_stop (EV_P_ ev_idle *w) 2746ev_idle_stop (EV_P_ ev_idle *w)
2077{ 2747{
2078 clear_pending (EV_A_ (W)w); 2748 clear_pending (EV_A_ (W)w);
2079 if (expect_false (!ev_is_active (w))) 2749 if (expect_false (!ev_is_active (w)))
2080 return; 2750 return;
2081 2751
2752 EV_FREQUENT_CHECK;
2753
2082 { 2754 {
2083 int active = ((W)w)->active; 2755 int active = ev_active (w);
2084 2756
2085 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2757 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2086 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2758 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2087 2759
2088 ev_stop (EV_A_ (W)w); 2760 ev_stop (EV_A_ (W)w);
2089 --idleall; 2761 --idleall;
2090 } 2762 }
2763
2764 EV_FREQUENT_CHECK;
2091} 2765}
2092#endif 2766#endif
2093 2767
2094void 2768void
2095ev_prepare_start (EV_P_ ev_prepare *w) 2769ev_prepare_start (EV_P_ ev_prepare *w)
2096{ 2770{
2097 if (expect_false (ev_is_active (w))) 2771 if (expect_false (ev_is_active (w)))
2098 return; 2772 return;
2773
2774 EV_FREQUENT_CHECK;
2099 2775
2100 ev_start (EV_A_ (W)w, ++preparecnt); 2776 ev_start (EV_A_ (W)w, ++preparecnt);
2101 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2777 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2102 prepares [preparecnt - 1] = w; 2778 prepares [preparecnt - 1] = w;
2779
2780 EV_FREQUENT_CHECK;
2103} 2781}
2104 2782
2105void 2783void
2106ev_prepare_stop (EV_P_ ev_prepare *w) 2784ev_prepare_stop (EV_P_ ev_prepare *w)
2107{ 2785{
2108 clear_pending (EV_A_ (W)w); 2786 clear_pending (EV_A_ (W)w);
2109 if (expect_false (!ev_is_active (w))) 2787 if (expect_false (!ev_is_active (w)))
2110 return; 2788 return;
2111 2789
2790 EV_FREQUENT_CHECK;
2791
2112 { 2792 {
2113 int active = ((W)w)->active; 2793 int active = ev_active (w);
2794
2114 prepares [active - 1] = prepares [--preparecnt]; 2795 prepares [active - 1] = prepares [--preparecnt];
2115 ((W)prepares [active - 1])->active = active; 2796 ev_active (prepares [active - 1]) = active;
2116 } 2797 }
2117 2798
2118 ev_stop (EV_A_ (W)w); 2799 ev_stop (EV_A_ (W)w);
2800
2801 EV_FREQUENT_CHECK;
2119} 2802}
2120 2803
2121void 2804void
2122ev_check_start (EV_P_ ev_check *w) 2805ev_check_start (EV_P_ ev_check *w)
2123{ 2806{
2124 if (expect_false (ev_is_active (w))) 2807 if (expect_false (ev_is_active (w)))
2125 return; 2808 return;
2809
2810 EV_FREQUENT_CHECK;
2126 2811
2127 ev_start (EV_A_ (W)w, ++checkcnt); 2812 ev_start (EV_A_ (W)w, ++checkcnt);
2128 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2813 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2129 checks [checkcnt - 1] = w; 2814 checks [checkcnt - 1] = w;
2815
2816 EV_FREQUENT_CHECK;
2130} 2817}
2131 2818
2132void 2819void
2133ev_check_stop (EV_P_ ev_check *w) 2820ev_check_stop (EV_P_ ev_check *w)
2134{ 2821{
2135 clear_pending (EV_A_ (W)w); 2822 clear_pending (EV_A_ (W)w);
2136 if (expect_false (!ev_is_active (w))) 2823 if (expect_false (!ev_is_active (w)))
2137 return; 2824 return;
2138 2825
2826 EV_FREQUENT_CHECK;
2827
2139 { 2828 {
2140 int active = ((W)w)->active; 2829 int active = ev_active (w);
2830
2141 checks [active - 1] = checks [--checkcnt]; 2831 checks [active - 1] = checks [--checkcnt];
2142 ((W)checks [active - 1])->active = active; 2832 ev_active (checks [active - 1]) = active;
2143 } 2833 }
2144 2834
2145 ev_stop (EV_A_ (W)w); 2835 ev_stop (EV_A_ (W)w);
2836
2837 EV_FREQUENT_CHECK;
2146} 2838}
2147 2839
2148#if EV_EMBED_ENABLE 2840#if EV_EMBED_ENABLE
2149void noinline 2841void noinline
2150ev_embed_sweep (EV_P_ ev_embed *w) 2842ev_embed_sweep (EV_P_ ev_embed *w)
2151{ 2843{
2152 ev_loop (w->loop, EVLOOP_NONBLOCK); 2844 ev_loop (w->other, EVLOOP_NONBLOCK);
2153} 2845}
2154 2846
2155static void 2847static void
2156embed_cb (EV_P_ ev_io *io, int revents) 2848embed_io_cb (EV_P_ ev_io *io, int revents)
2157{ 2849{
2158 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2850 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2159 2851
2160 if (ev_cb (w)) 2852 if (ev_cb (w))
2161 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2853 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2162 else 2854 else
2163 ev_embed_sweep (loop, w); 2855 ev_loop (w->other, EVLOOP_NONBLOCK);
2164} 2856}
2857
2858static void
2859embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2860{
2861 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2862
2863 {
2864 struct ev_loop *loop = w->other;
2865
2866 while (fdchangecnt)
2867 {
2868 fd_reify (EV_A);
2869 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2870 }
2871 }
2872}
2873
2874static void
2875embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2876{
2877 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2878
2879 {
2880 struct ev_loop *loop = w->other;
2881
2882 ev_loop_fork (EV_A);
2883 }
2884}
2885
2886#if 0
2887static void
2888embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2889{
2890 ev_idle_stop (EV_A_ idle);
2891}
2892#endif
2165 2893
2166void 2894void
2167ev_embed_start (EV_P_ ev_embed *w) 2895ev_embed_start (EV_P_ ev_embed *w)
2168{ 2896{
2169 if (expect_false (ev_is_active (w))) 2897 if (expect_false (ev_is_active (w)))
2170 return; 2898 return;
2171 2899
2172 { 2900 {
2173 struct ev_loop *loop = w->loop; 2901 struct ev_loop *loop = w->other;
2174 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2902 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2175 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2903 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2176 } 2904 }
2905
2906 EV_FREQUENT_CHECK;
2177 2907
2178 ev_set_priority (&w->io, ev_priority (w)); 2908 ev_set_priority (&w->io, ev_priority (w));
2179 ev_io_start (EV_A_ &w->io); 2909 ev_io_start (EV_A_ &w->io);
2180 2910
2911 ev_prepare_init (&w->prepare, embed_prepare_cb);
2912 ev_set_priority (&w->prepare, EV_MINPRI);
2913 ev_prepare_start (EV_A_ &w->prepare);
2914
2915 ev_fork_init (&w->fork, embed_fork_cb);
2916 ev_fork_start (EV_A_ &w->fork);
2917
2918 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2919
2181 ev_start (EV_A_ (W)w, 1); 2920 ev_start (EV_A_ (W)w, 1);
2921
2922 EV_FREQUENT_CHECK;
2182} 2923}
2183 2924
2184void 2925void
2185ev_embed_stop (EV_P_ ev_embed *w) 2926ev_embed_stop (EV_P_ ev_embed *w)
2186{ 2927{
2187 clear_pending (EV_A_ (W)w); 2928 clear_pending (EV_A_ (W)w);
2188 if (expect_false (!ev_is_active (w))) 2929 if (expect_false (!ev_is_active (w)))
2189 return; 2930 return;
2190 2931
2932 EV_FREQUENT_CHECK;
2933
2191 ev_io_stop (EV_A_ &w->io); 2934 ev_io_stop (EV_A_ &w->io);
2935 ev_prepare_stop (EV_A_ &w->prepare);
2936 ev_fork_stop (EV_A_ &w->fork);
2192 2937
2193 ev_stop (EV_A_ (W)w); 2938 EV_FREQUENT_CHECK;
2194} 2939}
2195#endif 2940#endif
2196 2941
2197#if EV_FORK_ENABLE 2942#if EV_FORK_ENABLE
2198void 2943void
2199ev_fork_start (EV_P_ ev_fork *w) 2944ev_fork_start (EV_P_ ev_fork *w)
2200{ 2945{
2201 if (expect_false (ev_is_active (w))) 2946 if (expect_false (ev_is_active (w)))
2202 return; 2947 return;
2948
2949 EV_FREQUENT_CHECK;
2203 2950
2204 ev_start (EV_A_ (W)w, ++forkcnt); 2951 ev_start (EV_A_ (W)w, ++forkcnt);
2205 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2952 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2206 forks [forkcnt - 1] = w; 2953 forks [forkcnt - 1] = w;
2954
2955 EV_FREQUENT_CHECK;
2207} 2956}
2208 2957
2209void 2958void
2210ev_fork_stop (EV_P_ ev_fork *w) 2959ev_fork_stop (EV_P_ ev_fork *w)
2211{ 2960{
2212 clear_pending (EV_A_ (W)w); 2961 clear_pending (EV_A_ (W)w);
2213 if (expect_false (!ev_is_active (w))) 2962 if (expect_false (!ev_is_active (w)))
2214 return; 2963 return;
2215 2964
2965 EV_FREQUENT_CHECK;
2966
2216 { 2967 {
2217 int active = ((W)w)->active; 2968 int active = ev_active (w);
2969
2218 forks [active - 1] = forks [--forkcnt]; 2970 forks [active - 1] = forks [--forkcnt];
2219 ((W)forks [active - 1])->active = active; 2971 ev_active (forks [active - 1]) = active;
2220 } 2972 }
2221 2973
2222 ev_stop (EV_A_ (W)w); 2974 ev_stop (EV_A_ (W)w);
2975
2976 EV_FREQUENT_CHECK;
2977}
2978#endif
2979
2980#if EV_ASYNC_ENABLE
2981void
2982ev_async_start (EV_P_ ev_async *w)
2983{
2984 if (expect_false (ev_is_active (w)))
2985 return;
2986
2987 evpipe_init (EV_A);
2988
2989 EV_FREQUENT_CHECK;
2990
2991 ev_start (EV_A_ (W)w, ++asynccnt);
2992 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2993 asyncs [asynccnt - 1] = w;
2994
2995 EV_FREQUENT_CHECK;
2996}
2997
2998void
2999ev_async_stop (EV_P_ ev_async *w)
3000{
3001 clear_pending (EV_A_ (W)w);
3002 if (expect_false (!ev_is_active (w)))
3003 return;
3004
3005 EV_FREQUENT_CHECK;
3006
3007 {
3008 int active = ev_active (w);
3009
3010 asyncs [active - 1] = asyncs [--asynccnt];
3011 ev_active (asyncs [active - 1]) = active;
3012 }
3013
3014 ev_stop (EV_A_ (W)w);
3015
3016 EV_FREQUENT_CHECK;
3017}
3018
3019void
3020ev_async_send (EV_P_ ev_async *w)
3021{
3022 w->sent = 1;
3023 evpipe_write (EV_A_ &gotasync);
2223} 3024}
2224#endif 3025#endif
2225 3026
2226/*****************************************************************************/ 3027/*****************************************************************************/
2227 3028
2237once_cb (EV_P_ struct ev_once *once, int revents) 3038once_cb (EV_P_ struct ev_once *once, int revents)
2238{ 3039{
2239 void (*cb)(int revents, void *arg) = once->cb; 3040 void (*cb)(int revents, void *arg) = once->cb;
2240 void *arg = once->arg; 3041 void *arg = once->arg;
2241 3042
2242 ev_io_stop (EV_A_ &once->io); 3043 ev_io_stop (EV_A_ &once->io);
2243 ev_timer_stop (EV_A_ &once->to); 3044 ev_timer_stop (EV_A_ &once->to);
2244 ev_free (once); 3045 ev_free (once);
2245 3046
2246 cb (revents, arg); 3047 cb (revents, arg);
2247} 3048}
2248 3049
2249static void 3050static void
2250once_cb_io (EV_P_ ev_io *w, int revents) 3051once_cb_io (EV_P_ ev_io *w, int revents)
2251{ 3052{
2252 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3053 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3054
3055 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2253} 3056}
2254 3057
2255static void 3058static void
2256once_cb_to (EV_P_ ev_timer *w, int revents) 3059once_cb_to (EV_P_ ev_timer *w, int revents)
2257{ 3060{
2258 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3061 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3062
3063 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2259} 3064}
2260 3065
2261void 3066void
2262ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3067ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2263{ 3068{
2285 ev_timer_set (&once->to, timeout, 0.); 3090 ev_timer_set (&once->to, timeout, 0.);
2286 ev_timer_start (EV_A_ &once->to); 3091 ev_timer_start (EV_A_ &once->to);
2287 } 3092 }
2288} 3093}
2289 3094
3095#if EV_MULTIPLICITY
3096 #include "ev_wrap.h"
3097#endif
3098
2290#ifdef __cplusplus 3099#ifdef __cplusplus
2291} 3100}
2292#endif 3101#endif
2293 3102

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines