ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.164 by root, Fri Dec 7 16:44:10 2007 UTC vs.
Revision 1.179 by root, Tue Dec 11 21:04:40 2007 UTC

216# include <sys/inotify.h> 216# include <sys/inotify.h>
217#endif 217#endif
218 218
219/**/ 219/**/
220 220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
230
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 234
225#if __GNUC__ >= 3 235#if __GNUC__ >= 3
226# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 237# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 238#else
236# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
240#endif 244#endif
241 245
242#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
244 255
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 258
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 259#define EMPTY /* required for microsofts broken pseudo-c compiler */
417 } 428 }
418 429
419 return ncur; 430 return ncur;
420} 431}
421 432
422inline_speed void * 433static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 434array_realloc (int elem, void *base, int *cur, int cnt)
424{ 435{
425 *cur = array_nextsize (elem, *cur, cnt); 436 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 437 return ev_realloc (base, elem * *cur);
427} 438}
452 463
453void noinline 464void noinline
454ev_feed_event (EV_P_ void *w, int revents) 465ev_feed_event (EV_P_ void *w, int revents)
455{ 466{
456 W w_ = (W)w; 467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
457 469
458 if (expect_false (w_->pending)) 470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
459 { 473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 477 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 478 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 479}
469 480
470void inline_size 481void inline_speed
471queue_events (EV_P_ W *events, int eventcnt, int type) 482queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 483{
473 int i; 484 int i;
474 485
475 for (i = 0; i < eventcnt; ++i) 486 for (i = 0; i < eventcnt; ++i)
507} 518}
508 519
509void 520void
510ev_feed_fd_event (EV_P_ int fd, int revents) 521ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 522{
523 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 524 fd_event (EV_A_ fd, revents);
513} 525}
514 526
515void inline_size 527void inline_size
516fd_reify (EV_P) 528fd_reify (EV_P)
517{ 529{
626void inline_speed 638void inline_speed
627upheap (WT *heap, int k) 639upheap (WT *heap, int k)
628{ 640{
629 WT w = heap [k]; 641 WT w = heap [k];
630 642
631 while (k && heap [k >> 1]->at > w->at) 643 while (k)
632 { 644 {
645 int p = (k - 1) >> 1;
646
647 if (heap [p]->at <= w->at)
648 break;
649
633 heap [k] = heap [k >> 1]; 650 heap [k] = heap [p];
634 ((W)heap [k])->active = k + 1; 651 ((W)heap [k])->active = k + 1;
635 k >>= 1; 652 k = p;
636 } 653 }
637 654
638 heap [k] = w; 655 heap [k] = w;
639 ((W)heap [k])->active = k + 1; 656 ((W)heap [k])->active = k + 1;
640 657
643void inline_speed 660void inline_speed
644downheap (WT *heap, int N, int k) 661downheap (WT *heap, int N, int k)
645{ 662{
646 WT w = heap [k]; 663 WT w = heap [k];
647 664
648 while (k < (N >> 1)) 665 for (;;)
649 { 666 {
650 int j = k << 1; 667 int c = (k << 1) + 1;
651 668
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 669 if (c >= N)
653 ++j;
654
655 if (w->at <= heap [j]->at)
656 break; 670 break;
657 671
672 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
673 ? 1 : 0;
674
675 if (w->at <= heap [c]->at)
676 break;
677
658 heap [k] = heap [j]; 678 heap [k] = heap [c];
659 ((W)heap [k])->active = k + 1; 679 ((W)heap [k])->active = k + 1;
680
660 k = j; 681 k = c;
661 } 682 }
662 683
663 heap [k] = w; 684 heap [k] = w;
664 ((W)heap [k])->active = k + 1; 685 ((W)heap [k])->active = k + 1;
665} 686}
747 for (signum = signalmax; signum--; ) 768 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig) 769 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1); 770 ev_feed_signal_event (EV_A_ signum + 1);
750} 771}
751 772
752void inline_size 773void inline_speed
753fd_intern (int fd) 774fd_intern (int fd)
754{ 775{
755#ifdef _WIN32 776#ifdef _WIN32
756 int arg = 1; 777 int arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 778 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
1163 postfork = 1; 1184 postfork = 1;
1164} 1185}
1165 1186
1166/*****************************************************************************/ 1187/*****************************************************************************/
1167 1188
1189void
1190ev_invoke (EV_P_ void *w, int revents)
1191{
1192 EV_CB_INVOKE ((W)w, revents);
1193}
1194
1168void inline_speed 1195void inline_speed
1169call_pending (EV_P) 1196call_pending (EV_P)
1170{ 1197{
1171 int pri; 1198 int pri;
1172 1199
1223 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1250 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1224 1251
1225 /* first reschedule or stop timer */ 1252 /* first reschedule or stop timer */
1226 if (w->reschedule_cb) 1253 if (w->reschedule_cb)
1227 { 1254 {
1228 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1255 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1229 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1256 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1230 downheap ((WT *)periodics, periodiccnt, 0); 1257 downheap ((WT *)periodics, periodiccnt, 0);
1231 } 1258 }
1232 else if (w->interval) 1259 else if (w->interval)
1233 { 1260 {
1234 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1261 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1262 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1235 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1263 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1236 downheap ((WT *)periodics, periodiccnt, 0); 1264 downheap ((WT *)periodics, periodiccnt, 0);
1237 } 1265 }
1238 else 1266 else
1239 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1267 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1253 ev_periodic *w = periodics [i]; 1281 ev_periodic *w = periodics [i];
1254 1282
1255 if (w->reschedule_cb) 1283 if (w->reschedule_cb)
1256 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1284 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1257 else if (w->interval) 1285 else if (w->interval)
1258 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1286 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1259 } 1287 }
1260 1288
1261 /* now rebuild the heap */ 1289 /* now rebuild the heap */
1262 for (i = periodiccnt >> 1; i--; ) 1290 for (i = periodiccnt >> 1; i--; )
1263 downheap ((WT *)periodics, periodiccnt, i); 1291 downheap ((WT *)periodics, periodiccnt, i);
1266 1294
1267#if EV_IDLE_ENABLE 1295#if EV_IDLE_ENABLE
1268void inline_size 1296void inline_size
1269idle_reify (EV_P) 1297idle_reify (EV_P)
1270{ 1298{
1271 if (expect_false (!idleall)) 1299 if (expect_false (idleall))
1272 { 1300 {
1273 int pri; 1301 int pri;
1274 1302
1275 for (pri = NUMPRI; pri--; ) 1303 for (pri = NUMPRI; pri--; )
1276 { 1304 {
1285 } 1313 }
1286 } 1314 }
1287} 1315}
1288#endif 1316#endif
1289 1317
1290int inline_size 1318void inline_speed
1291time_update_monotonic (EV_P) 1319time_update (EV_P_ ev_tstamp max_block)
1292{ 1320{
1321 int i;
1322
1323#if EV_USE_MONOTONIC
1324 if (expect_true (have_monotonic))
1325 {
1326 ev_tstamp odiff = rtmn_diff;
1327
1293 mn_now = get_clock (); 1328 mn_now = get_clock ();
1294 1329
1330 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1331 /* interpolate in the meantime */
1295 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1332 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1296 { 1333 {
1297 ev_rt_now = rtmn_diff + mn_now; 1334 ev_rt_now = rtmn_diff + mn_now;
1298 return 0; 1335 return;
1299 } 1336 }
1300 else 1337
1301 {
1302 now_floor = mn_now; 1338 now_floor = mn_now;
1303 ev_rt_now = ev_time (); 1339 ev_rt_now = ev_time ();
1304 return 1;
1305 }
1306}
1307 1340
1308void inline_size 1341 /* loop a few times, before making important decisions.
1309time_update (EV_P) 1342 * on the choice of "4": one iteration isn't enough,
1310{ 1343 * in case we get preempted during the calls to
1311 int i; 1344 * ev_time and get_clock. a second call is almost guaranteed
1312 1345 * to succeed in that case, though. and looping a few more times
1313#if EV_USE_MONOTONIC 1346 * doesn't hurt either as we only do this on time-jumps or
1314 if (expect_true (have_monotonic)) 1347 * in the unlikely event of having been preempted here.
1315 { 1348 */
1316 if (time_update_monotonic (EV_A)) 1349 for (i = 4; --i; )
1317 { 1350 {
1318 ev_tstamp odiff = rtmn_diff;
1319
1320 /* loop a few times, before making important decisions.
1321 * on the choice of "4": one iteration isn't enough,
1322 * in case we get preempted during the calls to
1323 * ev_time and get_clock. a second call is almost guaranteed
1324 * to succeed in that case, though. and looping a few more times
1325 * doesn't hurt either as we only do this on time-jumps or
1326 * in the unlikely event of having been preempted here.
1327 */
1328 for (i = 4; --i; )
1329 {
1330 rtmn_diff = ev_rt_now - mn_now; 1351 rtmn_diff = ev_rt_now - mn_now;
1331 1352
1332 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1353 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1333 return; /* all is well */ 1354 return; /* all is well */
1334 1355
1335 ev_rt_now = ev_time (); 1356 ev_rt_now = ev_time ();
1336 mn_now = get_clock (); 1357 mn_now = get_clock ();
1337 now_floor = mn_now; 1358 now_floor = mn_now;
1338 } 1359 }
1339 1360
1340# if EV_PERIODIC_ENABLE 1361# if EV_PERIODIC_ENABLE
1341 periodics_reschedule (EV_A); 1362 periodics_reschedule (EV_A);
1342# endif 1363# endif
1343 /* no timer adjustment, as the monotonic clock doesn't jump */ 1364 /* no timer adjustment, as the monotonic clock doesn't jump */
1344 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1365 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1345 }
1346 } 1366 }
1347 else 1367 else
1348#endif 1368#endif
1349 { 1369 {
1350 ev_rt_now = ev_time (); 1370 ev_rt_now = ev_time ();
1351 1371
1352 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1372 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1353 { 1373 {
1354#if EV_PERIODIC_ENABLE 1374#if EV_PERIODIC_ENABLE
1355 periodics_reschedule (EV_A); 1375 periodics_reschedule (EV_A);
1356#endif 1376#endif
1357
1358 /* adjust timers. this is easy, as the offset is the same for all of them */ 1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1359 for (i = 0; i < timercnt; ++i) 1378 for (i = 0; i < timercnt; ++i)
1360 ((WT)timers [i])->at += ev_rt_now - mn_now; 1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1361 } 1380 }
1362 1381
1406 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1425 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1407 call_pending (EV_A); 1426 call_pending (EV_A);
1408 } 1427 }
1409#endif 1428#endif
1410 1429
1411 /* queue check watchers (and execute them) */ 1430 /* queue prepare watchers (and execute them) */
1412 if (expect_false (preparecnt)) 1431 if (expect_false (preparecnt))
1413 { 1432 {
1414 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1415 call_pending (EV_A); 1434 call_pending (EV_A);
1416 } 1435 }
1432 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1433 block = 0.; /* do not block at all */ 1452 block = 0.; /* do not block at all */
1434 else 1453 else
1435 { 1454 {
1436 /* update time to cancel out callback processing overhead */ 1455 /* update time to cancel out callback processing overhead */
1437#if EV_USE_MONOTONIC
1438 if (expect_true (have_monotonic))
1439 time_update_monotonic (EV_A); 1456 time_update (EV_A_ 1e100);
1440 else
1441#endif
1442 {
1443 ev_rt_now = ev_time ();
1444 mn_now = ev_rt_now;
1445 }
1446 1457
1447 block = MAX_BLOCKTIME; 1458 block = MAX_BLOCKTIME;
1448 1459
1449 if (timercnt) 1460 if (timercnt)
1450 { 1461 {
1463 if (expect_false (block < 0.)) block = 0.; 1474 if (expect_false (block < 0.)) block = 0.;
1464 } 1475 }
1465 1476
1466 ++loop_count; 1477 ++loop_count;
1467 backend_poll (EV_A_ block); 1478 backend_poll (EV_A_ block);
1479
1480 /* update ev_rt_now, do magic */
1481 time_update (EV_A_ block);
1468 } 1482 }
1469
1470 /* update ev_rt_now, do magic */
1471 time_update (EV_A);
1472 1483
1473 /* queue pending timers and reschedule them */ 1484 /* queue pending timers and reschedule them */
1474 timers_reify (EV_A); /* relative timers called last */ 1485 timers_reify (EV_A); /* relative timers called last */
1475#if EV_PERIODIC_ENABLE 1486#if EV_PERIODIC_ENABLE
1476 periodics_reify (EV_A); /* absolute timers called first */ 1487 periodics_reify (EV_A); /* absolute timers called first */
1523 head = &(*head)->next; 1534 head = &(*head)->next;
1524 } 1535 }
1525} 1536}
1526 1537
1527void inline_speed 1538void inline_speed
1528ev_clear_pending (EV_P_ W w) 1539clear_pending (EV_P_ W w)
1529{ 1540{
1530 if (w->pending) 1541 if (w->pending)
1531 { 1542 {
1532 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1543 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1533 w->pending = 0; 1544 w->pending = 0;
1534 } 1545 }
1546}
1547
1548int
1549ev_clear_pending (EV_P_ void *w)
1550{
1551 W w_ = (W)w;
1552 int pending = w_->pending;
1553
1554 if (expect_true (pending))
1555 {
1556 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1557 w_->pending = 0;
1558 p->w = 0;
1559 return p->events;
1560 }
1561 else
1562 return 0;
1535} 1563}
1536 1564
1537void inline_size 1565void inline_size
1538pri_adjust (EV_P_ W w) 1566pri_adjust (EV_P_ W w)
1539{ 1567{
1558 w->active = 0; 1586 w->active = 0;
1559} 1587}
1560 1588
1561/*****************************************************************************/ 1589/*****************************************************************************/
1562 1590
1563void 1591void noinline
1564ev_io_start (EV_P_ ev_io *w) 1592ev_io_start (EV_P_ ev_io *w)
1565{ 1593{
1566 int fd = w->fd; 1594 int fd = w->fd;
1567 1595
1568 if (expect_false (ev_is_active (w))) 1596 if (expect_false (ev_is_active (w)))
1575 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1603 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1576 1604
1577 fd_change (EV_A_ fd); 1605 fd_change (EV_A_ fd);
1578} 1606}
1579 1607
1580void 1608void noinline
1581ev_io_stop (EV_P_ ev_io *w) 1609ev_io_stop (EV_P_ ev_io *w)
1582{ 1610{
1583 ev_clear_pending (EV_A_ (W)w); 1611 clear_pending (EV_A_ (W)w);
1584 if (expect_false (!ev_is_active (w))) 1612 if (expect_false (!ev_is_active (w)))
1585 return; 1613 return;
1586 1614
1587 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1615 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1588 1616
1590 ev_stop (EV_A_ (W)w); 1618 ev_stop (EV_A_ (W)w);
1591 1619
1592 fd_change (EV_A_ w->fd); 1620 fd_change (EV_A_ w->fd);
1593} 1621}
1594 1622
1595void 1623void noinline
1596ev_timer_start (EV_P_ ev_timer *w) 1624ev_timer_start (EV_P_ ev_timer *w)
1597{ 1625{
1598 if (expect_false (ev_is_active (w))) 1626 if (expect_false (ev_is_active (w)))
1599 return; 1627 return;
1600 1628
1608 upheap ((WT *)timers, timercnt - 1); 1636 upheap ((WT *)timers, timercnt - 1);
1609 1637
1610 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1638 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1611} 1639}
1612 1640
1613void 1641void noinline
1614ev_timer_stop (EV_P_ ev_timer *w) 1642ev_timer_stop (EV_P_ ev_timer *w)
1615{ 1643{
1616 ev_clear_pending (EV_A_ (W)w); 1644 clear_pending (EV_A_ (W)w);
1617 if (expect_false (!ev_is_active (w))) 1645 if (expect_false (!ev_is_active (w)))
1618 return; 1646 return;
1619 1647
1620 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1648 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1621 1649
1632 ((WT)w)->at -= mn_now; 1660 ((WT)w)->at -= mn_now;
1633 1661
1634 ev_stop (EV_A_ (W)w); 1662 ev_stop (EV_A_ (W)w);
1635} 1663}
1636 1664
1637void 1665void noinline
1638ev_timer_again (EV_P_ ev_timer *w) 1666ev_timer_again (EV_P_ ev_timer *w)
1639{ 1667{
1640 if (ev_is_active (w)) 1668 if (ev_is_active (w))
1641 { 1669 {
1642 if (w->repeat) 1670 if (w->repeat)
1653 ev_timer_start (EV_A_ w); 1681 ev_timer_start (EV_A_ w);
1654 } 1682 }
1655} 1683}
1656 1684
1657#if EV_PERIODIC_ENABLE 1685#if EV_PERIODIC_ENABLE
1658void 1686void noinline
1659ev_periodic_start (EV_P_ ev_periodic *w) 1687ev_periodic_start (EV_P_ ev_periodic *w)
1660{ 1688{
1661 if (expect_false (ev_is_active (w))) 1689 if (expect_false (ev_is_active (w)))
1662 return; 1690 return;
1663 1691
1665 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1693 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1666 else if (w->interval) 1694 else if (w->interval)
1667 { 1695 {
1668 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1696 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1669 /* this formula differs from the one in periodic_reify because we do not always round up */ 1697 /* this formula differs from the one in periodic_reify because we do not always round up */
1670 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1698 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1671 } 1699 }
1700 else
1701 ((WT)w)->at = w->offset;
1672 1702
1673 ev_start (EV_A_ (W)w, ++periodiccnt); 1703 ev_start (EV_A_ (W)w, ++periodiccnt);
1674 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1704 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1675 periodics [periodiccnt - 1] = w; 1705 periodics [periodiccnt - 1] = w;
1676 upheap ((WT *)periodics, periodiccnt - 1); 1706 upheap ((WT *)periodics, periodiccnt - 1);
1677 1707
1678 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1708 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1679} 1709}
1680 1710
1681void 1711void noinline
1682ev_periodic_stop (EV_P_ ev_periodic *w) 1712ev_periodic_stop (EV_P_ ev_periodic *w)
1683{ 1713{
1684 ev_clear_pending (EV_A_ (W)w); 1714 clear_pending (EV_A_ (W)w);
1685 if (expect_false (!ev_is_active (w))) 1715 if (expect_false (!ev_is_active (w)))
1686 return; 1716 return;
1687 1717
1688 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1718 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1689 1719
1698 } 1728 }
1699 1729
1700 ev_stop (EV_A_ (W)w); 1730 ev_stop (EV_A_ (W)w);
1701} 1731}
1702 1732
1703void 1733void noinline
1704ev_periodic_again (EV_P_ ev_periodic *w) 1734ev_periodic_again (EV_P_ ev_periodic *w)
1705{ 1735{
1706 /* TODO: use adjustheap and recalculation */ 1736 /* TODO: use adjustheap and recalculation */
1707 ev_periodic_stop (EV_A_ w); 1737 ev_periodic_stop (EV_A_ w);
1708 ev_periodic_start (EV_A_ w); 1738 ev_periodic_start (EV_A_ w);
1711 1741
1712#ifndef SA_RESTART 1742#ifndef SA_RESTART
1713# define SA_RESTART 0 1743# define SA_RESTART 0
1714#endif 1744#endif
1715 1745
1716void 1746void noinline
1717ev_signal_start (EV_P_ ev_signal *w) 1747ev_signal_start (EV_P_ ev_signal *w)
1718{ 1748{
1719#if EV_MULTIPLICITY 1749#if EV_MULTIPLICITY
1720 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1750 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1721#endif 1751#endif
1740 sigaction (w->signum, &sa, 0); 1770 sigaction (w->signum, &sa, 0);
1741#endif 1771#endif
1742 } 1772 }
1743} 1773}
1744 1774
1745void 1775void noinline
1746ev_signal_stop (EV_P_ ev_signal *w) 1776ev_signal_stop (EV_P_ ev_signal *w)
1747{ 1777{
1748 ev_clear_pending (EV_A_ (W)w); 1778 clear_pending (EV_A_ (W)w);
1749 if (expect_false (!ev_is_active (w))) 1779 if (expect_false (!ev_is_active (w)))
1750 return; 1780 return;
1751 1781
1752 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1782 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1753 ev_stop (EV_A_ (W)w); 1783 ev_stop (EV_A_ (W)w);
1770} 1800}
1771 1801
1772void 1802void
1773ev_child_stop (EV_P_ ev_child *w) 1803ev_child_stop (EV_P_ ev_child *w)
1774{ 1804{
1775 ev_clear_pending (EV_A_ (W)w); 1805 clear_pending (EV_A_ (W)w);
1776 if (expect_false (!ev_is_active (w))) 1806 if (expect_false (!ev_is_active (w)))
1777 return; 1807 return;
1778 1808
1779 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1809 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1780 ev_stop (EV_A_ (W)w); 1810 ev_stop (EV_A_ (W)w);
2016} 2046}
2017 2047
2018void 2048void
2019ev_stat_stop (EV_P_ ev_stat *w) 2049ev_stat_stop (EV_P_ ev_stat *w)
2020{ 2050{
2021 ev_clear_pending (EV_A_ (W)w); 2051 clear_pending (EV_A_ (W)w);
2022 if (expect_false (!ev_is_active (w))) 2052 if (expect_false (!ev_is_active (w)))
2023 return; 2053 return;
2024 2054
2025#if EV_USE_INOTIFY 2055#if EV_USE_INOTIFY
2026 infy_del (EV_A_ w); 2056 infy_del (EV_A_ w);
2052} 2082}
2053 2083
2054void 2084void
2055ev_idle_stop (EV_P_ ev_idle *w) 2085ev_idle_stop (EV_P_ ev_idle *w)
2056{ 2086{
2057 ev_clear_pending (EV_A_ (W)w); 2087 clear_pending (EV_A_ (W)w);
2058 if (expect_false (!ev_is_active (w))) 2088 if (expect_false (!ev_is_active (w)))
2059 return; 2089 return;
2060 2090
2061 { 2091 {
2062 int active = ((W)w)->active; 2092 int active = ((W)w)->active;
2082} 2112}
2083 2113
2084void 2114void
2085ev_prepare_stop (EV_P_ ev_prepare *w) 2115ev_prepare_stop (EV_P_ ev_prepare *w)
2086{ 2116{
2087 ev_clear_pending (EV_A_ (W)w); 2117 clear_pending (EV_A_ (W)w);
2088 if (expect_false (!ev_is_active (w))) 2118 if (expect_false (!ev_is_active (w)))
2089 return; 2119 return;
2090 2120
2091 { 2121 {
2092 int active = ((W)w)->active; 2122 int active = ((W)w)->active;
2109} 2139}
2110 2140
2111void 2141void
2112ev_check_stop (EV_P_ ev_check *w) 2142ev_check_stop (EV_P_ ev_check *w)
2113{ 2143{
2114 ev_clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
2115 if (expect_false (!ev_is_active (w))) 2145 if (expect_false (!ev_is_active (w)))
2116 return; 2146 return;
2117 2147
2118 { 2148 {
2119 int active = ((W)w)->active; 2149 int active = ((W)w)->active;
2161} 2191}
2162 2192
2163void 2193void
2164ev_embed_stop (EV_P_ ev_embed *w) 2194ev_embed_stop (EV_P_ ev_embed *w)
2165{ 2195{
2166 ev_clear_pending (EV_A_ (W)w); 2196 clear_pending (EV_A_ (W)w);
2167 if (expect_false (!ev_is_active (w))) 2197 if (expect_false (!ev_is_active (w)))
2168 return; 2198 return;
2169 2199
2170 ev_io_stop (EV_A_ &w->io); 2200 ev_io_stop (EV_A_ &w->io);
2171 2201
2186} 2216}
2187 2217
2188void 2218void
2189ev_fork_stop (EV_P_ ev_fork *w) 2219ev_fork_stop (EV_P_ ev_fork *w)
2190{ 2220{
2191 ev_clear_pending (EV_A_ (W)w); 2221 clear_pending (EV_A_ (W)w);
2192 if (expect_false (!ev_is_active (w))) 2222 if (expect_false (!ev_is_active (w)))
2193 return; 2223 return;
2194 2224
2195 { 2225 {
2196 int active = ((W)w)->active; 2226 int active = ((W)w)->active;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines