ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.179 by root, Tue Dec 11 21:04:40 2007 UTC vs.
Revision 1.247 by root, Wed May 21 21:22:10 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 249
197#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
200#endif 253#endif
202#ifndef CLOCK_REALTIME 255#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 256# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 257# define EV_USE_REALTIME 0
205#endif 258#endif
206 259
260#if !EV_STAT_ENABLE
261# undef EV_USE_INOTIFY
262# define EV_USE_INOTIFY 0
263#endif
264
265#if !EV_USE_NANOSLEEP
266# ifndef _WIN32
267# include <sys/select.h>
268# endif
269#endif
270
271#if EV_USE_INOTIFY
272# include <sys/inotify.h>
273#endif
274
207#if EV_SELECT_IS_WINSOCKET 275#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 276# include <winsock.h>
209#endif 277#endif
210 278
211#if !EV_STAT_ENABLE 279#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 280/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
281# include <stdint.h>
282# ifdef __cplusplus
283extern "C" {
213#endif 284# endif
214 285int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 286# ifdef __cplusplus
216# include <sys/inotify.h> 287}
288# endif
217#endif 289#endif
218 290
219/**/ 291/**/
220 292
221/* 293/*
230 302
231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 303#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 304#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 305/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
234 306
235#if __GNUC__ >= 3 307#if __GNUC__ >= 4
236# define expect(expr,value) __builtin_expect ((expr),(value)) 308# define expect(expr,value) __builtin_expect ((expr),(value))
237# define noinline __attribute__ ((noinline)) 309# define noinline __attribute__ ((noinline))
238#else 310#else
239# define expect(expr,value) (expr) 311# define expect(expr,value) (expr)
240# define noinline 312# define noinline
241# if __STDC_VERSION__ < 199901L 313# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
242# define inline 314# define inline
243# endif 315# endif
244#endif 316#endif
245 317
246#define expect_false(expr) expect ((expr) != 0, 0) 318#define expect_false(expr) expect ((expr) != 0, 0)
261 333
262typedef ev_watcher *W; 334typedef ev_watcher *W;
263typedef ev_watcher_list *WL; 335typedef ev_watcher_list *WL;
264typedef ev_watcher_time *WT; 336typedef ev_watcher_time *WT;
265 337
338#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at
340
341#if EV_USE_MONOTONIC
342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
343/* giving it a reasonably high chance of working on typical architetcures */
266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
345#endif
267 346
268#ifdef _WIN32 347#ifdef _WIN32
269# include "ev_win32.c" 348# include "ev_win32.c"
270#endif 349#endif
271 350
292 perror (msg); 371 perror (msg);
293 abort (); 372 abort ();
294 } 373 }
295} 374}
296 375
376static void *
377ev_realloc_emul (void *ptr, long size)
378{
379 /* some systems, notably openbsd and darwin, fail to properly
380 * implement realloc (x, 0) (as required by both ansi c-98 and
381 * the single unix specification, so work around them here.
382 */
383
384 if (size)
385 return realloc (ptr, size);
386
387 free (ptr);
388 return 0;
389}
390
297static void *(*alloc)(void *ptr, long size); 391static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
298 392
299void 393void
300ev_set_allocator (void *(*cb)(void *ptr, long size)) 394ev_set_allocator (void *(*cb)(void *ptr, long size))
301{ 395{
302 alloc = cb; 396 alloc = cb;
303} 397}
304 398
305inline_speed void * 399inline_speed void *
306ev_realloc (void *ptr, long size) 400ev_realloc (void *ptr, long size)
307{ 401{
308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 402 ptr = alloc (ptr, size);
309 403
310 if (!ptr && size) 404 if (!ptr && size)
311 { 405 {
312 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 406 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
313 abort (); 407 abort ();
336 W w; 430 W w;
337 int events; 431 int events;
338} ANPENDING; 432} ANPENDING;
339 433
340#if EV_USE_INOTIFY 434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
341typedef struct 436typedef struct
342{ 437{
343 WL head; 438 WL head;
344} ANFS; 439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
345#endif 458#endif
346 459
347#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
348 461
349 struct ev_loop 462 struct ev_loop
407{ 520{
408 return ev_rt_now; 521 return ev_rt_now;
409} 522}
410#endif 523#endif
411 524
525void
526ev_sleep (ev_tstamp delay)
527{
528 if (delay > 0.)
529 {
530#if EV_USE_NANOSLEEP
531 struct timespec ts;
532
533 ts.tv_sec = (time_t)delay;
534 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
535
536 nanosleep (&ts, 0);
537#elif defined(_WIN32)
538 Sleep ((unsigned long)(delay * 1e3));
539#else
540 struct timeval tv;
541
542 tv.tv_sec = (time_t)delay;
543 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
544
545 select (0, 0, 0, 0, &tv);
546#endif
547 }
548}
549
550/*****************************************************************************/
551
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553
412int inline_size 554int inline_size
413array_nextsize (int elem, int cur, int cnt) 555array_nextsize (int elem, int cur, int cnt)
414{ 556{
415 int ncur = cur + 1; 557 int ncur = cur + 1;
416 558
417 do 559 do
418 ncur <<= 1; 560 ncur <<= 1;
419 while (cnt > ncur); 561 while (cnt > ncur);
420 562
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096) 564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
423 { 565 {
424 ncur *= elem; 566 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
426 ncur = ncur - sizeof (void *) * 4; 568 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem; 569 ncur /= elem;
428 } 570 }
429 571
430 return ncur; 572 return ncur;
533 { 675 {
534 int fd = fdchanges [i]; 676 int fd = fdchanges [i];
535 ANFD *anfd = anfds + fd; 677 ANFD *anfd = anfds + fd;
536 ev_io *w; 678 ev_io *w;
537 679
538 int events = 0; 680 unsigned char events = 0;
539 681
540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 682 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
541 events |= w->events; 683 events |= (unsigned char)w->events;
542 684
543#if EV_SELECT_IS_WINSOCKET 685#if EV_SELECT_IS_WINSOCKET
544 if (events) 686 if (events)
545 { 687 {
546 unsigned long argp; 688 unsigned long argp;
689 #ifdef EV_FD_TO_WIN32_HANDLE
690 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
691 #else
547 anfd->handle = _get_osfhandle (fd); 692 anfd->handle = _get_osfhandle (fd);
693 #endif
548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 694 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
549 } 695 }
550#endif 696#endif
551 697
698 {
699 unsigned char o_events = anfd->events;
700 unsigned char o_reify = anfd->reify;
701
552 anfd->reify = 0; 702 anfd->reify = 0;
553
554 backend_modify (EV_A_ fd, anfd->events, events);
555 anfd->events = events; 703 anfd->events = events;
704
705 if (o_events != events || o_reify & EV_IOFDSET)
706 backend_modify (EV_A_ fd, o_events, events);
707 }
556 } 708 }
557 709
558 fdchangecnt = 0; 710 fdchangecnt = 0;
559} 711}
560 712
561void inline_size 713void inline_size
562fd_change (EV_P_ int fd) 714fd_change (EV_P_ int fd, int flags)
563{ 715{
564 if (expect_false (anfds [fd].reify)) 716 unsigned char reify = anfds [fd].reify;
565 return;
566
567 anfds [fd].reify = 1; 717 anfds [fd].reify |= flags;
568 718
719 if (expect_true (!reify))
720 {
569 ++fdchangecnt; 721 ++fdchangecnt;
570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 722 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
571 fdchanges [fdchangecnt - 1] = fd; 723 fdchanges [fdchangecnt - 1] = fd;
724 }
572} 725}
573 726
574void inline_speed 727void inline_speed
575fd_kill (EV_P_ int fd) 728fd_kill (EV_P_ int fd)
576{ 729{
627 780
628 for (fd = 0; fd < anfdmax; ++fd) 781 for (fd = 0; fd < anfdmax; ++fd)
629 if (anfds [fd].events) 782 if (anfds [fd].events)
630 { 783 {
631 anfds [fd].events = 0; 784 anfds [fd].events = 0;
632 fd_change (EV_A_ fd); 785 fd_change (EV_A_ fd, EV_IOFDSET | 1);
633 } 786 }
634} 787}
635 788
636/*****************************************************************************/ 789/*****************************************************************************/
637 790
791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
798 * at the moment we allow libev the luxury of two heaps,
799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
800 * which is more cache-efficient.
801 * the difference is about 5% with 50000+ watchers.
802 */
803#if EV_USE_4HEAP
804
805#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808
809/* towards the root */
638void inline_speed 810void inline_speed
639upheap (WT *heap, int k) 811upheap (ANHE *heap, int k)
640{ 812{
641 WT w = heap [k]; 813 ANHE he = heap [k];
642 814
643 while (k) 815 for (;;)
644 { 816 {
645 int p = (k - 1) >> 1; 817 int p = HPARENT (k);
646 818
647 if (heap [p]->at <= w->at) 819 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
648 break; 820 break;
649 821
650 heap [k] = heap [p]; 822 heap [k] = heap [p];
651 ((W)heap [k])->active = k + 1; 823 ev_active (ANHE_w (heap [k])) = k;
652 k = p; 824 k = p;
653 } 825 }
654 826
655 heap [k] = w; 827 heap [k] = he;
656 ((W)heap [k])->active = k + 1; 828 ev_active (ANHE_w (he)) = k;
657
658} 829}
659 830
831/* away from the root */
660void inline_speed 832void inline_speed
661downheap (WT *heap, int N, int k) 833downheap (ANHE *heap, int N, int k)
662{ 834{
663 WT w = heap [k]; 835 ANHE he = heap [k];
836 ANHE *E = heap + N + HEAP0;
664 837
665 for (;;) 838 for (;;)
666 { 839 {
667 int c = (k << 1) + 1; 840 ev_tstamp minat;
841 ANHE *minpos;
842 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
668 843
669 if (c >= N) 844 // find minimum child
845 if (expect_true (pos + DHEAP - 1 < E))
846 {
847 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
850 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
851 }
852 else if (pos < E)
853 {
854 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
855 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 }
859 else
670 break; 860 break;
671 861
862 if (ANHE_at (he) <= minat)
863 break;
864
865 heap [k] = *minpos;
866 ev_active (ANHE_w (*minpos)) = k;
867
868 k = minpos - heap;
869 }
870
871 heap [k] = he;
872 ev_active (ANHE_w (he)) = k;
873}
874
875#else // 4HEAP
876
877#define HEAP0 1
878#define HPARENT(k) ((k) >> 1)
879
880/* towards the root */
881void inline_speed
882upheap (ANHE *heap, int k)
883{
884 ANHE he = heap [k];
885
886 for (;;)
887 {
888 int p = HPARENT (k);
889
890 /* maybe we could use a dummy element at heap [0]? */
891 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
892 break;
893
894 heap [k] = heap [p];
895 ev_active (ANHE_w (heap [k])) = k;
896 k = p;
897 }
898
899 heap [k] = he;
900 ev_active (ANHE_w (heap [k])) = k;
901}
902
903/* away from the root */
904void inline_speed
905downheap (ANHE *heap, int N, int k)
906{
907 ANHE he = heap [k];
908
909 for (;;)
910 {
911 int c = k << 1;
912
913 if (c > N)
914 break;
915
672 c += c + 1 < N && heap [c]->at > heap [c + 1]->at 916 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
673 ? 1 : 0; 917 ? 1 : 0;
674 918
675 if (w->at <= heap [c]->at) 919 if (ANHE_at (he) <= ANHE_at (heap [c]))
676 break; 920 break;
677 921
678 heap [k] = heap [c]; 922 heap [k] = heap [c];
679 ((W)heap [k])->active = k + 1; 923 ev_active (ANHE_w (heap [k])) = k;
680 924
681 k = c; 925 k = c;
682 } 926 }
683 927
684 heap [k] = w; 928 heap [k] = he;
685 ((W)heap [k])->active = k + 1; 929 ev_active (ANHE_w (he)) = k;
686} 930}
931#endif
687 932
688void inline_size 933void inline_size
689adjustheap (WT *heap, int N, int k) 934adjustheap (ANHE *heap, int N, int k)
690{ 935{
936 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
691 upheap (heap, k); 937 upheap (heap, k);
938 else
692 downheap (heap, N, k); 939 downheap (heap, N, k);
693} 940}
694 941
695/*****************************************************************************/ 942/*****************************************************************************/
696 943
697typedef struct 944typedef struct
698{ 945{
699 WL head; 946 WL head;
700 sig_atomic_t volatile gotsig; 947 EV_ATOMIC_T gotsig;
701} ANSIG; 948} ANSIG;
702 949
703static ANSIG *signals; 950static ANSIG *signals;
704static int signalmax; 951static int signalmax;
705 952
706static int sigpipe [2]; 953static EV_ATOMIC_T gotsig;
707static sig_atomic_t volatile gotsig;
708static ev_io sigev;
709 954
710void inline_size 955void inline_size
711signals_init (ANSIG *base, int count) 956signals_init (ANSIG *base, int count)
712{ 957{
713 while (count--) 958 while (count--)
717 962
718 ++base; 963 ++base;
719 } 964 }
720} 965}
721 966
722static void 967/*****************************************************************************/
723sighandler (int signum)
724{
725#if _WIN32
726 signal (signum, sighandler);
727#endif
728
729 signals [signum - 1].gotsig = 1;
730
731 if (!gotsig)
732 {
733 int old_errno = errno;
734 gotsig = 1;
735 write (sigpipe [1], &signum, 1);
736 errno = old_errno;
737 }
738}
739
740void noinline
741ev_feed_signal_event (EV_P_ int signum)
742{
743 WL w;
744
745#if EV_MULTIPLICITY
746 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
747#endif
748
749 --signum;
750
751 if (signum < 0 || signum >= signalmax)
752 return;
753
754 signals [signum].gotsig = 0;
755
756 for (w = signals [signum].head; w; w = w->next)
757 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
758}
759
760static void
761sigcb (EV_P_ ev_io *iow, int revents)
762{
763 int signum;
764
765 read (sigpipe [0], &revents, 1);
766 gotsig = 0;
767
768 for (signum = signalmax; signum--; )
769 if (signals [signum].gotsig)
770 ev_feed_signal_event (EV_A_ signum + 1);
771}
772 968
773void inline_speed 969void inline_speed
774fd_intern (int fd) 970fd_intern (int fd)
775{ 971{
776#ifdef _WIN32 972#ifdef _WIN32
781 fcntl (fd, F_SETFL, O_NONBLOCK); 977 fcntl (fd, F_SETFL, O_NONBLOCK);
782#endif 978#endif
783} 979}
784 980
785static void noinline 981static void noinline
786siginit (EV_P) 982evpipe_init (EV_P)
787{ 983{
984 if (!ev_is_active (&pipeev))
985 {
986#if EV_USE_EVENTFD
987 if ((evfd = eventfd (0, 0)) >= 0)
988 {
989 evpipe [0] = -1;
990 fd_intern (evfd);
991 ev_io_set (&pipeev, evfd, EV_READ);
992 }
993 else
994#endif
995 {
996 while (pipe (evpipe))
997 syserr ("(libev) error creating signal/async pipe");
998
788 fd_intern (sigpipe [0]); 999 fd_intern (evpipe [0]);
789 fd_intern (sigpipe [1]); 1000 fd_intern (evpipe [1]);
1001 ev_io_set (&pipeev, evpipe [0], EV_READ);
1002 }
790 1003
791 ev_io_set (&sigev, sigpipe [0], EV_READ);
792 ev_io_start (EV_A_ &sigev); 1004 ev_io_start (EV_A_ &pipeev);
793 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1005 ev_unref (EV_A); /* watcher should not keep loop alive */
1006 }
1007}
1008
1009void inline_size
1010evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1011{
1012 if (!*flag)
1013 {
1014 int old_errno = errno; /* save errno because write might clobber it */
1015
1016 *flag = 1;
1017
1018#if EV_USE_EVENTFD
1019 if (evfd >= 0)
1020 {
1021 uint64_t counter = 1;
1022 write (evfd, &counter, sizeof (uint64_t));
1023 }
1024 else
1025#endif
1026 write (evpipe [1], &old_errno, 1);
1027
1028 errno = old_errno;
1029 }
1030}
1031
1032static void
1033pipecb (EV_P_ ev_io *iow, int revents)
1034{
1035#if EV_USE_EVENTFD
1036 if (evfd >= 0)
1037 {
1038 uint64_t counter;
1039 read (evfd, &counter, sizeof (uint64_t));
1040 }
1041 else
1042#endif
1043 {
1044 char dummy;
1045 read (evpipe [0], &dummy, 1);
1046 }
1047
1048 if (gotsig && ev_is_default_loop (EV_A))
1049 {
1050 int signum;
1051 gotsig = 0;
1052
1053 for (signum = signalmax; signum--; )
1054 if (signals [signum].gotsig)
1055 ev_feed_signal_event (EV_A_ signum + 1);
1056 }
1057
1058#if EV_ASYNC_ENABLE
1059 if (gotasync)
1060 {
1061 int i;
1062 gotasync = 0;
1063
1064 for (i = asynccnt; i--; )
1065 if (asyncs [i]->sent)
1066 {
1067 asyncs [i]->sent = 0;
1068 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1069 }
1070 }
1071#endif
794} 1072}
795 1073
796/*****************************************************************************/ 1074/*****************************************************************************/
797 1075
1076static void
1077ev_sighandler (int signum)
1078{
1079#if EV_MULTIPLICITY
1080 struct ev_loop *loop = &default_loop_struct;
1081#endif
1082
1083#if _WIN32
1084 signal (signum, ev_sighandler);
1085#endif
1086
1087 signals [signum - 1].gotsig = 1;
1088 evpipe_write (EV_A_ &gotsig);
1089}
1090
1091void noinline
1092ev_feed_signal_event (EV_P_ int signum)
1093{
1094 WL w;
1095
1096#if EV_MULTIPLICITY
1097 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1098#endif
1099
1100 --signum;
1101
1102 if (signum < 0 || signum >= signalmax)
1103 return;
1104
1105 signals [signum].gotsig = 0;
1106
1107 for (w = signals [signum].head; w; w = w->next)
1108 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1109}
1110
1111/*****************************************************************************/
1112
798static ev_child *childs [EV_PID_HASHSIZE]; 1113static WL childs [EV_PID_HASHSIZE];
799 1114
800#ifndef _WIN32 1115#ifndef _WIN32
801 1116
802static ev_signal childev; 1117static ev_signal childev;
803 1118
1119#ifndef WIFCONTINUED
1120# define WIFCONTINUED(status) 0
1121#endif
1122
804void inline_speed 1123void inline_speed
805child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1124child_reap (EV_P_ int chain, int pid, int status)
806{ 1125{
807 ev_child *w; 1126 ev_child *w;
1127 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
808 1128
809 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1129 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1130 {
810 if (w->pid == pid || !w->pid) 1131 if ((w->pid == pid || !w->pid)
1132 && (!traced || (w->flags & 1)))
811 { 1133 {
812 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1134 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
813 w->rpid = pid; 1135 w->rpid = pid;
814 w->rstatus = status; 1136 w->rstatus = status;
815 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1137 ev_feed_event (EV_A_ (W)w, EV_CHILD);
816 } 1138 }
1139 }
817} 1140}
818 1141
819#ifndef WCONTINUED 1142#ifndef WCONTINUED
820# define WCONTINUED 0 1143# define WCONTINUED 0
821#endif 1144#endif
830 if (!WCONTINUED 1153 if (!WCONTINUED
831 || errno != EINVAL 1154 || errno != EINVAL
832 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1155 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
833 return; 1156 return;
834 1157
835 /* make sure we are called again until all childs have been reaped */ 1158 /* make sure we are called again until all children have been reaped */
836 /* we need to do it this way so that the callback gets called before we continue */ 1159 /* we need to do it this way so that the callback gets called before we continue */
837 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1160 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
838 1161
839 child_reap (EV_A_ sw, pid, pid, status); 1162 child_reap (EV_A_ pid, pid, status);
840 if (EV_PID_HASHSIZE > 1) 1163 if (EV_PID_HASHSIZE > 1)
841 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1164 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
842} 1165}
843 1166
844#endif 1167#endif
845 1168
846/*****************************************************************************/ 1169/*****************************************************************************/
918} 1241}
919 1242
920unsigned int 1243unsigned int
921ev_embeddable_backends (void) 1244ev_embeddable_backends (void)
922{ 1245{
923 return EVBACKEND_EPOLL 1246 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
924 | EVBACKEND_KQUEUE 1247
925 | EVBACKEND_PORT; 1248 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1249 /* please fix it and tell me how to detect the fix */
1250 flags &= ~EVBACKEND_EPOLL;
1251
1252 return flags;
926} 1253}
927 1254
928unsigned int 1255unsigned int
929ev_backend (EV_P) 1256ev_backend (EV_P)
930{ 1257{
933 1260
934unsigned int 1261unsigned int
935ev_loop_count (EV_P) 1262ev_loop_count (EV_P)
936{ 1263{
937 return loop_count; 1264 return loop_count;
1265}
1266
1267void
1268ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1269{
1270 io_blocktime = interval;
1271}
1272
1273void
1274ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1275{
1276 timeout_blocktime = interval;
938} 1277}
939 1278
940static void noinline 1279static void noinline
941loop_init (EV_P_ unsigned int flags) 1280loop_init (EV_P_ unsigned int flags)
942{ 1281{
948 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1287 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
949 have_monotonic = 1; 1288 have_monotonic = 1;
950 } 1289 }
951#endif 1290#endif
952 1291
953 ev_rt_now = ev_time (); 1292 ev_rt_now = ev_time ();
954 mn_now = get_clock (); 1293 mn_now = get_clock ();
955 now_floor = mn_now; 1294 now_floor = mn_now;
956 rtmn_diff = ev_rt_now - mn_now; 1295 rtmn_diff = ev_rt_now - mn_now;
1296
1297 io_blocktime = 0.;
1298 timeout_blocktime = 0.;
1299 backend = 0;
1300 backend_fd = -1;
1301 gotasync = 0;
1302#if EV_USE_INOTIFY
1303 fs_fd = -2;
1304#endif
957 1305
958 /* pid check not overridable via env */ 1306 /* pid check not overridable via env */
959#ifndef _WIN32 1307#ifndef _WIN32
960 if (flags & EVFLAG_FORKCHECK) 1308 if (flags & EVFLAG_FORKCHECK)
961 curpid = getpid (); 1309 curpid = getpid ();
964 if (!(flags & EVFLAG_NOENV) 1312 if (!(flags & EVFLAG_NOENV)
965 && !enable_secure () 1313 && !enable_secure ()
966 && getenv ("LIBEV_FLAGS")) 1314 && getenv ("LIBEV_FLAGS"))
967 flags = atoi (getenv ("LIBEV_FLAGS")); 1315 flags = atoi (getenv ("LIBEV_FLAGS"));
968 1316
969 if (!(flags & 0x0000ffffUL)) 1317 if (!(flags & 0x0000ffffU))
970 flags |= ev_recommended_backends (); 1318 flags |= ev_recommended_backends ();
971
972 backend = 0;
973 backend_fd = -1;
974#if EV_USE_INOTIFY
975 fs_fd = -2;
976#endif
977 1319
978#if EV_USE_PORT 1320#if EV_USE_PORT
979 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1321 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
980#endif 1322#endif
981#if EV_USE_KQUEUE 1323#if EV_USE_KQUEUE
989#endif 1331#endif
990#if EV_USE_SELECT 1332#if EV_USE_SELECT
991 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1333 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
992#endif 1334#endif
993 1335
994 ev_init (&sigev, sigcb); 1336 ev_init (&pipeev, pipecb);
995 ev_set_priority (&sigev, EV_MAXPRI); 1337 ev_set_priority (&pipeev, EV_MAXPRI);
996 } 1338 }
997} 1339}
998 1340
999static void noinline 1341static void noinline
1000loop_destroy (EV_P) 1342loop_destroy (EV_P)
1001{ 1343{
1002 int i; 1344 int i;
1345
1346 if (ev_is_active (&pipeev))
1347 {
1348 ev_ref (EV_A); /* signal watcher */
1349 ev_io_stop (EV_A_ &pipeev);
1350
1351#if EV_USE_EVENTFD
1352 if (evfd >= 0)
1353 close (evfd);
1354#endif
1355
1356 if (evpipe [0] >= 0)
1357 {
1358 close (evpipe [0]);
1359 close (evpipe [1]);
1360 }
1361 }
1003 1362
1004#if EV_USE_INOTIFY 1363#if EV_USE_INOTIFY
1005 if (fs_fd >= 0) 1364 if (fs_fd >= 0)
1006 close (fs_fd); 1365 close (fs_fd);
1007#endif 1366#endif
1030 array_free (pending, [i]); 1389 array_free (pending, [i]);
1031#if EV_IDLE_ENABLE 1390#if EV_IDLE_ENABLE
1032 array_free (idle, [i]); 1391 array_free (idle, [i]);
1033#endif 1392#endif
1034 } 1393 }
1394
1395 ev_free (anfds); anfdmax = 0;
1035 1396
1036 /* have to use the microsoft-never-gets-it-right macro */ 1397 /* have to use the microsoft-never-gets-it-right macro */
1037 array_free (fdchange, EMPTY); 1398 array_free (fdchange, EMPTY);
1038 array_free (timer, EMPTY); 1399 array_free (timer, EMPTY);
1039#if EV_PERIODIC_ENABLE 1400#if EV_PERIODIC_ENABLE
1040 array_free (periodic, EMPTY); 1401 array_free (periodic, EMPTY);
1041#endif 1402#endif
1403#if EV_FORK_ENABLE
1404 array_free (fork, EMPTY);
1405#endif
1042 array_free (prepare, EMPTY); 1406 array_free (prepare, EMPTY);
1043 array_free (check, EMPTY); 1407 array_free (check, EMPTY);
1408#if EV_ASYNC_ENABLE
1409 array_free (async, EMPTY);
1410#endif
1044 1411
1045 backend = 0; 1412 backend = 0;
1046} 1413}
1047 1414
1415#if EV_USE_INOTIFY
1048void inline_size infy_fork (EV_P); 1416void inline_size infy_fork (EV_P);
1417#endif
1049 1418
1050void inline_size 1419void inline_size
1051loop_fork (EV_P) 1420loop_fork (EV_P)
1052{ 1421{
1053#if EV_USE_PORT 1422#if EV_USE_PORT
1061#endif 1430#endif
1062#if EV_USE_INOTIFY 1431#if EV_USE_INOTIFY
1063 infy_fork (EV_A); 1432 infy_fork (EV_A);
1064#endif 1433#endif
1065 1434
1066 if (ev_is_active (&sigev)) 1435 if (ev_is_active (&pipeev))
1067 { 1436 {
1068 /* default loop */ 1437 /* this "locks" the handlers against writing to the pipe */
1438 /* while we modify the fd vars */
1439 gotsig = 1;
1440#if EV_ASYNC_ENABLE
1441 gotasync = 1;
1442#endif
1069 1443
1070 ev_ref (EV_A); 1444 ev_ref (EV_A);
1071 ev_io_stop (EV_A_ &sigev); 1445 ev_io_stop (EV_A_ &pipeev);
1446
1447#if EV_USE_EVENTFD
1448 if (evfd >= 0)
1449 close (evfd);
1450#endif
1451
1452 if (evpipe [0] >= 0)
1453 {
1072 close (sigpipe [0]); 1454 close (evpipe [0]);
1073 close (sigpipe [1]); 1455 close (evpipe [1]);
1456 }
1074 1457
1075 while (pipe (sigpipe))
1076 syserr ("(libev) error creating pipe");
1077
1078 siginit (EV_A); 1458 evpipe_init (EV_A);
1459 /* now iterate over everything, in case we missed something */
1460 pipecb (EV_A_ &pipeev, EV_READ);
1079 } 1461 }
1080 1462
1081 postfork = 0; 1463 postfork = 0;
1082} 1464}
1083 1465
1105} 1487}
1106 1488
1107void 1489void
1108ev_loop_fork (EV_P) 1490ev_loop_fork (EV_P)
1109{ 1491{
1110 postfork = 1; 1492 postfork = 1; /* must be in line with ev_default_fork */
1111} 1493}
1112
1113#endif 1494#endif
1114 1495
1115#if EV_MULTIPLICITY 1496#if EV_MULTIPLICITY
1116struct ev_loop * 1497struct ev_loop *
1117ev_default_loop_init (unsigned int flags) 1498ev_default_loop_init (unsigned int flags)
1118#else 1499#else
1119int 1500int
1120ev_default_loop (unsigned int flags) 1501ev_default_loop (unsigned int flags)
1121#endif 1502#endif
1122{ 1503{
1123 if (sigpipe [0] == sigpipe [1])
1124 if (pipe (sigpipe))
1125 return 0;
1126
1127 if (!ev_default_loop_ptr) 1504 if (!ev_default_loop_ptr)
1128 { 1505 {
1129#if EV_MULTIPLICITY 1506#if EV_MULTIPLICITY
1130 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1507 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1131#else 1508#else
1134 1511
1135 loop_init (EV_A_ flags); 1512 loop_init (EV_A_ flags);
1136 1513
1137 if (ev_backend (EV_A)) 1514 if (ev_backend (EV_A))
1138 { 1515 {
1139 siginit (EV_A);
1140
1141#ifndef _WIN32 1516#ifndef _WIN32
1142 ev_signal_init (&childev, childcb, SIGCHLD); 1517 ev_signal_init (&childev, childcb, SIGCHLD);
1143 ev_set_priority (&childev, EV_MAXPRI); 1518 ev_set_priority (&childev, EV_MAXPRI);
1144 ev_signal_start (EV_A_ &childev); 1519 ev_signal_start (EV_A_ &childev);
1145 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1520 ev_unref (EV_A); /* child watcher should not keep loop alive */
1162#ifndef _WIN32 1537#ifndef _WIN32
1163 ev_ref (EV_A); /* child watcher */ 1538 ev_ref (EV_A); /* child watcher */
1164 ev_signal_stop (EV_A_ &childev); 1539 ev_signal_stop (EV_A_ &childev);
1165#endif 1540#endif
1166 1541
1167 ev_ref (EV_A); /* signal watcher */
1168 ev_io_stop (EV_A_ &sigev);
1169
1170 close (sigpipe [0]); sigpipe [0] = 0;
1171 close (sigpipe [1]); sigpipe [1] = 0;
1172
1173 loop_destroy (EV_A); 1542 loop_destroy (EV_A);
1174} 1543}
1175 1544
1176void 1545void
1177ev_default_fork (void) 1546ev_default_fork (void)
1179#if EV_MULTIPLICITY 1548#if EV_MULTIPLICITY
1180 struct ev_loop *loop = ev_default_loop_ptr; 1549 struct ev_loop *loop = ev_default_loop_ptr;
1181#endif 1550#endif
1182 1551
1183 if (backend) 1552 if (backend)
1184 postfork = 1; 1553 postfork = 1; /* must be in line with ev_loop_fork */
1185} 1554}
1186 1555
1187/*****************************************************************************/ 1556/*****************************************************************************/
1188 1557
1189void 1558void
1209 p->w->pending = 0; 1578 p->w->pending = 0;
1210 EV_CB_INVOKE (p->w, p->events); 1579 EV_CB_INVOKE (p->w, p->events);
1211 } 1580 }
1212 } 1581 }
1213} 1582}
1214
1215void inline_size
1216timers_reify (EV_P)
1217{
1218 while (timercnt && ((WT)timers [0])->at <= mn_now)
1219 {
1220 ev_timer *w = timers [0];
1221
1222 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1223
1224 /* first reschedule or stop timer */
1225 if (w->repeat)
1226 {
1227 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1228
1229 ((WT)w)->at += w->repeat;
1230 if (((WT)w)->at < mn_now)
1231 ((WT)w)->at = mn_now;
1232
1233 downheap ((WT *)timers, timercnt, 0);
1234 }
1235 else
1236 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1237
1238 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1239 }
1240}
1241
1242#if EV_PERIODIC_ENABLE
1243void inline_size
1244periodics_reify (EV_P)
1245{
1246 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1247 {
1248 ev_periodic *w = periodics [0];
1249
1250 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1251
1252 /* first reschedule or stop timer */
1253 if (w->reschedule_cb)
1254 {
1255 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1256 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1257 downheap ((WT *)periodics, periodiccnt, 0);
1258 }
1259 else if (w->interval)
1260 {
1261 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1262 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1263 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1264 downheap ((WT *)periodics, periodiccnt, 0);
1265 }
1266 else
1267 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1268
1269 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1270 }
1271}
1272
1273static void noinline
1274periodics_reschedule (EV_P)
1275{
1276 int i;
1277
1278 /* adjust periodics after time jump */
1279 for (i = 0; i < periodiccnt; ++i)
1280 {
1281 ev_periodic *w = periodics [i];
1282
1283 if (w->reschedule_cb)
1284 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1285 else if (w->interval)
1286 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1287 }
1288
1289 /* now rebuild the heap */
1290 for (i = periodiccnt >> 1; i--; )
1291 downheap ((WT *)periodics, periodiccnt, i);
1292}
1293#endif
1294 1583
1295#if EV_IDLE_ENABLE 1584#if EV_IDLE_ENABLE
1296void inline_size 1585void inline_size
1297idle_reify (EV_P) 1586idle_reify (EV_P)
1298{ 1587{
1310 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1599 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1311 break; 1600 break;
1312 } 1601 }
1313 } 1602 }
1314 } 1603 }
1604}
1605#endif
1606
1607void inline_size
1608timers_reify (EV_P)
1609{
1610 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1611 {
1612 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1613
1614 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1615
1616 /* first reschedule or stop timer */
1617 if (w->repeat)
1618 {
1619 ev_at (w) += w->repeat;
1620 if (ev_at (w) < mn_now)
1621 ev_at (w) = mn_now;
1622
1623 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1624
1625 ANHE_at_set (timers [HEAP0]);
1626 downheap (timers, timercnt, HEAP0);
1627 }
1628 else
1629 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1630
1631 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1632 }
1633}
1634
1635#if EV_PERIODIC_ENABLE
1636void inline_size
1637periodics_reify (EV_P)
1638{
1639 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1640 {
1641 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1642
1643 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1644
1645 /* first reschedule or stop timer */
1646 if (w->reschedule_cb)
1647 {
1648 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1649
1650 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1651
1652 ANHE_at_set (periodics [HEAP0]);
1653 downheap (periodics, periodiccnt, HEAP0);
1654 }
1655 else if (w->interval)
1656 {
1657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1658 /* if next trigger time is not sufficiently in the future, put it there */
1659 /* this might happen because of floating point inexactness */
1660 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1661 {
1662 ev_at (w) += w->interval;
1663
1664 /* if interval is unreasonably low we might still have a time in the past */
1665 /* so correct this. this will make the periodic very inexact, but the user */
1666 /* has effectively asked to get triggered more often than possible */
1667 if (ev_at (w) < ev_rt_now)
1668 ev_at (w) = ev_rt_now;
1669 }
1670
1671 ANHE_at_set (periodics [HEAP0]);
1672 downheap (periodics, periodiccnt, HEAP0);
1673 }
1674 else
1675 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1676
1677 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1678 }
1679}
1680
1681static void noinline
1682periodics_reschedule (EV_P)
1683{
1684 int i;
1685
1686 /* adjust periodics after time jump */
1687 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1688 {
1689 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1690
1691 if (w->reschedule_cb)
1692 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1693 else if (w->interval)
1694 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695
1696 ANHE_at_set (periodics [i]);
1697 }
1698
1699 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1700 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1701 for (i = 0; i < periodiccnt; ++i)
1702 upheap (periodics, i + HEAP0);
1315} 1703}
1316#endif 1704#endif
1317 1705
1318void inline_speed 1706void inline_speed
1319time_update (EV_P_ ev_tstamp max_block) 1707time_update (EV_P_ ev_tstamp max_block)
1348 */ 1736 */
1349 for (i = 4; --i; ) 1737 for (i = 4; --i; )
1350 { 1738 {
1351 rtmn_diff = ev_rt_now - mn_now; 1739 rtmn_diff = ev_rt_now - mn_now;
1352 1740
1353 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1741 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1354 return; /* all is well */ 1742 return; /* all is well */
1355 1743
1356 ev_rt_now = ev_time (); 1744 ev_rt_now = ev_time ();
1357 mn_now = get_clock (); 1745 mn_now = get_clock ();
1358 now_floor = mn_now; 1746 now_floor = mn_now;
1374#if EV_PERIODIC_ENABLE 1762#if EV_PERIODIC_ENABLE
1375 periodics_reschedule (EV_A); 1763 periodics_reschedule (EV_A);
1376#endif 1764#endif
1377 /* adjust timers. this is easy, as the offset is the same for all of them */ 1765 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i) 1766 for (i = 0; i < timercnt; ++i)
1767 {
1768 ANHE *he = timers + i + HEAP0;
1379 ((WT)timers [i])->at += ev_rt_now - mn_now; 1769 ANHE_w (*he)->at += ev_rt_now - mn_now;
1770 ANHE_at_set (*he);
1771 }
1380 } 1772 }
1381 1773
1382 mn_now = ev_rt_now; 1774 mn_now = ev_rt_now;
1383 } 1775 }
1384} 1776}
1398static int loop_done; 1790static int loop_done;
1399 1791
1400void 1792void
1401ev_loop (EV_P_ int flags) 1793ev_loop (EV_P_ int flags)
1402{ 1794{
1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1795 loop_done = EVUNLOOP_CANCEL;
1404 ? EVUNLOOP_ONE
1405 : EVUNLOOP_CANCEL;
1406 1796
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1797 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1408 1798
1409 do 1799 do
1410 { 1800 {
1444 /* update fd-related kernel structures */ 1834 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 1835 fd_reify (EV_A);
1446 1836
1447 /* calculate blocking time */ 1837 /* calculate blocking time */
1448 { 1838 {
1449 ev_tstamp block; 1839 ev_tstamp waittime = 0.;
1840 ev_tstamp sleeptime = 0.;
1450 1841
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1842 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 1843 {
1455 /* update time to cancel out callback processing overhead */ 1844 /* update time to cancel out callback processing overhead */
1456 time_update (EV_A_ 1e100); 1845 time_update (EV_A_ 1e100);
1457 1846
1458 block = MAX_BLOCKTIME; 1847 waittime = MAX_BLOCKTIME;
1459 1848
1460 if (timercnt) 1849 if (timercnt)
1461 { 1850 {
1462 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1851 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1463 if (block > to) block = to; 1852 if (waittime > to) waittime = to;
1464 } 1853 }
1465 1854
1466#if EV_PERIODIC_ENABLE 1855#if EV_PERIODIC_ENABLE
1467 if (periodiccnt) 1856 if (periodiccnt)
1468 { 1857 {
1469 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1858 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1470 if (block > to) block = to; 1859 if (waittime > to) waittime = to;
1471 } 1860 }
1472#endif 1861#endif
1473 1862
1474 if (expect_false (block < 0.)) block = 0.; 1863 if (expect_false (waittime < timeout_blocktime))
1864 waittime = timeout_blocktime;
1865
1866 sleeptime = waittime - backend_fudge;
1867
1868 if (expect_true (sleeptime > io_blocktime))
1869 sleeptime = io_blocktime;
1870
1871 if (sleeptime)
1872 {
1873 ev_sleep (sleeptime);
1874 waittime -= sleeptime;
1875 }
1475 } 1876 }
1476 1877
1477 ++loop_count; 1878 ++loop_count;
1478 backend_poll (EV_A_ block); 1879 backend_poll (EV_A_ waittime);
1479 1880
1480 /* update ev_rt_now, do magic */ 1881 /* update ev_rt_now, do magic */
1481 time_update (EV_A_ block); 1882 time_update (EV_A_ waittime + sleeptime);
1482 } 1883 }
1483 1884
1484 /* queue pending timers and reschedule them */ 1885 /* queue pending timers and reschedule them */
1485 timers_reify (EV_A); /* relative timers called last */ 1886 timers_reify (EV_A); /* relative timers called last */
1486#if EV_PERIODIC_ENABLE 1887#if EV_PERIODIC_ENABLE
1495 /* queue check watchers, to be executed first */ 1896 /* queue check watchers, to be executed first */
1496 if (expect_false (checkcnt)) 1897 if (expect_false (checkcnt))
1497 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1898 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1498 1899
1499 call_pending (EV_A); 1900 call_pending (EV_A);
1500
1501 } 1901 }
1502 while (expect_true (activecnt && !loop_done)); 1902 while (expect_true (
1903 activecnt
1904 && !loop_done
1905 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1906 ));
1503 1907
1504 if (loop_done == EVUNLOOP_ONE) 1908 if (loop_done == EVUNLOOP_ONE)
1505 loop_done = EVUNLOOP_CANCEL; 1909 loop_done = EVUNLOOP_CANCEL;
1506} 1910}
1507 1911
1598 2002
1599 assert (("ev_io_start called with negative fd", fd >= 0)); 2003 assert (("ev_io_start called with negative fd", fd >= 0));
1600 2004
1601 ev_start (EV_A_ (W)w, 1); 2005 ev_start (EV_A_ (W)w, 1);
1602 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2006 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1603 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2007 wlist_add (&anfds[fd].head, (WL)w);
1604 2008
1605 fd_change (EV_A_ fd); 2009 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2010 w->events &= ~EV_IOFDSET;
1606} 2011}
1607 2012
1608void noinline 2013void noinline
1609ev_io_stop (EV_P_ ev_io *w) 2014ev_io_stop (EV_P_ ev_io *w)
1610{ 2015{
1611 clear_pending (EV_A_ (W)w); 2016 clear_pending (EV_A_ (W)w);
1612 if (expect_false (!ev_is_active (w))) 2017 if (expect_false (!ev_is_active (w)))
1613 return; 2018 return;
1614 2019
1615 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2020 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1616 2021
1617 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2022 wlist_del (&anfds[w->fd].head, (WL)w);
1618 ev_stop (EV_A_ (W)w); 2023 ev_stop (EV_A_ (W)w);
1619 2024
1620 fd_change (EV_A_ w->fd); 2025 fd_change (EV_A_ w->fd, 1);
1621} 2026}
1622 2027
1623void noinline 2028void noinline
1624ev_timer_start (EV_P_ ev_timer *w) 2029ev_timer_start (EV_P_ ev_timer *w)
1625{ 2030{
1626 if (expect_false (ev_is_active (w))) 2031 if (expect_false (ev_is_active (w)))
1627 return; 2032 return;
1628 2033
1629 ((WT)w)->at += mn_now; 2034 ev_at (w) += mn_now;
1630 2035
1631 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2036 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1632 2037
1633 ev_start (EV_A_ (W)w, ++timercnt); 2038 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1634 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2039 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1635 timers [timercnt - 1] = w; 2040 ANHE_w (timers [ev_active (w)]) = (WT)w;
1636 upheap ((WT *)timers, timercnt - 1); 2041 ANHE_at_set (timers [ev_active (w)]);
2042 upheap (timers, ev_active (w));
1637 2043
1638 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2044 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1639} 2045}
1640 2046
1641void noinline 2047void noinline
1642ev_timer_stop (EV_P_ ev_timer *w) 2048ev_timer_stop (EV_P_ ev_timer *w)
1643{ 2049{
1644 clear_pending (EV_A_ (W)w); 2050 clear_pending (EV_A_ (W)w);
1645 if (expect_false (!ev_is_active (w))) 2051 if (expect_false (!ev_is_active (w)))
1646 return; 2052 return;
1647 2053
1648 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1649
1650 { 2054 {
1651 int active = ((W)w)->active; 2055 int active = ev_active (w);
1652 2056
2057 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2058
1653 if (expect_true (--active < --timercnt)) 2059 if (expect_true (active < timercnt + HEAP0 - 1))
1654 { 2060 {
1655 timers [active] = timers [timercnt]; 2061 timers [active] = timers [timercnt + HEAP0 - 1];
1656 adjustheap ((WT *)timers, timercnt, active); 2062 adjustheap (timers, timercnt, active);
1657 } 2063 }
2064
2065 --timercnt;
1658 } 2066 }
1659 2067
1660 ((WT)w)->at -= mn_now; 2068 ev_at (w) -= mn_now;
1661 2069
1662 ev_stop (EV_A_ (W)w); 2070 ev_stop (EV_A_ (W)w);
1663} 2071}
1664 2072
1665void noinline 2073void noinline
1667{ 2075{
1668 if (ev_is_active (w)) 2076 if (ev_is_active (w))
1669 { 2077 {
1670 if (w->repeat) 2078 if (w->repeat)
1671 { 2079 {
1672 ((WT)w)->at = mn_now + w->repeat; 2080 ev_at (w) = mn_now + w->repeat;
2081 ANHE_at_set (timers [ev_active (w)]);
1673 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2082 adjustheap (timers, timercnt, ev_active (w));
1674 } 2083 }
1675 else 2084 else
1676 ev_timer_stop (EV_A_ w); 2085 ev_timer_stop (EV_A_ w);
1677 } 2086 }
1678 else if (w->repeat) 2087 else if (w->repeat)
1679 { 2088 {
1680 w->at = w->repeat; 2089 ev_at (w) = w->repeat;
1681 ev_timer_start (EV_A_ w); 2090 ev_timer_start (EV_A_ w);
1682 } 2091 }
1683} 2092}
1684 2093
1685#if EV_PERIODIC_ENABLE 2094#if EV_PERIODIC_ENABLE
1688{ 2097{
1689 if (expect_false (ev_is_active (w))) 2098 if (expect_false (ev_is_active (w)))
1690 return; 2099 return;
1691 2100
1692 if (w->reschedule_cb) 2101 if (w->reschedule_cb)
1693 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2102 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1694 else if (w->interval) 2103 else if (w->interval)
1695 { 2104 {
1696 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2105 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1697 /* this formula differs from the one in periodic_reify because we do not always round up */ 2106 /* this formula differs from the one in periodic_reify because we do not always round up */
1698 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2107 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1699 } 2108 }
1700 else 2109 else
1701 ((WT)w)->at = w->offset; 2110 ev_at (w) = w->offset;
1702 2111
1703 ev_start (EV_A_ (W)w, ++periodiccnt); 2112 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1704 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2113 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1705 periodics [periodiccnt - 1] = w; 2114 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1706 upheap ((WT *)periodics, periodiccnt - 1); 2115 ANHE_at_set (periodics [ev_active (w)]);
2116 upheap (periodics, ev_active (w));
1707 2117
1708 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2118 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1709} 2119}
1710 2120
1711void noinline 2121void noinline
1712ev_periodic_stop (EV_P_ ev_periodic *w) 2122ev_periodic_stop (EV_P_ ev_periodic *w)
1713{ 2123{
1714 clear_pending (EV_A_ (W)w); 2124 clear_pending (EV_A_ (W)w);
1715 if (expect_false (!ev_is_active (w))) 2125 if (expect_false (!ev_is_active (w)))
1716 return; 2126 return;
1717 2127
1718 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1719
1720 { 2128 {
1721 int active = ((W)w)->active; 2129 int active = ev_active (w);
1722 2130
2131 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2132
1723 if (expect_true (--active < --periodiccnt)) 2133 if (expect_true (active < periodiccnt + HEAP0 - 1))
1724 { 2134 {
1725 periodics [active] = periodics [periodiccnt]; 2135 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1726 adjustheap ((WT *)periodics, periodiccnt, active); 2136 adjustheap (periodics, periodiccnt, active);
1727 } 2137 }
2138
2139 --periodiccnt;
1728 } 2140 }
1729 2141
1730 ev_stop (EV_A_ (W)w); 2142 ev_stop (EV_A_ (W)w);
1731} 2143}
1732 2144
1752 if (expect_false (ev_is_active (w))) 2164 if (expect_false (ev_is_active (w)))
1753 return; 2165 return;
1754 2166
1755 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2167 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1756 2168
2169 evpipe_init (EV_A);
2170
2171 {
2172#ifndef _WIN32
2173 sigset_t full, prev;
2174 sigfillset (&full);
2175 sigprocmask (SIG_SETMASK, &full, &prev);
2176#endif
2177
2178 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2179
2180#ifndef _WIN32
2181 sigprocmask (SIG_SETMASK, &prev, 0);
2182#endif
2183 }
2184
1757 ev_start (EV_A_ (W)w, 1); 2185 ev_start (EV_A_ (W)w, 1);
1758 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1759 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2186 wlist_add (&signals [w->signum - 1].head, (WL)w);
1760 2187
1761 if (!((WL)w)->next) 2188 if (!((WL)w)->next)
1762 { 2189 {
1763#if _WIN32 2190#if _WIN32
1764 signal (w->signum, sighandler); 2191 signal (w->signum, ev_sighandler);
1765#else 2192#else
1766 struct sigaction sa; 2193 struct sigaction sa;
1767 sa.sa_handler = sighandler; 2194 sa.sa_handler = ev_sighandler;
1768 sigfillset (&sa.sa_mask); 2195 sigfillset (&sa.sa_mask);
1769 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2196 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1770 sigaction (w->signum, &sa, 0); 2197 sigaction (w->signum, &sa, 0);
1771#endif 2198#endif
1772 } 2199 }
1777{ 2204{
1778 clear_pending (EV_A_ (W)w); 2205 clear_pending (EV_A_ (W)w);
1779 if (expect_false (!ev_is_active (w))) 2206 if (expect_false (!ev_is_active (w)))
1780 return; 2207 return;
1781 2208
1782 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2209 wlist_del (&signals [w->signum - 1].head, (WL)w);
1783 ev_stop (EV_A_ (W)w); 2210 ev_stop (EV_A_ (W)w);
1784 2211
1785 if (!signals [w->signum - 1].head) 2212 if (!signals [w->signum - 1].head)
1786 signal (w->signum, SIG_DFL); 2213 signal (w->signum, SIG_DFL);
1787} 2214}
1794#endif 2221#endif
1795 if (expect_false (ev_is_active (w))) 2222 if (expect_false (ev_is_active (w)))
1796 return; 2223 return;
1797 2224
1798 ev_start (EV_A_ (W)w, 1); 2225 ev_start (EV_A_ (W)w, 1);
1799 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2226 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1800} 2227}
1801 2228
1802void 2229void
1803ev_child_stop (EV_P_ ev_child *w) 2230ev_child_stop (EV_P_ ev_child *w)
1804{ 2231{
1805 clear_pending (EV_A_ (W)w); 2232 clear_pending (EV_A_ (W)w);
1806 if (expect_false (!ev_is_active (w))) 2233 if (expect_false (!ev_is_active (w)))
1807 return; 2234 return;
1808 2235
1809 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2236 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1810 ev_stop (EV_A_ (W)w); 2237 ev_stop (EV_A_ (W)w);
1811} 2238}
1812 2239
1813#if EV_STAT_ENABLE 2240#if EV_STAT_ENABLE
1814 2241
1833 if (w->wd < 0) 2260 if (w->wd < 0)
1834 { 2261 {
1835 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2262 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1836 2263
1837 /* monitor some parent directory for speedup hints */ 2264 /* monitor some parent directory for speedup hints */
2265 /* note that exceeding the hardcoded limit is not a correctness issue, */
2266 /* but an efficiency issue only */
1838 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2267 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1839 { 2268 {
1840 char path [4096]; 2269 char path [4096];
1841 strcpy (path, w->path); 2270 strcpy (path, w->path);
1842 2271
2087 clear_pending (EV_A_ (W)w); 2516 clear_pending (EV_A_ (W)w);
2088 if (expect_false (!ev_is_active (w))) 2517 if (expect_false (!ev_is_active (w)))
2089 return; 2518 return;
2090 2519
2091 { 2520 {
2092 int active = ((W)w)->active; 2521 int active = ev_active (w);
2093 2522
2094 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2523 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2095 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2524 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2096 2525
2097 ev_stop (EV_A_ (W)w); 2526 ev_stop (EV_A_ (W)w);
2098 --idleall; 2527 --idleall;
2099 } 2528 }
2100} 2529}
2117 clear_pending (EV_A_ (W)w); 2546 clear_pending (EV_A_ (W)w);
2118 if (expect_false (!ev_is_active (w))) 2547 if (expect_false (!ev_is_active (w)))
2119 return; 2548 return;
2120 2549
2121 { 2550 {
2122 int active = ((W)w)->active; 2551 int active = ev_active (w);
2552
2123 prepares [active - 1] = prepares [--preparecnt]; 2553 prepares [active - 1] = prepares [--preparecnt];
2124 ((W)prepares [active - 1])->active = active; 2554 ev_active (prepares [active - 1]) = active;
2125 } 2555 }
2126 2556
2127 ev_stop (EV_A_ (W)w); 2557 ev_stop (EV_A_ (W)w);
2128} 2558}
2129 2559
2144 clear_pending (EV_A_ (W)w); 2574 clear_pending (EV_A_ (W)w);
2145 if (expect_false (!ev_is_active (w))) 2575 if (expect_false (!ev_is_active (w)))
2146 return; 2576 return;
2147 2577
2148 { 2578 {
2149 int active = ((W)w)->active; 2579 int active = ev_active (w);
2580
2150 checks [active - 1] = checks [--checkcnt]; 2581 checks [active - 1] = checks [--checkcnt];
2151 ((W)checks [active - 1])->active = active; 2582 ev_active (checks [active - 1]) = active;
2152 } 2583 }
2153 2584
2154 ev_stop (EV_A_ (W)w); 2585 ev_stop (EV_A_ (W)w);
2155} 2586}
2156 2587
2157#if EV_EMBED_ENABLE 2588#if EV_EMBED_ENABLE
2158void noinline 2589void noinline
2159ev_embed_sweep (EV_P_ ev_embed *w) 2590ev_embed_sweep (EV_P_ ev_embed *w)
2160{ 2591{
2161 ev_loop (w->loop, EVLOOP_NONBLOCK); 2592 ev_loop (w->other, EVLOOP_NONBLOCK);
2162} 2593}
2163 2594
2164static void 2595static void
2165embed_cb (EV_P_ ev_io *io, int revents) 2596embed_io_cb (EV_P_ ev_io *io, int revents)
2166{ 2597{
2167 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2598 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2168 2599
2169 if (ev_cb (w)) 2600 if (ev_cb (w))
2170 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2601 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2171 else 2602 else
2172 ev_embed_sweep (loop, w); 2603 ev_loop (w->other, EVLOOP_NONBLOCK);
2173} 2604}
2605
2606static void
2607embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2608{
2609 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2610
2611 {
2612 struct ev_loop *loop = w->other;
2613
2614 while (fdchangecnt)
2615 {
2616 fd_reify (EV_A);
2617 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2618 }
2619 }
2620}
2621
2622#if 0
2623static void
2624embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2625{
2626 ev_idle_stop (EV_A_ idle);
2627}
2628#endif
2174 2629
2175void 2630void
2176ev_embed_start (EV_P_ ev_embed *w) 2631ev_embed_start (EV_P_ ev_embed *w)
2177{ 2632{
2178 if (expect_false (ev_is_active (w))) 2633 if (expect_false (ev_is_active (w)))
2179 return; 2634 return;
2180 2635
2181 { 2636 {
2182 struct ev_loop *loop = w->loop; 2637 struct ev_loop *loop = w->other;
2183 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2638 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2184 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2639 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2185 } 2640 }
2186 2641
2187 ev_set_priority (&w->io, ev_priority (w)); 2642 ev_set_priority (&w->io, ev_priority (w));
2188 ev_io_start (EV_A_ &w->io); 2643 ev_io_start (EV_A_ &w->io);
2644
2645 ev_prepare_init (&w->prepare, embed_prepare_cb);
2646 ev_set_priority (&w->prepare, EV_MINPRI);
2647 ev_prepare_start (EV_A_ &w->prepare);
2648
2649 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2189 2650
2190 ev_start (EV_A_ (W)w, 1); 2651 ev_start (EV_A_ (W)w, 1);
2191} 2652}
2192 2653
2193void 2654void
2196 clear_pending (EV_A_ (W)w); 2657 clear_pending (EV_A_ (W)w);
2197 if (expect_false (!ev_is_active (w))) 2658 if (expect_false (!ev_is_active (w)))
2198 return; 2659 return;
2199 2660
2200 ev_io_stop (EV_A_ &w->io); 2661 ev_io_stop (EV_A_ &w->io);
2662 ev_prepare_stop (EV_A_ &w->prepare);
2201 2663
2202 ev_stop (EV_A_ (W)w); 2664 ev_stop (EV_A_ (W)w);
2203} 2665}
2204#endif 2666#endif
2205 2667
2221 clear_pending (EV_A_ (W)w); 2683 clear_pending (EV_A_ (W)w);
2222 if (expect_false (!ev_is_active (w))) 2684 if (expect_false (!ev_is_active (w)))
2223 return; 2685 return;
2224 2686
2225 { 2687 {
2226 int active = ((W)w)->active; 2688 int active = ev_active (w);
2689
2227 forks [active - 1] = forks [--forkcnt]; 2690 forks [active - 1] = forks [--forkcnt];
2228 ((W)forks [active - 1])->active = active; 2691 ev_active (forks [active - 1]) = active;
2229 } 2692 }
2230 2693
2231 ev_stop (EV_A_ (W)w); 2694 ev_stop (EV_A_ (W)w);
2695}
2696#endif
2697
2698#if EV_ASYNC_ENABLE
2699void
2700ev_async_start (EV_P_ ev_async *w)
2701{
2702 if (expect_false (ev_is_active (w)))
2703 return;
2704
2705 evpipe_init (EV_A);
2706
2707 ev_start (EV_A_ (W)w, ++asynccnt);
2708 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2709 asyncs [asynccnt - 1] = w;
2710}
2711
2712void
2713ev_async_stop (EV_P_ ev_async *w)
2714{
2715 clear_pending (EV_A_ (W)w);
2716 if (expect_false (!ev_is_active (w)))
2717 return;
2718
2719 {
2720 int active = ev_active (w);
2721
2722 asyncs [active - 1] = asyncs [--asynccnt];
2723 ev_active (asyncs [active - 1]) = active;
2724 }
2725
2726 ev_stop (EV_A_ (W)w);
2727}
2728
2729void
2730ev_async_send (EV_P_ ev_async *w)
2731{
2732 w->sent = 1;
2733 evpipe_write (EV_A_ &gotasync);
2232} 2734}
2233#endif 2735#endif
2234 2736
2235/*****************************************************************************/ 2737/*****************************************************************************/
2236 2738
2294 ev_timer_set (&once->to, timeout, 0.); 2796 ev_timer_set (&once->to, timeout, 0.);
2295 ev_timer_start (EV_A_ &once->to); 2797 ev_timer_start (EV_A_ &once->to);
2296 } 2798 }
2297} 2799}
2298 2800
2801#if EV_MULTIPLICITY
2802 #include "ev_wrap.h"
2803#endif
2804
2299#ifdef __cplusplus 2805#ifdef __cplusplus
2300} 2806}
2301#endif 2807#endif
2302 2808

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines