ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.179 by root, Tue Dec 11 21:04:40 2007 UTC vs.
Revision 1.252 by root, Thu May 22 03:43:32 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 259
197#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
200#endif 263#endif
202#ifndef CLOCK_REALTIME 265#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 266# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 267# define EV_USE_REALTIME 0
205#endif 268#endif
206 269
270#if !EV_STAT_ENABLE
271# undef EV_USE_INOTIFY
272# define EV_USE_INOTIFY 0
273#endif
274
275#if !EV_USE_NANOSLEEP
276# ifndef _WIN32
277# include <sys/select.h>
278# endif
279#endif
280
281#if EV_USE_INOTIFY
282# include <sys/inotify.h>
283#endif
284
207#if EV_SELECT_IS_WINSOCKET 285#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 286# include <winsock.h>
209#endif 287#endif
210 288
211#if !EV_STAT_ENABLE 289#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 290/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
291# include <stdint.h>
292# ifdef __cplusplus
293extern "C" {
213#endif 294# endif
214 295int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 296# ifdef __cplusplus
216# include <sys/inotify.h> 297}
298# endif
217#endif 299#endif
218 300
219/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
220 308
221/* 309/*
222 * This is used to avoid floating point rounding problems. 310 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 311 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 312 * to ensure progress, time-wise, even when rounding
230 318
231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 319#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 320#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 321/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
234 322
235#if __GNUC__ >= 3 323#if __GNUC__ >= 4
236# define expect(expr,value) __builtin_expect ((expr),(value)) 324# define expect(expr,value) __builtin_expect ((expr),(value))
237# define noinline __attribute__ ((noinline)) 325# define noinline __attribute__ ((noinline))
238#else 326#else
239# define expect(expr,value) (expr) 327# define expect(expr,value) (expr)
240# define noinline 328# define noinline
241# if __STDC_VERSION__ < 199901L 329# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
242# define inline 330# define inline
243# endif 331# endif
244#endif 332#endif
245 333
246#define expect_false(expr) expect ((expr) != 0, 0) 334#define expect_false(expr) expect ((expr) != 0, 0)
261 349
262typedef ev_watcher *W; 350typedef ev_watcher *W;
263typedef ev_watcher_list *WL; 351typedef ev_watcher_list *WL;
264typedef ev_watcher_time *WT; 352typedef ev_watcher_time *WT;
265 353
354#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at
356
357#if EV_USE_MONOTONIC
358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
359/* giving it a reasonably high chance of working on typical architetcures */
266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
361#endif
267 362
268#ifdef _WIN32 363#ifdef _WIN32
269# include "ev_win32.c" 364# include "ev_win32.c"
270#endif 365#endif
271 366
292 perror (msg); 387 perror (msg);
293 abort (); 388 abort ();
294 } 389 }
295} 390}
296 391
392static void *
393ev_realloc_emul (void *ptr, long size)
394{
395 /* some systems, notably openbsd and darwin, fail to properly
396 * implement realloc (x, 0) (as required by both ansi c-98 and
397 * the single unix specification, so work around them here.
398 */
399
400 if (size)
401 return realloc (ptr, size);
402
403 free (ptr);
404 return 0;
405}
406
297static void *(*alloc)(void *ptr, long size); 407static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
298 408
299void 409void
300ev_set_allocator (void *(*cb)(void *ptr, long size)) 410ev_set_allocator (void *(*cb)(void *ptr, long size))
301{ 411{
302 alloc = cb; 412 alloc = cb;
303} 413}
304 414
305inline_speed void * 415inline_speed void *
306ev_realloc (void *ptr, long size) 416ev_realloc (void *ptr, long size)
307{ 417{
308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 418 ptr = alloc (ptr, size);
309 419
310 if (!ptr && size) 420 if (!ptr && size)
311 { 421 {
312 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 422 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
313 abort (); 423 abort ();
336 W w; 446 W w;
337 int events; 447 int events;
338} ANPENDING; 448} ANPENDING;
339 449
340#if EV_USE_INOTIFY 450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
341typedef struct 452typedef struct
342{ 453{
343 WL head; 454 WL head;
344} ANFS; 455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
345#endif 474#endif
346 475
347#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
348 477
349 struct ev_loop 478 struct ev_loop
407{ 536{
408 return ev_rt_now; 537 return ev_rt_now;
409} 538}
410#endif 539#endif
411 540
541void
542ev_sleep (ev_tstamp delay)
543{
544 if (delay > 0.)
545 {
546#if EV_USE_NANOSLEEP
547 struct timespec ts;
548
549 ts.tv_sec = (time_t)delay;
550 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
551
552 nanosleep (&ts, 0);
553#elif defined(_WIN32)
554 Sleep ((unsigned long)(delay * 1e3));
555#else
556 struct timeval tv;
557
558 tv.tv_sec = (time_t)delay;
559 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
560
561 select (0, 0, 0, 0, &tv);
562#endif
563 }
564}
565
566/*****************************************************************************/
567
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569
412int inline_size 570int inline_size
413array_nextsize (int elem, int cur, int cnt) 571array_nextsize (int elem, int cur, int cnt)
414{ 572{
415 int ncur = cur + 1; 573 int ncur = cur + 1;
416 574
417 do 575 do
418 ncur <<= 1; 576 ncur <<= 1;
419 while (cnt > ncur); 577 while (cnt > ncur);
420 578
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096) 580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
423 { 581 {
424 ncur *= elem; 582 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
426 ncur = ncur - sizeof (void *) * 4; 584 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem; 585 ncur /= elem;
428 } 586 }
429 587
430 return ncur; 588 return ncur;
533 { 691 {
534 int fd = fdchanges [i]; 692 int fd = fdchanges [i];
535 ANFD *anfd = anfds + fd; 693 ANFD *anfd = anfds + fd;
536 ev_io *w; 694 ev_io *w;
537 695
538 int events = 0; 696 unsigned char events = 0;
539 697
540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 698 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
541 events |= w->events; 699 events |= (unsigned char)w->events;
542 700
543#if EV_SELECT_IS_WINSOCKET 701#if EV_SELECT_IS_WINSOCKET
544 if (events) 702 if (events)
545 { 703 {
546 unsigned long argp; 704 unsigned long argp;
705 #ifdef EV_FD_TO_WIN32_HANDLE
706 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
707 #else
547 anfd->handle = _get_osfhandle (fd); 708 anfd->handle = _get_osfhandle (fd);
709 #endif
548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 710 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
549 } 711 }
550#endif 712#endif
551 713
714 {
715 unsigned char o_events = anfd->events;
716 unsigned char o_reify = anfd->reify;
717
552 anfd->reify = 0; 718 anfd->reify = 0;
553
554 backend_modify (EV_A_ fd, anfd->events, events);
555 anfd->events = events; 719 anfd->events = events;
720
721 if (o_events != events || o_reify & EV_IOFDSET)
722 backend_modify (EV_A_ fd, o_events, events);
723 }
556 } 724 }
557 725
558 fdchangecnt = 0; 726 fdchangecnt = 0;
559} 727}
560 728
561void inline_size 729void inline_size
562fd_change (EV_P_ int fd) 730fd_change (EV_P_ int fd, int flags)
563{ 731{
564 if (expect_false (anfds [fd].reify)) 732 unsigned char reify = anfds [fd].reify;
565 return;
566
567 anfds [fd].reify = 1; 733 anfds [fd].reify |= flags;
568 734
735 if (expect_true (!reify))
736 {
569 ++fdchangecnt; 737 ++fdchangecnt;
570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 738 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
571 fdchanges [fdchangecnt - 1] = fd; 739 fdchanges [fdchangecnt - 1] = fd;
740 }
572} 741}
573 742
574void inline_speed 743void inline_speed
575fd_kill (EV_P_ int fd) 744fd_kill (EV_P_ int fd)
576{ 745{
627 796
628 for (fd = 0; fd < anfdmax; ++fd) 797 for (fd = 0; fd < anfdmax; ++fd)
629 if (anfds [fd].events) 798 if (anfds [fd].events)
630 { 799 {
631 anfds [fd].events = 0; 800 anfds [fd].events = 0;
632 fd_change (EV_A_ fd); 801 fd_change (EV_A_ fd, EV_IOFDSET | 1);
633 } 802 }
634} 803}
635 804
636/*****************************************************************************/ 805/*****************************************************************************/
637 806
807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
814 * at the moment we allow libev the luxury of two heaps,
815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
816 * which is more cache-efficient.
817 * the difference is about 5% with 50000+ watchers.
818 */
819#if EV_USE_4HEAP
820
821#define DHEAP 4
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
825
826/* away from the root */
638void inline_speed 827void inline_speed
639upheap (WT *heap, int k) 828downheap (ANHE *heap, int N, int k)
640{ 829{
641 WT w = heap [k]; 830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
642 832
643 while (k) 833 for (;;)
644 { 834 {
645 int p = (k - 1) >> 1; 835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
646 838
647 if (heap [p]->at <= w->at) 839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
841 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
648 break; 855 break;
649 856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
866 heap [k] = he;
867 ev_active (ANHE_w (he)) = k;
868}
869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
877void inline_speed
878downheap (ANHE *heap, int N, int k)
879{
880 ANHE he = heap [k];
881
882 for (;;)
883 {
884 int c = k << 1;
885
886 if (c > N + HEAP0 - 1)
887 break;
888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
895 heap [k] = heap [c];
896 ev_active (ANHE_w (heap [k])) = k;
897
898 k = c;
899 }
900
901 heap [k] = he;
902 ev_active (ANHE_w (he)) = k;
903}
904#endif
905
906/* towards the root */
907void inline_speed
908upheap (ANHE *heap, int k)
909{
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
650 heap [k] = heap [p]; 919 heap [k] = heap [p];
651 ((W)heap [k])->active = k + 1; 920 ev_active (ANHE_w (heap [k])) = k;
652 k = p; 921 k = p;
653 } 922 }
654 923
655 heap [k] = w; 924 heap [k] = he;
656 ((W)heap [k])->active = k + 1; 925 ev_active (ANHE_w (he)) = k;
657
658}
659
660void inline_speed
661downheap (WT *heap, int N, int k)
662{
663 WT w = heap [k];
664
665 for (;;)
666 {
667 int c = (k << 1) + 1;
668
669 if (c >= N)
670 break;
671
672 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
673 ? 1 : 0;
674
675 if (w->at <= heap [c]->at)
676 break;
677
678 heap [k] = heap [c];
679 ((W)heap [k])->active = k + 1;
680
681 k = c;
682 }
683
684 heap [k] = w;
685 ((W)heap [k])->active = k + 1;
686} 926}
687 927
688void inline_size 928void inline_size
689adjustheap (WT *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
690{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
691 upheap (heap, k); 932 upheap (heap, k);
933 else
692 downheap (heap, N, k); 934 downheap (heap, N, k);
935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
693} 947}
694 948
695/*****************************************************************************/ 949/*****************************************************************************/
696 950
697typedef struct 951typedef struct
698{ 952{
699 WL head; 953 WL head;
700 sig_atomic_t volatile gotsig; 954 EV_ATOMIC_T gotsig;
701} ANSIG; 955} ANSIG;
702 956
703static ANSIG *signals; 957static ANSIG *signals;
704static int signalmax; 958static int signalmax;
705 959
706static int sigpipe [2]; 960static EV_ATOMIC_T gotsig;
707static sig_atomic_t volatile gotsig;
708static ev_io sigev;
709 961
710void inline_size 962void inline_size
711signals_init (ANSIG *base, int count) 963signals_init (ANSIG *base, int count)
712{ 964{
713 while (count--) 965 while (count--)
717 969
718 ++base; 970 ++base;
719 } 971 }
720} 972}
721 973
722static void 974/*****************************************************************************/
723sighandler (int signum)
724{
725#if _WIN32
726 signal (signum, sighandler);
727#endif
728
729 signals [signum - 1].gotsig = 1;
730
731 if (!gotsig)
732 {
733 int old_errno = errno;
734 gotsig = 1;
735 write (sigpipe [1], &signum, 1);
736 errno = old_errno;
737 }
738}
739
740void noinline
741ev_feed_signal_event (EV_P_ int signum)
742{
743 WL w;
744
745#if EV_MULTIPLICITY
746 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
747#endif
748
749 --signum;
750
751 if (signum < 0 || signum >= signalmax)
752 return;
753
754 signals [signum].gotsig = 0;
755
756 for (w = signals [signum].head; w; w = w->next)
757 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
758}
759
760static void
761sigcb (EV_P_ ev_io *iow, int revents)
762{
763 int signum;
764
765 read (sigpipe [0], &revents, 1);
766 gotsig = 0;
767
768 for (signum = signalmax; signum--; )
769 if (signals [signum].gotsig)
770 ev_feed_signal_event (EV_A_ signum + 1);
771}
772 975
773void inline_speed 976void inline_speed
774fd_intern (int fd) 977fd_intern (int fd)
775{ 978{
776#ifdef _WIN32 979#ifdef _WIN32
781 fcntl (fd, F_SETFL, O_NONBLOCK); 984 fcntl (fd, F_SETFL, O_NONBLOCK);
782#endif 985#endif
783} 986}
784 987
785static void noinline 988static void noinline
786siginit (EV_P) 989evpipe_init (EV_P)
787{ 990{
991 if (!ev_is_active (&pipeev))
992 {
993#if EV_USE_EVENTFD
994 if ((evfd = eventfd (0, 0)) >= 0)
995 {
996 evpipe [0] = -1;
997 fd_intern (evfd);
998 ev_io_set (&pipeev, evfd, EV_READ);
999 }
1000 else
1001#endif
1002 {
1003 while (pipe (evpipe))
1004 syserr ("(libev) error creating signal/async pipe");
1005
788 fd_intern (sigpipe [0]); 1006 fd_intern (evpipe [0]);
789 fd_intern (sigpipe [1]); 1007 fd_intern (evpipe [1]);
1008 ev_io_set (&pipeev, evpipe [0], EV_READ);
1009 }
790 1010
791 ev_io_set (&sigev, sigpipe [0], EV_READ);
792 ev_io_start (EV_A_ &sigev); 1011 ev_io_start (EV_A_ &pipeev);
793 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1012 ev_unref (EV_A); /* watcher should not keep loop alive */
1013 }
1014}
1015
1016void inline_size
1017evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1018{
1019 if (!*flag)
1020 {
1021 int old_errno = errno; /* save errno because write might clobber it */
1022
1023 *flag = 1;
1024
1025#if EV_USE_EVENTFD
1026 if (evfd >= 0)
1027 {
1028 uint64_t counter = 1;
1029 write (evfd, &counter, sizeof (uint64_t));
1030 }
1031 else
1032#endif
1033 write (evpipe [1], &old_errno, 1);
1034
1035 errno = old_errno;
1036 }
1037}
1038
1039static void
1040pipecb (EV_P_ ev_io *iow, int revents)
1041{
1042#if EV_USE_EVENTFD
1043 if (evfd >= 0)
1044 {
1045 uint64_t counter;
1046 read (evfd, &counter, sizeof (uint64_t));
1047 }
1048 else
1049#endif
1050 {
1051 char dummy;
1052 read (evpipe [0], &dummy, 1);
1053 }
1054
1055 if (gotsig && ev_is_default_loop (EV_A))
1056 {
1057 int signum;
1058 gotsig = 0;
1059
1060 for (signum = signalmax; signum--; )
1061 if (signals [signum].gotsig)
1062 ev_feed_signal_event (EV_A_ signum + 1);
1063 }
1064
1065#if EV_ASYNC_ENABLE
1066 if (gotasync)
1067 {
1068 int i;
1069 gotasync = 0;
1070
1071 for (i = asynccnt; i--; )
1072 if (asyncs [i]->sent)
1073 {
1074 asyncs [i]->sent = 0;
1075 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1076 }
1077 }
1078#endif
794} 1079}
795 1080
796/*****************************************************************************/ 1081/*****************************************************************************/
797 1082
1083static void
1084ev_sighandler (int signum)
1085{
1086#if EV_MULTIPLICITY
1087 struct ev_loop *loop = &default_loop_struct;
1088#endif
1089
1090#if _WIN32
1091 signal (signum, ev_sighandler);
1092#endif
1093
1094 signals [signum - 1].gotsig = 1;
1095 evpipe_write (EV_A_ &gotsig);
1096}
1097
1098void noinline
1099ev_feed_signal_event (EV_P_ int signum)
1100{
1101 WL w;
1102
1103#if EV_MULTIPLICITY
1104 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1105#endif
1106
1107 --signum;
1108
1109 if (signum < 0 || signum >= signalmax)
1110 return;
1111
1112 signals [signum].gotsig = 0;
1113
1114 for (w = signals [signum].head; w; w = w->next)
1115 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1116}
1117
1118/*****************************************************************************/
1119
798static ev_child *childs [EV_PID_HASHSIZE]; 1120static WL childs [EV_PID_HASHSIZE];
799 1121
800#ifndef _WIN32 1122#ifndef _WIN32
801 1123
802static ev_signal childev; 1124static ev_signal childev;
803 1125
1126#ifndef WIFCONTINUED
1127# define WIFCONTINUED(status) 0
1128#endif
1129
804void inline_speed 1130void inline_speed
805child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1131child_reap (EV_P_ int chain, int pid, int status)
806{ 1132{
807 ev_child *w; 1133 ev_child *w;
1134 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
808 1135
809 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1136 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1137 {
810 if (w->pid == pid || !w->pid) 1138 if ((w->pid == pid || !w->pid)
1139 && (!traced || (w->flags & 1)))
811 { 1140 {
812 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1141 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
813 w->rpid = pid; 1142 w->rpid = pid;
814 w->rstatus = status; 1143 w->rstatus = status;
815 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1144 ev_feed_event (EV_A_ (W)w, EV_CHILD);
816 } 1145 }
1146 }
817} 1147}
818 1148
819#ifndef WCONTINUED 1149#ifndef WCONTINUED
820# define WCONTINUED 0 1150# define WCONTINUED 0
821#endif 1151#endif
830 if (!WCONTINUED 1160 if (!WCONTINUED
831 || errno != EINVAL 1161 || errno != EINVAL
832 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1162 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
833 return; 1163 return;
834 1164
835 /* make sure we are called again until all childs have been reaped */ 1165 /* make sure we are called again until all children have been reaped */
836 /* we need to do it this way so that the callback gets called before we continue */ 1166 /* we need to do it this way so that the callback gets called before we continue */
837 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1167 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
838 1168
839 child_reap (EV_A_ sw, pid, pid, status); 1169 child_reap (EV_A_ pid, pid, status);
840 if (EV_PID_HASHSIZE > 1) 1170 if (EV_PID_HASHSIZE > 1)
841 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1171 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
842} 1172}
843 1173
844#endif 1174#endif
845 1175
846/*****************************************************************************/ 1176/*****************************************************************************/
918} 1248}
919 1249
920unsigned int 1250unsigned int
921ev_embeddable_backends (void) 1251ev_embeddable_backends (void)
922{ 1252{
923 return EVBACKEND_EPOLL 1253 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
924 | EVBACKEND_KQUEUE 1254
925 | EVBACKEND_PORT; 1255 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1256 /* please fix it and tell me how to detect the fix */
1257 flags &= ~EVBACKEND_EPOLL;
1258
1259 return flags;
926} 1260}
927 1261
928unsigned int 1262unsigned int
929ev_backend (EV_P) 1263ev_backend (EV_P)
930{ 1264{
933 1267
934unsigned int 1268unsigned int
935ev_loop_count (EV_P) 1269ev_loop_count (EV_P)
936{ 1270{
937 return loop_count; 1271 return loop_count;
1272}
1273
1274void
1275ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1276{
1277 io_blocktime = interval;
1278}
1279
1280void
1281ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1282{
1283 timeout_blocktime = interval;
938} 1284}
939 1285
940static void noinline 1286static void noinline
941loop_init (EV_P_ unsigned int flags) 1287loop_init (EV_P_ unsigned int flags)
942{ 1288{
948 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1294 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
949 have_monotonic = 1; 1295 have_monotonic = 1;
950 } 1296 }
951#endif 1297#endif
952 1298
953 ev_rt_now = ev_time (); 1299 ev_rt_now = ev_time ();
954 mn_now = get_clock (); 1300 mn_now = get_clock ();
955 now_floor = mn_now; 1301 now_floor = mn_now;
956 rtmn_diff = ev_rt_now - mn_now; 1302 rtmn_diff = ev_rt_now - mn_now;
1303
1304 io_blocktime = 0.;
1305 timeout_blocktime = 0.;
1306 backend = 0;
1307 backend_fd = -1;
1308 gotasync = 0;
1309#if EV_USE_INOTIFY
1310 fs_fd = -2;
1311#endif
957 1312
958 /* pid check not overridable via env */ 1313 /* pid check not overridable via env */
959#ifndef _WIN32 1314#ifndef _WIN32
960 if (flags & EVFLAG_FORKCHECK) 1315 if (flags & EVFLAG_FORKCHECK)
961 curpid = getpid (); 1316 curpid = getpid ();
964 if (!(flags & EVFLAG_NOENV) 1319 if (!(flags & EVFLAG_NOENV)
965 && !enable_secure () 1320 && !enable_secure ()
966 && getenv ("LIBEV_FLAGS")) 1321 && getenv ("LIBEV_FLAGS"))
967 flags = atoi (getenv ("LIBEV_FLAGS")); 1322 flags = atoi (getenv ("LIBEV_FLAGS"));
968 1323
969 if (!(flags & 0x0000ffffUL)) 1324 if (!(flags & 0x0000ffffU))
970 flags |= ev_recommended_backends (); 1325 flags |= ev_recommended_backends ();
971
972 backend = 0;
973 backend_fd = -1;
974#if EV_USE_INOTIFY
975 fs_fd = -2;
976#endif
977 1326
978#if EV_USE_PORT 1327#if EV_USE_PORT
979 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1328 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
980#endif 1329#endif
981#if EV_USE_KQUEUE 1330#if EV_USE_KQUEUE
989#endif 1338#endif
990#if EV_USE_SELECT 1339#if EV_USE_SELECT
991 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
992#endif 1341#endif
993 1342
994 ev_init (&sigev, sigcb); 1343 ev_init (&pipeev, pipecb);
995 ev_set_priority (&sigev, EV_MAXPRI); 1344 ev_set_priority (&pipeev, EV_MAXPRI);
996 } 1345 }
997} 1346}
998 1347
999static void noinline 1348static void noinline
1000loop_destroy (EV_P) 1349loop_destroy (EV_P)
1001{ 1350{
1002 int i; 1351 int i;
1352
1353 if (ev_is_active (&pipeev))
1354 {
1355 ev_ref (EV_A); /* signal watcher */
1356 ev_io_stop (EV_A_ &pipeev);
1357
1358#if EV_USE_EVENTFD
1359 if (evfd >= 0)
1360 close (evfd);
1361#endif
1362
1363 if (evpipe [0] >= 0)
1364 {
1365 close (evpipe [0]);
1366 close (evpipe [1]);
1367 }
1368 }
1003 1369
1004#if EV_USE_INOTIFY 1370#if EV_USE_INOTIFY
1005 if (fs_fd >= 0) 1371 if (fs_fd >= 0)
1006 close (fs_fd); 1372 close (fs_fd);
1007#endif 1373#endif
1030 array_free (pending, [i]); 1396 array_free (pending, [i]);
1031#if EV_IDLE_ENABLE 1397#if EV_IDLE_ENABLE
1032 array_free (idle, [i]); 1398 array_free (idle, [i]);
1033#endif 1399#endif
1034 } 1400 }
1401
1402 ev_free (anfds); anfdmax = 0;
1035 1403
1036 /* have to use the microsoft-never-gets-it-right macro */ 1404 /* have to use the microsoft-never-gets-it-right macro */
1037 array_free (fdchange, EMPTY); 1405 array_free (fdchange, EMPTY);
1038 array_free (timer, EMPTY); 1406 array_free (timer, EMPTY);
1039#if EV_PERIODIC_ENABLE 1407#if EV_PERIODIC_ENABLE
1040 array_free (periodic, EMPTY); 1408 array_free (periodic, EMPTY);
1041#endif 1409#endif
1410#if EV_FORK_ENABLE
1411 array_free (fork, EMPTY);
1412#endif
1042 array_free (prepare, EMPTY); 1413 array_free (prepare, EMPTY);
1043 array_free (check, EMPTY); 1414 array_free (check, EMPTY);
1415#if EV_ASYNC_ENABLE
1416 array_free (async, EMPTY);
1417#endif
1044 1418
1045 backend = 0; 1419 backend = 0;
1046} 1420}
1047 1421
1422#if EV_USE_INOTIFY
1048void inline_size infy_fork (EV_P); 1423void inline_size infy_fork (EV_P);
1424#endif
1049 1425
1050void inline_size 1426void inline_size
1051loop_fork (EV_P) 1427loop_fork (EV_P)
1052{ 1428{
1053#if EV_USE_PORT 1429#if EV_USE_PORT
1061#endif 1437#endif
1062#if EV_USE_INOTIFY 1438#if EV_USE_INOTIFY
1063 infy_fork (EV_A); 1439 infy_fork (EV_A);
1064#endif 1440#endif
1065 1441
1066 if (ev_is_active (&sigev)) 1442 if (ev_is_active (&pipeev))
1067 { 1443 {
1068 /* default loop */ 1444 /* this "locks" the handlers against writing to the pipe */
1445 /* while we modify the fd vars */
1446 gotsig = 1;
1447#if EV_ASYNC_ENABLE
1448 gotasync = 1;
1449#endif
1069 1450
1070 ev_ref (EV_A); 1451 ev_ref (EV_A);
1071 ev_io_stop (EV_A_ &sigev); 1452 ev_io_stop (EV_A_ &pipeev);
1453
1454#if EV_USE_EVENTFD
1455 if (evfd >= 0)
1456 close (evfd);
1457#endif
1458
1459 if (evpipe [0] >= 0)
1460 {
1072 close (sigpipe [0]); 1461 close (evpipe [0]);
1073 close (sigpipe [1]); 1462 close (evpipe [1]);
1463 }
1074 1464
1075 while (pipe (sigpipe))
1076 syserr ("(libev) error creating pipe");
1077
1078 siginit (EV_A); 1465 evpipe_init (EV_A);
1466 /* now iterate over everything, in case we missed something */
1467 pipecb (EV_A_ &pipeev, EV_READ);
1079 } 1468 }
1080 1469
1081 postfork = 0; 1470 postfork = 0;
1082} 1471}
1083 1472
1084#if EV_MULTIPLICITY 1473#if EV_MULTIPLICITY
1474
1085struct ev_loop * 1475struct ev_loop *
1086ev_loop_new (unsigned int flags) 1476ev_loop_new (unsigned int flags)
1087{ 1477{
1088 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1089 1479
1105} 1495}
1106 1496
1107void 1497void
1108ev_loop_fork (EV_P) 1498ev_loop_fork (EV_P)
1109{ 1499{
1110 postfork = 1; 1500 postfork = 1; /* must be in line with ev_default_fork */
1111} 1501}
1112 1502
1503#if EV_VERIFY
1504void noinline
1505verify_watcher (EV_P_ W w)
1506{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508
1509 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511}
1512
1513static void noinline
1514verify_heap (EV_P_ ANHE *heap, int N)
1515{
1516 int i;
1517
1518 for (i = HEAP0; i < N + HEAP0; ++i)
1519 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 }
1526}
1527
1528static void noinline
1529array_verify (EV_P_ W *ws, int cnt)
1530{
1531 while (cnt--)
1532 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]);
1535 }
1536}
1537#endif
1538
1539void
1540ev_loop_verify (EV_P)
1541{
1542#if EV_VERIFY
1543 int i;
1544 WL w;
1545
1546 assert (activecnt >= -1);
1547
1548 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1551
1552 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i)
1554 for (w = anfds [i].head; w; w = w->next)
1555 {
1556 verify_watcher (EV_A_ (W)w);
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 }
1560
1561 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt);
1563
1564#if EV_PERIODIC_ENABLE
1565 assert (periodicmax >= periodiccnt);
1566 verify_heap (EV_A_ periodics, periodiccnt);
1567#endif
1568
1569 for (i = NUMPRI; i--; )
1570 {
1571 assert (pendingmax [i] >= pendingcnt [i]);
1572#if EV_IDLE_ENABLE
1573 assert (idleall >= 0);
1574 assert (idlemax [i] >= idlecnt [i]);
1575 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1576#endif
1577 }
1578
1579#if EV_FORK_ENABLE
1580 assert (forkmax >= forkcnt);
1581 array_verify (EV_A_ (W *)forks, forkcnt);
1582#endif
1583
1584#if EV_ASYNC_ENABLE
1585 assert (asyncmax >= asynccnt);
1586 array_verify (EV_A_ (W *)asyncs, asynccnt);
1587#endif
1588
1589 assert (preparemax >= preparecnt);
1590 array_verify (EV_A_ (W *)prepares, preparecnt);
1591
1592 assert (checkmax >= checkcnt);
1593 array_verify (EV_A_ (W *)checks, checkcnt);
1594
1595# if 0
1596 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1597 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1113#endif 1598# endif
1599#endif
1600}
1601
1602#endif /* multiplicity */
1114 1603
1115#if EV_MULTIPLICITY 1604#if EV_MULTIPLICITY
1116struct ev_loop * 1605struct ev_loop *
1117ev_default_loop_init (unsigned int flags) 1606ev_default_loop_init (unsigned int flags)
1118#else 1607#else
1119int 1608int
1120ev_default_loop (unsigned int flags) 1609ev_default_loop (unsigned int flags)
1121#endif 1610#endif
1122{ 1611{
1123 if (sigpipe [0] == sigpipe [1])
1124 if (pipe (sigpipe))
1125 return 0;
1126
1127 if (!ev_default_loop_ptr) 1612 if (!ev_default_loop_ptr)
1128 { 1613 {
1129#if EV_MULTIPLICITY 1614#if EV_MULTIPLICITY
1130 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1615 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1131#else 1616#else
1134 1619
1135 loop_init (EV_A_ flags); 1620 loop_init (EV_A_ flags);
1136 1621
1137 if (ev_backend (EV_A)) 1622 if (ev_backend (EV_A))
1138 { 1623 {
1139 siginit (EV_A);
1140
1141#ifndef _WIN32 1624#ifndef _WIN32
1142 ev_signal_init (&childev, childcb, SIGCHLD); 1625 ev_signal_init (&childev, childcb, SIGCHLD);
1143 ev_set_priority (&childev, EV_MAXPRI); 1626 ev_set_priority (&childev, EV_MAXPRI);
1144 ev_signal_start (EV_A_ &childev); 1627 ev_signal_start (EV_A_ &childev);
1145 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1628 ev_unref (EV_A); /* child watcher should not keep loop alive */
1162#ifndef _WIN32 1645#ifndef _WIN32
1163 ev_ref (EV_A); /* child watcher */ 1646 ev_ref (EV_A); /* child watcher */
1164 ev_signal_stop (EV_A_ &childev); 1647 ev_signal_stop (EV_A_ &childev);
1165#endif 1648#endif
1166 1649
1167 ev_ref (EV_A); /* signal watcher */
1168 ev_io_stop (EV_A_ &sigev);
1169
1170 close (sigpipe [0]); sigpipe [0] = 0;
1171 close (sigpipe [1]); sigpipe [1] = 0;
1172
1173 loop_destroy (EV_A); 1650 loop_destroy (EV_A);
1174} 1651}
1175 1652
1176void 1653void
1177ev_default_fork (void) 1654ev_default_fork (void)
1179#if EV_MULTIPLICITY 1656#if EV_MULTIPLICITY
1180 struct ev_loop *loop = ev_default_loop_ptr; 1657 struct ev_loop *loop = ev_default_loop_ptr;
1181#endif 1658#endif
1182 1659
1183 if (backend) 1660 if (backend)
1184 postfork = 1; 1661 postfork = 1; /* must be in line with ev_loop_fork */
1185} 1662}
1186 1663
1187/*****************************************************************************/ 1664/*****************************************************************************/
1188 1665
1189void 1666void
1206 { 1683 {
1207 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1684 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1208 1685
1209 p->w->pending = 0; 1686 p->w->pending = 0;
1210 EV_CB_INVOKE (p->w, p->events); 1687 EV_CB_INVOKE (p->w, p->events);
1688 EV_FREQUENT_CHECK;
1211 } 1689 }
1212 } 1690 }
1213} 1691}
1214
1215void inline_size
1216timers_reify (EV_P)
1217{
1218 while (timercnt && ((WT)timers [0])->at <= mn_now)
1219 {
1220 ev_timer *w = timers [0];
1221
1222 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1223
1224 /* first reschedule or stop timer */
1225 if (w->repeat)
1226 {
1227 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1228
1229 ((WT)w)->at += w->repeat;
1230 if (((WT)w)->at < mn_now)
1231 ((WT)w)->at = mn_now;
1232
1233 downheap ((WT *)timers, timercnt, 0);
1234 }
1235 else
1236 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1237
1238 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1239 }
1240}
1241
1242#if EV_PERIODIC_ENABLE
1243void inline_size
1244periodics_reify (EV_P)
1245{
1246 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1247 {
1248 ev_periodic *w = periodics [0];
1249
1250 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1251
1252 /* first reschedule or stop timer */
1253 if (w->reschedule_cb)
1254 {
1255 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1256 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1257 downheap ((WT *)periodics, periodiccnt, 0);
1258 }
1259 else if (w->interval)
1260 {
1261 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1262 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1263 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1264 downheap ((WT *)periodics, periodiccnt, 0);
1265 }
1266 else
1267 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1268
1269 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1270 }
1271}
1272
1273static void noinline
1274periodics_reschedule (EV_P)
1275{
1276 int i;
1277
1278 /* adjust periodics after time jump */
1279 for (i = 0; i < periodiccnt; ++i)
1280 {
1281 ev_periodic *w = periodics [i];
1282
1283 if (w->reschedule_cb)
1284 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1285 else if (w->interval)
1286 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1287 }
1288
1289 /* now rebuild the heap */
1290 for (i = periodiccnt >> 1; i--; )
1291 downheap ((WT *)periodics, periodiccnt, i);
1292}
1293#endif
1294 1692
1295#if EV_IDLE_ENABLE 1693#if EV_IDLE_ENABLE
1296void inline_size 1694void inline_size
1297idle_reify (EV_P) 1695idle_reify (EV_P)
1298{ 1696{
1310 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1708 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1311 break; 1709 break;
1312 } 1710 }
1313 } 1711 }
1314 } 1712 }
1713}
1714#endif
1715
1716void inline_size
1717timers_reify (EV_P)
1718{
1719 EV_FREQUENT_CHECK;
1720
1721 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1722 {
1723 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1724
1725 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1726
1727 /* first reschedule or stop timer */
1728 if (w->repeat)
1729 {
1730 ev_at (w) += w->repeat;
1731 if (ev_at (w) < mn_now)
1732 ev_at (w) = mn_now;
1733
1734 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1735
1736 ANHE_at_cache (timers [HEAP0]);
1737 downheap (timers, timercnt, HEAP0);
1738 }
1739 else
1740 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1741
1742 EV_FREQUENT_CHECK;
1743 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1744 }
1745}
1746
1747#if EV_PERIODIC_ENABLE
1748void inline_size
1749periodics_reify (EV_P)
1750{
1751 EV_FREQUENT_CHECK;
1752
1753 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1754 {
1755 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1756
1757 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1758
1759 /* first reschedule or stop timer */
1760 if (w->reschedule_cb)
1761 {
1762 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1763
1764 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1765
1766 ANHE_at_cache (periodics [HEAP0]);
1767 downheap (periodics, periodiccnt, HEAP0);
1768 }
1769 else if (w->interval)
1770 {
1771 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1772 /* if next trigger time is not sufficiently in the future, put it there */
1773 /* this might happen because of floating point inexactness */
1774 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1775 {
1776 ev_at (w) += w->interval;
1777
1778 /* if interval is unreasonably low we might still have a time in the past */
1779 /* so correct this. this will make the periodic very inexact, but the user */
1780 /* has effectively asked to get triggered more often than possible */
1781 if (ev_at (w) < ev_rt_now)
1782 ev_at (w) = ev_rt_now;
1783 }
1784
1785 ANHE_at_cache (periodics [HEAP0]);
1786 downheap (periodics, periodiccnt, HEAP0);
1787 }
1788 else
1789 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1790
1791 EV_FREQUENT_CHECK;
1792 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1793 }
1794}
1795
1796static void noinline
1797periodics_reschedule (EV_P)
1798{
1799 int i;
1800
1801 /* adjust periodics after time jump */
1802 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1803 {
1804 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1805
1806 if (w->reschedule_cb)
1807 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1808 else if (w->interval)
1809 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1810
1811 ANHE_at_cache (periodics [i]);
1812 }
1813
1814 reheap (periodics, periodiccnt);
1315} 1815}
1316#endif 1816#endif
1317 1817
1318void inline_speed 1818void inline_speed
1319time_update (EV_P_ ev_tstamp max_block) 1819time_update (EV_P_ ev_tstamp max_block)
1348 */ 1848 */
1349 for (i = 4; --i; ) 1849 for (i = 4; --i; )
1350 { 1850 {
1351 rtmn_diff = ev_rt_now - mn_now; 1851 rtmn_diff = ev_rt_now - mn_now;
1352 1852
1353 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1853 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1354 return; /* all is well */ 1854 return; /* all is well */
1355 1855
1356 ev_rt_now = ev_time (); 1856 ev_rt_now = ev_time ();
1357 mn_now = get_clock (); 1857 mn_now = get_clock ();
1358 now_floor = mn_now; 1858 now_floor = mn_now;
1374#if EV_PERIODIC_ENABLE 1874#if EV_PERIODIC_ENABLE
1375 periodics_reschedule (EV_A); 1875 periodics_reschedule (EV_A);
1376#endif 1876#endif
1377 /* adjust timers. this is easy, as the offset is the same for all of them */ 1877 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i) 1878 for (i = 0; i < timercnt; ++i)
1879 {
1880 ANHE *he = timers + i + HEAP0;
1379 ((WT)timers [i])->at += ev_rt_now - mn_now; 1881 ANHE_w (*he)->at += ev_rt_now - mn_now;
1882 ANHE_at_cache (*he);
1883 }
1380 } 1884 }
1381 1885
1382 mn_now = ev_rt_now; 1886 mn_now = ev_rt_now;
1383 } 1887 }
1384} 1888}
1398static int loop_done; 1902static int loop_done;
1399 1903
1400void 1904void
1401ev_loop (EV_P_ int flags) 1905ev_loop (EV_P_ int flags)
1402{ 1906{
1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1907 loop_done = EVUNLOOP_CANCEL;
1404 ? EVUNLOOP_ONE
1405 : EVUNLOOP_CANCEL;
1406 1908
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1909 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1408 1910
1409 do 1911 do
1410 { 1912 {
1913#if EV_VERIFY >= 2
1914 ev_loop_verify (EV_A);
1915#endif
1916
1411#ifndef _WIN32 1917#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */ 1918 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid)) 1919 if (expect_false (getpid () != curpid))
1414 { 1920 {
1415 curpid = getpid (); 1921 curpid = getpid ();
1444 /* update fd-related kernel structures */ 1950 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 1951 fd_reify (EV_A);
1446 1952
1447 /* calculate blocking time */ 1953 /* calculate blocking time */
1448 { 1954 {
1449 ev_tstamp block; 1955 ev_tstamp waittime = 0.;
1956 ev_tstamp sleeptime = 0.;
1450 1957
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1958 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 1959 {
1455 /* update time to cancel out callback processing overhead */ 1960 /* update time to cancel out callback processing overhead */
1456 time_update (EV_A_ 1e100); 1961 time_update (EV_A_ 1e100);
1457 1962
1458 block = MAX_BLOCKTIME; 1963 waittime = MAX_BLOCKTIME;
1459 1964
1460 if (timercnt) 1965 if (timercnt)
1461 { 1966 {
1462 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1967 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1463 if (block > to) block = to; 1968 if (waittime > to) waittime = to;
1464 } 1969 }
1465 1970
1466#if EV_PERIODIC_ENABLE 1971#if EV_PERIODIC_ENABLE
1467 if (periodiccnt) 1972 if (periodiccnt)
1468 { 1973 {
1469 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1974 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1470 if (block > to) block = to; 1975 if (waittime > to) waittime = to;
1471 } 1976 }
1472#endif 1977#endif
1473 1978
1474 if (expect_false (block < 0.)) block = 0.; 1979 if (expect_false (waittime < timeout_blocktime))
1980 waittime = timeout_blocktime;
1981
1982 sleeptime = waittime - backend_fudge;
1983
1984 if (expect_true (sleeptime > io_blocktime))
1985 sleeptime = io_blocktime;
1986
1987 if (sleeptime)
1988 {
1989 ev_sleep (sleeptime);
1990 waittime -= sleeptime;
1991 }
1475 } 1992 }
1476 1993
1477 ++loop_count; 1994 ++loop_count;
1478 backend_poll (EV_A_ block); 1995 backend_poll (EV_A_ waittime);
1479 1996
1480 /* update ev_rt_now, do magic */ 1997 /* update ev_rt_now, do magic */
1481 time_update (EV_A_ block); 1998 time_update (EV_A_ waittime + sleeptime);
1482 } 1999 }
1483 2000
1484 /* queue pending timers and reschedule them */ 2001 /* queue pending timers and reschedule them */
1485 timers_reify (EV_A); /* relative timers called last */ 2002 timers_reify (EV_A); /* relative timers called last */
1486#if EV_PERIODIC_ENABLE 2003#if EV_PERIODIC_ENABLE
1495 /* queue check watchers, to be executed first */ 2012 /* queue check watchers, to be executed first */
1496 if (expect_false (checkcnt)) 2013 if (expect_false (checkcnt))
1497 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2014 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1498 2015
1499 call_pending (EV_A); 2016 call_pending (EV_A);
1500
1501 } 2017 }
1502 while (expect_true (activecnt && !loop_done)); 2018 while (expect_true (
2019 activecnt
2020 && !loop_done
2021 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2022 ));
1503 2023
1504 if (loop_done == EVUNLOOP_ONE) 2024 if (loop_done == EVUNLOOP_ONE)
1505 loop_done = EVUNLOOP_CANCEL; 2025 loop_done = EVUNLOOP_CANCEL;
1506} 2026}
1507 2027
1596 if (expect_false (ev_is_active (w))) 2116 if (expect_false (ev_is_active (w)))
1597 return; 2117 return;
1598 2118
1599 assert (("ev_io_start called with negative fd", fd >= 0)); 2119 assert (("ev_io_start called with negative fd", fd >= 0));
1600 2120
2121 EV_FREQUENT_CHECK;
2122
1601 ev_start (EV_A_ (W)w, 1); 2123 ev_start (EV_A_ (W)w, 1);
1602 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2124 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1603 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2125 wlist_add (&anfds[fd].head, (WL)w);
1604 2126
1605 fd_change (EV_A_ fd); 2127 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2128 w->events &= ~EV_IOFDSET;
2129
2130 EV_FREQUENT_CHECK;
1606} 2131}
1607 2132
1608void noinline 2133void noinline
1609ev_io_stop (EV_P_ ev_io *w) 2134ev_io_stop (EV_P_ ev_io *w)
1610{ 2135{
1611 clear_pending (EV_A_ (W)w); 2136 clear_pending (EV_A_ (W)w);
1612 if (expect_false (!ev_is_active (w))) 2137 if (expect_false (!ev_is_active (w)))
1613 return; 2138 return;
1614 2139
1615 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2140 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1616 2141
2142 EV_FREQUENT_CHECK;
2143
1617 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2144 wlist_del (&anfds[w->fd].head, (WL)w);
1618 ev_stop (EV_A_ (W)w); 2145 ev_stop (EV_A_ (W)w);
1619 2146
1620 fd_change (EV_A_ w->fd); 2147 fd_change (EV_A_ w->fd, 1);
2148
2149 EV_FREQUENT_CHECK;
1621} 2150}
1622 2151
1623void noinline 2152void noinline
1624ev_timer_start (EV_P_ ev_timer *w) 2153ev_timer_start (EV_P_ ev_timer *w)
1625{ 2154{
1626 if (expect_false (ev_is_active (w))) 2155 if (expect_false (ev_is_active (w)))
1627 return; 2156 return;
1628 2157
1629 ((WT)w)->at += mn_now; 2158 ev_at (w) += mn_now;
1630 2159
1631 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2160 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1632 2161
2162 EV_FREQUENT_CHECK;
2163
2164 ++timercnt;
1633 ev_start (EV_A_ (W)w, ++timercnt); 2165 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1634 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2166 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1635 timers [timercnt - 1] = w; 2167 ANHE_w (timers [ev_active (w)]) = (WT)w;
1636 upheap ((WT *)timers, timercnt - 1); 2168 ANHE_at_cache (timers [ev_active (w)]);
2169 upheap (timers, ev_active (w));
1637 2170
2171 EV_FREQUENT_CHECK;
2172
1638 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2173 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1639} 2174}
1640 2175
1641void noinline 2176void noinline
1642ev_timer_stop (EV_P_ ev_timer *w) 2177ev_timer_stop (EV_P_ ev_timer *w)
1643{ 2178{
1644 clear_pending (EV_A_ (W)w); 2179 clear_pending (EV_A_ (W)w);
1645 if (expect_false (!ev_is_active (w))) 2180 if (expect_false (!ev_is_active (w)))
1646 return; 2181 return;
1647 2182
1648 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2183 EV_FREQUENT_CHECK;
1649 2184
1650 { 2185 {
1651 int active = ((W)w)->active; 2186 int active = ev_active (w);
1652 2187
2188 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2189
2190 --timercnt;
2191
1653 if (expect_true (--active < --timercnt)) 2192 if (expect_true (active < timercnt + HEAP0))
1654 { 2193 {
1655 timers [active] = timers [timercnt]; 2194 timers [active] = timers [timercnt + HEAP0];
1656 adjustheap ((WT *)timers, timercnt, active); 2195 adjustheap (timers, timercnt, active);
1657 } 2196 }
1658 } 2197 }
1659 2198
1660 ((WT)w)->at -= mn_now; 2199 EV_FREQUENT_CHECK;
2200
2201 ev_at (w) -= mn_now;
1661 2202
1662 ev_stop (EV_A_ (W)w); 2203 ev_stop (EV_A_ (W)w);
1663} 2204}
1664 2205
1665void noinline 2206void noinline
1666ev_timer_again (EV_P_ ev_timer *w) 2207ev_timer_again (EV_P_ ev_timer *w)
1667{ 2208{
2209 EV_FREQUENT_CHECK;
2210
1668 if (ev_is_active (w)) 2211 if (ev_is_active (w))
1669 { 2212 {
1670 if (w->repeat) 2213 if (w->repeat)
1671 { 2214 {
1672 ((WT)w)->at = mn_now + w->repeat; 2215 ev_at (w) = mn_now + w->repeat;
2216 ANHE_at_cache (timers [ev_active (w)]);
1673 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2217 adjustheap (timers, timercnt, ev_active (w));
1674 } 2218 }
1675 else 2219 else
1676 ev_timer_stop (EV_A_ w); 2220 ev_timer_stop (EV_A_ w);
1677 } 2221 }
1678 else if (w->repeat) 2222 else if (w->repeat)
1679 { 2223 {
1680 w->at = w->repeat; 2224 ev_at (w) = w->repeat;
1681 ev_timer_start (EV_A_ w); 2225 ev_timer_start (EV_A_ w);
1682 } 2226 }
2227
2228 EV_FREQUENT_CHECK;
1683} 2229}
1684 2230
1685#if EV_PERIODIC_ENABLE 2231#if EV_PERIODIC_ENABLE
1686void noinline 2232void noinline
1687ev_periodic_start (EV_P_ ev_periodic *w) 2233ev_periodic_start (EV_P_ ev_periodic *w)
1688{ 2234{
1689 if (expect_false (ev_is_active (w))) 2235 if (expect_false (ev_is_active (w)))
1690 return; 2236 return;
1691 2237
1692 if (w->reschedule_cb) 2238 if (w->reschedule_cb)
1693 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2239 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1694 else if (w->interval) 2240 else if (w->interval)
1695 { 2241 {
1696 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2242 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1697 /* this formula differs from the one in periodic_reify because we do not always round up */ 2243 /* this formula differs from the one in periodic_reify because we do not always round up */
1698 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2244 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1699 } 2245 }
1700 else 2246 else
1701 ((WT)w)->at = w->offset; 2247 ev_at (w) = w->offset;
1702 2248
2249 EV_FREQUENT_CHECK;
2250
2251 ++periodiccnt;
1703 ev_start (EV_A_ (W)w, ++periodiccnt); 2252 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1704 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2253 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1705 periodics [periodiccnt - 1] = w; 2254 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1706 upheap ((WT *)periodics, periodiccnt - 1); 2255 ANHE_at_cache (periodics [ev_active (w)]);
2256 upheap (periodics, ev_active (w));
1707 2257
2258 EV_FREQUENT_CHECK;
2259
1708 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2260 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1709} 2261}
1710 2262
1711void noinline 2263void noinline
1712ev_periodic_stop (EV_P_ ev_periodic *w) 2264ev_periodic_stop (EV_P_ ev_periodic *w)
1713{ 2265{
1714 clear_pending (EV_A_ (W)w); 2266 clear_pending (EV_A_ (W)w);
1715 if (expect_false (!ev_is_active (w))) 2267 if (expect_false (!ev_is_active (w)))
1716 return; 2268 return;
1717 2269
1718 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2270 EV_FREQUENT_CHECK;
1719 2271
1720 { 2272 {
1721 int active = ((W)w)->active; 2273 int active = ev_active (w);
1722 2274
2275 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2276
2277 --periodiccnt;
2278
1723 if (expect_true (--active < --periodiccnt)) 2279 if (expect_true (active < periodiccnt + HEAP0))
1724 { 2280 {
1725 periodics [active] = periodics [periodiccnt]; 2281 periodics [active] = periodics [periodiccnt + HEAP0];
1726 adjustheap ((WT *)periodics, periodiccnt, active); 2282 adjustheap (periodics, periodiccnt, active);
1727 } 2283 }
1728 } 2284 }
2285
2286 EV_FREQUENT_CHECK;
1729 2287
1730 ev_stop (EV_A_ (W)w); 2288 ev_stop (EV_A_ (W)w);
1731} 2289}
1732 2290
1733void noinline 2291void noinline
1752 if (expect_false (ev_is_active (w))) 2310 if (expect_false (ev_is_active (w)))
1753 return; 2311 return;
1754 2312
1755 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2313 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1756 2314
2315 evpipe_init (EV_A);
2316
2317 EV_FREQUENT_CHECK;
2318
2319 {
2320#ifndef _WIN32
2321 sigset_t full, prev;
2322 sigfillset (&full);
2323 sigprocmask (SIG_SETMASK, &full, &prev);
2324#endif
2325
2326 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2327
2328#ifndef _WIN32
2329 sigprocmask (SIG_SETMASK, &prev, 0);
2330#endif
2331 }
2332
1757 ev_start (EV_A_ (W)w, 1); 2333 ev_start (EV_A_ (W)w, 1);
1758 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1759 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2334 wlist_add (&signals [w->signum - 1].head, (WL)w);
1760 2335
1761 if (!((WL)w)->next) 2336 if (!((WL)w)->next)
1762 { 2337 {
1763#if _WIN32 2338#if _WIN32
1764 signal (w->signum, sighandler); 2339 signal (w->signum, ev_sighandler);
1765#else 2340#else
1766 struct sigaction sa; 2341 struct sigaction sa;
1767 sa.sa_handler = sighandler; 2342 sa.sa_handler = ev_sighandler;
1768 sigfillset (&sa.sa_mask); 2343 sigfillset (&sa.sa_mask);
1769 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2344 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1770 sigaction (w->signum, &sa, 0); 2345 sigaction (w->signum, &sa, 0);
1771#endif 2346#endif
1772 } 2347 }
2348
2349 EV_FREQUENT_CHECK;
1773} 2350}
1774 2351
1775void noinline 2352void noinline
1776ev_signal_stop (EV_P_ ev_signal *w) 2353ev_signal_stop (EV_P_ ev_signal *w)
1777{ 2354{
1778 clear_pending (EV_A_ (W)w); 2355 clear_pending (EV_A_ (W)w);
1779 if (expect_false (!ev_is_active (w))) 2356 if (expect_false (!ev_is_active (w)))
1780 return; 2357 return;
1781 2358
2359 EV_FREQUENT_CHECK;
2360
1782 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2361 wlist_del (&signals [w->signum - 1].head, (WL)w);
1783 ev_stop (EV_A_ (W)w); 2362 ev_stop (EV_A_ (W)w);
1784 2363
1785 if (!signals [w->signum - 1].head) 2364 if (!signals [w->signum - 1].head)
1786 signal (w->signum, SIG_DFL); 2365 signal (w->signum, SIG_DFL);
2366
2367 EV_FREQUENT_CHECK;
1787} 2368}
1788 2369
1789void 2370void
1790ev_child_start (EV_P_ ev_child *w) 2371ev_child_start (EV_P_ ev_child *w)
1791{ 2372{
1793 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2374 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1794#endif 2375#endif
1795 if (expect_false (ev_is_active (w))) 2376 if (expect_false (ev_is_active (w)))
1796 return; 2377 return;
1797 2378
2379 EV_FREQUENT_CHECK;
2380
1798 ev_start (EV_A_ (W)w, 1); 2381 ev_start (EV_A_ (W)w, 1);
1799 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2382 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2383
2384 EV_FREQUENT_CHECK;
1800} 2385}
1801 2386
1802void 2387void
1803ev_child_stop (EV_P_ ev_child *w) 2388ev_child_stop (EV_P_ ev_child *w)
1804{ 2389{
1805 clear_pending (EV_A_ (W)w); 2390 clear_pending (EV_A_ (W)w);
1806 if (expect_false (!ev_is_active (w))) 2391 if (expect_false (!ev_is_active (w)))
1807 return; 2392 return;
1808 2393
2394 EV_FREQUENT_CHECK;
2395
1809 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2396 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1810 ev_stop (EV_A_ (W)w); 2397 ev_stop (EV_A_ (W)w);
2398
2399 EV_FREQUENT_CHECK;
1811} 2400}
1812 2401
1813#if EV_STAT_ENABLE 2402#if EV_STAT_ENABLE
1814 2403
1815# ifdef _WIN32 2404# ifdef _WIN32
1833 if (w->wd < 0) 2422 if (w->wd < 0)
1834 { 2423 {
1835 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2424 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1836 2425
1837 /* monitor some parent directory for speedup hints */ 2426 /* monitor some parent directory for speedup hints */
2427 /* note that exceeding the hardcoded limit is not a correctness issue, */
2428 /* but an efficiency issue only */
1838 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2429 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1839 { 2430 {
1840 char path [4096]; 2431 char path [4096];
1841 strcpy (path, w->path); 2432 strcpy (path, w->path);
1842 2433
2041 else 2632 else
2042#endif 2633#endif
2043 ev_timer_start (EV_A_ &w->timer); 2634 ev_timer_start (EV_A_ &w->timer);
2044 2635
2045 ev_start (EV_A_ (W)w, 1); 2636 ev_start (EV_A_ (W)w, 1);
2637
2638 EV_FREQUENT_CHECK;
2046} 2639}
2047 2640
2048void 2641void
2049ev_stat_stop (EV_P_ ev_stat *w) 2642ev_stat_stop (EV_P_ ev_stat *w)
2050{ 2643{
2051 clear_pending (EV_A_ (W)w); 2644 clear_pending (EV_A_ (W)w);
2052 if (expect_false (!ev_is_active (w))) 2645 if (expect_false (!ev_is_active (w)))
2053 return; 2646 return;
2054 2647
2648 EV_FREQUENT_CHECK;
2649
2055#if EV_USE_INOTIFY 2650#if EV_USE_INOTIFY
2056 infy_del (EV_A_ w); 2651 infy_del (EV_A_ w);
2057#endif 2652#endif
2058 ev_timer_stop (EV_A_ &w->timer); 2653 ev_timer_stop (EV_A_ &w->timer);
2059 2654
2060 ev_stop (EV_A_ (W)w); 2655 ev_stop (EV_A_ (W)w);
2656
2657 EV_FREQUENT_CHECK;
2061} 2658}
2062#endif 2659#endif
2063 2660
2064#if EV_IDLE_ENABLE 2661#if EV_IDLE_ENABLE
2065void 2662void
2067{ 2664{
2068 if (expect_false (ev_is_active (w))) 2665 if (expect_false (ev_is_active (w)))
2069 return; 2666 return;
2070 2667
2071 pri_adjust (EV_A_ (W)w); 2668 pri_adjust (EV_A_ (W)w);
2669
2670 EV_FREQUENT_CHECK;
2072 2671
2073 { 2672 {
2074 int active = ++idlecnt [ABSPRI (w)]; 2673 int active = ++idlecnt [ABSPRI (w)];
2075 2674
2076 ++idleall; 2675 ++idleall;
2077 ev_start (EV_A_ (W)w, active); 2676 ev_start (EV_A_ (W)w, active);
2078 2677
2079 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2678 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2080 idles [ABSPRI (w)][active - 1] = w; 2679 idles [ABSPRI (w)][active - 1] = w;
2081 } 2680 }
2681
2682 EV_FREQUENT_CHECK;
2082} 2683}
2083 2684
2084void 2685void
2085ev_idle_stop (EV_P_ ev_idle *w) 2686ev_idle_stop (EV_P_ ev_idle *w)
2086{ 2687{
2087 clear_pending (EV_A_ (W)w); 2688 clear_pending (EV_A_ (W)w);
2088 if (expect_false (!ev_is_active (w))) 2689 if (expect_false (!ev_is_active (w)))
2089 return; 2690 return;
2090 2691
2692 EV_FREQUENT_CHECK;
2693
2091 { 2694 {
2092 int active = ((W)w)->active; 2695 int active = ev_active (w);
2093 2696
2094 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2697 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2095 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2698 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2096 2699
2097 ev_stop (EV_A_ (W)w); 2700 ev_stop (EV_A_ (W)w);
2098 --idleall; 2701 --idleall;
2099 } 2702 }
2703
2704 EV_FREQUENT_CHECK;
2100} 2705}
2101#endif 2706#endif
2102 2707
2103void 2708void
2104ev_prepare_start (EV_P_ ev_prepare *w) 2709ev_prepare_start (EV_P_ ev_prepare *w)
2105{ 2710{
2106 if (expect_false (ev_is_active (w))) 2711 if (expect_false (ev_is_active (w)))
2107 return; 2712 return;
2713
2714 EV_FREQUENT_CHECK;
2108 2715
2109 ev_start (EV_A_ (W)w, ++preparecnt); 2716 ev_start (EV_A_ (W)w, ++preparecnt);
2110 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2717 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2111 prepares [preparecnt - 1] = w; 2718 prepares [preparecnt - 1] = w;
2719
2720 EV_FREQUENT_CHECK;
2112} 2721}
2113 2722
2114void 2723void
2115ev_prepare_stop (EV_P_ ev_prepare *w) 2724ev_prepare_stop (EV_P_ ev_prepare *w)
2116{ 2725{
2117 clear_pending (EV_A_ (W)w); 2726 clear_pending (EV_A_ (W)w);
2118 if (expect_false (!ev_is_active (w))) 2727 if (expect_false (!ev_is_active (w)))
2119 return; 2728 return;
2120 2729
2730 EV_FREQUENT_CHECK;
2731
2121 { 2732 {
2122 int active = ((W)w)->active; 2733 int active = ev_active (w);
2734
2123 prepares [active - 1] = prepares [--preparecnt]; 2735 prepares [active - 1] = prepares [--preparecnt];
2124 ((W)prepares [active - 1])->active = active; 2736 ev_active (prepares [active - 1]) = active;
2125 } 2737 }
2126 2738
2127 ev_stop (EV_A_ (W)w); 2739 ev_stop (EV_A_ (W)w);
2740
2741 EV_FREQUENT_CHECK;
2128} 2742}
2129 2743
2130void 2744void
2131ev_check_start (EV_P_ ev_check *w) 2745ev_check_start (EV_P_ ev_check *w)
2132{ 2746{
2133 if (expect_false (ev_is_active (w))) 2747 if (expect_false (ev_is_active (w)))
2134 return; 2748 return;
2749
2750 EV_FREQUENT_CHECK;
2135 2751
2136 ev_start (EV_A_ (W)w, ++checkcnt); 2752 ev_start (EV_A_ (W)w, ++checkcnt);
2137 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2753 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2138 checks [checkcnt - 1] = w; 2754 checks [checkcnt - 1] = w;
2755
2756 EV_FREQUENT_CHECK;
2139} 2757}
2140 2758
2141void 2759void
2142ev_check_stop (EV_P_ ev_check *w) 2760ev_check_stop (EV_P_ ev_check *w)
2143{ 2761{
2144 clear_pending (EV_A_ (W)w); 2762 clear_pending (EV_A_ (W)w);
2145 if (expect_false (!ev_is_active (w))) 2763 if (expect_false (!ev_is_active (w)))
2146 return; 2764 return;
2147 2765
2766 EV_FREQUENT_CHECK;
2767
2148 { 2768 {
2149 int active = ((W)w)->active; 2769 int active = ev_active (w);
2770
2150 checks [active - 1] = checks [--checkcnt]; 2771 checks [active - 1] = checks [--checkcnt];
2151 ((W)checks [active - 1])->active = active; 2772 ev_active (checks [active - 1]) = active;
2152 } 2773 }
2153 2774
2154 ev_stop (EV_A_ (W)w); 2775 ev_stop (EV_A_ (W)w);
2776
2777 EV_FREQUENT_CHECK;
2155} 2778}
2156 2779
2157#if EV_EMBED_ENABLE 2780#if EV_EMBED_ENABLE
2158void noinline 2781void noinline
2159ev_embed_sweep (EV_P_ ev_embed *w) 2782ev_embed_sweep (EV_P_ ev_embed *w)
2160{ 2783{
2161 ev_loop (w->loop, EVLOOP_NONBLOCK); 2784 ev_loop (w->other, EVLOOP_NONBLOCK);
2162} 2785}
2163 2786
2164static void 2787static void
2165embed_cb (EV_P_ ev_io *io, int revents) 2788embed_io_cb (EV_P_ ev_io *io, int revents)
2166{ 2789{
2167 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2790 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2168 2791
2169 if (ev_cb (w)) 2792 if (ev_cb (w))
2170 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2793 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2171 else 2794 else
2172 ev_embed_sweep (loop, w); 2795 ev_loop (w->other, EVLOOP_NONBLOCK);
2173} 2796}
2797
2798static void
2799embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2800{
2801 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2802
2803 {
2804 struct ev_loop *loop = w->other;
2805
2806 while (fdchangecnt)
2807 {
2808 fd_reify (EV_A);
2809 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2810 }
2811 }
2812}
2813
2814#if 0
2815static void
2816embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2817{
2818 ev_idle_stop (EV_A_ idle);
2819}
2820#endif
2174 2821
2175void 2822void
2176ev_embed_start (EV_P_ ev_embed *w) 2823ev_embed_start (EV_P_ ev_embed *w)
2177{ 2824{
2178 if (expect_false (ev_is_active (w))) 2825 if (expect_false (ev_is_active (w)))
2179 return; 2826 return;
2180 2827
2181 { 2828 {
2182 struct ev_loop *loop = w->loop; 2829 struct ev_loop *loop = w->other;
2183 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2830 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2184 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2831 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2185 } 2832 }
2833
2834 EV_FREQUENT_CHECK;
2186 2835
2187 ev_set_priority (&w->io, ev_priority (w)); 2836 ev_set_priority (&w->io, ev_priority (w));
2188 ev_io_start (EV_A_ &w->io); 2837 ev_io_start (EV_A_ &w->io);
2189 2838
2839 ev_prepare_init (&w->prepare, embed_prepare_cb);
2840 ev_set_priority (&w->prepare, EV_MINPRI);
2841 ev_prepare_start (EV_A_ &w->prepare);
2842
2843 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2844
2190 ev_start (EV_A_ (W)w, 1); 2845 ev_start (EV_A_ (W)w, 1);
2846
2847 EV_FREQUENT_CHECK;
2191} 2848}
2192 2849
2193void 2850void
2194ev_embed_stop (EV_P_ ev_embed *w) 2851ev_embed_stop (EV_P_ ev_embed *w)
2195{ 2852{
2196 clear_pending (EV_A_ (W)w); 2853 clear_pending (EV_A_ (W)w);
2197 if (expect_false (!ev_is_active (w))) 2854 if (expect_false (!ev_is_active (w)))
2198 return; 2855 return;
2199 2856
2857 EV_FREQUENT_CHECK;
2858
2200 ev_io_stop (EV_A_ &w->io); 2859 ev_io_stop (EV_A_ &w->io);
2860 ev_prepare_stop (EV_A_ &w->prepare);
2201 2861
2202 ev_stop (EV_A_ (W)w); 2862 ev_stop (EV_A_ (W)w);
2863
2864 EV_FREQUENT_CHECK;
2203} 2865}
2204#endif 2866#endif
2205 2867
2206#if EV_FORK_ENABLE 2868#if EV_FORK_ENABLE
2207void 2869void
2208ev_fork_start (EV_P_ ev_fork *w) 2870ev_fork_start (EV_P_ ev_fork *w)
2209{ 2871{
2210 if (expect_false (ev_is_active (w))) 2872 if (expect_false (ev_is_active (w)))
2211 return; 2873 return;
2874
2875 EV_FREQUENT_CHECK;
2212 2876
2213 ev_start (EV_A_ (W)w, ++forkcnt); 2877 ev_start (EV_A_ (W)w, ++forkcnt);
2214 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2878 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2215 forks [forkcnt - 1] = w; 2879 forks [forkcnt - 1] = w;
2880
2881 EV_FREQUENT_CHECK;
2216} 2882}
2217 2883
2218void 2884void
2219ev_fork_stop (EV_P_ ev_fork *w) 2885ev_fork_stop (EV_P_ ev_fork *w)
2220{ 2886{
2221 clear_pending (EV_A_ (W)w); 2887 clear_pending (EV_A_ (W)w);
2222 if (expect_false (!ev_is_active (w))) 2888 if (expect_false (!ev_is_active (w)))
2223 return; 2889 return;
2224 2890
2891 EV_FREQUENT_CHECK;
2892
2225 { 2893 {
2226 int active = ((W)w)->active; 2894 int active = ev_active (w);
2895
2227 forks [active - 1] = forks [--forkcnt]; 2896 forks [active - 1] = forks [--forkcnt];
2228 ((W)forks [active - 1])->active = active; 2897 ev_active (forks [active - 1]) = active;
2229 } 2898 }
2230 2899
2231 ev_stop (EV_A_ (W)w); 2900 ev_stop (EV_A_ (W)w);
2901
2902 EV_FREQUENT_CHECK;
2903}
2904#endif
2905
2906#if EV_ASYNC_ENABLE
2907void
2908ev_async_start (EV_P_ ev_async *w)
2909{
2910 if (expect_false (ev_is_active (w)))
2911 return;
2912
2913 evpipe_init (EV_A);
2914
2915 EV_FREQUENT_CHECK;
2916
2917 ev_start (EV_A_ (W)w, ++asynccnt);
2918 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2919 asyncs [asynccnt - 1] = w;
2920
2921 EV_FREQUENT_CHECK;
2922}
2923
2924void
2925ev_async_stop (EV_P_ ev_async *w)
2926{
2927 clear_pending (EV_A_ (W)w);
2928 if (expect_false (!ev_is_active (w)))
2929 return;
2930
2931 EV_FREQUENT_CHECK;
2932
2933 {
2934 int active = ev_active (w);
2935
2936 asyncs [active - 1] = asyncs [--asynccnt];
2937 ev_active (asyncs [active - 1]) = active;
2938 }
2939
2940 ev_stop (EV_A_ (W)w);
2941
2942 EV_FREQUENT_CHECK;
2943}
2944
2945void
2946ev_async_send (EV_P_ ev_async *w)
2947{
2948 w->sent = 1;
2949 evpipe_write (EV_A_ &gotasync);
2232} 2950}
2233#endif 2951#endif
2234 2952
2235/*****************************************************************************/ 2953/*****************************************************************************/
2236 2954
2294 ev_timer_set (&once->to, timeout, 0.); 3012 ev_timer_set (&once->to, timeout, 0.);
2295 ev_timer_start (EV_A_ &once->to); 3013 ev_timer_start (EV_A_ &once->to);
2296 } 3014 }
2297} 3015}
2298 3016
3017#if EV_MULTIPLICITY
3018 #include "ev_wrap.h"
3019#endif
3020
2299#ifdef __cplusplus 3021#ifdef __cplusplus
2300} 3022}
2301#endif 3023#endif
2302 3024

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines