ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.179 by root, Tue Dec 11 21:04:40 2007 UTC vs.
Revision 1.316 by root, Fri Sep 18 21:02:12 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
41# endif 50# endif
42 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
43# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
44# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
45# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
46# endif 69# endif
47# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
48# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
49# endif 72# endif
50# else 73# else
51# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
53# endif 76# endif
54# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
56# endif 79# endif
57# endif 80# endif
58 81
82# ifndef EV_USE_NANOSLEEP
83# if HAVE_NANOSLEEP
84# define EV_USE_NANOSLEEP 1
85# else
86# define EV_USE_NANOSLEEP 0
87# endif
88# endif
89
59# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
61# define EV_USE_SELECT 1 92# define EV_USE_SELECT 1
62# else 93# else
63# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
102# else 133# else
103# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
104# endif 135# endif
105# endif 136# endif
106 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
146# ifndef EV_USE_EVENTFD
147# if HAVE_EVENTFD
148# define EV_USE_EVENTFD 1
149# else
150# define EV_USE_EVENTFD 0
151# endif
152# endif
153
107#endif 154#endif
108 155
109#include <math.h> 156#include <math.h>
110#include <stdlib.h> 157#include <stdlib.h>
111#include <fcntl.h> 158#include <fcntl.h>
129#ifndef _WIN32 176#ifndef _WIN32
130# include <sys/time.h> 177# include <sys/time.h>
131# include <sys/wait.h> 178# include <sys/wait.h>
132# include <unistd.h> 179# include <unistd.h>
133#else 180#else
181# include <io.h>
134# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
135# include <windows.h> 183# include <windows.h>
136# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
138# endif 186# endif
139#endif 187#endif
140 188
141/**/ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
190
191/* try to deduce the maximum number of signals on this platform */
192#if defined (EV_NSIG)
193/* use what's provided */
194#elif defined (NSIG)
195# define EV_NSIG (NSIG)
196#elif defined(_NSIG)
197# define EV_NSIG (_NSIG)
198#elif defined (SIGMAX)
199# define EV_NSIG (SIGMAX+1)
200#elif defined (SIG_MAX)
201# define EV_NSIG (SIG_MAX+1)
202#elif defined (_SIG_MAX)
203# define EV_NSIG (_SIG_MAX+1)
204#elif defined (MAXSIG)
205# define EV_NSIG (MAXSIG+1)
206#elif defined (MAX_SIG)
207# define EV_NSIG (MAX_SIG+1)
208#elif defined (SIGARRAYSIZE)
209# define EV_NSIG SIGARRAYSIZE /* Assume ary[SIGARRAYSIZE] */
210#elif defined (_sys_nsig)
211# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
212#else
213# error "unable to find value for NSIG, please report"
214/* to make it compile regardless, just remove the above line */
215# define EV_NSIG 65
216#endif
217
218#ifndef EV_USE_CLOCK_SYSCALL
219# if __linux && __GLIBC__ >= 2
220# define EV_USE_CLOCK_SYSCALL 1
221# else
222# define EV_USE_CLOCK_SYSCALL 0
223# endif
224#endif
142 225
143#ifndef EV_USE_MONOTONIC 226#ifndef EV_USE_MONOTONIC
227# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
228# define EV_USE_MONOTONIC 1
229# else
144# define EV_USE_MONOTONIC 0 230# define EV_USE_MONOTONIC 0
231# endif
145#endif 232#endif
146 233
147#ifndef EV_USE_REALTIME 234#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 235# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
236#endif
237
238#ifndef EV_USE_NANOSLEEP
239# if _POSIX_C_SOURCE >= 199309L
240# define EV_USE_NANOSLEEP 1
241# else
242# define EV_USE_NANOSLEEP 0
243# endif
149#endif 244#endif
150 245
151#ifndef EV_USE_SELECT 246#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 247# define EV_USE_SELECT 1
153#endif 248#endif
159# define EV_USE_POLL 1 254# define EV_USE_POLL 1
160# endif 255# endif
161#endif 256#endif
162 257
163#ifndef EV_USE_EPOLL 258#ifndef EV_USE_EPOLL
259# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
260# define EV_USE_EPOLL 1
261# else
164# define EV_USE_EPOLL 0 262# define EV_USE_EPOLL 0
263# endif
165#endif 264#endif
166 265
167#ifndef EV_USE_KQUEUE 266#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 267# define EV_USE_KQUEUE 0
169#endif 268#endif
171#ifndef EV_USE_PORT 270#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 271# define EV_USE_PORT 0
173#endif 272#endif
174 273
175#ifndef EV_USE_INOTIFY 274#ifndef EV_USE_INOTIFY
275# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
276# define EV_USE_INOTIFY 1
277# else
176# define EV_USE_INOTIFY 0 278# define EV_USE_INOTIFY 0
279# endif
177#endif 280#endif
178 281
179#ifndef EV_PID_HASHSIZE 282#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 283# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 284# define EV_PID_HASHSIZE 1
190# else 293# else
191# define EV_INOTIFY_HASHSIZE 16 294# define EV_INOTIFY_HASHSIZE 16
192# endif 295# endif
193#endif 296#endif
194 297
195/**/ 298#ifndef EV_USE_EVENTFD
299# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
300# define EV_USE_EVENTFD 1
301# else
302# define EV_USE_EVENTFD 0
303# endif
304#endif
305
306#ifndef EV_USE_SIGNALFD
307# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
308# define EV_USE_SIGNALFD 1
309# else
310# define EV_USE_SIGNALFD 0
311# endif
312#endif
313
314#if 0 /* debugging */
315# define EV_VERIFY 3
316# define EV_USE_4HEAP 1
317# define EV_HEAP_CACHE_AT 1
318#endif
319
320#ifndef EV_VERIFY
321# define EV_VERIFY !EV_MINIMAL
322#endif
323
324#ifndef EV_USE_4HEAP
325# define EV_USE_4HEAP !EV_MINIMAL
326#endif
327
328#ifndef EV_HEAP_CACHE_AT
329# define EV_HEAP_CACHE_AT !EV_MINIMAL
330#endif
331
332/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
333/* which makes programs even slower. might work on other unices, too. */
334#if EV_USE_CLOCK_SYSCALL
335# include <syscall.h>
336# ifdef SYS_clock_gettime
337# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
338# undef EV_USE_MONOTONIC
339# define EV_USE_MONOTONIC 1
340# else
341# undef EV_USE_CLOCK_SYSCALL
342# define EV_USE_CLOCK_SYSCALL 0
343# endif
344#endif
345
346/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 347
197#ifndef CLOCK_MONOTONIC 348#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 349# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 350# define EV_USE_MONOTONIC 0
200#endif 351#endif
202#ifndef CLOCK_REALTIME 353#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 354# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 355# define EV_USE_REALTIME 0
205#endif 356#endif
206 357
358#if !EV_STAT_ENABLE
359# undef EV_USE_INOTIFY
360# define EV_USE_INOTIFY 0
361#endif
362
363#if !EV_USE_NANOSLEEP
364# ifndef _WIN32
365# include <sys/select.h>
366# endif
367#endif
368
369#if EV_USE_INOTIFY
370# include <sys/utsname.h>
371# include <sys/statfs.h>
372# include <sys/inotify.h>
373/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
374# ifndef IN_DONT_FOLLOW
375# undef EV_USE_INOTIFY
376# define EV_USE_INOTIFY 0
377# endif
378#endif
379
207#if EV_SELECT_IS_WINSOCKET 380#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 381# include <winsock.h>
209#endif 382#endif
210 383
211#if !EV_STAT_ENABLE 384#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 385/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
386# include <stdint.h>
387# ifndef EFD_NONBLOCK
388# define EFD_NONBLOCK O_NONBLOCK
213#endif 389# endif
214 390# ifndef EFD_CLOEXEC
215#if EV_USE_INOTIFY 391# ifdef O_CLOEXEC
216# include <sys/inotify.h> 392# define EFD_CLOEXEC O_CLOEXEC
393# else
394# define EFD_CLOEXEC 02000000
395# endif
217#endif 396# endif
397# ifdef __cplusplus
398extern "C" {
399# endif
400int eventfd (unsigned int initval, int flags);
401# ifdef __cplusplus
402}
403# endif
404#endif
405
406#if EV_USE_SIGNALFD
407/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
408# include <stdint.h>
409# ifndef SFD_NONBLOCK
410# define SFD_NONBLOCK O_NONBLOCK
411# endif
412# ifndef SFD_CLOEXEC
413# ifdef O_CLOEXEC
414# define SFD_CLOEXEC O_CLOEXEC
415# else
416# define SFD_CLOEXEC 02000000
417# endif
418# endif
419# ifdef __cplusplus
420extern "C" {
421# endif
422int signalfd (int fd, const sigset_t *mask, int flags);
423
424struct signalfd_siginfo
425{
426 uint32_t ssi_signo;
427 char pad[128 - sizeof (uint32_t)];
428};
429# ifdef __cplusplus
430}
431# endif
432#endif
433
218 434
219/**/ 435/**/
436
437#if EV_VERIFY >= 3
438# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
439#else
440# define EV_FREQUENT_CHECK do { } while (0)
441#endif
220 442
221/* 443/*
222 * This is used to avoid floating point rounding problems. 444 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 445 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 446 * to ensure progress, time-wise, even when rounding
228 */ 450 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 451#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
230 452
231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 453#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 454#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
234 455
235#if __GNUC__ >= 3 456#if __GNUC__ >= 4
236# define expect(expr,value) __builtin_expect ((expr),(value)) 457# define expect(expr,value) __builtin_expect ((expr),(value))
237# define noinline __attribute__ ((noinline)) 458# define noinline __attribute__ ((noinline))
238#else 459#else
239# define expect(expr,value) (expr) 460# define expect(expr,value) (expr)
240# define noinline 461# define noinline
241# if __STDC_VERSION__ < 199901L 462# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
242# define inline 463# define inline
243# endif 464# endif
244#endif 465#endif
245 466
246#define expect_false(expr) expect ((expr) != 0, 0) 467#define expect_false(expr) expect ((expr) != 0, 0)
251# define inline_speed static noinline 472# define inline_speed static noinline
252#else 473#else
253# define inline_speed static inline 474# define inline_speed static inline
254#endif 475#endif
255 476
256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 477#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
478
479#if EV_MINPRI == EV_MAXPRI
480# define ABSPRI(w) (((W)w), 0)
481#else
257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 482# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
483#endif
258 484
259#define EMPTY /* required for microsofts broken pseudo-c compiler */ 485#define EMPTY /* required for microsofts broken pseudo-c compiler */
260#define EMPTY2(a,b) /* used to suppress some warnings */ 486#define EMPTY2(a,b) /* used to suppress some warnings */
261 487
262typedef ev_watcher *W; 488typedef ev_watcher *W;
263typedef ev_watcher_list *WL; 489typedef ev_watcher_list *WL;
264typedef ev_watcher_time *WT; 490typedef ev_watcher_time *WT;
265 491
492#define ev_active(w) ((W)(w))->active
493#define ev_at(w) ((WT)(w))->at
494
495#if EV_USE_REALTIME
496/* sig_atomic_t is used to avoid per-thread variables or locking but still */
497/* giving it a reasonably high chance of working on typical architetcures */
498static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
499#endif
500
501#if EV_USE_MONOTONIC
266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 502static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
503#endif
504
505#ifndef EV_FD_TO_WIN32_HANDLE
506# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
507#endif
508#ifndef EV_WIN32_HANDLE_TO_FD
509# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (fd, 0)
510#endif
511#ifndef EV_WIN32_CLOSE_FD
512# define EV_WIN32_CLOSE_FD(fd) close (fd)
513#endif
267 514
268#ifdef _WIN32 515#ifdef _WIN32
269# include "ev_win32.c" 516# include "ev_win32.c"
270#endif 517#endif
271 518
278{ 525{
279 syserr_cb = cb; 526 syserr_cb = cb;
280} 527}
281 528
282static void noinline 529static void noinline
283syserr (const char *msg) 530ev_syserr (const char *msg)
284{ 531{
285 if (!msg) 532 if (!msg)
286 msg = "(libev) system error"; 533 msg = "(libev) system error";
287 534
288 if (syserr_cb) 535 if (syserr_cb)
292 perror (msg); 539 perror (msg);
293 abort (); 540 abort ();
294 } 541 }
295} 542}
296 543
544static void *
545ev_realloc_emul (void *ptr, long size)
546{
547 /* some systems, notably openbsd and darwin, fail to properly
548 * implement realloc (x, 0) (as required by both ansi c-98 and
549 * the single unix specification, so work around them here.
550 */
551
552 if (size)
553 return realloc (ptr, size);
554
555 free (ptr);
556 return 0;
557}
558
297static void *(*alloc)(void *ptr, long size); 559static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
298 560
299void 561void
300ev_set_allocator (void *(*cb)(void *ptr, long size)) 562ev_set_allocator (void *(*cb)(void *ptr, long size))
301{ 563{
302 alloc = cb; 564 alloc = cb;
303} 565}
304 566
305inline_speed void * 567inline_speed void *
306ev_realloc (void *ptr, long size) 568ev_realloc (void *ptr, long size)
307{ 569{
308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 570 ptr = alloc (ptr, size);
309 571
310 if (!ptr && size) 572 if (!ptr && size)
311 { 573 {
312 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 574 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
313 abort (); 575 abort ();
319#define ev_malloc(size) ev_realloc (0, (size)) 581#define ev_malloc(size) ev_realloc (0, (size))
320#define ev_free(ptr) ev_realloc ((ptr), 0) 582#define ev_free(ptr) ev_realloc ((ptr), 0)
321 583
322/*****************************************************************************/ 584/*****************************************************************************/
323 585
586/* set in reify when reification needed */
587#define EV_ANFD_REIFY 1
588
589/* file descriptor info structure */
324typedef struct 590typedef struct
325{ 591{
326 WL head; 592 WL head;
327 unsigned char events; 593 unsigned char events; /* the events watched for */
594 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
595 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
328 unsigned char reify; 596 unsigned char unused;
597#if EV_USE_EPOLL
598 unsigned int egen; /* generation counter to counter epoll bugs */
599#endif
329#if EV_SELECT_IS_WINSOCKET 600#if EV_SELECT_IS_WINSOCKET
330 SOCKET handle; 601 SOCKET handle;
331#endif 602#endif
332} ANFD; 603} ANFD;
333 604
605/* stores the pending event set for a given watcher */
334typedef struct 606typedef struct
335{ 607{
336 W w; 608 W w;
337 int events; 609 int events; /* the pending event set for the given watcher */
338} ANPENDING; 610} ANPENDING;
339 611
340#if EV_USE_INOTIFY 612#if EV_USE_INOTIFY
613/* hash table entry per inotify-id */
341typedef struct 614typedef struct
342{ 615{
343 WL head; 616 WL head;
344} ANFS; 617} ANFS;
618#endif
619
620/* Heap Entry */
621#if EV_HEAP_CACHE_AT
622 /* a heap element */
623 typedef struct {
624 ev_tstamp at;
625 WT w;
626 } ANHE;
627
628 #define ANHE_w(he) (he).w /* access watcher, read-write */
629 #define ANHE_at(he) (he).at /* access cached at, read-only */
630 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
631#else
632 /* a heap element */
633 typedef WT ANHE;
634
635 #define ANHE_w(he) (he)
636 #define ANHE_at(he) (he)->at
637 #define ANHE_at_cache(he)
345#endif 638#endif
346 639
347#if EV_MULTIPLICITY 640#if EV_MULTIPLICITY
348 641
349 struct ev_loop 642 struct ev_loop
368 661
369 static int ev_default_loop_ptr; 662 static int ev_default_loop_ptr;
370 663
371#endif 664#endif
372 665
666#if EV_MINIMAL < 2
667# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
668# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
669# define EV_INVOKE_PENDING invoke_cb (EV_A)
670#else
671# define EV_RELEASE_CB (void)0
672# define EV_ACQUIRE_CB (void)0
673# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
674#endif
675
676#define EVUNLOOP_RECURSE 0x80
677
373/*****************************************************************************/ 678/*****************************************************************************/
374 679
680#ifndef EV_HAVE_EV_TIME
375ev_tstamp 681ev_tstamp
376ev_time (void) 682ev_time (void)
377{ 683{
378#if EV_USE_REALTIME 684#if EV_USE_REALTIME
685 if (expect_true (have_realtime))
686 {
379 struct timespec ts; 687 struct timespec ts;
380 clock_gettime (CLOCK_REALTIME, &ts); 688 clock_gettime (CLOCK_REALTIME, &ts);
381 return ts.tv_sec + ts.tv_nsec * 1e-9; 689 return ts.tv_sec + ts.tv_nsec * 1e-9;
382#else 690 }
691#endif
692
383 struct timeval tv; 693 struct timeval tv;
384 gettimeofday (&tv, 0); 694 gettimeofday (&tv, 0);
385 return tv.tv_sec + tv.tv_usec * 1e-6; 695 return tv.tv_sec + tv.tv_usec * 1e-6;
386#endif
387} 696}
697#endif
388 698
389ev_tstamp inline_size 699inline_size ev_tstamp
390get_clock (void) 700get_clock (void)
391{ 701{
392#if EV_USE_MONOTONIC 702#if EV_USE_MONOTONIC
393 if (expect_true (have_monotonic)) 703 if (expect_true (have_monotonic))
394 { 704 {
407{ 717{
408 return ev_rt_now; 718 return ev_rt_now;
409} 719}
410#endif 720#endif
411 721
412int inline_size 722void
723ev_sleep (ev_tstamp delay)
724{
725 if (delay > 0.)
726 {
727#if EV_USE_NANOSLEEP
728 struct timespec ts;
729
730 ts.tv_sec = (time_t)delay;
731 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
732
733 nanosleep (&ts, 0);
734#elif defined(_WIN32)
735 Sleep ((unsigned long)(delay * 1e3));
736#else
737 struct timeval tv;
738
739 tv.tv_sec = (time_t)delay;
740 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
741
742 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
743 /* something not guaranteed by newer posix versions, but guaranteed */
744 /* by older ones */
745 select (0, 0, 0, 0, &tv);
746#endif
747 }
748}
749
750/*****************************************************************************/
751
752#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
753
754/* find a suitable new size for the given array, */
755/* hopefully by rounding to a ncie-to-malloc size */
756inline_size int
413array_nextsize (int elem, int cur, int cnt) 757array_nextsize (int elem, int cur, int cnt)
414{ 758{
415 int ncur = cur + 1; 759 int ncur = cur + 1;
416 760
417 do 761 do
418 ncur <<= 1; 762 ncur <<= 1;
419 while (cnt > ncur); 763 while (cnt > ncur);
420 764
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 765 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096) 766 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
423 { 767 {
424 ncur *= elem; 768 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 769 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
426 ncur = ncur - sizeof (void *) * 4; 770 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem; 771 ncur /= elem;
428 } 772 }
429 773
430 return ncur; 774 return ncur;
434array_realloc (int elem, void *base, int *cur, int cnt) 778array_realloc (int elem, void *base, int *cur, int cnt)
435{ 779{
436 *cur = array_nextsize (elem, *cur, cnt); 780 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur); 781 return ev_realloc (base, elem * *cur);
438} 782}
783
784#define array_init_zero(base,count) \
785 memset ((void *)(base), 0, sizeof (*(base)) * (count))
439 786
440#define array_needsize(type,base,cur,cnt,init) \ 787#define array_needsize(type,base,cur,cnt,init) \
441 if (expect_false ((cnt) > (cur))) \ 788 if (expect_false ((cnt) > (cur))) \
442 { \ 789 { \
443 int ocur_ = (cur); \ 790 int ocur_ = (cur); \
455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 802 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
456 } 803 }
457#endif 804#endif
458 805
459#define array_free(stem, idx) \ 806#define array_free(stem, idx) \
460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 807 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
461 808
462/*****************************************************************************/ 809/*****************************************************************************/
810
811/* dummy callback for pending events */
812static void noinline
813pendingcb (EV_P_ ev_prepare *w, int revents)
814{
815}
463 816
464void noinline 817void noinline
465ev_feed_event (EV_P_ void *w, int revents) 818ev_feed_event (EV_P_ void *w, int revents)
466{ 819{
467 W w_ = (W)w; 820 W w_ = (W)w;
476 pendings [pri][w_->pending - 1].w = w_; 829 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents; 830 pendings [pri][w_->pending - 1].events = revents;
478 } 831 }
479} 832}
480 833
481void inline_speed 834inline_speed void
835feed_reverse (EV_P_ W w)
836{
837 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
838 rfeeds [rfeedcnt++] = w;
839}
840
841inline_size void
842feed_reverse_done (EV_P_ int revents)
843{
844 do
845 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
846 while (rfeedcnt);
847}
848
849inline_speed void
482queue_events (EV_P_ W *events, int eventcnt, int type) 850queue_events (EV_P_ W *events, int eventcnt, int type)
483{ 851{
484 int i; 852 int i;
485 853
486 for (i = 0; i < eventcnt; ++i) 854 for (i = 0; i < eventcnt; ++i)
487 ev_feed_event (EV_A_ events [i], type); 855 ev_feed_event (EV_A_ events [i], type);
488} 856}
489 857
490/*****************************************************************************/ 858/*****************************************************************************/
491 859
492void inline_size 860inline_speed void
493anfds_init (ANFD *base, int count)
494{
495 while (count--)
496 {
497 base->head = 0;
498 base->events = EV_NONE;
499 base->reify = 0;
500
501 ++base;
502 }
503}
504
505void inline_speed
506fd_event (EV_P_ int fd, int revents) 861fd_event_nc (EV_P_ int fd, int revents)
507{ 862{
508 ANFD *anfd = anfds + fd; 863 ANFD *anfd = anfds + fd;
509 ev_io *w; 864 ev_io *w;
510 865
511 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 866 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
515 if (ev) 870 if (ev)
516 ev_feed_event (EV_A_ (W)w, ev); 871 ev_feed_event (EV_A_ (W)w, ev);
517 } 872 }
518} 873}
519 874
875/* do not submit kernel events for fds that have reify set */
876/* because that means they changed while we were polling for new events */
877inline_speed void
878fd_event (EV_P_ int fd, int revents)
879{
880 ANFD *anfd = anfds + fd;
881
882 if (expect_true (!anfd->reify))
883 fd_event_nc (EV_A_ fd, revents);
884}
885
520void 886void
521ev_feed_fd_event (EV_P_ int fd, int revents) 887ev_feed_fd_event (EV_P_ int fd, int revents)
522{ 888{
523 if (fd >= 0 && fd < anfdmax) 889 if (fd >= 0 && fd < anfdmax)
524 fd_event (EV_A_ fd, revents); 890 fd_event_nc (EV_A_ fd, revents);
525} 891}
526 892
527void inline_size 893/* make sure the external fd watch events are in-sync */
894/* with the kernel/libev internal state */
895inline_size void
528fd_reify (EV_P) 896fd_reify (EV_P)
529{ 897{
530 int i; 898 int i;
531 899
532 for (i = 0; i < fdchangecnt; ++i) 900 for (i = 0; i < fdchangecnt; ++i)
533 { 901 {
534 int fd = fdchanges [i]; 902 int fd = fdchanges [i];
535 ANFD *anfd = anfds + fd; 903 ANFD *anfd = anfds + fd;
536 ev_io *w; 904 ev_io *w;
537 905
538 int events = 0; 906 unsigned char events = 0;
539 907
540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 908 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
541 events |= w->events; 909 events |= (unsigned char)w->events;
542 910
543#if EV_SELECT_IS_WINSOCKET 911#if EV_SELECT_IS_WINSOCKET
544 if (events) 912 if (events)
545 { 913 {
546 unsigned long argp; 914 unsigned long arg;
547 anfd->handle = _get_osfhandle (fd); 915 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 916 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
549 } 917 }
550#endif 918#endif
551 919
920 {
921 unsigned char o_events = anfd->events;
922 unsigned char o_reify = anfd->reify;
923
552 anfd->reify = 0; 924 anfd->reify = 0;
553
554 backend_modify (EV_A_ fd, anfd->events, events);
555 anfd->events = events; 925 anfd->events = events;
926
927 if (o_events != events || o_reify & EV__IOFDSET)
928 backend_modify (EV_A_ fd, o_events, events);
929 }
556 } 930 }
557 931
558 fdchangecnt = 0; 932 fdchangecnt = 0;
559} 933}
560 934
561void inline_size 935/* something about the given fd changed */
936inline_size void
562fd_change (EV_P_ int fd) 937fd_change (EV_P_ int fd, int flags)
563{ 938{
564 if (expect_false (anfds [fd].reify)) 939 unsigned char reify = anfds [fd].reify;
565 return;
566
567 anfds [fd].reify = 1; 940 anfds [fd].reify |= flags;
568 941
942 if (expect_true (!reify))
943 {
569 ++fdchangecnt; 944 ++fdchangecnt;
570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 945 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
571 fdchanges [fdchangecnt - 1] = fd; 946 fdchanges [fdchangecnt - 1] = fd;
947 }
572} 948}
573 949
574void inline_speed 950/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
951inline_speed void
575fd_kill (EV_P_ int fd) 952fd_kill (EV_P_ int fd)
576{ 953{
577 ev_io *w; 954 ev_io *w;
578 955
579 while ((w = (ev_io *)anfds [fd].head)) 956 while ((w = (ev_io *)anfds [fd].head))
581 ev_io_stop (EV_A_ w); 958 ev_io_stop (EV_A_ w);
582 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 959 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
583 } 960 }
584} 961}
585 962
586int inline_size 963/* check whether the given fd is atcually valid, for error recovery */
964inline_size int
587fd_valid (int fd) 965fd_valid (int fd)
588{ 966{
589#ifdef _WIN32 967#ifdef _WIN32
590 return _get_osfhandle (fd) != -1; 968 return _get_osfhandle (fd) != -1;
591#else 969#else
599{ 977{
600 int fd; 978 int fd;
601 979
602 for (fd = 0; fd < anfdmax; ++fd) 980 for (fd = 0; fd < anfdmax; ++fd)
603 if (anfds [fd].events) 981 if (anfds [fd].events)
604 if (!fd_valid (fd) == -1 && errno == EBADF) 982 if (!fd_valid (fd) && errno == EBADF)
605 fd_kill (EV_A_ fd); 983 fd_kill (EV_A_ fd);
606} 984}
607 985
608/* called on ENOMEM in select/poll to kill some fds and retry */ 986/* called on ENOMEM in select/poll to kill some fds and retry */
609static void noinline 987static void noinline
613 991
614 for (fd = anfdmax; fd--; ) 992 for (fd = anfdmax; fd--; )
615 if (anfds [fd].events) 993 if (anfds [fd].events)
616 { 994 {
617 fd_kill (EV_A_ fd); 995 fd_kill (EV_A_ fd);
618 return; 996 break;
619 } 997 }
620} 998}
621 999
622/* usually called after fork if backend needs to re-arm all fds from scratch */ 1000/* usually called after fork if backend needs to re-arm all fds from scratch */
623static void noinline 1001static void noinline
627 1005
628 for (fd = 0; fd < anfdmax; ++fd) 1006 for (fd = 0; fd < anfdmax; ++fd)
629 if (anfds [fd].events) 1007 if (anfds [fd].events)
630 { 1008 {
631 anfds [fd].events = 0; 1009 anfds [fd].events = 0;
632 fd_change (EV_A_ fd); 1010 anfds [fd].emask = 0;
1011 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
633 } 1012 }
634} 1013}
635 1014
636/*****************************************************************************/ 1015/*****************************************************************************/
637 1016
638void inline_speed 1017/*
639upheap (WT *heap, int k) 1018 * the heap functions want a real array index. array index 0 uis guaranteed to not
640{ 1019 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
641 WT w = heap [k]; 1020 * the branching factor of the d-tree.
1021 */
642 1022
643 while (k) 1023/*
644 { 1024 * at the moment we allow libev the luxury of two heaps,
645 int p = (k - 1) >> 1; 1025 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1026 * which is more cache-efficient.
1027 * the difference is about 5% with 50000+ watchers.
1028 */
1029#if EV_USE_4HEAP
646 1030
647 if (heap [p]->at <= w->at) 1031#define DHEAP 4
1032#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1033#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1034#define UPHEAP_DONE(p,k) ((p) == (k))
1035
1036/* away from the root */
1037inline_speed void
1038downheap (ANHE *heap, int N, int k)
1039{
1040 ANHE he = heap [k];
1041 ANHE *E = heap + N + HEAP0;
1042
1043 for (;;)
1044 {
1045 ev_tstamp minat;
1046 ANHE *minpos;
1047 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1048
1049 /* find minimum child */
1050 if (expect_true (pos + DHEAP - 1 < E))
1051 {
1052 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1053 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1054 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1055 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1056 }
1057 else if (pos < E)
1058 {
1059 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1060 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1061 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1062 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1063 }
1064 else
648 break; 1065 break;
649 1066
1067 if (ANHE_at (he) <= minat)
1068 break;
1069
1070 heap [k] = *minpos;
1071 ev_active (ANHE_w (*minpos)) = k;
1072
1073 k = minpos - heap;
1074 }
1075
1076 heap [k] = he;
1077 ev_active (ANHE_w (he)) = k;
1078}
1079
1080#else /* 4HEAP */
1081
1082#define HEAP0 1
1083#define HPARENT(k) ((k) >> 1)
1084#define UPHEAP_DONE(p,k) (!(p))
1085
1086/* away from the root */
1087inline_speed void
1088downheap (ANHE *heap, int N, int k)
1089{
1090 ANHE he = heap [k];
1091
1092 for (;;)
1093 {
1094 int c = k << 1;
1095
1096 if (c >= N + HEAP0)
1097 break;
1098
1099 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1100 ? 1 : 0;
1101
1102 if (ANHE_at (he) <= ANHE_at (heap [c]))
1103 break;
1104
1105 heap [k] = heap [c];
1106 ev_active (ANHE_w (heap [k])) = k;
1107
1108 k = c;
1109 }
1110
1111 heap [k] = he;
1112 ev_active (ANHE_w (he)) = k;
1113}
1114#endif
1115
1116/* towards the root */
1117inline_speed void
1118upheap (ANHE *heap, int k)
1119{
1120 ANHE he = heap [k];
1121
1122 for (;;)
1123 {
1124 int p = HPARENT (k);
1125
1126 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1127 break;
1128
650 heap [k] = heap [p]; 1129 heap [k] = heap [p];
651 ((W)heap [k])->active = k + 1; 1130 ev_active (ANHE_w (heap [k])) = k;
652 k = p; 1131 k = p;
653 } 1132 }
654 1133
655 heap [k] = w; 1134 heap [k] = he;
656 ((W)heap [k])->active = k + 1; 1135 ev_active (ANHE_w (he)) = k;
657
658} 1136}
659 1137
660void inline_speed 1138/* move an element suitably so it is in a correct place */
661downheap (WT *heap, int N, int k) 1139inline_size void
662{
663 WT w = heap [k];
664
665 for (;;)
666 {
667 int c = (k << 1) + 1;
668
669 if (c >= N)
670 break;
671
672 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
673 ? 1 : 0;
674
675 if (w->at <= heap [c]->at)
676 break;
677
678 heap [k] = heap [c];
679 ((W)heap [k])->active = k + 1;
680
681 k = c;
682 }
683
684 heap [k] = w;
685 ((W)heap [k])->active = k + 1;
686}
687
688void inline_size
689adjustheap (WT *heap, int N, int k) 1140adjustheap (ANHE *heap, int N, int k)
690{ 1141{
1142 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
691 upheap (heap, k); 1143 upheap (heap, k);
1144 else
692 downheap (heap, N, k); 1145 downheap (heap, N, k);
1146}
1147
1148/* rebuild the heap: this function is used only once and executed rarely */
1149inline_size void
1150reheap (ANHE *heap, int N)
1151{
1152 int i;
1153
1154 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1155 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1156 for (i = 0; i < N; ++i)
1157 upheap (heap, i + HEAP0);
693} 1158}
694 1159
695/*****************************************************************************/ 1160/*****************************************************************************/
696 1161
1162/* associate signal watchers to a signal signal */
697typedef struct 1163typedef struct
698{ 1164{
1165 EV_ATOMIC_T pending;
1166#if EV_MULTIPLICITY
1167 EV_P;
1168#endif
699 WL head; 1169 WL head;
700 sig_atomic_t volatile gotsig;
701} ANSIG; 1170} ANSIG;
702 1171
703static ANSIG *signals; 1172static ANSIG signals [EV_NSIG - 1];
704static int signalmax;
705 1173
706static int sigpipe [2]; 1174/*****************************************************************************/
707static sig_atomic_t volatile gotsig;
708static ev_io sigev;
709 1175
710void inline_size 1176/* used to prepare libev internal fd's */
711signals_init (ANSIG *base, int count) 1177/* this is not fork-safe */
712{ 1178inline_speed void
713 while (count--)
714 {
715 base->head = 0;
716 base->gotsig = 0;
717
718 ++base;
719 }
720}
721
722static void
723sighandler (int signum)
724{
725#if _WIN32
726 signal (signum, sighandler);
727#endif
728
729 signals [signum - 1].gotsig = 1;
730
731 if (!gotsig)
732 {
733 int old_errno = errno;
734 gotsig = 1;
735 write (sigpipe [1], &signum, 1);
736 errno = old_errno;
737 }
738}
739
740void noinline
741ev_feed_signal_event (EV_P_ int signum)
742{
743 WL w;
744
745#if EV_MULTIPLICITY
746 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
747#endif
748
749 --signum;
750
751 if (signum < 0 || signum >= signalmax)
752 return;
753
754 signals [signum].gotsig = 0;
755
756 for (w = signals [signum].head; w; w = w->next)
757 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
758}
759
760static void
761sigcb (EV_P_ ev_io *iow, int revents)
762{
763 int signum;
764
765 read (sigpipe [0], &revents, 1);
766 gotsig = 0;
767
768 for (signum = signalmax; signum--; )
769 if (signals [signum].gotsig)
770 ev_feed_signal_event (EV_A_ signum + 1);
771}
772
773void inline_speed
774fd_intern (int fd) 1179fd_intern (int fd)
775{ 1180{
776#ifdef _WIN32 1181#ifdef _WIN32
777 int arg = 1; 1182 unsigned long arg = 1;
778 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1183 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
779#else 1184#else
780 fcntl (fd, F_SETFD, FD_CLOEXEC); 1185 fcntl (fd, F_SETFD, FD_CLOEXEC);
781 fcntl (fd, F_SETFL, O_NONBLOCK); 1186 fcntl (fd, F_SETFL, O_NONBLOCK);
782#endif 1187#endif
783} 1188}
784 1189
785static void noinline 1190static void noinline
786siginit (EV_P) 1191evpipe_init (EV_P)
787{ 1192{
1193 if (!ev_is_active (&pipe_w))
1194 {
1195#if EV_USE_EVENTFD
1196 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1197 if (evfd < 0 && errno == EINVAL)
1198 evfd = eventfd (0, 0);
1199
1200 if (evfd >= 0)
1201 {
1202 evpipe [0] = -1;
1203 fd_intern (evfd); /* doing it twice doesn't hurt */
1204 ev_io_set (&pipe_w, evfd, EV_READ);
1205 }
1206 else
1207#endif
1208 {
1209 while (pipe (evpipe))
1210 ev_syserr ("(libev) error creating signal/async pipe");
1211
788 fd_intern (sigpipe [0]); 1212 fd_intern (evpipe [0]);
789 fd_intern (sigpipe [1]); 1213 fd_intern (evpipe [1]);
1214 ev_io_set (&pipe_w, evpipe [0], EV_READ);
1215 }
790 1216
791 ev_io_set (&sigev, sigpipe [0], EV_READ);
792 ev_io_start (EV_A_ &sigev); 1217 ev_io_start (EV_A_ &pipe_w);
793 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1218 ev_unref (EV_A); /* watcher should not keep loop alive */
1219 }
1220}
1221
1222inline_size void
1223evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1224{
1225 if (!*flag)
1226 {
1227 int old_errno = errno; /* save errno because write might clobber it */
1228
1229 *flag = 1;
1230
1231#if EV_USE_EVENTFD
1232 if (evfd >= 0)
1233 {
1234 uint64_t counter = 1;
1235 write (evfd, &counter, sizeof (uint64_t));
1236 }
1237 else
1238#endif
1239 write (evpipe [1], &old_errno, 1);
1240
1241 errno = old_errno;
1242 }
1243}
1244
1245/* called whenever the libev signal pipe */
1246/* got some events (signal, async) */
1247static void
1248pipecb (EV_P_ ev_io *iow, int revents)
1249{
1250 int i;
1251
1252#if EV_USE_EVENTFD
1253 if (evfd >= 0)
1254 {
1255 uint64_t counter;
1256 read (evfd, &counter, sizeof (uint64_t));
1257 }
1258 else
1259#endif
1260 {
1261 char dummy;
1262 read (evpipe [0], &dummy, 1);
1263 }
1264
1265 if (sig_pending)
1266 {
1267 sig_pending = 0;
1268
1269 for (i = EV_NSIG - 1; i--; )
1270 if (expect_false (signals [i].pending))
1271 ev_feed_signal_event (EV_A_ i + 1);
1272 }
1273
1274#if EV_ASYNC_ENABLE
1275 if (async_pending)
1276 {
1277 async_pending = 0;
1278
1279 for (i = asynccnt; i--; )
1280 if (asyncs [i]->sent)
1281 {
1282 asyncs [i]->sent = 0;
1283 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1284 }
1285 }
1286#endif
794} 1287}
795 1288
796/*****************************************************************************/ 1289/*****************************************************************************/
797 1290
1291static void
1292ev_sighandler (int signum)
1293{
1294#if EV_MULTIPLICITY
1295 EV_P = signals [signum - 1].loop;
1296#endif
1297
1298#if _WIN32
1299 signal (signum, ev_sighandler);
1300#endif
1301
1302 signals [signum - 1].pending = 1;
1303 evpipe_write (EV_A_ &sig_pending);
1304}
1305
1306void noinline
1307ev_feed_signal_event (EV_P_ int signum)
1308{
1309 WL w;
1310
1311 if (expect_false (signum <= 0 || signum > EV_NSIG))
1312 return;
1313
1314 --signum;
1315
1316#if EV_MULTIPLICITY
1317 /* it is permissible to try to feed a signal to the wrong loop */
1318 /* or, likely more useful, feeding a signal nobody is waiting for */
1319
1320 if (expect_false (signals [signum].loop != EV_A))
1321 return;
1322#endif
1323
1324 signals [signum].pending = 0;
1325
1326 for (w = signals [signum].head; w; w = w->next)
1327 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1328}
1329
1330#if EV_USE_SIGNALFD
1331static void
1332sigfdcb (EV_P_ ev_io *iow, int revents)
1333{
1334 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1335
1336 for (;;)
1337 {
1338 ssize_t res = read (sigfd, si, sizeof (si));
1339
1340 /* not ISO-C, as res might be -1, but works with SuS */
1341 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1342 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1343
1344 if (res < (ssize_t)sizeof (si))
1345 break;
1346 }
1347}
1348#endif
1349
1350/*****************************************************************************/
1351
798static ev_child *childs [EV_PID_HASHSIZE]; 1352static WL childs [EV_PID_HASHSIZE];
799 1353
800#ifndef _WIN32 1354#ifndef _WIN32
801 1355
802static ev_signal childev; 1356static ev_signal childev;
803 1357
804void inline_speed 1358#ifndef WIFCONTINUED
1359# define WIFCONTINUED(status) 0
1360#endif
1361
1362/* handle a single child status event */
1363inline_speed void
805child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1364child_reap (EV_P_ int chain, int pid, int status)
806{ 1365{
807 ev_child *w; 1366 ev_child *w;
1367 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
808 1368
809 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1369 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1370 {
810 if (w->pid == pid || !w->pid) 1371 if ((w->pid == pid || !w->pid)
1372 && (!traced || (w->flags & 1)))
811 { 1373 {
812 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1374 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
813 w->rpid = pid; 1375 w->rpid = pid;
814 w->rstatus = status; 1376 w->rstatus = status;
815 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1377 ev_feed_event (EV_A_ (W)w, EV_CHILD);
816 } 1378 }
1379 }
817} 1380}
818 1381
819#ifndef WCONTINUED 1382#ifndef WCONTINUED
820# define WCONTINUED 0 1383# define WCONTINUED 0
821#endif 1384#endif
822 1385
1386/* called on sigchld etc., calls waitpid */
823static void 1387static void
824childcb (EV_P_ ev_signal *sw, int revents) 1388childcb (EV_P_ ev_signal *sw, int revents)
825{ 1389{
826 int pid, status; 1390 int pid, status;
827 1391
830 if (!WCONTINUED 1394 if (!WCONTINUED
831 || errno != EINVAL 1395 || errno != EINVAL
832 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1396 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
833 return; 1397 return;
834 1398
835 /* make sure we are called again until all childs have been reaped */ 1399 /* make sure we are called again until all children have been reaped */
836 /* we need to do it this way so that the callback gets called before we continue */ 1400 /* we need to do it this way so that the callback gets called before we continue */
837 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1401 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
838 1402
839 child_reap (EV_A_ sw, pid, pid, status); 1403 child_reap (EV_A_ pid, pid, status);
840 if (EV_PID_HASHSIZE > 1) 1404 if (EV_PID_HASHSIZE > 1)
841 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1405 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
842} 1406}
843 1407
844#endif 1408#endif
845 1409
846/*****************************************************************************/ 1410/*****************************************************************************/
908 /* kqueue is borked on everything but netbsd apparently */ 1472 /* kqueue is borked on everything but netbsd apparently */
909 /* it usually doesn't work correctly on anything but sockets and pipes */ 1473 /* it usually doesn't work correctly on anything but sockets and pipes */
910 flags &= ~EVBACKEND_KQUEUE; 1474 flags &= ~EVBACKEND_KQUEUE;
911#endif 1475#endif
912#ifdef __APPLE__ 1476#ifdef __APPLE__
913 // flags &= ~EVBACKEND_KQUEUE; for documentation 1477 /* only select works correctly on that "unix-certified" platform */
914 flags &= ~EVBACKEND_POLL; 1478 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1479 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
915#endif 1480#endif
916 1481
917 return flags; 1482 return flags;
918} 1483}
919 1484
920unsigned int 1485unsigned int
921ev_embeddable_backends (void) 1486ev_embeddable_backends (void)
922{ 1487{
923 return EVBACKEND_EPOLL 1488 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
924 | EVBACKEND_KQUEUE 1489
925 | EVBACKEND_PORT; 1490 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1491 /* please fix it and tell me how to detect the fix */
1492 flags &= ~EVBACKEND_EPOLL;
1493
1494 return flags;
926} 1495}
927 1496
928unsigned int 1497unsigned int
929ev_backend (EV_P) 1498ev_backend (EV_P)
930{ 1499{
931 return backend; 1500 return backend;
932} 1501}
933 1502
1503#if EV_MINIMAL < 2
934unsigned int 1504unsigned int
935ev_loop_count (EV_P) 1505ev_loop_count (EV_P)
936{ 1506{
937 return loop_count; 1507 return loop_count;
938} 1508}
939 1509
1510unsigned int
1511ev_loop_depth (EV_P)
1512{
1513 return loop_depth;
1514}
1515
1516void
1517ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1518{
1519 io_blocktime = interval;
1520}
1521
1522void
1523ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1524{
1525 timeout_blocktime = interval;
1526}
1527
1528void
1529ev_set_userdata (EV_P_ void *data)
1530{
1531 userdata = data;
1532}
1533
1534void *
1535ev_userdata (EV_P)
1536{
1537 return userdata;
1538}
1539
1540void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1541{
1542 invoke_cb = invoke_pending_cb;
1543}
1544
1545void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1546{
1547 release_cb = release;
1548 acquire_cb = acquire;
1549}
1550#endif
1551
1552/* initialise a loop structure, must be zero-initialised */
940static void noinline 1553static void noinline
941loop_init (EV_P_ unsigned int flags) 1554loop_init (EV_P_ unsigned int flags)
942{ 1555{
943 if (!backend) 1556 if (!backend)
944 { 1557 {
1558#if EV_USE_REALTIME
1559 if (!have_realtime)
1560 {
1561 struct timespec ts;
1562
1563 if (!clock_gettime (CLOCK_REALTIME, &ts))
1564 have_realtime = 1;
1565 }
1566#endif
1567
945#if EV_USE_MONOTONIC 1568#if EV_USE_MONOTONIC
1569 if (!have_monotonic)
946 { 1570 {
947 struct timespec ts; 1571 struct timespec ts;
1572
948 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1573 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
949 have_monotonic = 1; 1574 have_monotonic = 1;
950 } 1575 }
951#endif 1576#endif
952
953 ev_rt_now = ev_time ();
954 mn_now = get_clock ();
955 now_floor = mn_now;
956 rtmn_diff = ev_rt_now - mn_now;
957 1577
958 /* pid check not overridable via env */ 1578 /* pid check not overridable via env */
959#ifndef _WIN32 1579#ifndef _WIN32
960 if (flags & EVFLAG_FORKCHECK) 1580 if (flags & EVFLAG_FORKCHECK)
961 curpid = getpid (); 1581 curpid = getpid ();
964 if (!(flags & EVFLAG_NOENV) 1584 if (!(flags & EVFLAG_NOENV)
965 && !enable_secure () 1585 && !enable_secure ()
966 && getenv ("LIBEV_FLAGS")) 1586 && getenv ("LIBEV_FLAGS"))
967 flags = atoi (getenv ("LIBEV_FLAGS")); 1587 flags = atoi (getenv ("LIBEV_FLAGS"));
968 1588
1589 ev_rt_now = ev_time ();
1590 mn_now = get_clock ();
1591 now_floor = mn_now;
1592 rtmn_diff = ev_rt_now - mn_now;
1593#if EV_MINIMAL < 2
1594 invoke_cb = ev_invoke_pending;
1595#endif
1596
1597 io_blocktime = 0.;
1598 timeout_blocktime = 0.;
1599 backend = 0;
1600 backend_fd = -1;
1601 sig_pending = 0;
1602#if EV_ASYNC_ENABLE
1603 async_pending = 0;
1604#endif
1605#if EV_USE_INOTIFY
1606 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1607#endif
1608#if EV_USE_SIGNALFD
1609 sigfd = flags & EVFLAG_NOSIGFD ? -1 : -2;
1610#endif
1611
969 if (!(flags & 0x0000ffffUL)) 1612 if (!(flags & 0x0000ffffU))
970 flags |= ev_recommended_backends (); 1613 flags |= ev_recommended_backends ();
971
972 backend = 0;
973 backend_fd = -1;
974#if EV_USE_INOTIFY
975 fs_fd = -2;
976#endif
977 1614
978#if EV_USE_PORT 1615#if EV_USE_PORT
979 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1616 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
980#endif 1617#endif
981#if EV_USE_KQUEUE 1618#if EV_USE_KQUEUE
989#endif 1626#endif
990#if EV_USE_SELECT 1627#if EV_USE_SELECT
991 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1628 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
992#endif 1629#endif
993 1630
1631 ev_prepare_init (&pending_w, pendingcb);
1632
994 ev_init (&sigev, sigcb); 1633 ev_init (&pipe_w, pipecb);
995 ev_set_priority (&sigev, EV_MAXPRI); 1634 ev_set_priority (&pipe_w, EV_MAXPRI);
996 } 1635 }
997} 1636}
998 1637
1638/* free up a loop structure */
999static void noinline 1639static void noinline
1000loop_destroy (EV_P) 1640loop_destroy (EV_P)
1001{ 1641{
1002 int i; 1642 int i;
1643
1644 if (ev_is_active (&pipe_w))
1645 {
1646 /*ev_ref (EV_A);*/
1647 /*ev_io_stop (EV_A_ &pipe_w);*/
1648
1649#if EV_USE_EVENTFD
1650 if (evfd >= 0)
1651 close (evfd);
1652#endif
1653
1654 if (evpipe [0] >= 0)
1655 {
1656 EV_WIN32_CLOSE_FD (evpipe [0]);
1657 EV_WIN32_CLOSE_FD (evpipe [1]);
1658 }
1659 }
1660
1661#if EV_USE_SIGNALFD
1662 if (ev_is_active (&sigfd_w))
1663 {
1664 /*ev_ref (EV_A);*/
1665 /*ev_io_stop (EV_A_ &sigfd_w);*/
1666
1667 close (sigfd);
1668 }
1669#endif
1003 1670
1004#if EV_USE_INOTIFY 1671#if EV_USE_INOTIFY
1005 if (fs_fd >= 0) 1672 if (fs_fd >= 0)
1006 close (fs_fd); 1673 close (fs_fd);
1007#endif 1674#endif
1031#if EV_IDLE_ENABLE 1698#if EV_IDLE_ENABLE
1032 array_free (idle, [i]); 1699 array_free (idle, [i]);
1033#endif 1700#endif
1034 } 1701 }
1035 1702
1703 ev_free (anfds); anfds = 0; anfdmax = 0;
1704
1036 /* have to use the microsoft-never-gets-it-right macro */ 1705 /* have to use the microsoft-never-gets-it-right macro */
1706 array_free (rfeed, EMPTY);
1037 array_free (fdchange, EMPTY); 1707 array_free (fdchange, EMPTY);
1038 array_free (timer, EMPTY); 1708 array_free (timer, EMPTY);
1039#if EV_PERIODIC_ENABLE 1709#if EV_PERIODIC_ENABLE
1040 array_free (periodic, EMPTY); 1710 array_free (periodic, EMPTY);
1041#endif 1711#endif
1712#if EV_FORK_ENABLE
1713 array_free (fork, EMPTY);
1714#endif
1042 array_free (prepare, EMPTY); 1715 array_free (prepare, EMPTY);
1043 array_free (check, EMPTY); 1716 array_free (check, EMPTY);
1717#if EV_ASYNC_ENABLE
1718 array_free (async, EMPTY);
1719#endif
1044 1720
1045 backend = 0; 1721 backend = 0;
1046} 1722}
1047 1723
1724#if EV_USE_INOTIFY
1048void inline_size infy_fork (EV_P); 1725inline_size void infy_fork (EV_P);
1726#endif
1049 1727
1050void inline_size 1728inline_size void
1051loop_fork (EV_P) 1729loop_fork (EV_P)
1052{ 1730{
1053#if EV_USE_PORT 1731#if EV_USE_PORT
1054 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1732 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1055#endif 1733#endif
1061#endif 1739#endif
1062#if EV_USE_INOTIFY 1740#if EV_USE_INOTIFY
1063 infy_fork (EV_A); 1741 infy_fork (EV_A);
1064#endif 1742#endif
1065 1743
1066 if (ev_is_active (&sigev)) 1744 if (ev_is_active (&pipe_w))
1067 { 1745 {
1068 /* default loop */ 1746 /* this "locks" the handlers against writing to the pipe */
1747 /* while we modify the fd vars */
1748 sig_pending = 1;
1749#if EV_ASYNC_ENABLE
1750 async_pending = 1;
1751#endif
1069 1752
1070 ev_ref (EV_A); 1753 ev_ref (EV_A);
1071 ev_io_stop (EV_A_ &sigev); 1754 ev_io_stop (EV_A_ &pipe_w);
1072 close (sigpipe [0]);
1073 close (sigpipe [1]);
1074 1755
1075 while (pipe (sigpipe)) 1756#if EV_USE_EVENTFD
1076 syserr ("(libev) error creating pipe"); 1757 if (evfd >= 0)
1758 close (evfd);
1759#endif
1077 1760
1761 if (evpipe [0] >= 0)
1762 {
1763 EV_WIN32_CLOSE_FD (evpipe [0]);
1764 EV_WIN32_CLOSE_FD (evpipe [1]);
1765 }
1766
1078 siginit (EV_A); 1767 evpipe_init (EV_A);
1768 /* now iterate over everything, in case we missed something */
1769 pipecb (EV_A_ &pipe_w, EV_READ);
1079 } 1770 }
1080 1771
1081 postfork = 0; 1772 postfork = 0;
1082} 1773}
1083 1774
1084#if EV_MULTIPLICITY 1775#if EV_MULTIPLICITY
1776
1085struct ev_loop * 1777struct ev_loop *
1086ev_loop_new (unsigned int flags) 1778ev_loop_new (unsigned int flags)
1087{ 1779{
1088 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1780 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1089 1781
1090 memset (loop, 0, sizeof (struct ev_loop)); 1782 memset (EV_A, 0, sizeof (struct ev_loop));
1091
1092 loop_init (EV_A_ flags); 1783 loop_init (EV_A_ flags);
1093 1784
1094 if (ev_backend (EV_A)) 1785 if (ev_backend (EV_A))
1095 return loop; 1786 return EV_A;
1096 1787
1097 return 0; 1788 return 0;
1098} 1789}
1099 1790
1100void 1791void
1105} 1796}
1106 1797
1107void 1798void
1108ev_loop_fork (EV_P) 1799ev_loop_fork (EV_P)
1109{ 1800{
1110 postfork = 1; 1801 postfork = 1; /* must be in line with ev_default_fork */
1111} 1802}
1803#endif /* multiplicity */
1112 1804
1805#if EV_VERIFY
1806static void noinline
1807verify_watcher (EV_P_ W w)
1808{
1809 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1810
1811 if (w->pending)
1812 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1813}
1814
1815static void noinline
1816verify_heap (EV_P_ ANHE *heap, int N)
1817{
1818 int i;
1819
1820 for (i = HEAP0; i < N + HEAP0; ++i)
1821 {
1822 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1823 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1824 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1825
1826 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1827 }
1828}
1829
1830static void noinline
1831array_verify (EV_P_ W *ws, int cnt)
1832{
1833 while (cnt--)
1834 {
1835 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1836 verify_watcher (EV_A_ ws [cnt]);
1837 }
1838}
1839#endif
1840
1841#if EV_MINIMAL < 2
1842void
1843ev_loop_verify (EV_P)
1844{
1845#if EV_VERIFY
1846 int i;
1847 WL w;
1848
1849 assert (activecnt >= -1);
1850
1851 assert (fdchangemax >= fdchangecnt);
1852 for (i = 0; i < fdchangecnt; ++i)
1853 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1854
1855 assert (anfdmax >= 0);
1856 for (i = 0; i < anfdmax; ++i)
1857 for (w = anfds [i].head; w; w = w->next)
1858 {
1859 verify_watcher (EV_A_ (W)w);
1860 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1861 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1862 }
1863
1864 assert (timermax >= timercnt);
1865 verify_heap (EV_A_ timers, timercnt);
1866
1867#if EV_PERIODIC_ENABLE
1868 assert (periodicmax >= periodiccnt);
1869 verify_heap (EV_A_ periodics, periodiccnt);
1870#endif
1871
1872 for (i = NUMPRI; i--; )
1873 {
1874 assert (pendingmax [i] >= pendingcnt [i]);
1875#if EV_IDLE_ENABLE
1876 assert (idleall >= 0);
1877 assert (idlemax [i] >= idlecnt [i]);
1878 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1879#endif
1880 }
1881
1882#if EV_FORK_ENABLE
1883 assert (forkmax >= forkcnt);
1884 array_verify (EV_A_ (W *)forks, forkcnt);
1885#endif
1886
1887#if EV_ASYNC_ENABLE
1888 assert (asyncmax >= asynccnt);
1889 array_verify (EV_A_ (W *)asyncs, asynccnt);
1890#endif
1891
1892 assert (preparemax >= preparecnt);
1893 array_verify (EV_A_ (W *)prepares, preparecnt);
1894
1895 assert (checkmax >= checkcnt);
1896 array_verify (EV_A_ (W *)checks, checkcnt);
1897
1898# if 0
1899 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1900 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1901# endif
1902#endif
1903}
1113#endif 1904#endif
1114 1905
1115#if EV_MULTIPLICITY 1906#if EV_MULTIPLICITY
1116struct ev_loop * 1907struct ev_loop *
1117ev_default_loop_init (unsigned int flags) 1908ev_default_loop_init (unsigned int flags)
1118#else 1909#else
1119int 1910int
1120ev_default_loop (unsigned int flags) 1911ev_default_loop (unsigned int flags)
1121#endif 1912#endif
1122{ 1913{
1123 if (sigpipe [0] == sigpipe [1])
1124 if (pipe (sigpipe))
1125 return 0;
1126
1127 if (!ev_default_loop_ptr) 1914 if (!ev_default_loop_ptr)
1128 { 1915 {
1129#if EV_MULTIPLICITY 1916#if EV_MULTIPLICITY
1130 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1917 EV_P = ev_default_loop_ptr = &default_loop_struct;
1131#else 1918#else
1132 ev_default_loop_ptr = 1; 1919 ev_default_loop_ptr = 1;
1133#endif 1920#endif
1134 1921
1135 loop_init (EV_A_ flags); 1922 loop_init (EV_A_ flags);
1136 1923
1137 if (ev_backend (EV_A)) 1924 if (ev_backend (EV_A))
1138 { 1925 {
1139 siginit (EV_A);
1140
1141#ifndef _WIN32 1926#ifndef _WIN32
1142 ev_signal_init (&childev, childcb, SIGCHLD); 1927 ev_signal_init (&childev, childcb, SIGCHLD);
1143 ev_set_priority (&childev, EV_MAXPRI); 1928 ev_set_priority (&childev, EV_MAXPRI);
1144 ev_signal_start (EV_A_ &childev); 1929 ev_signal_start (EV_A_ &childev);
1145 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1930 ev_unref (EV_A); /* child watcher should not keep loop alive */
1154 1939
1155void 1940void
1156ev_default_destroy (void) 1941ev_default_destroy (void)
1157{ 1942{
1158#if EV_MULTIPLICITY 1943#if EV_MULTIPLICITY
1159 struct ev_loop *loop = ev_default_loop_ptr; 1944 EV_P = ev_default_loop_ptr;
1160#endif 1945#endif
1946
1947 ev_default_loop_ptr = 0;
1161 1948
1162#ifndef _WIN32 1949#ifndef _WIN32
1163 ev_ref (EV_A); /* child watcher */ 1950 ev_ref (EV_A); /* child watcher */
1164 ev_signal_stop (EV_A_ &childev); 1951 ev_signal_stop (EV_A_ &childev);
1165#endif 1952#endif
1166 1953
1167 ev_ref (EV_A); /* signal watcher */
1168 ev_io_stop (EV_A_ &sigev);
1169
1170 close (sigpipe [0]); sigpipe [0] = 0;
1171 close (sigpipe [1]); sigpipe [1] = 0;
1172
1173 loop_destroy (EV_A); 1954 loop_destroy (EV_A);
1174} 1955}
1175 1956
1176void 1957void
1177ev_default_fork (void) 1958ev_default_fork (void)
1178{ 1959{
1179#if EV_MULTIPLICITY 1960#if EV_MULTIPLICITY
1180 struct ev_loop *loop = ev_default_loop_ptr; 1961 EV_P = ev_default_loop_ptr;
1181#endif 1962#endif
1182 1963
1183 if (backend) 1964 postfork = 1; /* must be in line with ev_loop_fork */
1184 postfork = 1;
1185} 1965}
1186 1966
1187/*****************************************************************************/ 1967/*****************************************************************************/
1188 1968
1189void 1969void
1190ev_invoke (EV_P_ void *w, int revents) 1970ev_invoke (EV_P_ void *w, int revents)
1191{ 1971{
1192 EV_CB_INVOKE ((W)w, revents); 1972 EV_CB_INVOKE ((W)w, revents);
1193} 1973}
1194 1974
1195void inline_speed 1975unsigned int
1196call_pending (EV_P) 1976ev_pending_count (EV_P)
1977{
1978 int pri;
1979 unsigned int count = 0;
1980
1981 for (pri = NUMPRI; pri--; )
1982 count += pendingcnt [pri];
1983
1984 return count;
1985}
1986
1987void noinline
1988ev_invoke_pending (EV_P)
1197{ 1989{
1198 int pri; 1990 int pri;
1199 1991
1200 for (pri = NUMPRI; pri--; ) 1992 for (pri = NUMPRI; pri--; )
1201 while (pendingcnt [pri]) 1993 while (pendingcnt [pri])
1202 { 1994 {
1203 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1995 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1204 1996
1205 if (expect_true (p->w))
1206 {
1207 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1997 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1998 /* ^ this is no longer true, as pending_w could be here */
1208 1999
1209 p->w->pending = 0; 2000 p->w->pending = 0;
1210 EV_CB_INVOKE (p->w, p->events); 2001 EV_CB_INVOKE (p->w, p->events);
1211 } 2002 EV_FREQUENT_CHECK;
1212 } 2003 }
1213} 2004}
1214 2005
1215void inline_size
1216timers_reify (EV_P)
1217{
1218 while (timercnt && ((WT)timers [0])->at <= mn_now)
1219 {
1220 ev_timer *w = timers [0];
1221
1222 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1223
1224 /* first reschedule or stop timer */
1225 if (w->repeat)
1226 {
1227 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1228
1229 ((WT)w)->at += w->repeat;
1230 if (((WT)w)->at < mn_now)
1231 ((WT)w)->at = mn_now;
1232
1233 downheap ((WT *)timers, timercnt, 0);
1234 }
1235 else
1236 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1237
1238 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1239 }
1240}
1241
1242#if EV_PERIODIC_ENABLE
1243void inline_size
1244periodics_reify (EV_P)
1245{
1246 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1247 {
1248 ev_periodic *w = periodics [0];
1249
1250 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1251
1252 /* first reschedule or stop timer */
1253 if (w->reschedule_cb)
1254 {
1255 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1256 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1257 downheap ((WT *)periodics, periodiccnt, 0);
1258 }
1259 else if (w->interval)
1260 {
1261 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1262 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1263 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1264 downheap ((WT *)periodics, periodiccnt, 0);
1265 }
1266 else
1267 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1268
1269 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1270 }
1271}
1272
1273static void noinline
1274periodics_reschedule (EV_P)
1275{
1276 int i;
1277
1278 /* adjust periodics after time jump */
1279 for (i = 0; i < periodiccnt; ++i)
1280 {
1281 ev_periodic *w = periodics [i];
1282
1283 if (w->reschedule_cb)
1284 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1285 else if (w->interval)
1286 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1287 }
1288
1289 /* now rebuild the heap */
1290 for (i = periodiccnt >> 1; i--; )
1291 downheap ((WT *)periodics, periodiccnt, i);
1292}
1293#endif
1294
1295#if EV_IDLE_ENABLE 2006#if EV_IDLE_ENABLE
1296void inline_size 2007/* make idle watchers pending. this handles the "call-idle */
2008/* only when higher priorities are idle" logic */
2009inline_size void
1297idle_reify (EV_P) 2010idle_reify (EV_P)
1298{ 2011{
1299 if (expect_false (idleall)) 2012 if (expect_false (idleall))
1300 { 2013 {
1301 int pri; 2014 int pri;
1313 } 2026 }
1314 } 2027 }
1315} 2028}
1316#endif 2029#endif
1317 2030
1318void inline_speed 2031/* make timers pending */
2032inline_size void
2033timers_reify (EV_P)
2034{
2035 EV_FREQUENT_CHECK;
2036
2037 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2038 {
2039 do
2040 {
2041 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2042
2043 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2044
2045 /* first reschedule or stop timer */
2046 if (w->repeat)
2047 {
2048 ev_at (w) += w->repeat;
2049 if (ev_at (w) < mn_now)
2050 ev_at (w) = mn_now;
2051
2052 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2053
2054 ANHE_at_cache (timers [HEAP0]);
2055 downheap (timers, timercnt, HEAP0);
2056 }
2057 else
2058 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2059
2060 EV_FREQUENT_CHECK;
2061 feed_reverse (EV_A_ (W)w);
2062 }
2063 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2064
2065 feed_reverse_done (EV_A_ EV_TIMEOUT);
2066 }
2067}
2068
2069#if EV_PERIODIC_ENABLE
2070/* make periodics pending */
2071inline_size void
2072periodics_reify (EV_P)
2073{
2074 EV_FREQUENT_CHECK;
2075
2076 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2077 {
2078 int feed_count = 0;
2079
2080 do
2081 {
2082 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2083
2084 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2085
2086 /* first reschedule or stop timer */
2087 if (w->reschedule_cb)
2088 {
2089 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2090
2091 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2092
2093 ANHE_at_cache (periodics [HEAP0]);
2094 downheap (periodics, periodiccnt, HEAP0);
2095 }
2096 else if (w->interval)
2097 {
2098 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2099 /* if next trigger time is not sufficiently in the future, put it there */
2100 /* this might happen because of floating point inexactness */
2101 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2102 {
2103 ev_at (w) += w->interval;
2104
2105 /* if interval is unreasonably low we might still have a time in the past */
2106 /* so correct this. this will make the periodic very inexact, but the user */
2107 /* has effectively asked to get triggered more often than possible */
2108 if (ev_at (w) < ev_rt_now)
2109 ev_at (w) = ev_rt_now;
2110 }
2111
2112 ANHE_at_cache (periodics [HEAP0]);
2113 downheap (periodics, periodiccnt, HEAP0);
2114 }
2115 else
2116 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2117
2118 EV_FREQUENT_CHECK;
2119 feed_reverse (EV_A_ (W)w);
2120 }
2121 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2122
2123 feed_reverse_done (EV_A_ EV_PERIODIC);
2124 }
2125}
2126
2127/* simply recalculate all periodics */
2128/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2129static void noinline
2130periodics_reschedule (EV_P)
2131{
2132 int i;
2133
2134 /* adjust periodics after time jump */
2135 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2136 {
2137 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2138
2139 if (w->reschedule_cb)
2140 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2141 else if (w->interval)
2142 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2143
2144 ANHE_at_cache (periodics [i]);
2145 }
2146
2147 reheap (periodics, periodiccnt);
2148}
2149#endif
2150
2151/* adjust all timers by a given offset */
2152static void noinline
2153timers_reschedule (EV_P_ ev_tstamp adjust)
2154{
2155 int i;
2156
2157 for (i = 0; i < timercnt; ++i)
2158 {
2159 ANHE *he = timers + i + HEAP0;
2160 ANHE_w (*he)->at += adjust;
2161 ANHE_at_cache (*he);
2162 }
2163}
2164
2165/* fetch new monotonic and realtime times from the kernel */
2166/* also detetc if there was a timejump, and act accordingly */
2167inline_speed void
1319time_update (EV_P_ ev_tstamp max_block) 2168time_update (EV_P_ ev_tstamp max_block)
1320{ 2169{
1321 int i;
1322
1323#if EV_USE_MONOTONIC 2170#if EV_USE_MONOTONIC
1324 if (expect_true (have_monotonic)) 2171 if (expect_true (have_monotonic))
1325 { 2172 {
2173 int i;
1326 ev_tstamp odiff = rtmn_diff; 2174 ev_tstamp odiff = rtmn_diff;
1327 2175
1328 mn_now = get_clock (); 2176 mn_now = get_clock ();
1329 2177
1330 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2178 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1348 */ 2196 */
1349 for (i = 4; --i; ) 2197 for (i = 4; --i; )
1350 { 2198 {
1351 rtmn_diff = ev_rt_now - mn_now; 2199 rtmn_diff = ev_rt_now - mn_now;
1352 2200
1353 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2201 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1354 return; /* all is well */ 2202 return; /* all is well */
1355 2203
1356 ev_rt_now = ev_time (); 2204 ev_rt_now = ev_time ();
1357 mn_now = get_clock (); 2205 mn_now = get_clock ();
1358 now_floor = mn_now; 2206 now_floor = mn_now;
1359 } 2207 }
1360 2208
2209 /* no timer adjustment, as the monotonic clock doesn't jump */
2210 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1361# if EV_PERIODIC_ENABLE 2211# if EV_PERIODIC_ENABLE
1362 periodics_reschedule (EV_A); 2212 periodics_reschedule (EV_A);
1363# endif 2213# endif
1364 /* no timer adjustment, as the monotonic clock doesn't jump */
1365 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1366 } 2214 }
1367 else 2215 else
1368#endif 2216#endif
1369 { 2217 {
1370 ev_rt_now = ev_time (); 2218 ev_rt_now = ev_time ();
1371 2219
1372 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2220 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1373 { 2221 {
2222 /* adjust timers. this is easy, as the offset is the same for all of them */
2223 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1374#if EV_PERIODIC_ENABLE 2224#if EV_PERIODIC_ENABLE
1375 periodics_reschedule (EV_A); 2225 periodics_reschedule (EV_A);
1376#endif 2226#endif
1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i)
1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1380 } 2227 }
1381 2228
1382 mn_now = ev_rt_now; 2229 mn_now = ev_rt_now;
1383 } 2230 }
1384} 2231}
1385 2232
1386void 2233void
1387ev_ref (EV_P)
1388{
1389 ++activecnt;
1390}
1391
1392void
1393ev_unref (EV_P)
1394{
1395 --activecnt;
1396}
1397
1398static int loop_done;
1399
1400void
1401ev_loop (EV_P_ int flags) 2234ev_loop (EV_P_ int flags)
1402{ 2235{
1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 2236#if EV_MINIMAL < 2
1404 ? EVUNLOOP_ONE 2237 ++loop_depth;
1405 : EVUNLOOP_CANCEL; 2238#endif
1406 2239
2240 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2241
2242 loop_done = EVUNLOOP_CANCEL;
2243
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2244 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1408 2245
1409 do 2246 do
1410 { 2247 {
2248#if EV_VERIFY >= 2
2249 ev_loop_verify (EV_A);
2250#endif
2251
1411#ifndef _WIN32 2252#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */ 2253 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid)) 2254 if (expect_false (getpid () != curpid))
1414 { 2255 {
1415 curpid = getpid (); 2256 curpid = getpid ();
1421 /* we might have forked, so queue fork handlers */ 2262 /* we might have forked, so queue fork handlers */
1422 if (expect_false (postfork)) 2263 if (expect_false (postfork))
1423 if (forkcnt) 2264 if (forkcnt)
1424 { 2265 {
1425 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2266 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1426 call_pending (EV_A); 2267 EV_INVOKE_PENDING;
1427 } 2268 }
1428#endif 2269#endif
1429 2270
1430 /* queue prepare watchers (and execute them) */ 2271 /* queue prepare watchers (and execute them) */
1431 if (expect_false (preparecnt)) 2272 if (expect_false (preparecnt))
1432 { 2273 {
1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2274 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1434 call_pending (EV_A); 2275 EV_INVOKE_PENDING;
1435 } 2276 }
1436 2277
1437 if (expect_false (!activecnt)) 2278 if (expect_false (loop_done))
1438 break; 2279 break;
1439 2280
1440 /* we might have forked, so reify kernel state if necessary */ 2281 /* we might have forked, so reify kernel state if necessary */
1441 if (expect_false (postfork)) 2282 if (expect_false (postfork))
1442 loop_fork (EV_A); 2283 loop_fork (EV_A);
1444 /* update fd-related kernel structures */ 2285 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 2286 fd_reify (EV_A);
1446 2287
1447 /* calculate blocking time */ 2288 /* calculate blocking time */
1448 { 2289 {
1449 ev_tstamp block; 2290 ev_tstamp waittime = 0.;
2291 ev_tstamp sleeptime = 0.;
1450 2292
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 2293 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 2294 {
2295 /* remember old timestamp for io_blocktime calculation */
2296 ev_tstamp prev_mn_now = mn_now;
2297
1455 /* update time to cancel out callback processing overhead */ 2298 /* update time to cancel out callback processing overhead */
1456 time_update (EV_A_ 1e100); 2299 time_update (EV_A_ 1e100);
1457 2300
1458 block = MAX_BLOCKTIME; 2301 waittime = MAX_BLOCKTIME;
1459 2302
1460 if (timercnt) 2303 if (timercnt)
1461 { 2304 {
1462 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2305 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1463 if (block > to) block = to; 2306 if (waittime > to) waittime = to;
1464 } 2307 }
1465 2308
1466#if EV_PERIODIC_ENABLE 2309#if EV_PERIODIC_ENABLE
1467 if (periodiccnt) 2310 if (periodiccnt)
1468 { 2311 {
1469 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2312 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1470 if (block > to) block = to; 2313 if (waittime > to) waittime = to;
1471 } 2314 }
1472#endif 2315#endif
1473 2316
2317 /* don't let timeouts decrease the waittime below timeout_blocktime */
2318 if (expect_false (waittime < timeout_blocktime))
2319 waittime = timeout_blocktime;
2320
2321 /* extra check because io_blocktime is commonly 0 */
1474 if (expect_false (block < 0.)) block = 0.; 2322 if (expect_false (io_blocktime))
2323 {
2324 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2325
2326 if (sleeptime > waittime - backend_fudge)
2327 sleeptime = waittime - backend_fudge;
2328
2329 if (expect_true (sleeptime > 0.))
2330 {
2331 ev_sleep (sleeptime);
2332 waittime -= sleeptime;
2333 }
2334 }
1475 } 2335 }
1476 2336
2337#if EV_MINIMAL < 2
1477 ++loop_count; 2338 ++loop_count;
2339#endif
2340 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1478 backend_poll (EV_A_ block); 2341 backend_poll (EV_A_ waittime);
2342 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1479 2343
1480 /* update ev_rt_now, do magic */ 2344 /* update ev_rt_now, do magic */
1481 time_update (EV_A_ block); 2345 time_update (EV_A_ waittime + sleeptime);
1482 } 2346 }
1483 2347
1484 /* queue pending timers and reschedule them */ 2348 /* queue pending timers and reschedule them */
1485 timers_reify (EV_A); /* relative timers called last */ 2349 timers_reify (EV_A); /* relative timers called last */
1486#if EV_PERIODIC_ENABLE 2350#if EV_PERIODIC_ENABLE
1494 2358
1495 /* queue check watchers, to be executed first */ 2359 /* queue check watchers, to be executed first */
1496 if (expect_false (checkcnt)) 2360 if (expect_false (checkcnt))
1497 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2361 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1498 2362
1499 call_pending (EV_A); 2363 EV_INVOKE_PENDING;
1500
1501 } 2364 }
1502 while (expect_true (activecnt && !loop_done)); 2365 while (expect_true (
2366 activecnt
2367 && !loop_done
2368 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2369 ));
1503 2370
1504 if (loop_done == EVUNLOOP_ONE) 2371 if (loop_done == EVUNLOOP_ONE)
1505 loop_done = EVUNLOOP_CANCEL; 2372 loop_done = EVUNLOOP_CANCEL;
2373
2374#if EV_MINIMAL < 2
2375 --loop_depth;
2376#endif
1506} 2377}
1507 2378
1508void 2379void
1509ev_unloop (EV_P_ int how) 2380ev_unloop (EV_P_ int how)
1510{ 2381{
1511 loop_done = how; 2382 loop_done = how;
1512} 2383}
1513 2384
2385void
2386ev_ref (EV_P)
2387{
2388 ++activecnt;
2389}
2390
2391void
2392ev_unref (EV_P)
2393{
2394 --activecnt;
2395}
2396
2397void
2398ev_now_update (EV_P)
2399{
2400 time_update (EV_A_ 1e100);
2401}
2402
2403void
2404ev_suspend (EV_P)
2405{
2406 ev_now_update (EV_A);
2407}
2408
2409void
2410ev_resume (EV_P)
2411{
2412 ev_tstamp mn_prev = mn_now;
2413
2414 ev_now_update (EV_A);
2415 timers_reschedule (EV_A_ mn_now - mn_prev);
2416#if EV_PERIODIC_ENABLE
2417 /* TODO: really do this? */
2418 periodics_reschedule (EV_A);
2419#endif
2420}
2421
1514/*****************************************************************************/ 2422/*****************************************************************************/
2423/* singly-linked list management, used when the expected list length is short */
1515 2424
1516void inline_size 2425inline_size void
1517wlist_add (WL *head, WL elem) 2426wlist_add (WL *head, WL elem)
1518{ 2427{
1519 elem->next = *head; 2428 elem->next = *head;
1520 *head = elem; 2429 *head = elem;
1521} 2430}
1522 2431
1523void inline_size 2432inline_size void
1524wlist_del (WL *head, WL elem) 2433wlist_del (WL *head, WL elem)
1525{ 2434{
1526 while (*head) 2435 while (*head)
1527 { 2436 {
1528 if (*head == elem) 2437 if (expect_true (*head == elem))
1529 { 2438 {
1530 *head = elem->next; 2439 *head = elem->next;
1531 return; 2440 break;
1532 } 2441 }
1533 2442
1534 head = &(*head)->next; 2443 head = &(*head)->next;
1535 } 2444 }
1536} 2445}
1537 2446
1538void inline_speed 2447/* internal, faster, version of ev_clear_pending */
2448inline_speed void
1539clear_pending (EV_P_ W w) 2449clear_pending (EV_P_ W w)
1540{ 2450{
1541 if (w->pending) 2451 if (w->pending)
1542 { 2452 {
1543 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2453 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1544 w->pending = 0; 2454 w->pending = 0;
1545 } 2455 }
1546} 2456}
1547 2457
1548int 2458int
1552 int pending = w_->pending; 2462 int pending = w_->pending;
1553 2463
1554 if (expect_true (pending)) 2464 if (expect_true (pending))
1555 { 2465 {
1556 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2466 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2467 p->w = (W)&pending_w;
1557 w_->pending = 0; 2468 w_->pending = 0;
1558 p->w = 0;
1559 return p->events; 2469 return p->events;
1560 } 2470 }
1561 else 2471 else
1562 return 0; 2472 return 0;
1563} 2473}
1564 2474
1565void inline_size 2475inline_size void
1566pri_adjust (EV_P_ W w) 2476pri_adjust (EV_P_ W w)
1567{ 2477{
1568 int pri = w->priority; 2478 int pri = ev_priority (w);
1569 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2479 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1570 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2480 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1571 w->priority = pri; 2481 ev_set_priority (w, pri);
1572} 2482}
1573 2483
1574void inline_speed 2484inline_speed void
1575ev_start (EV_P_ W w, int active) 2485ev_start (EV_P_ W w, int active)
1576{ 2486{
1577 pri_adjust (EV_A_ w); 2487 pri_adjust (EV_A_ w);
1578 w->active = active; 2488 w->active = active;
1579 ev_ref (EV_A); 2489 ev_ref (EV_A);
1580} 2490}
1581 2491
1582void inline_size 2492inline_size void
1583ev_stop (EV_P_ W w) 2493ev_stop (EV_P_ W w)
1584{ 2494{
1585 ev_unref (EV_A); 2495 ev_unref (EV_A);
1586 w->active = 0; 2496 w->active = 0;
1587} 2497}
1594 int fd = w->fd; 2504 int fd = w->fd;
1595 2505
1596 if (expect_false (ev_is_active (w))) 2506 if (expect_false (ev_is_active (w)))
1597 return; 2507 return;
1598 2508
1599 assert (("ev_io_start called with negative fd", fd >= 0)); 2509 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2510 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2511
2512 EV_FREQUENT_CHECK;
1600 2513
1601 ev_start (EV_A_ (W)w, 1); 2514 ev_start (EV_A_ (W)w, 1);
1602 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2515 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1603 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2516 wlist_add (&anfds[fd].head, (WL)w);
1604 2517
1605 fd_change (EV_A_ fd); 2518 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
2519 w->events &= ~EV__IOFDSET;
2520
2521 EV_FREQUENT_CHECK;
1606} 2522}
1607 2523
1608void noinline 2524void noinline
1609ev_io_stop (EV_P_ ev_io *w) 2525ev_io_stop (EV_P_ ev_io *w)
1610{ 2526{
1611 clear_pending (EV_A_ (W)w); 2527 clear_pending (EV_A_ (W)w);
1612 if (expect_false (!ev_is_active (w))) 2528 if (expect_false (!ev_is_active (w)))
1613 return; 2529 return;
1614 2530
1615 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2531 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1616 2532
2533 EV_FREQUENT_CHECK;
2534
1617 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2535 wlist_del (&anfds[w->fd].head, (WL)w);
1618 ev_stop (EV_A_ (W)w); 2536 ev_stop (EV_A_ (W)w);
1619 2537
1620 fd_change (EV_A_ w->fd); 2538 fd_change (EV_A_ w->fd, 1);
2539
2540 EV_FREQUENT_CHECK;
1621} 2541}
1622 2542
1623void noinline 2543void noinline
1624ev_timer_start (EV_P_ ev_timer *w) 2544ev_timer_start (EV_P_ ev_timer *w)
1625{ 2545{
1626 if (expect_false (ev_is_active (w))) 2546 if (expect_false (ev_is_active (w)))
1627 return; 2547 return;
1628 2548
1629 ((WT)w)->at += mn_now; 2549 ev_at (w) += mn_now;
1630 2550
1631 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2551 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1632 2552
2553 EV_FREQUENT_CHECK;
2554
2555 ++timercnt;
1633 ev_start (EV_A_ (W)w, ++timercnt); 2556 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1634 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2557 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1635 timers [timercnt - 1] = w; 2558 ANHE_w (timers [ev_active (w)]) = (WT)w;
1636 upheap ((WT *)timers, timercnt - 1); 2559 ANHE_at_cache (timers [ev_active (w)]);
2560 upheap (timers, ev_active (w));
1637 2561
2562 EV_FREQUENT_CHECK;
2563
1638 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2564 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1639} 2565}
1640 2566
1641void noinline 2567void noinline
1642ev_timer_stop (EV_P_ ev_timer *w) 2568ev_timer_stop (EV_P_ ev_timer *w)
1643{ 2569{
1644 clear_pending (EV_A_ (W)w); 2570 clear_pending (EV_A_ (W)w);
1645 if (expect_false (!ev_is_active (w))) 2571 if (expect_false (!ev_is_active (w)))
1646 return; 2572 return;
1647 2573
1648 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2574 EV_FREQUENT_CHECK;
1649 2575
1650 { 2576 {
1651 int active = ((W)w)->active; 2577 int active = ev_active (w);
1652 2578
2579 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2580
2581 --timercnt;
2582
1653 if (expect_true (--active < --timercnt)) 2583 if (expect_true (active < timercnt + HEAP0))
1654 { 2584 {
1655 timers [active] = timers [timercnt]; 2585 timers [active] = timers [timercnt + HEAP0];
1656 adjustheap ((WT *)timers, timercnt, active); 2586 adjustheap (timers, timercnt, active);
1657 } 2587 }
1658 } 2588 }
1659 2589
1660 ((WT)w)->at -= mn_now; 2590 EV_FREQUENT_CHECK;
2591
2592 ev_at (w) -= mn_now;
1661 2593
1662 ev_stop (EV_A_ (W)w); 2594 ev_stop (EV_A_ (W)w);
1663} 2595}
1664 2596
1665void noinline 2597void noinline
1666ev_timer_again (EV_P_ ev_timer *w) 2598ev_timer_again (EV_P_ ev_timer *w)
1667{ 2599{
2600 EV_FREQUENT_CHECK;
2601
1668 if (ev_is_active (w)) 2602 if (ev_is_active (w))
1669 { 2603 {
1670 if (w->repeat) 2604 if (w->repeat)
1671 { 2605 {
1672 ((WT)w)->at = mn_now + w->repeat; 2606 ev_at (w) = mn_now + w->repeat;
2607 ANHE_at_cache (timers [ev_active (w)]);
1673 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2608 adjustheap (timers, timercnt, ev_active (w));
1674 } 2609 }
1675 else 2610 else
1676 ev_timer_stop (EV_A_ w); 2611 ev_timer_stop (EV_A_ w);
1677 } 2612 }
1678 else if (w->repeat) 2613 else if (w->repeat)
1679 { 2614 {
1680 w->at = w->repeat; 2615 ev_at (w) = w->repeat;
1681 ev_timer_start (EV_A_ w); 2616 ev_timer_start (EV_A_ w);
1682 } 2617 }
2618
2619 EV_FREQUENT_CHECK;
2620}
2621
2622ev_tstamp
2623ev_timer_remaining (EV_P_ ev_timer *w)
2624{
2625 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1683} 2626}
1684 2627
1685#if EV_PERIODIC_ENABLE 2628#if EV_PERIODIC_ENABLE
1686void noinline 2629void noinline
1687ev_periodic_start (EV_P_ ev_periodic *w) 2630ev_periodic_start (EV_P_ ev_periodic *w)
1688{ 2631{
1689 if (expect_false (ev_is_active (w))) 2632 if (expect_false (ev_is_active (w)))
1690 return; 2633 return;
1691 2634
1692 if (w->reschedule_cb) 2635 if (w->reschedule_cb)
1693 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2636 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1694 else if (w->interval) 2637 else if (w->interval)
1695 { 2638 {
1696 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2639 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1697 /* this formula differs from the one in periodic_reify because we do not always round up */ 2640 /* this formula differs from the one in periodic_reify because we do not always round up */
1698 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2641 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1699 } 2642 }
1700 else 2643 else
1701 ((WT)w)->at = w->offset; 2644 ev_at (w) = w->offset;
1702 2645
2646 EV_FREQUENT_CHECK;
2647
2648 ++periodiccnt;
1703 ev_start (EV_A_ (W)w, ++periodiccnt); 2649 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1704 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2650 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1705 periodics [periodiccnt - 1] = w; 2651 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1706 upheap ((WT *)periodics, periodiccnt - 1); 2652 ANHE_at_cache (periodics [ev_active (w)]);
2653 upheap (periodics, ev_active (w));
1707 2654
2655 EV_FREQUENT_CHECK;
2656
1708 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2657 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1709} 2658}
1710 2659
1711void noinline 2660void noinline
1712ev_periodic_stop (EV_P_ ev_periodic *w) 2661ev_periodic_stop (EV_P_ ev_periodic *w)
1713{ 2662{
1714 clear_pending (EV_A_ (W)w); 2663 clear_pending (EV_A_ (W)w);
1715 if (expect_false (!ev_is_active (w))) 2664 if (expect_false (!ev_is_active (w)))
1716 return; 2665 return;
1717 2666
1718 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2667 EV_FREQUENT_CHECK;
1719 2668
1720 { 2669 {
1721 int active = ((W)w)->active; 2670 int active = ev_active (w);
1722 2671
2672 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2673
2674 --periodiccnt;
2675
1723 if (expect_true (--active < --periodiccnt)) 2676 if (expect_true (active < periodiccnt + HEAP0))
1724 { 2677 {
1725 periodics [active] = periodics [periodiccnt]; 2678 periodics [active] = periodics [periodiccnt + HEAP0];
1726 adjustheap ((WT *)periodics, periodiccnt, active); 2679 adjustheap (periodics, periodiccnt, active);
1727 } 2680 }
1728 } 2681 }
2682
2683 EV_FREQUENT_CHECK;
1729 2684
1730 ev_stop (EV_A_ (W)w); 2685 ev_stop (EV_A_ (W)w);
1731} 2686}
1732 2687
1733void noinline 2688void noinline
1744#endif 2699#endif
1745 2700
1746void noinline 2701void noinline
1747ev_signal_start (EV_P_ ev_signal *w) 2702ev_signal_start (EV_P_ ev_signal *w)
1748{ 2703{
1749#if EV_MULTIPLICITY
1750 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1751#endif
1752 if (expect_false (ev_is_active (w))) 2704 if (expect_false (ev_is_active (w)))
1753 return; 2705 return;
1754 2706
1755 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2707 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2708
2709#if EV_MULTIPLICITY
2710 assert (("libev: a signal must not be attached to two different loops",
2711 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2712
2713 signals [w->signum - 1].loop = EV_A;
2714#endif
2715
2716 EV_FREQUENT_CHECK;
2717
2718#if EV_USE_SIGNALFD
2719 if (sigfd == -2)
2720 {
2721 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2722 if (sigfd < 0 && errno == EINVAL)
2723 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2724
2725 if (sigfd >= 0)
2726 {
2727 fd_intern (sigfd); /* doing it twice will not hurt */
2728
2729 sigemptyset (&sigfd_set);
2730
2731 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2732 ev_set_priority (&sigfd_w, EV_MAXPRI);
2733 ev_io_start (EV_A_ &sigfd_w);
2734 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2735 }
2736 }
2737
2738 if (sigfd >= 0)
2739 {
2740 /* TODO: check .head */
2741 sigaddset (&sigfd_set, w->signum);
2742 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2743
2744 signalfd (sigfd, &sigfd_set, 0);
2745 }
2746#endif
1756 2747
1757 ev_start (EV_A_ (W)w, 1); 2748 ev_start (EV_A_ (W)w, 1);
1758 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1759 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2749 wlist_add (&signals [w->signum - 1].head, (WL)w);
1760 2750
1761 if (!((WL)w)->next) 2751 if (!((WL)w)->next)
2752# if EV_USE_SIGNALFD
2753 if (sigfd < 0) /*TODO*/
2754# endif
1762 { 2755 {
1763#if _WIN32 2756# if _WIN32
1764 signal (w->signum, sighandler); 2757 signal (w->signum, ev_sighandler);
1765#else 2758# else
1766 struct sigaction sa; 2759 struct sigaction sa;
2760
2761 evpipe_init (EV_A);
2762
1767 sa.sa_handler = sighandler; 2763 sa.sa_handler = ev_sighandler;
1768 sigfillset (&sa.sa_mask); 2764 sigfillset (&sa.sa_mask);
1769 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2765 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1770 sigaction (w->signum, &sa, 0); 2766 sigaction (w->signum, &sa, 0);
2767
2768 sigemptyset (&sa.sa_mask);
2769 sigaddset (&sa.sa_mask, w->signum);
2770 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
1771#endif 2771#endif
1772 } 2772 }
2773
2774 EV_FREQUENT_CHECK;
1773} 2775}
1774 2776
1775void noinline 2777void noinline
1776ev_signal_stop (EV_P_ ev_signal *w) 2778ev_signal_stop (EV_P_ ev_signal *w)
1777{ 2779{
1778 clear_pending (EV_A_ (W)w); 2780 clear_pending (EV_A_ (W)w);
1779 if (expect_false (!ev_is_active (w))) 2781 if (expect_false (!ev_is_active (w)))
1780 return; 2782 return;
1781 2783
2784 EV_FREQUENT_CHECK;
2785
1782 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2786 wlist_del (&signals [w->signum - 1].head, (WL)w);
1783 ev_stop (EV_A_ (W)w); 2787 ev_stop (EV_A_ (W)w);
1784 2788
1785 if (!signals [w->signum - 1].head) 2789 if (!signals [w->signum - 1].head)
2790 {
2791#if EV_MULTIPLICITY
2792 signals [w->signum - 1].loop = 0; /* unattach from signal */
2793#endif
2794#if EV_USE_SIGNALFD
2795 if (sigfd >= 0)
2796 {
2797 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2798 sigdelset (&sigfd_set, w->signum);
2799 signalfd (sigfd, &sigfd_set, 0);
2800 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2801 /*TODO: maybe unblock signal? */
2802 }
2803 else
2804#endif
1786 signal (w->signum, SIG_DFL); 2805 signal (w->signum, SIG_DFL);
2806 }
2807
2808 EV_FREQUENT_CHECK;
1787} 2809}
1788 2810
1789void 2811void
1790ev_child_start (EV_P_ ev_child *w) 2812ev_child_start (EV_P_ ev_child *w)
1791{ 2813{
1792#if EV_MULTIPLICITY 2814#if EV_MULTIPLICITY
1793 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2815 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1794#endif 2816#endif
1795 if (expect_false (ev_is_active (w))) 2817 if (expect_false (ev_is_active (w)))
1796 return; 2818 return;
1797 2819
2820 EV_FREQUENT_CHECK;
2821
1798 ev_start (EV_A_ (W)w, 1); 2822 ev_start (EV_A_ (W)w, 1);
1799 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2823 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2824
2825 EV_FREQUENT_CHECK;
1800} 2826}
1801 2827
1802void 2828void
1803ev_child_stop (EV_P_ ev_child *w) 2829ev_child_stop (EV_P_ ev_child *w)
1804{ 2830{
1805 clear_pending (EV_A_ (W)w); 2831 clear_pending (EV_A_ (W)w);
1806 if (expect_false (!ev_is_active (w))) 2832 if (expect_false (!ev_is_active (w)))
1807 return; 2833 return;
1808 2834
2835 EV_FREQUENT_CHECK;
2836
1809 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2837 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1810 ev_stop (EV_A_ (W)w); 2838 ev_stop (EV_A_ (W)w);
2839
2840 EV_FREQUENT_CHECK;
1811} 2841}
1812 2842
1813#if EV_STAT_ENABLE 2843#if EV_STAT_ENABLE
1814 2844
1815# ifdef _WIN32 2845# ifdef _WIN32
1816# undef lstat 2846# undef lstat
1817# define lstat(a,b) _stati64 (a,b) 2847# define lstat(a,b) _stati64 (a,b)
1818# endif 2848# endif
1819 2849
1820#define DEF_STAT_INTERVAL 5.0074891 2850#define DEF_STAT_INTERVAL 5.0074891
2851#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
1821#define MIN_STAT_INTERVAL 0.1074891 2852#define MIN_STAT_INTERVAL 0.1074891
1822 2853
1823static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2854static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1824 2855
1825#if EV_USE_INOTIFY 2856#if EV_USE_INOTIFY
1826# define EV_INOTIFY_BUFSIZE 8192 2857# define EV_INOTIFY_BUFSIZE 8192
1830{ 2861{
1831 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2862 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1832 2863
1833 if (w->wd < 0) 2864 if (w->wd < 0)
1834 { 2865 {
2866 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
1835 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2867 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1836 2868
1837 /* monitor some parent directory for speedup hints */ 2869 /* monitor some parent directory for speedup hints */
2870 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2871 /* but an efficiency issue only */
1838 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2872 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1839 { 2873 {
1840 char path [4096]; 2874 char path [4096];
1841 strcpy (path, w->path); 2875 strcpy (path, w->path);
1842 2876
1845 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2879 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1846 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2880 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1847 2881
1848 char *pend = strrchr (path, '/'); 2882 char *pend = strrchr (path, '/');
1849 2883
1850 if (!pend) 2884 if (!pend || pend == path)
1851 break; /* whoops, no '/', complain to your admin */ 2885 break;
1852 2886
1853 *pend = 0; 2887 *pend = 0;
1854 w->wd = inotify_add_watch (fs_fd, path, mask); 2888 w->wd = inotify_add_watch (fs_fd, path, mask);
1855 } 2889 }
1856 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2890 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1857 } 2891 }
1858 } 2892 }
1859 else
1860 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1861 2893
1862 if (w->wd >= 0) 2894 if (w->wd >= 0)
2895 {
2896 struct statfs sfs;
2897
1863 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2898 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2899
2900 /* now local changes will be tracked by inotify, but remote changes won't */
2901 /* unless the filesystem it known to be local, we therefore still poll */
2902 /* also do poll on <2.6.25, but with normal frequency */
2903
2904 if (fs_2625 && !statfs (w->path, &sfs))
2905 if (sfs.f_type == 0x1373 /* devfs */
2906 || sfs.f_type == 0xEF53 /* ext2/3 */
2907 || sfs.f_type == 0x3153464a /* jfs */
2908 || sfs.f_type == 0x52654973 /* reiser3 */
2909 || sfs.f_type == 0x01021994 /* tempfs */
2910 || sfs.f_type == 0x58465342 /* xfs */)
2911 return;
2912
2913 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2914 ev_timer_again (EV_A_ &w->timer);
2915 }
1864} 2916}
1865 2917
1866static void noinline 2918static void noinline
1867infy_del (EV_P_ ev_stat *w) 2919infy_del (EV_P_ ev_stat *w)
1868{ 2920{
1882 2934
1883static void noinline 2935static void noinline
1884infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2936infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1885{ 2937{
1886 if (slot < 0) 2938 if (slot < 0)
1887 /* overflow, need to check for all hahs slots */ 2939 /* overflow, need to check for all hash slots */
1888 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2940 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1889 infy_wd (EV_A_ slot, wd, ev); 2941 infy_wd (EV_A_ slot, wd, ev);
1890 else 2942 else
1891 { 2943 {
1892 WL w_; 2944 WL w_;
1898 2950
1899 if (w->wd == wd || wd == -1) 2951 if (w->wd == wd || wd == -1)
1900 { 2952 {
1901 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2953 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1902 { 2954 {
2955 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1903 w->wd = -1; 2956 w->wd = -1;
1904 infy_add (EV_A_ w); /* re-add, no matter what */ 2957 infy_add (EV_A_ w); /* re-add, no matter what */
1905 } 2958 }
1906 2959
1907 stat_timer_cb (EV_A_ &w->timer, 0); 2960 stat_timer_cb (EV_A_ &w->timer, 0);
1920 2973
1921 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2974 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1922 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2975 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1923} 2976}
1924 2977
1925void inline_size 2978inline_size void
2979check_2625 (EV_P)
2980{
2981 /* kernels < 2.6.25 are borked
2982 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2983 */
2984 struct utsname buf;
2985 int major, minor, micro;
2986
2987 if (uname (&buf))
2988 return;
2989
2990 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2991 return;
2992
2993 if (major < 2
2994 || (major == 2 && minor < 6)
2995 || (major == 2 && minor == 6 && micro < 25))
2996 return;
2997
2998 fs_2625 = 1;
2999}
3000
3001inline_size int
3002infy_newfd (void)
3003{
3004#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3005 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3006 if (fd >= 0)
3007 return fd;
3008#endif
3009 return inotify_init ();
3010}
3011
3012inline_size void
1926infy_init (EV_P) 3013infy_init (EV_P)
1927{ 3014{
1928 if (fs_fd != -2) 3015 if (fs_fd != -2)
1929 return; 3016 return;
1930 3017
3018 fs_fd = -1;
3019
3020 check_2625 (EV_A);
3021
1931 fs_fd = inotify_init (); 3022 fs_fd = infy_newfd ();
1932 3023
1933 if (fs_fd >= 0) 3024 if (fs_fd >= 0)
1934 { 3025 {
3026 fd_intern (fs_fd);
1935 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3027 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1936 ev_set_priority (&fs_w, EV_MAXPRI); 3028 ev_set_priority (&fs_w, EV_MAXPRI);
1937 ev_io_start (EV_A_ &fs_w); 3029 ev_io_start (EV_A_ &fs_w);
1938 } 3030 }
1939} 3031}
1940 3032
1941void inline_size 3033inline_size void
1942infy_fork (EV_P) 3034infy_fork (EV_P)
1943{ 3035{
1944 int slot; 3036 int slot;
1945 3037
1946 if (fs_fd < 0) 3038 if (fs_fd < 0)
1947 return; 3039 return;
1948 3040
3041 ev_io_stop (EV_A_ &fs_w);
1949 close (fs_fd); 3042 close (fs_fd);
1950 fs_fd = inotify_init (); 3043 fs_fd = infy_newfd ();
3044
3045 if (fs_fd >= 0)
3046 {
3047 fd_intern (fs_fd);
3048 ev_io_set (&fs_w, fs_fd, EV_READ);
3049 ev_io_start (EV_A_ &fs_w);
3050 }
1951 3051
1952 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3052 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1953 { 3053 {
1954 WL w_ = fs_hash [slot].head; 3054 WL w_ = fs_hash [slot].head;
1955 fs_hash [slot].head = 0; 3055 fs_hash [slot].head = 0;
1962 w->wd = -1; 3062 w->wd = -1;
1963 3063
1964 if (fs_fd >= 0) 3064 if (fs_fd >= 0)
1965 infy_add (EV_A_ w); /* re-add, no matter what */ 3065 infy_add (EV_A_ w); /* re-add, no matter what */
1966 else 3066 else
1967 ev_timer_start (EV_A_ &w->timer); 3067 ev_timer_again (EV_A_ &w->timer);
1968 } 3068 }
1969
1970 } 3069 }
1971} 3070}
1972 3071
3072#endif
3073
3074#ifdef _WIN32
3075# define EV_LSTAT(p,b) _stati64 (p, b)
3076#else
3077# define EV_LSTAT(p,b) lstat (p, b)
1973#endif 3078#endif
1974 3079
1975void 3080void
1976ev_stat_stat (EV_P_ ev_stat *w) 3081ev_stat_stat (EV_P_ ev_stat *w)
1977{ 3082{
2004 || w->prev.st_atime != w->attr.st_atime 3109 || w->prev.st_atime != w->attr.st_atime
2005 || w->prev.st_mtime != w->attr.st_mtime 3110 || w->prev.st_mtime != w->attr.st_mtime
2006 || w->prev.st_ctime != w->attr.st_ctime 3111 || w->prev.st_ctime != w->attr.st_ctime
2007 ) { 3112 ) {
2008 #if EV_USE_INOTIFY 3113 #if EV_USE_INOTIFY
3114 if (fs_fd >= 0)
3115 {
2009 infy_del (EV_A_ w); 3116 infy_del (EV_A_ w);
2010 infy_add (EV_A_ w); 3117 infy_add (EV_A_ w);
2011 ev_stat_stat (EV_A_ w); /* avoid race... */ 3118 ev_stat_stat (EV_A_ w); /* avoid race... */
3119 }
2012 #endif 3120 #endif
2013 3121
2014 ev_feed_event (EV_A_ w, EV_STAT); 3122 ev_feed_event (EV_A_ w, EV_STAT);
2015 } 3123 }
2016} 3124}
2019ev_stat_start (EV_P_ ev_stat *w) 3127ev_stat_start (EV_P_ ev_stat *w)
2020{ 3128{
2021 if (expect_false (ev_is_active (w))) 3129 if (expect_false (ev_is_active (w)))
2022 return; 3130 return;
2023 3131
2024 /* since we use memcmp, we need to clear any padding data etc. */
2025 memset (&w->prev, 0, sizeof (ev_statdata));
2026 memset (&w->attr, 0, sizeof (ev_statdata));
2027
2028 ev_stat_stat (EV_A_ w); 3132 ev_stat_stat (EV_A_ w);
2029 3133
3134 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2030 if (w->interval < MIN_STAT_INTERVAL) 3135 w->interval = MIN_STAT_INTERVAL;
2031 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2032 3136
2033 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3137 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2034 ev_set_priority (&w->timer, ev_priority (w)); 3138 ev_set_priority (&w->timer, ev_priority (w));
2035 3139
2036#if EV_USE_INOTIFY 3140#if EV_USE_INOTIFY
2037 infy_init (EV_A); 3141 infy_init (EV_A);
2038 3142
2039 if (fs_fd >= 0) 3143 if (fs_fd >= 0)
2040 infy_add (EV_A_ w); 3144 infy_add (EV_A_ w);
2041 else 3145 else
2042#endif 3146#endif
2043 ev_timer_start (EV_A_ &w->timer); 3147 ev_timer_again (EV_A_ &w->timer);
2044 3148
2045 ev_start (EV_A_ (W)w, 1); 3149 ev_start (EV_A_ (W)w, 1);
3150
3151 EV_FREQUENT_CHECK;
2046} 3152}
2047 3153
2048void 3154void
2049ev_stat_stop (EV_P_ ev_stat *w) 3155ev_stat_stop (EV_P_ ev_stat *w)
2050{ 3156{
2051 clear_pending (EV_A_ (W)w); 3157 clear_pending (EV_A_ (W)w);
2052 if (expect_false (!ev_is_active (w))) 3158 if (expect_false (!ev_is_active (w)))
2053 return; 3159 return;
2054 3160
3161 EV_FREQUENT_CHECK;
3162
2055#if EV_USE_INOTIFY 3163#if EV_USE_INOTIFY
2056 infy_del (EV_A_ w); 3164 infy_del (EV_A_ w);
2057#endif 3165#endif
2058 ev_timer_stop (EV_A_ &w->timer); 3166 ev_timer_stop (EV_A_ &w->timer);
2059 3167
2060 ev_stop (EV_A_ (W)w); 3168 ev_stop (EV_A_ (W)w);
3169
3170 EV_FREQUENT_CHECK;
2061} 3171}
2062#endif 3172#endif
2063 3173
2064#if EV_IDLE_ENABLE 3174#if EV_IDLE_ENABLE
2065void 3175void
2067{ 3177{
2068 if (expect_false (ev_is_active (w))) 3178 if (expect_false (ev_is_active (w)))
2069 return; 3179 return;
2070 3180
2071 pri_adjust (EV_A_ (W)w); 3181 pri_adjust (EV_A_ (W)w);
3182
3183 EV_FREQUENT_CHECK;
2072 3184
2073 { 3185 {
2074 int active = ++idlecnt [ABSPRI (w)]; 3186 int active = ++idlecnt [ABSPRI (w)];
2075 3187
2076 ++idleall; 3188 ++idleall;
2077 ev_start (EV_A_ (W)w, active); 3189 ev_start (EV_A_ (W)w, active);
2078 3190
2079 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3191 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2080 idles [ABSPRI (w)][active - 1] = w; 3192 idles [ABSPRI (w)][active - 1] = w;
2081 } 3193 }
3194
3195 EV_FREQUENT_CHECK;
2082} 3196}
2083 3197
2084void 3198void
2085ev_idle_stop (EV_P_ ev_idle *w) 3199ev_idle_stop (EV_P_ ev_idle *w)
2086{ 3200{
2087 clear_pending (EV_A_ (W)w); 3201 clear_pending (EV_A_ (W)w);
2088 if (expect_false (!ev_is_active (w))) 3202 if (expect_false (!ev_is_active (w)))
2089 return; 3203 return;
2090 3204
3205 EV_FREQUENT_CHECK;
3206
2091 { 3207 {
2092 int active = ((W)w)->active; 3208 int active = ev_active (w);
2093 3209
2094 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3210 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2095 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3211 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2096 3212
2097 ev_stop (EV_A_ (W)w); 3213 ev_stop (EV_A_ (W)w);
2098 --idleall; 3214 --idleall;
2099 } 3215 }
3216
3217 EV_FREQUENT_CHECK;
2100} 3218}
2101#endif 3219#endif
2102 3220
2103void 3221void
2104ev_prepare_start (EV_P_ ev_prepare *w) 3222ev_prepare_start (EV_P_ ev_prepare *w)
2105{ 3223{
2106 if (expect_false (ev_is_active (w))) 3224 if (expect_false (ev_is_active (w)))
2107 return; 3225 return;
3226
3227 EV_FREQUENT_CHECK;
2108 3228
2109 ev_start (EV_A_ (W)w, ++preparecnt); 3229 ev_start (EV_A_ (W)w, ++preparecnt);
2110 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3230 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2111 prepares [preparecnt - 1] = w; 3231 prepares [preparecnt - 1] = w;
3232
3233 EV_FREQUENT_CHECK;
2112} 3234}
2113 3235
2114void 3236void
2115ev_prepare_stop (EV_P_ ev_prepare *w) 3237ev_prepare_stop (EV_P_ ev_prepare *w)
2116{ 3238{
2117 clear_pending (EV_A_ (W)w); 3239 clear_pending (EV_A_ (W)w);
2118 if (expect_false (!ev_is_active (w))) 3240 if (expect_false (!ev_is_active (w)))
2119 return; 3241 return;
2120 3242
3243 EV_FREQUENT_CHECK;
3244
2121 { 3245 {
2122 int active = ((W)w)->active; 3246 int active = ev_active (w);
3247
2123 prepares [active - 1] = prepares [--preparecnt]; 3248 prepares [active - 1] = prepares [--preparecnt];
2124 ((W)prepares [active - 1])->active = active; 3249 ev_active (prepares [active - 1]) = active;
2125 } 3250 }
2126 3251
2127 ev_stop (EV_A_ (W)w); 3252 ev_stop (EV_A_ (W)w);
3253
3254 EV_FREQUENT_CHECK;
2128} 3255}
2129 3256
2130void 3257void
2131ev_check_start (EV_P_ ev_check *w) 3258ev_check_start (EV_P_ ev_check *w)
2132{ 3259{
2133 if (expect_false (ev_is_active (w))) 3260 if (expect_false (ev_is_active (w)))
2134 return; 3261 return;
3262
3263 EV_FREQUENT_CHECK;
2135 3264
2136 ev_start (EV_A_ (W)w, ++checkcnt); 3265 ev_start (EV_A_ (W)w, ++checkcnt);
2137 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3266 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2138 checks [checkcnt - 1] = w; 3267 checks [checkcnt - 1] = w;
3268
3269 EV_FREQUENT_CHECK;
2139} 3270}
2140 3271
2141void 3272void
2142ev_check_stop (EV_P_ ev_check *w) 3273ev_check_stop (EV_P_ ev_check *w)
2143{ 3274{
2144 clear_pending (EV_A_ (W)w); 3275 clear_pending (EV_A_ (W)w);
2145 if (expect_false (!ev_is_active (w))) 3276 if (expect_false (!ev_is_active (w)))
2146 return; 3277 return;
2147 3278
3279 EV_FREQUENT_CHECK;
3280
2148 { 3281 {
2149 int active = ((W)w)->active; 3282 int active = ev_active (w);
3283
2150 checks [active - 1] = checks [--checkcnt]; 3284 checks [active - 1] = checks [--checkcnt];
2151 ((W)checks [active - 1])->active = active; 3285 ev_active (checks [active - 1]) = active;
2152 } 3286 }
2153 3287
2154 ev_stop (EV_A_ (W)w); 3288 ev_stop (EV_A_ (W)w);
3289
3290 EV_FREQUENT_CHECK;
2155} 3291}
2156 3292
2157#if EV_EMBED_ENABLE 3293#if EV_EMBED_ENABLE
2158void noinline 3294void noinline
2159ev_embed_sweep (EV_P_ ev_embed *w) 3295ev_embed_sweep (EV_P_ ev_embed *w)
2160{ 3296{
2161 ev_loop (w->loop, EVLOOP_NONBLOCK); 3297 ev_loop (w->other, EVLOOP_NONBLOCK);
2162} 3298}
2163 3299
2164static void 3300static void
2165embed_cb (EV_P_ ev_io *io, int revents) 3301embed_io_cb (EV_P_ ev_io *io, int revents)
2166{ 3302{
2167 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3303 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2168 3304
2169 if (ev_cb (w)) 3305 if (ev_cb (w))
2170 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3306 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2171 else 3307 else
2172 ev_embed_sweep (loop, w); 3308 ev_loop (w->other, EVLOOP_NONBLOCK);
2173} 3309}
3310
3311static void
3312embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
3313{
3314 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
3315
3316 {
3317 EV_P = w->other;
3318
3319 while (fdchangecnt)
3320 {
3321 fd_reify (EV_A);
3322 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3323 }
3324 }
3325}
3326
3327static void
3328embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3329{
3330 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3331
3332 ev_embed_stop (EV_A_ w);
3333
3334 {
3335 EV_P = w->other;
3336
3337 ev_loop_fork (EV_A);
3338 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3339 }
3340
3341 ev_embed_start (EV_A_ w);
3342}
3343
3344#if 0
3345static void
3346embed_idle_cb (EV_P_ ev_idle *idle, int revents)
3347{
3348 ev_idle_stop (EV_A_ idle);
3349}
3350#endif
2174 3351
2175void 3352void
2176ev_embed_start (EV_P_ ev_embed *w) 3353ev_embed_start (EV_P_ ev_embed *w)
2177{ 3354{
2178 if (expect_false (ev_is_active (w))) 3355 if (expect_false (ev_is_active (w)))
2179 return; 3356 return;
2180 3357
2181 { 3358 {
2182 struct ev_loop *loop = w->loop; 3359 EV_P = w->other;
2183 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3360 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2184 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 3361 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2185 } 3362 }
3363
3364 EV_FREQUENT_CHECK;
2186 3365
2187 ev_set_priority (&w->io, ev_priority (w)); 3366 ev_set_priority (&w->io, ev_priority (w));
2188 ev_io_start (EV_A_ &w->io); 3367 ev_io_start (EV_A_ &w->io);
2189 3368
3369 ev_prepare_init (&w->prepare, embed_prepare_cb);
3370 ev_set_priority (&w->prepare, EV_MINPRI);
3371 ev_prepare_start (EV_A_ &w->prepare);
3372
3373 ev_fork_init (&w->fork, embed_fork_cb);
3374 ev_fork_start (EV_A_ &w->fork);
3375
3376 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
3377
2190 ev_start (EV_A_ (W)w, 1); 3378 ev_start (EV_A_ (W)w, 1);
3379
3380 EV_FREQUENT_CHECK;
2191} 3381}
2192 3382
2193void 3383void
2194ev_embed_stop (EV_P_ ev_embed *w) 3384ev_embed_stop (EV_P_ ev_embed *w)
2195{ 3385{
2196 clear_pending (EV_A_ (W)w); 3386 clear_pending (EV_A_ (W)w);
2197 if (expect_false (!ev_is_active (w))) 3387 if (expect_false (!ev_is_active (w)))
2198 return; 3388 return;
2199 3389
3390 EV_FREQUENT_CHECK;
3391
2200 ev_io_stop (EV_A_ &w->io); 3392 ev_io_stop (EV_A_ &w->io);
3393 ev_prepare_stop (EV_A_ &w->prepare);
3394 ev_fork_stop (EV_A_ &w->fork);
2201 3395
2202 ev_stop (EV_A_ (W)w); 3396 EV_FREQUENT_CHECK;
2203} 3397}
2204#endif 3398#endif
2205 3399
2206#if EV_FORK_ENABLE 3400#if EV_FORK_ENABLE
2207void 3401void
2208ev_fork_start (EV_P_ ev_fork *w) 3402ev_fork_start (EV_P_ ev_fork *w)
2209{ 3403{
2210 if (expect_false (ev_is_active (w))) 3404 if (expect_false (ev_is_active (w)))
2211 return; 3405 return;
3406
3407 EV_FREQUENT_CHECK;
2212 3408
2213 ev_start (EV_A_ (W)w, ++forkcnt); 3409 ev_start (EV_A_ (W)w, ++forkcnt);
2214 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3410 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2215 forks [forkcnt - 1] = w; 3411 forks [forkcnt - 1] = w;
3412
3413 EV_FREQUENT_CHECK;
2216} 3414}
2217 3415
2218void 3416void
2219ev_fork_stop (EV_P_ ev_fork *w) 3417ev_fork_stop (EV_P_ ev_fork *w)
2220{ 3418{
2221 clear_pending (EV_A_ (W)w); 3419 clear_pending (EV_A_ (W)w);
2222 if (expect_false (!ev_is_active (w))) 3420 if (expect_false (!ev_is_active (w)))
2223 return; 3421 return;
2224 3422
3423 EV_FREQUENT_CHECK;
3424
2225 { 3425 {
2226 int active = ((W)w)->active; 3426 int active = ev_active (w);
3427
2227 forks [active - 1] = forks [--forkcnt]; 3428 forks [active - 1] = forks [--forkcnt];
2228 ((W)forks [active - 1])->active = active; 3429 ev_active (forks [active - 1]) = active;
2229 } 3430 }
2230 3431
2231 ev_stop (EV_A_ (W)w); 3432 ev_stop (EV_A_ (W)w);
3433
3434 EV_FREQUENT_CHECK;
3435}
3436#endif
3437
3438#if EV_ASYNC_ENABLE
3439void
3440ev_async_start (EV_P_ ev_async *w)
3441{
3442 if (expect_false (ev_is_active (w)))
3443 return;
3444
3445 evpipe_init (EV_A);
3446
3447 EV_FREQUENT_CHECK;
3448
3449 ev_start (EV_A_ (W)w, ++asynccnt);
3450 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
3451 asyncs [asynccnt - 1] = w;
3452
3453 EV_FREQUENT_CHECK;
3454}
3455
3456void
3457ev_async_stop (EV_P_ ev_async *w)
3458{
3459 clear_pending (EV_A_ (W)w);
3460 if (expect_false (!ev_is_active (w)))
3461 return;
3462
3463 EV_FREQUENT_CHECK;
3464
3465 {
3466 int active = ev_active (w);
3467
3468 asyncs [active - 1] = asyncs [--asynccnt];
3469 ev_active (asyncs [active - 1]) = active;
3470 }
3471
3472 ev_stop (EV_A_ (W)w);
3473
3474 EV_FREQUENT_CHECK;
3475}
3476
3477void
3478ev_async_send (EV_P_ ev_async *w)
3479{
3480 w->sent = 1;
3481 evpipe_write (EV_A_ &async_pending);
2232} 3482}
2233#endif 3483#endif
2234 3484
2235/*****************************************************************************/ 3485/*****************************************************************************/
2236 3486
2246once_cb (EV_P_ struct ev_once *once, int revents) 3496once_cb (EV_P_ struct ev_once *once, int revents)
2247{ 3497{
2248 void (*cb)(int revents, void *arg) = once->cb; 3498 void (*cb)(int revents, void *arg) = once->cb;
2249 void *arg = once->arg; 3499 void *arg = once->arg;
2250 3500
2251 ev_io_stop (EV_A_ &once->io); 3501 ev_io_stop (EV_A_ &once->io);
2252 ev_timer_stop (EV_A_ &once->to); 3502 ev_timer_stop (EV_A_ &once->to);
2253 ev_free (once); 3503 ev_free (once);
2254 3504
2255 cb (revents, arg); 3505 cb (revents, arg);
2256} 3506}
2257 3507
2258static void 3508static void
2259once_cb_io (EV_P_ ev_io *w, int revents) 3509once_cb_io (EV_P_ ev_io *w, int revents)
2260{ 3510{
2261 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3511 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3512
3513 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2262} 3514}
2263 3515
2264static void 3516static void
2265once_cb_to (EV_P_ ev_timer *w, int revents) 3517once_cb_to (EV_P_ ev_timer *w, int revents)
2266{ 3518{
2267 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3519 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3520
3521 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2268} 3522}
2269 3523
2270void 3524void
2271ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3525ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2272{ 3526{
2294 ev_timer_set (&once->to, timeout, 0.); 3548 ev_timer_set (&once->to, timeout, 0.);
2295 ev_timer_start (EV_A_ &once->to); 3549 ev_timer_start (EV_A_ &once->to);
2296 } 3550 }
2297} 3551}
2298 3552
3553/*****************************************************************************/
3554
3555#if EV_WALK_ENABLE
3556void
3557ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3558{
3559 int i, j;
3560 ev_watcher_list *wl, *wn;
3561
3562 if (types & (EV_IO | EV_EMBED))
3563 for (i = 0; i < anfdmax; ++i)
3564 for (wl = anfds [i].head; wl; )
3565 {
3566 wn = wl->next;
3567
3568#if EV_EMBED_ENABLE
3569 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3570 {
3571 if (types & EV_EMBED)
3572 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3573 }
3574 else
3575#endif
3576#if EV_USE_INOTIFY
3577 if (ev_cb ((ev_io *)wl) == infy_cb)
3578 ;
3579 else
3580#endif
3581 if ((ev_io *)wl != &pipe_w)
3582 if (types & EV_IO)
3583 cb (EV_A_ EV_IO, wl);
3584
3585 wl = wn;
3586 }
3587
3588 if (types & (EV_TIMER | EV_STAT))
3589 for (i = timercnt + HEAP0; i-- > HEAP0; )
3590#if EV_STAT_ENABLE
3591 /*TODO: timer is not always active*/
3592 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3593 {
3594 if (types & EV_STAT)
3595 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3596 }
3597 else
3598#endif
3599 if (types & EV_TIMER)
3600 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3601
3602#if EV_PERIODIC_ENABLE
3603 if (types & EV_PERIODIC)
3604 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3605 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3606#endif
3607
3608#if EV_IDLE_ENABLE
3609 if (types & EV_IDLE)
3610 for (j = NUMPRI; i--; )
3611 for (i = idlecnt [j]; i--; )
3612 cb (EV_A_ EV_IDLE, idles [j][i]);
3613#endif
3614
3615#if EV_FORK_ENABLE
3616 if (types & EV_FORK)
3617 for (i = forkcnt; i--; )
3618 if (ev_cb (forks [i]) != embed_fork_cb)
3619 cb (EV_A_ EV_FORK, forks [i]);
3620#endif
3621
3622#if EV_ASYNC_ENABLE
3623 if (types & EV_ASYNC)
3624 for (i = asynccnt; i--; )
3625 cb (EV_A_ EV_ASYNC, asyncs [i]);
3626#endif
3627
3628 if (types & EV_PREPARE)
3629 for (i = preparecnt; i--; )
3630#if EV_EMBED_ENABLE
3631 if (ev_cb (prepares [i]) != embed_prepare_cb)
3632#endif
3633 cb (EV_A_ EV_PREPARE, prepares [i]);
3634
3635 if (types & EV_CHECK)
3636 for (i = checkcnt; i--; )
3637 cb (EV_A_ EV_CHECK, checks [i]);
3638
3639 if (types & EV_SIGNAL)
3640 for (i = 0; i < EV_NSIG - 1; ++i)
3641 for (wl = signals [i].head; wl; )
3642 {
3643 wn = wl->next;
3644 cb (EV_A_ EV_SIGNAL, wl);
3645 wl = wn;
3646 }
3647
3648 if (types & EV_CHILD)
3649 for (i = EV_PID_HASHSIZE; i--; )
3650 for (wl = childs [i]; wl; )
3651 {
3652 wn = wl->next;
3653 cb (EV_A_ EV_CHILD, wl);
3654 wl = wn;
3655 }
3656/* EV_STAT 0x00001000 /* stat data changed */
3657/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3658}
3659#endif
3660
3661#if EV_MULTIPLICITY
3662 #include "ev_wrap.h"
3663#endif
3664
2299#ifdef __cplusplus 3665#ifdef __cplusplus
2300} 3666}
2301#endif 3667#endif
2302 3668

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines