ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.18 by root, Wed Oct 31 16:29:52 2007 UTC vs.
Revision 1.55 by root, Sun Nov 4 00:39:24 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33#endif
29 34
30#include <math.h> 35#include <math.h>
31#include <stdlib.h> 36#include <stdlib.h>
32#include <unistd.h> 37#include <unistd.h>
33#include <fcntl.h> 38#include <fcntl.h>
36 41
37#include <stdio.h> 42#include <stdio.h>
38 43
39#include <assert.h> 44#include <assert.h>
40#include <errno.h> 45#include <errno.h>
46#include <sys/types.h>
47#ifndef WIN32
48# include <sys/wait.h>
49#endif
41#include <sys/time.h> 50#include <sys/time.h>
42#include <time.h> 51#include <time.h>
43 52
44#define HAVE_EPOLL 1 53/**/
45 54
46#ifndef HAVE_MONOTONIC 55#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1
57#endif
58
59#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1
61#endif
62
63#ifndef EV_USEV_POLL
64# define EV_USEV_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif
66
67#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0
69#endif
70
71#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0
73#endif
74
75#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1
77#endif
78
79/**/
80
47# ifdef CLOCK_MONOTONIC 81#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC
48# define HAVE_MONOTONIC 1 83# define EV_USE_MONOTONIC 0
49# endif 84#endif
50#endif
51 85
52#ifndef HAVE_SELECT
53# define HAVE_SELECT 1
54#endif
55
56#ifndef HAVE_EPOLL
57# define HAVE_EPOLL 0
58#endif
59
60#ifndef HAVE_REALTIME 86#ifndef CLOCK_REALTIME
61# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 87# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0
62#endif 89#endif
90
91/**/
63 92
64#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
65#define MAX_BLOCKTIME 60. 94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
66 97
67#include "ev.h" 98#include "ev.h"
99
100#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline
103#else
104# define expect(expr,value) (expr)
105# define inline static
106#endif
107
108#define expect_false(expr) expect ((expr) != 0, 0)
109#define expect_true(expr) expect ((expr) != 0, 1)
110
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
112#define ABSPRI(w) ((w)->priority - EV_MINPRI)
68 113
69typedef struct ev_watcher *W; 114typedef struct ev_watcher *W;
70typedef struct ev_watcher_list *WL; 115typedef struct ev_watcher_list *WL;
71typedef struct ev_watcher_time *WT; 116typedef struct ev_watcher_time *WT;
72 117
73static ev_tstamp now, diff; /* monotonic clock */ 118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
74ev_tstamp ev_now;
75int ev_method;
76
77static int have_monotonic; /* runtime */
78
79static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
80static void (*method_modify)(int fd, int oev, int nev);
81static void (*method_poll)(ev_tstamp timeout);
82 119
83/*****************************************************************************/ 120/*****************************************************************************/
84 121
85ev_tstamp 122typedef struct
123{
124 struct ev_watcher_list *head;
125 unsigned char events;
126 unsigned char reify;
127} ANFD;
128
129typedef struct
130{
131 W w;
132 int events;
133} ANPENDING;
134
135#if EV_MULTIPLICITY
136
137struct ev_loop
138{
139# define VAR(name,decl) decl;
140# include "ev_vars.h"
141};
142# undef VAR
143# include "ev_wrap.h"
144
145#else
146
147# define VAR(name,decl) static decl;
148# include "ev_vars.h"
149# undef VAR
150
151#endif
152
153/*****************************************************************************/
154
155inline ev_tstamp
86ev_time (void) 156ev_time (void)
87{ 157{
88#if HAVE_REALTIME 158#if EV_USE_REALTIME
89 struct timespec ts; 159 struct timespec ts;
90 clock_gettime (CLOCK_REALTIME, &ts); 160 clock_gettime (CLOCK_REALTIME, &ts);
91 return ts.tv_sec + ts.tv_nsec * 1e-9; 161 return ts.tv_sec + ts.tv_nsec * 1e-9;
92#else 162#else
93 struct timeval tv; 163 struct timeval tv;
94 gettimeofday (&tv, 0); 164 gettimeofday (&tv, 0);
95 return tv.tv_sec + tv.tv_usec * 1e-6; 165 return tv.tv_sec + tv.tv_usec * 1e-6;
96#endif 166#endif
97} 167}
98 168
99static ev_tstamp 169inline ev_tstamp
100get_clock (void) 170get_clock (void)
101{ 171{
102#if HAVE_MONOTONIC 172#if EV_USE_MONOTONIC
103 if (have_monotonic) 173 if (expect_true (have_monotonic))
104 { 174 {
105 struct timespec ts; 175 struct timespec ts;
106 clock_gettime (CLOCK_MONOTONIC, &ts); 176 clock_gettime (CLOCK_MONOTONIC, &ts);
107 return ts.tv_sec + ts.tv_nsec * 1e-9; 177 return ts.tv_sec + ts.tv_nsec * 1e-9;
108 } 178 }
109#endif 179#endif
110 180
111 return ev_time (); 181 return ev_time ();
112} 182}
113 183
184ev_tstamp
185ev_now (EV_P)
186{
187 return rt_now;
188}
189
190#define array_roundsize(base,n) ((n) | 4 & ~3)
191
114#define array_needsize(base,cur,cnt,init) \ 192#define array_needsize(base,cur,cnt,init) \
115 if ((cnt) > cur) \ 193 if (expect_false ((cnt) > cur)) \
116 { \ 194 { \
117 int newcnt = cur ? cur << 1 : 16; \ 195 int newcnt = cur; \
196 do \
197 { \
198 newcnt = array_roundsize (base, newcnt << 1); \
199 } \
200 while ((cnt) > newcnt); \
201 \
118 base = realloc (base, sizeof (*base) * (newcnt)); \ 202 base = realloc (base, sizeof (*base) * (newcnt)); \
119 init (base + cur, newcnt - cur); \ 203 init (base + cur, newcnt - cur); \
120 cur = newcnt; \ 204 cur = newcnt; \
121 } 205 }
122 206
123/*****************************************************************************/ 207/*****************************************************************************/
124 208
125typedef struct
126{
127 struct ev_io *head;
128 unsigned char wev, rev; /* want, received event set */
129} ANFD;
130
131static ANFD *anfds;
132static int anfdmax;
133
134static int *fdchanges;
135static int fdchangemax, fdchangecnt;
136
137static void 209static void
138anfds_init (ANFD *base, int count) 210anfds_init (ANFD *base, int count)
139{ 211{
140 while (count--) 212 while (count--)
141 { 213 {
142 base->head = 0; 214 base->head = 0;
143 base->wev = base->rev = EV_NONE; 215 base->events = EV_NONE;
216 base->reify = 0;
217
144 ++base; 218 ++base;
145 } 219 }
146} 220}
147 221
148typedef struct
149{
150 W w;
151 int events;
152} ANPENDING;
153
154static ANPENDING *pendings;
155static int pendingmax, pendingcnt;
156
157static void 222static void
158event (W w, int events) 223event (EV_P_ W w, int events)
159{ 224{
160 if (w->active) 225 if (w->pending)
161 { 226 {
162 w->pending = ++pendingcnt;
163 array_needsize (pendings, pendingmax, pendingcnt, );
164 pendings [pendingcnt - 1].w = w;
165 pendings [pendingcnt - 1].events = events; 227 pendings [ABSPRI (w)][w->pending - 1].events |= events;
228 return;
166 } 229 }
167}
168 230
231 w->pending = ++pendingcnt [ABSPRI (w)];
232 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
233 pendings [ABSPRI (w)][w->pending - 1].w = w;
234 pendings [ABSPRI (w)][w->pending - 1].events = events;
235}
236
169static void 237static void
238queue_events (EV_P_ W *events, int eventcnt, int type)
239{
240 int i;
241
242 for (i = 0; i < eventcnt; ++i)
243 event (EV_A_ events [i], type);
244}
245
246static void
170fd_event (int fd, int events) 247fd_event (EV_P_ int fd, int events)
171{ 248{
172 ANFD *anfd = anfds + fd; 249 ANFD *anfd = anfds + fd;
173 struct ev_io *w; 250 struct ev_io *w;
174 251
175 for (w = anfd->head; w; w = w->next) 252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
176 { 253 {
177 int ev = w->events & events; 254 int ev = w->events & events;
178 255
179 if (ev) 256 if (ev)
180 event ((W)w, ev); 257 event (EV_A_ (W)w, ev);
181 } 258 }
182} 259}
183 260
261/*****************************************************************************/
262
184static void 263static void
185queue_events (W *events, int eventcnt, int type) 264fd_reify (EV_P)
186{ 265{
187 int i; 266 int i;
188 267
189 for (i = 0; i < eventcnt; ++i) 268 for (i = 0; i < fdchangecnt; ++i)
190 event (events [i], type); 269 {
270 int fd = fdchanges [i];
271 ANFD *anfd = anfds + fd;
272 struct ev_io *w;
273
274 int events = 0;
275
276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
277 events |= w->events;
278
279 anfd->reify = 0;
280
281 if (anfd->events != events)
282 {
283 method_modify (EV_A_ fd, anfd->events, events);
284 anfd->events = events;
285 }
286 }
287
288 fdchangecnt = 0;
289}
290
291static void
292fd_change (EV_P_ int fd)
293{
294 if (anfds [fd].reify || fdchangecnt < 0)
295 return;
296
297 anfds [fd].reify = 1;
298
299 ++fdchangecnt;
300 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
301 fdchanges [fdchangecnt - 1] = fd;
302}
303
304static void
305fd_kill (EV_P_ int fd)
306{
307 struct ev_io *w;
308
309 while ((w = (struct ev_io *)anfds [fd].head))
310 {
311 ev_io_stop (EV_A_ w);
312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 }
314}
315
316/* called on EBADF to verify fds */
317static void
318fd_ebadf (EV_P)
319{
320 int fd;
321
322 for (fd = 0; fd < anfdmax; ++fd)
323 if (anfds [fd].events)
324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
325 fd_kill (EV_A_ fd);
326}
327
328/* called on ENOMEM in select/poll to kill some fds and retry */
329static void
330fd_enomem (EV_P)
331{
332 int fd = anfdmax;
333
334 while (fd--)
335 if (anfds [fd].events)
336 {
337 close (fd);
338 fd_kill (EV_A_ fd);
339 return;
340 }
191} 341}
192 342
193/*****************************************************************************/ 343/*****************************************************************************/
194 344
195static struct ev_timer **timers;
196static int timermax, timercnt;
197
198static struct ev_periodic **periodics;
199static int periodicmax, periodiccnt;
200
201static void 345static void
202upheap (WT *timers, int k) 346upheap (WT *heap, int k)
203{ 347{
204 WT w = timers [k]; 348 WT w = heap [k];
205 349
206 while (k && timers [k >> 1]->at > w->at) 350 while (k && heap [k >> 1]->at > w->at)
207 { 351 {
208 timers [k] = timers [k >> 1]; 352 heap [k] = heap [k >> 1];
209 timers [k]->active = k + 1; 353 heap [k]->active = k + 1;
210 k >>= 1; 354 k >>= 1;
211 } 355 }
212 356
213 timers [k] = w; 357 heap [k] = w;
214 timers [k]->active = k + 1; 358 heap [k]->active = k + 1;
215 359
216} 360}
217 361
218static void 362static void
219downheap (WT *timers, int N, int k) 363downheap (WT *heap, int N, int k)
220{ 364{
221 WT w = timers [k]; 365 WT w = heap [k];
222 366
223 while (k < (N >> 1)) 367 while (k < (N >> 1))
224 { 368 {
225 int j = k << 1; 369 int j = k << 1;
226 370
227 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 371 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
228 ++j; 372 ++j;
229 373
230 if (w->at <= timers [j]->at) 374 if (w->at <= heap [j]->at)
231 break; 375 break;
232 376
233 timers [k] = timers [j]; 377 heap [k] = heap [j];
234 timers [k]->active = k + 1; 378 heap [k]->active = k + 1;
235 k = j; 379 k = j;
236 } 380 }
237 381
238 timers [k] = w; 382 heap [k] = w;
239 timers [k]->active = k + 1; 383 heap [k]->active = k + 1;
240} 384}
241 385
242/*****************************************************************************/ 386/*****************************************************************************/
243 387
244typedef struct 388typedef struct
245{ 389{
246 struct ev_signal *head; 390 struct ev_watcher_list *head;
247 sig_atomic_t gotsig; 391 sig_atomic_t volatile gotsig;
248} ANSIG; 392} ANSIG;
249 393
250static ANSIG *signals; 394static ANSIG *signals;
251static int signalmax; 395static int signalmax;
252 396
253static int sigpipe [2]; 397static int sigpipe [2];
254static sig_atomic_t gotsig; 398static sig_atomic_t volatile gotsig;
255static struct ev_io sigev;
256 399
257static void 400static void
258signals_init (ANSIG *base, int count) 401signals_init (ANSIG *base, int count)
259{ 402{
260 while (count--) 403 while (count--)
261 { 404 {
262 base->head = 0; 405 base->head = 0;
263 base->gotsig = 0; 406 base->gotsig = 0;
407
264 ++base; 408 ++base;
265 } 409 }
266} 410}
267 411
268static void 412static void
270{ 414{
271 signals [signum - 1].gotsig = 1; 415 signals [signum - 1].gotsig = 1;
272 416
273 if (!gotsig) 417 if (!gotsig)
274 { 418 {
419 int old_errno = errno;
275 gotsig = 1; 420 gotsig = 1;
276 write (sigpipe [1], &gotsig, 1); 421 write (sigpipe [1], &signum, 1);
422 errno = old_errno;
277 } 423 }
278} 424}
279 425
280static void 426static void
281sigcb (struct ev_io *iow, int revents) 427sigcb (EV_P_ struct ev_io *iow, int revents)
282{ 428{
283 struct ev_signal *w; 429 struct ev_watcher_list *w;
284 int sig; 430 int signum;
285 431
432 read (sigpipe [0], &revents, 1);
286 gotsig = 0; 433 gotsig = 0;
287 read (sigpipe [0], &revents, 1);
288 434
289 for (sig = signalmax; sig--; ) 435 for (signum = signalmax; signum--; )
290 if (signals [sig].gotsig) 436 if (signals [signum].gotsig)
291 { 437 {
292 signals [sig].gotsig = 0; 438 signals [signum].gotsig = 0;
293 439
294 for (w = signals [sig].head; w; w = w->next) 440 for (w = signals [signum].head; w; w = w->next)
295 event ((W)w, EV_SIGNAL); 441 event (EV_A_ (W)w, EV_SIGNAL);
296 } 442 }
297} 443}
298 444
299static void 445static void
300siginit (void) 446siginit (EV_P)
301{ 447{
448#ifndef WIN32
302 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 449 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
303 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 450 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
304 451
305 /* rather than sort out wether we really need nb, set it */ 452 /* rather than sort out wether we really need nb, set it */
306 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 453 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
307 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 454 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
455#endif
308 456
309 evio_set (&sigev, sigpipe [0], EV_READ); 457 ev_io_set (&sigev, sigpipe [0], EV_READ);
310 evio_start (&sigev); 458 ev_io_start (EV_A_ &sigev);
459 ev_unref (EV_A); /* child watcher should not keep loop alive */
311} 460}
312 461
313/*****************************************************************************/ 462/*****************************************************************************/
314 463
315static struct ev_idle **idles; 464#ifndef WIN32
316static int idlemax, idlecnt;
317 465
318static struct ev_check **checks; 466#ifndef WCONTINUED
319static int checkmax, checkcnt; 467# define WCONTINUED 0
468#endif
469
470static void
471child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
472{
473 struct ev_child *w;
474
475 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
476 if (w->pid == pid || !w->pid)
477 {
478 w->priority = sw->priority; /* need to do it *now* */
479 w->rpid = pid;
480 w->rstatus = status;
481 event (EV_A_ (W)w, EV_CHILD);
482 }
483}
484
485static void
486childcb (EV_P_ struct ev_signal *sw, int revents)
487{
488 int pid, status;
489
490 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
491 {
492 /* make sure we are called again until all childs have been reaped */
493 event (EV_A_ (W)sw, EV_SIGNAL);
494
495 child_reap (EV_A_ sw, pid, pid, status);
496 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
497 }
498}
499
500#endif
320 501
321/*****************************************************************************/ 502/*****************************************************************************/
322 503
504#if EV_USE_KQUEUE
505# include "ev_kqueue.c"
506#endif
323#if HAVE_EPOLL 507#if EV_USE_EPOLL
324# include "ev_epoll.c" 508# include "ev_epoll.c"
325#endif 509#endif
510#if EV_USEV_POLL
511# include "ev_poll.c"
512#endif
326#if HAVE_SELECT 513#if EV_USE_SELECT
327# include "ev_select.c" 514# include "ev_select.c"
328#endif 515#endif
329 516
330int ev_init (int flags) 517int
518ev_version_major (void)
331{ 519{
520 return EV_VERSION_MAJOR;
521}
522
523int
524ev_version_minor (void)
525{
526 return EV_VERSION_MINOR;
527}
528
529/* return true if we are running with elevated privileges and should ignore env variables */
530static int
531enable_secure (void)
532{
533#ifdef WIN32
534 return 0;
535#else
536 return getuid () != geteuid ()
537 || getgid () != getegid ();
538#endif
539}
540
541int
542ev_method (EV_P)
543{
544 return method;
545}
546
547inline int
548loop_init (EV_P_ int methods)
549{
550 if (!method)
551 {
332#if HAVE_MONOTONIC 552#if EV_USE_MONOTONIC
333 { 553 {
334 struct timespec ts; 554 struct timespec ts;
335 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 555 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
336 have_monotonic = 1; 556 have_monotonic = 1;
337 } 557 }
338#endif 558#endif
339 559
340 ev_now = ev_time (); 560 rt_now = ev_time ();
341 now = get_clock (); 561 mn_now = get_clock ();
342 diff = ev_now - now; 562 now_floor = mn_now;
563 rtmn_diff = rt_now - mn_now;
343 564
344 if (pipe (sigpipe)) 565 if (pipe (sigpipe))
566 return 0;
567
568 if (methods == EVMETHOD_AUTO)
569 if (!enable_secure () && getenv ("LIBmethodS"))
570 methods = atoi (getenv ("LIBmethodS"));
571 else
572 methods = EVMETHOD_ANY;
573
574 method = 0;
575#if EV_USE_KQUEUE
576 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
577#endif
578#if EV_USE_EPOLL
579 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
580#endif
581#if EV_USEV_POLL
582 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
583#endif
584#if EV_USE_SELECT
585 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
586#endif
587
588 if (method)
589 {
590 ev_watcher_init (&sigev, sigcb);
591 ev_set_priority (&sigev, EV_MAXPRI);
592 siginit (EV_A);
593
594#ifndef WIN32
595 ev_signal_init (&childev, childcb, SIGCHLD);
596 ev_set_priority (&childev, EV_MAXPRI);
597 ev_signal_start (EV_A_ &childev);
598 ev_unref (EV_A); /* child watcher should not keep loop alive */
599#endif
600 }
601 }
602
603 return method;
604}
605
606#if EV_MULTIPLICITY
607
608struct ev_loop *
609ev_loop_new (int methods)
610{
611 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
612
613 if (loop_init (EV_A_ methods))
614 return loop;
615
616 ev_loop_delete (loop);
617
345 return 0; 618 return 0;
346
347 ev_method = EVMETHOD_NONE;
348#if HAVE_EPOLL
349 if (ev_method == EVMETHOD_NONE) epoll_init (flags);
350#endif
351#if HAVE_SELECT
352 if (ev_method == EVMETHOD_NONE) select_init (flags);
353#endif
354
355 if (ev_method)
356 {
357 evw_init (&sigev, sigcb);
358 siginit ();
359 }
360
361 return ev_method;
362} 619}
620
621void
622ev_loop_delete (EV_P)
623{
624 /*TODO*/
625 free (loop);
626}
627
628#else
629
630int
631ev_init (int methods)
632{
633 return loop_init (methods);
634}
635
636#endif
363 637
364/*****************************************************************************/ 638/*****************************************************************************/
365 639
366void ev_prefork (void) 640void
641ev_fork_prepare (void)
367{ 642{
368 /* nop */ 643 /* nop */
369} 644}
370 645
646void
371void ev_postfork_parent (void) 647ev_fork_parent (void)
372{ 648{
373 /* nop */ 649 /* nop */
374} 650}
375 651
652void
376void ev_postfork_child (void) 653ev_fork_child (void)
377{ 654{
655 /*TODO*/
656#if !EV_MULTIPLICITY
378#if HAVE_EPOLL 657#if EV_USE_EPOLL
379 if (ev_method == EVMETHOD_EPOLL) 658 if (method == EVMETHOD_EPOLL)
380 epoll_postfork_child (); 659 epoll_postfork_child (EV_A);
381#endif 660#endif
382 661
383 evio_stop (&sigev); 662 ev_io_stop (EV_A_ &sigev);
384 close (sigpipe [0]); 663 close (sigpipe [0]);
385 close (sigpipe [1]); 664 close (sigpipe [1]);
386 pipe (sigpipe); 665 pipe (sigpipe);
387 siginit (); 666 siginit (EV_A);
667#endif
388} 668}
389 669
390/*****************************************************************************/ 670/*****************************************************************************/
391 671
392static void 672static void
393fd_reify (void) 673call_pending (EV_P)
394{ 674{
395 int i; 675 int pri;
396 676
397 for (i = 0; i < fdchangecnt; ++i) 677 for (pri = NUMPRI; pri--; )
398 { 678 while (pendingcnt [pri])
399 int fd = fdchanges [i];
400 ANFD *anfd = anfds + fd;
401 struct ev_io *w;
402
403 int wev = 0;
404
405 for (w = anfd->head; w; w = w->next)
406 wev |= w->events;
407
408 if (anfd->wev != wev)
409 { 679 {
410 method_modify (fd, anfd->wev, wev);
411 anfd->wev = wev;
412 }
413 }
414
415 fdchangecnt = 0;
416}
417
418static void
419call_pending ()
420{
421 while (pendingcnt)
422 {
423 ANPENDING *p = pendings + --pendingcnt; 680 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
424 681
425 if (p->w) 682 if (p->w)
426 { 683 {
427 p->w->pending = 0; 684 p->w->pending = 0;
428 p->w->cb (p->w, p->events); 685 p->w->cb (EV_A_ p->w, p->events);
429 } 686 }
430 } 687 }
431} 688}
432 689
433static void 690static void
434timers_reify () 691timers_reify (EV_P)
435{ 692{
436 while (timercnt && timers [0]->at <= now) 693 while (timercnt && timers [0]->at <= mn_now)
437 { 694 {
438 struct ev_timer *w = timers [0]; 695 struct ev_timer *w = timers [0];
439
440 event ((W)w, EV_TIMEOUT);
441 696
442 /* first reschedule or stop timer */ 697 /* first reschedule or stop timer */
443 if (w->repeat) 698 if (w->repeat)
444 { 699 {
700 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
445 w->at = now + w->repeat; 701 w->at = mn_now + w->repeat;
446 assert (("timer timeout in the past, negative repeat?", w->at > now));
447 downheap ((WT *)timers, timercnt, 0); 702 downheap ((WT *)timers, timercnt, 0);
448 } 703 }
449 else 704 else
450 evtimer_stop (w); /* nonrepeating: stop timer */ 705 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
451 }
452}
453 706
707 event (EV_A_ (W)w, EV_TIMEOUT);
708 }
709}
710
454static void 711static void
455periodics_reify () 712periodics_reify (EV_P)
456{ 713{
457 while (periodiccnt && periodics [0]->at <= ev_now) 714 while (periodiccnt && periodics [0]->at <= rt_now)
458 { 715 {
459 struct ev_periodic *w = periodics [0]; 716 struct ev_periodic *w = periodics [0];
460 717
461 /* first reschedule or stop timer */ 718 /* first reschedule or stop timer */
462 if (w->interval) 719 if (w->interval)
463 { 720 {
464 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 721 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
465 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 722 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
466 downheap ((WT *)periodics, periodiccnt, 0); 723 downheap ((WT *)periodics, periodiccnt, 0);
467 } 724 }
468 else 725 else
469 evperiodic_stop (w); /* nonrepeating: stop timer */ 726 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
470 727
471 event ((W)w, EV_TIMEOUT); 728 event (EV_A_ (W)w, EV_PERIODIC);
472 } 729 }
473} 730}
474 731
475static void 732static void
476periodics_reschedule (ev_tstamp diff) 733periodics_reschedule (EV_P)
477{ 734{
478 int i; 735 int i;
479 736
480 /* adjust periodics after time jump */ 737 /* adjust periodics after time jump */
481 for (i = 0; i < periodiccnt; ++i) 738 for (i = 0; i < periodiccnt; ++i)
482 { 739 {
483 struct ev_periodic *w = periodics [i]; 740 struct ev_periodic *w = periodics [i];
484 741
485 if (w->interval) 742 if (w->interval)
486 { 743 {
487 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 744 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
488 745
489 if (fabs (diff) >= 1e-4) 746 if (fabs (diff) >= 1e-4)
490 { 747 {
491 evperiodic_stop (w); 748 ev_periodic_stop (EV_A_ w);
492 evperiodic_start (w); 749 ev_periodic_start (EV_A_ w);
493 750
494 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 751 i = 0; /* restart loop, inefficient, but time jumps should be rare */
495 } 752 }
496 } 753 }
497 } 754 }
498} 755}
499 756
757inline int
758time_update_monotonic (EV_P)
759{
760 mn_now = get_clock ();
761
762 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
763 {
764 rt_now = rtmn_diff + mn_now;
765 return 0;
766 }
767 else
768 {
769 now_floor = mn_now;
770 rt_now = ev_time ();
771 return 1;
772 }
773}
774
500static void 775static void
501time_update () 776time_update (EV_P)
502{ 777{
503 int i; 778 int i;
504 779
505 ev_now = ev_time (); 780#if EV_USE_MONOTONIC
506
507 if (have_monotonic) 781 if (expect_true (have_monotonic))
508 { 782 {
509 ev_tstamp odiff = diff; 783 if (time_update_monotonic (EV_A))
510
511 for (i = 4; --i; ) /* loop a few times, before making important decisions */
512 { 784 {
513 now = get_clock (); 785 ev_tstamp odiff = rtmn_diff;
786
787 for (i = 4; --i; ) /* loop a few times, before making important decisions */
788 {
514 diff = ev_now - now; 789 rtmn_diff = rt_now - mn_now;
515 790
516 if (fabs (odiff - diff) < MIN_TIMEJUMP) 791 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
517 return; /* all is well */ 792 return; /* all is well */
518 793
519 ev_now = ev_time (); 794 rt_now = ev_time ();
795 mn_now = get_clock ();
796 now_floor = mn_now;
797 }
798
799 periodics_reschedule (EV_A);
800 /* no timer adjustment, as the monotonic clock doesn't jump */
801 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
520 } 802 }
521
522 periodics_reschedule (diff - odiff);
523 /* no timer adjustment, as the monotonic clock doesn't jump */
524 } 803 }
525 else 804 else
805#endif
526 { 806 {
527 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 807 rt_now = ev_time ();
808
809 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
528 { 810 {
529 periodics_reschedule (ev_now - now); 811 periodics_reschedule (EV_A);
530 812
531 /* adjust timers. this is easy, as the offset is the same for all */ 813 /* adjust timers. this is easy, as the offset is the same for all */
532 for (i = 0; i < timercnt; ++i) 814 for (i = 0; i < timercnt; ++i)
533 timers [i]->at += diff; 815 timers [i]->at += rt_now - mn_now;
534 } 816 }
535 817
536 now = ev_now; 818 mn_now = rt_now;
537 } 819 }
538} 820}
539 821
540int ev_loop_done; 822void
823ev_ref (EV_P)
824{
825 ++activecnt;
826}
541 827
828void
829ev_unref (EV_P)
830{
831 --activecnt;
832}
833
834static int loop_done;
835
836void
542void ev_loop (int flags) 837ev_loop (EV_P_ int flags)
543{ 838{
544 double block; 839 double block;
545 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0; 840 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
546
547 if (checkcnt)
548 {
549 queue_events ((W *)checks, checkcnt, EV_CHECK);
550 call_pending ();
551 }
552 841
553 do 842 do
554 { 843 {
844 /* queue check watchers (and execute them) */
845 if (expect_false (preparecnt))
846 {
847 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
848 call_pending (EV_A);
849 }
850
555 /* update fd-related kernel structures */ 851 /* update fd-related kernel structures */
556 fd_reify (); 852 fd_reify (EV_A);
557 853
558 /* calculate blocking time */ 854 /* calculate blocking time */
559 855
560 /* we only need this for !monotonic clock, but as we always have timers, we just calculate it every time */ 856 /* we only need this for !monotonic clockor timers, but as we basically
857 always have timers, we just calculate it always */
858#if EV_USE_MONOTONIC
859 if (expect_true (have_monotonic))
860 time_update_monotonic (EV_A);
861 else
862#endif
863 {
561 ev_now = ev_time (); 864 rt_now = ev_time ();
865 mn_now = rt_now;
866 }
562 867
563 if (flags & EVLOOP_NONBLOCK || idlecnt) 868 if (flags & EVLOOP_NONBLOCK || idlecnt)
564 block = 0.; 869 block = 0.;
565 else 870 else
566 { 871 {
567 block = MAX_BLOCKTIME; 872 block = MAX_BLOCKTIME;
568 873
569 if (timercnt) 874 if (timercnt)
570 { 875 {
571 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 876 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
572 if (block > to) block = to; 877 if (block > to) block = to;
573 } 878 }
574 879
575 if (periodiccnt) 880 if (periodiccnt)
576 { 881 {
577 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 882 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
578 if (block > to) block = to; 883 if (block > to) block = to;
579 } 884 }
580 885
581 if (block < 0.) block = 0.; 886 if (block < 0.) block = 0.;
582 } 887 }
583 888
584 method_poll (block); 889 method_poll (EV_A_ block);
585 890
586 /* update ev_now, do magic */ 891 /* update rt_now, do magic */
587 time_update (); 892 time_update (EV_A);
588 893
589 /* queue pending timers and reschedule them */ 894 /* queue pending timers and reschedule them */
895 timers_reify (EV_A); /* relative timers called last */
590 periodics_reify (); /* absolute timers first */ 896 periodics_reify (EV_A); /* absolute timers called first */
591 timers_reify (); /* relative timers second */
592 897
593 /* queue idle watchers unless io or timers are pending */ 898 /* queue idle watchers unless io or timers are pending */
594 if (!pendingcnt) 899 if (!pendingcnt)
595 queue_events ((W *)idles, idlecnt, EV_IDLE); 900 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
596 901
597 /* queue check and possibly idle watchers */ 902 /* queue check watchers, to be executed first */
903 if (checkcnt)
598 queue_events ((W *)checks, checkcnt, EV_CHECK); 904 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
599 905
600 call_pending (); 906 call_pending (EV_A);
601 } 907 }
602 while (!ev_loop_done); 908 while (activecnt && !loop_done);
603 909
604 if (ev_loop_done != 2) 910 if (loop_done != 2)
605 ev_loop_done = 0; 911 loop_done = 0;
912}
913
914void
915ev_unloop (EV_P_ int how)
916{
917 loop_done = how;
606} 918}
607 919
608/*****************************************************************************/ 920/*****************************************************************************/
609 921
610static void 922inline void
611wlist_add (WL *head, WL elem) 923wlist_add (WL *head, WL elem)
612{ 924{
613 elem->next = *head; 925 elem->next = *head;
614 *head = elem; 926 *head = elem;
615} 927}
616 928
617static void 929inline void
618wlist_del (WL *head, WL elem) 930wlist_del (WL *head, WL elem)
619{ 931{
620 while (*head) 932 while (*head)
621 { 933 {
622 if (*head == elem) 934 if (*head == elem)
627 939
628 head = &(*head)->next; 940 head = &(*head)->next;
629 } 941 }
630} 942}
631 943
632static void 944inline void
633ev_clear (W w) 945ev_clear_pending (EV_P_ W w)
634{ 946{
635 if (w->pending) 947 if (w->pending)
636 { 948 {
637 pendings [w->pending - 1].w = 0; 949 pendings [ABSPRI (w)][w->pending - 1].w = 0;
638 w->pending = 0; 950 w->pending = 0;
639 } 951 }
640} 952}
641 953
642static void 954inline void
643ev_start (W w, int active) 955ev_start (EV_P_ W w, int active)
644{ 956{
957 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
958 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
959
645 w->active = active; 960 w->active = active;
961 ev_ref (EV_A);
646} 962}
647 963
648static void 964inline void
649ev_stop (W w) 965ev_stop (EV_P_ W w)
650{ 966{
967 ev_unref (EV_A);
651 w->active = 0; 968 w->active = 0;
652} 969}
653 970
654/*****************************************************************************/ 971/*****************************************************************************/
655 972
656void 973void
657evio_start (struct ev_io *w) 974ev_io_start (EV_P_ struct ev_io *w)
658{ 975{
976 int fd = w->fd;
977
659 if (ev_is_active (w)) 978 if (ev_is_active (w))
660 return; 979 return;
661 980
662 int fd = w->fd; 981 assert (("ev_io_start called with negative fd", fd >= 0));
663 982
664 ev_start ((W)w, 1); 983 ev_start (EV_A_ (W)w, 1);
665 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 984 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
666 wlist_add ((WL *)&anfds[fd].head, (WL)w); 985 wlist_add ((WL *)&anfds[fd].head, (WL)w);
667 986
668 ++fdchangecnt; 987 fd_change (EV_A_ fd);
669 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
670 fdchanges [fdchangecnt - 1] = fd;
671} 988}
672 989
673void 990void
674evio_stop (struct ev_io *w) 991ev_io_stop (EV_P_ struct ev_io *w)
675{ 992{
676 ev_clear ((W)w); 993 ev_clear_pending (EV_A_ (W)w);
677 if (!ev_is_active (w)) 994 if (!ev_is_active (w))
678 return; 995 return;
679 996
680 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 997 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
681 ev_stop ((W)w); 998 ev_stop (EV_A_ (W)w);
682 999
683 ++fdchangecnt; 1000 fd_change (EV_A_ w->fd);
684 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
685 fdchanges [fdchangecnt - 1] = w->fd;
686} 1001}
687 1002
688void 1003void
689evtimer_start (struct ev_timer *w) 1004ev_timer_start (EV_P_ struct ev_timer *w)
690{ 1005{
691 if (ev_is_active (w)) 1006 if (ev_is_active (w))
692 return; 1007 return;
693 1008
694 w->at += now; 1009 w->at += mn_now;
695 1010
696 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1011 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
697 1012
698 ev_start ((W)w, ++timercnt); 1013 ev_start (EV_A_ (W)w, ++timercnt);
699 array_needsize (timers, timermax, timercnt, ); 1014 array_needsize (timers, timermax, timercnt, );
700 timers [timercnt - 1] = w; 1015 timers [timercnt - 1] = w;
701 upheap ((WT *)timers, timercnt - 1); 1016 upheap ((WT *)timers, timercnt - 1);
702} 1017}
703 1018
704void 1019void
705evtimer_stop (struct ev_timer *w) 1020ev_timer_stop (EV_P_ struct ev_timer *w)
706{ 1021{
707 ev_clear ((W)w); 1022 ev_clear_pending (EV_A_ (W)w);
708 if (!ev_is_active (w)) 1023 if (!ev_is_active (w))
709 return; 1024 return;
710 1025
711 if (w->active < timercnt--) 1026 if (w->active < timercnt--)
712 { 1027 {
714 downheap ((WT *)timers, timercnt, w->active - 1); 1029 downheap ((WT *)timers, timercnt, w->active - 1);
715 } 1030 }
716 1031
717 w->at = w->repeat; 1032 w->at = w->repeat;
718 1033
719 ev_stop ((W)w); 1034 ev_stop (EV_A_ (W)w);
720} 1035}
721 1036
722void 1037void
723evtimer_again (struct ev_timer *w) 1038ev_timer_again (EV_P_ struct ev_timer *w)
724{ 1039{
725 if (ev_is_active (w)) 1040 if (ev_is_active (w))
726 { 1041 {
727 if (w->repeat) 1042 if (w->repeat)
728 { 1043 {
729 w->at = now + w->repeat; 1044 w->at = mn_now + w->repeat;
730 downheap ((WT *)timers, timercnt, w->active - 1); 1045 downheap ((WT *)timers, timercnt, w->active - 1);
731 } 1046 }
732 else 1047 else
733 evtimer_stop (w); 1048 ev_timer_stop (EV_A_ w);
734 } 1049 }
735 else if (w->repeat) 1050 else if (w->repeat)
736 evtimer_start (w); 1051 ev_timer_start (EV_A_ w);
737} 1052}
738 1053
739void 1054void
740evperiodic_start (struct ev_periodic *w) 1055ev_periodic_start (EV_P_ struct ev_periodic *w)
741{ 1056{
742 if (ev_is_active (w)) 1057 if (ev_is_active (w))
743 return; 1058 return;
744 1059
745 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1060 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
746 1061
747 /* this formula differs from the one in periodic_reify because we do not always round up */ 1062 /* this formula differs from the one in periodic_reify because we do not always round up */
748 if (w->interval) 1063 if (w->interval)
749 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1064 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
750 1065
751 ev_start ((W)w, ++periodiccnt); 1066 ev_start (EV_A_ (W)w, ++periodiccnt);
752 array_needsize (periodics, periodicmax, periodiccnt, ); 1067 array_needsize (periodics, periodicmax, periodiccnt, );
753 periodics [periodiccnt - 1] = w; 1068 periodics [periodiccnt - 1] = w;
754 upheap ((WT *)periodics, periodiccnt - 1); 1069 upheap ((WT *)periodics, periodiccnt - 1);
755} 1070}
756 1071
757void 1072void
758evperiodic_stop (struct ev_periodic *w) 1073ev_periodic_stop (EV_P_ struct ev_periodic *w)
759{ 1074{
760 ev_clear ((W)w); 1075 ev_clear_pending (EV_A_ (W)w);
761 if (!ev_is_active (w)) 1076 if (!ev_is_active (w))
762 return; 1077 return;
763 1078
764 if (w->active < periodiccnt--) 1079 if (w->active < periodiccnt--)
765 { 1080 {
766 periodics [w->active - 1] = periodics [periodiccnt]; 1081 periodics [w->active - 1] = periodics [periodiccnt];
767 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1082 downheap ((WT *)periodics, periodiccnt, w->active - 1);
768 } 1083 }
769 1084
770 ev_stop ((W)w); 1085 ev_stop (EV_A_ (W)w);
771} 1086}
772 1087
1088#ifndef SA_RESTART
1089# define SA_RESTART 0
1090#endif
1091
773void 1092void
774evsignal_start (struct ev_signal *w) 1093ev_signal_start (EV_P_ struct ev_signal *w)
775{ 1094{
776 if (ev_is_active (w)) 1095 if (ev_is_active (w))
777 return; 1096 return;
778 1097
1098 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1099
779 ev_start ((W)w, 1); 1100 ev_start (EV_A_ (W)w, 1);
780 array_needsize (signals, signalmax, w->signum, signals_init); 1101 array_needsize (signals, signalmax, w->signum, signals_init);
781 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1102 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
782 1103
783 if (!w->next) 1104 if (!w->next)
784 { 1105 {
785 struct sigaction sa; 1106 struct sigaction sa;
786 sa.sa_handler = sighandler; 1107 sa.sa_handler = sighandler;
787 sigfillset (&sa.sa_mask); 1108 sigfillset (&sa.sa_mask);
788 sa.sa_flags = 0; 1109 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
789 sigaction (w->signum, &sa, 0); 1110 sigaction (w->signum, &sa, 0);
790 } 1111 }
791} 1112}
792 1113
793void 1114void
794evsignal_stop (struct ev_signal *w) 1115ev_signal_stop (EV_P_ struct ev_signal *w)
795{ 1116{
796 ev_clear ((W)w); 1117 ev_clear_pending (EV_A_ (W)w);
797 if (!ev_is_active (w)) 1118 if (!ev_is_active (w))
798 return; 1119 return;
799 1120
800 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1121 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
801 ev_stop ((W)w); 1122 ev_stop (EV_A_ (W)w);
802 1123
803 if (!signals [w->signum - 1].head) 1124 if (!signals [w->signum - 1].head)
804 signal (w->signum, SIG_DFL); 1125 signal (w->signum, SIG_DFL);
805} 1126}
806 1127
1128void
807void evidle_start (struct ev_idle *w) 1129ev_idle_start (EV_P_ struct ev_idle *w)
808{ 1130{
809 if (ev_is_active (w)) 1131 if (ev_is_active (w))
810 return; 1132 return;
811 1133
812 ev_start ((W)w, ++idlecnt); 1134 ev_start (EV_A_ (W)w, ++idlecnt);
813 array_needsize (idles, idlemax, idlecnt, ); 1135 array_needsize (idles, idlemax, idlecnt, );
814 idles [idlecnt - 1] = w; 1136 idles [idlecnt - 1] = w;
815} 1137}
816 1138
1139void
817void evidle_stop (struct ev_idle *w) 1140ev_idle_stop (EV_P_ struct ev_idle *w)
818{ 1141{
819 ev_clear ((W)w); 1142 ev_clear_pending (EV_A_ (W)w);
820 if (ev_is_active (w)) 1143 if (ev_is_active (w))
821 return; 1144 return;
822 1145
823 idles [w->active - 1] = idles [--idlecnt]; 1146 idles [w->active - 1] = idles [--idlecnt];
824 ev_stop ((W)w); 1147 ev_stop (EV_A_ (W)w);
825} 1148}
826 1149
827void evcheck_start (struct ev_check *w) 1150void
1151ev_prepare_start (EV_P_ struct ev_prepare *w)
828{ 1152{
829 if (ev_is_active (w)) 1153 if (ev_is_active (w))
830 return; 1154 return;
831 1155
1156 ev_start (EV_A_ (W)w, ++preparecnt);
1157 array_needsize (prepares, preparemax, preparecnt, );
1158 prepares [preparecnt - 1] = w;
1159}
1160
1161void
1162ev_prepare_stop (EV_P_ struct ev_prepare *w)
1163{
1164 ev_clear_pending (EV_A_ (W)w);
1165 if (ev_is_active (w))
1166 return;
1167
1168 prepares [w->active - 1] = prepares [--preparecnt];
1169 ev_stop (EV_A_ (W)w);
1170}
1171
1172void
1173ev_check_start (EV_P_ struct ev_check *w)
1174{
1175 if (ev_is_active (w))
1176 return;
1177
832 ev_start ((W)w, ++checkcnt); 1178 ev_start (EV_A_ (W)w, ++checkcnt);
833 array_needsize (checks, checkmax, checkcnt, ); 1179 array_needsize (checks, checkmax, checkcnt, );
834 checks [checkcnt - 1] = w; 1180 checks [checkcnt - 1] = w;
835} 1181}
836 1182
1183void
837void evcheck_stop (struct ev_check *w) 1184ev_check_stop (EV_P_ struct ev_check *w)
838{ 1185{
839 ev_clear ((W)w); 1186 ev_clear_pending (EV_A_ (W)w);
840 if (ev_is_active (w)) 1187 if (ev_is_active (w))
841 return; 1188 return;
842 1189
843 checks [w->active - 1] = checks [--checkcnt]; 1190 checks [w->active - 1] = checks [--checkcnt];
844 ev_stop ((W)w); 1191 ev_stop (EV_A_ (W)w);
1192}
1193
1194void
1195ev_child_start (EV_P_ struct ev_child *w)
1196{
1197 if (ev_is_active (w))
1198 return;
1199
1200 ev_start (EV_A_ (W)w, 1);
1201 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1202}
1203
1204void
1205ev_child_stop (EV_P_ struct ev_child *w)
1206{
1207 ev_clear_pending (EV_A_ (W)w);
1208 if (ev_is_active (w))
1209 return;
1210
1211 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1212 ev_stop (EV_A_ (W)w);
845} 1213}
846 1214
847/*****************************************************************************/ 1215/*****************************************************************************/
848 1216
849struct ev_once 1217struct ev_once
853 void (*cb)(int revents, void *arg); 1221 void (*cb)(int revents, void *arg);
854 void *arg; 1222 void *arg;
855}; 1223};
856 1224
857static void 1225static void
858once_cb (struct ev_once *once, int revents) 1226once_cb (EV_P_ struct ev_once *once, int revents)
859{ 1227{
860 void (*cb)(int revents, void *arg) = once->cb; 1228 void (*cb)(int revents, void *arg) = once->cb;
861 void *arg = once->arg; 1229 void *arg = once->arg;
862 1230
863 evio_stop (&once->io); 1231 ev_io_stop (EV_A_ &once->io);
864 evtimer_stop (&once->to); 1232 ev_timer_stop (EV_A_ &once->to);
865 free (once); 1233 free (once);
866 1234
867 cb (revents, arg); 1235 cb (revents, arg);
868} 1236}
869 1237
870static void 1238static void
871once_cb_io (struct ev_io *w, int revents) 1239once_cb_io (EV_P_ struct ev_io *w, int revents)
872{ 1240{
873 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1241 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
874} 1242}
875 1243
876static void 1244static void
877once_cb_to (struct ev_timer *w, int revents) 1245once_cb_to (EV_P_ struct ev_timer *w, int revents)
878{ 1246{
879 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1247 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
880} 1248}
881 1249
882void 1250void
883ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1251ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
884{ 1252{
885 struct ev_once *once = malloc (sizeof (struct ev_once)); 1253 struct ev_once *once = malloc (sizeof (struct ev_once));
886 1254
887 if (!once) 1255 if (!once)
888 cb (EV_ERROR, arg); 1256 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
889 else 1257 else
890 { 1258 {
891 once->cb = cb; 1259 once->cb = cb;
892 once->arg = arg; 1260 once->arg = arg;
893 1261
894 evw_init (&once->io, once_cb_io); 1262 ev_watcher_init (&once->io, once_cb_io);
895
896 if (fd >= 0) 1263 if (fd >= 0)
897 { 1264 {
898 evio_set (&once->io, fd, events); 1265 ev_io_set (&once->io, fd, events);
899 evio_start (&once->io); 1266 ev_io_start (EV_A_ &once->io);
900 } 1267 }
901 1268
902 evw_init (&once->to, once_cb_to); 1269 ev_watcher_init (&once->to, once_cb_to);
903
904 if (timeout >= 0.) 1270 if (timeout >= 0.)
905 { 1271 {
906 evtimer_set (&once->to, timeout, 0.); 1272 ev_timer_set (&once->to, timeout, 0.);
907 evtimer_start (&once->to); 1273 ev_timer_start (EV_A_ &once->to);
908 } 1274 }
909 } 1275 }
910} 1276}
911 1277
912/*****************************************************************************/ 1278/*****************************************************************************/
923 1289
924static void 1290static void
925ocb (struct ev_timer *w, int revents) 1291ocb (struct ev_timer *w, int revents)
926{ 1292{
927 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data); 1293 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
928 evtimer_stop (w); 1294 ev_timer_stop (w);
929 evtimer_start (w); 1295 ev_timer_start (w);
930} 1296}
931 1297
932static void 1298static void
933scb (struct ev_signal *w, int revents) 1299scb (struct ev_signal *w, int revents)
934{ 1300{
935 fprintf (stderr, "signal %x,%d\n", revents, w->signum); 1301 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
936 evio_stop (&wio); 1302 ev_io_stop (&wio);
937 evio_start (&wio); 1303 ev_io_start (&wio);
938} 1304}
939 1305
940static void 1306static void
941gcb (struct ev_signal *w, int revents) 1307gcb (struct ev_signal *w, int revents)
942{ 1308{
946 1312
947int main (void) 1313int main (void)
948{ 1314{
949 ev_init (0); 1315 ev_init (0);
950 1316
951 evio_init (&wio, sin_cb, 0, EV_READ); 1317 ev_io_init (&wio, sin_cb, 0, EV_READ);
952 evio_start (&wio); 1318 ev_io_start (&wio);
953 1319
954 struct ev_timer t[10000]; 1320 struct ev_timer t[10000];
955 1321
956#if 0 1322#if 0
957 int i; 1323 int i;
958 for (i = 0; i < 10000; ++i) 1324 for (i = 0; i < 10000; ++i)
959 { 1325 {
960 struct ev_timer *w = t + i; 1326 struct ev_timer *w = t + i;
961 evw_init (w, ocb, i); 1327 ev_watcher_init (w, ocb, i);
962 evtimer_init_abs (w, ocb, drand48 (), 0.99775533); 1328 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
963 evtimer_start (w); 1329 ev_timer_start (w);
964 if (drand48 () < 0.5) 1330 if (drand48 () < 0.5)
965 evtimer_stop (w); 1331 ev_timer_stop (w);
966 } 1332 }
967#endif 1333#endif
968 1334
969 struct ev_timer t1; 1335 struct ev_timer t1;
970 evtimer_init (&t1, ocb, 5, 10); 1336 ev_timer_init (&t1, ocb, 5, 10);
971 evtimer_start (&t1); 1337 ev_timer_start (&t1);
972 1338
973 struct ev_signal sig; 1339 struct ev_signal sig;
974 evsignal_init (&sig, scb, SIGQUIT); 1340 ev_signal_init (&sig, scb, SIGQUIT);
975 evsignal_start (&sig); 1341 ev_signal_start (&sig);
976 1342
977 struct ev_check cw; 1343 struct ev_check cw;
978 evcheck_init (&cw, gcb); 1344 ev_check_init (&cw, gcb);
979 evcheck_start (&cw); 1345 ev_check_start (&cw);
980 1346
981 struct ev_idle iw; 1347 struct ev_idle iw;
982 evidle_init (&iw, gcb); 1348 ev_idle_init (&iw, gcb);
983 evidle_start (&iw); 1349 ev_idle_start (&iw);
984 1350
985 ev_loop (0); 1351 ev_loop (0);
986 1352
987 return 0; 1353 return 0;
988} 1354}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines