ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.120 by root, Fri Nov 16 01:54:25 2007 UTC vs.
Revision 1.180 by root, Tue Dec 11 22:04:55 2007 UTC

32#ifdef __cplusplus 32#ifdef __cplusplus
33extern "C" { 33extern "C" {
34#endif 34#endif
35 35
36#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
37# include "config.h" 40# include "config.h"
41# endif
38 42
39# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 44# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
42# endif 46# endif
43# ifndef EV_USE_REALTIME 47# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 48# define EV_USE_REALTIME 1
45# endif 49# endif
50# else
51# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0
53# endif
54# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0
56# endif
46# endif 57# endif
47 58
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 59# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H
49# define EV_USE_SELECT 1 61# define EV_USE_SELECT 1
62# else
63# define EV_USE_SELECT 0
64# endif
50# endif 65# endif
51 66
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 67# ifndef EV_USE_POLL
68# if HAVE_POLL && HAVE_POLL_H
53# define EV_USE_POLL 1 69# define EV_USE_POLL 1
70# else
71# define EV_USE_POLL 0
72# endif
54# endif 73# endif
55 74
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 75# ifndef EV_USE_EPOLL
76# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
57# define EV_USE_EPOLL 1 77# define EV_USE_EPOLL 1
78# else
79# define EV_USE_EPOLL 0
80# endif
58# endif 81# endif
59 82
83# ifndef EV_USE_KQUEUE
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 84# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
61# define EV_USE_KQUEUE 1 85# define EV_USE_KQUEUE 1
86# else
87# define EV_USE_KQUEUE 0
88# endif
62# endif 89# endif
63 90
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 91# ifndef EV_USE_PORT
92# if HAVE_PORT_H && HAVE_PORT_CREATE
65# define EV_USE_PORT 1 93# define EV_USE_PORT 1
94# else
95# define EV_USE_PORT 0
96# endif
97# endif
98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
66# endif 105# endif
67 106
68#endif 107#endif
69 108
70#include <math.h> 109#include <math.h>
79#include <sys/types.h> 118#include <sys/types.h>
80#include <time.h> 119#include <time.h>
81 120
82#include <signal.h> 121#include <signal.h>
83 122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
84#ifndef _WIN32 129#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 130# include <sys/time.h>
87# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
88#else 133#else
89# define WIN32_LEAN_AND_MEAN 134# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 135# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 136# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 137# define EV_SELECT_IS_WINSOCKET 1
94#endif 139#endif
95 140
96/**/ 141/**/
97 142
98#ifndef EV_USE_MONOTONIC 143#ifndef EV_USE_MONOTONIC
99# define EV_USE_MONOTONIC 1 144# define EV_USE_MONOTONIC 0
100#endif 145#endif
101 146
102#ifndef EV_USE_REALTIME 147#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 1 148# define EV_USE_REALTIME 0
104#endif 149#endif
105 150
106#ifndef EV_USE_SELECT 151#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 152# define EV_USE_SELECT 1
108# define EV_SELECT_USE_FD_SET 1
109#endif 153#endif
110 154
111#ifndef EV_USE_POLL 155#ifndef EV_USE_POLL
112# ifdef _WIN32 156# ifdef _WIN32
113# define EV_USE_POLL 0 157# define EV_USE_POLL 0
126 170
127#ifndef EV_USE_PORT 171#ifndef EV_USE_PORT
128# define EV_USE_PORT 0 172# define EV_USE_PORT 0
129#endif 173#endif
130 174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
131/**/ 195/**/
132
133/* darwin simply cannot be helped */
134#ifdef __APPLE__
135# undef EV_USE_POLL
136# undef EV_USE_KQUEUE
137#endif
138 196
139#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
140# undef EV_USE_MONOTONIC 198# undef EV_USE_MONOTONIC
141# define EV_USE_MONOTONIC 0 199# define EV_USE_MONOTONIC 0
142#endif 200#endif
148 206
149#if EV_SELECT_IS_WINSOCKET 207#if EV_SELECT_IS_WINSOCKET
150# include <winsock.h> 208# include <winsock.h>
151#endif 209#endif
152 210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
153/**/ 219/**/
220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
154 230
155#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
156#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
157#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
158/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
159
160#ifdef EV_H
161# include EV_H
162#else
163# include "ev.h"
164#endif
165 234
166#if __GNUC__ >= 3 235#if __GNUC__ >= 3
167# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
168# define inline inline 237# define noinline __attribute__ ((noinline))
169#else 238#else
170# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
171# define inline static 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
172#endif 244#endif
173 245
174#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
175#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
176 255
177#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
178#define ABSPRI(w) ((w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
179 258
180#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 259#define EMPTY /* required for microsofts broken pseudo-c compiler */
181#define EMPTY2(a,b) /* used to suppress some warnings */ 260#define EMPTY2(a,b) /* used to suppress some warnings */
182 261
183typedef struct ev_watcher *W; 262typedef ev_watcher *W;
184typedef struct ev_watcher_list *WL; 263typedef ev_watcher_list *WL;
185typedef struct ev_watcher_time *WT; 264typedef ev_watcher_time *WT;
186 265
187static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
188 267
189#ifdef _WIN32 268#ifdef _WIN32
190# include "ev_win32.c" 269# include "ev_win32.c"
192 271
193/*****************************************************************************/ 272/*****************************************************************************/
194 273
195static void (*syserr_cb)(const char *msg); 274static void (*syserr_cb)(const char *msg);
196 275
276void
197void ev_set_syserr_cb (void (*cb)(const char *msg)) 277ev_set_syserr_cb (void (*cb)(const char *msg))
198{ 278{
199 syserr_cb = cb; 279 syserr_cb = cb;
200} 280}
201 281
202static void 282static void noinline
203syserr (const char *msg) 283syserr (const char *msg)
204{ 284{
205 if (!msg) 285 if (!msg)
206 msg = "(libev) system error"; 286 msg = "(libev) system error";
207 287
214 } 294 }
215} 295}
216 296
217static void *(*alloc)(void *ptr, long size); 297static void *(*alloc)(void *ptr, long size);
218 298
299void
219void ev_set_allocator (void *(*cb)(void *ptr, long size)) 300ev_set_allocator (void *(*cb)(void *ptr, long size))
220{ 301{
221 alloc = cb; 302 alloc = cb;
222} 303}
223 304
224static void * 305inline_speed void *
225ev_realloc (void *ptr, long size) 306ev_realloc (void *ptr, long size)
226{ 307{
227 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
228 309
229 if (!ptr && size) 310 if (!ptr && size)
253typedef struct 334typedef struct
254{ 335{
255 W w; 336 W w;
256 int events; 337 int events;
257} ANPENDING; 338} ANPENDING;
339
340#if EV_USE_INOTIFY
341typedef struct
342{
343 WL head;
344} ANFS;
345#endif
258 346
259#if EV_MULTIPLICITY 347#if EV_MULTIPLICITY
260 348
261 struct ev_loop 349 struct ev_loop
262 { 350 {
296 gettimeofday (&tv, 0); 384 gettimeofday (&tv, 0);
297 return tv.tv_sec + tv.tv_usec * 1e-6; 385 return tv.tv_sec + tv.tv_usec * 1e-6;
298#endif 386#endif
299} 387}
300 388
301inline ev_tstamp 389ev_tstamp inline_size
302get_clock (void) 390get_clock (void)
303{ 391{
304#if EV_USE_MONOTONIC 392#if EV_USE_MONOTONIC
305 if (expect_true (have_monotonic)) 393 if (expect_true (have_monotonic))
306 { 394 {
319{ 407{
320 return ev_rt_now; 408 return ev_rt_now;
321} 409}
322#endif 410#endif
323 411
324#define array_roundsize(type,n) (((n) | 4) & ~3) 412int inline_size
413array_nextsize (int elem, int cur, int cnt)
414{
415 int ncur = cur + 1;
416
417 do
418 ncur <<= 1;
419 while (cnt > ncur);
420
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096)
423 {
424 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
426 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem;
428 }
429
430 return ncur;
431}
432
433static noinline void *
434array_realloc (int elem, void *base, int *cur, int cnt)
435{
436 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur);
438}
325 439
326#define array_needsize(type,base,cur,cnt,init) \ 440#define array_needsize(type,base,cur,cnt,init) \
327 if (expect_false ((cnt) > cur)) \ 441 if (expect_false ((cnt) > (cur))) \
328 { \ 442 { \
329 int newcnt = cur; \ 443 int ocur_ = (cur); \
330 do \ 444 (base) = (type *)array_realloc \
331 { \ 445 (sizeof (type), (base), &(cur), (cnt)); \
332 newcnt = array_roundsize (type, newcnt << 1); \ 446 init ((base) + (ocur_), (cur) - ocur_); \
333 } \
334 while ((cnt) > newcnt); \
335 \
336 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
337 init (base + cur, newcnt - cur); \
338 cur = newcnt; \
339 } 447 }
340 448
449#if 0
341#define array_slim(type,stem) \ 450#define array_slim(type,stem) \
342 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 451 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
343 { \ 452 { \
344 stem ## max = array_roundsize (stem ## cnt >> 1); \ 453 stem ## max = array_roundsize (stem ## cnt >> 1); \
345 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 454 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
346 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
347 } 456 }
457#endif
348 458
349#define array_free(stem, idx) \ 459#define array_free(stem, idx) \
350 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
351 461
352/*****************************************************************************/ 462/*****************************************************************************/
353 463
354static void 464void noinline
465ev_feed_event (EV_P_ void *w, int revents)
466{
467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
469
470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents;
478 }
479}
480
481void inline_speed
482queue_events (EV_P_ W *events, int eventcnt, int type)
483{
484 int i;
485
486 for (i = 0; i < eventcnt; ++i)
487 ev_feed_event (EV_A_ events [i], type);
488}
489
490/*****************************************************************************/
491
492void inline_size
355anfds_init (ANFD *base, int count) 493anfds_init (ANFD *base, int count)
356{ 494{
357 while (count--) 495 while (count--)
358 { 496 {
359 base->head = 0; 497 base->head = 0;
362 500
363 ++base; 501 ++base;
364 } 502 }
365} 503}
366 504
367void 505void inline_speed
368ev_feed_event (EV_P_ void *w, int revents)
369{
370 W w_ = (W)w;
371
372 if (w_->pending)
373 {
374 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
375 return;
376 }
377
378 w_->pending = ++pendingcnt [ABSPRI (w_)];
379 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
380 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
381 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
382}
383
384static void
385queue_events (EV_P_ W *events, int eventcnt, int type)
386{
387 int i;
388
389 for (i = 0; i < eventcnt; ++i)
390 ev_feed_event (EV_A_ events [i], type);
391}
392
393inline void
394fd_event (EV_P_ int fd, int revents) 506fd_event (EV_P_ int fd, int revents)
395{ 507{
396 ANFD *anfd = anfds + fd; 508 ANFD *anfd = anfds + fd;
397 struct ev_io *w; 509 ev_io *w;
398 510
399 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 511 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
400 { 512 {
401 int ev = w->events & revents; 513 int ev = w->events & revents;
402 514
403 if (ev) 515 if (ev)
404 ev_feed_event (EV_A_ (W)w, ev); 516 ev_feed_event (EV_A_ (W)w, ev);
406} 518}
407 519
408void 520void
409ev_feed_fd_event (EV_P_ int fd, int revents) 521ev_feed_fd_event (EV_P_ int fd, int revents)
410{ 522{
523 if (fd >= 0 && fd < anfdmax)
411 fd_event (EV_A_ fd, revents); 524 fd_event (EV_A_ fd, revents);
412} 525}
413 526
414/*****************************************************************************/ 527void inline_size
415
416static void
417fd_reify (EV_P) 528fd_reify (EV_P)
418{ 529{
419 int i; 530 int i;
420 531
421 for (i = 0; i < fdchangecnt; ++i) 532 for (i = 0; i < fdchangecnt; ++i)
422 { 533 {
423 int fd = fdchanges [i]; 534 int fd = fdchanges [i];
424 ANFD *anfd = anfds + fd; 535 ANFD *anfd = anfds + fd;
425 struct ev_io *w; 536 ev_io *w;
426 537
427 int events = 0; 538 int events = 0;
428 539
429 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
430 events |= w->events; 541 events |= w->events;
431 542
432#if EV_SELECT_IS_WINSOCKET 543#if EV_SELECT_IS_WINSOCKET
433 if (events) 544 if (events)
434 { 545 {
438 } 549 }
439#endif 550#endif
440 551
441 anfd->reify = 0; 552 anfd->reify = 0;
442 553
443 method_modify (EV_A_ fd, anfd->events, events); 554 backend_modify (EV_A_ fd, anfd->events, events);
444 anfd->events = events; 555 anfd->events = events;
445 } 556 }
446 557
447 fdchangecnt = 0; 558 fdchangecnt = 0;
448} 559}
449 560
450static void 561void inline_size
451fd_change (EV_P_ int fd) 562fd_change (EV_P_ int fd)
452{ 563{
453 if (anfds [fd].reify) 564 if (expect_false (anfds [fd].reify))
454 return; 565 return;
455 566
456 anfds [fd].reify = 1; 567 anfds [fd].reify = 1;
457 568
458 ++fdchangecnt; 569 ++fdchangecnt;
459 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
460 fdchanges [fdchangecnt - 1] = fd; 571 fdchanges [fdchangecnt - 1] = fd;
461} 572}
462 573
463static void 574void inline_speed
464fd_kill (EV_P_ int fd) 575fd_kill (EV_P_ int fd)
465{ 576{
466 struct ev_io *w; 577 ev_io *w;
467 578
468 while ((w = (struct ev_io *)anfds [fd].head)) 579 while ((w = (ev_io *)anfds [fd].head))
469 { 580 {
470 ev_io_stop (EV_A_ w); 581 ev_io_stop (EV_A_ w);
471 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 582 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
472 } 583 }
473} 584}
474 585
475static int 586int inline_size
476fd_valid (int fd) 587fd_valid (int fd)
477{ 588{
478#ifdef _WIN32 589#ifdef _WIN32
479 return _get_osfhandle (fd) != -1; 590 return _get_osfhandle (fd) != -1;
480#else 591#else
481 return fcntl (fd, F_GETFD) != -1; 592 return fcntl (fd, F_GETFD) != -1;
482#endif 593#endif
483} 594}
484 595
485/* called on EBADF to verify fds */ 596/* called on EBADF to verify fds */
486static void 597static void noinline
487fd_ebadf (EV_P) 598fd_ebadf (EV_P)
488{ 599{
489 int fd; 600 int fd;
490 601
491 for (fd = 0; fd < anfdmax; ++fd) 602 for (fd = 0; fd < anfdmax; ++fd)
493 if (!fd_valid (fd) == -1 && errno == EBADF) 604 if (!fd_valid (fd) == -1 && errno == EBADF)
494 fd_kill (EV_A_ fd); 605 fd_kill (EV_A_ fd);
495} 606}
496 607
497/* called on ENOMEM in select/poll to kill some fds and retry */ 608/* called on ENOMEM in select/poll to kill some fds and retry */
498static void 609static void noinline
499fd_enomem (EV_P) 610fd_enomem (EV_P)
500{ 611{
501 int fd; 612 int fd;
502 613
503 for (fd = anfdmax; fd--; ) 614 for (fd = anfdmax; fd--; )
506 fd_kill (EV_A_ fd); 617 fd_kill (EV_A_ fd);
507 return; 618 return;
508 } 619 }
509} 620}
510 621
511/* usually called after fork if method needs to re-arm all fds from scratch */ 622/* usually called after fork if backend needs to re-arm all fds from scratch */
512static void 623static void noinline
513fd_rearm_all (EV_P) 624fd_rearm_all (EV_P)
514{ 625{
515 int fd; 626 int fd;
516 627
517 /* this should be highly optimised to not do anything but set a flag */
518 for (fd = 0; fd < anfdmax; ++fd) 628 for (fd = 0; fd < anfdmax; ++fd)
519 if (anfds [fd].events) 629 if (anfds [fd].events)
520 { 630 {
521 anfds [fd].events = 0; 631 anfds [fd].events = 0;
522 fd_change (EV_A_ fd); 632 fd_change (EV_A_ fd);
523 } 633 }
524} 634}
525 635
526/*****************************************************************************/ 636/*****************************************************************************/
527 637
528static void 638void inline_speed
529upheap (WT *heap, int k) 639upheap (WT *heap, int k)
530{ 640{
531 WT w = heap [k]; 641 WT w = heap [k];
532 642
533 while (k && heap [k >> 1]->at > w->at) 643 while (k)
534 { 644 {
645 int p = (k - 1) >> 1;
646
647 if (heap [p]->at <= w->at)
648 break;
649
535 heap [k] = heap [k >> 1]; 650 heap [k] = heap [p];
536 ((W)heap [k])->active = k + 1; 651 ((W)heap [k])->active = k + 1;
537 k >>= 1; 652 k = p;
538 } 653 }
539 654
540 heap [k] = w; 655 heap [k] = w;
541 ((W)heap [k])->active = k + 1; 656 ((W)heap [k])->active = k + 1;
542 657
543} 658}
544 659
545static void 660void inline_speed
546downheap (WT *heap, int N, int k) 661downheap (WT *heap, int N, int k)
547{ 662{
548 WT w = heap [k]; 663 WT w = heap [k];
549 664
550 while (k < (N >> 1)) 665 for (;;)
551 { 666 {
552 int j = k << 1; 667 int c = (k << 1) + 1;
553 668
554 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 669 if (c >= N)
555 ++j;
556
557 if (w->at <= heap [j]->at)
558 break; 670 break;
559 671
672 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
673 ? 1 : 0;
674
675 if (w->at <= heap [c]->at)
676 break;
677
560 heap [k] = heap [j]; 678 heap [k] = heap [c];
561 ((W)heap [k])->active = k + 1; 679 ((W)heap [k])->active = k + 1;
680
562 k = j; 681 k = c;
563 } 682 }
564 683
565 heap [k] = w; 684 heap [k] = w;
566 ((W)heap [k])->active = k + 1; 685 ((W)heap [k])->active = k + 1;
567} 686}
568 687
569inline void 688void inline_size
570adjustheap (WT *heap, int N, int k) 689adjustheap (WT *heap, int N, int k)
571{ 690{
572 upheap (heap, k); 691 upheap (heap, k);
573 downheap (heap, N, k); 692 downheap (heap, N, k);
574} 693}
584static ANSIG *signals; 703static ANSIG *signals;
585static int signalmax; 704static int signalmax;
586 705
587static int sigpipe [2]; 706static int sigpipe [2];
588static sig_atomic_t volatile gotsig; 707static sig_atomic_t volatile gotsig;
589static struct ev_io sigev; 708static ev_io sigev;
590 709
591static void 710void inline_size
592signals_init (ANSIG *base, int count) 711signals_init (ANSIG *base, int count)
593{ 712{
594 while (count--) 713 while (count--)
595 { 714 {
596 base->head = 0; 715 base->head = 0;
616 write (sigpipe [1], &signum, 1); 735 write (sigpipe [1], &signum, 1);
617 errno = old_errno; 736 errno = old_errno;
618 } 737 }
619} 738}
620 739
621void 740void noinline
622ev_feed_signal_event (EV_P_ int signum) 741ev_feed_signal_event (EV_P_ int signum)
623{ 742{
624 WL w; 743 WL w;
625 744
626#if EV_MULTIPLICITY 745#if EV_MULTIPLICITY
637 for (w = signals [signum].head; w; w = w->next) 756 for (w = signals [signum].head; w; w = w->next)
638 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 757 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
639} 758}
640 759
641static void 760static void
642sigcb (EV_P_ struct ev_io *iow, int revents) 761sigcb (EV_P_ ev_io *iow, int revents)
643{ 762{
644 int signum; 763 int signum;
645 764
646 read (sigpipe [0], &revents, 1); 765 read (sigpipe [0], &revents, 1);
647 gotsig = 0; 766 gotsig = 0;
649 for (signum = signalmax; signum--; ) 768 for (signum = signalmax; signum--; )
650 if (signals [signum].gotsig) 769 if (signals [signum].gotsig)
651 ev_feed_signal_event (EV_A_ signum + 1); 770 ev_feed_signal_event (EV_A_ signum + 1);
652} 771}
653 772
654inline void 773void inline_speed
655fd_intern (int fd) 774fd_intern (int fd)
656{ 775{
657#ifdef _WIN32 776#ifdef _WIN32
658 int arg = 1; 777 int arg = 1;
659 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 778 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
661 fcntl (fd, F_SETFD, FD_CLOEXEC); 780 fcntl (fd, F_SETFD, FD_CLOEXEC);
662 fcntl (fd, F_SETFL, O_NONBLOCK); 781 fcntl (fd, F_SETFL, O_NONBLOCK);
663#endif 782#endif
664} 783}
665 784
666static void 785static void noinline
667siginit (EV_P) 786siginit (EV_P)
668{ 787{
669 fd_intern (sigpipe [0]); 788 fd_intern (sigpipe [0]);
670 fd_intern (sigpipe [1]); 789 fd_intern (sigpipe [1]);
671 790
674 ev_unref (EV_A); /* child watcher should not keep loop alive */ 793 ev_unref (EV_A); /* child watcher should not keep loop alive */
675} 794}
676 795
677/*****************************************************************************/ 796/*****************************************************************************/
678 797
679static struct ev_child *childs [PID_HASHSIZE]; 798static ev_child *childs [EV_PID_HASHSIZE];
680 799
681#ifndef _WIN32 800#ifndef _WIN32
682 801
683static struct ev_signal childev; 802static ev_signal childev;
803
804void inline_speed
805child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
806{
807 ev_child *w;
808
809 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
810 if (w->pid == pid || !w->pid)
811 {
812 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
813 w->rpid = pid;
814 w->rstatus = status;
815 ev_feed_event (EV_A_ (W)w, EV_CHILD);
816 }
817}
684 818
685#ifndef WCONTINUED 819#ifndef WCONTINUED
686# define WCONTINUED 0 820# define WCONTINUED 0
687#endif 821#endif
688 822
689static void 823static void
690child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
691{
692 struct ev_child *w;
693
694 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
695 if (w->pid == pid || !w->pid)
696 {
697 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
698 w->rpid = pid;
699 w->rstatus = status;
700 ev_feed_event (EV_A_ (W)w, EV_CHILD);
701 }
702}
703
704static void
705childcb (EV_P_ struct ev_signal *sw, int revents) 824childcb (EV_P_ ev_signal *sw, int revents)
706{ 825{
707 int pid, status; 826 int pid, status;
708 827
828 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
709 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 829 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
710 { 830 if (!WCONTINUED
831 || errno != EINVAL
832 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
833 return;
834
711 /* make sure we are called again until all childs have been reaped */ 835 /* make sure we are called again until all childs have been reaped */
836 /* we need to do it this way so that the callback gets called before we continue */
712 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 837 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
713 838
714 child_reap (EV_A_ sw, pid, pid, status); 839 child_reap (EV_A_ sw, pid, pid, status);
840 if (EV_PID_HASHSIZE > 1)
715 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 841 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
716 }
717} 842}
718 843
719#endif 844#endif
720 845
721/*****************************************************************************/ 846/*****************************************************************************/
747{ 872{
748 return EV_VERSION_MINOR; 873 return EV_VERSION_MINOR;
749} 874}
750 875
751/* return true if we are running with elevated privileges and should ignore env variables */ 876/* return true if we are running with elevated privileges and should ignore env variables */
752static int 877int inline_size
753enable_secure (void) 878enable_secure (void)
754{ 879{
755#ifdef _WIN32 880#ifdef _WIN32
756 return 0; 881 return 0;
757#else 882#else
759 || getgid () != getegid (); 884 || getgid () != getegid ();
760#endif 885#endif
761} 886}
762 887
763unsigned int 888unsigned int
764ev_method (EV_P) 889ev_supported_backends (void)
765{ 890{
766 return method; 891 unsigned int flags = 0;
767}
768 892
769static void 893 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
894 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
895 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
896 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
897 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
898
899 return flags;
900}
901
902unsigned int
903ev_recommended_backends (void)
904{
905 unsigned int flags = ev_supported_backends ();
906
907#ifndef __NetBSD__
908 /* kqueue is borked on everything but netbsd apparently */
909 /* it usually doesn't work correctly on anything but sockets and pipes */
910 flags &= ~EVBACKEND_KQUEUE;
911#endif
912#ifdef __APPLE__
913 // flags &= ~EVBACKEND_KQUEUE; for documentation
914 flags &= ~EVBACKEND_POLL;
915#endif
916
917 return flags;
918}
919
920unsigned int
921ev_embeddable_backends (void)
922{
923 return EVBACKEND_EPOLL
924 | EVBACKEND_KQUEUE
925 | EVBACKEND_PORT;
926}
927
928unsigned int
929ev_backend (EV_P)
930{
931 return backend;
932}
933
934unsigned int
935ev_loop_count (EV_P)
936{
937 return loop_count;
938}
939
940static void noinline
770loop_init (EV_P_ unsigned int flags) 941loop_init (EV_P_ unsigned int flags)
771{ 942{
772 if (!method) 943 if (!backend)
773 { 944 {
774#if EV_USE_MONOTONIC 945#if EV_USE_MONOTONIC
775 { 946 {
776 struct timespec ts; 947 struct timespec ts;
777 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 948 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
782 ev_rt_now = ev_time (); 953 ev_rt_now = ev_time ();
783 mn_now = get_clock (); 954 mn_now = get_clock ();
784 now_floor = mn_now; 955 now_floor = mn_now;
785 rtmn_diff = ev_rt_now - mn_now; 956 rtmn_diff = ev_rt_now - mn_now;
786 957
787 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 958 /* pid check not overridable via env */
959#ifndef _WIN32
960 if (flags & EVFLAG_FORKCHECK)
961 curpid = getpid ();
962#endif
963
964 if (!(flags & EVFLAG_NOENV)
965 && !enable_secure ()
966 && getenv ("LIBEV_FLAGS"))
788 flags = atoi (getenv ("LIBEV_FLAGS")); 967 flags = atoi (getenv ("LIBEV_FLAGS"));
789 968
790 if (!(flags & 0x0000ffff)) 969 if (!(flags & 0x0000ffffUL))
791 flags |= 0x0000ffff; 970 flags |= ev_recommended_backends ();
792 971
793 method = 0; 972 backend = 0;
973 backend_fd = -1;
974#if EV_USE_INOTIFY
975 fs_fd = -2;
976#endif
977
794#if EV_USE_PORT 978#if EV_USE_PORT
795 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 979 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
796#endif 980#endif
797#if EV_USE_KQUEUE 981#if EV_USE_KQUEUE
798 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 982 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
799#endif 983#endif
800#if EV_USE_EPOLL 984#if EV_USE_EPOLL
801 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 985 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
802#endif 986#endif
803#if EV_USE_POLL 987#if EV_USE_POLL
804 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 988 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
805#endif 989#endif
806#if EV_USE_SELECT 990#if EV_USE_SELECT
807 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 991 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
808#endif 992#endif
809 993
810 ev_init (&sigev, sigcb); 994 ev_init (&sigev, sigcb);
811 ev_set_priority (&sigev, EV_MAXPRI); 995 ev_set_priority (&sigev, EV_MAXPRI);
812 } 996 }
813} 997}
814 998
815void 999static void noinline
816loop_destroy (EV_P) 1000loop_destroy (EV_P)
817{ 1001{
818 int i; 1002 int i;
819 1003
1004#if EV_USE_INOTIFY
1005 if (fs_fd >= 0)
1006 close (fs_fd);
1007#endif
1008
1009 if (backend_fd >= 0)
1010 close (backend_fd);
1011
820#if EV_USE_PORT 1012#if EV_USE_PORT
821 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1013 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
822#endif 1014#endif
823#if EV_USE_KQUEUE 1015#if EV_USE_KQUEUE
824 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1016 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
825#endif 1017#endif
826#if EV_USE_EPOLL 1018#if EV_USE_EPOLL
827 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1019 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
828#endif 1020#endif
829#if EV_USE_POLL 1021#if EV_USE_POLL
830 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1022 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
831#endif 1023#endif
832#if EV_USE_SELECT 1024#if EV_USE_SELECT
833 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1025 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
834#endif 1026#endif
835 1027
836 for (i = NUMPRI; i--; ) 1028 for (i = NUMPRI; i--; )
1029 {
837 array_free (pending, [i]); 1030 array_free (pending, [i]);
1031#if EV_IDLE_ENABLE
1032 array_free (idle, [i]);
1033#endif
1034 }
838 1035
839 /* have to use the microsoft-never-gets-it-right macro */ 1036 /* have to use the microsoft-never-gets-it-right macro */
840 array_free (fdchange, EMPTY0); 1037 array_free (fdchange, EMPTY);
841 array_free (timer, EMPTY0); 1038 array_free (timer, EMPTY);
842#if EV_PERIODICS 1039#if EV_PERIODIC_ENABLE
843 array_free (periodic, EMPTY0); 1040 array_free (periodic, EMPTY);
844#endif 1041#endif
845 array_free (idle, EMPTY0);
846 array_free (prepare, EMPTY0); 1042 array_free (prepare, EMPTY);
847 array_free (check, EMPTY0); 1043 array_free (check, EMPTY);
848 1044
849 method = 0; 1045 backend = 0;
850} 1046}
851 1047
852static void 1048void inline_size infy_fork (EV_P);
1049
1050void inline_size
853loop_fork (EV_P) 1051loop_fork (EV_P)
854{ 1052{
855#if EV_USE_PORT 1053#if EV_USE_PORT
856 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1054 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
857#endif 1055#endif
858#if EV_USE_KQUEUE 1056#if EV_USE_KQUEUE
859 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1057 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
860#endif 1058#endif
861#if EV_USE_EPOLL 1059#if EV_USE_EPOLL
862 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1060 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1061#endif
1062#if EV_USE_INOTIFY
1063 infy_fork (EV_A);
863#endif 1064#endif
864 1065
865 if (ev_is_active (&sigev)) 1066 if (ev_is_active (&sigev))
866 { 1067 {
867 /* default loop */ 1068 /* default loop */
888 1089
889 memset (loop, 0, sizeof (struct ev_loop)); 1090 memset (loop, 0, sizeof (struct ev_loop));
890 1091
891 loop_init (EV_A_ flags); 1092 loop_init (EV_A_ flags);
892 1093
893 if (ev_method (EV_A)) 1094 if (ev_backend (EV_A))
894 return loop; 1095 return loop;
895 1096
896 return 0; 1097 return 0;
897} 1098}
898 1099
911 1112
912#endif 1113#endif
913 1114
914#if EV_MULTIPLICITY 1115#if EV_MULTIPLICITY
915struct ev_loop * 1116struct ev_loop *
916ev_default_loop_ (unsigned int flags) 1117ev_default_loop_init (unsigned int flags)
917#else 1118#else
918int 1119int
919ev_default_loop (unsigned int flags) 1120ev_default_loop (unsigned int flags)
920#endif 1121#endif
921{ 1122{
931 ev_default_loop_ptr = 1; 1132 ev_default_loop_ptr = 1;
932#endif 1133#endif
933 1134
934 loop_init (EV_A_ flags); 1135 loop_init (EV_A_ flags);
935 1136
936 if (ev_method (EV_A)) 1137 if (ev_backend (EV_A))
937 { 1138 {
938 siginit (EV_A); 1139 siginit (EV_A);
939 1140
940#ifndef _WIN32 1141#ifndef _WIN32
941 ev_signal_init (&childev, childcb, SIGCHLD); 1142 ev_signal_init (&childev, childcb, SIGCHLD);
977{ 1178{
978#if EV_MULTIPLICITY 1179#if EV_MULTIPLICITY
979 struct ev_loop *loop = ev_default_loop_ptr; 1180 struct ev_loop *loop = ev_default_loop_ptr;
980#endif 1181#endif
981 1182
982 if (method) 1183 if (backend)
983 postfork = 1; 1184 postfork = 1;
984} 1185}
985 1186
986/*****************************************************************************/ 1187/*****************************************************************************/
987 1188
988static int 1189void
989any_pending (EV_P) 1190ev_invoke (EV_P_ void *w, int revents)
990{ 1191{
991 int pri; 1192 EV_CB_INVOKE ((W)w, revents);
992
993 for (pri = NUMPRI; pri--; )
994 if (pendingcnt [pri])
995 return 1;
996
997 return 0;
998} 1193}
999 1194
1000static void 1195void inline_speed
1001call_pending (EV_P) 1196call_pending (EV_P)
1002{ 1197{
1003 int pri; 1198 int pri;
1004 1199
1005 for (pri = NUMPRI; pri--; ) 1200 for (pri = NUMPRI; pri--; )
1006 while (pendingcnt [pri]) 1201 while (pendingcnt [pri])
1007 { 1202 {
1008 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1203 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1009 1204
1010 if (p->w) 1205 if (expect_true (p->w))
1011 { 1206 {
1207 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1208
1012 p->w->pending = 0; 1209 p->w->pending = 0;
1013 EV_CB_INVOKE (p->w, p->events); 1210 EV_CB_INVOKE (p->w, p->events);
1014 } 1211 }
1015 } 1212 }
1016} 1213}
1017 1214
1018static void 1215void inline_size
1019timers_reify (EV_P) 1216timers_reify (EV_P)
1020{ 1217{
1021 while (timercnt && ((WT)timers [0])->at <= mn_now) 1218 while (timercnt && ((WT)timers [0])->at <= mn_now)
1022 { 1219 {
1023 struct ev_timer *w = timers [0]; 1220 ev_timer *w = timers [0];
1024 1221
1025 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1222 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1026 1223
1027 /* first reschedule or stop timer */ 1224 /* first reschedule or stop timer */
1028 if (w->repeat) 1225 if (w->repeat)
1029 { 1226 {
1030 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1227 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1040 1237
1041 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1238 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1042 } 1239 }
1043} 1240}
1044 1241
1045#if EV_PERIODICS 1242#if EV_PERIODIC_ENABLE
1046static void 1243void inline_size
1047periodics_reify (EV_P) 1244periodics_reify (EV_P)
1048{ 1245{
1049 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1246 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1050 { 1247 {
1051 struct ev_periodic *w = periodics [0]; 1248 ev_periodic *w = periodics [0];
1052 1249
1053 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1250 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1054 1251
1055 /* first reschedule or stop timer */ 1252 /* first reschedule or stop timer */
1056 if (w->reschedule_cb) 1253 if (w->reschedule_cb)
1057 { 1254 {
1058 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1255 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1059 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1256 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1060 downheap ((WT *)periodics, periodiccnt, 0); 1257 downheap ((WT *)periodics, periodiccnt, 0);
1061 } 1258 }
1062 else if (w->interval) 1259 else if (w->interval)
1063 { 1260 {
1064 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1261 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1262 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1065 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1263 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1066 downheap ((WT *)periodics, periodiccnt, 0); 1264 downheap ((WT *)periodics, periodiccnt, 0);
1067 } 1265 }
1068 else 1266 else
1069 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1267 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1070 1268
1071 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1269 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1072 } 1270 }
1073} 1271}
1074 1272
1075static void 1273static void noinline
1076periodics_reschedule (EV_P) 1274periodics_reschedule (EV_P)
1077{ 1275{
1078 int i; 1276 int i;
1079 1277
1080 /* adjust periodics after time jump */ 1278 /* adjust periodics after time jump */
1081 for (i = 0; i < periodiccnt; ++i) 1279 for (i = 0; i < periodiccnt; ++i)
1082 { 1280 {
1083 struct ev_periodic *w = periodics [i]; 1281 ev_periodic *w = periodics [i];
1084 1282
1085 if (w->reschedule_cb) 1283 if (w->reschedule_cb)
1086 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1284 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1087 else if (w->interval) 1285 else if (w->interval)
1088 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1286 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1089 } 1287 }
1090 1288
1091 /* now rebuild the heap */ 1289 /* now rebuild the heap */
1092 for (i = periodiccnt >> 1; i--; ) 1290 for (i = periodiccnt >> 1; i--; )
1093 downheap ((WT *)periodics, periodiccnt, i); 1291 downheap ((WT *)periodics, periodiccnt, i);
1094} 1292}
1095#endif 1293#endif
1096 1294
1097inline int 1295#if EV_IDLE_ENABLE
1098time_update_monotonic (EV_P) 1296void inline_size
1297idle_reify (EV_P)
1099{ 1298{
1299 if (expect_false (idleall))
1300 {
1301 int pri;
1302
1303 for (pri = NUMPRI; pri--; )
1304 {
1305 if (pendingcnt [pri])
1306 break;
1307
1308 if (idlecnt [pri])
1309 {
1310 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1311 break;
1312 }
1313 }
1314 }
1315}
1316#endif
1317
1318void inline_speed
1319time_update (EV_P_ ev_tstamp max_block)
1320{
1321 int i;
1322
1323#if EV_USE_MONOTONIC
1324 if (expect_true (have_monotonic))
1325 {
1326 ev_tstamp odiff = rtmn_diff;
1327
1100 mn_now = get_clock (); 1328 mn_now = get_clock ();
1101 1329
1330 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1331 /* interpolate in the meantime */
1102 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1332 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1103 { 1333 {
1104 ev_rt_now = rtmn_diff + mn_now; 1334 ev_rt_now = rtmn_diff + mn_now;
1105 return 0; 1335 return;
1106 } 1336 }
1107 else 1337
1108 {
1109 now_floor = mn_now; 1338 now_floor = mn_now;
1110 ev_rt_now = ev_time (); 1339 ev_rt_now = ev_time ();
1111 return 1;
1112 }
1113}
1114 1340
1115static void 1341 /* loop a few times, before making important decisions.
1116time_update (EV_P) 1342 * on the choice of "4": one iteration isn't enough,
1117{ 1343 * in case we get preempted during the calls to
1118 int i; 1344 * ev_time and get_clock. a second call is almost guaranteed
1119 1345 * to succeed in that case, though. and looping a few more times
1120#if EV_USE_MONOTONIC 1346 * doesn't hurt either as we only do this on time-jumps or
1121 if (expect_true (have_monotonic)) 1347 * in the unlikely event of having been preempted here.
1122 { 1348 */
1123 if (time_update_monotonic (EV_A)) 1349 for (i = 4; --i; )
1124 { 1350 {
1125 ev_tstamp odiff = rtmn_diff;
1126
1127 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1128 {
1129 rtmn_diff = ev_rt_now - mn_now; 1351 rtmn_diff = ev_rt_now - mn_now;
1130 1352
1131 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1353 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1132 return; /* all is well */ 1354 return; /* all is well */
1133 1355
1134 ev_rt_now = ev_time (); 1356 ev_rt_now = ev_time ();
1135 mn_now = get_clock (); 1357 mn_now = get_clock ();
1136 now_floor = mn_now; 1358 now_floor = mn_now;
1137 } 1359 }
1138 1360
1139# if EV_PERIODICS 1361# if EV_PERIODIC_ENABLE
1362 periodics_reschedule (EV_A);
1363# endif
1364 /* no timer adjustment, as the monotonic clock doesn't jump */
1365 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1366 }
1367 else
1368#endif
1369 {
1370 ev_rt_now = ev_time ();
1371
1372 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1373 {
1374#if EV_PERIODIC_ENABLE
1140 periodics_reschedule (EV_A); 1375 periodics_reschedule (EV_A);
1141# endif 1376#endif
1142 /* no timer adjustment, as the monotonic clock doesn't jump */
1143 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1144 }
1145 }
1146 else
1147#endif
1148 {
1149 ev_rt_now = ev_time ();
1150
1151 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1152 {
1153#if EV_PERIODICS
1154 periodics_reschedule (EV_A);
1155#endif
1156
1157 /* adjust timers. this is easy, as the offset is the same for all */ 1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1158 for (i = 0; i < timercnt; ++i) 1378 for (i = 0; i < timercnt; ++i)
1159 ((WT)timers [i])->at += ev_rt_now - mn_now; 1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1160 } 1380 }
1161 1381
1162 mn_now = ev_rt_now; 1382 mn_now = ev_rt_now;
1178static int loop_done; 1398static int loop_done;
1179 1399
1180void 1400void
1181ev_loop (EV_P_ int flags) 1401ev_loop (EV_P_ int flags)
1182{ 1402{
1183 double block;
1184 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1404 ? EVUNLOOP_ONE
1405 : EVUNLOOP_CANCEL;
1185 1406
1186 while (activecnt) 1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1408
1409 do
1187 { 1410 {
1411#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid))
1414 {
1415 curpid = getpid ();
1416 postfork = 1;
1417 }
1418#endif
1419
1420#if EV_FORK_ENABLE
1421 /* we might have forked, so queue fork handlers */
1422 if (expect_false (postfork))
1423 if (forkcnt)
1424 {
1425 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1426 call_pending (EV_A);
1427 }
1428#endif
1429
1188 /* queue check watchers (and execute them) */ 1430 /* queue prepare watchers (and execute them) */
1189 if (expect_false (preparecnt)) 1431 if (expect_false (preparecnt))
1190 { 1432 {
1191 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1192 call_pending (EV_A); 1434 call_pending (EV_A);
1193 } 1435 }
1194 1436
1437 if (expect_false (!activecnt))
1438 break;
1439
1195 /* we might have forked, so reify kernel state if necessary */ 1440 /* we might have forked, so reify kernel state if necessary */
1196 if (expect_false (postfork)) 1441 if (expect_false (postfork))
1197 loop_fork (EV_A); 1442 loop_fork (EV_A);
1198 1443
1199 /* update fd-related kernel structures */ 1444 /* update fd-related kernel structures */
1200 fd_reify (EV_A); 1445 fd_reify (EV_A);
1201 1446
1202 /* calculate blocking time */ 1447 /* calculate blocking time */
1448 {
1449 ev_tstamp block;
1203 1450
1204 /* we only need this for !monotonic clock or timers, but as we basically 1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1205 always have timers, we just calculate it always */ 1452 block = 0.; /* do not block at all */
1206#if EV_USE_MONOTONIC
1207 if (expect_true (have_monotonic))
1208 time_update_monotonic (EV_A);
1209 else 1453 else
1210#endif
1211 { 1454 {
1212 ev_rt_now = ev_time (); 1455 /* update time to cancel out callback processing overhead */
1213 mn_now = ev_rt_now; 1456 time_update (EV_A_ 1e100);
1214 }
1215 1457
1216 if (flags & EVLOOP_NONBLOCK || idlecnt)
1217 block = 0.;
1218 else
1219 {
1220 block = MAX_BLOCKTIME; 1458 block = MAX_BLOCKTIME;
1221 1459
1222 if (timercnt) 1460 if (timercnt)
1223 { 1461 {
1224 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1462 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1225 if (block > to) block = to; 1463 if (block > to) block = to;
1226 } 1464 }
1227 1465
1228#if EV_PERIODICS 1466#if EV_PERIODIC_ENABLE
1229 if (periodiccnt) 1467 if (periodiccnt)
1230 { 1468 {
1231 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1469 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1232 if (block > to) block = to; 1470 if (block > to) block = to;
1233 } 1471 }
1234#endif 1472#endif
1235 1473
1236 if (block < 0.) block = 0.; 1474 if (expect_false (block < 0.)) block = 0.;
1237 } 1475 }
1238 1476
1477 ++loop_count;
1239 method_poll (EV_A_ block); 1478 backend_poll (EV_A_ block);
1240 1479
1241 /* update ev_rt_now, do magic */ 1480 /* update ev_rt_now, do magic */
1242 time_update (EV_A); 1481 time_update (EV_A_ block);
1482 }
1243 1483
1244 /* queue pending timers and reschedule them */ 1484 /* queue pending timers and reschedule them */
1245 timers_reify (EV_A); /* relative timers called last */ 1485 timers_reify (EV_A); /* relative timers called last */
1246#if EV_PERIODICS 1486#if EV_PERIODIC_ENABLE
1247 periodics_reify (EV_A); /* absolute timers called first */ 1487 periodics_reify (EV_A); /* absolute timers called first */
1248#endif 1488#endif
1249 1489
1490#if EV_IDLE_ENABLE
1250 /* queue idle watchers unless io or timers are pending */ 1491 /* queue idle watchers unless other events are pending */
1251 if (idlecnt && !any_pending (EV_A)) 1492 idle_reify (EV_A);
1252 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1493#endif
1253 1494
1254 /* queue check watchers, to be executed first */ 1495 /* queue check watchers, to be executed first */
1255 if (checkcnt) 1496 if (expect_false (checkcnt))
1256 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1497 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1257 1498
1258 call_pending (EV_A); 1499 call_pending (EV_A);
1259 1500
1260 if (loop_done)
1261 break;
1262 } 1501 }
1502 while (expect_true (activecnt && !loop_done));
1263 1503
1264 if (loop_done != 2) 1504 if (loop_done == EVUNLOOP_ONE)
1265 loop_done = 0; 1505 loop_done = EVUNLOOP_CANCEL;
1266} 1506}
1267 1507
1268void 1508void
1269ev_unloop (EV_P_ int how) 1509ev_unloop (EV_P_ int how)
1270{ 1510{
1271 loop_done = how; 1511 loop_done = how;
1272} 1512}
1273 1513
1274/*****************************************************************************/ 1514/*****************************************************************************/
1275 1515
1276inline void 1516void inline_size
1277wlist_add (WL *head, WL elem) 1517wlist_add (WL *head, WL elem)
1278{ 1518{
1279 elem->next = *head; 1519 elem->next = *head;
1280 *head = elem; 1520 *head = elem;
1281} 1521}
1282 1522
1283inline void 1523void inline_size
1284wlist_del (WL *head, WL elem) 1524wlist_del (WL *head, WL elem)
1285{ 1525{
1286 while (*head) 1526 while (*head)
1287 { 1527 {
1288 if (*head == elem) 1528 if (*head == elem)
1293 1533
1294 head = &(*head)->next; 1534 head = &(*head)->next;
1295 } 1535 }
1296} 1536}
1297 1537
1298inline void 1538void inline_speed
1299ev_clear_pending (EV_P_ W w) 1539clear_pending (EV_P_ W w)
1300{ 1540{
1301 if (w->pending) 1541 if (w->pending)
1302 { 1542 {
1303 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1543 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1304 w->pending = 0; 1544 w->pending = 0;
1305 } 1545 }
1306} 1546}
1307 1547
1308inline void 1548int
1549ev_clear_pending (EV_P_ void *w)
1550{
1551 W w_ = (W)w;
1552 int pending = w_->pending;
1553
1554 if (expect_true (pending))
1555 {
1556 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1557 w_->pending = 0;
1558 p->w = 0;
1559 return p->events;
1560 }
1561 else
1562 return 0;
1563}
1564
1565void inline_size
1566pri_adjust (EV_P_ W w)
1567{
1568 int pri = w->priority;
1569 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1570 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1571 w->priority = pri;
1572}
1573
1574void inline_speed
1309ev_start (EV_P_ W w, int active) 1575ev_start (EV_P_ W w, int active)
1310{ 1576{
1311 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1577 pri_adjust (EV_A_ w);
1312 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1313
1314 w->active = active; 1578 w->active = active;
1315 ev_ref (EV_A); 1579 ev_ref (EV_A);
1316} 1580}
1317 1581
1318inline void 1582void inline_size
1319ev_stop (EV_P_ W w) 1583ev_stop (EV_P_ W w)
1320{ 1584{
1321 ev_unref (EV_A); 1585 ev_unref (EV_A);
1322 w->active = 0; 1586 w->active = 0;
1323} 1587}
1324 1588
1325/*****************************************************************************/ 1589/*****************************************************************************/
1326 1590
1327void 1591void noinline
1328ev_io_start (EV_P_ struct ev_io *w) 1592ev_io_start (EV_P_ ev_io *w)
1329{ 1593{
1330 int fd = w->fd; 1594 int fd = w->fd;
1331 1595
1332 if (ev_is_active (w)) 1596 if (expect_false (ev_is_active (w)))
1333 return; 1597 return;
1334 1598
1335 assert (("ev_io_start called with negative fd", fd >= 0)); 1599 assert (("ev_io_start called with negative fd", fd >= 0));
1336 1600
1337 ev_start (EV_A_ (W)w, 1); 1601 ev_start (EV_A_ (W)w, 1);
1339 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1603 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1340 1604
1341 fd_change (EV_A_ fd); 1605 fd_change (EV_A_ fd);
1342} 1606}
1343 1607
1344void 1608void noinline
1345ev_io_stop (EV_P_ struct ev_io *w) 1609ev_io_stop (EV_P_ ev_io *w)
1346{ 1610{
1347 ev_clear_pending (EV_A_ (W)w); 1611 clear_pending (EV_A_ (W)w);
1348 if (!ev_is_active (w)) 1612 if (expect_false (!ev_is_active (w)))
1349 return; 1613 return;
1350 1614
1351 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1615 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1352 1616
1353 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1617 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
1354 ev_stop (EV_A_ (W)w); 1618 ev_stop (EV_A_ (W)w);
1355 1619
1356 fd_change (EV_A_ w->fd); 1620 fd_change (EV_A_ w->fd);
1357} 1621}
1358 1622
1359void 1623void noinline
1360ev_timer_start (EV_P_ struct ev_timer *w) 1624ev_timer_start (EV_P_ ev_timer *w)
1361{ 1625{
1362 if (ev_is_active (w)) 1626 if (expect_false (ev_is_active (w)))
1363 return; 1627 return;
1364 1628
1365 ((WT)w)->at += mn_now; 1629 ((WT)w)->at += mn_now;
1366 1630
1367 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1631 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1368 1632
1369 ev_start (EV_A_ (W)w, ++timercnt); 1633 ev_start (EV_A_ (W)w, ++timercnt);
1370 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1634 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2);
1371 timers [timercnt - 1] = w; 1635 timers [timercnt - 1] = w;
1372 upheap ((WT *)timers, timercnt - 1); 1636 upheap ((WT *)timers, timercnt - 1);
1373 1637
1638 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1639}
1640
1641void noinline
1642ev_timer_stop (EV_P_ ev_timer *w)
1643{
1644 clear_pending (EV_A_ (W)w);
1645 if (expect_false (!ev_is_active (w)))
1646 return;
1647
1374 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1648 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1375}
1376 1649
1377void 1650 {
1378ev_timer_stop (EV_P_ struct ev_timer *w) 1651 int active = ((W)w)->active;
1379{
1380 ev_clear_pending (EV_A_ (W)w);
1381 if (!ev_is_active (w))
1382 return;
1383 1652
1384 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1653 if (expect_true (--active < --timercnt))
1385
1386 if (((W)w)->active < timercnt--)
1387 { 1654 {
1388 timers [((W)w)->active - 1] = timers [timercnt]; 1655 timers [active] = timers [timercnt];
1389 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1656 adjustheap ((WT *)timers, timercnt, active);
1390 } 1657 }
1658 }
1391 1659
1392 ((WT)w)->at -= mn_now; 1660 ((WT)w)->at -= mn_now;
1393 1661
1394 ev_stop (EV_A_ (W)w); 1662 ev_stop (EV_A_ (W)w);
1395} 1663}
1396 1664
1397void 1665void noinline
1398ev_timer_again (EV_P_ struct ev_timer *w) 1666ev_timer_again (EV_P_ ev_timer *w)
1399{ 1667{
1400 if (ev_is_active (w)) 1668 if (ev_is_active (w))
1401 { 1669 {
1402 if (w->repeat) 1670 if (w->repeat)
1403 { 1671 {
1412 w->at = w->repeat; 1680 w->at = w->repeat;
1413 ev_timer_start (EV_A_ w); 1681 ev_timer_start (EV_A_ w);
1414 } 1682 }
1415} 1683}
1416 1684
1417#if EV_PERIODICS 1685#if EV_PERIODIC_ENABLE
1418void 1686void noinline
1419ev_periodic_start (EV_P_ struct ev_periodic *w) 1687ev_periodic_start (EV_P_ ev_periodic *w)
1420{ 1688{
1421 if (ev_is_active (w)) 1689 if (expect_false (ev_is_active (w)))
1422 return; 1690 return;
1423 1691
1424 if (w->reschedule_cb) 1692 if (w->reschedule_cb)
1425 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1693 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1426 else if (w->interval) 1694 else if (w->interval)
1427 { 1695 {
1428 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1696 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1429 /* this formula differs from the one in periodic_reify because we do not always round up */ 1697 /* this formula differs from the one in periodic_reify because we do not always round up */
1430 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1698 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 } 1699 }
1700 else
1701 ((WT)w)->at = w->offset;
1432 1702
1433 ev_start (EV_A_ (W)w, ++periodiccnt); 1703 ev_start (EV_A_ (W)w, ++periodiccnt);
1434 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1704 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1435 periodics [periodiccnt - 1] = w; 1705 periodics [periodiccnt - 1] = w;
1436 upheap ((WT *)periodics, periodiccnt - 1); 1706 upheap ((WT *)periodics, periodiccnt - 1);
1437 1707
1708 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1709}
1710
1711void noinline
1712ev_periodic_stop (EV_P_ ev_periodic *w)
1713{
1714 clear_pending (EV_A_ (W)w);
1715 if (expect_false (!ev_is_active (w)))
1716 return;
1717
1438 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1718 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1439}
1440 1719
1441void 1720 {
1442ev_periodic_stop (EV_P_ struct ev_periodic *w) 1721 int active = ((W)w)->active;
1443{
1444 ev_clear_pending (EV_A_ (W)w);
1445 if (!ev_is_active (w))
1446 return;
1447 1722
1448 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1723 if (expect_true (--active < --periodiccnt))
1449
1450 if (((W)w)->active < periodiccnt--)
1451 { 1724 {
1452 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1725 periodics [active] = periodics [periodiccnt];
1453 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1726 adjustheap ((WT *)periodics, periodiccnt, active);
1454 } 1727 }
1728 }
1455 1729
1456 ev_stop (EV_A_ (W)w); 1730 ev_stop (EV_A_ (W)w);
1457} 1731}
1458 1732
1459void 1733void noinline
1460ev_periodic_again (EV_P_ struct ev_periodic *w) 1734ev_periodic_again (EV_P_ ev_periodic *w)
1461{ 1735{
1462 /* TODO: use adjustheap and recalculation */ 1736 /* TODO: use adjustheap and recalculation */
1463 ev_periodic_stop (EV_A_ w); 1737 ev_periodic_stop (EV_A_ w);
1464 ev_periodic_start (EV_A_ w); 1738 ev_periodic_start (EV_A_ w);
1465} 1739}
1466#endif 1740#endif
1467 1741
1468void
1469ev_idle_start (EV_P_ struct ev_idle *w)
1470{
1471 if (ev_is_active (w))
1472 return;
1473
1474 ev_start (EV_A_ (W)w, ++idlecnt);
1475 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1476 idles [idlecnt - 1] = w;
1477}
1478
1479void
1480ev_idle_stop (EV_P_ struct ev_idle *w)
1481{
1482 ev_clear_pending (EV_A_ (W)w);
1483 if (!ev_is_active (w))
1484 return;
1485
1486 idles [((W)w)->active - 1] = idles [--idlecnt];
1487 ev_stop (EV_A_ (W)w);
1488}
1489
1490void
1491ev_prepare_start (EV_P_ struct ev_prepare *w)
1492{
1493 if (ev_is_active (w))
1494 return;
1495
1496 ev_start (EV_A_ (W)w, ++preparecnt);
1497 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1498 prepares [preparecnt - 1] = w;
1499}
1500
1501void
1502ev_prepare_stop (EV_P_ struct ev_prepare *w)
1503{
1504 ev_clear_pending (EV_A_ (W)w);
1505 if (!ev_is_active (w))
1506 return;
1507
1508 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1509 ev_stop (EV_A_ (W)w);
1510}
1511
1512void
1513ev_check_start (EV_P_ struct ev_check *w)
1514{
1515 if (ev_is_active (w))
1516 return;
1517
1518 ev_start (EV_A_ (W)w, ++checkcnt);
1519 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1520 checks [checkcnt - 1] = w;
1521}
1522
1523void
1524ev_check_stop (EV_P_ struct ev_check *w)
1525{
1526 ev_clear_pending (EV_A_ (W)w);
1527 if (!ev_is_active (w))
1528 return;
1529
1530 checks [((W)w)->active - 1] = checks [--checkcnt];
1531 ev_stop (EV_A_ (W)w);
1532}
1533
1534#ifndef SA_RESTART 1742#ifndef SA_RESTART
1535# define SA_RESTART 0 1743# define SA_RESTART 0
1536#endif 1744#endif
1537 1745
1538void 1746void noinline
1539ev_signal_start (EV_P_ struct ev_signal *w) 1747ev_signal_start (EV_P_ ev_signal *w)
1540{ 1748{
1541#if EV_MULTIPLICITY 1749#if EV_MULTIPLICITY
1542 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1750 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1543#endif 1751#endif
1544 if (ev_is_active (w)) 1752 if (expect_false (ev_is_active (w)))
1545 return; 1753 return;
1546 1754
1547 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1755 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1548 1756
1757 {
1758#ifndef _WIN32
1759 sigset_t full, prev;
1760 sigfillset (&full);
1761 sigprocmask (SIG_SETMASK, &full, &prev);
1762#endif
1763
1764 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1765
1766#ifndef _WIN32
1767 sigprocmask (SIG_SETMASK, &prev, 0);
1768#endif
1769 }
1770
1549 ev_start (EV_A_ (W)w, 1); 1771 ev_start (EV_A_ (W)w, 1);
1550 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1551 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1772 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1552 1773
1553 if (!((WL)w)->next) 1774 if (!((WL)w)->next)
1554 { 1775 {
1555#if _WIN32 1776#if _WIN32
1562 sigaction (w->signum, &sa, 0); 1783 sigaction (w->signum, &sa, 0);
1563#endif 1784#endif
1564 } 1785 }
1565} 1786}
1566 1787
1567void 1788void noinline
1568ev_signal_stop (EV_P_ struct ev_signal *w) 1789ev_signal_stop (EV_P_ ev_signal *w)
1569{ 1790{
1570 ev_clear_pending (EV_A_ (W)w); 1791 clear_pending (EV_A_ (W)w);
1571 if (!ev_is_active (w)) 1792 if (expect_false (!ev_is_active (w)))
1572 return; 1793 return;
1573 1794
1574 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1795 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1575 ev_stop (EV_A_ (W)w); 1796 ev_stop (EV_A_ (W)w);
1576 1797
1577 if (!signals [w->signum - 1].head) 1798 if (!signals [w->signum - 1].head)
1578 signal (w->signum, SIG_DFL); 1799 signal (w->signum, SIG_DFL);
1579} 1800}
1580 1801
1581void 1802void
1582ev_child_start (EV_P_ struct ev_child *w) 1803ev_child_start (EV_P_ ev_child *w)
1583{ 1804{
1584#if EV_MULTIPLICITY 1805#if EV_MULTIPLICITY
1585 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1806 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1586#endif 1807#endif
1587 if (ev_is_active (w)) 1808 if (expect_false (ev_is_active (w)))
1588 return; 1809 return;
1589 1810
1590 ev_start (EV_A_ (W)w, 1); 1811 ev_start (EV_A_ (W)w, 1);
1591 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1812 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1592} 1813}
1593 1814
1594void 1815void
1595ev_child_stop (EV_P_ struct ev_child *w) 1816ev_child_stop (EV_P_ ev_child *w)
1596{ 1817{
1597 ev_clear_pending (EV_A_ (W)w); 1818 clear_pending (EV_A_ (W)w);
1598 if (!ev_is_active (w)) 1819 if (expect_false (!ev_is_active (w)))
1599 return; 1820 return;
1600 1821
1601 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1822 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1602 ev_stop (EV_A_ (W)w); 1823 ev_stop (EV_A_ (W)w);
1603} 1824}
1604 1825
1826#if EV_STAT_ENABLE
1827
1828# ifdef _WIN32
1829# undef lstat
1830# define lstat(a,b) _stati64 (a,b)
1831# endif
1832
1833#define DEF_STAT_INTERVAL 5.0074891
1834#define MIN_STAT_INTERVAL 0.1074891
1835
1836static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1837
1838#if EV_USE_INOTIFY
1839# define EV_INOTIFY_BUFSIZE 8192
1840
1841static void noinline
1842infy_add (EV_P_ ev_stat *w)
1843{
1844 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1845
1846 if (w->wd < 0)
1847 {
1848 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1849
1850 /* monitor some parent directory for speedup hints */
1851 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1852 {
1853 char path [4096];
1854 strcpy (path, w->path);
1855
1856 do
1857 {
1858 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1859 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1860
1861 char *pend = strrchr (path, '/');
1862
1863 if (!pend)
1864 break; /* whoops, no '/', complain to your admin */
1865
1866 *pend = 0;
1867 w->wd = inotify_add_watch (fs_fd, path, mask);
1868 }
1869 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1870 }
1871 }
1872 else
1873 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1874
1875 if (w->wd >= 0)
1876 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1877}
1878
1879static void noinline
1880infy_del (EV_P_ ev_stat *w)
1881{
1882 int slot;
1883 int wd = w->wd;
1884
1885 if (wd < 0)
1886 return;
1887
1888 w->wd = -2;
1889 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1890 wlist_del (&fs_hash [slot].head, (WL)w);
1891
1892 /* remove this watcher, if others are watching it, they will rearm */
1893 inotify_rm_watch (fs_fd, wd);
1894}
1895
1896static void noinline
1897infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1898{
1899 if (slot < 0)
1900 /* overflow, need to check for all hahs slots */
1901 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1902 infy_wd (EV_A_ slot, wd, ev);
1903 else
1904 {
1905 WL w_;
1906
1907 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1908 {
1909 ev_stat *w = (ev_stat *)w_;
1910 w_ = w_->next; /* lets us remove this watcher and all before it */
1911
1912 if (w->wd == wd || wd == -1)
1913 {
1914 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1915 {
1916 w->wd = -1;
1917 infy_add (EV_A_ w); /* re-add, no matter what */
1918 }
1919
1920 stat_timer_cb (EV_A_ &w->timer, 0);
1921 }
1922 }
1923 }
1924}
1925
1926static void
1927infy_cb (EV_P_ ev_io *w, int revents)
1928{
1929 char buf [EV_INOTIFY_BUFSIZE];
1930 struct inotify_event *ev = (struct inotify_event *)buf;
1931 int ofs;
1932 int len = read (fs_fd, buf, sizeof (buf));
1933
1934 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1935 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1936}
1937
1938void inline_size
1939infy_init (EV_P)
1940{
1941 if (fs_fd != -2)
1942 return;
1943
1944 fs_fd = inotify_init ();
1945
1946 if (fs_fd >= 0)
1947 {
1948 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1949 ev_set_priority (&fs_w, EV_MAXPRI);
1950 ev_io_start (EV_A_ &fs_w);
1951 }
1952}
1953
1954void inline_size
1955infy_fork (EV_P)
1956{
1957 int slot;
1958
1959 if (fs_fd < 0)
1960 return;
1961
1962 close (fs_fd);
1963 fs_fd = inotify_init ();
1964
1965 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1966 {
1967 WL w_ = fs_hash [slot].head;
1968 fs_hash [slot].head = 0;
1969
1970 while (w_)
1971 {
1972 ev_stat *w = (ev_stat *)w_;
1973 w_ = w_->next; /* lets us add this watcher */
1974
1975 w->wd = -1;
1976
1977 if (fs_fd >= 0)
1978 infy_add (EV_A_ w); /* re-add, no matter what */
1979 else
1980 ev_timer_start (EV_A_ &w->timer);
1981 }
1982
1983 }
1984}
1985
1986#endif
1987
1988void
1989ev_stat_stat (EV_P_ ev_stat *w)
1990{
1991 if (lstat (w->path, &w->attr) < 0)
1992 w->attr.st_nlink = 0;
1993 else if (!w->attr.st_nlink)
1994 w->attr.st_nlink = 1;
1995}
1996
1997static void noinline
1998stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1999{
2000 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2001
2002 /* we copy this here each the time so that */
2003 /* prev has the old value when the callback gets invoked */
2004 w->prev = w->attr;
2005 ev_stat_stat (EV_A_ w);
2006
2007 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2008 if (
2009 w->prev.st_dev != w->attr.st_dev
2010 || w->prev.st_ino != w->attr.st_ino
2011 || w->prev.st_mode != w->attr.st_mode
2012 || w->prev.st_nlink != w->attr.st_nlink
2013 || w->prev.st_uid != w->attr.st_uid
2014 || w->prev.st_gid != w->attr.st_gid
2015 || w->prev.st_rdev != w->attr.st_rdev
2016 || w->prev.st_size != w->attr.st_size
2017 || w->prev.st_atime != w->attr.st_atime
2018 || w->prev.st_mtime != w->attr.st_mtime
2019 || w->prev.st_ctime != w->attr.st_ctime
2020 ) {
2021 #if EV_USE_INOTIFY
2022 infy_del (EV_A_ w);
2023 infy_add (EV_A_ w);
2024 ev_stat_stat (EV_A_ w); /* avoid race... */
2025 #endif
2026
2027 ev_feed_event (EV_A_ w, EV_STAT);
2028 }
2029}
2030
2031void
2032ev_stat_start (EV_P_ ev_stat *w)
2033{
2034 if (expect_false (ev_is_active (w)))
2035 return;
2036
2037 /* since we use memcmp, we need to clear any padding data etc. */
2038 memset (&w->prev, 0, sizeof (ev_statdata));
2039 memset (&w->attr, 0, sizeof (ev_statdata));
2040
2041 ev_stat_stat (EV_A_ w);
2042
2043 if (w->interval < MIN_STAT_INTERVAL)
2044 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2045
2046 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2047 ev_set_priority (&w->timer, ev_priority (w));
2048
2049#if EV_USE_INOTIFY
2050 infy_init (EV_A);
2051
2052 if (fs_fd >= 0)
2053 infy_add (EV_A_ w);
2054 else
2055#endif
2056 ev_timer_start (EV_A_ &w->timer);
2057
2058 ev_start (EV_A_ (W)w, 1);
2059}
2060
2061void
2062ev_stat_stop (EV_P_ ev_stat *w)
2063{
2064 clear_pending (EV_A_ (W)w);
2065 if (expect_false (!ev_is_active (w)))
2066 return;
2067
2068#if EV_USE_INOTIFY
2069 infy_del (EV_A_ w);
2070#endif
2071 ev_timer_stop (EV_A_ &w->timer);
2072
2073 ev_stop (EV_A_ (W)w);
2074}
2075#endif
2076
2077#if EV_IDLE_ENABLE
2078void
2079ev_idle_start (EV_P_ ev_idle *w)
2080{
2081 if (expect_false (ev_is_active (w)))
2082 return;
2083
2084 pri_adjust (EV_A_ (W)w);
2085
2086 {
2087 int active = ++idlecnt [ABSPRI (w)];
2088
2089 ++idleall;
2090 ev_start (EV_A_ (W)w, active);
2091
2092 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2093 idles [ABSPRI (w)][active - 1] = w;
2094 }
2095}
2096
2097void
2098ev_idle_stop (EV_P_ ev_idle *w)
2099{
2100 clear_pending (EV_A_ (W)w);
2101 if (expect_false (!ev_is_active (w)))
2102 return;
2103
2104 {
2105 int active = ((W)w)->active;
2106
2107 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2108 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2109
2110 ev_stop (EV_A_ (W)w);
2111 --idleall;
2112 }
2113}
2114#endif
2115
2116void
2117ev_prepare_start (EV_P_ ev_prepare *w)
2118{
2119 if (expect_false (ev_is_active (w)))
2120 return;
2121
2122 ev_start (EV_A_ (W)w, ++preparecnt);
2123 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2124 prepares [preparecnt - 1] = w;
2125}
2126
2127void
2128ev_prepare_stop (EV_P_ ev_prepare *w)
2129{
2130 clear_pending (EV_A_ (W)w);
2131 if (expect_false (!ev_is_active (w)))
2132 return;
2133
2134 {
2135 int active = ((W)w)->active;
2136 prepares [active - 1] = prepares [--preparecnt];
2137 ((W)prepares [active - 1])->active = active;
2138 }
2139
2140 ev_stop (EV_A_ (W)w);
2141}
2142
2143void
2144ev_check_start (EV_P_ ev_check *w)
2145{
2146 if (expect_false (ev_is_active (w)))
2147 return;
2148
2149 ev_start (EV_A_ (W)w, ++checkcnt);
2150 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2151 checks [checkcnt - 1] = w;
2152}
2153
2154void
2155ev_check_stop (EV_P_ ev_check *w)
2156{
2157 clear_pending (EV_A_ (W)w);
2158 if (expect_false (!ev_is_active (w)))
2159 return;
2160
2161 {
2162 int active = ((W)w)->active;
2163 checks [active - 1] = checks [--checkcnt];
2164 ((W)checks [active - 1])->active = active;
2165 }
2166
2167 ev_stop (EV_A_ (W)w);
2168}
2169
2170#if EV_EMBED_ENABLE
2171void noinline
2172ev_embed_sweep (EV_P_ ev_embed *w)
2173{
2174 ev_loop (w->loop, EVLOOP_NONBLOCK);
2175}
2176
2177static void
2178embed_cb (EV_P_ ev_io *io, int revents)
2179{
2180 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2181
2182 if (ev_cb (w))
2183 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2184 else
2185 ev_embed_sweep (loop, w);
2186}
2187
2188void
2189ev_embed_start (EV_P_ ev_embed *w)
2190{
2191 if (expect_false (ev_is_active (w)))
2192 return;
2193
2194 {
2195 struct ev_loop *loop = w->loop;
2196 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2197 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
2198 }
2199
2200 ev_set_priority (&w->io, ev_priority (w));
2201 ev_io_start (EV_A_ &w->io);
2202
2203 ev_start (EV_A_ (W)w, 1);
2204}
2205
2206void
2207ev_embed_stop (EV_P_ ev_embed *w)
2208{
2209 clear_pending (EV_A_ (W)w);
2210 if (expect_false (!ev_is_active (w)))
2211 return;
2212
2213 ev_io_stop (EV_A_ &w->io);
2214
2215 ev_stop (EV_A_ (W)w);
2216}
2217#endif
2218
2219#if EV_FORK_ENABLE
2220void
2221ev_fork_start (EV_P_ ev_fork *w)
2222{
2223 if (expect_false (ev_is_active (w)))
2224 return;
2225
2226 ev_start (EV_A_ (W)w, ++forkcnt);
2227 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2228 forks [forkcnt - 1] = w;
2229}
2230
2231void
2232ev_fork_stop (EV_P_ ev_fork *w)
2233{
2234 clear_pending (EV_A_ (W)w);
2235 if (expect_false (!ev_is_active (w)))
2236 return;
2237
2238 {
2239 int active = ((W)w)->active;
2240 forks [active - 1] = forks [--forkcnt];
2241 ((W)forks [active - 1])->active = active;
2242 }
2243
2244 ev_stop (EV_A_ (W)w);
2245}
2246#endif
2247
1605/*****************************************************************************/ 2248/*****************************************************************************/
1606 2249
1607struct ev_once 2250struct ev_once
1608{ 2251{
1609 struct ev_io io; 2252 ev_io io;
1610 struct ev_timer to; 2253 ev_timer to;
1611 void (*cb)(int revents, void *arg); 2254 void (*cb)(int revents, void *arg);
1612 void *arg; 2255 void *arg;
1613}; 2256};
1614 2257
1615static void 2258static void
1624 2267
1625 cb (revents, arg); 2268 cb (revents, arg);
1626} 2269}
1627 2270
1628static void 2271static void
1629once_cb_io (EV_P_ struct ev_io *w, int revents) 2272once_cb_io (EV_P_ ev_io *w, int revents)
1630{ 2273{
1631 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2274 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1632} 2275}
1633 2276
1634static void 2277static void
1635once_cb_to (EV_P_ struct ev_timer *w, int revents) 2278once_cb_to (EV_P_ ev_timer *w, int revents)
1636{ 2279{
1637 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2280 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1638} 2281}
1639 2282
1640void 2283void
1641ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2284ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1642{ 2285{
1643 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2286 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1644 2287
1645 if (!once) 2288 if (expect_false (!once))
2289 {
1646 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2290 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1647 else 2291 return;
1648 { 2292 }
2293
1649 once->cb = cb; 2294 once->cb = cb;
1650 once->arg = arg; 2295 once->arg = arg;
1651 2296
1652 ev_init (&once->io, once_cb_io); 2297 ev_init (&once->io, once_cb_io);
1653 if (fd >= 0) 2298 if (fd >= 0)
1654 { 2299 {
1655 ev_io_set (&once->io, fd, events); 2300 ev_io_set (&once->io, fd, events);
1656 ev_io_start (EV_A_ &once->io); 2301 ev_io_start (EV_A_ &once->io);
1657 } 2302 }
1658 2303
1659 ev_init (&once->to, once_cb_to); 2304 ev_init (&once->to, once_cb_to);
1660 if (timeout >= 0.) 2305 if (timeout >= 0.)
1661 { 2306 {
1662 ev_timer_set (&once->to, timeout, 0.); 2307 ev_timer_set (&once->to, timeout, 0.);
1663 ev_timer_start (EV_A_ &once->to); 2308 ev_timer_start (EV_A_ &once->to);
1664 }
1665 } 2309 }
1666} 2310}
1667 2311
1668#ifdef __cplusplus 2312#ifdef __cplusplus
1669} 2313}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines