ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.153 by root, Wed Nov 28 11:41:18 2007 UTC vs.
Revision 1.180 by root, Tue Dec 11 22:04:55 2007 UTC

216# include <sys/inotify.h> 216# include <sys/inotify.h>
217#endif 217#endif
218 218
219/**/ 219/**/
220 220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
230
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 234
225#if __GNUC__ >= 3 235#if __GNUC__ >= 3
226# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 237# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 238#else
236# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
240#endif 244#endif
241 245
242#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
244 255
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 258
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 259#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 260#define EMPTY2(a,b) /* used to suppress some warnings */
250 261
251typedef ev_watcher *W; 262typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 263typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 264typedef ev_watcher_time *WT;
281 perror (msg); 292 perror (msg);
282 abort (); 293 abort ();
283 } 294 }
284} 295}
285 296
286static void *(*alloc)(void *ptr, size_t size) = realloc; 297static void *(*alloc)(void *ptr, long size);
287 298
288void 299void
289ev_set_allocator (void *(*cb)(void *ptr, size_t size)) 300ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 301{
291 alloc = cb; 302 alloc = cb;
292} 303}
293 304
294inline_speed void * 305inline_speed void *
295ev_realloc (void *ptr, size_t size) 306ev_realloc (void *ptr, long size)
296{ 307{
297 ptr = alloc (ptr, size); 308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
298 309
299 if (!ptr && size) 310 if (!ptr && size)
300 { 311 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", (long)size); 312 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 313 abort ();
303 } 314 }
304 315
305 return ptr; 316 return ptr;
306} 317}
324{ 335{
325 W w; 336 W w;
326 int events; 337 int events;
327} ANPENDING; 338} ANPENDING;
328 339
340#if EV_USE_INOTIFY
329typedef struct 341typedef struct
330{ 342{
331#if EV_USE_INOTIFY
332 WL head; 343 WL head;
333#endif
334} ANFS; 344} ANFS;
345#endif
335 346
336#if EV_MULTIPLICITY 347#if EV_MULTIPLICITY
337 348
338 struct ev_loop 349 struct ev_loop
339 { 350 {
396{ 407{
397 return ev_rt_now; 408 return ev_rt_now;
398} 409}
399#endif 410#endif
400 411
401#define array_roundsize(type,n) (((n) | 4) & ~3) 412int inline_size
413array_nextsize (int elem, int cur, int cnt)
414{
415 int ncur = cur + 1;
416
417 do
418 ncur <<= 1;
419 while (cnt > ncur);
420
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096)
423 {
424 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
426 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem;
428 }
429
430 return ncur;
431}
432
433static noinline void *
434array_realloc (int elem, void *base, int *cur, int cnt)
435{
436 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur);
438}
402 439
403#define array_needsize(type,base,cur,cnt,init) \ 440#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 441 if (expect_false ((cnt) > (cur))) \
405 { \ 442 { \
406 int newcnt = cur; \ 443 int ocur_ = (cur); \
407 do \ 444 (base) = (type *)array_realloc \
408 { \ 445 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 446 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 447 }
417 448
449#if 0
418#define array_slim(type,stem) \ 450#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 451 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 452 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 453 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 454 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 456 }
457#endif
425 458
426#define array_free(stem, idx) \ 459#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 461
429/*****************************************************************************/ 462/*****************************************************************************/
430 463
431void noinline 464void noinline
432ev_feed_event (EV_P_ void *w, int revents) 465ev_feed_event (EV_P_ void *w, int revents)
433{ 466{
434 W w_ = (W)w; 467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
435 469
436 if (expect_false (w_->pending)) 470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
437 { 473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 477 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 478 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 479}
447 480
448void inline_size 481void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 482queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 483{
451 int i; 484 int i;
452 485
453 for (i = 0; i < eventcnt; ++i) 486 for (i = 0; i < eventcnt; ++i)
485} 518}
486 519
487void 520void
488ev_feed_fd_event (EV_P_ int fd, int revents) 521ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 522{
523 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 524 fd_event (EV_A_ fd, revents);
491} 525}
492 526
493void inline_size 527void inline_size
494fd_reify (EV_P) 528fd_reify (EV_P)
495{ 529{
589static void noinline 623static void noinline
590fd_rearm_all (EV_P) 624fd_rearm_all (EV_P)
591{ 625{
592 int fd; 626 int fd;
593 627
594 /* this should be highly optimised to not do anything but set a flag */
595 for (fd = 0; fd < anfdmax; ++fd) 628 for (fd = 0; fd < anfdmax; ++fd)
596 if (anfds [fd].events) 629 if (anfds [fd].events)
597 { 630 {
598 anfds [fd].events = 0; 631 anfds [fd].events = 0;
599 fd_change (EV_A_ fd); 632 fd_change (EV_A_ fd);
605void inline_speed 638void inline_speed
606upheap (WT *heap, int k) 639upheap (WT *heap, int k)
607{ 640{
608 WT w = heap [k]; 641 WT w = heap [k];
609 642
610 while (k && heap [k >> 1]->at > w->at) 643 while (k)
611 { 644 {
645 int p = (k - 1) >> 1;
646
647 if (heap [p]->at <= w->at)
648 break;
649
612 heap [k] = heap [k >> 1]; 650 heap [k] = heap [p];
613 ((W)heap [k])->active = k + 1; 651 ((W)heap [k])->active = k + 1;
614 k >>= 1; 652 k = p;
615 } 653 }
616 654
617 heap [k] = w; 655 heap [k] = w;
618 ((W)heap [k])->active = k + 1; 656 ((W)heap [k])->active = k + 1;
619 657
622void inline_speed 660void inline_speed
623downheap (WT *heap, int N, int k) 661downheap (WT *heap, int N, int k)
624{ 662{
625 WT w = heap [k]; 663 WT w = heap [k];
626 664
627 while (k < (N >> 1)) 665 for (;;)
628 { 666 {
629 int j = k << 1; 667 int c = (k << 1) + 1;
630 668
631 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 669 if (c >= N)
632 ++j;
633
634 if (w->at <= heap [j]->at)
635 break; 670 break;
636 671
672 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
673 ? 1 : 0;
674
675 if (w->at <= heap [c]->at)
676 break;
677
637 heap [k] = heap [j]; 678 heap [k] = heap [c];
638 ((W)heap [k])->active = k + 1; 679 ((W)heap [k])->active = k + 1;
680
639 k = j; 681 k = c;
640 } 682 }
641 683
642 heap [k] = w; 684 heap [k] = w;
643 ((W)heap [k])->active = k + 1; 685 ((W)heap [k])->active = k + 1;
644} 686}
726 for (signum = signalmax; signum--; ) 768 for (signum = signalmax; signum--; )
727 if (signals [signum].gotsig) 769 if (signals [signum].gotsig)
728 ev_feed_signal_event (EV_A_ signum + 1); 770 ev_feed_signal_event (EV_A_ signum + 1);
729} 771}
730 772
731void inline_size 773void inline_speed
732fd_intern (int fd) 774fd_intern (int fd)
733{ 775{
734#ifdef _WIN32 776#ifdef _WIN32
735 int arg = 1; 777 int arg = 1;
736 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 778 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
765 ev_child *w; 807 ev_child *w;
766 808
767 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 809 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
768 if (w->pid == pid || !w->pid) 810 if (w->pid == pid || !w->pid)
769 { 811 {
770 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 812 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
771 w->rpid = pid; 813 w->rpid = pid;
772 w->rstatus = status; 814 w->rstatus = status;
773 ev_feed_event (EV_A_ (W)w, EV_CHILD); 815 ev_feed_event (EV_A_ (W)w, EV_CHILD);
774 } 816 }
775} 817}
776 818
777#ifndef WCONTINUED 819#ifndef WCONTINUED
887ev_backend (EV_P) 929ev_backend (EV_P)
888{ 930{
889 return backend; 931 return backend;
890} 932}
891 933
934unsigned int
935ev_loop_count (EV_P)
936{
937 return loop_count;
938}
939
892static void noinline 940static void noinline
893loop_init (EV_P_ unsigned int flags) 941loop_init (EV_P_ unsigned int flags)
894{ 942{
895 if (!backend) 943 if (!backend)
896 { 944 {
905 ev_rt_now = ev_time (); 953 ev_rt_now = ev_time ();
906 mn_now = get_clock (); 954 mn_now = get_clock ();
907 now_floor = mn_now; 955 now_floor = mn_now;
908 rtmn_diff = ev_rt_now - mn_now; 956 rtmn_diff = ev_rt_now - mn_now;
909 957
958 /* pid check not overridable via env */
959#ifndef _WIN32
960 if (flags & EVFLAG_FORKCHECK)
961 curpid = getpid ();
962#endif
963
910 if (!(flags & EVFLAG_NOENV) 964 if (!(flags & EVFLAG_NOENV)
911 && !enable_secure () 965 && !enable_secure ()
912 && getenv ("LIBEV_FLAGS")) 966 && getenv ("LIBEV_FLAGS"))
913 flags = atoi (getenv ("LIBEV_FLAGS")); 967 flags = atoi (getenv ("LIBEV_FLAGS"));
914 968
970#if EV_USE_SELECT 1024#if EV_USE_SELECT
971 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1025 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
972#endif 1026#endif
973 1027
974 for (i = NUMPRI; i--; ) 1028 for (i = NUMPRI; i--; )
1029 {
975 array_free (pending, [i]); 1030 array_free (pending, [i]);
1031#if EV_IDLE_ENABLE
1032 array_free (idle, [i]);
1033#endif
1034 }
976 1035
977 /* have to use the microsoft-never-gets-it-right macro */ 1036 /* have to use the microsoft-never-gets-it-right macro */
978 array_free (fdchange, EMPTY0); 1037 array_free (fdchange, EMPTY);
979 array_free (timer, EMPTY0); 1038 array_free (timer, EMPTY);
980#if EV_PERIODIC_ENABLE 1039#if EV_PERIODIC_ENABLE
981 array_free (periodic, EMPTY0); 1040 array_free (periodic, EMPTY);
982#endif 1041#endif
983 array_free (idle, EMPTY0);
984 array_free (prepare, EMPTY0); 1042 array_free (prepare, EMPTY);
985 array_free (check, EMPTY0); 1043 array_free (check, EMPTY);
986 1044
987 backend = 0; 1045 backend = 0;
988} 1046}
1047
1048void inline_size infy_fork (EV_P);
989 1049
990void inline_size 1050void inline_size
991loop_fork (EV_P) 1051loop_fork (EV_P)
992{ 1052{
993#if EV_USE_PORT 1053#if EV_USE_PORT
996#if EV_USE_KQUEUE 1056#if EV_USE_KQUEUE
997 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1057 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
998#endif 1058#endif
999#if EV_USE_EPOLL 1059#if EV_USE_EPOLL
1000 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1060 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1061#endif
1062#if EV_USE_INOTIFY
1063 infy_fork (EV_A);
1001#endif 1064#endif
1002 1065
1003 if (ev_is_active (&sigev)) 1066 if (ev_is_active (&sigev))
1004 { 1067 {
1005 /* default loop */ 1068 /* default loop */
1121 postfork = 1; 1184 postfork = 1;
1122} 1185}
1123 1186
1124/*****************************************************************************/ 1187/*****************************************************************************/
1125 1188
1126int inline_size 1189void
1127any_pending (EV_P) 1190ev_invoke (EV_P_ void *w, int revents)
1128{ 1191{
1129 int pri; 1192 EV_CB_INVOKE ((W)w, revents);
1130
1131 for (pri = NUMPRI; pri--; )
1132 if (pendingcnt [pri])
1133 return 1;
1134
1135 return 0;
1136} 1193}
1137 1194
1138void inline_speed 1195void inline_speed
1139call_pending (EV_P) 1196call_pending (EV_P)
1140{ 1197{
1193 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1250 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1194 1251
1195 /* first reschedule or stop timer */ 1252 /* first reschedule or stop timer */
1196 if (w->reschedule_cb) 1253 if (w->reschedule_cb)
1197 { 1254 {
1198 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1255 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1199 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1256 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1200 downheap ((WT *)periodics, periodiccnt, 0); 1257 downheap ((WT *)periodics, periodiccnt, 0);
1201 } 1258 }
1202 else if (w->interval) 1259 else if (w->interval)
1203 { 1260 {
1204 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1261 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1262 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1205 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1263 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1206 downheap ((WT *)periodics, periodiccnt, 0); 1264 downheap ((WT *)periodics, periodiccnt, 0);
1207 } 1265 }
1208 else 1266 else
1209 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1267 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1223 ev_periodic *w = periodics [i]; 1281 ev_periodic *w = periodics [i];
1224 1282
1225 if (w->reschedule_cb) 1283 if (w->reschedule_cb)
1226 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1284 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1227 else if (w->interval) 1285 else if (w->interval)
1228 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1286 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1229 } 1287 }
1230 1288
1231 /* now rebuild the heap */ 1289 /* now rebuild the heap */
1232 for (i = periodiccnt >> 1; i--; ) 1290 for (i = periodiccnt >> 1; i--; )
1233 downheap ((WT *)periodics, periodiccnt, i); 1291 downheap ((WT *)periodics, periodiccnt, i);
1234} 1292}
1235#endif 1293#endif
1236 1294
1295#if EV_IDLE_ENABLE
1237int inline_size 1296void inline_size
1238time_update_monotonic (EV_P) 1297idle_reify (EV_P)
1239{ 1298{
1299 if (expect_false (idleall))
1300 {
1301 int pri;
1302
1303 for (pri = NUMPRI; pri--; )
1304 {
1305 if (pendingcnt [pri])
1306 break;
1307
1308 if (idlecnt [pri])
1309 {
1310 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1311 break;
1312 }
1313 }
1314 }
1315}
1316#endif
1317
1318void inline_speed
1319time_update (EV_P_ ev_tstamp max_block)
1320{
1321 int i;
1322
1323#if EV_USE_MONOTONIC
1324 if (expect_true (have_monotonic))
1325 {
1326 ev_tstamp odiff = rtmn_diff;
1327
1240 mn_now = get_clock (); 1328 mn_now = get_clock ();
1241 1329
1330 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1331 /* interpolate in the meantime */
1242 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1332 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1243 { 1333 {
1244 ev_rt_now = rtmn_diff + mn_now; 1334 ev_rt_now = rtmn_diff + mn_now;
1245 return 0; 1335 return;
1246 } 1336 }
1247 else 1337
1248 {
1249 now_floor = mn_now; 1338 now_floor = mn_now;
1250 ev_rt_now = ev_time (); 1339 ev_rt_now = ev_time ();
1251 return 1;
1252 }
1253}
1254 1340
1255void inline_size 1341 /* loop a few times, before making important decisions.
1256time_update (EV_P) 1342 * on the choice of "4": one iteration isn't enough,
1257{ 1343 * in case we get preempted during the calls to
1258 int i; 1344 * ev_time and get_clock. a second call is almost guaranteed
1259 1345 * to succeed in that case, though. and looping a few more times
1260#if EV_USE_MONOTONIC 1346 * doesn't hurt either as we only do this on time-jumps or
1261 if (expect_true (have_monotonic)) 1347 * in the unlikely event of having been preempted here.
1262 { 1348 */
1263 if (time_update_monotonic (EV_A)) 1349 for (i = 4; --i; )
1264 { 1350 {
1265 ev_tstamp odiff = rtmn_diff;
1266
1267 /* loop a few times, before making important decisions.
1268 * on the choice of "4": one iteration isn't enough,
1269 * in case we get preempted during the calls to
1270 * ev_time and get_clock. a second call is almost guarenteed
1271 * to succeed in that case, though. and looping a few more times
1272 * doesn't hurt either as we only do this on time-jumps or
1273 * in the unlikely event of getting preempted here.
1274 */
1275 for (i = 4; --i; )
1276 {
1277 rtmn_diff = ev_rt_now - mn_now; 1351 rtmn_diff = ev_rt_now - mn_now;
1278 1352
1279 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1353 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1280 return; /* all is well */ 1354 return; /* all is well */
1281 1355
1282 ev_rt_now = ev_time (); 1356 ev_rt_now = ev_time ();
1283 mn_now = get_clock (); 1357 mn_now = get_clock ();
1284 now_floor = mn_now; 1358 now_floor = mn_now;
1285 } 1359 }
1286 1360
1287# if EV_PERIODIC_ENABLE 1361# if EV_PERIODIC_ENABLE
1288 periodics_reschedule (EV_A); 1362 periodics_reschedule (EV_A);
1289# endif 1363# endif
1290 /* no timer adjustment, as the monotonic clock doesn't jump */ 1364 /* no timer adjustment, as the monotonic clock doesn't jump */
1291 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1365 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1292 }
1293 } 1366 }
1294 else 1367 else
1295#endif 1368#endif
1296 { 1369 {
1297 ev_rt_now = ev_time (); 1370 ev_rt_now = ev_time ();
1298 1371
1299 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1372 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1300 { 1373 {
1301#if EV_PERIODIC_ENABLE 1374#if EV_PERIODIC_ENABLE
1302 periodics_reschedule (EV_A); 1375 periodics_reschedule (EV_A);
1303#endif 1376#endif
1304
1305 /* adjust timers. this is easy, as the offset is the same for all */ 1377 /* adjust timers. this is easy, as the offset is the same for all of them */
1306 for (i = 0; i < timercnt; ++i) 1378 for (i = 0; i < timercnt; ++i)
1307 ((WT)timers [i])->at += ev_rt_now - mn_now; 1379 ((WT)timers [i])->at += ev_rt_now - mn_now;
1308 } 1380 }
1309 1381
1310 mn_now = ev_rt_now; 1382 mn_now = ev_rt_now;
1330{ 1402{
1331 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1332 ? EVUNLOOP_ONE 1404 ? EVUNLOOP_ONE
1333 : EVUNLOOP_CANCEL; 1405 : EVUNLOOP_CANCEL;
1334 1406
1335 while (activecnt) 1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1408
1409 do
1336 { 1410 {
1337 /* we might have forked, so reify kernel state if necessary */ 1411#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid))
1414 {
1415 curpid = getpid ();
1416 postfork = 1;
1417 }
1418#endif
1419
1338 #if EV_FORK_ENABLE 1420#if EV_FORK_ENABLE
1421 /* we might have forked, so queue fork handlers */
1339 if (expect_false (postfork)) 1422 if (expect_false (postfork))
1340 if (forkcnt) 1423 if (forkcnt)
1341 { 1424 {
1342 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1425 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1343 call_pending (EV_A); 1426 call_pending (EV_A);
1344 } 1427 }
1345 #endif 1428#endif
1346 1429
1347 /* queue check watchers (and execute them) */ 1430 /* queue prepare watchers (and execute them) */
1348 if (expect_false (preparecnt)) 1431 if (expect_false (preparecnt))
1349 { 1432 {
1350 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1433 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1351 call_pending (EV_A); 1434 call_pending (EV_A);
1352 } 1435 }
1353 1436
1437 if (expect_false (!activecnt))
1438 break;
1439
1354 /* we might have forked, so reify kernel state if necessary */ 1440 /* we might have forked, so reify kernel state if necessary */
1355 if (expect_false (postfork)) 1441 if (expect_false (postfork))
1356 loop_fork (EV_A); 1442 loop_fork (EV_A);
1357 1443
1358 /* update fd-related kernel structures */ 1444 /* update fd-related kernel structures */
1359 fd_reify (EV_A); 1445 fd_reify (EV_A);
1360 1446
1361 /* calculate blocking time */ 1447 /* calculate blocking time */
1362 { 1448 {
1363 double block; 1449 ev_tstamp block;
1364 1450
1365 if (flags & EVLOOP_NONBLOCK || idlecnt) 1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1366 block = 0.; /* do not block at all */ 1452 block = 0.; /* do not block at all */
1367 else 1453 else
1368 { 1454 {
1369 /* update time to cancel out callback processing overhead */ 1455 /* update time to cancel out callback processing overhead */
1370#if EV_USE_MONOTONIC
1371 if (expect_true (have_monotonic))
1372 time_update_monotonic (EV_A); 1456 time_update (EV_A_ 1e100);
1373 else
1374#endif
1375 {
1376 ev_rt_now = ev_time ();
1377 mn_now = ev_rt_now;
1378 }
1379 1457
1380 block = MAX_BLOCKTIME; 1458 block = MAX_BLOCKTIME;
1381 1459
1382 if (timercnt) 1460 if (timercnt)
1383 { 1461 {
1394#endif 1472#endif
1395 1473
1396 if (expect_false (block < 0.)) block = 0.; 1474 if (expect_false (block < 0.)) block = 0.;
1397 } 1475 }
1398 1476
1477 ++loop_count;
1399 backend_poll (EV_A_ block); 1478 backend_poll (EV_A_ block);
1479
1480 /* update ev_rt_now, do magic */
1481 time_update (EV_A_ block);
1400 } 1482 }
1401
1402 /* update ev_rt_now, do magic */
1403 time_update (EV_A);
1404 1483
1405 /* queue pending timers and reschedule them */ 1484 /* queue pending timers and reschedule them */
1406 timers_reify (EV_A); /* relative timers called last */ 1485 timers_reify (EV_A); /* relative timers called last */
1407#if EV_PERIODIC_ENABLE 1486#if EV_PERIODIC_ENABLE
1408 periodics_reify (EV_A); /* absolute timers called first */ 1487 periodics_reify (EV_A); /* absolute timers called first */
1409#endif 1488#endif
1410 1489
1490#if EV_IDLE_ENABLE
1411 /* queue idle watchers unless other events are pending */ 1491 /* queue idle watchers unless other events are pending */
1412 if (idlecnt && !any_pending (EV_A)) 1492 idle_reify (EV_A);
1413 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1493#endif
1414 1494
1415 /* queue check watchers, to be executed first */ 1495 /* queue check watchers, to be executed first */
1416 if (expect_false (checkcnt)) 1496 if (expect_false (checkcnt))
1417 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1497 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1418 1498
1419 call_pending (EV_A); 1499 call_pending (EV_A);
1420 1500
1421 if (expect_false (loop_done))
1422 break;
1423 } 1501 }
1502 while (expect_true (activecnt && !loop_done));
1424 1503
1425 if (loop_done == EVUNLOOP_ONE) 1504 if (loop_done == EVUNLOOP_ONE)
1426 loop_done = EVUNLOOP_CANCEL; 1505 loop_done = EVUNLOOP_CANCEL;
1427} 1506}
1428 1507
1455 head = &(*head)->next; 1534 head = &(*head)->next;
1456 } 1535 }
1457} 1536}
1458 1537
1459void inline_speed 1538void inline_speed
1460ev_clear_pending (EV_P_ W w) 1539clear_pending (EV_P_ W w)
1461{ 1540{
1462 if (w->pending) 1541 if (w->pending)
1463 { 1542 {
1464 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1543 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1465 w->pending = 0; 1544 w->pending = 0;
1466 } 1545 }
1467} 1546}
1468 1547
1548int
1549ev_clear_pending (EV_P_ void *w)
1550{
1551 W w_ = (W)w;
1552 int pending = w_->pending;
1553
1554 if (expect_true (pending))
1555 {
1556 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1557 w_->pending = 0;
1558 p->w = 0;
1559 return p->events;
1560 }
1561 else
1562 return 0;
1563}
1564
1565void inline_size
1566pri_adjust (EV_P_ W w)
1567{
1568 int pri = w->priority;
1569 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1570 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1571 w->priority = pri;
1572}
1573
1469void inline_speed 1574void inline_speed
1470ev_start (EV_P_ W w, int active) 1575ev_start (EV_P_ W w, int active)
1471{ 1576{
1472 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1577 pri_adjust (EV_A_ w);
1473 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1474
1475 w->active = active; 1578 w->active = active;
1476 ev_ref (EV_A); 1579 ev_ref (EV_A);
1477} 1580}
1478 1581
1479void inline_size 1582void inline_size
1483 w->active = 0; 1586 w->active = 0;
1484} 1587}
1485 1588
1486/*****************************************************************************/ 1589/*****************************************************************************/
1487 1590
1488void 1591void noinline
1489ev_io_start (EV_P_ ev_io *w) 1592ev_io_start (EV_P_ ev_io *w)
1490{ 1593{
1491 int fd = w->fd; 1594 int fd = w->fd;
1492 1595
1493 if (expect_false (ev_is_active (w))) 1596 if (expect_false (ev_is_active (w)))
1500 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1603 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1501 1604
1502 fd_change (EV_A_ fd); 1605 fd_change (EV_A_ fd);
1503} 1606}
1504 1607
1505void 1608void noinline
1506ev_io_stop (EV_P_ ev_io *w) 1609ev_io_stop (EV_P_ ev_io *w)
1507{ 1610{
1508 ev_clear_pending (EV_A_ (W)w); 1611 clear_pending (EV_A_ (W)w);
1509 if (expect_false (!ev_is_active (w))) 1612 if (expect_false (!ev_is_active (w)))
1510 return; 1613 return;
1511 1614
1512 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1615 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1513 1616
1515 ev_stop (EV_A_ (W)w); 1618 ev_stop (EV_A_ (W)w);
1516 1619
1517 fd_change (EV_A_ w->fd); 1620 fd_change (EV_A_ w->fd);
1518} 1621}
1519 1622
1520void 1623void noinline
1521ev_timer_start (EV_P_ ev_timer *w) 1624ev_timer_start (EV_P_ ev_timer *w)
1522{ 1625{
1523 if (expect_false (ev_is_active (w))) 1626 if (expect_false (ev_is_active (w)))
1524 return; 1627 return;
1525 1628
1533 upheap ((WT *)timers, timercnt - 1); 1636 upheap ((WT *)timers, timercnt - 1);
1534 1637
1535 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1638 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1536} 1639}
1537 1640
1538void 1641void noinline
1539ev_timer_stop (EV_P_ ev_timer *w) 1642ev_timer_stop (EV_P_ ev_timer *w)
1540{ 1643{
1541 ev_clear_pending (EV_A_ (W)w); 1644 clear_pending (EV_A_ (W)w);
1542 if (expect_false (!ev_is_active (w))) 1645 if (expect_false (!ev_is_active (w)))
1543 return; 1646 return;
1544 1647
1545 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1648 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1546 1649
1557 ((WT)w)->at -= mn_now; 1660 ((WT)w)->at -= mn_now;
1558 1661
1559 ev_stop (EV_A_ (W)w); 1662 ev_stop (EV_A_ (W)w);
1560} 1663}
1561 1664
1562void 1665void noinline
1563ev_timer_again (EV_P_ ev_timer *w) 1666ev_timer_again (EV_P_ ev_timer *w)
1564{ 1667{
1565 if (ev_is_active (w)) 1668 if (ev_is_active (w))
1566 { 1669 {
1567 if (w->repeat) 1670 if (w->repeat)
1578 ev_timer_start (EV_A_ w); 1681 ev_timer_start (EV_A_ w);
1579 } 1682 }
1580} 1683}
1581 1684
1582#if EV_PERIODIC_ENABLE 1685#if EV_PERIODIC_ENABLE
1583void 1686void noinline
1584ev_periodic_start (EV_P_ ev_periodic *w) 1687ev_periodic_start (EV_P_ ev_periodic *w)
1585{ 1688{
1586 if (expect_false (ev_is_active (w))) 1689 if (expect_false (ev_is_active (w)))
1587 return; 1690 return;
1588 1691
1590 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1693 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1591 else if (w->interval) 1694 else if (w->interval)
1592 { 1695 {
1593 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1696 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1594 /* this formula differs from the one in periodic_reify because we do not always round up */ 1697 /* this formula differs from the one in periodic_reify because we do not always round up */
1595 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1698 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1596 } 1699 }
1700 else
1701 ((WT)w)->at = w->offset;
1597 1702
1598 ev_start (EV_A_ (W)w, ++periodiccnt); 1703 ev_start (EV_A_ (W)w, ++periodiccnt);
1599 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1704 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2);
1600 periodics [periodiccnt - 1] = w; 1705 periodics [periodiccnt - 1] = w;
1601 upheap ((WT *)periodics, periodiccnt - 1); 1706 upheap ((WT *)periodics, periodiccnt - 1);
1602 1707
1603 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1708 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1604} 1709}
1605 1710
1606void 1711void noinline
1607ev_periodic_stop (EV_P_ ev_periodic *w) 1712ev_periodic_stop (EV_P_ ev_periodic *w)
1608{ 1713{
1609 ev_clear_pending (EV_A_ (W)w); 1714 clear_pending (EV_A_ (W)w);
1610 if (expect_false (!ev_is_active (w))) 1715 if (expect_false (!ev_is_active (w)))
1611 return; 1716 return;
1612 1717
1613 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1718 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1614 1719
1623 } 1728 }
1624 1729
1625 ev_stop (EV_A_ (W)w); 1730 ev_stop (EV_A_ (W)w);
1626} 1731}
1627 1732
1628void 1733void noinline
1629ev_periodic_again (EV_P_ ev_periodic *w) 1734ev_periodic_again (EV_P_ ev_periodic *w)
1630{ 1735{
1631 /* TODO: use adjustheap and recalculation */ 1736 /* TODO: use adjustheap and recalculation */
1632 ev_periodic_stop (EV_A_ w); 1737 ev_periodic_stop (EV_A_ w);
1633 ev_periodic_start (EV_A_ w); 1738 ev_periodic_start (EV_A_ w);
1636 1741
1637#ifndef SA_RESTART 1742#ifndef SA_RESTART
1638# define SA_RESTART 0 1743# define SA_RESTART 0
1639#endif 1744#endif
1640 1745
1641void 1746void noinline
1642ev_signal_start (EV_P_ ev_signal *w) 1747ev_signal_start (EV_P_ ev_signal *w)
1643{ 1748{
1644#if EV_MULTIPLICITY 1749#if EV_MULTIPLICITY
1645 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1750 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1646#endif 1751#endif
1647 if (expect_false (ev_is_active (w))) 1752 if (expect_false (ev_is_active (w)))
1648 return; 1753 return;
1649 1754
1650 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1755 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1651 1756
1757 {
1758#ifndef _WIN32
1759 sigset_t full, prev;
1760 sigfillset (&full);
1761 sigprocmask (SIG_SETMASK, &full, &prev);
1762#endif
1763
1764 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1765
1766#ifndef _WIN32
1767 sigprocmask (SIG_SETMASK, &prev, 0);
1768#endif
1769 }
1770
1652 ev_start (EV_A_ (W)w, 1); 1771 ev_start (EV_A_ (W)w, 1);
1653 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1654 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1772 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1655 1773
1656 if (!((WL)w)->next) 1774 if (!((WL)w)->next)
1657 { 1775 {
1658#if _WIN32 1776#if _WIN32
1665 sigaction (w->signum, &sa, 0); 1783 sigaction (w->signum, &sa, 0);
1666#endif 1784#endif
1667 } 1785 }
1668} 1786}
1669 1787
1670void 1788void noinline
1671ev_signal_stop (EV_P_ ev_signal *w) 1789ev_signal_stop (EV_P_ ev_signal *w)
1672{ 1790{
1673 ev_clear_pending (EV_A_ (W)w); 1791 clear_pending (EV_A_ (W)w);
1674 if (expect_false (!ev_is_active (w))) 1792 if (expect_false (!ev_is_active (w)))
1675 return; 1793 return;
1676 1794
1677 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1795 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1678 ev_stop (EV_A_ (W)w); 1796 ev_stop (EV_A_ (W)w);
1695} 1813}
1696 1814
1697void 1815void
1698ev_child_stop (EV_P_ ev_child *w) 1816ev_child_stop (EV_P_ ev_child *w)
1699{ 1817{
1700 ev_clear_pending (EV_A_ (W)w); 1818 clear_pending (EV_A_ (W)w);
1701 if (expect_false (!ev_is_active (w))) 1819 if (expect_false (!ev_is_active (w)))
1702 return; 1820 return;
1703 1821
1704 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1822 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1705 ev_stop (EV_A_ (W)w); 1823 ev_stop (EV_A_ (W)w);
1713# endif 1831# endif
1714 1832
1715#define DEF_STAT_INTERVAL 5.0074891 1833#define DEF_STAT_INTERVAL 5.0074891
1716#define MIN_STAT_INTERVAL 0.1074891 1834#define MIN_STAT_INTERVAL 0.1074891
1717 1835
1718void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 1836static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1719 1837
1720#if EV_USE_INOTIFY 1838#if EV_USE_INOTIFY
1721# define EV_INOTIFY_BUFSIZE 8192 1839# define EV_INOTIFY_BUFSIZE 8192
1722 1840
1723static void noinline 1841static void noinline
1831 ev_set_priority (&fs_w, EV_MAXPRI); 1949 ev_set_priority (&fs_w, EV_MAXPRI);
1832 ev_io_start (EV_A_ &fs_w); 1950 ev_io_start (EV_A_ &fs_w);
1833 } 1951 }
1834} 1952}
1835 1953
1954void inline_size
1955infy_fork (EV_P)
1956{
1957 int slot;
1958
1959 if (fs_fd < 0)
1960 return;
1961
1962 close (fs_fd);
1963 fs_fd = inotify_init ();
1964
1965 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1966 {
1967 WL w_ = fs_hash [slot].head;
1968 fs_hash [slot].head = 0;
1969
1970 while (w_)
1971 {
1972 ev_stat *w = (ev_stat *)w_;
1973 w_ = w_->next; /* lets us add this watcher */
1974
1975 w->wd = -1;
1976
1977 if (fs_fd >= 0)
1978 infy_add (EV_A_ w); /* re-add, no matter what */
1979 else
1980 ev_timer_start (EV_A_ &w->timer);
1981 }
1982
1983 }
1984}
1985
1836#endif 1986#endif
1837 1987
1838void 1988void
1839ev_stat_stat (EV_P_ ev_stat *w) 1989ev_stat_stat (EV_P_ ev_stat *w)
1840{ 1990{
1842 w->attr.st_nlink = 0; 1992 w->attr.st_nlink = 0;
1843 else if (!w->attr.st_nlink) 1993 else if (!w->attr.st_nlink)
1844 w->attr.st_nlink = 1; 1994 w->attr.st_nlink = 1;
1845} 1995}
1846 1996
1847void noinline 1997static void noinline
1848stat_timer_cb (EV_P_ ev_timer *w_, int revents) 1998stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1849{ 1999{
1850 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2000 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1851 2001
1852 /* we copy this here each the time so that */ 2002 /* we copy this here each the time so that */
1853 /* prev has the old value when the callback gets invoked */ 2003 /* prev has the old value when the callback gets invoked */
1854 w->prev = w->attr; 2004 w->prev = w->attr;
1855 ev_stat_stat (EV_A_ w); 2005 ev_stat_stat (EV_A_ w);
1856 2006
1857 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2007 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2008 if (
2009 w->prev.st_dev != w->attr.st_dev
2010 || w->prev.st_ino != w->attr.st_ino
2011 || w->prev.st_mode != w->attr.st_mode
2012 || w->prev.st_nlink != w->attr.st_nlink
2013 || w->prev.st_uid != w->attr.st_uid
2014 || w->prev.st_gid != w->attr.st_gid
2015 || w->prev.st_rdev != w->attr.st_rdev
2016 || w->prev.st_size != w->attr.st_size
2017 || w->prev.st_atime != w->attr.st_atime
2018 || w->prev.st_mtime != w->attr.st_mtime
2019 || w->prev.st_ctime != w->attr.st_ctime
1858 { 2020 ) {
1859 #if EV_USE_INOTIFY 2021 #if EV_USE_INOTIFY
1860 infy_del (EV_A_ w); 2022 infy_del (EV_A_ w);
1861 infy_add (EV_A_ w); 2023 infy_add (EV_A_ w);
1862 ev_stat_stat (EV_A_ w); /* avoid race... */ 2024 ev_stat_stat (EV_A_ w); /* avoid race... */
1863 #endif 2025 #endif
1897} 2059}
1898 2060
1899void 2061void
1900ev_stat_stop (EV_P_ ev_stat *w) 2062ev_stat_stop (EV_P_ ev_stat *w)
1901{ 2063{
1902 ev_clear_pending (EV_A_ (W)w); 2064 clear_pending (EV_A_ (W)w);
1903 if (expect_false (!ev_is_active (w))) 2065 if (expect_false (!ev_is_active (w)))
1904 return; 2066 return;
1905 2067
1906#if EV_USE_INOTIFY 2068#if EV_USE_INOTIFY
1907 infy_del (EV_A_ w); 2069 infy_del (EV_A_ w);
1910 2072
1911 ev_stop (EV_A_ (W)w); 2073 ev_stop (EV_A_ (W)w);
1912} 2074}
1913#endif 2075#endif
1914 2076
2077#if EV_IDLE_ENABLE
1915void 2078void
1916ev_idle_start (EV_P_ ev_idle *w) 2079ev_idle_start (EV_P_ ev_idle *w)
1917{ 2080{
1918 if (expect_false (ev_is_active (w))) 2081 if (expect_false (ev_is_active (w)))
1919 return; 2082 return;
1920 2083
2084 pri_adjust (EV_A_ (W)w);
2085
2086 {
2087 int active = ++idlecnt [ABSPRI (w)];
2088
2089 ++idleall;
1921 ev_start (EV_A_ (W)w, ++idlecnt); 2090 ev_start (EV_A_ (W)w, active);
2091
1922 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2092 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1923 idles [idlecnt - 1] = w; 2093 idles [ABSPRI (w)][active - 1] = w;
2094 }
1924} 2095}
1925 2096
1926void 2097void
1927ev_idle_stop (EV_P_ ev_idle *w) 2098ev_idle_stop (EV_P_ ev_idle *w)
1928{ 2099{
1929 ev_clear_pending (EV_A_ (W)w); 2100 clear_pending (EV_A_ (W)w);
1930 if (expect_false (!ev_is_active (w))) 2101 if (expect_false (!ev_is_active (w)))
1931 return; 2102 return;
1932 2103
1933 { 2104 {
1934 int active = ((W)w)->active; 2105 int active = ((W)w)->active;
1935 idles [active - 1] = idles [--idlecnt]; 2106
2107 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
1936 ((W)idles [active - 1])->active = active; 2108 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2109
2110 ev_stop (EV_A_ (W)w);
2111 --idleall;
1937 } 2112 }
1938
1939 ev_stop (EV_A_ (W)w);
1940} 2113}
2114#endif
1941 2115
1942void 2116void
1943ev_prepare_start (EV_P_ ev_prepare *w) 2117ev_prepare_start (EV_P_ ev_prepare *w)
1944{ 2118{
1945 if (expect_false (ev_is_active (w))) 2119 if (expect_false (ev_is_active (w)))
1951} 2125}
1952 2126
1953void 2127void
1954ev_prepare_stop (EV_P_ ev_prepare *w) 2128ev_prepare_stop (EV_P_ ev_prepare *w)
1955{ 2129{
1956 ev_clear_pending (EV_A_ (W)w); 2130 clear_pending (EV_A_ (W)w);
1957 if (expect_false (!ev_is_active (w))) 2131 if (expect_false (!ev_is_active (w)))
1958 return; 2132 return;
1959 2133
1960 { 2134 {
1961 int active = ((W)w)->active; 2135 int active = ((W)w)->active;
1978} 2152}
1979 2153
1980void 2154void
1981ev_check_stop (EV_P_ ev_check *w) 2155ev_check_stop (EV_P_ ev_check *w)
1982{ 2156{
1983 ev_clear_pending (EV_A_ (W)w); 2157 clear_pending (EV_A_ (W)w);
1984 if (expect_false (!ev_is_active (w))) 2158 if (expect_false (!ev_is_active (w)))
1985 return; 2159 return;
1986 2160
1987 { 2161 {
1988 int active = ((W)w)->active; 2162 int active = ((W)w)->active;
2030} 2204}
2031 2205
2032void 2206void
2033ev_embed_stop (EV_P_ ev_embed *w) 2207ev_embed_stop (EV_P_ ev_embed *w)
2034{ 2208{
2035 ev_clear_pending (EV_A_ (W)w); 2209 clear_pending (EV_A_ (W)w);
2036 if (expect_false (!ev_is_active (w))) 2210 if (expect_false (!ev_is_active (w)))
2037 return; 2211 return;
2038 2212
2039 ev_io_stop (EV_A_ &w->io); 2213 ev_io_stop (EV_A_ &w->io);
2040 2214
2055} 2229}
2056 2230
2057void 2231void
2058ev_fork_stop (EV_P_ ev_fork *w) 2232ev_fork_stop (EV_P_ ev_fork *w)
2059{ 2233{
2060 ev_clear_pending (EV_A_ (W)w); 2234 clear_pending (EV_A_ (W)w);
2061 if (expect_false (!ev_is_active (w))) 2235 if (expect_false (!ev_is_active (w)))
2062 return; 2236 return;
2063 2237
2064 { 2238 {
2065 int active = ((W)w)->active; 2239 int active = ((W)w)->active;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines