ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.180 by root, Tue Dec 11 22:04:55 2007 UTC vs.
Revision 1.253 by root, Sat May 31 03:13:27 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
169# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
170# define EV_USE_MONOTONIC 1
171# else
144# define EV_USE_MONOTONIC 0 172# define EV_USE_MONOTONIC 0
173# endif
145#endif 174#endif
146 175
147#ifndef EV_USE_REALTIME 176#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 177# define EV_USE_REALTIME 0
178#endif
179
180#ifndef EV_USE_NANOSLEEP
181# if _POSIX_C_SOURCE >= 199309L
182# define EV_USE_NANOSLEEP 1
183# else
184# define EV_USE_NANOSLEEP 0
185# endif
149#endif 186#endif
150 187
151#ifndef EV_USE_SELECT 188#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 189# define EV_USE_SELECT 1
153#endif 190#endif
159# define EV_USE_POLL 1 196# define EV_USE_POLL 1
160# endif 197# endif
161#endif 198#endif
162 199
163#ifndef EV_USE_EPOLL 200#ifndef EV_USE_EPOLL
201# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
202# define EV_USE_EPOLL 1
203# else
164# define EV_USE_EPOLL 0 204# define EV_USE_EPOLL 0
205# endif
165#endif 206#endif
166 207
167#ifndef EV_USE_KQUEUE 208#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 209# define EV_USE_KQUEUE 0
169#endif 210#endif
171#ifndef EV_USE_PORT 212#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 213# define EV_USE_PORT 0
173#endif 214#endif
174 215
175#ifndef EV_USE_INOTIFY 216#ifndef EV_USE_INOTIFY
217# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
218# define EV_USE_INOTIFY 1
219# else
176# define EV_USE_INOTIFY 0 220# define EV_USE_INOTIFY 0
221# endif
177#endif 222#endif
178 223
179#ifndef EV_PID_HASHSIZE 224#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 225# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 226# define EV_PID_HASHSIZE 1
190# else 235# else
191# define EV_INOTIFY_HASHSIZE 16 236# define EV_INOTIFY_HASHSIZE 16
192# endif 237# endif
193#endif 238#endif
194 239
195/**/ 240#ifndef EV_USE_EVENTFD
241# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
242# define EV_USE_EVENTFD 1
243# else
244# define EV_USE_EVENTFD 0
245# endif
246#endif
247
248#if 0 /* debugging */
249# define EV_VERIFY 3
250# define EV_USE_4HEAP 1
251# define EV_HEAP_CACHE_AT 1
252#endif
253
254#ifndef EV_VERIFY
255# define EV_VERIFY !EV_MINIMAL
256#endif
257
258#ifndef EV_USE_4HEAP
259# define EV_USE_4HEAP !EV_MINIMAL
260#endif
261
262#ifndef EV_HEAP_CACHE_AT
263# define EV_HEAP_CACHE_AT !EV_MINIMAL
264#endif
265
266/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 267
197#ifndef CLOCK_MONOTONIC 268#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 269# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 270# define EV_USE_MONOTONIC 0
200#endif 271#endif
202#ifndef CLOCK_REALTIME 273#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 274# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 275# define EV_USE_REALTIME 0
205#endif 276#endif
206 277
278#if !EV_STAT_ENABLE
279# undef EV_USE_INOTIFY
280# define EV_USE_INOTIFY 0
281#endif
282
283#if !EV_USE_NANOSLEEP
284# ifndef _WIN32
285# include <sys/select.h>
286# endif
287#endif
288
289#if EV_USE_INOTIFY
290# include <sys/inotify.h>
291#endif
292
207#if EV_SELECT_IS_WINSOCKET 293#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 294# include <winsock.h>
209#endif 295#endif
210 296
211#if !EV_STAT_ENABLE 297#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 298/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
299# include <stdint.h>
300# ifdef __cplusplus
301extern "C" {
213#endif 302# endif
214 303int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 304# ifdef __cplusplus
216# include <sys/inotify.h> 305}
306# endif
217#endif 307#endif
218 308
219/**/ 309/**/
310
311#if EV_VERIFY >= 3
312# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
313#else
314# define EV_FREQUENT_CHECK do { } while (0)
315#endif
220 316
221/* 317/*
222 * This is used to avoid floating point rounding problems. 318 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics 319 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding 320 * to ensure progress, time-wise, even when rounding
230 326
231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 327#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 328#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */ 329/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
234 330
235#if __GNUC__ >= 3 331#if __GNUC__ >= 4
236# define expect(expr,value) __builtin_expect ((expr),(value)) 332# define expect(expr,value) __builtin_expect ((expr),(value))
237# define noinline __attribute__ ((noinline)) 333# define noinline __attribute__ ((noinline))
238#else 334#else
239# define expect(expr,value) (expr) 335# define expect(expr,value) (expr)
240# define noinline 336# define noinline
241# if __STDC_VERSION__ < 199901L 337# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
242# define inline 338# define inline
243# endif 339# endif
244#endif 340#endif
245 341
246#define expect_false(expr) expect ((expr) != 0, 0) 342#define expect_false(expr) expect ((expr) != 0, 0)
261 357
262typedef ev_watcher *W; 358typedef ev_watcher *W;
263typedef ev_watcher_list *WL; 359typedef ev_watcher_list *WL;
264typedef ev_watcher_time *WT; 360typedef ev_watcher_time *WT;
265 361
362#define ev_active(w) ((W)(w))->active
363#define ev_at(w) ((WT)(w))->at
364
365#if EV_USE_MONOTONIC
366/* sig_atomic_t is used to avoid per-thread variables or locking but still */
367/* giving it a reasonably high chance of working on typical architetcures */
266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 368static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
369#endif
267 370
268#ifdef _WIN32 371#ifdef _WIN32
269# include "ev_win32.c" 372# include "ev_win32.c"
270#endif 373#endif
271 374
292 perror (msg); 395 perror (msg);
293 abort (); 396 abort ();
294 } 397 }
295} 398}
296 399
400static void *
401ev_realloc_emul (void *ptr, long size)
402{
403 /* some systems, notably openbsd and darwin, fail to properly
404 * implement realloc (x, 0) (as required by both ansi c-98 and
405 * the single unix specification, so work around them here.
406 */
407
408 if (size)
409 return realloc (ptr, size);
410
411 free (ptr);
412 return 0;
413}
414
297static void *(*alloc)(void *ptr, long size); 415static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
298 416
299void 417void
300ev_set_allocator (void *(*cb)(void *ptr, long size)) 418ev_set_allocator (void *(*cb)(void *ptr, long size))
301{ 419{
302 alloc = cb; 420 alloc = cb;
303} 421}
304 422
305inline_speed void * 423inline_speed void *
306ev_realloc (void *ptr, long size) 424ev_realloc (void *ptr, long size)
307{ 425{
308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 426 ptr = alloc (ptr, size);
309 427
310 if (!ptr && size) 428 if (!ptr && size)
311 { 429 {
312 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 430 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
313 abort (); 431 abort ();
336 W w; 454 W w;
337 int events; 455 int events;
338} ANPENDING; 456} ANPENDING;
339 457
340#if EV_USE_INOTIFY 458#if EV_USE_INOTIFY
459/* hash table entry per inotify-id */
341typedef struct 460typedef struct
342{ 461{
343 WL head; 462 WL head;
344} ANFS; 463} ANFS;
464#endif
465
466/* Heap Entry */
467#if EV_HEAP_CACHE_AT
468 typedef struct {
469 ev_tstamp at;
470 WT w;
471 } ANHE;
472
473 #define ANHE_w(he) (he).w /* access watcher, read-write */
474 #define ANHE_at(he) (he).at /* access cached at, read-only */
475 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
476#else
477 typedef WT ANHE;
478
479 #define ANHE_w(he) (he)
480 #define ANHE_at(he) (he)->at
481 #define ANHE_at_cache(he)
345#endif 482#endif
346 483
347#if EV_MULTIPLICITY 484#if EV_MULTIPLICITY
348 485
349 struct ev_loop 486 struct ev_loop
407{ 544{
408 return ev_rt_now; 545 return ev_rt_now;
409} 546}
410#endif 547#endif
411 548
549void
550ev_sleep (ev_tstamp delay)
551{
552 if (delay > 0.)
553 {
554#if EV_USE_NANOSLEEP
555 struct timespec ts;
556
557 ts.tv_sec = (time_t)delay;
558 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
559
560 nanosleep (&ts, 0);
561#elif defined(_WIN32)
562 Sleep ((unsigned long)(delay * 1e3));
563#else
564 struct timeval tv;
565
566 tv.tv_sec = (time_t)delay;
567 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
568
569 select (0, 0, 0, 0, &tv);
570#endif
571 }
572}
573
574/*****************************************************************************/
575
576#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
577
412int inline_size 578int inline_size
413array_nextsize (int elem, int cur, int cnt) 579array_nextsize (int elem, int cur, int cnt)
414{ 580{
415 int ncur = cur + 1; 581 int ncur = cur + 1;
416 582
417 do 583 do
418 ncur <<= 1; 584 ncur <<= 1;
419 while (cnt > ncur); 585 while (cnt > ncur);
420 586
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 587 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096) 588 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
423 { 589 {
424 ncur *= elem; 590 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 591 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
426 ncur = ncur - sizeof (void *) * 4; 592 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem; 593 ncur /= elem;
428 } 594 }
429 595
430 return ncur; 596 return ncur;
533 { 699 {
534 int fd = fdchanges [i]; 700 int fd = fdchanges [i];
535 ANFD *anfd = anfds + fd; 701 ANFD *anfd = anfds + fd;
536 ev_io *w; 702 ev_io *w;
537 703
538 int events = 0; 704 unsigned char events = 0;
539 705
540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 706 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
541 events |= w->events; 707 events |= (unsigned char)w->events;
542 708
543#if EV_SELECT_IS_WINSOCKET 709#if EV_SELECT_IS_WINSOCKET
544 if (events) 710 if (events)
545 { 711 {
546 unsigned long argp; 712 unsigned long argp;
713 #ifdef EV_FD_TO_WIN32_HANDLE
714 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
715 #else
547 anfd->handle = _get_osfhandle (fd); 716 anfd->handle = _get_osfhandle (fd);
717 #endif
548 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 718 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
549 } 719 }
550#endif 720#endif
551 721
722 {
723 unsigned char o_events = anfd->events;
724 unsigned char o_reify = anfd->reify;
725
552 anfd->reify = 0; 726 anfd->reify = 0;
553
554 backend_modify (EV_A_ fd, anfd->events, events);
555 anfd->events = events; 727 anfd->events = events;
728
729 if (o_events != events || o_reify & EV_IOFDSET)
730 backend_modify (EV_A_ fd, o_events, events);
731 }
556 } 732 }
557 733
558 fdchangecnt = 0; 734 fdchangecnt = 0;
559} 735}
560 736
561void inline_size 737void inline_size
562fd_change (EV_P_ int fd) 738fd_change (EV_P_ int fd, int flags)
563{ 739{
564 if (expect_false (anfds [fd].reify)) 740 unsigned char reify = anfds [fd].reify;
565 return;
566
567 anfds [fd].reify = 1; 741 anfds [fd].reify |= flags;
568 742
743 if (expect_true (!reify))
744 {
569 ++fdchangecnt; 745 ++fdchangecnt;
570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 746 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
571 fdchanges [fdchangecnt - 1] = fd; 747 fdchanges [fdchangecnt - 1] = fd;
748 }
572} 749}
573 750
574void inline_speed 751void inline_speed
575fd_kill (EV_P_ int fd) 752fd_kill (EV_P_ int fd)
576{ 753{
627 804
628 for (fd = 0; fd < anfdmax; ++fd) 805 for (fd = 0; fd < anfdmax; ++fd)
629 if (anfds [fd].events) 806 if (anfds [fd].events)
630 { 807 {
631 anfds [fd].events = 0; 808 anfds [fd].events = 0;
632 fd_change (EV_A_ fd); 809 fd_change (EV_A_ fd, EV_IOFDSET | 1);
633 } 810 }
634} 811}
635 812
636/*****************************************************************************/ 813/*****************************************************************************/
637 814
815/*
816 * the heap functions want a real array index. array index 0 uis guaranteed to not
817 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
818 * the branching factor of the d-tree.
819 */
820
821/*
822 * at the moment we allow libev the luxury of two heaps,
823 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
824 * which is more cache-efficient.
825 * the difference is about 5% with 50000+ watchers.
826 */
827#if EV_USE_4HEAP
828
829#define DHEAP 4
830#define HEAP0 (DHEAP - 1) /* index of first element in heap */
831#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
832#define UPHEAP_DONE(p,k) ((p) == (k))
833
834/* away from the root */
638void inline_speed 835void inline_speed
639upheap (WT *heap, int k) 836downheap (ANHE *heap, int N, int k)
640{ 837{
641 WT w = heap [k]; 838 ANHE he = heap [k];
839 ANHE *E = heap + N + HEAP0;
642 840
643 while (k) 841 for (;;)
644 { 842 {
645 int p = (k - 1) >> 1; 843 ev_tstamp minat;
844 ANHE *minpos;
845 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
646 846
647 if (heap [p]->at <= w->at) 847 /* find minimum child */
848 if (expect_true (pos + DHEAP - 1 < E))
849 {
850 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
851 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
852 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
853 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
854 }
855 else if (pos < E)
856 {
857 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
858 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
860 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
861 }
862 else
648 break; 863 break;
649 864
865 if (ANHE_at (he) <= minat)
866 break;
867
868 heap [k] = *minpos;
869 ev_active (ANHE_w (*minpos)) = k;
870
871 k = minpos - heap;
872 }
873
874 heap [k] = he;
875 ev_active (ANHE_w (he)) = k;
876}
877
878#else /* 4HEAP */
879
880#define HEAP0 1
881#define HPARENT(k) ((k) >> 1)
882#define UPHEAP_DONE(p,k) (!(p))
883
884/* away from the root */
885void inline_speed
886downheap (ANHE *heap, int N, int k)
887{
888 ANHE he = heap [k];
889
890 for (;;)
891 {
892 int c = k << 1;
893
894 if (c > N + HEAP0 - 1)
895 break;
896
897 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
898 ? 1 : 0;
899
900 if (ANHE_at (he) <= ANHE_at (heap [c]))
901 break;
902
903 heap [k] = heap [c];
904 ev_active (ANHE_w (heap [k])) = k;
905
906 k = c;
907 }
908
909 heap [k] = he;
910 ev_active (ANHE_w (he)) = k;
911}
912#endif
913
914/* towards the root */
915void inline_speed
916upheap (ANHE *heap, int k)
917{
918 ANHE he = heap [k];
919
920 for (;;)
921 {
922 int p = HPARENT (k);
923
924 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
925 break;
926
650 heap [k] = heap [p]; 927 heap [k] = heap [p];
651 ((W)heap [k])->active = k + 1; 928 ev_active (ANHE_w (heap [k])) = k;
652 k = p; 929 k = p;
653 } 930 }
654 931
655 heap [k] = w; 932 heap [k] = he;
656 ((W)heap [k])->active = k + 1; 933 ev_active (ANHE_w (he)) = k;
657
658}
659
660void inline_speed
661downheap (WT *heap, int N, int k)
662{
663 WT w = heap [k];
664
665 for (;;)
666 {
667 int c = (k << 1) + 1;
668
669 if (c >= N)
670 break;
671
672 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
673 ? 1 : 0;
674
675 if (w->at <= heap [c]->at)
676 break;
677
678 heap [k] = heap [c];
679 ((W)heap [k])->active = k + 1;
680
681 k = c;
682 }
683
684 heap [k] = w;
685 ((W)heap [k])->active = k + 1;
686} 934}
687 935
688void inline_size 936void inline_size
689adjustheap (WT *heap, int N, int k) 937adjustheap (ANHE *heap, int N, int k)
690{ 938{
939 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
691 upheap (heap, k); 940 upheap (heap, k);
941 else
692 downheap (heap, N, k); 942 downheap (heap, N, k);
943}
944
945/* rebuild the heap: this function is used only once and executed rarely */
946void inline_size
947reheap (ANHE *heap, int N)
948{
949 int i;
950
951 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
952 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
953 for (i = 0; i < N; ++i)
954 upheap (heap, i + HEAP0);
693} 955}
694 956
695/*****************************************************************************/ 957/*****************************************************************************/
696 958
697typedef struct 959typedef struct
698{ 960{
699 WL head; 961 WL head;
700 sig_atomic_t volatile gotsig; 962 EV_ATOMIC_T gotsig;
701} ANSIG; 963} ANSIG;
702 964
703static ANSIG *signals; 965static ANSIG *signals;
704static int signalmax; 966static int signalmax;
705 967
706static int sigpipe [2]; 968static EV_ATOMIC_T gotsig;
707static sig_atomic_t volatile gotsig;
708static ev_io sigev;
709 969
710void inline_size 970void inline_size
711signals_init (ANSIG *base, int count) 971signals_init (ANSIG *base, int count)
712{ 972{
713 while (count--) 973 while (count--)
717 977
718 ++base; 978 ++base;
719 } 979 }
720} 980}
721 981
722static void 982/*****************************************************************************/
723sighandler (int signum)
724{
725#if _WIN32
726 signal (signum, sighandler);
727#endif
728
729 signals [signum - 1].gotsig = 1;
730
731 if (!gotsig)
732 {
733 int old_errno = errno;
734 gotsig = 1;
735 write (sigpipe [1], &signum, 1);
736 errno = old_errno;
737 }
738}
739
740void noinline
741ev_feed_signal_event (EV_P_ int signum)
742{
743 WL w;
744
745#if EV_MULTIPLICITY
746 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
747#endif
748
749 --signum;
750
751 if (signum < 0 || signum >= signalmax)
752 return;
753
754 signals [signum].gotsig = 0;
755
756 for (w = signals [signum].head; w; w = w->next)
757 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
758}
759
760static void
761sigcb (EV_P_ ev_io *iow, int revents)
762{
763 int signum;
764
765 read (sigpipe [0], &revents, 1);
766 gotsig = 0;
767
768 for (signum = signalmax; signum--; )
769 if (signals [signum].gotsig)
770 ev_feed_signal_event (EV_A_ signum + 1);
771}
772 983
773void inline_speed 984void inline_speed
774fd_intern (int fd) 985fd_intern (int fd)
775{ 986{
776#ifdef _WIN32 987#ifdef _WIN32
781 fcntl (fd, F_SETFL, O_NONBLOCK); 992 fcntl (fd, F_SETFL, O_NONBLOCK);
782#endif 993#endif
783} 994}
784 995
785static void noinline 996static void noinline
786siginit (EV_P) 997evpipe_init (EV_P)
787{ 998{
999 if (!ev_is_active (&pipeev))
1000 {
1001#if EV_USE_EVENTFD
1002 if ((evfd = eventfd (0, 0)) >= 0)
1003 {
1004 evpipe [0] = -1;
1005 fd_intern (evfd);
1006 ev_io_set (&pipeev, evfd, EV_READ);
1007 }
1008 else
1009#endif
1010 {
1011 while (pipe (evpipe))
1012 syserr ("(libev) error creating signal/async pipe");
1013
788 fd_intern (sigpipe [0]); 1014 fd_intern (evpipe [0]);
789 fd_intern (sigpipe [1]); 1015 fd_intern (evpipe [1]);
1016 ev_io_set (&pipeev, evpipe [0], EV_READ);
1017 }
790 1018
791 ev_io_set (&sigev, sigpipe [0], EV_READ);
792 ev_io_start (EV_A_ &sigev); 1019 ev_io_start (EV_A_ &pipeev);
793 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1020 ev_unref (EV_A); /* watcher should not keep loop alive */
1021 }
1022}
1023
1024void inline_size
1025evpipe_write (EV_P_ EV_ATOMIC_T *flag)
1026{
1027 if (!*flag)
1028 {
1029 int old_errno = errno; /* save errno because write might clobber it */
1030
1031 *flag = 1;
1032
1033#if EV_USE_EVENTFD
1034 if (evfd >= 0)
1035 {
1036 uint64_t counter = 1;
1037 write (evfd, &counter, sizeof (uint64_t));
1038 }
1039 else
1040#endif
1041 write (evpipe [1], &old_errno, 1);
1042
1043 errno = old_errno;
1044 }
1045}
1046
1047static void
1048pipecb (EV_P_ ev_io *iow, int revents)
1049{
1050#if EV_USE_EVENTFD
1051 if (evfd >= 0)
1052 {
1053 uint64_t counter;
1054 read (evfd, &counter, sizeof (uint64_t));
1055 }
1056 else
1057#endif
1058 {
1059 char dummy;
1060 read (evpipe [0], &dummy, 1);
1061 }
1062
1063 if (gotsig && ev_is_default_loop (EV_A))
1064 {
1065 int signum;
1066 gotsig = 0;
1067
1068 for (signum = signalmax; signum--; )
1069 if (signals [signum].gotsig)
1070 ev_feed_signal_event (EV_A_ signum + 1);
1071 }
1072
1073#if EV_ASYNC_ENABLE
1074 if (gotasync)
1075 {
1076 int i;
1077 gotasync = 0;
1078
1079 for (i = asynccnt; i--; )
1080 if (asyncs [i]->sent)
1081 {
1082 asyncs [i]->sent = 0;
1083 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
1084 }
1085 }
1086#endif
794} 1087}
795 1088
796/*****************************************************************************/ 1089/*****************************************************************************/
797 1090
1091static void
1092ev_sighandler (int signum)
1093{
1094#if EV_MULTIPLICITY
1095 struct ev_loop *loop = &default_loop_struct;
1096#endif
1097
1098#if _WIN32
1099 signal (signum, ev_sighandler);
1100#endif
1101
1102 signals [signum - 1].gotsig = 1;
1103 evpipe_write (EV_A_ &gotsig);
1104}
1105
1106void noinline
1107ev_feed_signal_event (EV_P_ int signum)
1108{
1109 WL w;
1110
1111#if EV_MULTIPLICITY
1112 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
1113#endif
1114
1115 --signum;
1116
1117 if (signum < 0 || signum >= signalmax)
1118 return;
1119
1120 signals [signum].gotsig = 0;
1121
1122 for (w = signals [signum].head; w; w = w->next)
1123 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
1124}
1125
1126/*****************************************************************************/
1127
798static ev_child *childs [EV_PID_HASHSIZE]; 1128static WL childs [EV_PID_HASHSIZE];
799 1129
800#ifndef _WIN32 1130#ifndef _WIN32
801 1131
802static ev_signal childev; 1132static ev_signal childev;
803 1133
1134#ifndef WIFCONTINUED
1135# define WIFCONTINUED(status) 0
1136#endif
1137
804void inline_speed 1138void inline_speed
805child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1139child_reap (EV_P_ int chain, int pid, int status)
806{ 1140{
807 ev_child *w; 1141 ev_child *w;
1142 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
808 1143
809 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1144 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1145 {
810 if (w->pid == pid || !w->pid) 1146 if ((w->pid == pid || !w->pid)
1147 && (!traced || (w->flags & 1)))
811 { 1148 {
812 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1149 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
813 w->rpid = pid; 1150 w->rpid = pid;
814 w->rstatus = status; 1151 w->rstatus = status;
815 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1152 ev_feed_event (EV_A_ (W)w, EV_CHILD);
816 } 1153 }
1154 }
817} 1155}
818 1156
819#ifndef WCONTINUED 1157#ifndef WCONTINUED
820# define WCONTINUED 0 1158# define WCONTINUED 0
821#endif 1159#endif
830 if (!WCONTINUED 1168 if (!WCONTINUED
831 || errno != EINVAL 1169 || errno != EINVAL
832 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1170 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
833 return; 1171 return;
834 1172
835 /* make sure we are called again until all childs have been reaped */ 1173 /* make sure we are called again until all children have been reaped */
836 /* we need to do it this way so that the callback gets called before we continue */ 1174 /* we need to do it this way so that the callback gets called before we continue */
837 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1175 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
838 1176
839 child_reap (EV_A_ sw, pid, pid, status); 1177 child_reap (EV_A_ pid, pid, status);
840 if (EV_PID_HASHSIZE > 1) 1178 if (EV_PID_HASHSIZE > 1)
841 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1179 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
842} 1180}
843 1181
844#endif 1182#endif
845 1183
846/*****************************************************************************/ 1184/*****************************************************************************/
918} 1256}
919 1257
920unsigned int 1258unsigned int
921ev_embeddable_backends (void) 1259ev_embeddable_backends (void)
922{ 1260{
923 return EVBACKEND_EPOLL 1261 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
924 | EVBACKEND_KQUEUE 1262
925 | EVBACKEND_PORT; 1263 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1264 /* please fix it and tell me how to detect the fix */
1265 flags &= ~EVBACKEND_EPOLL;
1266
1267 return flags;
926} 1268}
927 1269
928unsigned int 1270unsigned int
929ev_backend (EV_P) 1271ev_backend (EV_P)
930{ 1272{
933 1275
934unsigned int 1276unsigned int
935ev_loop_count (EV_P) 1277ev_loop_count (EV_P)
936{ 1278{
937 return loop_count; 1279 return loop_count;
1280}
1281
1282void
1283ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1284{
1285 io_blocktime = interval;
1286}
1287
1288void
1289ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1290{
1291 timeout_blocktime = interval;
938} 1292}
939 1293
940static void noinline 1294static void noinline
941loop_init (EV_P_ unsigned int flags) 1295loop_init (EV_P_ unsigned int flags)
942{ 1296{
948 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1302 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
949 have_monotonic = 1; 1303 have_monotonic = 1;
950 } 1304 }
951#endif 1305#endif
952 1306
953 ev_rt_now = ev_time (); 1307 ev_rt_now = ev_time ();
954 mn_now = get_clock (); 1308 mn_now = get_clock ();
955 now_floor = mn_now; 1309 now_floor = mn_now;
956 rtmn_diff = ev_rt_now - mn_now; 1310 rtmn_diff = ev_rt_now - mn_now;
1311
1312 io_blocktime = 0.;
1313 timeout_blocktime = 0.;
1314 backend = 0;
1315 backend_fd = -1;
1316 gotasync = 0;
1317#if EV_USE_INOTIFY
1318 fs_fd = -2;
1319#endif
957 1320
958 /* pid check not overridable via env */ 1321 /* pid check not overridable via env */
959#ifndef _WIN32 1322#ifndef _WIN32
960 if (flags & EVFLAG_FORKCHECK) 1323 if (flags & EVFLAG_FORKCHECK)
961 curpid = getpid (); 1324 curpid = getpid ();
964 if (!(flags & EVFLAG_NOENV) 1327 if (!(flags & EVFLAG_NOENV)
965 && !enable_secure () 1328 && !enable_secure ()
966 && getenv ("LIBEV_FLAGS")) 1329 && getenv ("LIBEV_FLAGS"))
967 flags = atoi (getenv ("LIBEV_FLAGS")); 1330 flags = atoi (getenv ("LIBEV_FLAGS"));
968 1331
969 if (!(flags & 0x0000ffffUL)) 1332 if (!(flags & 0x0000ffffU))
970 flags |= ev_recommended_backends (); 1333 flags |= ev_recommended_backends ();
971
972 backend = 0;
973 backend_fd = -1;
974#if EV_USE_INOTIFY
975 fs_fd = -2;
976#endif
977 1334
978#if EV_USE_PORT 1335#if EV_USE_PORT
979 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1336 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
980#endif 1337#endif
981#if EV_USE_KQUEUE 1338#if EV_USE_KQUEUE
989#endif 1346#endif
990#if EV_USE_SELECT 1347#if EV_USE_SELECT
991 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1348 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
992#endif 1349#endif
993 1350
994 ev_init (&sigev, sigcb); 1351 ev_init (&pipeev, pipecb);
995 ev_set_priority (&sigev, EV_MAXPRI); 1352 ev_set_priority (&pipeev, EV_MAXPRI);
996 } 1353 }
997} 1354}
998 1355
999static void noinline 1356static void noinline
1000loop_destroy (EV_P) 1357loop_destroy (EV_P)
1001{ 1358{
1002 int i; 1359 int i;
1360
1361 if (ev_is_active (&pipeev))
1362 {
1363 ev_ref (EV_A); /* signal watcher */
1364 ev_io_stop (EV_A_ &pipeev);
1365
1366#if EV_USE_EVENTFD
1367 if (evfd >= 0)
1368 close (evfd);
1369#endif
1370
1371 if (evpipe [0] >= 0)
1372 {
1373 close (evpipe [0]);
1374 close (evpipe [1]);
1375 }
1376 }
1003 1377
1004#if EV_USE_INOTIFY 1378#if EV_USE_INOTIFY
1005 if (fs_fd >= 0) 1379 if (fs_fd >= 0)
1006 close (fs_fd); 1380 close (fs_fd);
1007#endif 1381#endif
1030 array_free (pending, [i]); 1404 array_free (pending, [i]);
1031#if EV_IDLE_ENABLE 1405#if EV_IDLE_ENABLE
1032 array_free (idle, [i]); 1406 array_free (idle, [i]);
1033#endif 1407#endif
1034 } 1408 }
1409
1410 ev_free (anfds); anfdmax = 0;
1035 1411
1036 /* have to use the microsoft-never-gets-it-right macro */ 1412 /* have to use the microsoft-never-gets-it-right macro */
1037 array_free (fdchange, EMPTY); 1413 array_free (fdchange, EMPTY);
1038 array_free (timer, EMPTY); 1414 array_free (timer, EMPTY);
1039#if EV_PERIODIC_ENABLE 1415#if EV_PERIODIC_ENABLE
1040 array_free (periodic, EMPTY); 1416 array_free (periodic, EMPTY);
1041#endif 1417#endif
1418#if EV_FORK_ENABLE
1419 array_free (fork, EMPTY);
1420#endif
1042 array_free (prepare, EMPTY); 1421 array_free (prepare, EMPTY);
1043 array_free (check, EMPTY); 1422 array_free (check, EMPTY);
1423#if EV_ASYNC_ENABLE
1424 array_free (async, EMPTY);
1425#endif
1044 1426
1045 backend = 0; 1427 backend = 0;
1046} 1428}
1047 1429
1430#if EV_USE_INOTIFY
1048void inline_size infy_fork (EV_P); 1431void inline_size infy_fork (EV_P);
1432#endif
1049 1433
1050void inline_size 1434void inline_size
1051loop_fork (EV_P) 1435loop_fork (EV_P)
1052{ 1436{
1053#if EV_USE_PORT 1437#if EV_USE_PORT
1061#endif 1445#endif
1062#if EV_USE_INOTIFY 1446#if EV_USE_INOTIFY
1063 infy_fork (EV_A); 1447 infy_fork (EV_A);
1064#endif 1448#endif
1065 1449
1066 if (ev_is_active (&sigev)) 1450 if (ev_is_active (&pipeev))
1067 { 1451 {
1068 /* default loop */ 1452 /* this "locks" the handlers against writing to the pipe */
1453 /* while we modify the fd vars */
1454 gotsig = 1;
1455#if EV_ASYNC_ENABLE
1456 gotasync = 1;
1457#endif
1069 1458
1070 ev_ref (EV_A); 1459 ev_ref (EV_A);
1071 ev_io_stop (EV_A_ &sigev); 1460 ev_io_stop (EV_A_ &pipeev);
1461
1462#if EV_USE_EVENTFD
1463 if (evfd >= 0)
1464 close (evfd);
1465#endif
1466
1467 if (evpipe [0] >= 0)
1468 {
1072 close (sigpipe [0]); 1469 close (evpipe [0]);
1073 close (sigpipe [1]); 1470 close (evpipe [1]);
1471 }
1074 1472
1075 while (pipe (sigpipe))
1076 syserr ("(libev) error creating pipe");
1077
1078 siginit (EV_A); 1473 evpipe_init (EV_A);
1474 /* now iterate over everything, in case we missed something */
1475 pipecb (EV_A_ &pipeev, EV_READ);
1079 } 1476 }
1080 1477
1081 postfork = 0; 1478 postfork = 0;
1082} 1479}
1083 1480
1084#if EV_MULTIPLICITY 1481#if EV_MULTIPLICITY
1482
1085struct ev_loop * 1483struct ev_loop *
1086ev_loop_new (unsigned int flags) 1484ev_loop_new (unsigned int flags)
1087{ 1485{
1088 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1486 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1089 1487
1105} 1503}
1106 1504
1107void 1505void
1108ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
1109{ 1507{
1110 postfork = 1; 1508 postfork = 1; /* must be in line with ev_default_fork */
1111} 1509}
1112 1510
1511#if EV_VERIFY
1512void noinline
1513verify_watcher (EV_P_ W w)
1514{
1515 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1516
1517 if (w->pending)
1518 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1519}
1520
1521static void noinline
1522verify_heap (EV_P_ ANHE *heap, int N)
1523{
1524 int i;
1525
1526 for (i = HEAP0; i < N + HEAP0; ++i)
1527 {
1528 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1529 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1530 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1531
1532 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1533 }
1534}
1535
1536static void noinline
1537array_verify (EV_P_ W *ws, int cnt)
1538{
1539 while (cnt--)
1540 {
1541 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1542 verify_watcher (EV_A_ ws [cnt]);
1543 }
1544}
1545#endif
1546
1547void
1548ev_loop_verify (EV_P)
1549{
1550#if EV_VERIFY
1551 int i;
1552 WL w;
1553
1554 assert (activecnt >= -1);
1555
1556 assert (fdchangemax >= fdchangecnt);
1557 for (i = 0; i < fdchangecnt; ++i)
1558 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1559
1560 assert (anfdmax >= 0);
1561 for (i = 0; i < anfdmax; ++i)
1562 for (w = anfds [i].head; w; w = w->next)
1563 {
1564 verify_watcher (EV_A_ (W)w);
1565 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1566 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1567 }
1568
1569 assert (timermax >= timercnt);
1570 verify_heap (EV_A_ timers, timercnt);
1571
1572#if EV_PERIODIC_ENABLE
1573 assert (periodicmax >= periodiccnt);
1574 verify_heap (EV_A_ periodics, periodiccnt);
1575#endif
1576
1577 for (i = NUMPRI; i--; )
1578 {
1579 assert (pendingmax [i] >= pendingcnt [i]);
1580#if EV_IDLE_ENABLE
1581 assert (idleall >= 0);
1582 assert (idlemax [i] >= idlecnt [i]);
1583 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1584#endif
1585 }
1586
1587#if EV_FORK_ENABLE
1588 assert (forkmax >= forkcnt);
1589 array_verify (EV_A_ (W *)forks, forkcnt);
1590#endif
1591
1592#if EV_ASYNC_ENABLE
1593 assert (asyncmax >= asynccnt);
1594 array_verify (EV_A_ (W *)asyncs, asynccnt);
1595#endif
1596
1597 assert (preparemax >= preparecnt);
1598 array_verify (EV_A_ (W *)prepares, preparecnt);
1599
1600 assert (checkmax >= checkcnt);
1601 array_verify (EV_A_ (W *)checks, checkcnt);
1602
1603# if 0
1604 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1605 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1113#endif 1606# endif
1607#endif
1608}
1609
1610#endif /* multiplicity */
1114 1611
1115#if EV_MULTIPLICITY 1612#if EV_MULTIPLICITY
1116struct ev_loop * 1613struct ev_loop *
1117ev_default_loop_init (unsigned int flags) 1614ev_default_loop_init (unsigned int flags)
1118#else 1615#else
1119int 1616int
1120ev_default_loop (unsigned int flags) 1617ev_default_loop (unsigned int flags)
1121#endif 1618#endif
1122{ 1619{
1123 if (sigpipe [0] == sigpipe [1])
1124 if (pipe (sigpipe))
1125 return 0;
1126
1127 if (!ev_default_loop_ptr) 1620 if (!ev_default_loop_ptr)
1128 { 1621 {
1129#if EV_MULTIPLICITY 1622#if EV_MULTIPLICITY
1130 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1623 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1131#else 1624#else
1134 1627
1135 loop_init (EV_A_ flags); 1628 loop_init (EV_A_ flags);
1136 1629
1137 if (ev_backend (EV_A)) 1630 if (ev_backend (EV_A))
1138 { 1631 {
1139 siginit (EV_A);
1140
1141#ifndef _WIN32 1632#ifndef _WIN32
1142 ev_signal_init (&childev, childcb, SIGCHLD); 1633 ev_signal_init (&childev, childcb, SIGCHLD);
1143 ev_set_priority (&childev, EV_MAXPRI); 1634 ev_set_priority (&childev, EV_MAXPRI);
1144 ev_signal_start (EV_A_ &childev); 1635 ev_signal_start (EV_A_ &childev);
1145 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1636 ev_unref (EV_A); /* child watcher should not keep loop alive */
1162#ifndef _WIN32 1653#ifndef _WIN32
1163 ev_ref (EV_A); /* child watcher */ 1654 ev_ref (EV_A); /* child watcher */
1164 ev_signal_stop (EV_A_ &childev); 1655 ev_signal_stop (EV_A_ &childev);
1165#endif 1656#endif
1166 1657
1167 ev_ref (EV_A); /* signal watcher */
1168 ev_io_stop (EV_A_ &sigev);
1169
1170 close (sigpipe [0]); sigpipe [0] = 0;
1171 close (sigpipe [1]); sigpipe [1] = 0;
1172
1173 loop_destroy (EV_A); 1658 loop_destroy (EV_A);
1174} 1659}
1175 1660
1176void 1661void
1177ev_default_fork (void) 1662ev_default_fork (void)
1179#if EV_MULTIPLICITY 1664#if EV_MULTIPLICITY
1180 struct ev_loop *loop = ev_default_loop_ptr; 1665 struct ev_loop *loop = ev_default_loop_ptr;
1181#endif 1666#endif
1182 1667
1183 if (backend) 1668 if (backend)
1184 postfork = 1; 1669 postfork = 1; /* must be in line with ev_loop_fork */
1185} 1670}
1186 1671
1187/*****************************************************************************/ 1672/*****************************************************************************/
1188 1673
1189void 1674void
1206 { 1691 {
1207 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1692 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1208 1693
1209 p->w->pending = 0; 1694 p->w->pending = 0;
1210 EV_CB_INVOKE (p->w, p->events); 1695 EV_CB_INVOKE (p->w, p->events);
1696 EV_FREQUENT_CHECK;
1211 } 1697 }
1212 } 1698 }
1213} 1699}
1214
1215void inline_size
1216timers_reify (EV_P)
1217{
1218 while (timercnt && ((WT)timers [0])->at <= mn_now)
1219 {
1220 ev_timer *w = timers [0];
1221
1222 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1223
1224 /* first reschedule or stop timer */
1225 if (w->repeat)
1226 {
1227 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1228
1229 ((WT)w)->at += w->repeat;
1230 if (((WT)w)->at < mn_now)
1231 ((WT)w)->at = mn_now;
1232
1233 downheap ((WT *)timers, timercnt, 0);
1234 }
1235 else
1236 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1237
1238 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1239 }
1240}
1241
1242#if EV_PERIODIC_ENABLE
1243void inline_size
1244periodics_reify (EV_P)
1245{
1246 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1247 {
1248 ev_periodic *w = periodics [0];
1249
1250 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1251
1252 /* first reschedule or stop timer */
1253 if (w->reschedule_cb)
1254 {
1255 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1256 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1257 downheap ((WT *)periodics, periodiccnt, 0);
1258 }
1259 else if (w->interval)
1260 {
1261 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1262 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1263 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1264 downheap ((WT *)periodics, periodiccnt, 0);
1265 }
1266 else
1267 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1268
1269 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1270 }
1271}
1272
1273static void noinline
1274periodics_reschedule (EV_P)
1275{
1276 int i;
1277
1278 /* adjust periodics after time jump */
1279 for (i = 0; i < periodiccnt; ++i)
1280 {
1281 ev_periodic *w = periodics [i];
1282
1283 if (w->reschedule_cb)
1284 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1285 else if (w->interval)
1286 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1287 }
1288
1289 /* now rebuild the heap */
1290 for (i = periodiccnt >> 1; i--; )
1291 downheap ((WT *)periodics, periodiccnt, i);
1292}
1293#endif
1294 1700
1295#if EV_IDLE_ENABLE 1701#if EV_IDLE_ENABLE
1296void inline_size 1702void inline_size
1297idle_reify (EV_P) 1703idle_reify (EV_P)
1298{ 1704{
1310 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1716 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1311 break; 1717 break;
1312 } 1718 }
1313 } 1719 }
1314 } 1720 }
1721}
1722#endif
1723
1724void inline_size
1725timers_reify (EV_P)
1726{
1727 EV_FREQUENT_CHECK;
1728
1729 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1730 {
1731 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1732
1733 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1734
1735 /* first reschedule or stop timer */
1736 if (w->repeat)
1737 {
1738 ev_at (w) += w->repeat;
1739 if (ev_at (w) < mn_now)
1740 ev_at (w) = mn_now;
1741
1742 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1743
1744 ANHE_at_cache (timers [HEAP0]);
1745 downheap (timers, timercnt, HEAP0);
1746 }
1747 else
1748 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1749
1750 EV_FREQUENT_CHECK;
1751 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1752 }
1753}
1754
1755#if EV_PERIODIC_ENABLE
1756void inline_size
1757periodics_reify (EV_P)
1758{
1759 EV_FREQUENT_CHECK;
1760
1761 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1762 {
1763 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1764
1765 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1766
1767 /* first reschedule or stop timer */
1768 if (w->reschedule_cb)
1769 {
1770 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1771
1772 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1773
1774 ANHE_at_cache (periodics [HEAP0]);
1775 downheap (periodics, periodiccnt, HEAP0);
1776 }
1777 else if (w->interval)
1778 {
1779 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1780 /* if next trigger time is not sufficiently in the future, put it there */
1781 /* this might happen because of floating point inexactness */
1782 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1783 {
1784 ev_at (w) += w->interval;
1785
1786 /* if interval is unreasonably low we might still have a time in the past */
1787 /* so correct this. this will make the periodic very inexact, but the user */
1788 /* has effectively asked to get triggered more often than possible */
1789 if (ev_at (w) < ev_rt_now)
1790 ev_at (w) = ev_rt_now;
1791 }
1792
1793 ANHE_at_cache (periodics [HEAP0]);
1794 downheap (periodics, periodiccnt, HEAP0);
1795 }
1796 else
1797 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1798
1799 EV_FREQUENT_CHECK;
1800 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1801 }
1802}
1803
1804static void noinline
1805periodics_reschedule (EV_P)
1806{
1807 int i;
1808
1809 /* adjust periodics after time jump */
1810 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1811 {
1812 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1813
1814 if (w->reschedule_cb)
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 else if (w->interval)
1817 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1818
1819 ANHE_at_cache (periodics [i]);
1820 }
1821
1822 reheap (periodics, periodiccnt);
1315} 1823}
1316#endif 1824#endif
1317 1825
1318void inline_speed 1826void inline_speed
1319time_update (EV_P_ ev_tstamp max_block) 1827time_update (EV_P_ ev_tstamp max_block)
1348 */ 1856 */
1349 for (i = 4; --i; ) 1857 for (i = 4; --i; )
1350 { 1858 {
1351 rtmn_diff = ev_rt_now - mn_now; 1859 rtmn_diff = ev_rt_now - mn_now;
1352 1860
1353 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1861 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1354 return; /* all is well */ 1862 return; /* all is well */
1355 1863
1356 ev_rt_now = ev_time (); 1864 ev_rt_now = ev_time ();
1357 mn_now = get_clock (); 1865 mn_now = get_clock ();
1358 now_floor = mn_now; 1866 now_floor = mn_now;
1374#if EV_PERIODIC_ENABLE 1882#if EV_PERIODIC_ENABLE
1375 periodics_reschedule (EV_A); 1883 periodics_reschedule (EV_A);
1376#endif 1884#endif
1377 /* adjust timers. this is easy, as the offset is the same for all of them */ 1885 /* adjust timers. this is easy, as the offset is the same for all of them */
1378 for (i = 0; i < timercnt; ++i) 1886 for (i = 0; i < timercnt; ++i)
1887 {
1888 ANHE *he = timers + i + HEAP0;
1379 ((WT)timers [i])->at += ev_rt_now - mn_now; 1889 ANHE_w (*he)->at += ev_rt_now - mn_now;
1890 ANHE_at_cache (*he);
1891 }
1380 } 1892 }
1381 1893
1382 mn_now = ev_rt_now; 1894 mn_now = ev_rt_now;
1383 } 1895 }
1384} 1896}
1398static int loop_done; 1910static int loop_done;
1399 1911
1400void 1912void
1401ev_loop (EV_P_ int flags) 1913ev_loop (EV_P_ int flags)
1402{ 1914{
1403 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1915 loop_done = EVUNLOOP_CANCEL;
1404 ? EVUNLOOP_ONE
1405 : EVUNLOOP_CANCEL;
1406 1916
1407 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1917 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1408 1918
1409 do 1919 do
1410 { 1920 {
1921#if EV_VERIFY >= 2
1922 ev_loop_verify (EV_A);
1923#endif
1924
1411#ifndef _WIN32 1925#ifndef _WIN32
1412 if (expect_false (curpid)) /* penalise the forking check even more */ 1926 if (expect_false (curpid)) /* penalise the forking check even more */
1413 if (expect_false (getpid () != curpid)) 1927 if (expect_false (getpid () != curpid))
1414 { 1928 {
1415 curpid = getpid (); 1929 curpid = getpid ();
1444 /* update fd-related kernel structures */ 1958 /* update fd-related kernel structures */
1445 fd_reify (EV_A); 1959 fd_reify (EV_A);
1446 1960
1447 /* calculate blocking time */ 1961 /* calculate blocking time */
1448 { 1962 {
1449 ev_tstamp block; 1963 ev_tstamp waittime = 0.;
1964 ev_tstamp sleeptime = 0.;
1450 1965
1451 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1966 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1452 block = 0.; /* do not block at all */
1453 else
1454 { 1967 {
1455 /* update time to cancel out callback processing overhead */ 1968 /* update time to cancel out callback processing overhead */
1456 time_update (EV_A_ 1e100); 1969 time_update (EV_A_ 1e100);
1457 1970
1458 block = MAX_BLOCKTIME; 1971 waittime = MAX_BLOCKTIME;
1459 1972
1460 if (timercnt) 1973 if (timercnt)
1461 { 1974 {
1462 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1975 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1463 if (block > to) block = to; 1976 if (waittime > to) waittime = to;
1464 } 1977 }
1465 1978
1466#if EV_PERIODIC_ENABLE 1979#if EV_PERIODIC_ENABLE
1467 if (periodiccnt) 1980 if (periodiccnt)
1468 { 1981 {
1469 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1982 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1470 if (block > to) block = to; 1983 if (waittime > to) waittime = to;
1471 } 1984 }
1472#endif 1985#endif
1473 1986
1474 if (expect_false (block < 0.)) block = 0.; 1987 if (expect_false (waittime < timeout_blocktime))
1988 waittime = timeout_blocktime;
1989
1990 sleeptime = waittime - backend_fudge;
1991
1992 if (expect_true (sleeptime > io_blocktime))
1993 sleeptime = io_blocktime;
1994
1995 if (sleeptime)
1996 {
1997 ev_sleep (sleeptime);
1998 waittime -= sleeptime;
1999 }
1475 } 2000 }
1476 2001
1477 ++loop_count; 2002 ++loop_count;
1478 backend_poll (EV_A_ block); 2003 backend_poll (EV_A_ waittime);
1479 2004
1480 /* update ev_rt_now, do magic */ 2005 /* update ev_rt_now, do magic */
1481 time_update (EV_A_ block); 2006 time_update (EV_A_ waittime + sleeptime);
1482 } 2007 }
1483 2008
1484 /* queue pending timers and reschedule them */ 2009 /* queue pending timers and reschedule them */
1485 timers_reify (EV_A); /* relative timers called last */ 2010 timers_reify (EV_A); /* relative timers called last */
1486#if EV_PERIODIC_ENABLE 2011#if EV_PERIODIC_ENABLE
1495 /* queue check watchers, to be executed first */ 2020 /* queue check watchers, to be executed first */
1496 if (expect_false (checkcnt)) 2021 if (expect_false (checkcnt))
1497 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1498 2023
1499 call_pending (EV_A); 2024 call_pending (EV_A);
1500
1501 } 2025 }
1502 while (expect_true (activecnt && !loop_done)); 2026 while (expect_true (
2027 activecnt
2028 && !loop_done
2029 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
2030 ));
1503 2031
1504 if (loop_done == EVUNLOOP_ONE) 2032 if (loop_done == EVUNLOOP_ONE)
1505 loop_done = EVUNLOOP_CANCEL; 2033 loop_done = EVUNLOOP_CANCEL;
1506} 2034}
1507 2035
1596 if (expect_false (ev_is_active (w))) 2124 if (expect_false (ev_is_active (w)))
1597 return; 2125 return;
1598 2126
1599 assert (("ev_io_start called with negative fd", fd >= 0)); 2127 assert (("ev_io_start called with negative fd", fd >= 0));
1600 2128
2129 EV_FREQUENT_CHECK;
2130
1601 ev_start (EV_A_ (W)w, 1); 2131 ev_start (EV_A_ (W)w, 1);
1602 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1603 wlist_add ((WL *)&anfds[fd].head, (WL)w); 2133 wlist_add (&anfds[fd].head, (WL)w);
1604 2134
1605 fd_change (EV_A_ fd); 2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
2136 w->events &= ~EV_IOFDSET;
2137
2138 EV_FREQUENT_CHECK;
1606} 2139}
1607 2140
1608void noinline 2141void noinline
1609ev_io_stop (EV_P_ ev_io *w) 2142ev_io_stop (EV_P_ ev_io *w)
1610{ 2143{
1611 clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
1612 if (expect_false (!ev_is_active (w))) 2145 if (expect_false (!ev_is_active (w)))
1613 return; 2146 return;
1614 2147
1615 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1616 2149
2150 EV_FREQUENT_CHECK;
2151
1617 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 2152 wlist_del (&anfds[w->fd].head, (WL)w);
1618 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1619 2154
1620 fd_change (EV_A_ w->fd); 2155 fd_change (EV_A_ w->fd, 1);
2156
2157 EV_FREQUENT_CHECK;
1621} 2158}
1622 2159
1623void noinline 2160void noinline
1624ev_timer_start (EV_P_ ev_timer *w) 2161ev_timer_start (EV_P_ ev_timer *w)
1625{ 2162{
1626 if (expect_false (ev_is_active (w))) 2163 if (expect_false (ev_is_active (w)))
1627 return; 2164 return;
1628 2165
1629 ((WT)w)->at += mn_now; 2166 ev_at (w) += mn_now;
1630 2167
1631 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1632 2169
2170 EV_FREQUENT_CHECK;
2171
2172 ++timercnt;
1633 ev_start (EV_A_ (W)w, ++timercnt); 2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1634 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 2174 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1635 timers [timercnt - 1] = w; 2175 ANHE_w (timers [ev_active (w)]) = (WT)w;
1636 upheap ((WT *)timers, timercnt - 1); 2176 ANHE_at_cache (timers [ev_active (w)]);
2177 upheap (timers, ev_active (w));
1637 2178
2179 EV_FREQUENT_CHECK;
2180
1638 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1639} 2182}
1640 2183
1641void noinline 2184void noinline
1642ev_timer_stop (EV_P_ ev_timer *w) 2185ev_timer_stop (EV_P_ ev_timer *w)
1643{ 2186{
1644 clear_pending (EV_A_ (W)w); 2187 clear_pending (EV_A_ (W)w);
1645 if (expect_false (!ev_is_active (w))) 2188 if (expect_false (!ev_is_active (w)))
1646 return; 2189 return;
1647 2190
1648 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 2191 EV_FREQUENT_CHECK;
1649 2192
1650 { 2193 {
1651 int active = ((W)w)->active; 2194 int active = ev_active (w);
1652 2195
2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2197
2198 --timercnt;
2199
1653 if (expect_true (--active < --timercnt)) 2200 if (expect_true (active < timercnt + HEAP0))
1654 { 2201 {
1655 timers [active] = timers [timercnt]; 2202 timers [active] = timers [timercnt + HEAP0];
1656 adjustheap ((WT *)timers, timercnt, active); 2203 adjustheap (timers, timercnt, active);
1657 } 2204 }
1658 } 2205 }
1659 2206
1660 ((WT)w)->at -= mn_now; 2207 EV_FREQUENT_CHECK;
2208
2209 ev_at (w) -= mn_now;
1661 2210
1662 ev_stop (EV_A_ (W)w); 2211 ev_stop (EV_A_ (W)w);
1663} 2212}
1664 2213
1665void noinline 2214void noinline
1666ev_timer_again (EV_P_ ev_timer *w) 2215ev_timer_again (EV_P_ ev_timer *w)
1667{ 2216{
2217 EV_FREQUENT_CHECK;
2218
1668 if (ev_is_active (w)) 2219 if (ev_is_active (w))
1669 { 2220 {
1670 if (w->repeat) 2221 if (w->repeat)
1671 { 2222 {
1672 ((WT)w)->at = mn_now + w->repeat; 2223 ev_at (w) = mn_now + w->repeat;
2224 ANHE_at_cache (timers [ev_active (w)]);
1673 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 2225 adjustheap (timers, timercnt, ev_active (w));
1674 } 2226 }
1675 else 2227 else
1676 ev_timer_stop (EV_A_ w); 2228 ev_timer_stop (EV_A_ w);
1677 } 2229 }
1678 else if (w->repeat) 2230 else if (w->repeat)
1679 { 2231 {
1680 w->at = w->repeat; 2232 ev_at (w) = w->repeat;
1681 ev_timer_start (EV_A_ w); 2233 ev_timer_start (EV_A_ w);
1682 } 2234 }
2235
2236 EV_FREQUENT_CHECK;
1683} 2237}
1684 2238
1685#if EV_PERIODIC_ENABLE 2239#if EV_PERIODIC_ENABLE
1686void noinline 2240void noinline
1687ev_periodic_start (EV_P_ ev_periodic *w) 2241ev_periodic_start (EV_P_ ev_periodic *w)
1688{ 2242{
1689 if (expect_false (ev_is_active (w))) 2243 if (expect_false (ev_is_active (w)))
1690 return; 2244 return;
1691 2245
1692 if (w->reschedule_cb) 2246 if (w->reschedule_cb)
1693 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2247 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1694 else if (w->interval) 2248 else if (w->interval)
1695 { 2249 {
1696 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2250 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1697 /* this formula differs from the one in periodic_reify because we do not always round up */ 2251 /* this formula differs from the one in periodic_reify because we do not always round up */
1698 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1699 } 2253 }
1700 else 2254 else
1701 ((WT)w)->at = w->offset; 2255 ev_at (w) = w->offset;
1702 2256
2257 EV_FREQUENT_CHECK;
2258
2259 ++periodiccnt;
1703 ev_start (EV_A_ (W)w, ++periodiccnt); 2260 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1704 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 2261 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1705 periodics [periodiccnt - 1] = w; 2262 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1706 upheap ((WT *)periodics, periodiccnt - 1); 2263 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w));
1707 2265
2266 EV_FREQUENT_CHECK;
2267
1708 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1709} 2269}
1710 2270
1711void noinline 2271void noinline
1712ev_periodic_stop (EV_P_ ev_periodic *w) 2272ev_periodic_stop (EV_P_ ev_periodic *w)
1713{ 2273{
1714 clear_pending (EV_A_ (W)w); 2274 clear_pending (EV_A_ (W)w);
1715 if (expect_false (!ev_is_active (w))) 2275 if (expect_false (!ev_is_active (w)))
1716 return; 2276 return;
1717 2277
1718 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 2278 EV_FREQUENT_CHECK;
1719 2279
1720 { 2280 {
1721 int active = ((W)w)->active; 2281 int active = ev_active (w);
1722 2282
2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2284
2285 --periodiccnt;
2286
1723 if (expect_true (--active < --periodiccnt)) 2287 if (expect_true (active < periodiccnt + HEAP0))
1724 { 2288 {
1725 periodics [active] = periodics [periodiccnt]; 2289 periodics [active] = periodics [periodiccnt + HEAP0];
1726 adjustheap ((WT *)periodics, periodiccnt, active); 2290 adjustheap (periodics, periodiccnt, active);
1727 } 2291 }
1728 } 2292 }
2293
2294 EV_FREQUENT_CHECK;
1729 2295
1730 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
1731} 2297}
1732 2298
1733void noinline 2299void noinline
1751#endif 2317#endif
1752 if (expect_false (ev_is_active (w))) 2318 if (expect_false (ev_is_active (w)))
1753 return; 2319 return;
1754 2320
1755 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2322
2323 evpipe_init (EV_A);
2324
2325 EV_FREQUENT_CHECK;
1756 2326
1757 { 2327 {
1758#ifndef _WIN32 2328#ifndef _WIN32
1759 sigset_t full, prev; 2329 sigset_t full, prev;
1760 sigfillset (&full); 2330 sigfillset (&full);
1767 sigprocmask (SIG_SETMASK, &prev, 0); 2337 sigprocmask (SIG_SETMASK, &prev, 0);
1768#endif 2338#endif
1769 } 2339 }
1770 2340
1771 ev_start (EV_A_ (W)w, 1); 2341 ev_start (EV_A_ (W)w, 1);
1772 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2342 wlist_add (&signals [w->signum - 1].head, (WL)w);
1773 2343
1774 if (!((WL)w)->next) 2344 if (!((WL)w)->next)
1775 { 2345 {
1776#if _WIN32 2346#if _WIN32
1777 signal (w->signum, sighandler); 2347 signal (w->signum, ev_sighandler);
1778#else 2348#else
1779 struct sigaction sa; 2349 struct sigaction sa;
1780 sa.sa_handler = sighandler; 2350 sa.sa_handler = ev_sighandler;
1781 sigfillset (&sa.sa_mask); 2351 sigfillset (&sa.sa_mask);
1782 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1783 sigaction (w->signum, &sa, 0); 2353 sigaction (w->signum, &sa, 0);
1784#endif 2354#endif
1785 } 2355 }
2356
2357 EV_FREQUENT_CHECK;
1786} 2358}
1787 2359
1788void noinline 2360void noinline
1789ev_signal_stop (EV_P_ ev_signal *w) 2361ev_signal_stop (EV_P_ ev_signal *w)
1790{ 2362{
1791 clear_pending (EV_A_ (W)w); 2363 clear_pending (EV_A_ (W)w);
1792 if (expect_false (!ev_is_active (w))) 2364 if (expect_false (!ev_is_active (w)))
1793 return; 2365 return;
1794 2366
2367 EV_FREQUENT_CHECK;
2368
1795 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2369 wlist_del (&signals [w->signum - 1].head, (WL)w);
1796 ev_stop (EV_A_ (W)w); 2370 ev_stop (EV_A_ (W)w);
1797 2371
1798 if (!signals [w->signum - 1].head) 2372 if (!signals [w->signum - 1].head)
1799 signal (w->signum, SIG_DFL); 2373 signal (w->signum, SIG_DFL);
2374
2375 EV_FREQUENT_CHECK;
1800} 2376}
1801 2377
1802void 2378void
1803ev_child_start (EV_P_ ev_child *w) 2379ev_child_start (EV_P_ ev_child *w)
1804{ 2380{
1806 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1807#endif 2383#endif
1808 if (expect_false (ev_is_active (w))) 2384 if (expect_false (ev_is_active (w)))
1809 return; 2385 return;
1810 2386
2387 EV_FREQUENT_CHECK;
2388
1811 ev_start (EV_A_ (W)w, 1); 2389 ev_start (EV_A_ (W)w, 1);
1812 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2391
2392 EV_FREQUENT_CHECK;
1813} 2393}
1814 2394
1815void 2395void
1816ev_child_stop (EV_P_ ev_child *w) 2396ev_child_stop (EV_P_ ev_child *w)
1817{ 2397{
1818 clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
1819 if (expect_false (!ev_is_active (w))) 2399 if (expect_false (!ev_is_active (w)))
1820 return; 2400 return;
1821 2401
2402 EV_FREQUENT_CHECK;
2403
1822 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1823 ev_stop (EV_A_ (W)w); 2405 ev_stop (EV_A_ (W)w);
2406
2407 EV_FREQUENT_CHECK;
1824} 2408}
1825 2409
1826#if EV_STAT_ENABLE 2410#if EV_STAT_ENABLE
1827 2411
1828# ifdef _WIN32 2412# ifdef _WIN32
1846 if (w->wd < 0) 2430 if (w->wd < 0)
1847 { 2431 {
1848 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1849 2433
1850 /* monitor some parent directory for speedup hints */ 2434 /* monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */
2436 /* but an efficiency issue only */
1851 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1852 { 2438 {
1853 char path [4096]; 2439 char path [4096];
1854 strcpy (path, w->path); 2440 strcpy (path, w->path);
1855 2441
2054 else 2640 else
2055#endif 2641#endif
2056 ev_timer_start (EV_A_ &w->timer); 2642 ev_timer_start (EV_A_ &w->timer);
2057 2643
2058 ev_start (EV_A_ (W)w, 1); 2644 ev_start (EV_A_ (W)w, 1);
2645
2646 EV_FREQUENT_CHECK;
2059} 2647}
2060 2648
2061void 2649void
2062ev_stat_stop (EV_P_ ev_stat *w) 2650ev_stat_stop (EV_P_ ev_stat *w)
2063{ 2651{
2064 clear_pending (EV_A_ (W)w); 2652 clear_pending (EV_A_ (W)w);
2065 if (expect_false (!ev_is_active (w))) 2653 if (expect_false (!ev_is_active (w)))
2066 return; 2654 return;
2067 2655
2656 EV_FREQUENT_CHECK;
2657
2068#if EV_USE_INOTIFY 2658#if EV_USE_INOTIFY
2069 infy_del (EV_A_ w); 2659 infy_del (EV_A_ w);
2070#endif 2660#endif
2071 ev_timer_stop (EV_A_ &w->timer); 2661 ev_timer_stop (EV_A_ &w->timer);
2072 2662
2073 ev_stop (EV_A_ (W)w); 2663 ev_stop (EV_A_ (W)w);
2664
2665 EV_FREQUENT_CHECK;
2074} 2666}
2075#endif 2667#endif
2076 2668
2077#if EV_IDLE_ENABLE 2669#if EV_IDLE_ENABLE
2078void 2670void
2080{ 2672{
2081 if (expect_false (ev_is_active (w))) 2673 if (expect_false (ev_is_active (w)))
2082 return; 2674 return;
2083 2675
2084 pri_adjust (EV_A_ (W)w); 2676 pri_adjust (EV_A_ (W)w);
2677
2678 EV_FREQUENT_CHECK;
2085 2679
2086 { 2680 {
2087 int active = ++idlecnt [ABSPRI (w)]; 2681 int active = ++idlecnt [ABSPRI (w)];
2088 2682
2089 ++idleall; 2683 ++idleall;
2090 ev_start (EV_A_ (W)w, active); 2684 ev_start (EV_A_ (W)w, active);
2091 2685
2092 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2686 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2093 idles [ABSPRI (w)][active - 1] = w; 2687 idles [ABSPRI (w)][active - 1] = w;
2094 } 2688 }
2689
2690 EV_FREQUENT_CHECK;
2095} 2691}
2096 2692
2097void 2693void
2098ev_idle_stop (EV_P_ ev_idle *w) 2694ev_idle_stop (EV_P_ ev_idle *w)
2099{ 2695{
2100 clear_pending (EV_A_ (W)w); 2696 clear_pending (EV_A_ (W)w);
2101 if (expect_false (!ev_is_active (w))) 2697 if (expect_false (!ev_is_active (w)))
2102 return; 2698 return;
2103 2699
2700 EV_FREQUENT_CHECK;
2701
2104 { 2702 {
2105 int active = ((W)w)->active; 2703 int active = ev_active (w);
2106 2704
2107 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2705 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2108 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2706 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2109 2707
2110 ev_stop (EV_A_ (W)w); 2708 ev_stop (EV_A_ (W)w);
2111 --idleall; 2709 --idleall;
2112 } 2710 }
2711
2712 EV_FREQUENT_CHECK;
2113} 2713}
2114#endif 2714#endif
2115 2715
2116void 2716void
2117ev_prepare_start (EV_P_ ev_prepare *w) 2717ev_prepare_start (EV_P_ ev_prepare *w)
2118{ 2718{
2119 if (expect_false (ev_is_active (w))) 2719 if (expect_false (ev_is_active (w)))
2120 return; 2720 return;
2721
2722 EV_FREQUENT_CHECK;
2121 2723
2122 ev_start (EV_A_ (W)w, ++preparecnt); 2724 ev_start (EV_A_ (W)w, ++preparecnt);
2123 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2725 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2124 prepares [preparecnt - 1] = w; 2726 prepares [preparecnt - 1] = w;
2727
2728 EV_FREQUENT_CHECK;
2125} 2729}
2126 2730
2127void 2731void
2128ev_prepare_stop (EV_P_ ev_prepare *w) 2732ev_prepare_stop (EV_P_ ev_prepare *w)
2129{ 2733{
2130 clear_pending (EV_A_ (W)w); 2734 clear_pending (EV_A_ (W)w);
2131 if (expect_false (!ev_is_active (w))) 2735 if (expect_false (!ev_is_active (w)))
2132 return; 2736 return;
2133 2737
2738 EV_FREQUENT_CHECK;
2739
2134 { 2740 {
2135 int active = ((W)w)->active; 2741 int active = ev_active (w);
2742
2136 prepares [active - 1] = prepares [--preparecnt]; 2743 prepares [active - 1] = prepares [--preparecnt];
2137 ((W)prepares [active - 1])->active = active; 2744 ev_active (prepares [active - 1]) = active;
2138 } 2745 }
2139 2746
2140 ev_stop (EV_A_ (W)w); 2747 ev_stop (EV_A_ (W)w);
2748
2749 EV_FREQUENT_CHECK;
2141} 2750}
2142 2751
2143void 2752void
2144ev_check_start (EV_P_ ev_check *w) 2753ev_check_start (EV_P_ ev_check *w)
2145{ 2754{
2146 if (expect_false (ev_is_active (w))) 2755 if (expect_false (ev_is_active (w)))
2147 return; 2756 return;
2757
2758 EV_FREQUENT_CHECK;
2148 2759
2149 ev_start (EV_A_ (W)w, ++checkcnt); 2760 ev_start (EV_A_ (W)w, ++checkcnt);
2150 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2761 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2151 checks [checkcnt - 1] = w; 2762 checks [checkcnt - 1] = w;
2763
2764 EV_FREQUENT_CHECK;
2152} 2765}
2153 2766
2154void 2767void
2155ev_check_stop (EV_P_ ev_check *w) 2768ev_check_stop (EV_P_ ev_check *w)
2156{ 2769{
2157 clear_pending (EV_A_ (W)w); 2770 clear_pending (EV_A_ (W)w);
2158 if (expect_false (!ev_is_active (w))) 2771 if (expect_false (!ev_is_active (w)))
2159 return; 2772 return;
2160 2773
2774 EV_FREQUENT_CHECK;
2775
2161 { 2776 {
2162 int active = ((W)w)->active; 2777 int active = ev_active (w);
2778
2163 checks [active - 1] = checks [--checkcnt]; 2779 checks [active - 1] = checks [--checkcnt];
2164 ((W)checks [active - 1])->active = active; 2780 ev_active (checks [active - 1]) = active;
2165 } 2781 }
2166 2782
2167 ev_stop (EV_A_ (W)w); 2783 ev_stop (EV_A_ (W)w);
2784
2785 EV_FREQUENT_CHECK;
2168} 2786}
2169 2787
2170#if EV_EMBED_ENABLE 2788#if EV_EMBED_ENABLE
2171void noinline 2789void noinline
2172ev_embed_sweep (EV_P_ ev_embed *w) 2790ev_embed_sweep (EV_P_ ev_embed *w)
2173{ 2791{
2174 ev_loop (w->loop, EVLOOP_NONBLOCK); 2792 ev_loop (w->other, EVLOOP_NONBLOCK);
2175} 2793}
2176 2794
2177static void 2795static void
2178embed_cb (EV_P_ ev_io *io, int revents) 2796embed_io_cb (EV_P_ ev_io *io, int revents)
2179{ 2797{
2180 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2798 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2181 2799
2182 if (ev_cb (w)) 2800 if (ev_cb (w))
2183 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2801 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2184 else 2802 else
2185 ev_embed_sweep (loop, w); 2803 ev_loop (w->other, EVLOOP_NONBLOCK);
2186} 2804}
2805
2806static void
2807embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2808{
2809 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2810
2811 {
2812 struct ev_loop *loop = w->other;
2813
2814 while (fdchangecnt)
2815 {
2816 fd_reify (EV_A);
2817 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2818 }
2819 }
2820}
2821
2822#if 0
2823static void
2824embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2825{
2826 ev_idle_stop (EV_A_ idle);
2827}
2828#endif
2187 2829
2188void 2830void
2189ev_embed_start (EV_P_ ev_embed *w) 2831ev_embed_start (EV_P_ ev_embed *w)
2190{ 2832{
2191 if (expect_false (ev_is_active (w))) 2833 if (expect_false (ev_is_active (w)))
2192 return; 2834 return;
2193 2835
2194 { 2836 {
2195 struct ev_loop *loop = w->loop; 2837 struct ev_loop *loop = w->other;
2196 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2838 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2197 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2839 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2198 } 2840 }
2841
2842 EV_FREQUENT_CHECK;
2199 2843
2200 ev_set_priority (&w->io, ev_priority (w)); 2844 ev_set_priority (&w->io, ev_priority (w));
2201 ev_io_start (EV_A_ &w->io); 2845 ev_io_start (EV_A_ &w->io);
2202 2846
2847 ev_prepare_init (&w->prepare, embed_prepare_cb);
2848 ev_set_priority (&w->prepare, EV_MINPRI);
2849 ev_prepare_start (EV_A_ &w->prepare);
2850
2851 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2852
2203 ev_start (EV_A_ (W)w, 1); 2853 ev_start (EV_A_ (W)w, 1);
2854
2855 EV_FREQUENT_CHECK;
2204} 2856}
2205 2857
2206void 2858void
2207ev_embed_stop (EV_P_ ev_embed *w) 2859ev_embed_stop (EV_P_ ev_embed *w)
2208{ 2860{
2209 clear_pending (EV_A_ (W)w); 2861 clear_pending (EV_A_ (W)w);
2210 if (expect_false (!ev_is_active (w))) 2862 if (expect_false (!ev_is_active (w)))
2211 return; 2863 return;
2212 2864
2865 EV_FREQUENT_CHECK;
2866
2213 ev_io_stop (EV_A_ &w->io); 2867 ev_io_stop (EV_A_ &w->io);
2868 ev_prepare_stop (EV_A_ &w->prepare);
2214 2869
2215 ev_stop (EV_A_ (W)w); 2870 ev_stop (EV_A_ (W)w);
2871
2872 EV_FREQUENT_CHECK;
2216} 2873}
2217#endif 2874#endif
2218 2875
2219#if EV_FORK_ENABLE 2876#if EV_FORK_ENABLE
2220void 2877void
2221ev_fork_start (EV_P_ ev_fork *w) 2878ev_fork_start (EV_P_ ev_fork *w)
2222{ 2879{
2223 if (expect_false (ev_is_active (w))) 2880 if (expect_false (ev_is_active (w)))
2224 return; 2881 return;
2882
2883 EV_FREQUENT_CHECK;
2225 2884
2226 ev_start (EV_A_ (W)w, ++forkcnt); 2885 ev_start (EV_A_ (W)w, ++forkcnt);
2227 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2886 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2228 forks [forkcnt - 1] = w; 2887 forks [forkcnt - 1] = w;
2888
2889 EV_FREQUENT_CHECK;
2229} 2890}
2230 2891
2231void 2892void
2232ev_fork_stop (EV_P_ ev_fork *w) 2893ev_fork_stop (EV_P_ ev_fork *w)
2233{ 2894{
2234 clear_pending (EV_A_ (W)w); 2895 clear_pending (EV_A_ (W)w);
2235 if (expect_false (!ev_is_active (w))) 2896 if (expect_false (!ev_is_active (w)))
2236 return; 2897 return;
2237 2898
2899 EV_FREQUENT_CHECK;
2900
2238 { 2901 {
2239 int active = ((W)w)->active; 2902 int active = ev_active (w);
2903
2240 forks [active - 1] = forks [--forkcnt]; 2904 forks [active - 1] = forks [--forkcnt];
2241 ((W)forks [active - 1])->active = active; 2905 ev_active (forks [active - 1]) = active;
2242 } 2906 }
2243 2907
2244 ev_stop (EV_A_ (W)w); 2908 ev_stop (EV_A_ (W)w);
2909
2910 EV_FREQUENT_CHECK;
2911}
2912#endif
2913
2914#if EV_ASYNC_ENABLE
2915void
2916ev_async_start (EV_P_ ev_async *w)
2917{
2918 if (expect_false (ev_is_active (w)))
2919 return;
2920
2921 evpipe_init (EV_A);
2922
2923 EV_FREQUENT_CHECK;
2924
2925 ev_start (EV_A_ (W)w, ++asynccnt);
2926 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2927 asyncs [asynccnt - 1] = w;
2928
2929 EV_FREQUENT_CHECK;
2930}
2931
2932void
2933ev_async_stop (EV_P_ ev_async *w)
2934{
2935 clear_pending (EV_A_ (W)w);
2936 if (expect_false (!ev_is_active (w)))
2937 return;
2938
2939 EV_FREQUENT_CHECK;
2940
2941 {
2942 int active = ev_active (w);
2943
2944 asyncs [active - 1] = asyncs [--asynccnt];
2945 ev_active (asyncs [active - 1]) = active;
2946 }
2947
2948 ev_stop (EV_A_ (W)w);
2949
2950 EV_FREQUENT_CHECK;
2951}
2952
2953void
2954ev_async_send (EV_P_ ev_async *w)
2955{
2956 w->sent = 1;
2957 evpipe_write (EV_A_ &gotasync);
2245} 2958}
2246#endif 2959#endif
2247 2960
2248/*****************************************************************************/ 2961/*****************************************************************************/
2249 2962
2307 ev_timer_set (&once->to, timeout, 0.); 3020 ev_timer_set (&once->to, timeout, 0.);
2308 ev_timer_start (EV_A_ &once->to); 3021 ev_timer_start (EV_A_ &once->to);
2309 } 3022 }
2310} 3023}
2311 3024
3025#if EV_MULTIPLICITY
3026 #include "ev_wrap.h"
3027#endif
3028
2312#ifdef __cplusplus 3029#ifdef __cplusplus
2313} 3030}
2314#endif 3031#endif
2315 3032

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines