ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.132 by root, Fri Nov 23 10:36:30 2007 UTC vs.
Revision 1.181 by root, Wed Dec 12 00:17:08 2007 UTC

32#ifdef __cplusplus 32#ifdef __cplusplus
33extern "C" { 33extern "C" {
34#endif 34#endif
35 35
36#ifndef EV_STANDALONE 36#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H
38# include EV_CONFIG_H
39# else
37# include "config.h" 40# include "config.h"
41# endif
38 42
39# if HAVE_CLOCK_GETTIME 43# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 44# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 45# define EV_USE_MONOTONIC 1
42# endif 46# endif
90# else 94# else
91# define EV_USE_PORT 0 95# define EV_USE_PORT 0
92# endif 96# endif
93# endif 97# endif
94 98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
105# endif
106
95#endif 107#endif
96 108
97#include <math.h> 109#include <math.h>
98#include <stdlib.h> 110#include <stdlib.h>
99#include <fcntl.h> 111#include <fcntl.h>
106#include <sys/types.h> 118#include <sys/types.h>
107#include <time.h> 119#include <time.h>
108 120
109#include <signal.h> 121#include <signal.h>
110 122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
111#ifndef _WIN32 129#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 130# include <sys/time.h>
114# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
115#else 133#else
116# define WIN32_LEAN_AND_MEAN 134# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 135# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 136# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 137# define EV_SELECT_IS_WINSOCKET 1
152 170
153#ifndef EV_USE_PORT 171#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 172# define EV_USE_PORT 0
155#endif 173#endif
156 174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
157/**/ 195/**/
158 196
159#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 198# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 199# define EV_USE_MONOTONIC 0
168 206
169#if EV_SELECT_IS_WINSOCKET 207#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 208# include <winsock.h>
171#endif 209#endif
172 210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
173/**/ 219/**/
220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
174 230
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
179
180#ifdef EV_H
181# include EV_H
182#else
183# include "ev.h"
184#endif
185 234
186#if __GNUC__ >= 3 235#if __GNUC__ >= 3
187# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
188# define inline static inline 237# define noinline __attribute__ ((noinline))
189#else 238#else
190# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
191# define inline static 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
192#endif 244#endif
193 245
194#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
196 255
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
199 258
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 259#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 260#define EMPTY2(a,b) /* used to suppress some warnings */
202 261
203typedef struct ev_watcher *W; 262typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 263typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 264typedef ev_watcher_time *WT;
206 265
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
208 267
209#ifdef _WIN32 268#ifdef _WIN32
210# include "ev_win32.c" 269# include "ev_win32.c"
212 271
213/*****************************************************************************/ 272/*****************************************************************************/
214 273
215static void (*syserr_cb)(const char *msg); 274static void (*syserr_cb)(const char *msg);
216 275
276void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 277ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 278{
219 syserr_cb = cb; 279 syserr_cb = cb;
220} 280}
221 281
222static void 282static void noinline
223syserr (const char *msg) 283syserr (const char *msg)
224{ 284{
225 if (!msg) 285 if (!msg)
226 msg = "(libev) system error"; 286 msg = "(libev) system error";
227 287
234 } 294 }
235} 295}
236 296
237static void *(*alloc)(void *ptr, long size); 297static void *(*alloc)(void *ptr, long size);
238 298
299void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 300ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 301{
241 alloc = cb; 302 alloc = cb;
242} 303}
243 304
244static void * 305inline_speed void *
245ev_realloc (void *ptr, long size) 306ev_realloc (void *ptr, long size)
246{ 307{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
248 309
249 if (!ptr && size) 310 if (!ptr && size)
273typedef struct 334typedef struct
274{ 335{
275 W w; 336 W w;
276 int events; 337 int events;
277} ANPENDING; 338} ANPENDING;
339
340#if EV_USE_INOTIFY
341typedef struct
342{
343 WL head;
344} ANFS;
345#endif
278 346
279#if EV_MULTIPLICITY 347#if EV_MULTIPLICITY
280 348
281 struct ev_loop 349 struct ev_loop
282 { 350 {
316 gettimeofday (&tv, 0); 384 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 385 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif 386#endif
319} 387}
320 388
321inline ev_tstamp 389ev_tstamp inline_size
322get_clock (void) 390get_clock (void)
323{ 391{
324#if EV_USE_MONOTONIC 392#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 393 if (expect_true (have_monotonic))
326 { 394 {
339{ 407{
340 return ev_rt_now; 408 return ev_rt_now;
341} 409}
342#endif 410#endif
343 411
344#define array_roundsize(type,n) (((n) | 4) & ~3) 412int inline_size
413array_nextsize (int elem, int cur, int cnt)
414{
415 int ncur = cur + 1;
416
417 do
418 ncur <<= 1;
419 while (cnt > ncur);
420
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096)
423 {
424 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
426 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem;
428 }
429
430 return ncur;
431}
432
433static noinline void *
434array_realloc (int elem, void *base, int *cur, int cnt)
435{
436 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur);
438}
345 439
346#define array_needsize(type,base,cur,cnt,init) \ 440#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 441 if (expect_false ((cnt) > (cur))) \
348 { \ 442 { \
349 int newcnt = cur; \ 443 int ocur_ = (cur); \
350 do \ 444 (base) = (type *)array_realloc \
351 { \ 445 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 446 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 447 }
360 448
449#if 0
361#define array_slim(type,stem) \ 450#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 451 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 452 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 453 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 454 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 456 }
457#endif
368 458
369#define array_free(stem, idx) \ 459#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
371 461
372/*****************************************************************************/ 462/*****************************************************************************/
373 463
374static void 464void noinline
465ev_feed_event (EV_P_ void *w, int revents)
466{
467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
469
470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents;
478 }
479}
480
481void inline_speed
482queue_events (EV_P_ W *events, int eventcnt, int type)
483{
484 int i;
485
486 for (i = 0; i < eventcnt; ++i)
487 ev_feed_event (EV_A_ events [i], type);
488}
489
490/*****************************************************************************/
491
492void inline_size
375anfds_init (ANFD *base, int count) 493anfds_init (ANFD *base, int count)
376{ 494{
377 while (count--) 495 while (count--)
378 { 496 {
379 base->head = 0; 497 base->head = 0;
382 500
383 ++base; 501 ++base;
384 } 502 }
385} 503}
386 504
387void 505void inline_speed
388ev_feed_event (EV_P_ void *w, int revents)
389{
390 W w_ = (W)w;
391
392 if (expect_false (w_->pending))
393 {
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
395 return;
396 }
397
398 w_->pending = ++pendingcnt [ABSPRI (w_)];
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402}
403
404static void
405queue_events (EV_P_ W *events, int eventcnt, int type)
406{
407 int i;
408
409 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type);
411}
412
413inline void
414fd_event (EV_P_ int fd, int revents) 506fd_event (EV_P_ int fd, int revents)
415{ 507{
416 ANFD *anfd = anfds + fd; 508 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 509 ev_io *w;
418 510
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 511 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 512 {
421 int ev = w->events & revents; 513 int ev = w->events & revents;
422 514
423 if (ev) 515 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 516 ev_feed_event (EV_A_ (W)w, ev);
426} 518}
427 519
428void 520void
429ev_feed_fd_event (EV_P_ int fd, int revents) 521ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 522{
523 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 524 fd_event (EV_A_ fd, revents);
432} 525}
433 526
434/*****************************************************************************/ 527void inline_size
435
436inline void
437fd_reify (EV_P) 528fd_reify (EV_P)
438{ 529{
439 int i; 530 int i;
440 531
441 for (i = 0; i < fdchangecnt; ++i) 532 for (i = 0; i < fdchangecnt; ++i)
442 { 533 {
443 int fd = fdchanges [i]; 534 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 535 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 536 ev_io *w;
446 537
447 int events = 0; 538 int events = 0;
448 539
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 541 events |= w->events;
451 542
452#if EV_SELECT_IS_WINSOCKET 543#if EV_SELECT_IS_WINSOCKET
453 if (events) 544 if (events)
454 { 545 {
465 } 556 }
466 557
467 fdchangecnt = 0; 558 fdchangecnt = 0;
468} 559}
469 560
470static void 561void inline_size
471fd_change (EV_P_ int fd) 562fd_change (EV_P_ int fd)
472{ 563{
473 if (expect_false (anfds [fd].reify)) 564 if (expect_false (anfds [fd].reify))
474 return; 565 return;
475 566
478 ++fdchangecnt; 569 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 571 fdchanges [fdchangecnt - 1] = fd;
481} 572}
482 573
483static void 574void inline_speed
484fd_kill (EV_P_ int fd) 575fd_kill (EV_P_ int fd)
485{ 576{
486 struct ev_io *w; 577 ev_io *w;
487 578
488 while ((w = (struct ev_io *)anfds [fd].head)) 579 while ((w = (ev_io *)anfds [fd].head))
489 { 580 {
490 ev_io_stop (EV_A_ w); 581 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 582 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 583 }
493} 584}
494 585
495inline int 586int inline_size
496fd_valid (int fd) 587fd_valid (int fd)
497{ 588{
498#ifdef _WIN32 589#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 590 return _get_osfhandle (fd) != -1;
500#else 591#else
501 return fcntl (fd, F_GETFD) != -1; 592 return fcntl (fd, F_GETFD) != -1;
502#endif 593#endif
503} 594}
504 595
505/* called on EBADF to verify fds */ 596/* called on EBADF to verify fds */
506static void 597static void noinline
507fd_ebadf (EV_P) 598fd_ebadf (EV_P)
508{ 599{
509 int fd; 600 int fd;
510 601
511 for (fd = 0; fd < anfdmax; ++fd) 602 for (fd = 0; fd < anfdmax; ++fd)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 604 if (!fd_valid (fd) == -1 && errno == EBADF)
514 fd_kill (EV_A_ fd); 605 fd_kill (EV_A_ fd);
515} 606}
516 607
517/* called on ENOMEM in select/poll to kill some fds and retry */ 608/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 609static void noinline
519fd_enomem (EV_P) 610fd_enomem (EV_P)
520{ 611{
521 int fd; 612 int fd;
522 613
523 for (fd = anfdmax; fd--; ) 614 for (fd = anfdmax; fd--; )
527 return; 618 return;
528 } 619 }
529} 620}
530 621
531/* usually called after fork if backend needs to re-arm all fds from scratch */ 622/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 623static void noinline
533fd_rearm_all (EV_P) 624fd_rearm_all (EV_P)
534{ 625{
535 int fd; 626 int fd;
536 627
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 628 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 629 if (anfds [fd].events)
540 { 630 {
541 anfds [fd].events = 0; 631 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 632 fd_change (EV_A_ fd);
543 } 633 }
544} 634}
545 635
546/*****************************************************************************/ 636/*****************************************************************************/
547 637
548static void 638void inline_speed
549upheap (WT *heap, int k) 639upheap (WT *heap, int k)
550{ 640{
551 WT w = heap [k]; 641 WT w = heap [k];
552 642
553 while (k && heap [k >> 1]->at > w->at) 643 while (k)
554 { 644 {
645 int p = (k - 1) >> 1;
646
647 if (heap [p]->at <= w->at)
648 break;
649
555 heap [k] = heap [k >> 1]; 650 heap [k] = heap [p];
556 ((W)heap [k])->active = k + 1; 651 ((W)heap [k])->active = k + 1;
557 k >>= 1; 652 k = p;
558 } 653 }
559 654
560 heap [k] = w; 655 heap [k] = w;
561 ((W)heap [k])->active = k + 1; 656 ((W)heap [k])->active = k + 1;
562
563} 657}
564 658
565static void 659void inline_speed
566downheap (WT *heap, int N, int k) 660downheap (WT *heap, int N, int k)
567{ 661{
568 WT w = heap [k]; 662 WT w = heap [k];
569 663
570 while (k < (N >> 1)) 664 for (;;)
571 { 665 {
572 int j = k << 1; 666 int c = (k << 1) + 1;
573 667
574 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 668 if (c >= N)
575 ++j;
576
577 if (w->at <= heap [j]->at)
578 break; 669 break;
579 670
671 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
672 ? 1 : 0;
673
674 if (w->at <= heap [c]->at)
675 break;
676
580 heap [k] = heap [j]; 677 heap [k] = heap [c];
581 ((W)heap [k])->active = k + 1; 678 ((W)heap [k])->active = k + 1;
679
582 k = j; 680 k = c;
583 } 681 }
584 682
585 heap [k] = w; 683 heap [k] = w;
586 ((W)heap [k])->active = k + 1; 684 ((W)heap [k])->active = k + 1;
587} 685}
588 686
589inline void 687void inline_size
590adjustheap (WT *heap, int N, int k) 688adjustheap (WT *heap, int N, int k)
591{ 689{
592 upheap (heap, k); 690 upheap (heap, k);
593 downheap (heap, N, k); 691 downheap (heap, N, k);
594} 692}
604static ANSIG *signals; 702static ANSIG *signals;
605static int signalmax; 703static int signalmax;
606 704
607static int sigpipe [2]; 705static int sigpipe [2];
608static sig_atomic_t volatile gotsig; 706static sig_atomic_t volatile gotsig;
609static struct ev_io sigev; 707static ev_io sigev;
610 708
611static void 709void inline_size
612signals_init (ANSIG *base, int count) 710signals_init (ANSIG *base, int count)
613{ 711{
614 while (count--) 712 while (count--)
615 { 713 {
616 base->head = 0; 714 base->head = 0;
636 write (sigpipe [1], &signum, 1); 734 write (sigpipe [1], &signum, 1);
637 errno = old_errno; 735 errno = old_errno;
638 } 736 }
639} 737}
640 738
641void 739void noinline
642ev_feed_signal_event (EV_P_ int signum) 740ev_feed_signal_event (EV_P_ int signum)
643{ 741{
644 WL w; 742 WL w;
645 743
646#if EV_MULTIPLICITY 744#if EV_MULTIPLICITY
657 for (w = signals [signum].head; w; w = w->next) 755 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 756 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659} 757}
660 758
661static void 759static void
662sigcb (EV_P_ struct ev_io *iow, int revents) 760sigcb (EV_P_ ev_io *iow, int revents)
663{ 761{
664 int signum; 762 int signum;
665 763
666 read (sigpipe [0], &revents, 1); 764 read (sigpipe [0], &revents, 1);
667 gotsig = 0; 765 gotsig = 0;
669 for (signum = signalmax; signum--; ) 767 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig) 768 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1); 769 ev_feed_signal_event (EV_A_ signum + 1);
672} 770}
673 771
674static void 772void inline_speed
675fd_intern (int fd) 773fd_intern (int fd)
676{ 774{
677#ifdef _WIN32 775#ifdef _WIN32
678 int arg = 1; 776 int arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 777 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 779 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 780 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 781#endif
684} 782}
685 783
686static void 784static void noinline
687siginit (EV_P) 785siginit (EV_P)
688{ 786{
689 fd_intern (sigpipe [0]); 787 fd_intern (sigpipe [0]);
690 fd_intern (sigpipe [1]); 788 fd_intern (sigpipe [1]);
691 789
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 792 ev_unref (EV_A); /* child watcher should not keep loop alive */
695} 793}
696 794
697/*****************************************************************************/ 795/*****************************************************************************/
698 796
699static struct ev_child *childs [PID_HASHSIZE]; 797static ev_child *childs [EV_PID_HASHSIZE];
700 798
701#ifndef _WIN32 799#ifndef _WIN32
702 800
703static struct ev_signal childev; 801static ev_signal childev;
802
803void inline_speed
804child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
805{
806 ev_child *w;
807
808 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
809 if (w->pid == pid || !w->pid)
810 {
811 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
812 w->rpid = pid;
813 w->rstatus = status;
814 ev_feed_event (EV_A_ (W)w, EV_CHILD);
815 }
816}
704 817
705#ifndef WCONTINUED 818#ifndef WCONTINUED
706# define WCONTINUED 0 819# define WCONTINUED 0
707#endif 820#endif
708 821
709static void 822static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 823childcb (EV_P_ ev_signal *sw, int revents)
726{ 824{
727 int pid, status; 825 int pid, status;
728 826
827 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 828 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 829 if (!WCONTINUED
830 || errno != EINVAL
831 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
832 return;
833
731 /* make sure we are called again until all childs have been reaped */ 834 /* make sure we are called again until all childs have been reaped */
732 /* we need to do it this way so that the callback gets called before we continue */ 835 /* we need to do it this way so that the callback gets called before we continue */
733 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 836 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
734 837
735 child_reap (EV_A_ sw, pid, pid, status); 838 child_reap (EV_A_ sw, pid, pid, status);
839 if (EV_PID_HASHSIZE > 1)
736 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 840 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
737 }
738} 841}
739 842
740#endif 843#endif
741 844
742/*****************************************************************************/ 845/*****************************************************************************/
768{ 871{
769 return EV_VERSION_MINOR; 872 return EV_VERSION_MINOR;
770} 873}
771 874
772/* return true if we are running with elevated privileges and should ignore env variables */ 875/* return true if we are running with elevated privileges and should ignore env variables */
773static int 876int inline_size
774enable_secure (void) 877enable_secure (void)
775{ 878{
776#ifdef _WIN32 879#ifdef _WIN32
777 return 0; 880 return 0;
778#else 881#else
812 915
813 return flags; 916 return flags;
814} 917}
815 918
816unsigned int 919unsigned int
920ev_embeddable_backends (void)
921{
922 return EVBACKEND_EPOLL
923 | EVBACKEND_KQUEUE
924 | EVBACKEND_PORT;
925}
926
927unsigned int
817ev_backend (EV_P) 928ev_backend (EV_P)
818{ 929{
819 return backend; 930 return backend;
820} 931}
821 932
822static void 933unsigned int
934ev_loop_count (EV_P)
935{
936 return loop_count;
937}
938
939static void noinline
823loop_init (EV_P_ unsigned int flags) 940loop_init (EV_P_ unsigned int flags)
824{ 941{
825 if (!backend) 942 if (!backend)
826 { 943 {
827#if EV_USE_MONOTONIC 944#if EV_USE_MONOTONIC
835 ev_rt_now = ev_time (); 952 ev_rt_now = ev_time ();
836 mn_now = get_clock (); 953 mn_now = get_clock ();
837 now_floor = mn_now; 954 now_floor = mn_now;
838 rtmn_diff = ev_rt_now - mn_now; 955 rtmn_diff = ev_rt_now - mn_now;
839 956
957 /* pid check not overridable via env */
958#ifndef _WIN32
959 if (flags & EVFLAG_FORKCHECK)
960 curpid = getpid ();
961#endif
962
840 if (!(flags & EVFLAG_NOENV) 963 if (!(flags & EVFLAG_NOENV)
841 && !enable_secure () 964 && !enable_secure ()
842 && getenv ("LIBEV_FLAGS")) 965 && getenv ("LIBEV_FLAGS"))
843 flags = atoi (getenv ("LIBEV_FLAGS")); 966 flags = atoi (getenv ("LIBEV_FLAGS"));
844 967
845 if (!(flags & 0x0000ffffUL)) 968 if (!(flags & 0x0000ffffUL))
846 flags |= ev_recommended_backends (); 969 flags |= ev_recommended_backends ();
847 970
848 backend = 0; 971 backend = 0;
972 backend_fd = -1;
973#if EV_USE_INOTIFY
974 fs_fd = -2;
975#endif
976
849#if EV_USE_PORT 977#if EV_USE_PORT
850 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 978 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
851#endif 979#endif
852#if EV_USE_KQUEUE 980#if EV_USE_KQUEUE
853 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 981 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
865 ev_init (&sigev, sigcb); 993 ev_init (&sigev, sigcb);
866 ev_set_priority (&sigev, EV_MAXPRI); 994 ev_set_priority (&sigev, EV_MAXPRI);
867 } 995 }
868} 996}
869 997
870static void 998static void noinline
871loop_destroy (EV_P) 999loop_destroy (EV_P)
872{ 1000{
873 int i; 1001 int i;
1002
1003#if EV_USE_INOTIFY
1004 if (fs_fd >= 0)
1005 close (fs_fd);
1006#endif
1007
1008 if (backend_fd >= 0)
1009 close (backend_fd);
874 1010
875#if EV_USE_PORT 1011#if EV_USE_PORT
876 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1012 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
877#endif 1013#endif
878#if EV_USE_KQUEUE 1014#if EV_USE_KQUEUE
887#if EV_USE_SELECT 1023#if EV_USE_SELECT
888 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1024 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
889#endif 1025#endif
890 1026
891 for (i = NUMPRI; i--; ) 1027 for (i = NUMPRI; i--; )
1028 {
892 array_free (pending, [i]); 1029 array_free (pending, [i]);
1030#if EV_IDLE_ENABLE
1031 array_free (idle, [i]);
1032#endif
1033 }
893 1034
894 /* have to use the microsoft-never-gets-it-right macro */ 1035 /* have to use the microsoft-never-gets-it-right macro */
895 array_free (fdchange, EMPTY0); 1036 array_free (fdchange, EMPTY);
896 array_free (timer, EMPTY0); 1037 array_free (timer, EMPTY);
897#if EV_PERIODICS 1038#if EV_PERIODIC_ENABLE
898 array_free (periodic, EMPTY0); 1039 array_free (periodic, EMPTY);
899#endif 1040#endif
900 array_free (idle, EMPTY0);
901 array_free (prepare, EMPTY0); 1041 array_free (prepare, EMPTY);
902 array_free (check, EMPTY0); 1042 array_free (check, EMPTY);
903 1043
904 backend = 0; 1044 backend = 0;
905} 1045}
906 1046
907static void 1047void inline_size infy_fork (EV_P);
1048
1049void inline_size
908loop_fork (EV_P) 1050loop_fork (EV_P)
909{ 1051{
910#if EV_USE_PORT 1052#if EV_USE_PORT
911 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1053 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
912#endif 1054#endif
913#if EV_USE_KQUEUE 1055#if EV_USE_KQUEUE
914 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1056 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
915#endif 1057#endif
916#if EV_USE_EPOLL 1058#if EV_USE_EPOLL
917 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1059 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1060#endif
1061#if EV_USE_INOTIFY
1062 infy_fork (EV_A);
918#endif 1063#endif
919 1064
920 if (ev_is_active (&sigev)) 1065 if (ev_is_active (&sigev))
921 { 1066 {
922 /* default loop */ 1067 /* default loop */
1038 postfork = 1; 1183 postfork = 1;
1039} 1184}
1040 1185
1041/*****************************************************************************/ 1186/*****************************************************************************/
1042 1187
1043static int 1188void
1044any_pending (EV_P) 1189ev_invoke (EV_P_ void *w, int revents)
1045{ 1190{
1046 int pri; 1191 EV_CB_INVOKE ((W)w, revents);
1047
1048 for (pri = NUMPRI; pri--; )
1049 if (pendingcnt [pri])
1050 return 1;
1051
1052 return 0;
1053} 1192}
1054 1193
1055inline void 1194void inline_speed
1056call_pending (EV_P) 1195call_pending (EV_P)
1057{ 1196{
1058 int pri; 1197 int pri;
1059 1198
1060 for (pri = NUMPRI; pri--; ) 1199 for (pri = NUMPRI; pri--; )
1062 { 1201 {
1063 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1202 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1064 1203
1065 if (expect_true (p->w)) 1204 if (expect_true (p->w))
1066 { 1205 {
1206 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1207
1067 p->w->pending = 0; 1208 p->w->pending = 0;
1068 EV_CB_INVOKE (p->w, p->events); 1209 EV_CB_INVOKE (p->w, p->events);
1069 } 1210 }
1070 } 1211 }
1071} 1212}
1072 1213
1073inline void 1214void inline_size
1074timers_reify (EV_P) 1215timers_reify (EV_P)
1075{ 1216{
1076 while (timercnt && ((WT)timers [0])->at <= mn_now) 1217 while (timercnt && ((WT)timers [0])->at <= mn_now)
1077 { 1218 {
1078 struct ev_timer *w = timers [0]; 1219 ev_timer *w = (ev_timer *)timers [0];
1079 1220
1080 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1221 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1081 1222
1082 /* first reschedule or stop timer */ 1223 /* first reschedule or stop timer */
1083 if (w->repeat) 1224 if (w->repeat)
1084 { 1225 {
1085 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1226 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1086 1227
1087 ((WT)w)->at += w->repeat; 1228 ((WT)w)->at += w->repeat;
1088 if (((WT)w)->at < mn_now) 1229 if (((WT)w)->at < mn_now)
1089 ((WT)w)->at = mn_now; 1230 ((WT)w)->at = mn_now;
1090 1231
1091 downheap ((WT *)timers, timercnt, 0); 1232 downheap (timers, timercnt, 0);
1092 } 1233 }
1093 else 1234 else
1094 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1235 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1095 1236
1096 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1237 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1097 } 1238 }
1098} 1239}
1099 1240
1100#if EV_PERIODICS 1241#if EV_PERIODIC_ENABLE
1101inline void 1242void inline_size
1102periodics_reify (EV_P) 1243periodics_reify (EV_P)
1103{ 1244{
1104 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1245 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1105 { 1246 {
1106 struct ev_periodic *w = periodics [0]; 1247 ev_periodic *w = (ev_periodic *)periodics [0];
1107 1248
1108 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1249 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1109 1250
1110 /* first reschedule or stop timer */ 1251 /* first reschedule or stop timer */
1111 if (w->reschedule_cb) 1252 if (w->reschedule_cb)
1112 { 1253 {
1113 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1254 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1114 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1255 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1115 downheap ((WT *)periodics, periodiccnt, 0); 1256 downheap (periodics, periodiccnt, 0);
1116 } 1257 }
1117 else if (w->interval) 1258 else if (w->interval)
1118 { 1259 {
1119 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1260 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1261 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1120 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1262 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1121 downheap ((WT *)periodics, periodiccnt, 0); 1263 downheap (periodics, periodiccnt, 0);
1122 } 1264 }
1123 else 1265 else
1124 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1266 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1125 1267
1126 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1268 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1127 } 1269 }
1128} 1270}
1129 1271
1130static void 1272static void noinline
1131periodics_reschedule (EV_P) 1273periodics_reschedule (EV_P)
1132{ 1274{
1133 int i; 1275 int i;
1134 1276
1135 /* adjust periodics after time jump */ 1277 /* adjust periodics after time jump */
1136 for (i = 0; i < periodiccnt; ++i) 1278 for (i = 0; i < periodiccnt; ++i)
1137 { 1279 {
1138 struct ev_periodic *w = periodics [i]; 1280 ev_periodic *w = (ev_periodic *)periodics [i];
1139 1281
1140 if (w->reschedule_cb) 1282 if (w->reschedule_cb)
1141 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1283 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1142 else if (w->interval) 1284 else if (w->interval)
1143 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1285 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1144 } 1286 }
1145 1287
1146 /* now rebuild the heap */ 1288 /* now rebuild the heap */
1147 for (i = periodiccnt >> 1; i--; ) 1289 for (i = periodiccnt >> 1; i--; )
1148 downheap ((WT *)periodics, periodiccnt, i); 1290 downheap (periodics, periodiccnt, i);
1149} 1291}
1150#endif 1292#endif
1151 1293
1152inline int 1294#if EV_IDLE_ENABLE
1153time_update_monotonic (EV_P) 1295void inline_size
1296idle_reify (EV_P)
1154{ 1297{
1298 if (expect_false (idleall))
1299 {
1300 int pri;
1301
1302 for (pri = NUMPRI; pri--; )
1303 {
1304 if (pendingcnt [pri])
1305 break;
1306
1307 if (idlecnt [pri])
1308 {
1309 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1310 break;
1311 }
1312 }
1313 }
1314}
1315#endif
1316
1317void inline_speed
1318time_update (EV_P_ ev_tstamp max_block)
1319{
1320 int i;
1321
1322#if EV_USE_MONOTONIC
1323 if (expect_true (have_monotonic))
1324 {
1325 ev_tstamp odiff = rtmn_diff;
1326
1155 mn_now = get_clock (); 1327 mn_now = get_clock ();
1156 1328
1329 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1330 /* interpolate in the meantime */
1157 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1331 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1158 { 1332 {
1159 ev_rt_now = rtmn_diff + mn_now; 1333 ev_rt_now = rtmn_diff + mn_now;
1160 return 0; 1334 return;
1161 } 1335 }
1162 else 1336
1163 {
1164 now_floor = mn_now; 1337 now_floor = mn_now;
1165 ev_rt_now = ev_time (); 1338 ev_rt_now = ev_time ();
1166 return 1;
1167 }
1168}
1169 1339
1170inline void 1340 /* loop a few times, before making important decisions.
1171time_update (EV_P) 1341 * on the choice of "4": one iteration isn't enough,
1172{ 1342 * in case we get preempted during the calls to
1173 int i; 1343 * ev_time and get_clock. a second call is almost guaranteed
1174 1344 * to succeed in that case, though. and looping a few more times
1175#if EV_USE_MONOTONIC 1345 * doesn't hurt either as we only do this on time-jumps or
1176 if (expect_true (have_monotonic)) 1346 * in the unlikely event of having been preempted here.
1177 { 1347 */
1178 if (time_update_monotonic (EV_A)) 1348 for (i = 4; --i; )
1179 { 1349 {
1180 ev_tstamp odiff = rtmn_diff;
1181
1182 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1183 {
1184 rtmn_diff = ev_rt_now - mn_now; 1350 rtmn_diff = ev_rt_now - mn_now;
1185 1351
1186 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1352 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1187 return; /* all is well */ 1353 return; /* all is well */
1188 1354
1189 ev_rt_now = ev_time (); 1355 ev_rt_now = ev_time ();
1190 mn_now = get_clock (); 1356 mn_now = get_clock ();
1191 now_floor = mn_now; 1357 now_floor = mn_now;
1192 } 1358 }
1193 1359
1194# if EV_PERIODICS 1360# if EV_PERIODIC_ENABLE
1361 periodics_reschedule (EV_A);
1362# endif
1363 /* no timer adjustment, as the monotonic clock doesn't jump */
1364 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1365 }
1366 else
1367#endif
1368 {
1369 ev_rt_now = ev_time ();
1370
1371 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 {
1373#if EV_PERIODIC_ENABLE
1195 periodics_reschedule (EV_A); 1374 periodics_reschedule (EV_A);
1196# endif 1375#endif
1197 /* no timer adjustment, as the monotonic clock doesn't jump */
1198 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1199 }
1200 }
1201 else
1202#endif
1203 {
1204 ev_rt_now = ev_time ();
1205
1206 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1207 {
1208#if EV_PERIODICS
1209 periodics_reschedule (EV_A);
1210#endif
1211
1212 /* adjust timers. this is easy, as the offset is the same for all */ 1376 /* adjust timers. this is easy, as the offset is the same for all of them */
1213 for (i = 0; i < timercnt; ++i) 1377 for (i = 0; i < timercnt; ++i)
1214 ((WT)timers [i])->at += ev_rt_now - mn_now; 1378 ((WT)timers [i])->at += ev_rt_now - mn_now;
1215 } 1379 }
1216 1380
1217 mn_now = ev_rt_now; 1381 mn_now = ev_rt_now;
1233static int loop_done; 1397static int loop_done;
1234 1398
1235void 1399void
1236ev_loop (EV_P_ int flags) 1400ev_loop (EV_P_ int flags)
1237{ 1401{
1238 double block;
1239 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1402 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1403 ? EVUNLOOP_ONE
1404 : EVUNLOOP_CANCEL;
1240 1405
1241 while (activecnt) 1406 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1407
1408 do
1242 { 1409 {
1410#ifndef _WIN32
1411 if (expect_false (curpid)) /* penalise the forking check even more */
1412 if (expect_false (getpid () != curpid))
1413 {
1414 curpid = getpid ();
1415 postfork = 1;
1416 }
1417#endif
1418
1419#if EV_FORK_ENABLE
1420 /* we might have forked, so queue fork handlers */
1421 if (expect_false (postfork))
1422 if (forkcnt)
1423 {
1424 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1425 call_pending (EV_A);
1426 }
1427#endif
1428
1243 /* queue check watchers (and execute them) */ 1429 /* queue prepare watchers (and execute them) */
1244 if (expect_false (preparecnt)) 1430 if (expect_false (preparecnt))
1245 { 1431 {
1246 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1432 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1247 call_pending (EV_A); 1433 call_pending (EV_A);
1248 } 1434 }
1249 1435
1436 if (expect_false (!activecnt))
1437 break;
1438
1250 /* we might have forked, so reify kernel state if necessary */ 1439 /* we might have forked, so reify kernel state if necessary */
1251 if (expect_false (postfork)) 1440 if (expect_false (postfork))
1252 loop_fork (EV_A); 1441 loop_fork (EV_A);
1253 1442
1254 /* update fd-related kernel structures */ 1443 /* update fd-related kernel structures */
1255 fd_reify (EV_A); 1444 fd_reify (EV_A);
1256 1445
1257 /* calculate blocking time */ 1446 /* calculate blocking time */
1447 {
1448 ev_tstamp block;
1258 1449
1259 /* we only need this for !monotonic clock or timers, but as we basically 1450 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1260 always have timers, we just calculate it always */ 1451 block = 0.; /* do not block at all */
1261#if EV_USE_MONOTONIC
1262 if (expect_true (have_monotonic))
1263 time_update_monotonic (EV_A);
1264 else 1452 else
1265#endif
1266 { 1453 {
1267 ev_rt_now = ev_time (); 1454 /* update time to cancel out callback processing overhead */
1268 mn_now = ev_rt_now; 1455 time_update (EV_A_ 1e100);
1269 }
1270 1456
1271 if (flags & EVLOOP_NONBLOCK || idlecnt)
1272 block = 0.;
1273 else
1274 {
1275 block = MAX_BLOCKTIME; 1457 block = MAX_BLOCKTIME;
1276 1458
1277 if (timercnt) 1459 if (timercnt)
1278 { 1460 {
1279 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1461 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1280 if (block > to) block = to; 1462 if (block > to) block = to;
1281 } 1463 }
1282 1464
1283#if EV_PERIODICS 1465#if EV_PERIODIC_ENABLE
1284 if (periodiccnt) 1466 if (periodiccnt)
1285 { 1467 {
1286 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1468 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1287 if (block > to) block = to; 1469 if (block > to) block = to;
1288 } 1470 }
1289#endif 1471#endif
1290 1472
1291 if (expect_false (block < 0.)) block = 0.; 1473 if (expect_false (block < 0.)) block = 0.;
1292 } 1474 }
1293 1475
1476 ++loop_count;
1294 backend_poll (EV_A_ block); 1477 backend_poll (EV_A_ block);
1295 1478
1296 /* update ev_rt_now, do magic */ 1479 /* update ev_rt_now, do magic */
1297 time_update (EV_A); 1480 time_update (EV_A_ block);
1481 }
1298 1482
1299 /* queue pending timers and reschedule them */ 1483 /* queue pending timers and reschedule them */
1300 timers_reify (EV_A); /* relative timers called last */ 1484 timers_reify (EV_A); /* relative timers called last */
1301#if EV_PERIODICS 1485#if EV_PERIODIC_ENABLE
1302 periodics_reify (EV_A); /* absolute timers called first */ 1486 periodics_reify (EV_A); /* absolute timers called first */
1303#endif 1487#endif
1304 1488
1489#if EV_IDLE_ENABLE
1305 /* queue idle watchers unless io or timers are pending */ 1490 /* queue idle watchers unless other events are pending */
1306 if (idlecnt && !any_pending (EV_A)) 1491 idle_reify (EV_A);
1307 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1492#endif
1308 1493
1309 /* queue check watchers, to be executed first */ 1494 /* queue check watchers, to be executed first */
1310 if (expect_false (checkcnt)) 1495 if (expect_false (checkcnt))
1311 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1496 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1312 1497
1313 call_pending (EV_A); 1498 call_pending (EV_A);
1314 1499
1315 if (expect_false (loop_done))
1316 break;
1317 } 1500 }
1501 while (expect_true (activecnt && !loop_done));
1318 1502
1319 if (loop_done != 2) 1503 if (loop_done == EVUNLOOP_ONE)
1320 loop_done = 0; 1504 loop_done = EVUNLOOP_CANCEL;
1321} 1505}
1322 1506
1323void 1507void
1324ev_unloop (EV_P_ int how) 1508ev_unloop (EV_P_ int how)
1325{ 1509{
1326 loop_done = how; 1510 loop_done = how;
1327} 1511}
1328 1512
1329/*****************************************************************************/ 1513/*****************************************************************************/
1330 1514
1331inline void 1515void inline_size
1332wlist_add (WL *head, WL elem) 1516wlist_add (WL *head, WL elem)
1333{ 1517{
1334 elem->next = *head; 1518 elem->next = *head;
1335 *head = elem; 1519 *head = elem;
1336} 1520}
1337 1521
1338inline void 1522void inline_size
1339wlist_del (WL *head, WL elem) 1523wlist_del (WL *head, WL elem)
1340{ 1524{
1341 while (*head) 1525 while (*head)
1342 { 1526 {
1343 if (*head == elem) 1527 if (*head == elem)
1348 1532
1349 head = &(*head)->next; 1533 head = &(*head)->next;
1350 } 1534 }
1351} 1535}
1352 1536
1353inline void 1537void inline_speed
1354ev_clear_pending (EV_P_ W w) 1538clear_pending (EV_P_ W w)
1355{ 1539{
1356 if (w->pending) 1540 if (w->pending)
1357 { 1541 {
1358 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1542 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1359 w->pending = 0; 1543 w->pending = 0;
1360 } 1544 }
1361} 1545}
1362 1546
1363inline void 1547int
1548ev_clear_pending (EV_P_ void *w)
1549{
1550 W w_ = (W)w;
1551 int pending = w_->pending;
1552
1553 if (expect_true (pending))
1554 {
1555 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1556 w_->pending = 0;
1557 p->w = 0;
1558 return p->events;
1559 }
1560 else
1561 return 0;
1562}
1563
1564void inline_size
1565pri_adjust (EV_P_ W w)
1566{
1567 int pri = w->priority;
1568 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1569 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1570 w->priority = pri;
1571}
1572
1573void inline_speed
1364ev_start (EV_P_ W w, int active) 1574ev_start (EV_P_ W w, int active)
1365{ 1575{
1366 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1576 pri_adjust (EV_A_ w);
1367 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1368
1369 w->active = active; 1577 w->active = active;
1370 ev_ref (EV_A); 1578 ev_ref (EV_A);
1371} 1579}
1372 1580
1373inline void 1581void inline_size
1374ev_stop (EV_P_ W w) 1582ev_stop (EV_P_ W w)
1375{ 1583{
1376 ev_unref (EV_A); 1584 ev_unref (EV_A);
1377 w->active = 0; 1585 w->active = 0;
1378} 1586}
1379 1587
1380/*****************************************************************************/ 1588/*****************************************************************************/
1381 1589
1382void 1590void noinline
1383ev_io_start (EV_P_ struct ev_io *w) 1591ev_io_start (EV_P_ ev_io *w)
1384{ 1592{
1385 int fd = w->fd; 1593 int fd = w->fd;
1386 1594
1387 if (expect_false (ev_is_active (w))) 1595 if (expect_false (ev_is_active (w)))
1388 return; 1596 return;
1394 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1602 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1395 1603
1396 fd_change (EV_A_ fd); 1604 fd_change (EV_A_ fd);
1397} 1605}
1398 1606
1399void 1607void noinline
1400ev_io_stop (EV_P_ struct ev_io *w) 1608ev_io_stop (EV_P_ ev_io *w)
1401{ 1609{
1402 ev_clear_pending (EV_A_ (W)w); 1610 clear_pending (EV_A_ (W)w);
1403 if (expect_false (!ev_is_active (w))) 1611 if (expect_false (!ev_is_active (w)))
1404 return; 1612 return;
1405 1613
1406 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1614 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1407 1615
1409 ev_stop (EV_A_ (W)w); 1617 ev_stop (EV_A_ (W)w);
1410 1618
1411 fd_change (EV_A_ w->fd); 1619 fd_change (EV_A_ w->fd);
1412} 1620}
1413 1621
1414void 1622void noinline
1415ev_timer_start (EV_P_ struct ev_timer *w) 1623ev_timer_start (EV_P_ ev_timer *w)
1416{ 1624{
1417 if (expect_false (ev_is_active (w))) 1625 if (expect_false (ev_is_active (w)))
1418 return; 1626 return;
1419 1627
1420 ((WT)w)->at += mn_now; 1628 ((WT)w)->at += mn_now;
1421 1629
1422 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1630 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1423 1631
1424 ev_start (EV_A_ (W)w, ++timercnt); 1632 ev_start (EV_A_ (W)w, ++timercnt);
1425 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1633 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1426 timers [timercnt - 1] = w; 1634 timers [timercnt - 1] = (WT)w;
1427 upheap ((WT *)timers, timercnt - 1); 1635 upheap (timers, timercnt - 1);
1428 1636
1429 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1637 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1430} 1638}
1431 1639
1432void 1640void noinline
1433ev_timer_stop (EV_P_ struct ev_timer *w) 1641ev_timer_stop (EV_P_ ev_timer *w)
1434{ 1642{
1435 ev_clear_pending (EV_A_ (W)w); 1643 clear_pending (EV_A_ (W)w);
1436 if (expect_false (!ev_is_active (w))) 1644 if (expect_false (!ev_is_active (w)))
1437 return; 1645 return;
1438 1646
1439 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1647 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1440 1648
1649 {
1650 int active = ((W)w)->active;
1651
1441 if (expect_true (((W)w)->active < timercnt--)) 1652 if (expect_true (--active < --timercnt))
1442 { 1653 {
1443 timers [((W)w)->active - 1] = timers [timercnt]; 1654 timers [active] = timers [timercnt];
1444 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1655 adjustheap (timers, timercnt, active);
1445 } 1656 }
1657 }
1446 1658
1447 ((WT)w)->at -= mn_now; 1659 ((WT)w)->at -= mn_now;
1448 1660
1449 ev_stop (EV_A_ (W)w); 1661 ev_stop (EV_A_ (W)w);
1450} 1662}
1451 1663
1452void 1664void noinline
1453ev_timer_again (EV_P_ struct ev_timer *w) 1665ev_timer_again (EV_P_ ev_timer *w)
1454{ 1666{
1455 if (ev_is_active (w)) 1667 if (ev_is_active (w))
1456 { 1668 {
1457 if (w->repeat) 1669 if (w->repeat)
1458 { 1670 {
1459 ((WT)w)->at = mn_now + w->repeat; 1671 ((WT)w)->at = mn_now + w->repeat;
1460 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1672 adjustheap (timers, timercnt, ((W)w)->active - 1);
1461 } 1673 }
1462 else 1674 else
1463 ev_timer_stop (EV_A_ w); 1675 ev_timer_stop (EV_A_ w);
1464 } 1676 }
1465 else if (w->repeat) 1677 else if (w->repeat)
1467 w->at = w->repeat; 1679 w->at = w->repeat;
1468 ev_timer_start (EV_A_ w); 1680 ev_timer_start (EV_A_ w);
1469 } 1681 }
1470} 1682}
1471 1683
1472#if EV_PERIODICS 1684#if EV_PERIODIC_ENABLE
1473void 1685void noinline
1474ev_periodic_start (EV_P_ struct ev_periodic *w) 1686ev_periodic_start (EV_P_ ev_periodic *w)
1475{ 1687{
1476 if (expect_false (ev_is_active (w))) 1688 if (expect_false (ev_is_active (w)))
1477 return; 1689 return;
1478 1690
1479 if (w->reschedule_cb) 1691 if (w->reschedule_cb)
1480 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1692 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1481 else if (w->interval) 1693 else if (w->interval)
1482 { 1694 {
1483 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1695 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1484 /* this formula differs from the one in periodic_reify because we do not always round up */ 1696 /* this formula differs from the one in periodic_reify because we do not always round up */
1485 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1697 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1486 } 1698 }
1699 else
1700 ((WT)w)->at = w->offset;
1487 1701
1488 ev_start (EV_A_ (W)w, ++periodiccnt); 1702 ev_start (EV_A_ (W)w, ++periodiccnt);
1489 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1703 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1490 periodics [periodiccnt - 1] = w; 1704 periodics [periodiccnt - 1] = (WT)w;
1491 upheap ((WT *)periodics, periodiccnt - 1); 1705 upheap (periodics, periodiccnt - 1);
1492 1706
1493 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1707 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1494} 1708}
1495 1709
1496void 1710void noinline
1497ev_periodic_stop (EV_P_ struct ev_periodic *w) 1711ev_periodic_stop (EV_P_ ev_periodic *w)
1498{ 1712{
1499 ev_clear_pending (EV_A_ (W)w); 1713 clear_pending (EV_A_ (W)w);
1500 if (expect_false (!ev_is_active (w))) 1714 if (expect_false (!ev_is_active (w)))
1501 return; 1715 return;
1502 1716
1503 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1717 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1504 1718
1719 {
1720 int active = ((W)w)->active;
1721
1505 if (expect_true (((W)w)->active < periodiccnt--)) 1722 if (expect_true (--active < --periodiccnt))
1506 { 1723 {
1507 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1724 periodics [active] = periodics [periodiccnt];
1508 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1725 adjustheap (periodics, periodiccnt, active);
1509 } 1726 }
1727 }
1510 1728
1511 ev_stop (EV_A_ (W)w); 1729 ev_stop (EV_A_ (W)w);
1512} 1730}
1513 1731
1514void 1732void noinline
1515ev_periodic_again (EV_P_ struct ev_periodic *w) 1733ev_periodic_again (EV_P_ ev_periodic *w)
1516{ 1734{
1517 /* TODO: use adjustheap and recalculation */ 1735 /* TODO: use adjustheap and recalculation */
1518 ev_periodic_stop (EV_A_ w); 1736 ev_periodic_stop (EV_A_ w);
1519 ev_periodic_start (EV_A_ w); 1737 ev_periodic_start (EV_A_ w);
1520} 1738}
1521#endif 1739#endif
1522 1740
1523void
1524ev_idle_start (EV_P_ struct ev_idle *w)
1525{
1526 if (expect_false (ev_is_active (w)))
1527 return;
1528
1529 ev_start (EV_A_ (W)w, ++idlecnt);
1530 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1531 idles [idlecnt - 1] = w;
1532}
1533
1534void
1535ev_idle_stop (EV_P_ struct ev_idle *w)
1536{
1537 ev_clear_pending (EV_A_ (W)w);
1538 if (expect_false (!ev_is_active (w)))
1539 return;
1540
1541 idles [((W)w)->active - 1] = idles [--idlecnt];
1542 ev_stop (EV_A_ (W)w);
1543}
1544
1545void
1546ev_prepare_start (EV_P_ struct ev_prepare *w)
1547{
1548 if (expect_false (ev_is_active (w)))
1549 return;
1550
1551 ev_start (EV_A_ (W)w, ++preparecnt);
1552 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1553 prepares [preparecnt - 1] = w;
1554}
1555
1556void
1557ev_prepare_stop (EV_P_ struct ev_prepare *w)
1558{
1559 ev_clear_pending (EV_A_ (W)w);
1560 if (expect_false (!ev_is_active (w)))
1561 return;
1562
1563 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1564 ev_stop (EV_A_ (W)w);
1565}
1566
1567void
1568ev_check_start (EV_P_ struct ev_check *w)
1569{
1570 if (expect_false (ev_is_active (w)))
1571 return;
1572
1573 ev_start (EV_A_ (W)w, ++checkcnt);
1574 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1575 checks [checkcnt - 1] = w;
1576}
1577
1578void
1579ev_check_stop (EV_P_ struct ev_check *w)
1580{
1581 ev_clear_pending (EV_A_ (W)w);
1582 if (expect_false (!ev_is_active (w)))
1583 return;
1584
1585 checks [((W)w)->active - 1] = checks [--checkcnt];
1586 ev_stop (EV_A_ (W)w);
1587}
1588
1589#ifndef SA_RESTART 1741#ifndef SA_RESTART
1590# define SA_RESTART 0 1742# define SA_RESTART 0
1591#endif 1743#endif
1592 1744
1593void 1745void noinline
1594ev_signal_start (EV_P_ struct ev_signal *w) 1746ev_signal_start (EV_P_ ev_signal *w)
1595{ 1747{
1596#if EV_MULTIPLICITY 1748#if EV_MULTIPLICITY
1597 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1749 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1598#endif 1750#endif
1599 if (expect_false (ev_is_active (w))) 1751 if (expect_false (ev_is_active (w)))
1600 return; 1752 return;
1601 1753
1602 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1754 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1603 1755
1756 {
1757#ifndef _WIN32
1758 sigset_t full, prev;
1759 sigfillset (&full);
1760 sigprocmask (SIG_SETMASK, &full, &prev);
1761#endif
1762
1763 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1764
1765#ifndef _WIN32
1766 sigprocmask (SIG_SETMASK, &prev, 0);
1767#endif
1768 }
1769
1604 ev_start (EV_A_ (W)w, 1); 1770 ev_start (EV_A_ (W)w, 1);
1605 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1606 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1771 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1607 1772
1608 if (!((WL)w)->next) 1773 if (!((WL)w)->next)
1609 { 1774 {
1610#if _WIN32 1775#if _WIN32
1617 sigaction (w->signum, &sa, 0); 1782 sigaction (w->signum, &sa, 0);
1618#endif 1783#endif
1619 } 1784 }
1620} 1785}
1621 1786
1622void 1787void noinline
1623ev_signal_stop (EV_P_ struct ev_signal *w) 1788ev_signal_stop (EV_P_ ev_signal *w)
1624{ 1789{
1625 ev_clear_pending (EV_A_ (W)w); 1790 clear_pending (EV_A_ (W)w);
1626 if (expect_false (!ev_is_active (w))) 1791 if (expect_false (!ev_is_active (w)))
1627 return; 1792 return;
1628 1793
1629 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1794 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1630 ev_stop (EV_A_ (W)w); 1795 ev_stop (EV_A_ (W)w);
1632 if (!signals [w->signum - 1].head) 1797 if (!signals [w->signum - 1].head)
1633 signal (w->signum, SIG_DFL); 1798 signal (w->signum, SIG_DFL);
1634} 1799}
1635 1800
1636void 1801void
1637ev_child_start (EV_P_ struct ev_child *w) 1802ev_child_start (EV_P_ ev_child *w)
1638{ 1803{
1639#if EV_MULTIPLICITY 1804#if EV_MULTIPLICITY
1640 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1805 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1641#endif 1806#endif
1642 if (expect_false (ev_is_active (w))) 1807 if (expect_false (ev_is_active (w)))
1643 return; 1808 return;
1644 1809
1645 ev_start (EV_A_ (W)w, 1); 1810 ev_start (EV_A_ (W)w, 1);
1646 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1811 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1647} 1812}
1648 1813
1649void 1814void
1650ev_child_stop (EV_P_ struct ev_child *w) 1815ev_child_stop (EV_P_ ev_child *w)
1651{ 1816{
1652 ev_clear_pending (EV_A_ (W)w); 1817 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 1818 if (expect_false (!ev_is_active (w)))
1654 return; 1819 return;
1655 1820
1656 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1821 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1657 ev_stop (EV_A_ (W)w); 1822 ev_stop (EV_A_ (W)w);
1658} 1823}
1659 1824
1825#if EV_STAT_ENABLE
1826
1827# ifdef _WIN32
1828# undef lstat
1829# define lstat(a,b) _stati64 (a,b)
1830# endif
1831
1832#define DEF_STAT_INTERVAL 5.0074891
1833#define MIN_STAT_INTERVAL 0.1074891
1834
1835static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1836
1837#if EV_USE_INOTIFY
1838# define EV_INOTIFY_BUFSIZE 8192
1839
1840static void noinline
1841infy_add (EV_P_ ev_stat *w)
1842{
1843 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1844
1845 if (w->wd < 0)
1846 {
1847 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1848
1849 /* monitor some parent directory for speedup hints */
1850 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1851 {
1852 char path [4096];
1853 strcpy (path, w->path);
1854
1855 do
1856 {
1857 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1858 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1859
1860 char *pend = strrchr (path, '/');
1861
1862 if (!pend)
1863 break; /* whoops, no '/', complain to your admin */
1864
1865 *pend = 0;
1866 w->wd = inotify_add_watch (fs_fd, path, mask);
1867 }
1868 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1869 }
1870 }
1871 else
1872 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1873
1874 if (w->wd >= 0)
1875 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1876}
1877
1878static void noinline
1879infy_del (EV_P_ ev_stat *w)
1880{
1881 int slot;
1882 int wd = w->wd;
1883
1884 if (wd < 0)
1885 return;
1886
1887 w->wd = -2;
1888 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1889 wlist_del (&fs_hash [slot].head, (WL)w);
1890
1891 /* remove this watcher, if others are watching it, they will rearm */
1892 inotify_rm_watch (fs_fd, wd);
1893}
1894
1895static void noinline
1896infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1897{
1898 if (slot < 0)
1899 /* overflow, need to check for all hahs slots */
1900 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1901 infy_wd (EV_A_ slot, wd, ev);
1902 else
1903 {
1904 WL w_;
1905
1906 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1907 {
1908 ev_stat *w = (ev_stat *)w_;
1909 w_ = w_->next; /* lets us remove this watcher and all before it */
1910
1911 if (w->wd == wd || wd == -1)
1912 {
1913 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1914 {
1915 w->wd = -1;
1916 infy_add (EV_A_ w); /* re-add, no matter what */
1917 }
1918
1919 stat_timer_cb (EV_A_ &w->timer, 0);
1920 }
1921 }
1922 }
1923}
1924
1925static void
1926infy_cb (EV_P_ ev_io *w, int revents)
1927{
1928 char buf [EV_INOTIFY_BUFSIZE];
1929 struct inotify_event *ev = (struct inotify_event *)buf;
1930 int ofs;
1931 int len = read (fs_fd, buf, sizeof (buf));
1932
1933 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1934 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1935}
1936
1937void inline_size
1938infy_init (EV_P)
1939{
1940 if (fs_fd != -2)
1941 return;
1942
1943 fs_fd = inotify_init ();
1944
1945 if (fs_fd >= 0)
1946 {
1947 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1948 ev_set_priority (&fs_w, EV_MAXPRI);
1949 ev_io_start (EV_A_ &fs_w);
1950 }
1951}
1952
1953void inline_size
1954infy_fork (EV_P)
1955{
1956 int slot;
1957
1958 if (fs_fd < 0)
1959 return;
1960
1961 close (fs_fd);
1962 fs_fd = inotify_init ();
1963
1964 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1965 {
1966 WL w_ = fs_hash [slot].head;
1967 fs_hash [slot].head = 0;
1968
1969 while (w_)
1970 {
1971 ev_stat *w = (ev_stat *)w_;
1972 w_ = w_->next; /* lets us add this watcher */
1973
1974 w->wd = -1;
1975
1976 if (fs_fd >= 0)
1977 infy_add (EV_A_ w); /* re-add, no matter what */
1978 else
1979 ev_timer_start (EV_A_ &w->timer);
1980 }
1981
1982 }
1983}
1984
1985#endif
1986
1987void
1988ev_stat_stat (EV_P_ ev_stat *w)
1989{
1990 if (lstat (w->path, &w->attr) < 0)
1991 w->attr.st_nlink = 0;
1992 else if (!w->attr.st_nlink)
1993 w->attr.st_nlink = 1;
1994}
1995
1996static void noinline
1997stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1998{
1999 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2000
2001 /* we copy this here each the time so that */
2002 /* prev has the old value when the callback gets invoked */
2003 w->prev = w->attr;
2004 ev_stat_stat (EV_A_ w);
2005
2006 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2007 if (
2008 w->prev.st_dev != w->attr.st_dev
2009 || w->prev.st_ino != w->attr.st_ino
2010 || w->prev.st_mode != w->attr.st_mode
2011 || w->prev.st_nlink != w->attr.st_nlink
2012 || w->prev.st_uid != w->attr.st_uid
2013 || w->prev.st_gid != w->attr.st_gid
2014 || w->prev.st_rdev != w->attr.st_rdev
2015 || w->prev.st_size != w->attr.st_size
2016 || w->prev.st_atime != w->attr.st_atime
2017 || w->prev.st_mtime != w->attr.st_mtime
2018 || w->prev.st_ctime != w->attr.st_ctime
2019 ) {
2020 #if EV_USE_INOTIFY
2021 infy_del (EV_A_ w);
2022 infy_add (EV_A_ w);
2023 ev_stat_stat (EV_A_ w); /* avoid race... */
2024 #endif
2025
2026 ev_feed_event (EV_A_ w, EV_STAT);
2027 }
2028}
2029
2030void
2031ev_stat_start (EV_P_ ev_stat *w)
2032{
2033 if (expect_false (ev_is_active (w)))
2034 return;
2035
2036 /* since we use memcmp, we need to clear any padding data etc. */
2037 memset (&w->prev, 0, sizeof (ev_statdata));
2038 memset (&w->attr, 0, sizeof (ev_statdata));
2039
2040 ev_stat_stat (EV_A_ w);
2041
2042 if (w->interval < MIN_STAT_INTERVAL)
2043 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2044
2045 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2046 ev_set_priority (&w->timer, ev_priority (w));
2047
2048#if EV_USE_INOTIFY
2049 infy_init (EV_A);
2050
2051 if (fs_fd >= 0)
2052 infy_add (EV_A_ w);
2053 else
2054#endif
2055 ev_timer_start (EV_A_ &w->timer);
2056
2057 ev_start (EV_A_ (W)w, 1);
2058}
2059
2060void
2061ev_stat_stop (EV_P_ ev_stat *w)
2062{
2063 clear_pending (EV_A_ (W)w);
2064 if (expect_false (!ev_is_active (w)))
2065 return;
2066
2067#if EV_USE_INOTIFY
2068 infy_del (EV_A_ w);
2069#endif
2070 ev_timer_stop (EV_A_ &w->timer);
2071
2072 ev_stop (EV_A_ (W)w);
2073}
2074#endif
2075
2076#if EV_IDLE_ENABLE
2077void
2078ev_idle_start (EV_P_ ev_idle *w)
2079{
2080 if (expect_false (ev_is_active (w)))
2081 return;
2082
2083 pri_adjust (EV_A_ (W)w);
2084
2085 {
2086 int active = ++idlecnt [ABSPRI (w)];
2087
2088 ++idleall;
2089 ev_start (EV_A_ (W)w, active);
2090
2091 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2092 idles [ABSPRI (w)][active - 1] = w;
2093 }
2094}
2095
2096void
2097ev_idle_stop (EV_P_ ev_idle *w)
2098{
2099 clear_pending (EV_A_ (W)w);
2100 if (expect_false (!ev_is_active (w)))
2101 return;
2102
2103 {
2104 int active = ((W)w)->active;
2105
2106 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2107 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2108
2109 ev_stop (EV_A_ (W)w);
2110 --idleall;
2111 }
2112}
2113#endif
2114
2115void
2116ev_prepare_start (EV_P_ ev_prepare *w)
2117{
2118 if (expect_false (ev_is_active (w)))
2119 return;
2120
2121 ev_start (EV_A_ (W)w, ++preparecnt);
2122 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2123 prepares [preparecnt - 1] = w;
2124}
2125
2126void
2127ev_prepare_stop (EV_P_ ev_prepare *w)
2128{
2129 clear_pending (EV_A_ (W)w);
2130 if (expect_false (!ev_is_active (w)))
2131 return;
2132
2133 {
2134 int active = ((W)w)->active;
2135 prepares [active - 1] = prepares [--preparecnt];
2136 ((W)prepares [active - 1])->active = active;
2137 }
2138
2139 ev_stop (EV_A_ (W)w);
2140}
2141
2142void
2143ev_check_start (EV_P_ ev_check *w)
2144{
2145 if (expect_false (ev_is_active (w)))
2146 return;
2147
2148 ev_start (EV_A_ (W)w, ++checkcnt);
2149 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2150 checks [checkcnt - 1] = w;
2151}
2152
2153void
2154ev_check_stop (EV_P_ ev_check *w)
2155{
2156 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w)))
2158 return;
2159
2160 {
2161 int active = ((W)w)->active;
2162 checks [active - 1] = checks [--checkcnt];
2163 ((W)checks [active - 1])->active = active;
2164 }
2165
2166 ev_stop (EV_A_ (W)w);
2167}
2168
2169#if EV_EMBED_ENABLE
2170void noinline
2171ev_embed_sweep (EV_P_ ev_embed *w)
2172{
2173 ev_loop (w->loop, EVLOOP_NONBLOCK);
2174}
2175
2176static void
2177embed_cb (EV_P_ ev_io *io, int revents)
2178{
2179 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2180
2181 if (ev_cb (w))
2182 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2183 else
2184 ev_embed_sweep (loop, w);
2185}
2186
2187void
2188ev_embed_start (EV_P_ ev_embed *w)
2189{
2190 if (expect_false (ev_is_active (w)))
2191 return;
2192
2193 {
2194 struct ev_loop *loop = w->loop;
2195 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2196 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
2197 }
2198
2199 ev_set_priority (&w->io, ev_priority (w));
2200 ev_io_start (EV_A_ &w->io);
2201
2202 ev_start (EV_A_ (W)w, 1);
2203}
2204
2205void
2206ev_embed_stop (EV_P_ ev_embed *w)
2207{
2208 clear_pending (EV_A_ (W)w);
2209 if (expect_false (!ev_is_active (w)))
2210 return;
2211
2212 ev_io_stop (EV_A_ &w->io);
2213
2214 ev_stop (EV_A_ (W)w);
2215}
2216#endif
2217
2218#if EV_FORK_ENABLE
2219void
2220ev_fork_start (EV_P_ ev_fork *w)
2221{
2222 if (expect_false (ev_is_active (w)))
2223 return;
2224
2225 ev_start (EV_A_ (W)w, ++forkcnt);
2226 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2227 forks [forkcnt - 1] = w;
2228}
2229
2230void
2231ev_fork_stop (EV_P_ ev_fork *w)
2232{
2233 clear_pending (EV_A_ (W)w);
2234 if (expect_false (!ev_is_active (w)))
2235 return;
2236
2237 {
2238 int active = ((W)w)->active;
2239 forks [active - 1] = forks [--forkcnt];
2240 ((W)forks [active - 1])->active = active;
2241 }
2242
2243 ev_stop (EV_A_ (W)w);
2244}
2245#endif
2246
1660/*****************************************************************************/ 2247/*****************************************************************************/
1661 2248
1662struct ev_once 2249struct ev_once
1663{ 2250{
1664 struct ev_io io; 2251 ev_io io;
1665 struct ev_timer to; 2252 ev_timer to;
1666 void (*cb)(int revents, void *arg); 2253 void (*cb)(int revents, void *arg);
1667 void *arg; 2254 void *arg;
1668}; 2255};
1669 2256
1670static void 2257static void
1679 2266
1680 cb (revents, arg); 2267 cb (revents, arg);
1681} 2268}
1682 2269
1683static void 2270static void
1684once_cb_io (EV_P_ struct ev_io *w, int revents) 2271once_cb_io (EV_P_ ev_io *w, int revents)
1685{ 2272{
1686 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2273 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1687} 2274}
1688 2275
1689static void 2276static void
1690once_cb_to (EV_P_ struct ev_timer *w, int revents) 2277once_cb_to (EV_P_ ev_timer *w, int revents)
1691{ 2278{
1692 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2279 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1693} 2280}
1694 2281
1695void 2282void

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines