ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.135 by root, Sat Nov 24 06:23:27 2007 UTC vs.
Revision 1.181 by root, Wed Dec 12 00:17:08 2007 UTC

94# else 94# else
95# define EV_USE_PORT 0 95# define EV_USE_PORT 0
96# endif 96# endif
97# endif 97# endif
98 98
99# ifndef EV_USE_INOTIFY
100# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
101# define EV_USE_INOTIFY 1
102# else
103# define EV_USE_INOTIFY 0
104# endif
105# endif
106
99#endif 107#endif
100 108
101#include <math.h> 109#include <math.h>
102#include <stdlib.h> 110#include <stdlib.h>
103#include <fcntl.h> 111#include <fcntl.h>
110#include <sys/types.h> 118#include <sys/types.h>
111#include <time.h> 119#include <time.h>
112 120
113#include <signal.h> 121#include <signal.h>
114 122
123#ifdef EV_H
124# include EV_H
125#else
126# include "ev.h"
127#endif
128
115#ifndef _WIN32 129#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 130# include <sys/time.h>
118# include <sys/wait.h> 131# include <sys/wait.h>
132# include <unistd.h>
119#else 133#else
120# define WIN32_LEAN_AND_MEAN 134# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 135# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 136# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 137# define EV_SELECT_IS_WINSOCKET 1
156 170
157#ifndef EV_USE_PORT 171#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 172# define EV_USE_PORT 0
159#endif 173#endif
160 174
175#ifndef EV_USE_INOTIFY
176# define EV_USE_INOTIFY 0
177#endif
178
179#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1
182# else
183# define EV_PID_HASHSIZE 16
184# endif
185#endif
186
187#ifndef EV_INOTIFY_HASHSIZE
188# if EV_MINIMAL
189# define EV_INOTIFY_HASHSIZE 1
190# else
191# define EV_INOTIFY_HASHSIZE 16
192# endif
193#endif
194
161/**/ 195/**/
162 196
163#ifndef CLOCK_MONOTONIC 197#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 198# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 199# define EV_USE_MONOTONIC 0
172 206
173#if EV_SELECT_IS_WINSOCKET 207#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 208# include <winsock.h>
175#endif 209#endif
176 210
211#if !EV_STAT_ENABLE
212# define EV_USE_INOTIFY 0
213#endif
214
215#if EV_USE_INOTIFY
216# include <sys/inotify.h>
217#endif
218
177/**/ 219/**/
220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 230
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189 234
190#if __GNUC__ >= 3 235#if __GNUC__ >= 3
191# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline static inline 237# define noinline __attribute__ ((noinline))
193#else 238#else
194# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
195# define inline static 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
196#endif 244#endif
197 245
198#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
200 255
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
203 258
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 259#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 260#define EMPTY2(a,b) /* used to suppress some warnings */
206 261
207typedef struct ev_watcher *W; 262typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 263typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 264typedef ev_watcher_time *WT;
210 265
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 266static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
212 267
213#ifdef _WIN32 268#ifdef _WIN32
214# include "ev_win32.c" 269# include "ev_win32.c"
216 271
217/*****************************************************************************/ 272/*****************************************************************************/
218 273
219static void (*syserr_cb)(const char *msg); 274static void (*syserr_cb)(const char *msg);
220 275
276void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 277ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 278{
223 syserr_cb = cb; 279 syserr_cb = cb;
224} 280}
225 281
226static void 282static void noinline
227syserr (const char *msg) 283syserr (const char *msg)
228{ 284{
229 if (!msg) 285 if (!msg)
230 msg = "(libev) system error"; 286 msg = "(libev) system error";
231 287
238 } 294 }
239} 295}
240 296
241static void *(*alloc)(void *ptr, long size); 297static void *(*alloc)(void *ptr, long size);
242 298
299void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 300ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 301{
245 alloc = cb; 302 alloc = cb;
246} 303}
247 304
248static void * 305inline_speed void *
249ev_realloc (void *ptr, long size) 306ev_realloc (void *ptr, long size)
250{ 307{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 308 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
252 309
253 if (!ptr && size) 310 if (!ptr && size)
277typedef struct 334typedef struct
278{ 335{
279 W w; 336 W w;
280 int events; 337 int events;
281} ANPENDING; 338} ANPENDING;
339
340#if EV_USE_INOTIFY
341typedef struct
342{
343 WL head;
344} ANFS;
345#endif
282 346
283#if EV_MULTIPLICITY 347#if EV_MULTIPLICITY
284 348
285 struct ev_loop 349 struct ev_loop
286 { 350 {
320 gettimeofday (&tv, 0); 384 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 385 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif 386#endif
323} 387}
324 388
325inline ev_tstamp 389ev_tstamp inline_size
326get_clock (void) 390get_clock (void)
327{ 391{
328#if EV_USE_MONOTONIC 392#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 393 if (expect_true (have_monotonic))
330 { 394 {
343{ 407{
344 return ev_rt_now; 408 return ev_rt_now;
345} 409}
346#endif 410#endif
347 411
348#define array_roundsize(type,n) (((n) | 4) & ~3) 412int inline_size
413array_nextsize (int elem, int cur, int cnt)
414{
415 int ncur = cur + 1;
416
417 do
418 ncur <<= 1;
419 while (cnt > ncur);
420
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096)
423 {
424 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
426 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem;
428 }
429
430 return ncur;
431}
432
433static noinline void *
434array_realloc (int elem, void *base, int *cur, int cnt)
435{
436 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur);
438}
349 439
350#define array_needsize(type,base,cur,cnt,init) \ 440#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 441 if (expect_false ((cnt) > (cur))) \
352 { \ 442 { \
353 int newcnt = cur; \ 443 int ocur_ = (cur); \
354 do \ 444 (base) = (type *)array_realloc \
355 { \ 445 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 446 init ((base) + (ocur_), (cur) - ocur_); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 447 }
364 448
449#if 0
365#define array_slim(type,stem) \ 450#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 451 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 452 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 453 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 454 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 456 }
457#endif
372 458
373#define array_free(stem, idx) \ 459#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
375 461
376/*****************************************************************************/ 462/*****************************************************************************/
377 463
378static void 464void noinline
465ev_feed_event (EV_P_ void *w, int revents)
466{
467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
469
470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
477 pendings [pri][w_->pending - 1].events = revents;
478 }
479}
480
481void inline_speed
482queue_events (EV_P_ W *events, int eventcnt, int type)
483{
484 int i;
485
486 for (i = 0; i < eventcnt; ++i)
487 ev_feed_event (EV_A_ events [i], type);
488}
489
490/*****************************************************************************/
491
492void inline_size
379anfds_init (ANFD *base, int count) 493anfds_init (ANFD *base, int count)
380{ 494{
381 while (count--) 495 while (count--)
382 { 496 {
383 base->head = 0; 497 base->head = 0;
386 500
387 ++base; 501 ++base;
388 } 502 }
389} 503}
390 504
391void 505void inline_speed
392ev_feed_event (EV_P_ void *w, int revents)
393{
394 W w_ = (W)w;
395
396 if (expect_false (w_->pending))
397 {
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
399 return;
400 }
401
402 if (expect_false (!w_->cb))
403 return;
404
405 w_->pending = ++pendingcnt [ABSPRI (w_)];
406 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
407 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
408 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
409}
410
411static void
412queue_events (EV_P_ W *events, int eventcnt, int type)
413{
414 int i;
415
416 for (i = 0; i < eventcnt; ++i)
417 ev_feed_event (EV_A_ events [i], type);
418}
419
420inline void
421fd_event (EV_P_ int fd, int revents) 506fd_event (EV_P_ int fd, int revents)
422{ 507{
423 ANFD *anfd = anfds + fd; 508 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 509 ev_io *w;
425 510
426 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 511 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
427 { 512 {
428 int ev = w->events & revents; 513 int ev = w->events & revents;
429 514
430 if (ev) 515 if (ev)
431 ev_feed_event (EV_A_ (W)w, ev); 516 ev_feed_event (EV_A_ (W)w, ev);
433} 518}
434 519
435void 520void
436ev_feed_fd_event (EV_P_ int fd, int revents) 521ev_feed_fd_event (EV_P_ int fd, int revents)
437{ 522{
523 if (fd >= 0 && fd < anfdmax)
438 fd_event (EV_A_ fd, revents); 524 fd_event (EV_A_ fd, revents);
439} 525}
440 526
441/*****************************************************************************/ 527void inline_size
442
443inline void
444fd_reify (EV_P) 528fd_reify (EV_P)
445{ 529{
446 int i; 530 int i;
447 531
448 for (i = 0; i < fdchangecnt; ++i) 532 for (i = 0; i < fdchangecnt; ++i)
449 { 533 {
450 int fd = fdchanges [i]; 534 int fd = fdchanges [i];
451 ANFD *anfd = anfds + fd; 535 ANFD *anfd = anfds + fd;
452 struct ev_io *w; 536 ev_io *w;
453 537
454 int events = 0; 538 int events = 0;
455 539
456 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 540 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
457 events |= w->events; 541 events |= w->events;
458 542
459#if EV_SELECT_IS_WINSOCKET 543#if EV_SELECT_IS_WINSOCKET
460 if (events) 544 if (events)
461 { 545 {
472 } 556 }
473 557
474 fdchangecnt = 0; 558 fdchangecnt = 0;
475} 559}
476 560
477static void 561void inline_size
478fd_change (EV_P_ int fd) 562fd_change (EV_P_ int fd)
479{ 563{
480 if (expect_false (anfds [fd].reify)) 564 if (expect_false (anfds [fd].reify))
481 return; 565 return;
482 566
485 ++fdchangecnt; 569 ++fdchangecnt;
486 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 570 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
487 fdchanges [fdchangecnt - 1] = fd; 571 fdchanges [fdchangecnt - 1] = fd;
488} 572}
489 573
490static void 574void inline_speed
491fd_kill (EV_P_ int fd) 575fd_kill (EV_P_ int fd)
492{ 576{
493 struct ev_io *w; 577 ev_io *w;
494 578
495 while ((w = (struct ev_io *)anfds [fd].head)) 579 while ((w = (ev_io *)anfds [fd].head))
496 { 580 {
497 ev_io_stop (EV_A_ w); 581 ev_io_stop (EV_A_ w);
498 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 582 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
499 } 583 }
500} 584}
501 585
502inline int 586int inline_size
503fd_valid (int fd) 587fd_valid (int fd)
504{ 588{
505#ifdef _WIN32 589#ifdef _WIN32
506 return _get_osfhandle (fd) != -1; 590 return _get_osfhandle (fd) != -1;
507#else 591#else
508 return fcntl (fd, F_GETFD) != -1; 592 return fcntl (fd, F_GETFD) != -1;
509#endif 593#endif
510} 594}
511 595
512/* called on EBADF to verify fds */ 596/* called on EBADF to verify fds */
513static void 597static void noinline
514fd_ebadf (EV_P) 598fd_ebadf (EV_P)
515{ 599{
516 int fd; 600 int fd;
517 601
518 for (fd = 0; fd < anfdmax; ++fd) 602 for (fd = 0; fd < anfdmax; ++fd)
520 if (!fd_valid (fd) == -1 && errno == EBADF) 604 if (!fd_valid (fd) == -1 && errno == EBADF)
521 fd_kill (EV_A_ fd); 605 fd_kill (EV_A_ fd);
522} 606}
523 607
524/* called on ENOMEM in select/poll to kill some fds and retry */ 608/* called on ENOMEM in select/poll to kill some fds and retry */
525static void 609static void noinline
526fd_enomem (EV_P) 610fd_enomem (EV_P)
527{ 611{
528 int fd; 612 int fd;
529 613
530 for (fd = anfdmax; fd--; ) 614 for (fd = anfdmax; fd--; )
534 return; 618 return;
535 } 619 }
536} 620}
537 621
538/* usually called after fork if backend needs to re-arm all fds from scratch */ 622/* usually called after fork if backend needs to re-arm all fds from scratch */
539static void 623static void noinline
540fd_rearm_all (EV_P) 624fd_rearm_all (EV_P)
541{ 625{
542 int fd; 626 int fd;
543 627
544 /* this should be highly optimised to not do anything but set a flag */
545 for (fd = 0; fd < anfdmax; ++fd) 628 for (fd = 0; fd < anfdmax; ++fd)
546 if (anfds [fd].events) 629 if (anfds [fd].events)
547 { 630 {
548 anfds [fd].events = 0; 631 anfds [fd].events = 0;
549 fd_change (EV_A_ fd); 632 fd_change (EV_A_ fd);
550 } 633 }
551} 634}
552 635
553/*****************************************************************************/ 636/*****************************************************************************/
554 637
555static void 638void inline_speed
556upheap (WT *heap, int k) 639upheap (WT *heap, int k)
557{ 640{
558 WT w = heap [k]; 641 WT w = heap [k];
559 642
560 while (k && heap [k >> 1]->at > w->at) 643 while (k)
561 { 644 {
645 int p = (k - 1) >> 1;
646
647 if (heap [p]->at <= w->at)
648 break;
649
562 heap [k] = heap [k >> 1]; 650 heap [k] = heap [p];
563 ((W)heap [k])->active = k + 1; 651 ((W)heap [k])->active = k + 1;
564 k >>= 1; 652 k = p;
565 } 653 }
566 654
567 heap [k] = w; 655 heap [k] = w;
568 ((W)heap [k])->active = k + 1; 656 ((W)heap [k])->active = k + 1;
569
570} 657}
571 658
572static void 659void inline_speed
573downheap (WT *heap, int N, int k) 660downheap (WT *heap, int N, int k)
574{ 661{
575 WT w = heap [k]; 662 WT w = heap [k];
576 663
577 while (k < (N >> 1)) 664 for (;;)
578 { 665 {
579 int j = k << 1; 666 int c = (k << 1) + 1;
580 667
581 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 668 if (c >= N)
582 ++j;
583
584 if (w->at <= heap [j]->at)
585 break; 669 break;
586 670
671 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
672 ? 1 : 0;
673
674 if (w->at <= heap [c]->at)
675 break;
676
587 heap [k] = heap [j]; 677 heap [k] = heap [c];
588 ((W)heap [k])->active = k + 1; 678 ((W)heap [k])->active = k + 1;
679
589 k = j; 680 k = c;
590 } 681 }
591 682
592 heap [k] = w; 683 heap [k] = w;
593 ((W)heap [k])->active = k + 1; 684 ((W)heap [k])->active = k + 1;
594} 685}
595 686
596inline void 687void inline_size
597adjustheap (WT *heap, int N, int k) 688adjustheap (WT *heap, int N, int k)
598{ 689{
599 upheap (heap, k); 690 upheap (heap, k);
600 downheap (heap, N, k); 691 downheap (heap, N, k);
601} 692}
611static ANSIG *signals; 702static ANSIG *signals;
612static int signalmax; 703static int signalmax;
613 704
614static int sigpipe [2]; 705static int sigpipe [2];
615static sig_atomic_t volatile gotsig; 706static sig_atomic_t volatile gotsig;
616static struct ev_io sigev; 707static ev_io sigev;
617 708
618static void 709void inline_size
619signals_init (ANSIG *base, int count) 710signals_init (ANSIG *base, int count)
620{ 711{
621 while (count--) 712 while (count--)
622 { 713 {
623 base->head = 0; 714 base->head = 0;
643 write (sigpipe [1], &signum, 1); 734 write (sigpipe [1], &signum, 1);
644 errno = old_errno; 735 errno = old_errno;
645 } 736 }
646} 737}
647 738
648void 739void noinline
649ev_feed_signal_event (EV_P_ int signum) 740ev_feed_signal_event (EV_P_ int signum)
650{ 741{
651 WL w; 742 WL w;
652 743
653#if EV_MULTIPLICITY 744#if EV_MULTIPLICITY
664 for (w = signals [signum].head; w; w = w->next) 755 for (w = signals [signum].head; w; w = w->next)
665 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 756 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
666} 757}
667 758
668static void 759static void
669sigcb (EV_P_ struct ev_io *iow, int revents) 760sigcb (EV_P_ ev_io *iow, int revents)
670{ 761{
671 int signum; 762 int signum;
672 763
673 read (sigpipe [0], &revents, 1); 764 read (sigpipe [0], &revents, 1);
674 gotsig = 0; 765 gotsig = 0;
676 for (signum = signalmax; signum--; ) 767 for (signum = signalmax; signum--; )
677 if (signals [signum].gotsig) 768 if (signals [signum].gotsig)
678 ev_feed_signal_event (EV_A_ signum + 1); 769 ev_feed_signal_event (EV_A_ signum + 1);
679} 770}
680 771
681static void 772void inline_speed
682fd_intern (int fd) 773fd_intern (int fd)
683{ 774{
684#ifdef _WIN32 775#ifdef _WIN32
685 int arg = 1; 776 int arg = 1;
686 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 777 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
688 fcntl (fd, F_SETFD, FD_CLOEXEC); 779 fcntl (fd, F_SETFD, FD_CLOEXEC);
689 fcntl (fd, F_SETFL, O_NONBLOCK); 780 fcntl (fd, F_SETFL, O_NONBLOCK);
690#endif 781#endif
691} 782}
692 783
693static void 784static void noinline
694siginit (EV_P) 785siginit (EV_P)
695{ 786{
696 fd_intern (sigpipe [0]); 787 fd_intern (sigpipe [0]);
697 fd_intern (sigpipe [1]); 788 fd_intern (sigpipe [1]);
698 789
701 ev_unref (EV_A); /* child watcher should not keep loop alive */ 792 ev_unref (EV_A); /* child watcher should not keep loop alive */
702} 793}
703 794
704/*****************************************************************************/ 795/*****************************************************************************/
705 796
706static struct ev_child *childs [PID_HASHSIZE]; 797static ev_child *childs [EV_PID_HASHSIZE];
707 798
708#ifndef _WIN32 799#ifndef _WIN32
709 800
710static struct ev_signal childev; 801static ev_signal childev;
802
803void inline_speed
804child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status)
805{
806 ev_child *w;
807
808 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
809 if (w->pid == pid || !w->pid)
810 {
811 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
812 w->rpid = pid;
813 w->rstatus = status;
814 ev_feed_event (EV_A_ (W)w, EV_CHILD);
815 }
816}
711 817
712#ifndef WCONTINUED 818#ifndef WCONTINUED
713# define WCONTINUED 0 819# define WCONTINUED 0
714#endif 820#endif
715 821
716static void 822static void
717child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
718{
719 struct ev_child *w;
720
721 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
722 if (w->pid == pid || !w->pid)
723 {
724 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
725 w->rpid = pid;
726 w->rstatus = status;
727 ev_feed_event (EV_A_ (W)w, EV_CHILD);
728 }
729}
730
731static void
732childcb (EV_P_ struct ev_signal *sw, int revents) 823childcb (EV_P_ ev_signal *sw, int revents)
733{ 824{
734 int pid, status; 825 int pid, status;
735 826
827 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
736 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 828 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
737 { 829 if (!WCONTINUED
830 || errno != EINVAL
831 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
832 return;
833
738 /* make sure we are called again until all childs have been reaped */ 834 /* make sure we are called again until all childs have been reaped */
739 /* we need to do it this way so that the callback gets called before we continue */ 835 /* we need to do it this way so that the callback gets called before we continue */
740 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 836 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
741 837
742 child_reap (EV_A_ sw, pid, pid, status); 838 child_reap (EV_A_ sw, pid, pid, status);
839 if (EV_PID_HASHSIZE > 1)
743 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 840 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
744 }
745} 841}
746 842
747#endif 843#endif
748 844
749/*****************************************************************************/ 845/*****************************************************************************/
775{ 871{
776 return EV_VERSION_MINOR; 872 return EV_VERSION_MINOR;
777} 873}
778 874
779/* return true if we are running with elevated privileges and should ignore env variables */ 875/* return true if we are running with elevated privileges and should ignore env variables */
780static int 876int inline_size
781enable_secure (void) 877enable_secure (void)
782{ 878{
783#ifdef _WIN32 879#ifdef _WIN32
784 return 0; 880 return 0;
785#else 881#else
832ev_backend (EV_P) 928ev_backend (EV_P)
833{ 929{
834 return backend; 930 return backend;
835} 931}
836 932
837static void 933unsigned int
934ev_loop_count (EV_P)
935{
936 return loop_count;
937}
938
939static void noinline
838loop_init (EV_P_ unsigned int flags) 940loop_init (EV_P_ unsigned int flags)
839{ 941{
840 if (!backend) 942 if (!backend)
841 { 943 {
842#if EV_USE_MONOTONIC 944#if EV_USE_MONOTONIC
850 ev_rt_now = ev_time (); 952 ev_rt_now = ev_time ();
851 mn_now = get_clock (); 953 mn_now = get_clock ();
852 now_floor = mn_now; 954 now_floor = mn_now;
853 rtmn_diff = ev_rt_now - mn_now; 955 rtmn_diff = ev_rt_now - mn_now;
854 956
957 /* pid check not overridable via env */
958#ifndef _WIN32
959 if (flags & EVFLAG_FORKCHECK)
960 curpid = getpid ();
961#endif
962
855 if (!(flags & EVFLAG_NOENV) 963 if (!(flags & EVFLAG_NOENV)
856 && !enable_secure () 964 && !enable_secure ()
857 && getenv ("LIBEV_FLAGS")) 965 && getenv ("LIBEV_FLAGS"))
858 flags = atoi (getenv ("LIBEV_FLAGS")); 966 flags = atoi (getenv ("LIBEV_FLAGS"));
859 967
860 if (!(flags & 0x0000ffffUL)) 968 if (!(flags & 0x0000ffffUL))
861 flags |= ev_recommended_backends (); 969 flags |= ev_recommended_backends ();
862 970
863 backend = 0; 971 backend = 0;
972 backend_fd = -1;
973#if EV_USE_INOTIFY
974 fs_fd = -2;
975#endif
976
864#if EV_USE_PORT 977#if EV_USE_PORT
865 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 978 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
866#endif 979#endif
867#if EV_USE_KQUEUE 980#if EV_USE_KQUEUE
868 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 981 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
880 ev_init (&sigev, sigcb); 993 ev_init (&sigev, sigcb);
881 ev_set_priority (&sigev, EV_MAXPRI); 994 ev_set_priority (&sigev, EV_MAXPRI);
882 } 995 }
883} 996}
884 997
885static void 998static void noinline
886loop_destroy (EV_P) 999loop_destroy (EV_P)
887{ 1000{
888 int i; 1001 int i;
1002
1003#if EV_USE_INOTIFY
1004 if (fs_fd >= 0)
1005 close (fs_fd);
1006#endif
1007
1008 if (backend_fd >= 0)
1009 close (backend_fd);
889 1010
890#if EV_USE_PORT 1011#if EV_USE_PORT
891 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1012 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
892#endif 1013#endif
893#if EV_USE_KQUEUE 1014#if EV_USE_KQUEUE
902#if EV_USE_SELECT 1023#if EV_USE_SELECT
903 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1024 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
904#endif 1025#endif
905 1026
906 for (i = NUMPRI; i--; ) 1027 for (i = NUMPRI; i--; )
1028 {
907 array_free (pending, [i]); 1029 array_free (pending, [i]);
1030#if EV_IDLE_ENABLE
1031 array_free (idle, [i]);
1032#endif
1033 }
908 1034
909 /* have to use the microsoft-never-gets-it-right macro */ 1035 /* have to use the microsoft-never-gets-it-right macro */
910 array_free (fdchange, EMPTY0); 1036 array_free (fdchange, EMPTY);
911 array_free (timer, EMPTY0); 1037 array_free (timer, EMPTY);
912#if EV_PERIODICS 1038#if EV_PERIODIC_ENABLE
913 array_free (periodic, EMPTY0); 1039 array_free (periodic, EMPTY);
914#endif 1040#endif
915 array_free (idle, EMPTY0);
916 array_free (prepare, EMPTY0); 1041 array_free (prepare, EMPTY);
917 array_free (check, EMPTY0); 1042 array_free (check, EMPTY);
918 1043
919 backend = 0; 1044 backend = 0;
920} 1045}
921 1046
922static void 1047void inline_size infy_fork (EV_P);
1048
1049void inline_size
923loop_fork (EV_P) 1050loop_fork (EV_P)
924{ 1051{
925#if EV_USE_PORT 1052#if EV_USE_PORT
926 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1053 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
927#endif 1054#endif
928#if EV_USE_KQUEUE 1055#if EV_USE_KQUEUE
929 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1056 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
930#endif 1057#endif
931#if EV_USE_EPOLL 1058#if EV_USE_EPOLL
932 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1059 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1060#endif
1061#if EV_USE_INOTIFY
1062 infy_fork (EV_A);
933#endif 1063#endif
934 1064
935 if (ev_is_active (&sigev)) 1065 if (ev_is_active (&sigev))
936 { 1066 {
937 /* default loop */ 1067 /* default loop */
1053 postfork = 1; 1183 postfork = 1;
1054} 1184}
1055 1185
1056/*****************************************************************************/ 1186/*****************************************************************************/
1057 1187
1058static int 1188void
1059any_pending (EV_P) 1189ev_invoke (EV_P_ void *w, int revents)
1060{ 1190{
1061 int pri; 1191 EV_CB_INVOKE ((W)w, revents);
1062
1063 for (pri = NUMPRI; pri--; )
1064 if (pendingcnt [pri])
1065 return 1;
1066
1067 return 0;
1068} 1192}
1069 1193
1070inline void 1194void inline_speed
1071call_pending (EV_P) 1195call_pending (EV_P)
1072{ 1196{
1073 int pri; 1197 int pri;
1074 1198
1075 for (pri = NUMPRI; pri--; ) 1199 for (pri = NUMPRI; pri--; )
1077 { 1201 {
1078 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1202 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1079 1203
1080 if (expect_true (p->w)) 1204 if (expect_true (p->w))
1081 { 1205 {
1206 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1207
1082 p->w->pending = 0; 1208 p->w->pending = 0;
1083 EV_CB_INVOKE (p->w, p->events); 1209 EV_CB_INVOKE (p->w, p->events);
1084 } 1210 }
1085 } 1211 }
1086} 1212}
1087 1213
1088inline void 1214void inline_size
1089timers_reify (EV_P) 1215timers_reify (EV_P)
1090{ 1216{
1091 while (timercnt && ((WT)timers [0])->at <= mn_now) 1217 while (timercnt && ((WT)timers [0])->at <= mn_now)
1092 { 1218 {
1093 struct ev_timer *w = timers [0]; 1219 ev_timer *w = (ev_timer *)timers [0];
1094 1220
1095 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1221 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1096 1222
1097 /* first reschedule or stop timer */ 1223 /* first reschedule or stop timer */
1098 if (w->repeat) 1224 if (w->repeat)
1099 { 1225 {
1100 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1226 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1101 1227
1102 ((WT)w)->at += w->repeat; 1228 ((WT)w)->at += w->repeat;
1103 if (((WT)w)->at < mn_now) 1229 if (((WT)w)->at < mn_now)
1104 ((WT)w)->at = mn_now; 1230 ((WT)w)->at = mn_now;
1105 1231
1106 downheap ((WT *)timers, timercnt, 0); 1232 downheap (timers, timercnt, 0);
1107 } 1233 }
1108 else 1234 else
1109 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1235 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1110 1236
1111 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1237 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1112 } 1238 }
1113} 1239}
1114 1240
1115#if EV_PERIODICS 1241#if EV_PERIODIC_ENABLE
1116inline void 1242void inline_size
1117periodics_reify (EV_P) 1243periodics_reify (EV_P)
1118{ 1244{
1119 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1245 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1120 { 1246 {
1121 struct ev_periodic *w = periodics [0]; 1247 ev_periodic *w = (ev_periodic *)periodics [0];
1122 1248
1123 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1249 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1124 1250
1125 /* first reschedule or stop timer */ 1251 /* first reschedule or stop timer */
1126 if (w->reschedule_cb) 1252 if (w->reschedule_cb)
1127 { 1253 {
1128 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1254 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1129 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1255 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1130 downheap ((WT *)periodics, periodiccnt, 0); 1256 downheap (periodics, periodiccnt, 0);
1131 } 1257 }
1132 else if (w->interval) 1258 else if (w->interval)
1133 { 1259 {
1134 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1260 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1261 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1135 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1262 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1136 downheap ((WT *)periodics, periodiccnt, 0); 1263 downheap (periodics, periodiccnt, 0);
1137 } 1264 }
1138 else 1265 else
1139 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1266 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1140 1267
1141 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1268 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1142 } 1269 }
1143} 1270}
1144 1271
1145static void 1272static void noinline
1146periodics_reschedule (EV_P) 1273periodics_reschedule (EV_P)
1147{ 1274{
1148 int i; 1275 int i;
1149 1276
1150 /* adjust periodics after time jump */ 1277 /* adjust periodics after time jump */
1151 for (i = 0; i < periodiccnt; ++i) 1278 for (i = 0; i < periodiccnt; ++i)
1152 { 1279 {
1153 struct ev_periodic *w = periodics [i]; 1280 ev_periodic *w = (ev_periodic *)periodics [i];
1154 1281
1155 if (w->reschedule_cb) 1282 if (w->reschedule_cb)
1156 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1283 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1157 else if (w->interval) 1284 else if (w->interval)
1158 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1285 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1159 } 1286 }
1160 1287
1161 /* now rebuild the heap */ 1288 /* now rebuild the heap */
1162 for (i = periodiccnt >> 1; i--; ) 1289 for (i = periodiccnt >> 1; i--; )
1163 downheap ((WT *)periodics, periodiccnt, i); 1290 downheap (periodics, periodiccnt, i);
1164} 1291}
1165#endif 1292#endif
1166 1293
1167inline int 1294#if EV_IDLE_ENABLE
1168time_update_monotonic (EV_P) 1295void inline_size
1296idle_reify (EV_P)
1169{ 1297{
1298 if (expect_false (idleall))
1299 {
1300 int pri;
1301
1302 for (pri = NUMPRI; pri--; )
1303 {
1304 if (pendingcnt [pri])
1305 break;
1306
1307 if (idlecnt [pri])
1308 {
1309 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1310 break;
1311 }
1312 }
1313 }
1314}
1315#endif
1316
1317void inline_speed
1318time_update (EV_P_ ev_tstamp max_block)
1319{
1320 int i;
1321
1322#if EV_USE_MONOTONIC
1323 if (expect_true (have_monotonic))
1324 {
1325 ev_tstamp odiff = rtmn_diff;
1326
1170 mn_now = get_clock (); 1327 mn_now = get_clock ();
1171 1328
1329 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1330 /* interpolate in the meantime */
1172 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1331 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1173 { 1332 {
1174 ev_rt_now = rtmn_diff + mn_now; 1333 ev_rt_now = rtmn_diff + mn_now;
1175 return 0; 1334 return;
1176 } 1335 }
1177 else 1336
1178 {
1179 now_floor = mn_now; 1337 now_floor = mn_now;
1180 ev_rt_now = ev_time (); 1338 ev_rt_now = ev_time ();
1181 return 1;
1182 }
1183}
1184 1339
1185inline void 1340 /* loop a few times, before making important decisions.
1186time_update (EV_P) 1341 * on the choice of "4": one iteration isn't enough,
1187{ 1342 * in case we get preempted during the calls to
1188 int i; 1343 * ev_time and get_clock. a second call is almost guaranteed
1189 1344 * to succeed in that case, though. and looping a few more times
1190#if EV_USE_MONOTONIC 1345 * doesn't hurt either as we only do this on time-jumps or
1191 if (expect_true (have_monotonic)) 1346 * in the unlikely event of having been preempted here.
1192 { 1347 */
1193 if (time_update_monotonic (EV_A)) 1348 for (i = 4; --i; )
1194 { 1349 {
1195 ev_tstamp odiff = rtmn_diff;
1196
1197 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1198 {
1199 rtmn_diff = ev_rt_now - mn_now; 1350 rtmn_diff = ev_rt_now - mn_now;
1200 1351
1201 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1352 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1202 return; /* all is well */ 1353 return; /* all is well */
1203 1354
1204 ev_rt_now = ev_time (); 1355 ev_rt_now = ev_time ();
1205 mn_now = get_clock (); 1356 mn_now = get_clock ();
1206 now_floor = mn_now; 1357 now_floor = mn_now;
1207 } 1358 }
1208 1359
1209# if EV_PERIODICS 1360# if EV_PERIODIC_ENABLE
1361 periodics_reschedule (EV_A);
1362# endif
1363 /* no timer adjustment, as the monotonic clock doesn't jump */
1364 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1365 }
1366 else
1367#endif
1368 {
1369 ev_rt_now = ev_time ();
1370
1371 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1372 {
1373#if EV_PERIODIC_ENABLE
1210 periodics_reschedule (EV_A); 1374 periodics_reschedule (EV_A);
1211# endif 1375#endif
1212 /* no timer adjustment, as the monotonic clock doesn't jump */
1213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1214 }
1215 }
1216 else
1217#endif
1218 {
1219 ev_rt_now = ev_time ();
1220
1221 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1222 {
1223#if EV_PERIODICS
1224 periodics_reschedule (EV_A);
1225#endif
1226
1227 /* adjust timers. this is easy, as the offset is the same for all */ 1376 /* adjust timers. this is easy, as the offset is the same for all of them */
1228 for (i = 0; i < timercnt; ++i) 1377 for (i = 0; i < timercnt; ++i)
1229 ((WT)timers [i])->at += ev_rt_now - mn_now; 1378 ((WT)timers [i])->at += ev_rt_now - mn_now;
1230 } 1379 }
1231 1380
1232 mn_now = ev_rt_now; 1381 mn_now = ev_rt_now;
1252{ 1401{
1253 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1402 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1254 ? EVUNLOOP_ONE 1403 ? EVUNLOOP_ONE
1255 : EVUNLOOP_CANCEL; 1404 : EVUNLOOP_CANCEL;
1256 1405
1257 while (activecnt) 1406 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1407
1408 do
1258 { 1409 {
1410#ifndef _WIN32
1411 if (expect_false (curpid)) /* penalise the forking check even more */
1412 if (expect_false (getpid () != curpid))
1413 {
1414 curpid = getpid ();
1415 postfork = 1;
1416 }
1417#endif
1418
1419#if EV_FORK_ENABLE
1420 /* we might have forked, so queue fork handlers */
1421 if (expect_false (postfork))
1422 if (forkcnt)
1423 {
1424 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1425 call_pending (EV_A);
1426 }
1427#endif
1428
1259 /* queue check watchers (and execute them) */ 1429 /* queue prepare watchers (and execute them) */
1260 if (expect_false (preparecnt)) 1430 if (expect_false (preparecnt))
1261 { 1431 {
1262 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1432 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1263 call_pending (EV_A); 1433 call_pending (EV_A);
1264 } 1434 }
1265 1435
1436 if (expect_false (!activecnt))
1437 break;
1438
1266 /* we might have forked, so reify kernel state if necessary */ 1439 /* we might have forked, so reify kernel state if necessary */
1267 if (expect_false (postfork)) 1440 if (expect_false (postfork))
1268 loop_fork (EV_A); 1441 loop_fork (EV_A);
1269 1442
1270 /* update fd-related kernel structures */ 1443 /* update fd-related kernel structures */
1271 fd_reify (EV_A); 1444 fd_reify (EV_A);
1272 1445
1273 /* calculate blocking time */ 1446 /* calculate blocking time */
1274 { 1447 {
1275 double block; 1448 ev_tstamp block;
1276 1449
1277 if (flags & EVLOOP_NONBLOCK || idlecnt) 1450 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1278 block = 0.; /* do not block at all */ 1451 block = 0.; /* do not block at all */
1279 else 1452 else
1280 { 1453 {
1281 /* update time to cancel out callback processing overhead */ 1454 /* update time to cancel out callback processing overhead */
1282#if EV_USE_MONOTONIC
1283 if (expect_true (have_monotonic))
1284 time_update_monotonic (EV_A); 1455 time_update (EV_A_ 1e100);
1285 else
1286#endif
1287 {
1288 ev_rt_now = ev_time ();
1289 mn_now = ev_rt_now;
1290 }
1291 1456
1292 block = MAX_BLOCKTIME; 1457 block = MAX_BLOCKTIME;
1293 1458
1294 if (timercnt) 1459 if (timercnt)
1295 { 1460 {
1296 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1461 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1297 if (block > to) block = to; 1462 if (block > to) block = to;
1298 } 1463 }
1299 1464
1300#if EV_PERIODICS 1465#if EV_PERIODIC_ENABLE
1301 if (periodiccnt) 1466 if (periodiccnt)
1302 { 1467 {
1303 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1468 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1304 if (block > to) block = to; 1469 if (block > to) block = to;
1305 } 1470 }
1306#endif 1471#endif
1307 1472
1308 if (expect_false (block < 0.)) block = 0.; 1473 if (expect_false (block < 0.)) block = 0.;
1309 } 1474 }
1310 1475
1476 ++loop_count;
1311 backend_poll (EV_A_ block); 1477 backend_poll (EV_A_ block);
1478
1479 /* update ev_rt_now, do magic */
1480 time_update (EV_A_ block);
1312 } 1481 }
1313
1314 /* update ev_rt_now, do magic */
1315 time_update (EV_A);
1316 1482
1317 /* queue pending timers and reschedule them */ 1483 /* queue pending timers and reschedule them */
1318 timers_reify (EV_A); /* relative timers called last */ 1484 timers_reify (EV_A); /* relative timers called last */
1319#if EV_PERIODICS 1485#if EV_PERIODIC_ENABLE
1320 periodics_reify (EV_A); /* absolute timers called first */ 1486 periodics_reify (EV_A); /* absolute timers called first */
1321#endif 1487#endif
1322 1488
1489#if EV_IDLE_ENABLE
1323 /* queue idle watchers unless io or timers are pending */ 1490 /* queue idle watchers unless other events are pending */
1324 if (idlecnt && !any_pending (EV_A)) 1491 idle_reify (EV_A);
1325 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1492#endif
1326 1493
1327 /* queue check watchers, to be executed first */ 1494 /* queue check watchers, to be executed first */
1328 if (expect_false (checkcnt)) 1495 if (expect_false (checkcnt))
1329 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1496 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1330 1497
1331 call_pending (EV_A); 1498 call_pending (EV_A);
1332 1499
1333 if (expect_false (loop_done))
1334 break;
1335 } 1500 }
1501 while (expect_true (activecnt && !loop_done));
1336 1502
1337 if (loop_done == EVUNLOOP_ONE) 1503 if (loop_done == EVUNLOOP_ONE)
1338 loop_done = EVUNLOOP_CANCEL; 1504 loop_done = EVUNLOOP_CANCEL;
1339} 1505}
1340 1506
1344 loop_done = how; 1510 loop_done = how;
1345} 1511}
1346 1512
1347/*****************************************************************************/ 1513/*****************************************************************************/
1348 1514
1349inline void 1515void inline_size
1350wlist_add (WL *head, WL elem) 1516wlist_add (WL *head, WL elem)
1351{ 1517{
1352 elem->next = *head; 1518 elem->next = *head;
1353 *head = elem; 1519 *head = elem;
1354} 1520}
1355 1521
1356inline void 1522void inline_size
1357wlist_del (WL *head, WL elem) 1523wlist_del (WL *head, WL elem)
1358{ 1524{
1359 while (*head) 1525 while (*head)
1360 { 1526 {
1361 if (*head == elem) 1527 if (*head == elem)
1366 1532
1367 head = &(*head)->next; 1533 head = &(*head)->next;
1368 } 1534 }
1369} 1535}
1370 1536
1371inline void 1537void inline_speed
1372ev_clear_pending (EV_P_ W w) 1538clear_pending (EV_P_ W w)
1373{ 1539{
1374 if (w->pending) 1540 if (w->pending)
1375 { 1541 {
1376 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1542 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1377 w->pending = 0; 1543 w->pending = 0;
1378 } 1544 }
1379} 1545}
1380 1546
1381inline void 1547int
1548ev_clear_pending (EV_P_ void *w)
1549{
1550 W w_ = (W)w;
1551 int pending = w_->pending;
1552
1553 if (expect_true (pending))
1554 {
1555 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1556 w_->pending = 0;
1557 p->w = 0;
1558 return p->events;
1559 }
1560 else
1561 return 0;
1562}
1563
1564void inline_size
1565pri_adjust (EV_P_ W w)
1566{
1567 int pri = w->priority;
1568 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1569 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1570 w->priority = pri;
1571}
1572
1573void inline_speed
1382ev_start (EV_P_ W w, int active) 1574ev_start (EV_P_ W w, int active)
1383{ 1575{
1384 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1576 pri_adjust (EV_A_ w);
1385 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1386
1387 w->active = active; 1577 w->active = active;
1388 ev_ref (EV_A); 1578 ev_ref (EV_A);
1389} 1579}
1390 1580
1391inline void 1581void inline_size
1392ev_stop (EV_P_ W w) 1582ev_stop (EV_P_ W w)
1393{ 1583{
1394 ev_unref (EV_A); 1584 ev_unref (EV_A);
1395 w->active = 0; 1585 w->active = 0;
1396} 1586}
1397 1587
1398/*****************************************************************************/ 1588/*****************************************************************************/
1399 1589
1400void 1590void noinline
1401ev_io_start (EV_P_ struct ev_io *w) 1591ev_io_start (EV_P_ ev_io *w)
1402{ 1592{
1403 int fd = w->fd; 1593 int fd = w->fd;
1404 1594
1405 if (expect_false (ev_is_active (w))) 1595 if (expect_false (ev_is_active (w)))
1406 return; 1596 return;
1412 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1602 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1413 1603
1414 fd_change (EV_A_ fd); 1604 fd_change (EV_A_ fd);
1415} 1605}
1416 1606
1417void 1607void noinline
1418ev_io_stop (EV_P_ struct ev_io *w) 1608ev_io_stop (EV_P_ ev_io *w)
1419{ 1609{
1420 ev_clear_pending (EV_A_ (W)w); 1610 clear_pending (EV_A_ (W)w);
1421 if (expect_false (!ev_is_active (w))) 1611 if (expect_false (!ev_is_active (w)))
1422 return; 1612 return;
1423 1613
1424 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1614 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1425 1615
1427 ev_stop (EV_A_ (W)w); 1617 ev_stop (EV_A_ (W)w);
1428 1618
1429 fd_change (EV_A_ w->fd); 1619 fd_change (EV_A_ w->fd);
1430} 1620}
1431 1621
1432void 1622void noinline
1433ev_timer_start (EV_P_ struct ev_timer *w) 1623ev_timer_start (EV_P_ ev_timer *w)
1434{ 1624{
1435 if (expect_false (ev_is_active (w))) 1625 if (expect_false (ev_is_active (w)))
1436 return; 1626 return;
1437 1627
1438 ((WT)w)->at += mn_now; 1628 ((WT)w)->at += mn_now;
1439 1629
1440 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1630 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1441 1631
1442 ev_start (EV_A_ (W)w, ++timercnt); 1632 ev_start (EV_A_ (W)w, ++timercnt);
1443 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1633 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1444 timers [timercnt - 1] = w; 1634 timers [timercnt - 1] = (WT)w;
1445 upheap ((WT *)timers, timercnt - 1); 1635 upheap (timers, timercnt - 1);
1446 1636
1447 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1637 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1448} 1638}
1449 1639
1450void 1640void noinline
1451ev_timer_stop (EV_P_ struct ev_timer *w) 1641ev_timer_stop (EV_P_ ev_timer *w)
1452{ 1642{
1453 ev_clear_pending (EV_A_ (W)w); 1643 clear_pending (EV_A_ (W)w);
1454 if (expect_false (!ev_is_active (w))) 1644 if (expect_false (!ev_is_active (w)))
1455 return; 1645 return;
1456 1646
1457 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1647 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1458 1648
1649 {
1650 int active = ((W)w)->active;
1651
1459 if (expect_true (((W)w)->active < timercnt--)) 1652 if (expect_true (--active < --timercnt))
1460 { 1653 {
1461 timers [((W)w)->active - 1] = timers [timercnt]; 1654 timers [active] = timers [timercnt];
1462 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1655 adjustheap (timers, timercnt, active);
1463 } 1656 }
1657 }
1464 1658
1465 ((WT)w)->at -= mn_now; 1659 ((WT)w)->at -= mn_now;
1466 1660
1467 ev_stop (EV_A_ (W)w); 1661 ev_stop (EV_A_ (W)w);
1468} 1662}
1469 1663
1470void 1664void noinline
1471ev_timer_again (EV_P_ struct ev_timer *w) 1665ev_timer_again (EV_P_ ev_timer *w)
1472{ 1666{
1473 if (ev_is_active (w)) 1667 if (ev_is_active (w))
1474 { 1668 {
1475 if (w->repeat) 1669 if (w->repeat)
1476 { 1670 {
1477 ((WT)w)->at = mn_now + w->repeat; 1671 ((WT)w)->at = mn_now + w->repeat;
1478 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1672 adjustheap (timers, timercnt, ((W)w)->active - 1);
1479 } 1673 }
1480 else 1674 else
1481 ev_timer_stop (EV_A_ w); 1675 ev_timer_stop (EV_A_ w);
1482 } 1676 }
1483 else if (w->repeat) 1677 else if (w->repeat)
1485 w->at = w->repeat; 1679 w->at = w->repeat;
1486 ev_timer_start (EV_A_ w); 1680 ev_timer_start (EV_A_ w);
1487 } 1681 }
1488} 1682}
1489 1683
1490#if EV_PERIODICS 1684#if EV_PERIODIC_ENABLE
1491void 1685void noinline
1492ev_periodic_start (EV_P_ struct ev_periodic *w) 1686ev_periodic_start (EV_P_ ev_periodic *w)
1493{ 1687{
1494 if (expect_false (ev_is_active (w))) 1688 if (expect_false (ev_is_active (w)))
1495 return; 1689 return;
1496 1690
1497 if (w->reschedule_cb) 1691 if (w->reschedule_cb)
1498 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1692 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1499 else if (w->interval) 1693 else if (w->interval)
1500 { 1694 {
1501 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1695 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1502 /* this formula differs from the one in periodic_reify because we do not always round up */ 1696 /* this formula differs from the one in periodic_reify because we do not always round up */
1503 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1697 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1504 } 1698 }
1699 else
1700 ((WT)w)->at = w->offset;
1505 1701
1506 ev_start (EV_A_ (W)w, ++periodiccnt); 1702 ev_start (EV_A_ (W)w, ++periodiccnt);
1507 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1703 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1508 periodics [periodiccnt - 1] = w; 1704 periodics [periodiccnt - 1] = (WT)w;
1509 upheap ((WT *)periodics, periodiccnt - 1); 1705 upheap (periodics, periodiccnt - 1);
1510 1706
1511 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1707 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1512} 1708}
1513 1709
1514void 1710void noinline
1515ev_periodic_stop (EV_P_ struct ev_periodic *w) 1711ev_periodic_stop (EV_P_ ev_periodic *w)
1516{ 1712{
1517 ev_clear_pending (EV_A_ (W)w); 1713 clear_pending (EV_A_ (W)w);
1518 if (expect_false (!ev_is_active (w))) 1714 if (expect_false (!ev_is_active (w)))
1519 return; 1715 return;
1520 1716
1521 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1717 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1522 1718
1719 {
1720 int active = ((W)w)->active;
1721
1523 if (expect_true (((W)w)->active < periodiccnt--)) 1722 if (expect_true (--active < --periodiccnt))
1524 { 1723 {
1525 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1724 periodics [active] = periodics [periodiccnt];
1526 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1725 adjustheap (periodics, periodiccnt, active);
1527 } 1726 }
1727 }
1528 1728
1529 ev_stop (EV_A_ (W)w); 1729 ev_stop (EV_A_ (W)w);
1530} 1730}
1531 1731
1532void 1732void noinline
1533ev_periodic_again (EV_P_ struct ev_periodic *w) 1733ev_periodic_again (EV_P_ ev_periodic *w)
1534{ 1734{
1535 /* TODO: use adjustheap and recalculation */ 1735 /* TODO: use adjustheap and recalculation */
1536 ev_periodic_stop (EV_A_ w); 1736 ev_periodic_stop (EV_A_ w);
1537 ev_periodic_start (EV_A_ w); 1737 ev_periodic_start (EV_A_ w);
1538} 1738}
1539#endif 1739#endif
1540 1740
1541void
1542ev_idle_start (EV_P_ struct ev_idle *w)
1543{
1544 if (expect_false (ev_is_active (w)))
1545 return;
1546
1547 ev_start (EV_A_ (W)w, ++idlecnt);
1548 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1549 idles [idlecnt - 1] = w;
1550}
1551
1552void
1553ev_idle_stop (EV_P_ struct ev_idle *w)
1554{
1555 ev_clear_pending (EV_A_ (W)w);
1556 if (expect_false (!ev_is_active (w)))
1557 return;
1558
1559 idles [((W)w)->active - 1] = idles [--idlecnt];
1560 ev_stop (EV_A_ (W)w);
1561}
1562
1563void
1564ev_prepare_start (EV_P_ struct ev_prepare *w)
1565{
1566 if (expect_false (ev_is_active (w)))
1567 return;
1568
1569 ev_start (EV_A_ (W)w, ++preparecnt);
1570 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1571 prepares [preparecnt - 1] = w;
1572}
1573
1574void
1575ev_prepare_stop (EV_P_ struct ev_prepare *w)
1576{
1577 ev_clear_pending (EV_A_ (W)w);
1578 if (expect_false (!ev_is_active (w)))
1579 return;
1580
1581 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1582 ev_stop (EV_A_ (W)w);
1583}
1584
1585void
1586ev_check_start (EV_P_ struct ev_check *w)
1587{
1588 if (expect_false (ev_is_active (w)))
1589 return;
1590
1591 ev_start (EV_A_ (W)w, ++checkcnt);
1592 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1593 checks [checkcnt - 1] = w;
1594}
1595
1596void
1597ev_check_stop (EV_P_ struct ev_check *w)
1598{
1599 ev_clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w)))
1601 return;
1602
1603 checks [((W)w)->active - 1] = checks [--checkcnt];
1604 ev_stop (EV_A_ (W)w);
1605}
1606
1607#ifndef SA_RESTART 1741#ifndef SA_RESTART
1608# define SA_RESTART 0 1742# define SA_RESTART 0
1609#endif 1743#endif
1610 1744
1611void 1745void noinline
1612ev_signal_start (EV_P_ struct ev_signal *w) 1746ev_signal_start (EV_P_ ev_signal *w)
1613{ 1747{
1614#if EV_MULTIPLICITY 1748#if EV_MULTIPLICITY
1615 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1749 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1616#endif 1750#endif
1617 if (expect_false (ev_is_active (w))) 1751 if (expect_false (ev_is_active (w)))
1618 return; 1752 return;
1619 1753
1620 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1754 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1621 1755
1756 {
1757#ifndef _WIN32
1758 sigset_t full, prev;
1759 sigfillset (&full);
1760 sigprocmask (SIG_SETMASK, &full, &prev);
1761#endif
1762
1763 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1764
1765#ifndef _WIN32
1766 sigprocmask (SIG_SETMASK, &prev, 0);
1767#endif
1768 }
1769
1622 ev_start (EV_A_ (W)w, 1); 1770 ev_start (EV_A_ (W)w, 1);
1623 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1624 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1771 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1625 1772
1626 if (!((WL)w)->next) 1773 if (!((WL)w)->next)
1627 { 1774 {
1628#if _WIN32 1775#if _WIN32
1635 sigaction (w->signum, &sa, 0); 1782 sigaction (w->signum, &sa, 0);
1636#endif 1783#endif
1637 } 1784 }
1638} 1785}
1639 1786
1640void 1787void noinline
1641ev_signal_stop (EV_P_ struct ev_signal *w) 1788ev_signal_stop (EV_P_ ev_signal *w)
1642{ 1789{
1643 ev_clear_pending (EV_A_ (W)w); 1790 clear_pending (EV_A_ (W)w);
1644 if (expect_false (!ev_is_active (w))) 1791 if (expect_false (!ev_is_active (w)))
1645 return; 1792 return;
1646 1793
1647 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1794 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1648 ev_stop (EV_A_ (W)w); 1795 ev_stop (EV_A_ (W)w);
1650 if (!signals [w->signum - 1].head) 1797 if (!signals [w->signum - 1].head)
1651 signal (w->signum, SIG_DFL); 1798 signal (w->signum, SIG_DFL);
1652} 1799}
1653 1800
1654void 1801void
1655ev_child_start (EV_P_ struct ev_child *w) 1802ev_child_start (EV_P_ ev_child *w)
1656{ 1803{
1657#if EV_MULTIPLICITY 1804#if EV_MULTIPLICITY
1658 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1805 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1659#endif 1806#endif
1660 if (expect_false (ev_is_active (w))) 1807 if (expect_false (ev_is_active (w)))
1661 return; 1808 return;
1662 1809
1663 ev_start (EV_A_ (W)w, 1); 1810 ev_start (EV_A_ (W)w, 1);
1664 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1811 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1665} 1812}
1666 1813
1667void 1814void
1668ev_child_stop (EV_P_ struct ev_child *w) 1815ev_child_stop (EV_P_ ev_child *w)
1669{ 1816{
1670 ev_clear_pending (EV_A_ (W)w); 1817 clear_pending (EV_A_ (W)w);
1671 if (expect_false (!ev_is_active (w))) 1818 if (expect_false (!ev_is_active (w)))
1672 return; 1819 return;
1673 1820
1674 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1821 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1675 ev_stop (EV_A_ (W)w); 1822 ev_stop (EV_A_ (W)w);
1676} 1823}
1677 1824
1678#if EV_MULTIPLICITY 1825#if EV_STAT_ENABLE
1826
1827# ifdef _WIN32
1828# undef lstat
1829# define lstat(a,b) _stati64 (a,b)
1830# endif
1831
1832#define DEF_STAT_INTERVAL 5.0074891
1833#define MIN_STAT_INTERVAL 0.1074891
1834
1835static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1836
1837#if EV_USE_INOTIFY
1838# define EV_INOTIFY_BUFSIZE 8192
1839
1840static void noinline
1841infy_add (EV_P_ ev_stat *w)
1842{
1843 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
1844
1845 if (w->wd < 0)
1846 {
1847 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
1848
1849 /* monitor some parent directory for speedup hints */
1850 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
1851 {
1852 char path [4096];
1853 strcpy (path, w->path);
1854
1855 do
1856 {
1857 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
1858 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
1859
1860 char *pend = strrchr (path, '/');
1861
1862 if (!pend)
1863 break; /* whoops, no '/', complain to your admin */
1864
1865 *pend = 0;
1866 w->wd = inotify_add_watch (fs_fd, path, mask);
1867 }
1868 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
1869 }
1870 }
1871 else
1872 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
1873
1874 if (w->wd >= 0)
1875 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
1876}
1877
1878static void noinline
1879infy_del (EV_P_ ev_stat *w)
1880{
1881 int slot;
1882 int wd = w->wd;
1883
1884 if (wd < 0)
1885 return;
1886
1887 w->wd = -2;
1888 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
1889 wlist_del (&fs_hash [slot].head, (WL)w);
1890
1891 /* remove this watcher, if others are watching it, they will rearm */
1892 inotify_rm_watch (fs_fd, wd);
1893}
1894
1895static void noinline
1896infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
1897{
1898 if (slot < 0)
1899 /* overflow, need to check for all hahs slots */
1900 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1901 infy_wd (EV_A_ slot, wd, ev);
1902 else
1903 {
1904 WL w_;
1905
1906 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
1907 {
1908 ev_stat *w = (ev_stat *)w_;
1909 w_ = w_->next; /* lets us remove this watcher and all before it */
1910
1911 if (w->wd == wd || wd == -1)
1912 {
1913 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
1914 {
1915 w->wd = -1;
1916 infy_add (EV_A_ w); /* re-add, no matter what */
1917 }
1918
1919 stat_timer_cb (EV_A_ &w->timer, 0);
1920 }
1921 }
1922 }
1923}
1924
1679static void 1925static void
1680embed_cb (EV_P_ struct ev_io *io, int revents) 1926infy_cb (EV_P_ ev_io *w, int revents)
1681{ 1927{
1682 struct ev_embed *w = (struct ev_embed *)(((char *)io) - offsetof (struct ev_embed, io)); 1928 char buf [EV_INOTIFY_BUFSIZE];
1929 struct inotify_event *ev = (struct inotify_event *)buf;
1930 int ofs;
1931 int len = read (fs_fd, buf, sizeof (buf));
1683 1932
1933 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
1934 infy_wd (EV_A_ ev->wd, ev->wd, ev);
1935}
1936
1937void inline_size
1938infy_init (EV_P)
1939{
1940 if (fs_fd != -2)
1941 return;
1942
1943 fs_fd = inotify_init ();
1944
1945 if (fs_fd >= 0)
1946 {
1947 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
1948 ev_set_priority (&fs_w, EV_MAXPRI);
1949 ev_io_start (EV_A_ &fs_w);
1950 }
1951}
1952
1953void inline_size
1954infy_fork (EV_P)
1955{
1956 int slot;
1957
1958 if (fs_fd < 0)
1959 return;
1960
1961 close (fs_fd);
1962 fs_fd = inotify_init ();
1963
1964 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
1965 {
1966 WL w_ = fs_hash [slot].head;
1967 fs_hash [slot].head = 0;
1968
1969 while (w_)
1970 {
1971 ev_stat *w = (ev_stat *)w_;
1972 w_ = w_->next; /* lets us add this watcher */
1973
1974 w->wd = -1;
1975
1976 if (fs_fd >= 0)
1977 infy_add (EV_A_ w); /* re-add, no matter what */
1978 else
1979 ev_timer_start (EV_A_ &w->timer);
1980 }
1981
1982 }
1983}
1984
1985#endif
1986
1987void
1988ev_stat_stat (EV_P_ ev_stat *w)
1989{
1990 if (lstat (w->path, &w->attr) < 0)
1991 w->attr.st_nlink = 0;
1992 else if (!w->attr.st_nlink)
1993 w->attr.st_nlink = 1;
1994}
1995
1996static void noinline
1997stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1998{
1999 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2000
2001 /* we copy this here each the time so that */
2002 /* prev has the old value when the callback gets invoked */
2003 w->prev = w->attr;
2004 ev_stat_stat (EV_A_ w);
2005
2006 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2007 if (
2008 w->prev.st_dev != w->attr.st_dev
2009 || w->prev.st_ino != w->attr.st_ino
2010 || w->prev.st_mode != w->attr.st_mode
2011 || w->prev.st_nlink != w->attr.st_nlink
2012 || w->prev.st_uid != w->attr.st_uid
2013 || w->prev.st_gid != w->attr.st_gid
2014 || w->prev.st_rdev != w->attr.st_rdev
2015 || w->prev.st_size != w->attr.st_size
2016 || w->prev.st_atime != w->attr.st_atime
2017 || w->prev.st_mtime != w->attr.st_mtime
2018 || w->prev.st_ctime != w->attr.st_ctime
2019 ) {
2020 #if EV_USE_INOTIFY
2021 infy_del (EV_A_ w);
2022 infy_add (EV_A_ w);
2023 ev_stat_stat (EV_A_ w); /* avoid race... */
2024 #endif
2025
1684 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2026 ev_feed_event (EV_A_ w, EV_STAT);
2027 }
2028}
2029
2030void
2031ev_stat_start (EV_P_ ev_stat *w)
2032{
2033 if (expect_false (ev_is_active (w)))
2034 return;
2035
2036 /* since we use memcmp, we need to clear any padding data etc. */
2037 memset (&w->prev, 0, sizeof (ev_statdata));
2038 memset (&w->attr, 0, sizeof (ev_statdata));
2039
2040 ev_stat_stat (EV_A_ w);
2041
2042 if (w->interval < MIN_STAT_INTERVAL)
2043 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2044
2045 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2046 ev_set_priority (&w->timer, ev_priority (w));
2047
2048#if EV_USE_INOTIFY
2049 infy_init (EV_A);
2050
2051 if (fs_fd >= 0)
2052 infy_add (EV_A_ w);
2053 else
2054#endif
2055 ev_timer_start (EV_A_ &w->timer);
2056
2057 ev_start (EV_A_ (W)w, 1);
2058}
2059
2060void
2061ev_stat_stop (EV_P_ ev_stat *w)
2062{
2063 clear_pending (EV_A_ (W)w);
2064 if (expect_false (!ev_is_active (w)))
2065 return;
2066
2067#if EV_USE_INOTIFY
2068 infy_del (EV_A_ w);
2069#endif
2070 ev_timer_stop (EV_A_ &w->timer);
2071
2072 ev_stop (EV_A_ (W)w);
2073}
2074#endif
2075
2076#if EV_IDLE_ENABLE
2077void
2078ev_idle_start (EV_P_ ev_idle *w)
2079{
2080 if (expect_false (ev_is_active (w)))
2081 return;
2082
2083 pri_adjust (EV_A_ (W)w);
2084
2085 {
2086 int active = ++idlecnt [ABSPRI (w)];
2087
2088 ++idleall;
2089 ev_start (EV_A_ (W)w, active);
2090
2091 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2092 idles [ABSPRI (w)][active - 1] = w;
2093 }
2094}
2095
2096void
2097ev_idle_stop (EV_P_ ev_idle *w)
2098{
2099 clear_pending (EV_A_ (W)w);
2100 if (expect_false (!ev_is_active (w)))
2101 return;
2102
2103 {
2104 int active = ((W)w)->active;
2105
2106 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2107 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2108
2109 ev_stop (EV_A_ (W)w);
2110 --idleall;
2111 }
2112}
2113#endif
2114
2115void
2116ev_prepare_start (EV_P_ ev_prepare *w)
2117{
2118 if (expect_false (ev_is_active (w)))
2119 return;
2120
2121 ev_start (EV_A_ (W)w, ++preparecnt);
2122 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2123 prepares [preparecnt - 1] = w;
2124}
2125
2126void
2127ev_prepare_stop (EV_P_ ev_prepare *w)
2128{
2129 clear_pending (EV_A_ (W)w);
2130 if (expect_false (!ev_is_active (w)))
2131 return;
2132
2133 {
2134 int active = ((W)w)->active;
2135 prepares [active - 1] = prepares [--preparecnt];
2136 ((W)prepares [active - 1])->active = active;
2137 }
2138
2139 ev_stop (EV_A_ (W)w);
2140}
2141
2142void
2143ev_check_start (EV_P_ ev_check *w)
2144{
2145 if (expect_false (ev_is_active (w)))
2146 return;
2147
2148 ev_start (EV_A_ (W)w, ++checkcnt);
2149 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2150 checks [checkcnt - 1] = w;
2151}
2152
2153void
2154ev_check_stop (EV_P_ ev_check *w)
2155{
2156 clear_pending (EV_A_ (W)w);
2157 if (expect_false (!ev_is_active (w)))
2158 return;
2159
2160 {
2161 int active = ((W)w)->active;
2162 checks [active - 1] = checks [--checkcnt];
2163 ((W)checks [active - 1])->active = active;
2164 }
2165
2166 ev_stop (EV_A_ (W)w);
2167}
2168
2169#if EV_EMBED_ENABLE
2170void noinline
2171ev_embed_sweep (EV_P_ ev_embed *w)
2172{
1685 ev_loop (w->loop, EVLOOP_NONBLOCK); 2173 ev_loop (w->loop, EVLOOP_NONBLOCK);
1686} 2174}
1687 2175
2176static void
2177embed_cb (EV_P_ ev_io *io, int revents)
2178{
2179 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2180
2181 if (ev_cb (w))
2182 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2183 else
2184 ev_embed_sweep (loop, w);
2185}
2186
1688void 2187void
1689ev_embed_start (EV_P_ struct ev_embed *w) 2188ev_embed_start (EV_P_ ev_embed *w)
1690{ 2189{
1691 if (expect_false (ev_is_active (w))) 2190 if (expect_false (ev_is_active (w)))
1692 return; 2191 return;
1693 2192
1694 { 2193 {
1695 struct ev_loop *loop = w->loop; 2194 struct ev_loop *loop = w->loop;
1696 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2195 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1697 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2196 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ);
1698 } 2197 }
1699 2198
2199 ev_set_priority (&w->io, ev_priority (w));
1700 ev_io_start (EV_A_ &w->io); 2200 ev_io_start (EV_A_ &w->io);
2201
1701 ev_start (EV_A_ (W)w, 1); 2202 ev_start (EV_A_ (W)w, 1);
1702} 2203}
1703 2204
1704void 2205void
1705ev_embed_stop (EV_P_ struct ev_embed *w) 2206ev_embed_stop (EV_P_ ev_embed *w)
1706{ 2207{
1707 ev_clear_pending (EV_A_ (W)w); 2208 clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 2209 if (expect_false (!ev_is_active (w)))
1709 return; 2210 return;
1710 2211
1711 ev_io_stop (EV_A_ &w->io); 2212 ev_io_stop (EV_A_ &w->io);
2213
1712 ev_stop (EV_A_ (W)w); 2214 ev_stop (EV_A_ (W)w);
1713} 2215}
1714#endif 2216#endif
1715 2217
2218#if EV_FORK_ENABLE
2219void
2220ev_fork_start (EV_P_ ev_fork *w)
2221{
2222 if (expect_false (ev_is_active (w)))
2223 return;
2224
2225 ev_start (EV_A_ (W)w, ++forkcnt);
2226 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2227 forks [forkcnt - 1] = w;
2228}
2229
2230void
2231ev_fork_stop (EV_P_ ev_fork *w)
2232{
2233 clear_pending (EV_A_ (W)w);
2234 if (expect_false (!ev_is_active (w)))
2235 return;
2236
2237 {
2238 int active = ((W)w)->active;
2239 forks [active - 1] = forks [--forkcnt];
2240 ((W)forks [active - 1])->active = active;
2241 }
2242
2243 ev_stop (EV_A_ (W)w);
2244}
2245#endif
2246
1716/*****************************************************************************/ 2247/*****************************************************************************/
1717 2248
1718struct ev_once 2249struct ev_once
1719{ 2250{
1720 struct ev_io io; 2251 ev_io io;
1721 struct ev_timer to; 2252 ev_timer to;
1722 void (*cb)(int revents, void *arg); 2253 void (*cb)(int revents, void *arg);
1723 void *arg; 2254 void *arg;
1724}; 2255};
1725 2256
1726static void 2257static void
1735 2266
1736 cb (revents, arg); 2267 cb (revents, arg);
1737} 2268}
1738 2269
1739static void 2270static void
1740once_cb_io (EV_P_ struct ev_io *w, int revents) 2271once_cb_io (EV_P_ ev_io *w, int revents)
1741{ 2272{
1742 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2273 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1743} 2274}
1744 2275
1745static void 2276static void
1746once_cb_to (EV_P_ struct ev_timer *w, int revents) 2277once_cb_to (EV_P_ ev_timer *w, int revents)
1747{ 2278{
1748 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2279 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1749} 2280}
1750 2281
1751void 2282void

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines