ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.156 by root, Wed Nov 28 17:50:13 2007 UTC vs.
Revision 1.181 by root, Wed Dec 12 00:17:08 2007 UTC

216# include <sys/inotify.h> 216# include <sys/inotify.h>
217#endif 217#endif
218 218
219/**/ 219/**/
220 220
221/*
222 * This is used to avoid floating point rounding problems.
223 * It is added to ev_rt_now when scheduling periodics
224 * to ensure progress, time-wise, even when rounding
225 * errors are against us.
226 * This value is good at least till the year 4000.
227 * Better solutions welcome.
228 */
229#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
230
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 231#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 232#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 233/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 234
225#if __GNUC__ >= 3 235#if __GNUC__ >= 3
226# define expect(expr,value) __builtin_expect ((expr),(value)) 236# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 237# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 238#else
236# define expect(expr,value) (expr) 239# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 240# define noinline
241# if __STDC_VERSION__ < 199901L
242# define inline
243# endif
240#endif 244#endif
241 245
242#define expect_false(expr) expect ((expr) != 0, 0) 246#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 247#define expect_true(expr) expect ((expr) != 0, 1)
248#define inline_size static inline
249
250#if EV_MINIMAL
251# define inline_speed static noinline
252#else
253# define inline_speed static inline
254#endif
244 255
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 256#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 257#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 258
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 259#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 260#define EMPTY2(a,b) /* used to suppress some warnings */
250 261
251typedef ev_watcher *W; 262typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 263typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 264typedef ev_watcher_time *WT;
396{ 407{
397 return ev_rt_now; 408 return ev_rt_now;
398} 409}
399#endif 410#endif
400 411
401#define array_roundsize(type,n) (((n) | 4) & ~3) 412int inline_size
413array_nextsize (int elem, int cur, int cnt)
414{
415 int ncur = cur + 1;
416
417 do
418 ncur <<= 1;
419 while (cnt > ncur);
420
421 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
422 if (elem * ncur > 4096)
423 {
424 ncur *= elem;
425 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
426 ncur = ncur - sizeof (void *) * 4;
427 ncur /= elem;
428 }
429
430 return ncur;
431}
432
433static noinline void *
434array_realloc (int elem, void *base, int *cur, int cnt)
435{
436 *cur = array_nextsize (elem, *cur, cnt);
437 return ev_realloc (base, elem * *cur);
438}
402 439
403#define array_needsize(type,base,cur,cnt,init) \ 440#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 441 if (expect_false ((cnt) > (cur))) \
405 { \ 442 { \
406 int newcnt = cur; \ 443 int ocur_ = (cur); \
407 do \ 444 (base) = (type *)array_realloc \
408 { \ 445 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 446 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 447 }
417 448
449#if 0
418#define array_slim(type,stem) \ 450#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 451 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 452 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 453 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 454 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 456 }
457#endif
425 458
426#define array_free(stem, idx) \ 459#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 461
429/*****************************************************************************/ 462/*****************************************************************************/
430 463
431void noinline 464void noinline
432ev_feed_event (EV_P_ void *w, int revents) 465ev_feed_event (EV_P_ void *w, int revents)
433{ 466{
434 W w_ = (W)w; 467 W w_ = (W)w;
468 int pri = ABSPRI (w_);
435 469
436 if (expect_false (w_->pending)) 470 if (expect_false (w_->pending))
471 pendings [pri][w_->pending - 1].events |= revents;
472 else
437 { 473 {
474 w_->pending = ++pendingcnt [pri];
475 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
476 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 477 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 478 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 479}
447 480
448void inline_size 481void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 482queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 483{
451 int i; 484 int i;
452 485
453 for (i = 0; i < eventcnt; ++i) 486 for (i = 0; i < eventcnt; ++i)
485} 518}
486 519
487void 520void
488ev_feed_fd_event (EV_P_ int fd, int revents) 521ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 522{
523 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 524 fd_event (EV_A_ fd, revents);
491} 525}
492 526
493void inline_size 527void inline_size
494fd_reify (EV_P) 528fd_reify (EV_P)
495{ 529{
589static void noinline 623static void noinline
590fd_rearm_all (EV_P) 624fd_rearm_all (EV_P)
591{ 625{
592 int fd; 626 int fd;
593 627
594 /* this should be highly optimised to not do anything but set a flag */
595 for (fd = 0; fd < anfdmax; ++fd) 628 for (fd = 0; fd < anfdmax; ++fd)
596 if (anfds [fd].events) 629 if (anfds [fd].events)
597 { 630 {
598 anfds [fd].events = 0; 631 anfds [fd].events = 0;
599 fd_change (EV_A_ fd); 632 fd_change (EV_A_ fd);
605void inline_speed 638void inline_speed
606upheap (WT *heap, int k) 639upheap (WT *heap, int k)
607{ 640{
608 WT w = heap [k]; 641 WT w = heap [k];
609 642
610 while (k && heap [k >> 1]->at > w->at) 643 while (k)
611 { 644 {
645 int p = (k - 1) >> 1;
646
647 if (heap [p]->at <= w->at)
648 break;
649
612 heap [k] = heap [k >> 1]; 650 heap [k] = heap [p];
613 ((W)heap [k])->active = k + 1; 651 ((W)heap [k])->active = k + 1;
614 k >>= 1; 652 k = p;
615 } 653 }
616 654
617 heap [k] = w; 655 heap [k] = w;
618 ((W)heap [k])->active = k + 1; 656 ((W)heap [k])->active = k + 1;
619
620} 657}
621 658
622void inline_speed 659void inline_speed
623downheap (WT *heap, int N, int k) 660downheap (WT *heap, int N, int k)
624{ 661{
625 WT w = heap [k]; 662 WT w = heap [k];
626 663
627 while (k < (N >> 1)) 664 for (;;)
628 { 665 {
629 int j = k << 1; 666 int c = (k << 1) + 1;
630 667
631 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 668 if (c >= N)
632 ++j;
633
634 if (w->at <= heap [j]->at)
635 break; 669 break;
636 670
671 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
672 ? 1 : 0;
673
674 if (w->at <= heap [c]->at)
675 break;
676
637 heap [k] = heap [j]; 677 heap [k] = heap [c];
638 ((W)heap [k])->active = k + 1; 678 ((W)heap [k])->active = k + 1;
679
639 k = j; 680 k = c;
640 } 681 }
641 682
642 heap [k] = w; 683 heap [k] = w;
643 ((W)heap [k])->active = k + 1; 684 ((W)heap [k])->active = k + 1;
644} 685}
726 for (signum = signalmax; signum--; ) 767 for (signum = signalmax; signum--; )
727 if (signals [signum].gotsig) 768 if (signals [signum].gotsig)
728 ev_feed_signal_event (EV_A_ signum + 1); 769 ev_feed_signal_event (EV_A_ signum + 1);
729} 770}
730 771
731void inline_size 772void inline_speed
732fd_intern (int fd) 773fd_intern (int fd)
733{ 774{
734#ifdef _WIN32 775#ifdef _WIN32
735 int arg = 1; 776 int arg = 1;
736 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 777 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
765 ev_child *w; 806 ev_child *w;
766 807
767 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 808 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
768 if (w->pid == pid || !w->pid) 809 if (w->pid == pid || !w->pid)
769 { 810 {
770 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 811 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */
771 w->rpid = pid; 812 w->rpid = pid;
772 w->rstatus = status; 813 w->rstatus = status;
773 ev_feed_event (EV_A_ (W)w, EV_CHILD); 814 ev_feed_event (EV_A_ (W)w, EV_CHILD);
774 } 815 }
775} 816}
776 817
777#ifndef WCONTINUED 818#ifndef WCONTINUED
887ev_backend (EV_P) 928ev_backend (EV_P)
888{ 929{
889 return backend; 930 return backend;
890} 931}
891 932
933unsigned int
934ev_loop_count (EV_P)
935{
936 return loop_count;
937}
938
892static void noinline 939static void noinline
893loop_init (EV_P_ unsigned int flags) 940loop_init (EV_P_ unsigned int flags)
894{ 941{
895 if (!backend) 942 if (!backend)
896 { 943 {
905 ev_rt_now = ev_time (); 952 ev_rt_now = ev_time ();
906 mn_now = get_clock (); 953 mn_now = get_clock ();
907 now_floor = mn_now; 954 now_floor = mn_now;
908 rtmn_diff = ev_rt_now - mn_now; 955 rtmn_diff = ev_rt_now - mn_now;
909 956
957 /* pid check not overridable via env */
958#ifndef _WIN32
959 if (flags & EVFLAG_FORKCHECK)
960 curpid = getpid ();
961#endif
962
910 if (!(flags & EVFLAG_NOENV) 963 if (!(flags & EVFLAG_NOENV)
911 && !enable_secure () 964 && !enable_secure ()
912 && getenv ("LIBEV_FLAGS")) 965 && getenv ("LIBEV_FLAGS"))
913 flags = atoi (getenv ("LIBEV_FLAGS")); 966 flags = atoi (getenv ("LIBEV_FLAGS"));
914 967
970#if EV_USE_SELECT 1023#if EV_USE_SELECT
971 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1024 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
972#endif 1025#endif
973 1026
974 for (i = NUMPRI; i--; ) 1027 for (i = NUMPRI; i--; )
1028 {
975 array_free (pending, [i]); 1029 array_free (pending, [i]);
1030#if EV_IDLE_ENABLE
1031 array_free (idle, [i]);
1032#endif
1033 }
976 1034
977 /* have to use the microsoft-never-gets-it-right macro */ 1035 /* have to use the microsoft-never-gets-it-right macro */
978 array_free (fdchange, EMPTY0); 1036 array_free (fdchange, EMPTY);
979 array_free (timer, EMPTY0); 1037 array_free (timer, EMPTY);
980#if EV_PERIODIC_ENABLE 1038#if EV_PERIODIC_ENABLE
981 array_free (periodic, EMPTY0); 1039 array_free (periodic, EMPTY);
982#endif 1040#endif
983 array_free (idle, EMPTY0);
984 array_free (prepare, EMPTY0); 1041 array_free (prepare, EMPTY);
985 array_free (check, EMPTY0); 1042 array_free (check, EMPTY);
986 1043
987 backend = 0; 1044 backend = 0;
988} 1045}
989 1046
990void inline_size infy_fork (EV_P); 1047void inline_size infy_fork (EV_P);
1126 postfork = 1; 1183 postfork = 1;
1127} 1184}
1128 1185
1129/*****************************************************************************/ 1186/*****************************************************************************/
1130 1187
1131int inline_size 1188void
1132any_pending (EV_P) 1189ev_invoke (EV_P_ void *w, int revents)
1133{ 1190{
1134 int pri; 1191 EV_CB_INVOKE ((W)w, revents);
1135
1136 for (pri = NUMPRI; pri--; )
1137 if (pendingcnt [pri])
1138 return 1;
1139
1140 return 0;
1141} 1192}
1142 1193
1143void inline_speed 1194void inline_speed
1144call_pending (EV_P) 1195call_pending (EV_P)
1145{ 1196{
1163void inline_size 1214void inline_size
1164timers_reify (EV_P) 1215timers_reify (EV_P)
1165{ 1216{
1166 while (timercnt && ((WT)timers [0])->at <= mn_now) 1217 while (timercnt && ((WT)timers [0])->at <= mn_now)
1167 { 1218 {
1168 ev_timer *w = timers [0]; 1219 ev_timer *w = (ev_timer *)timers [0];
1169 1220
1170 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1221 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1171 1222
1172 /* first reschedule or stop timer */ 1223 /* first reschedule or stop timer */
1173 if (w->repeat) 1224 if (w->repeat)
1176 1227
1177 ((WT)w)->at += w->repeat; 1228 ((WT)w)->at += w->repeat;
1178 if (((WT)w)->at < mn_now) 1229 if (((WT)w)->at < mn_now)
1179 ((WT)w)->at = mn_now; 1230 ((WT)w)->at = mn_now;
1180 1231
1181 downheap ((WT *)timers, timercnt, 0); 1232 downheap (timers, timercnt, 0);
1182 } 1233 }
1183 else 1234 else
1184 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1235 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1185 1236
1186 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1237 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1191void inline_size 1242void inline_size
1192periodics_reify (EV_P) 1243periodics_reify (EV_P)
1193{ 1244{
1194 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1245 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1195 { 1246 {
1196 ev_periodic *w = periodics [0]; 1247 ev_periodic *w = (ev_periodic *)periodics [0];
1197 1248
1198 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1249 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1199 1250
1200 /* first reschedule or stop timer */ 1251 /* first reschedule or stop timer */
1201 if (w->reschedule_cb) 1252 if (w->reschedule_cb)
1202 { 1253 {
1203 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1254 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1204 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1255 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1205 downheap ((WT *)periodics, periodiccnt, 0); 1256 downheap (periodics, periodiccnt, 0);
1206 } 1257 }
1207 else if (w->interval) 1258 else if (w->interval)
1208 { 1259 {
1209 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1260 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1261 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1210 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1262 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1211 downheap ((WT *)periodics, periodiccnt, 0); 1263 downheap (periodics, periodiccnt, 0);
1212 } 1264 }
1213 else 1265 else
1214 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1266 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1215 1267
1216 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1268 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1223 int i; 1275 int i;
1224 1276
1225 /* adjust periodics after time jump */ 1277 /* adjust periodics after time jump */
1226 for (i = 0; i < periodiccnt; ++i) 1278 for (i = 0; i < periodiccnt; ++i)
1227 { 1279 {
1228 ev_periodic *w = periodics [i]; 1280 ev_periodic *w = (ev_periodic *)periodics [i];
1229 1281
1230 if (w->reschedule_cb) 1282 if (w->reschedule_cb)
1231 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1283 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1232 else if (w->interval) 1284 else if (w->interval)
1233 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1285 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1234 } 1286 }
1235 1287
1236 /* now rebuild the heap */ 1288 /* now rebuild the heap */
1237 for (i = periodiccnt >> 1; i--; ) 1289 for (i = periodiccnt >> 1; i--; )
1238 downheap ((WT *)periodics, periodiccnt, i); 1290 downheap (periodics, periodiccnt, i);
1239} 1291}
1240#endif 1292#endif
1241 1293
1294#if EV_IDLE_ENABLE
1242int inline_size 1295void inline_size
1243time_update_monotonic (EV_P) 1296idle_reify (EV_P)
1244{ 1297{
1298 if (expect_false (idleall))
1299 {
1300 int pri;
1301
1302 for (pri = NUMPRI; pri--; )
1303 {
1304 if (pendingcnt [pri])
1305 break;
1306
1307 if (idlecnt [pri])
1308 {
1309 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1310 break;
1311 }
1312 }
1313 }
1314}
1315#endif
1316
1317void inline_speed
1318time_update (EV_P_ ev_tstamp max_block)
1319{
1320 int i;
1321
1322#if EV_USE_MONOTONIC
1323 if (expect_true (have_monotonic))
1324 {
1325 ev_tstamp odiff = rtmn_diff;
1326
1245 mn_now = get_clock (); 1327 mn_now = get_clock ();
1246 1328
1329 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1330 /* interpolate in the meantime */
1247 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1331 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1248 { 1332 {
1249 ev_rt_now = rtmn_diff + mn_now; 1333 ev_rt_now = rtmn_diff + mn_now;
1250 return 0; 1334 return;
1251 } 1335 }
1252 else 1336
1253 {
1254 now_floor = mn_now; 1337 now_floor = mn_now;
1255 ev_rt_now = ev_time (); 1338 ev_rt_now = ev_time ();
1256 return 1;
1257 }
1258}
1259 1339
1260void inline_size 1340 /* loop a few times, before making important decisions.
1261time_update (EV_P) 1341 * on the choice of "4": one iteration isn't enough,
1262{ 1342 * in case we get preempted during the calls to
1263 int i; 1343 * ev_time and get_clock. a second call is almost guaranteed
1264 1344 * to succeed in that case, though. and looping a few more times
1265#if EV_USE_MONOTONIC 1345 * doesn't hurt either as we only do this on time-jumps or
1266 if (expect_true (have_monotonic)) 1346 * in the unlikely event of having been preempted here.
1267 { 1347 */
1268 if (time_update_monotonic (EV_A)) 1348 for (i = 4; --i; )
1269 { 1349 {
1270 ev_tstamp odiff = rtmn_diff;
1271
1272 /* loop a few times, before making important decisions.
1273 * on the choice of "4": one iteration isn't enough,
1274 * in case we get preempted during the calls to
1275 * ev_time and get_clock. a second call is almost guarenteed
1276 * to succeed in that case, though. and looping a few more times
1277 * doesn't hurt either as we only do this on time-jumps or
1278 * in the unlikely event of getting preempted here.
1279 */
1280 for (i = 4; --i; )
1281 {
1282 rtmn_diff = ev_rt_now - mn_now; 1350 rtmn_diff = ev_rt_now - mn_now;
1283 1351
1284 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1352 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1285 return; /* all is well */ 1353 return; /* all is well */
1286 1354
1287 ev_rt_now = ev_time (); 1355 ev_rt_now = ev_time ();
1288 mn_now = get_clock (); 1356 mn_now = get_clock ();
1289 now_floor = mn_now; 1357 now_floor = mn_now;
1290 } 1358 }
1291 1359
1292# if EV_PERIODIC_ENABLE 1360# if EV_PERIODIC_ENABLE
1293 periodics_reschedule (EV_A); 1361 periodics_reschedule (EV_A);
1294# endif 1362# endif
1295 /* no timer adjustment, as the monotonic clock doesn't jump */ 1363 /* no timer adjustment, as the monotonic clock doesn't jump */
1296 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1364 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1297 }
1298 } 1365 }
1299 else 1366 else
1300#endif 1367#endif
1301 { 1368 {
1302 ev_rt_now = ev_time (); 1369 ev_rt_now = ev_time ();
1303 1370
1304 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1371 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1305 { 1372 {
1306#if EV_PERIODIC_ENABLE 1373#if EV_PERIODIC_ENABLE
1307 periodics_reschedule (EV_A); 1374 periodics_reschedule (EV_A);
1308#endif 1375#endif
1309
1310 /* adjust timers. this is easy, as the offset is the same for all */ 1376 /* adjust timers. this is easy, as the offset is the same for all of them */
1311 for (i = 0; i < timercnt; ++i) 1377 for (i = 0; i < timercnt; ++i)
1312 ((WT)timers [i])->at += ev_rt_now - mn_now; 1378 ((WT)timers [i])->at += ev_rt_now - mn_now;
1313 } 1379 }
1314 1380
1315 mn_now = ev_rt_now; 1381 mn_now = ev_rt_now;
1335{ 1401{
1336 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1402 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)
1337 ? EVUNLOOP_ONE 1403 ? EVUNLOOP_ONE
1338 : EVUNLOOP_CANCEL; 1404 : EVUNLOOP_CANCEL;
1339 1405
1340 while (activecnt) 1406 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1407
1408 do
1341 { 1409 {
1342 /* we might have forked, so reify kernel state if necessary */ 1410#ifndef _WIN32
1411 if (expect_false (curpid)) /* penalise the forking check even more */
1412 if (expect_false (getpid () != curpid))
1413 {
1414 curpid = getpid ();
1415 postfork = 1;
1416 }
1417#endif
1418
1343 #if EV_FORK_ENABLE 1419#if EV_FORK_ENABLE
1420 /* we might have forked, so queue fork handlers */
1344 if (expect_false (postfork)) 1421 if (expect_false (postfork))
1345 if (forkcnt) 1422 if (forkcnt)
1346 { 1423 {
1347 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1424 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1348 call_pending (EV_A); 1425 call_pending (EV_A);
1349 } 1426 }
1350 #endif 1427#endif
1351 1428
1352 /* queue check watchers (and execute them) */ 1429 /* queue prepare watchers (and execute them) */
1353 if (expect_false (preparecnt)) 1430 if (expect_false (preparecnt))
1354 { 1431 {
1355 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1432 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1356 call_pending (EV_A); 1433 call_pending (EV_A);
1357 } 1434 }
1358 1435
1436 if (expect_false (!activecnt))
1437 break;
1438
1359 /* we might have forked, so reify kernel state if necessary */ 1439 /* we might have forked, so reify kernel state if necessary */
1360 if (expect_false (postfork)) 1440 if (expect_false (postfork))
1361 loop_fork (EV_A); 1441 loop_fork (EV_A);
1362 1442
1363 /* update fd-related kernel structures */ 1443 /* update fd-related kernel structures */
1364 fd_reify (EV_A); 1444 fd_reify (EV_A);
1365 1445
1366 /* calculate blocking time */ 1446 /* calculate blocking time */
1367 { 1447 {
1368 double block; 1448 ev_tstamp block;
1369 1449
1370 if (flags & EVLOOP_NONBLOCK || idlecnt) 1450 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt))
1371 block = 0.; /* do not block at all */ 1451 block = 0.; /* do not block at all */
1372 else 1452 else
1373 { 1453 {
1374 /* update time to cancel out callback processing overhead */ 1454 /* update time to cancel out callback processing overhead */
1375#if EV_USE_MONOTONIC
1376 if (expect_true (have_monotonic))
1377 time_update_monotonic (EV_A); 1455 time_update (EV_A_ 1e100);
1378 else
1379#endif
1380 {
1381 ev_rt_now = ev_time ();
1382 mn_now = ev_rt_now;
1383 }
1384 1456
1385 block = MAX_BLOCKTIME; 1457 block = MAX_BLOCKTIME;
1386 1458
1387 if (timercnt) 1459 if (timercnt)
1388 { 1460 {
1399#endif 1471#endif
1400 1472
1401 if (expect_false (block < 0.)) block = 0.; 1473 if (expect_false (block < 0.)) block = 0.;
1402 } 1474 }
1403 1475
1476 ++loop_count;
1404 backend_poll (EV_A_ block); 1477 backend_poll (EV_A_ block);
1478
1479 /* update ev_rt_now, do magic */
1480 time_update (EV_A_ block);
1405 } 1481 }
1406
1407 /* update ev_rt_now, do magic */
1408 time_update (EV_A);
1409 1482
1410 /* queue pending timers and reschedule them */ 1483 /* queue pending timers and reschedule them */
1411 timers_reify (EV_A); /* relative timers called last */ 1484 timers_reify (EV_A); /* relative timers called last */
1412#if EV_PERIODIC_ENABLE 1485#if EV_PERIODIC_ENABLE
1413 periodics_reify (EV_A); /* absolute timers called first */ 1486 periodics_reify (EV_A); /* absolute timers called first */
1414#endif 1487#endif
1415 1488
1489#if EV_IDLE_ENABLE
1416 /* queue idle watchers unless other events are pending */ 1490 /* queue idle watchers unless other events are pending */
1417 if (idlecnt && !any_pending (EV_A)) 1491 idle_reify (EV_A);
1418 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1492#endif
1419 1493
1420 /* queue check watchers, to be executed first */ 1494 /* queue check watchers, to be executed first */
1421 if (expect_false (checkcnt)) 1495 if (expect_false (checkcnt))
1422 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1496 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1423 1497
1424 call_pending (EV_A); 1498 call_pending (EV_A);
1425 1499
1426 if (expect_false (loop_done))
1427 break;
1428 } 1500 }
1501 while (expect_true (activecnt && !loop_done));
1429 1502
1430 if (loop_done == EVUNLOOP_ONE) 1503 if (loop_done == EVUNLOOP_ONE)
1431 loop_done = EVUNLOOP_CANCEL; 1504 loop_done = EVUNLOOP_CANCEL;
1432} 1505}
1433 1506
1460 head = &(*head)->next; 1533 head = &(*head)->next;
1461 } 1534 }
1462} 1535}
1463 1536
1464void inline_speed 1537void inline_speed
1465ev_clear_pending (EV_P_ W w) 1538clear_pending (EV_P_ W w)
1466{ 1539{
1467 if (w->pending) 1540 if (w->pending)
1468 { 1541 {
1469 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1542 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1470 w->pending = 0; 1543 w->pending = 0;
1471 } 1544 }
1472} 1545}
1473 1546
1547int
1548ev_clear_pending (EV_P_ void *w)
1549{
1550 W w_ = (W)w;
1551 int pending = w_->pending;
1552
1553 if (expect_true (pending))
1554 {
1555 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1556 w_->pending = 0;
1557 p->w = 0;
1558 return p->events;
1559 }
1560 else
1561 return 0;
1562}
1563
1564void inline_size
1565pri_adjust (EV_P_ W w)
1566{
1567 int pri = w->priority;
1568 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1569 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1570 w->priority = pri;
1571}
1572
1474void inline_speed 1573void inline_speed
1475ev_start (EV_P_ W w, int active) 1574ev_start (EV_P_ W w, int active)
1476{ 1575{
1477 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1576 pri_adjust (EV_A_ w);
1478 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1479
1480 w->active = active; 1577 w->active = active;
1481 ev_ref (EV_A); 1578 ev_ref (EV_A);
1482} 1579}
1483 1580
1484void inline_size 1581void inline_size
1488 w->active = 0; 1585 w->active = 0;
1489} 1586}
1490 1587
1491/*****************************************************************************/ 1588/*****************************************************************************/
1492 1589
1493void 1590void noinline
1494ev_io_start (EV_P_ ev_io *w) 1591ev_io_start (EV_P_ ev_io *w)
1495{ 1592{
1496 int fd = w->fd; 1593 int fd = w->fd;
1497 1594
1498 if (expect_false (ev_is_active (w))) 1595 if (expect_false (ev_is_active (w)))
1505 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1602 wlist_add ((WL *)&anfds[fd].head, (WL)w);
1506 1603
1507 fd_change (EV_A_ fd); 1604 fd_change (EV_A_ fd);
1508} 1605}
1509 1606
1510void 1607void noinline
1511ev_io_stop (EV_P_ ev_io *w) 1608ev_io_stop (EV_P_ ev_io *w)
1512{ 1609{
1513 ev_clear_pending (EV_A_ (W)w); 1610 clear_pending (EV_A_ (W)w);
1514 if (expect_false (!ev_is_active (w))) 1611 if (expect_false (!ev_is_active (w)))
1515 return; 1612 return;
1516 1613
1517 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1614 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1518 1615
1520 ev_stop (EV_A_ (W)w); 1617 ev_stop (EV_A_ (W)w);
1521 1618
1522 fd_change (EV_A_ w->fd); 1619 fd_change (EV_A_ w->fd);
1523} 1620}
1524 1621
1525void 1622void noinline
1526ev_timer_start (EV_P_ ev_timer *w) 1623ev_timer_start (EV_P_ ev_timer *w)
1527{ 1624{
1528 if (expect_false (ev_is_active (w))) 1625 if (expect_false (ev_is_active (w)))
1529 return; 1626 return;
1530 1627
1531 ((WT)w)->at += mn_now; 1628 ((WT)w)->at += mn_now;
1532 1629
1533 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1630 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1534 1631
1535 ev_start (EV_A_ (W)w, ++timercnt); 1632 ev_start (EV_A_ (W)w, ++timercnt);
1536 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1633 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1537 timers [timercnt - 1] = w; 1634 timers [timercnt - 1] = (WT)w;
1538 upheap ((WT *)timers, timercnt - 1); 1635 upheap (timers, timercnt - 1);
1539 1636
1540 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1637 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1541} 1638}
1542 1639
1543void 1640void noinline
1544ev_timer_stop (EV_P_ ev_timer *w) 1641ev_timer_stop (EV_P_ ev_timer *w)
1545{ 1642{
1546 ev_clear_pending (EV_A_ (W)w); 1643 clear_pending (EV_A_ (W)w);
1547 if (expect_false (!ev_is_active (w))) 1644 if (expect_false (!ev_is_active (w)))
1548 return; 1645 return;
1549 1646
1550 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1647 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1551 1648
1552 { 1649 {
1553 int active = ((W)w)->active; 1650 int active = ((W)w)->active;
1554 1651
1555 if (expect_true (--active < --timercnt)) 1652 if (expect_true (--active < --timercnt))
1556 { 1653 {
1557 timers [active] = timers [timercnt]; 1654 timers [active] = timers [timercnt];
1558 adjustheap ((WT *)timers, timercnt, active); 1655 adjustheap (timers, timercnt, active);
1559 } 1656 }
1560 } 1657 }
1561 1658
1562 ((WT)w)->at -= mn_now; 1659 ((WT)w)->at -= mn_now;
1563 1660
1564 ev_stop (EV_A_ (W)w); 1661 ev_stop (EV_A_ (W)w);
1565} 1662}
1566 1663
1567void 1664void noinline
1568ev_timer_again (EV_P_ ev_timer *w) 1665ev_timer_again (EV_P_ ev_timer *w)
1569{ 1666{
1570 if (ev_is_active (w)) 1667 if (ev_is_active (w))
1571 { 1668 {
1572 if (w->repeat) 1669 if (w->repeat)
1573 { 1670 {
1574 ((WT)w)->at = mn_now + w->repeat; 1671 ((WT)w)->at = mn_now + w->repeat;
1575 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1672 adjustheap (timers, timercnt, ((W)w)->active - 1);
1576 } 1673 }
1577 else 1674 else
1578 ev_timer_stop (EV_A_ w); 1675 ev_timer_stop (EV_A_ w);
1579 } 1676 }
1580 else if (w->repeat) 1677 else if (w->repeat)
1583 ev_timer_start (EV_A_ w); 1680 ev_timer_start (EV_A_ w);
1584 } 1681 }
1585} 1682}
1586 1683
1587#if EV_PERIODIC_ENABLE 1684#if EV_PERIODIC_ENABLE
1588void 1685void noinline
1589ev_periodic_start (EV_P_ ev_periodic *w) 1686ev_periodic_start (EV_P_ ev_periodic *w)
1590{ 1687{
1591 if (expect_false (ev_is_active (w))) 1688 if (expect_false (ev_is_active (w)))
1592 return; 1689 return;
1593 1690
1595 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1692 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1596 else if (w->interval) 1693 else if (w->interval)
1597 { 1694 {
1598 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1695 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1599 /* this formula differs from the one in periodic_reify because we do not always round up */ 1696 /* this formula differs from the one in periodic_reify because we do not always round up */
1600 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1697 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1601 } 1698 }
1699 else
1700 ((WT)w)->at = w->offset;
1602 1701
1603 ev_start (EV_A_ (W)w, ++periodiccnt); 1702 ev_start (EV_A_ (W)w, ++periodiccnt);
1604 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1703 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1605 periodics [periodiccnt - 1] = w; 1704 periodics [periodiccnt - 1] = (WT)w;
1606 upheap ((WT *)periodics, periodiccnt - 1); 1705 upheap (periodics, periodiccnt - 1);
1607 1706
1608 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1707 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1609} 1708}
1610 1709
1611void 1710void noinline
1612ev_periodic_stop (EV_P_ ev_periodic *w) 1711ev_periodic_stop (EV_P_ ev_periodic *w)
1613{ 1712{
1614 ev_clear_pending (EV_A_ (W)w); 1713 clear_pending (EV_A_ (W)w);
1615 if (expect_false (!ev_is_active (w))) 1714 if (expect_false (!ev_is_active (w)))
1616 return; 1715 return;
1617 1716
1618 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1717 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1619 1718
1620 { 1719 {
1621 int active = ((W)w)->active; 1720 int active = ((W)w)->active;
1622 1721
1623 if (expect_true (--active < --periodiccnt)) 1722 if (expect_true (--active < --periodiccnt))
1624 { 1723 {
1625 periodics [active] = periodics [periodiccnt]; 1724 periodics [active] = periodics [periodiccnt];
1626 adjustheap ((WT *)periodics, periodiccnt, active); 1725 adjustheap (periodics, periodiccnt, active);
1627 } 1726 }
1628 } 1727 }
1629 1728
1630 ev_stop (EV_A_ (W)w); 1729 ev_stop (EV_A_ (W)w);
1631} 1730}
1632 1731
1633void 1732void noinline
1634ev_periodic_again (EV_P_ ev_periodic *w) 1733ev_periodic_again (EV_P_ ev_periodic *w)
1635{ 1734{
1636 /* TODO: use adjustheap and recalculation */ 1735 /* TODO: use adjustheap and recalculation */
1637 ev_periodic_stop (EV_A_ w); 1736 ev_periodic_stop (EV_A_ w);
1638 ev_periodic_start (EV_A_ w); 1737 ev_periodic_start (EV_A_ w);
1641 1740
1642#ifndef SA_RESTART 1741#ifndef SA_RESTART
1643# define SA_RESTART 0 1742# define SA_RESTART 0
1644#endif 1743#endif
1645 1744
1646void 1745void noinline
1647ev_signal_start (EV_P_ ev_signal *w) 1746ev_signal_start (EV_P_ ev_signal *w)
1648{ 1747{
1649#if EV_MULTIPLICITY 1748#if EV_MULTIPLICITY
1650 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 1749 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1651#endif 1750#endif
1652 if (expect_false (ev_is_active (w))) 1751 if (expect_false (ev_is_active (w)))
1653 return; 1752 return;
1654 1753
1655 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 1754 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1656 1755
1756 {
1757#ifndef _WIN32
1758 sigset_t full, prev;
1759 sigfillset (&full);
1760 sigprocmask (SIG_SETMASK, &full, &prev);
1761#endif
1762
1763 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1764
1765#ifndef _WIN32
1766 sigprocmask (SIG_SETMASK, &prev, 0);
1767#endif
1768 }
1769
1657 ev_start (EV_A_ (W)w, 1); 1770 ev_start (EV_A_ (W)w, 1);
1658 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1659 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1771 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
1660 1772
1661 if (!((WL)w)->next) 1773 if (!((WL)w)->next)
1662 { 1774 {
1663#if _WIN32 1775#if _WIN32
1670 sigaction (w->signum, &sa, 0); 1782 sigaction (w->signum, &sa, 0);
1671#endif 1783#endif
1672 } 1784 }
1673} 1785}
1674 1786
1675void 1787void noinline
1676ev_signal_stop (EV_P_ ev_signal *w) 1788ev_signal_stop (EV_P_ ev_signal *w)
1677{ 1789{
1678 ev_clear_pending (EV_A_ (W)w); 1790 clear_pending (EV_A_ (W)w);
1679 if (expect_false (!ev_is_active (w))) 1791 if (expect_false (!ev_is_active (w)))
1680 return; 1792 return;
1681 1793
1682 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1794 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
1683 ev_stop (EV_A_ (W)w); 1795 ev_stop (EV_A_ (W)w);
1700} 1812}
1701 1813
1702void 1814void
1703ev_child_stop (EV_P_ ev_child *w) 1815ev_child_stop (EV_P_ ev_child *w)
1704{ 1816{
1705 ev_clear_pending (EV_A_ (W)w); 1817 clear_pending (EV_A_ (W)w);
1706 if (expect_false (!ev_is_active (w))) 1818 if (expect_false (!ev_is_active (w)))
1707 return; 1819 return;
1708 1820
1709 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 1821 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1710 ev_stop (EV_A_ (W)w); 1822 ev_stop (EV_A_ (W)w);
1718# endif 1830# endif
1719 1831
1720#define DEF_STAT_INTERVAL 5.0074891 1832#define DEF_STAT_INTERVAL 5.0074891
1721#define MIN_STAT_INTERVAL 0.1074891 1833#define MIN_STAT_INTERVAL 0.1074891
1722 1834
1723void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 1835static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
1724 1836
1725#if EV_USE_INOTIFY 1837#if EV_USE_INOTIFY
1726# define EV_INOTIFY_BUFSIZE 8192 1838# define EV_INOTIFY_BUFSIZE 8192
1727 1839
1728static void noinline 1840static void noinline
1879 w->attr.st_nlink = 0; 1991 w->attr.st_nlink = 0;
1880 else if (!w->attr.st_nlink) 1992 else if (!w->attr.st_nlink)
1881 w->attr.st_nlink = 1; 1993 w->attr.st_nlink = 1;
1882} 1994}
1883 1995
1884void noinline 1996static void noinline
1885stat_timer_cb (EV_P_ ev_timer *w_, int revents) 1997stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1886{ 1998{
1887 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 1999 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1888 2000
1889 /* we copy this here each the time so that */ 2001 /* we copy this here each the time so that */
1946} 2058}
1947 2059
1948void 2060void
1949ev_stat_stop (EV_P_ ev_stat *w) 2061ev_stat_stop (EV_P_ ev_stat *w)
1950{ 2062{
1951 ev_clear_pending (EV_A_ (W)w); 2063 clear_pending (EV_A_ (W)w);
1952 if (expect_false (!ev_is_active (w))) 2064 if (expect_false (!ev_is_active (w)))
1953 return; 2065 return;
1954 2066
1955#if EV_USE_INOTIFY 2067#if EV_USE_INOTIFY
1956 infy_del (EV_A_ w); 2068 infy_del (EV_A_ w);
1959 2071
1960 ev_stop (EV_A_ (W)w); 2072 ev_stop (EV_A_ (W)w);
1961} 2073}
1962#endif 2074#endif
1963 2075
2076#if EV_IDLE_ENABLE
1964void 2077void
1965ev_idle_start (EV_P_ ev_idle *w) 2078ev_idle_start (EV_P_ ev_idle *w)
1966{ 2079{
1967 if (expect_false (ev_is_active (w))) 2080 if (expect_false (ev_is_active (w)))
1968 return; 2081 return;
1969 2082
2083 pri_adjust (EV_A_ (W)w);
2084
2085 {
2086 int active = ++idlecnt [ABSPRI (w)];
2087
2088 ++idleall;
1970 ev_start (EV_A_ (W)w, ++idlecnt); 2089 ev_start (EV_A_ (W)w, active);
2090
1971 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2091 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1972 idles [idlecnt - 1] = w; 2092 idles [ABSPRI (w)][active - 1] = w;
2093 }
1973} 2094}
1974 2095
1975void 2096void
1976ev_idle_stop (EV_P_ ev_idle *w) 2097ev_idle_stop (EV_P_ ev_idle *w)
1977{ 2098{
1978 ev_clear_pending (EV_A_ (W)w); 2099 clear_pending (EV_A_ (W)w);
1979 if (expect_false (!ev_is_active (w))) 2100 if (expect_false (!ev_is_active (w)))
1980 return; 2101 return;
1981 2102
1982 { 2103 {
1983 int active = ((W)w)->active; 2104 int active = ((W)w)->active;
1984 idles [active - 1] = idles [--idlecnt]; 2105
2106 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
1985 ((W)idles [active - 1])->active = active; 2107 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2108
2109 ev_stop (EV_A_ (W)w);
2110 --idleall;
1986 } 2111 }
1987
1988 ev_stop (EV_A_ (W)w);
1989} 2112}
2113#endif
1990 2114
1991void 2115void
1992ev_prepare_start (EV_P_ ev_prepare *w) 2116ev_prepare_start (EV_P_ ev_prepare *w)
1993{ 2117{
1994 if (expect_false (ev_is_active (w))) 2118 if (expect_false (ev_is_active (w)))
2000} 2124}
2001 2125
2002void 2126void
2003ev_prepare_stop (EV_P_ ev_prepare *w) 2127ev_prepare_stop (EV_P_ ev_prepare *w)
2004{ 2128{
2005 ev_clear_pending (EV_A_ (W)w); 2129 clear_pending (EV_A_ (W)w);
2006 if (expect_false (!ev_is_active (w))) 2130 if (expect_false (!ev_is_active (w)))
2007 return; 2131 return;
2008 2132
2009 { 2133 {
2010 int active = ((W)w)->active; 2134 int active = ((W)w)->active;
2027} 2151}
2028 2152
2029void 2153void
2030ev_check_stop (EV_P_ ev_check *w) 2154ev_check_stop (EV_P_ ev_check *w)
2031{ 2155{
2032 ev_clear_pending (EV_A_ (W)w); 2156 clear_pending (EV_A_ (W)w);
2033 if (expect_false (!ev_is_active (w))) 2157 if (expect_false (!ev_is_active (w)))
2034 return; 2158 return;
2035 2159
2036 { 2160 {
2037 int active = ((W)w)->active; 2161 int active = ((W)w)->active;
2079} 2203}
2080 2204
2081void 2205void
2082ev_embed_stop (EV_P_ ev_embed *w) 2206ev_embed_stop (EV_P_ ev_embed *w)
2083{ 2207{
2084 ev_clear_pending (EV_A_ (W)w); 2208 clear_pending (EV_A_ (W)w);
2085 if (expect_false (!ev_is_active (w))) 2209 if (expect_false (!ev_is_active (w)))
2086 return; 2210 return;
2087 2211
2088 ev_io_stop (EV_A_ &w->io); 2212 ev_io_stop (EV_A_ &w->io);
2089 2213
2104} 2228}
2105 2229
2106void 2230void
2107ev_fork_stop (EV_P_ ev_fork *w) 2231ev_fork_stop (EV_P_ ev_fork *w)
2108{ 2232{
2109 ev_clear_pending (EV_A_ (W)w); 2233 clear_pending (EV_A_ (W)w);
2110 if (expect_false (!ev_is_active (w))) 2234 if (expect_false (!ev_is_active (w)))
2111 return; 2235 return;
2112 2236
2113 { 2237 {
2114 int active = ((W)w)->active; 2238 int active = ((W)w)->active;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines